116 research outputs found

    Compositional schedulability analysis of real-time actor-based systems

    Get PDF
    We present an extension of the actor model with real-time, including deadlines associated with messages, and explicit application-level scheduling policies, e.g.,"earliest deadline first" which can be associated with individual actors. Schedulability analysis in this setting amounts to checking whether, given a scheduling policy for each actor, every task is processed within its designated deadline. To check schedulability, we introduce a compositional automata-theoretic approach, based on maximal use of model checking combined with testing. Behavioral interfaces define what an actor expects from the environment, and the deadlines for messages given these assumptions. We use model checking to verify that actors match their behavioral interfaces. We extend timed automata refinement with the notion of deadlines and use it to define compatibility of actor environments with the behavioral interfaces. Model checking of compatibility is computationally hard, so we propose a special testing process. We show that the analyses are decidable and automate the process using the Uppaal model checke

    Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca

    Full text link
    In this paper we propose an extension of the Rebeca language that can be used to model distributed and asynchronous systems with timing constraints. We provide the formal semantics of the language using Structural Operational Semantics, and show its expressiveness by means of examples. We developed a tool for automated translation from timed Rebeca to the Erlang language, which provides a first implementation of timed Rebeca. We can use the tool to set the parameters of timed Rebeca models, which represent the environment and component variables, and use McErlang to run multiple simulations for different settings. Timed Rebeca restricts the modeller to a pure asynchronous actor-based paradigm, where the structure of the model represents the service oriented architecture, while the computational model matches the network infrastructure. Simulation is shown to be an effective analysis support, specially where model checking faces almost immediate state explosion in an asynchronous setting.Comment: In Proceedings FOCLASA 2011, arXiv:1107.584

    Timed Actors and Their Formal Verification

    Full text link
    In this paper we review the actor-based language, Timed Rebeca, with a focus on its formal semantics and formal verification techniques. Timed Rebeca can be used to model systems consisting of encapsulated components which communicate by asynchronous message passing. Messages are put in the message buffer of the receiver actor and can be seen as events. Components react to these messages/events and execute the corresponding message/event handler. Real-time features, like computation delay, network delay and periodic behavior, can be modeled in the language. We explain how both Floating-Time Transition System (FTTS) and common Timed Transition System (TTS) can be used as the semantics of such models and the basis for model checking. We use FTTS when we are interested in event-based properties, and it helps in state space reduction. For checking the properties based on the value of variables at certain point in time, we use the TTS semantics. The model checking toolset supports schedulability analysis, deadlock and queue-overflow check, and assertion based verification of Timed Rebeca models. TCTL model checking based on TTS is also possible but is not integrated in the tool.Comment: In Proceedings EXPRESS/SOS2023, arXiv:2309.0578

    Heterogeneous models and analyses in the design of real-time embedded systems - an avionic case-study

    Get PDF
    The development of embedded systems according to Model-Driven Development relies on two complementary activities: system mod- eling on the one hand and analysis of the non-functional properties, such as timing properties, on the other hand. Yet, the coupling be- tween models and analyses remains largely disregarded so far: e.g. how to apply an analysis on a model? How to manage the analysis process? This paper presents an application of our research on this topic. In particular, we show that our approach makes it possible to combine heterogeneous models and analyses in the design of an avionic system. We use two languages to model the system at di erent levels of abstraction: the industry standard AADL (Ar- chitecture Analysis and Design Language) and the more recent implementation-oriented CPAL language (Cyber-Physical Action Language). We then combine di erent real-time scheduling analy- ses so as to gradually de ne the task and network parameters and nally validate the schedulability of all activities of the system

    Foundations for Safety-Critical on-Demand Medical Systems

    Get PDF
    In current medical practice, therapy is delivered in critical care environments (e.g., the ICU) by clinicians who manually coordinate sets of medical devices: The clinicians will monitor patient vital signs and then reconfigure devices (e.g., infusion pumps) as is needed. Unfortunately, the current state of practice is both burdensome on clinicians and error prone. Recently, clinicians have been speculating whether medical devices supporting ``plug & play interoperability\u27\u27 would make it easier to automate current medical workflows and thereby reduce medical errors, reduce costs, and reduce the burden on overworked clinicians. This type of plug & play interoperability would allow clinicians to attach devices to a local network and then run software applications to create a new medical system ``on-demand\u27\u27 which automates clinical workflows by automatically coordinating those devices via the network. Plug & play devices would let the clinicians build new medical systems compositionally. Unfortunately, safety is not considered a compositional property in general. For example, two independently ``safe\u27\u27 devices may interact in unsafe ways. Indeed, even the definition of ``safe\u27\u27 may differ between two device types. In this dissertation we propose a framework and define some conditions that permit reasoning about the safety of plug & play medical systems. The framework includes a logical formalism that permits formal reasoning about the safety of many device combinations at once, as well as a platform that actively prevents unintended timing interactions between devices or applications via a shared resource such as a network or CPU. We describe the various pieces of the framework, report some experimental results, and show how the pieces work together to enable the safety assessment of plug & play medical systems via a two case-studies

    The earlier the better: a theory of timed actor interfaces

    Get PDF
    Programming embedded and cyber-physical systems requires attention not only to functional behavior and correctness, but also to non-functional aspects and specifically timing and performance. A structured, compositional, model-based approach based on stepwise refinement and abstraction techniques can support the development process, increase its quality and reduce development time through automation of synthesis, analysis or verification. Toward this, we introduce a theory of timed actors whose notion of refinement is based on the principle of worst-case design that permeates the world of performance-critical systems. This is in contrast with the classical behavioral and functional refinements based on restricting sets of behaviors. Our refinement allows time-deterministic abstractions to be made of time-non-deterministic systems, improving efficiency and reducing complexity of formal analysis. We show how our theory relates to, and can be used to reconcile existing time and performance models and their established theories

    Time At Your Service: Schedulability Analysis of Real-Time and Distributed Services

    Get PDF
    The software today is distributed over several processing units. At a large scale this may span over the globe via the internet, or at the micro scale, a software may be distributed on several small processing units embedded in one device. Real-time distributed software and services need to be timely and respond to the requests in time. The Quality of Service of real time software depends on how it schedules its tasks to be executed. The state of the art in programming distributed software, like in Java, the scheduling is left to the underlying infrastructure and in particular the operating system, which is not anymore in the control of the applications. In this thesis, we introduce a software paradigm based on object orientation in which real-time concurrent objects are enabled to specify their own scheduling strategy. We developed high-level formal models for specifying distributed software based on this paradigm in which the quality of service requirements are specified as deadlines on performing and finishing tasks. At this level we developed techniques to verify that these requirements are satisfied. This research has opened the way to a new approach to modeling and analysis of a range of applications such as continuous planning in the context of logistics software in a dynamic environment as well as developing software for multi-core systems. Industrial companies (DEAL services) and research centers (the Uppsala Programming for Multicore Architectures Resrearch Center UPMARC) have already shown interest in the results of this thesis.LEI Universiteit LeidenFoundations of Software Technolog

    Leveraging Weakly-hard Constraints for Improving System Fault Tolerance with Functional and Timing Guarantees

    Full text link
    Many safety-critical real-time systems operate under harsh environment and are subject to soft errors caused by transient or intermittent faults. It is critical and yet often very challenging to apply fault tolerance techniques in these systems, due to their resource limitations and stringent constraints on timing and functionality. In this work, we leverage the concept of weakly-hard constraints, which allows task deadline misses in a bounded manner, to improve system's capability to accommodate fault tolerance techniques while ensuring timing and functional correctness. In particular, we 1) quantitatively measure control cost under different deadline hit/miss scenarios and identify weak-hard constraints that guarantee control stability, 2) employ typical worst-case analysis (TWCA) to bound the number of deadline misses and approximate system control cost, 3) develop an event-based simulation method to check the task execution pattern and evaluate system control cost for any given solution and 4) develop a meta-heuristic algorithm that consists of heuristic methods and a simulated annealing procedure to explore the design space. Our experiments on an industrial case study and a set of synthetic examples demonstrate the effectiveness of our approach.Comment: ICCAD 202

    Modeling, verification, and analysis of timed actor-based models

    Get PDF
    In the recent years, formal modeling and verification of realtime systems have become very important. Difficult-to-use modeling languages and inefficient analysis tools are the main obstacles to use formal methods in this domain. Timed actor model is one of the modeling paradigms which is proposed for modeling of realtime systems. It benefits from high-level object-oriented modeling facilities; however, developed analysis techniques for timed actors needs to be improved to make the actor model acceptable for the analysis of real-world applications. In this thesis, we first tackle the model checking problem of timed actors by proposing the standard semantics of timed actors in terms of fine-grained timed transition system (FGTS) and transforming it to Durational Transition Graph (DTG). This way, while the time complexity of model checking algorithms for TCTL properties, in general, is non-polynomial, we are able to check TCTL properties (a subset of TCTL) using model checking in polynomial time. We also improve the model checking algorithm of TCTL properties, obtaining time complexity of O((V lg V+E) |Φ|) instead of O(V(V+E)|Φ|) and use it for efficient model checking of timed actors. In addition, we propose a reduction technique which safely eliminates instantaneous transitions of FGTS. Using the proposed reduction technique, we provide an efficient algorithm for model checking of complete TCTL properties over the reduced transition systems. In actor-based models, the absence of shared variables and the presence of single-threaded actors along with non-preemptive execution of each message server, ensure that the execution of message servers do not interfere with each other. Based on this observation, we propose Floating Time Transition System (FTTS) as the big-step semantics of timed actors. The big-step semantics exploits actor features for relaxing the synchronization of progressof time among actors, and thereby reducing the number of states in transition systems. Considering an actor-based language, we prove there is an action-based weak bisimulation relation between FTTS and FGTS. As a result, the big-step semantics preserves event-based branching-time properties. Finally, we show how Timed Rebeca and FTTS are used as the back-end analysis technique of three different independent works to illustrate the applicability of FTTS in practice.The work on this dissertation was supported by the project “Self-Adaptive Actors:SEADA” (nr. 163205-051) of the Icelandic Research Fund
    corecore