Modeling, Verification, and Analysis of Timed
Actor-Based Models

Ehsan Khamespanah
Doctor of Philosophy

June 2018

School of Computer Science
Reykjavik University

Ph.D. Dissertation

Q\
v, <

Modeling, Verification, and Analysis of Timed Actor-Based
Models

by

Ehsan Khamespanah

Dissertation submitted to the School of Computer Science
at Reykjavik University in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

June 2018

Thesis Committee:

Marjan Sirjani, Supervisor
Professor, Reykjavik University, Iceland
Professor, Malardalen University, Sweden

Ramtin Khosravi, Supervisor
Assistant Professor, University of Tehran, Iran

Edward A. Lee,
Professor, University of California at Berkeley, USA

Marcel Kyas,
Assistant Professor, Reykjavik University, Iceland

Fatemeh Ghassemi,
Assistant Professor, University of Tehran, Iran

i

Thomas A. Henzinger, Examiner
Professor, Institute of Science and Technology, Austria

Copyright
Ehsan Khamespanah
June 2018

v

The undersigned hereby certify that they recommend to the School of Computer Sci-
ence at Reykjavik University for acceptance this Dissertation entitled Modeling, Ver-
ification, and Analysis of Timed Actor-Based Models submitted by Ehsan
Khamespanah in partial fulfillment of the requirements for the degree of Doctor of
Philosophy (Ph.D.) in Computer Science

date

Marjan Sirjani, Supervisor
Professor, Reykjavik University, Iceland
Professor, Mélardalen University, Sweden

Ramtin Khosravi, Supervisor
Assistant Professor, University of Tehran, Iran

Edward A. Lee,
Professor, University of California at Berkeley, USA

Marcel Kyas,
Assistant Professor, Reykjavik University, Iceland

Fatemeh Ghassemi,
Assistant Professor, University of Tehran, Iran

Thomas A. Henzinger, Examiner
Professor, Institute of Science and Technology, Austria

vi

The undersigned hereby grants permission to the Reykjavik University Library to
reproduce single copies of this Dissertation entitled Modeling, Verification, and
Analysis of Timed Actor-Based Models and to lend or sell such copies for private,
scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the Dissertation, and except as herein before provided, neither the Dis-
sertation nor any substantial portion thereof may be printed or otherwise reproduced
in any material form whatsoever without the author’s prior written permission.

date

Ehsan Khamespanah
Doctor of Philosophy

Modeling, Verification, and Analysis of Timed Actor-Based
Models

Ehsan Khamespanah

June 2018

Abstract

In the recent years, formal modeling and verification of realtime systems have become
very important. Difficult-to-use modeling languages and inefficient analysis tools are
the main obstacles to use formal methods in this domain. Timed actor model is
one of the modeling paradigms which is proposed for modeling of realtime systems. It
benefits from high-level object-oriented modeling facilities; however, developed analysis
techniques for timed actors needs to be improved to make the actor model acceptable
for the analysis of real-world applications.

In this thesis, we first tackle the model checking problem of timed actors by proposing
the standard semantics of timed actors in terms of fine-grained timed transition system
(FGTS) and transforming it to Durational Transition Graph (DTG). This way, while
the time complexity of model checking algorithms for TCTL properties in general is
non-polynomial, we are able to check TCTL< > properties (a subset of TCTL) using
model checking in polynomial time. We also improve the model checking algorithm
of TCTL< > properties, obtaining time complexity of O((V IgV + E) - |®|) instead of
O(V(V + E)-|®|) and use it for efficient model checking of timed actors. In addition,
we propose a reduction technique which safely eliminates instantaneous transitions of
FGTS. Using the proposed reduction technique, we provide an efficient algorithm for
model checking of complete TCTL properties over the reduced transition systems.

In actor-based models, the absence of shared variables and the presence of single-
threaded actors along with non-preemptive execution of each message server, ensure
that the execution of message servers do not interfere with each other. Based on
this observation, we propose Floating Time Transition System (FTTS) as the big-step
semantics of timed actors. The big-step semantics exploits actor features for relaxing
the synchronization of progress of time among actors, and thereby reducing the number
of states in transition systems. Considering an actor-based language, we prove there
is an action-based weak bisimulation relation between FTTS and FGTS. As a result,
the big-step semantics preserves event-based branching-time properties.

Finally, we show how Timed Rebeca and FTTS are used as the back-end analysis

technique of three different independent works to illustrate the applicability of FTTS
in practice.

viii

I dedicate this to whom who takes care of us,
my parents, my sisters and brother.

Acknowledgements

Thank you all. This, at the highest level of abstraction, shows my thanks and gratitude
to all who made it possible for me to accomplish my PhD. I would like to thank my PhD
supervisors Marjan Sirjani and Ramtin Khosravi. Throughout these years, they were
sources of inspirations for me and they were more of friends to me than supervisors.

I spent most of my days at Reykjavik University and Tehran University with these
people, in addition to Marjan and Ramtin, alphabetically listed: Luca Acceto, Fate-
meh Ghassemi, Mohammad-Javad Izadi, Ali Jafari, Mina Mohammadkhani, Mahdi
Mosaffa, Mohammadreza Mousavi, Hamidreza Pourvatan, Zeynab Sabahi, Nazanin-
Sadat Seyyed-Razi, Sadegh Shafiei, and Zeynab Sharifi. We sometimes had scientific
discussions, but I am to thank them mainly because they made my life easy being
good friends before anything else.

I traveled a lot, for short visits and presenting papers, all around the world dur-
ing which I learned scientific collaboration, presentation, discussion, and sightseeing.
During all these meetings, I also got to know many other nice people related to the
domain of formal modeling and analysis of systems. They all played a role in my way
towards this thesis. As the smallest sign of appreciation, I will name them, alpha-
betically: Gul Agha, Dragan Bosnacki, Holger Hermanns, Joost-Pieter Katoen, Kim
Guldstrand Larsen, Kirill Mechitov, and Mahesh Viswanathan. I should thank ev-
eryone in Reykjavik University who helped me in different ways, especially Bjérn Por
Jonsson, Yngvi Bjornsson, and Sigrin Maria Ammendrup. I wish all those who helped
and supported me scientifically, and more importantly non-scientifically, the best and
success and prosperity in life and afterward.

The work on this dissertation was supported by the project “Self-Adaptive Actors:
SEADA” (nr. 163205-051) of the Icelandic Research Fund.

Contents

Acknowledgements X
Contents xi
List of Figures Xiv
List of Tables XV
1 Introduction 1
1.1 Timed Rebeca as a Modeling Language 2

1.2 Previous Analysis Techniques of Timed Rebeca Models 3

1.3 Thesis Overview and Contributions 3

2 Timed Rebeca 6
2.1 Introduction to Timed Rebeca 6
2.2 Standard Semantics of Timed Rebeca 10
2.2.1 Abstract Syntax of Timed Rebeca 10

2.2.2 Fine-Grained Semantics of Timed Rebeca 12

2.2.3 Finite Transition Systems and Zeno Behavior 15

2.3 Experimental Results oo 17
2.3.1 Ticket Service System oo 18

2.3.2 A Toxic Gas Sensing and Rescue System 19

2.3.3 The IEEE 802.11 RTS/CTS Collision Avoidance Protocol 20

2.3.4 Network on Chip (NoC) 22

2.3.5 Hadoop YARN Scheduler 24

2.3.6 WSAN Applications 26

3 TCTL Model Checking for Timed Rebeca 29
3.1 Timed Model Checking of Discrete Time Systems against TCTL properties 30
3.2 Improving the TCTL< > Model Checking Algorithm 34
3.2.1 Calculating Sat(E(@U=CW)) 35

3.2.2 Calculating Sat(E(@U=¢W)) 36

3.3 Case Studies and Experimental Results 39
3.3.1 Network on Chip (NoC) 40

3.3.2 Hadoop YARN Scheduler 40

3.3.3 Ticket Serviceo 41

3.3.4 WSAN Applications 41

4 State Space Reduction by Folding Transitions 43

4.1 Folding Instantaneous Transitions 43

Xil

4.2 Complete TCTL Model Checking of DTGs
4.3 Model Checking of the FTSs of Timed Rebeca Models
4.4 Case Studies and Experimental Results
4.4.1 Network on Chip (NoC)
4.4.2 Hadoop YARN Scheduler
4.4.3 Ticket Serviceo
4.4.4 WSAN Applications L

Big-Step Semantics of Timed Rebeca

5.1 Semantics of Timed Rebeca in FTTS

5.2 An Action-Based Weak Bisimulation between the Two Semantics

5.3 Comparing to the Other Reduction Technique

5.4 Experimental Results oo
5.4.1 Hadoop YARN Scheduler
5.4.2 WSAN Applications
5.4.3 Ticket Service
5.4.4 The IEEE 802.11 RTS/CTS Collision Avoidance Protocol

Case Studies
6.1 Analyzing Wireless Sensor and Actuator Networks
6.1.1 Preliminaries: Event Graphs
6.1.2 The Actor Model of WSAN Applications
6.1.3 Schedulability Analysis of a Stand-Alone Node
6.1.4 Schedulability Analysis of Multi-Node Model with a Distributed
Communication Protocol
6.1.5 Generalization of the Approach for Any WSAN Application
6.1.6 Experimental Results
6.1.6.1 Finding the Maximum Sampling Rate
6.1.6.2 Real-World Applications
6.2 Analyzing Different Scheduling Policies in YARN
6.3 Functional and Performance Analysis of NoCs
6.3.1 GALS NOC Model in Timed Rebeca
6.3.2 Experimental Results

Previous Work on Analyzing Timed Rebeca
7.1 Semantics of Timed Rebeca in Timed Automata
7.1.1 Rebec-Behavior Automaton
7.1.2 Rebec-Bag Automaton
7.1.3 After-Handler Automaton
7.1.4 Analysis of Network of Timed Automata
7.2 Semantics of Timed Rebeca in Realtime Maude
7.2.1 Representing Timed Rebeca Models in Realtime Maude
7.2.1.1 Valuations
7.2.1.2 Messages and Message Lists
7.2.1.3 Representing Message Servers
7.2.1.4 Messages in Transit
7.2.2 Instantaneous Dynamics
7.2.2.1 Executing Immediate Statements
7222 Delay

7.2.3 Timed Behavior oo
7.3 Experimental Results
7.3.1 Ticket Service Systemo
7.3.2 A Toxic Gas Sensing and Rescue System
7.3.3 The IEEE 802.11 RTS/CTS Collision Avoidance Protocol

8 Conclusion and Future Work

Bibliography

xiii

94
95
95
95
96

97

100

List of Figures

2.1
2.2
2.3
24
2.5

3.1
4.1

5.1
5.2

6.1
6.2
6.3
6.4
6.5

6.6

6.7

6.8

6.9
6.10

7.1

7.2
7.3
7.4

7.5
7.6

Abstract syntax of Rebeca 7
The actor model of Ticket Service System 8
The actor model of Ticket Service System with time constraints 9
A TTS model of two traffic lights at a crossroad 10
The beginning part of the FGTS of the ping pong example 16
An intuitive representation of jump and continuous-early semantics 32
Example of how folding instantaneous transitions reduction works 44
The beginning part of the FTTS of the ping pong example o4
Mapping FGTS states to FTTS states o7
An example of an event graph 65
The event graph of a WSAN sensor behavior 66
How events of a WSAN sensor are associated with actors 66

How events of wireless communication mechanism are associated with actors 67
Modeling the behavior of a WSAN application in its real-world installation

in the actor model oo 67
Maximum sampling rate in case of using TDMA protocol and setting the
value of sensorTaskDelay to2ms 75
Maximum possible sampling rate in case of different communication proto-

cols, number of nodes, sensor internal task delays, and radio packet size . . 77
Mean deadline misses for a scenario in favor of EDF in the case of changing

the number of concurrent jobso 80
Comparing the packet latency in different routing algorithms 83
Comparing the timing behavior of the Timed Rebeca model with the HSPISE
implementation of ASPIN architecture GALS NoC 84
Implementation of delay and sending message statements of Listing 2.2 in
timed automata. 87
The rebec-behavior automaton of Customer reactive class of Listing 2.2 . . 87

The rebec-behavior timed automaton of Agent reactive class of Listing 2.2 . 88
The rebec-behavior timed automaton of TicketService reactive class of List-

INg 2.2 . . e 88
Timed automaton of rebec-bag 88
Timed automaton of after-handler 89

List of Tables

2.2

2.3

24

2.5

2.6

2.7

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

5.1

5.2

9.3

5.4

Model checking times and size of state spaces for the standard semantics
of the ticket service system
Model checking times and size of state spaces for the standard semantics
of the Gas Sensing system
Model checking times and size of state spaces for the standard semantics
of the CA protocol
Model checking times and size of state spaces for the standard semantics
of the NoCmodel
Model checking times and size of state spaces for the standard semantics
of the Hadoop Yarn model
Model checking times and size of state spaces for the standard semantics

of WSAN model

The size of state spaces and the gained reductions in the NoC example in
different scenarios.
The size of state spaces and the gained reductions in the Hadoop Yarn
example with default configuration.
The size of state spaces and the gained reductions in the Ticket Service
example with different numbers of customers.
The size of state spaces and the gained reductions in WSAN example with
different configuration.o L

The size of state spaces and the gained reductions in the NoC example in
different scenarios
The size of state spaces and the gained reductions in the Hadoop Yarn
example with default configuration
The size of state spaces and the gained reductions in the Ticket Service
example with different numbers of customers
The size of state spaces and the gained reductions in WSAN example with
different configurationo L

Comparing the number of states and transitions in FGTS and FTTS of
YARN example with priority queueo
Comparing the number of states and transitions in FGTS and FTTS of
YARN example with normal queue
Comparing the number of states and transitions in FGTS and FTTS of
WSAN example
Comparing the number of states and transitions in FGTS and FTTS of
Ticket Service example

42

XVl

9.5

6.1
7.1

7.2

7.3

Comparing the number of states and transitions in FGTS and FTTS of CA
protocol 62

Comparing the KPIs of scheduling policies in a configuration in favor of EDF 79

Model checking times and size of state spaces, using two different semantics

for the ticket service system. 95
Model checking times and size of state spaces, using two different semantics
for the Gas Sensing system. oL 96

Model checking times and size of state spaces, using two different semantics
for the CA protocol. 96

Chapter 1

Introduction

Modeling is crucial, both in science and engineering. We build models to be able to do
analysis without having to deal with the details of a system’s implementation. Edward
Lee [1| emphasizes on the difference between engineers and scientists when they build
and use a model. Engineers build a model to explore the design space and construct
a system based on the model; and scientists build a model of an existing system to
be able to analyze it. So, engineers do their best to build the system just like the
model, and scientists do their best to build the model similar to the existing system.
No matter whether we use a model as an engineer or a scientist, we need to have a
faithful model in order to perform a valid analysis and/or design exploration [2].

Besides difficulties of developing faithful models, proposing analysis techniques for
these models is a crucial issue. The non-functional properties of different natures
are becoming more crucial in correctness of a software system, demanding new models
and /or extensions of existing languages. Timing features are no more just performance
concerns. In many software systems, nowadays, timing features are part of correctness
properties. Ensuring the correctness of these types of properties for realtime systems
turned into a very difficult task. Realtime systems are hardware and software systems
that are subject to realtime constraints. Such systems are usually used in critical ap-
plications. Realtime computations can be said to have failed if they are not completed
before their deadline. Therefore, when verifying a model of a realtime system, in ad-
dition to its functional correctness, it is necessary to prove that the model meets the
specified realtime criteria.

The importance of formal modeling and analysis for ensuring the dependability
and correctness of realtime systems has long been acknowledged. However, the lack
of a total solution containing an easy to use modeling language and efficient analysis
technique has limited the use of formal methods. Timed Rebeca [3] is designed to be a
usable and formally analyzable modeling language for realtime systems as a response
to the abovementioned requirements. The target application domain of Timed Rebeca
is event-driven systems with asynchronous message passing. In this thesis, we present
a set of analysis techniques for model checking of Timed Rebeca models. Prior to
this work, some other analysis techniques had been proposed (including [4], [5], and
[3]) for model checking and analysis of Timed Rebeca models. These approaches had
been developed based on transformation from Timed Rebeca models to other models.
This way, the analysis toolset of the target models can be used for the analysis of
Timed Rebeca models. In comparison to those works, in this thesis we propose direct
approaches for model checking of Timed Actor models which results in more efficient

2 CHAPTER 1. INTRODUCTION

analysis of the models. This way, more complicated real-world systems can be modeled
and analyzed by Timed Rebeca more efficiently.

1.1 Timed Rebeca as a Modeling Language

We may hear the following question, mostly in more theoretical communities: “why yet
another modeling language?” This question is usually asked if you mainly focus on the
expressiveness of the modeling languages. But usability and fidelity are also two crucial
features of a modeling language, and their importance is very well acknowledged from
a more practical point of view. Models need to be able to capture the characteristics
of the system which affect the properties of our interest (fidelity), and we need to be
able to understand and build a model with the least possible effort (usability). For
example, object-oriented approaches were introduced with the philosophy of reducing
the semantic gap between the real world problems and the models representing those
problems; and their success is undeniable. With the growing need for various software
applications, and fast changes in hardware and network infrastructures, the answer to
the above question is simple: because we are not there yet. And with “change” being
the only constant in our software world, we will possibly never be there [2].

The modeling language Rebeca (Reactive Objects Language) [6], 7], is an opera-
tional interpretation of the actor model [8], [9] provided with formal semantics and
supported by model checking tools [10]. Rebeca is designed to be a usable and analyz-
able modeling language to bridge the gap between software engineers and the formal
methods community. The application domain targeted by Rebeca is where we have
event-driven systems, with asynchronous message passing. In Rebeca, we have non-
blocking sends, no explicit receive, no shared variables, and non-preemptive method
execution.

Timed Rebeca is an extension of Rebeca with time features for modeling and ver-
ification of realtime systems. Different approaches have been proposed for modeling
and analysis of realtime systems. Timed automata [11]|, realtime Maude [12], and
TCCS [13] are examples of modeling formalisms for design and analysis of realtime
systems. Apart from these well-known and general purpose modeling formalisms, high
level modeling languages are adopted for the realtime requirements. The actor model
as an example of such languages is extended with timing features to address the func-
tional behaviors of actors and the timing constraints on patterns of actor invocations.
A realtime actor model, RT-synchronizer, is proposed in [14] as an example of an ac-
tor model that enforces realtime relations between events. While RT-synchronizer is
an abstraction mechanism for the declarative specification of timing constraints over
groups of actors, Timed Rebeca allows us to work at a lower level of abstraction. Us-
ing Timed Rebeca, a modeler can easily capture the functional features of a system,
together with the timing constraints for both computation and network latencies, and
analyze the model from various points of view.

Creol [15] is a concurrent object based language which is designed in parallel with
Rebeca. Concurrent objects of Creol can be checked for schedulability using the ap-
proach of [15], which is developed based on the same idea presented for Timed Rebeca
in [16]. ABS [17] is an extension of Creol in multiple ways. While in Creol and its
descendent, ABS, the focus has been on different modeling features, for Rebeca the
core of the language is kept simple, avoiding adding any complexity. The focus in
Timed Rebeca has been on analysis and formal verification of models.

1.2. PREVIOUS ANALYSIS TECHNIQUES OF TIMED REBECA MODELS 3

1.2 Previous Analysis Techniques of Timed Rebeca
Models

As one of the earliest attempts for model checking of Timed Rebeca models, a toolset
is developed for model checking of Timed Rebeca models using transformation from
Timed Rebeca models to networks of timed automata. The resulting timed automata
are model checked against TCTL properties using the UPPAAL toolset. Using this
transformation, the most efficient network of timed automata is generated for Timed
Rebeca models (having as many as possible committed states and as few as possible
number of clocks). But, because of the inefficiency of modeling asynchronous com-
munication among actors by synchronized communication of timed automata, model
checking results in state space explosion even for middle-sized case studies [18]. A
similar approach of transforming timed actor models into timed automata is taken by
de Boer et al. in [15], where timed actor models in Creol language are analyzed for
schedulability. This work also suffers from a lack of scalability for the same reason.

Another work on model checking of Timed Rebeca is based on mapping timed
actors to Realtime Maude. This enables a formal model-based methodology which
combines the convenience of intuitive modeling in timed actors with formal verifica-
tion of Realtime Maude. Realtime Maude is supported by a high-performance toolset
providing a spectrum of analysis methods, including simulation through timed rewrit-
ing, reachability analysis, and (untimed) linear temporal logic (LTL) model checking
as well as timed CTL model checking. As described in [19], all the possible reduction
techniques are applied to the generated Realtime Maude models to avoid state space
explosion. Mainly, a number of statements (which are related to the instantaneous
statements of Timed Rebeca except sending messages) are grouped together to be ex-
ecuted in one atomic rewrite step. The experimental results, reported in [19], show
that the generated state spaces using Realtime Maude are significantly bigger than the
state spaces which are generated by the fine-grained semantics of Timed Rebeca.

Translating Timed Rebeca to Erlang [20], [21] has been presented in [22|. The
motivation for translating Timed-Rebeca models to Erlang code is to be able to use
McErlang [23], [24] to model check them. McErlang has full Erlang data type support,
support for general process communication, node semantics, fault detection and other
Erlang features which have being used by most modern Erlang programs [23|. The
McErlang tool set supporting verification methods ranges from state-based exploration
to simulation, with property specifications written as LTL formulas or any other hand-
coded piece of code for system runtime verification.

None of the aforementioned approaches did not provide efficient enough model
checking facilities which can support the analysis of real-world case studies.

1.3 Thesis Overview and Contributions

The main contributions of this work are on developing more efficient analysis techniques
which enable modelers to analyze more complex Timed Rebeca models and real-world
case studies. To this end, we presented the standard semantics of Timed Rebeca and
developed a tool for directly generating the state spaces of Timed Rebeca models. This
semantics is presented in Chapter 2.2. The contributions of this part are the following.

4 CHAPTER 1. INTRODUCTION

e Proposing the standard semantics of Timed Rebeca in terms of timed transi-
tion system with discrete progress of time steps, called Fine-Grained Transition

System (FGTS),

e Evaluating the size of transition systems which are generated based on the stan-
dard semantics.

At the next step, we propose a new TCTL<> model checking algorithm and show that
it can be used for the analysis of Timed Rebeca models. This algorithm improves
the time complexity of the previously proposed algorithm for the model checking of
discrete-time systems, as described in Chapter 3. The contributions of this part are
the following.

e Proposing a new TCTL<> model checking algorithm with a better time com-
plexity and execution time,

e Proving the fact that the new algorithm can be used for model checking of Timed
Rebeca models,

e Evaluating how efficient is the improved algorithm based on the time complexity
analysis and real-world execution time.

We also show that ignoring transient states of a model results in a huge reduction in
the size of state spaces. This technique, called folding the instantaneous transitions and
as shown in Chapter 4, reduces the size of state spaces significantly. The contributions
of this part are the following.

e Introducing a reduction technique by folding the instantaneous transitions in
object-based modeling languages,

e Making clear in which condition this reduction technique works for Timed Rebeca
models,

e Proving the fact that applying this reduction technique results in the ability of
complete TCTL model checking of Timed Rebeca models in polynomial time.

To have even smaller state spaces for Timed Rebeca models, a big-step seman-
tics is proposed which results in the generation of Floating Time Transition System
(Chapter 5). Using the big-step semantics, the local times of actors in a state can
be different, and there is no unique value for time in each state. We prove that this
semantics preserves the result of model checking against timed property of actions. Ex-
amples of such properties include p-calculus with weak modalities. The contributions
of this part are the following.

e Introducing the notion of Floating Time Transition System,

e Proving the existence of weak-bisimulation relation between the transition sys-
tems generated by the big-step semantics and the standard semantics, results in
have the same result for model checking against p-calculus properties with weak
modalities in Floating Time Transition Systems and fine-grained transition sys-
tems,

e Evaluating how small are the transition systems which are generated based on
the big-step semantics in comparison with their corresponding FGTSs.

1.3. THESIS OVERVIEW AND CONTRIBUTIONS 5

We extend Afra, the model checking tool of Rebeca, to support the algorithms and
techniques of this thesis. To illustrate the applicability of this extension, we use Afra
for the analysis of a set of real-world case studies. As presented in Chapter 6, we
demonstrate three different case studies which we develop; one of them as a contribu-
tion of this thesis and the other two case studies are developed by others as parts of
two masters theses. The contributions of this part are the following.

e Enriching Afra to support model checking of Timed Rebeca models, including 1)
generating transition systems based on the standard and big-step semantics, 2)
folding instantaneous transition, 3) the newly proposed TCTL model checking
algorithm,

e Developing a model for WSAN applications and analyze it using Afra.

Chapter 2

Timed Rebeca

2.1 Introduction to Timed Rebeca

Timed Rebeca is an extension on Rebeca with time features for modeling and verifica-
tion of time-critical systems. Rebeca [6], [10] is an actor-based language, for modeling
concurrent and reactive systems with asynchronous message passing. The actor model
was originally introduced by Hewitt [8] as an agent-based language, and is a mathe-
matical model of concurrent computation that treats actors as the universal primitives
of concurrent computation [25]. A Rebeca model is similar to the actor model as it
has reactive objects with no shared variables, asynchronous message passing with no
blocking send and no explicit receive, and unbounded buffers for messages. Objects in
Rebeca are reactive, self-contained, and each of them is called a rebec (reactive object).
Note that in this thesis we use rebec and actor interchangeably. Communication takes
place by message passing among actors. Each actor has an unbounded buffer, called
message queue, for its arriving messages. Computation is event-driven, meaning that
each actor takes a message that can be considered as an event from the top of its mes-
sage queue and executes the corresponding message server (also called a method). The
execution of a message server is atomic which means that there is no way to preempt
the execution of a message server of an actor and start executing another message
server of that actor.

A Rebeca model consists of a set of reactive classes and the main block (for the
syntax of Rebeca see Figure 2.1 and for an example see Figure 2.2). In the main
block, actors which are instances of the reactive classes are declared. The body of
the reactive class includes the declaration of its known rebecs, state variables, and
message servers. Message servers consist of the declaration of local variables and
the body of the message server. The statements in the body can be assignments,
conditional statements, enumerated loops, non-deterministic assignment, and method
calls. Method calls are sending asynchronous messages to other actors (or to itself).
A reactive class has an argument of type integer denoting the maximum size of its
message queue. Although message queues are unbounded in the semantics of Rebeca,
to ensure that the state space is finite, we need a user-specified upper bound for the
queue size. The operational semantics of Rebeca has been introduced in [6] in more
detail. In comparison with the standard actor model, dynamic creation and dynamic
topology are not supported by Rebeca. Also, actors in Rebeca are single-threaded.

We illustrate the Rebeca language with an example. Listing 2.1 shows the Rebeca
model of the ticket service system of Figure 2.2. The model consists of three reac-
tive classes: TicketService, Agent, and Customer. Customer sends the requestTicket

2.1. INTRODUCTION TO TIMED REBECA 7

Model == Class™ Main
Main = main { InstanceDcl* }
InstanceDcl = className rebecName({rebecName)*) : ({literal)*);
Class == reactiveclass className { KnownRebecs Vars
MsgSrv* LocalMethods™ }
KnownRebecs = knownrebecs { RebecDcl" }
Vars == statevars { VarDcl* }
RebecDcl == className (v)7;
VarDcl == Type (v)*; | Type [number |* v
MsgSrv = msgsrv msgName({ExtType v)*) { Stmt* }
LocalMethods = method N ame((ExtType v)*) { Stmt* }
Stmt == Assignment | SendMessage | MethodCall |
ConditionalStmt | LoopStmt | LocalVars
Assignment == v = Exp; | v ="(Exp(, Exzp)");
SendMessage == rebecExp.msgName({Exp)*);
MethodCall == methodName({Ezp)*);
ConditionalStmt == if (Exp) { Stmt* } [else { Stmt* }]
LoopStmt == for (Exp; Exp; Exp) { Stmt* } | while (Exp) { Stmt* }
LocalVars == ExtType (v)*;
Ezxp == e | rebecExpr
rebecEzp = self | rebecTerm | (className)rebec Term
rebec Term = rebecName | sender
EztType == Type | float | double
Type == boolean | int | short | byte | className

Figure 2.1: Abstract syntax of Rebeca(a slightly revised version of the syntax presented
in [22]). Angle brackets (...) are used as meta parenthesis, superscript + for repetition
at least once, superscript * for repetition zero or more times, whereas using (...) with
repetition denotes a comma separated list. Brackets [...] indicates that the text within
the brackets is optional. The symbol 7 shows non-deterministic choice. Identifiers
className, rebecName, methodName, v, literal, and type denote class name, rebec
name, method name, variable, integer number, and type, respectively; and e denotes
an (arithmetic, boolean or nondeterministic choice) expression. The parameter t is an
expression with natural number result.

8 CHAPTER 2. TIMED REBECA

-
W« Agent
Ticket

e 2\ Let me S
\&® ﬁ ask - licke, Service

‘ = Let me see how
Customer] A ss, many tickets |
\© Uy have

e

Figure 2.2: The actor model of Ticket Service System

message to Agent and Agent forwards the message to TicketService. TicketService
replies to Agent by sending a ticketlssued message and Agent responds to Customer
by sending the issued ticket.

Listing 2.1: The actor model of Ticket Ser- 95| 3
vice System 23 msgsrv ticketIssued(byte id) {
24 c.ticketIssued(id);

1| reactiveclass TicketService (3) { 25 }

2 knownrebecs {Agent a;} 26|}

3 statevars { 27

4 int nextId; 28| reactiveclass Customer (2) {
5 } 29 knownrebecs {Agent a;}

6 TicketService() { 30 Customer() {

7 nextId = 0; 31 self.try();

8 ¥ 32 }

9 msgsrv requestTicket() { 33 msgsrv try() {

10 a.ticketIssued(nextId); 34 a.requestTicket();

11 nextId = nextId + 1; 35 }

12 } 36 msgsrv ticketIssued(byte id) {
13|} 37 self.try();

14 38 }

15| reactiveclass Agent (3) { 39|}

16 knownrebecs { 40| main {

17 TicketService ts; 41 Agent a(ts, ¢):0);

18 Customer c; 42 TicketService ts(a):(3);
19 } 43 Customer c(a):();

20 msgsrv requestTicket() { 44| ¥

21 ts.requestTicket();

Timed Rebeca. Timed Rebeca [3] is an extension on Rebeca with time features for
modeling and verification of time-critical systems. To this end, three primitives are
added to Rebeca to address computation time, message delivery time, message expira-
tion, and period of occurrence of events. In a Timed Rebeca model, each actor has its
own local clock and the local clocks evolve uniformly. Methods are still executed atom-
ically, however passing time while executing a method can be modeled. In addition,
instead of a queue for messages, there is a bag of messages for each actor.

The timing primitives that are added to the syntax of Rebeca are delay, deadline
and after. The delay statement models the passing of time for an actor during execution
of a message server. The keywords after and deadline can only be used in conjunction
with a method call. The value of the argument of after shows how long it takes for the
message to be delivered to its receiver. The deadline shows the timeout for the message,

2.1. INTRODUCTION TO TIMED REBECA 9

Ticket

sV o
Ql
- ,
eV) It takes 2 to
s

Customer ‘ & © 3 seconds to
e be issued

" .

Figure 2.3: The actor model of Ticket Service System with time constraints

i.e., how long it will stay valid. We illustrate the application of these keywords with
an example. Listing 2.2 shows the Timed Rebeca model of a ticket service system of
Figure 2.3. As shown in line 11 of the model, issuing the ticket takes two or three time
units (modeled by a non-deterministic expression). At line 23 the actor instantiated
from Agent sends a message requestTicket to actor ts instantiated from TicketService,
and gives a deadline of five to the receiver to take this message and start serving it.
The periodic task of retrying for a new ticket is modeled in line 39 by the customer
sending a try message to itself and letting the receiver to take it from its bag only after
30 units of time (by stating after(30)).

Listing 2.2: The Timed Rebeca model of o4 4
ticket service system 25| msgsrv ticketIssued(byte id) {
26 c.ticketIssued(id);

1| reactiveclass TicketService { 27 ¥}

2 knownrebecs {Agent a;} 28| }

3 statevars { 29

4 int issueDelay, nextId; 30| reactiveclass Customer {

5 } 31 knownrebecs {Agent a;}

6 TicketService(int myDelay) { 32 Customer () {

7 issueDelay = myDelay; 33 self.try();

8 nextId = 0; 34 }

9 ¥ 35 msgsrv try() {

10 msgsrv requestTicket() { 36 a.requestTicket();

11 delay(?7(2, 3)); 37 }

12 a.ticketIssued(nextId); 38 msgsrv ticketIssued(byte id) {
13 nextId = nextId + 1; 39 self.try() after(30);
14 ¥ 40 }

15|} 41|}

16 42

17| reactiveclass Agent { 43

18 knownrebecs { 44| main {

19 TicketService ts; 45 Agent a(ts, c):0);

20 Customer c; 46 TicketService ts(a):(3);
21 } 47 Customer c(a):();

22 msgsrv requestTicket() { 48 ¥

23 ts.requestTicket() deadline(5);

10 CHAPTER 2. TIMED REBECA

light, ==red A light, ==red A
m light, =red light, == yellow

{1 (1)
12,2] NG [5,9]
(»)

light, := green A
light, =red

[0, 0]

light, :==red A
light, == green

[0,0]

[6,9] [2,2]

>

y

light, := yellow /: light; ==red A g
light, =red light, '=red

Figure 2.4: A TTS model of two traffic lights at a crossroad

2.2 Standard Semantics of Timed Rebeca!

The semantics of realtime systems is often defined assuming an ambient global time
that proceeds uniformly for all participants in a distributed system. Even when indi-
vidual local clocks are assumed to have skews, these skews are modeled relative to this
ambient global time. Timed Transition System (TTS), as a basic computational model
of realtime systems, generalizes the basic computation model of transition systems by
associating an interval with each transition to indicate how long a transition takes [37].
In a TTS, transitions are partitioned into two classes: instantaneous transitions (in
which time does not progress), and time ticks when the global clock is incremented.
These time ticks happen when all participants “agree” for time elapse. TTS-based
semantics is standard and has been defined for a variety of formalisms [30], [38]-[40].
Note that, using T'TS is not limited to discrete-time systems. It also has been used to
give a semantics for timed languages and formalisms that assume continuous or dense
time domains.

Figure 2.4 illustrates how the behavior of a realtime system is modeled by TTS.
The example models the behavior of a controller of two traffic lights at a crossroad.
Initially, the controller is in the state ly. It immediately makes a transition to [; as
the duration of its only outgoing transition is [0,0]. The controller stays in [; for a
duration of [6,9] units of time. It means that for a nondeterministically chosen real
number from the interval [6, 9], light; remains green. Then, the state changes to Iy and
for two units of time light; is yellow. Then, both lights are set to red and immediately
light, changes to green, and so on. In this example, the dense time model is used to
show the passage of time.

In this chapter, we will show how the fine-grained semantics of Timed Rebeca can
be directly defined in terms of T'TS. To enable the formal description of the semantics
of Timed Rebeca, we have to provide an abstract specification for the Syntax of Timed
Rebeca models, conforming the details of Figure 2.1.

2.2.1 Abstract Syntax of Timed Rebeca

In the first step, we present the notations used in the rest of the article. Given a set
A, the set A* is the set of all finite sequences over elements of A, the set P(A) is the
power set of A, and the set Pn(A) is the power multiset of A. For a sequence a € A*
of length n, the symbol a; denotes the it element of the sequence, where 1 < i < n.
Using this notation, we may also write the sequence a as (aj,as, - ,a,). The empty

!This chapter is an improvement and extension of the results published in [36] and [26].

2.2. STANDARD SEMANTICS OF TIMED REBECA 11

sequence is represented by €, and (h|T) denotes a sequence whose first element is h € A
and T" € A* is the sequence comprising the elements in the rest of the sequence. For
two sequences o and o’ over A, the operator @ is defined as & : A* x A* — A* for the
concatenation of two sequences such that o @ ¢’ is a sequence obtained by appending
o’ to the end of o.

A Timed Rebeca model consists of a number of reactive class declarations and
a main block specifying actors which are instantiated from the reactive classes. A
reactive class is defined as an instance of type RClass = CID xP(Mtds)xP(Knowns) x
P(Vars) x P(Mtds) such that:

e (CID is the set of all reactive class identifiers in the model.
e Mtds is the set of all method declarations.

e Knowns is the set of all the identifiers of known actors.

e Vars is the set of all variable names.

A reactive class (cid, consts, knowns,vars, mtds) has the identifier cid, the con-
structor method const, the set of known actors knowns, the set of state variables
vars, and the set of methods mtds. Each method (and the constructor method) is
defined as the triple (m,p,b) € MName x Var* x Stat™, where m is the name of the
message the method is used to serve, p is the sequence of the names of the formal
parameters, and b contains the sequence of statements comprising the body of the
method.

The set of statements is defined as Stat = Assign U Cond U Delay U Send U {skip},
where different types of statements are defined as below. The meaning of the below
statements is straightforward. Ezpr denotes the set of integer expressions defined over
usual arithmetic operators (with no side effects). BEzpr denotes the set of Boolean d
defined over usual relational and logic operators. We do not dig into the details of the
expressions here.

o Assign = Var x Fxpr is the set of assignment statements. We use the notation
var := expr as an alternative to (var, expr).

e Cond = BEzpr x Stat™ x Stat® is the set of conditional statements. We use the
notation if exprthen oelseo’ as an alternative to (expr, o, o).

e Delay = FExpr is the set of delay statements. We use the notation delay(expr)
as an alternative to (expr).

o Send = (ID U {self}) x MName x Ezpr* x Expr x Expr is the set of send
statements. We use the notation z.m(e) after(e,) deadline(e,) as alternative
to (z,m, e, e,,eq) to show that message m is sent from actor x with the set of
parameters e after e, units of time and its serving must be started before e, units
of time from now. Note that after and deadline specifiers are optional and their
default values are zero and infinity, respectively.

e skip is a predefined statement that has no effect.

In the main part of a model, actors are defined as instances of reactive classes.
The set of actors is defined as Actor = CID x AID x AID* x Expr* such that

12 CHAPTER 2. TIMED REBECA

(c,a,k,p) € Actor defines an actor instantiated from reactive class ¢, with iden-
tifier a, the set of known actors k, and the set of parameters of its constructor
p. Having the above definitions, the set of Timed Rebeca models is specified by
P(RClass) U P(Actor), where the first component contains the specification of reac-
tive classes and the second component corresponds to the main block consisting of a
sequence of actor instantiations.

Finally, we assumed that the Timed Rebeca models are well-formed. The following
rules define the well-formedness of a Timed Rebeca model which is hard to (or cannot
be) described in the Timed Rebeca grammar, but maybe statically checked.

e Unique Identifiers. The actor identifiers are unique within a Timed Rebeca
model.

e Unique Variables. The names of the state variables of an actor are unique.
e Unique Methods. The names of the methods of an actor are unique.

e Unique Parameters. The names of the formal parameters of a method are
unique and different from the state variables of the enclosing actor.

e Type Safety. The model is well typed, i.e.,

— the expressions are well-typed,

both sides of an assignment are of the same type,
— the conditions of the conditional statements are of type Boolean, and

— the receiver of a message has a method with the same name as the message.

e Well-Formed Arguments. The list of actual arguments passed to a message
send statement conforms to the list of formal parameters of the corresponding
method, in both length and type.

2.2.2 Fine-Grained Semantics of Timed Rebeca

In this section, we present the fine-grained semantics of Timed Rebeca based on the
work of [36]. Prior to presenting the semantics, we present the notations used in the
rest of the article.

For a function f : X — Y, we use the notation f[z — y| to denote the function
{(a,b) € fla # z} U {(x,y)}. Following this, we use the notation flx; — y; A
To > Yo A+ A x, — y,] to denote the function {(a,b) € fla & {x1, 29, -+ ,x,}} U
{(x1,11), (x2,92), -, (Tn, yn)}. We also use the notation = — y as an alternative to
(x,y). For X’ C X, we write f| X’ as the restriction of f to X', i.e., {(z,y) € flx € X'}.
Having two sequences a and b of the same size n, the function map(a,b) returns the
mapping of the elements of a into b such that map(a,b) = {a; — b1l < i < n},
assuming that the elements of a are distinct.

We also define the following auxiliary functions to be used in defining the formal
semantics:

e body : AID x MName — Stat*, in which body(x,m) returns the body of the
method m of the reactive class which actor identified by x is instantiated from,
appended by the special element endm, which denotes the end of the method.

2.2. STANDARD SEMANTICS OF TIMED REBECA 13

e params : AID x MName — Var®, in which params(z,m) returns the list of
formal parameters of the method m of the reactive class which the actor identified
by z is instantiated from.

e svars : AID — P(Var) which returns the names of the state variables of the
reactive class which actor identified by z is instantiated from.

e cval, : Expr — Val abstracts away the semantics of expressions by evaluat-
ing an expression within the specific context v : Var — Val. Note that Val
contains all possible values that can be assigned to the state variables or to be
used within the expressions. Here, we have Val = ZU{ True, False}. We assume
eval, is overloaded to evaluate a sequence of expressions: eval,({e1, €2, - ,€,)) =
(evaly(ey), eval,(es), -+ ,eval,(e,)). Note that eval,(e1), eval,(es), -, eval,(e,)
are evaluated sequentially not in parallel.

Now, the fine-grained semantics of Timed Rebeca can be defined in terms of tran-
sition systems (henceforth fine-grained transition system (FGTS)) as the following. In
the following, Msg = AID x MName x (Var — Val) x N x N is used as the type for the
messages which are passed among actors. In a message (i,m,r,a,d) € Msg, i is the
identifier of the sender of this message, m is the name of its corresponding method, r
is a function mapping argument names to their values, a is its arrival time, and d is
its deadline.

Definition 1. For a given Timed Rebeca model M, FGTS = (S, sy, Act,—, AP, L)
is its fine-grained semantics where S is the set of states, sq is the initial state, Act is
the set of actions, -C S x Act x S is the transition relation, AP is the set of atomic
propositions, and L : S — 24T is the labeling function, described as the following.

o The global state of a Timed Rebeca model is represented by a function s : AID —
(Var — Val) x Pn(Msg) x Stat* x N x NU{e}, which maps an actor’s identifier
to the local state of the actor. The local state of an actor is defined by a tuple
like (v,q,0,t,r), where v : Var — Val gives the values of the state variables of
the actor, q : Pn(Msg) is the message bag of the actor, o : Stat™ contains the
sequence of statements the actor is going to execute to finish the service to the
message currently being processed, t is the actor local time, and r is the time
when the actor resumes executing remained statements. Note that the sequence
of statements is put as a part of the states to make the operation semantics
easier to understand and more readable not for supporting dynamic statement
definition and configuration. Also, as mentioned before, we assume that actors
communicate via message passing and put their incoming messages into message
bags.

e In the initial state of the model, for all of the actors, the values of state variables
and content of the actor’s message bag is set based on the statements of its
constructor method, and the remaining statements is set to €. The local times of
the actors are set to zero and their resuming times are set to e.

e The set of actions is defined as Act = MName UNU {7}.

e The transition relation —C S x Act x S defines the transitions between states
that occur as the results of actors’ activities including: taking a message from

14 CHAPTER 2. TIMED REBECA

the mailbox, continuing the execution of statements, and progress in time. The
latter is only enabled when the others are disabled for all of the actors. This
rule performs the minimum required progress of time to make one of the other
rules enabled. As a result, the model of the progress of time in the fine-grained
semantics of Timed Rebeca is deterministic. The following SOS rules define these
transitions. Note that we associated a rule name with T transitions to relate T
transitions to their corresponding rules.

s(z) = (v, {(ac,mg, pr,ar,dl)|T), e, t,e) Nar <tANdl >t

(taking-message)
s 5 slz = (vUpr U {self — z A sender —
ac}, T, body(xz,mg),t,1)]

s(z) = (v, q, (var := expr|o), t,r) Ar =t

(assignment)
Tassign

s — slx — (v[var — eval,(expr)],q,o,t,1)]

s(x) = (v,q, (if expr then o else o'|0”),t,r) Ar =
t A eval,(expt) = True

(Conditionaly)
s 0 [z (v,q,0 Do’ t,7)]
s(x) = (v,q, (if expr then o else o'|0”),t,r) Ar =
t A eval,(expt) = False

(Conditionalr)
5 Lcondy slx = (v,q,0" " t,r)]
s(z) = (v, q, (var :=
?(expry, expry, -+, expr,)|o), t,r) Ar =1

1<i<n (nondet-assign)
Tnondet

s = s[z e (vvar —
eval,(expr;)],q,0,t,7)]

s(x) = (v,q, (y.m(ey) after(es) deadline(es)|o),t,7) Ar =
tAsy) = (v, g, 0", ', ") Ap = params(y, m)

(send)

s =2 s[> (v,q,0,t,7)][y =
(W', ¢ U{(m, (map(p, eval,(e1))), ea,e3)}, 0’ ', 1]

s(x) = (v, q,(delay(e)|o),t,r) Ar =t

(delay)

Tdelay

s —= sl — (v,q,0,t, 7+ eval,(e))]

s(x) = (v,q, (skiplo),t,r) Ar =t

(skip)

Tskip

s — sl — (v,q,0,t,7)]

s(x) = (v,q, (endm),t,r)

(end-method)
S Tg—nd> S[{L’ = (U|svars(z)7 q,¢€,t, T)]

2.2. STANDARD SEMANTICS OF TIMED REBECA 15

sA Ns Any = minge 4plar|s(z) = (v,q,0,t,7) -0 =
e N q=((ac,mg,pr,ar,dl)|T)} Any = mingea;p{r|s(z) =

(v,q,0,t,7) -0 # €} ANtp = min{ny, ny}
(time-progress)

s 5 {(z, (v,q,0,tp,7)) | (x,(v,q,0,t,7)) € s}

e AP contains the name of all of atomic propositions.

e Function L : S — 247 associates a set of atomic propositions with each state,
shown by L(s) for a given state s.

g

To illustrate how FGTS is created for a Timed Rebeca model, we prepared a very
simple model in Listing 2.3, the ping pong example. In this example, there are two
actors, pi and po, which send messages to each other periodically. Without loss of
generality, we assumed that the actors of this model do not have state variables.

Listing 2.3: The Timed Rebeca model of 1;
the plng pong example 12| reactiveclass PongActor(3) {
13| knownrebecs { PingActor pi; }

1| reactiveclass PingActor(3) { 14| msgsrv pong() {

2| knownrebecs { PongActor po; } 15 pi.ping() after (1);

3] Ping(O) { 16 delay(1);

4 self.ping(); 17}

5 } 18]}

6| msgsrv ping() { 19| main {

7 po.pong() after(1); 20| PingActor pi(po):();

8 delay(2); 21| PonghActor po(pi):();

9| } 22|}

10| >

Figure 2.5 shows the beginning part of the FGTS of the ping pong example. The
first enabled actor of the model is pi (as its corresponding actor PingActor has a
constructor which puts message ping in its bag, line 4), so, the first possible transition
is taking message ping. As shown in the detailed contents of the second state (the gray
block), taking the message ping results in setting the values of ¢ and r for the actor
pi. The next transition results in executing the first statement of the message server
ping, results in putting the message pong in the bag of the actor po with release time
1 (because of the value of after in line 7). The deadline for this message is co as no
specific value is set as the deadline for this message in line 7. As the next statement of
the message server ping is a delay statement, pi cannot continue the execution. The
actor po cannot cause a transition too. So, the only possible transition is progress in
time which is by 1 unit from the third to the fourth state.

2.2.3 Finite Transition Systems and Zeno Behavior

At the final step of defining the fine-grained semantics of Timed Rebeca we have to
make clear that there is no explicit time reset operator in Timed Rebeca; so, the
progress of time results in an infinite number of states in transition systems of Timed
Rebeca models. However, reactive systems which generally show periodic or recurrent
behaviors are modeled using Timed Rebeca. In other words, they perform periodic
behaviors over infinite time. Based on this fact, in [26] we proposed a new notion for

16 CHAPTER 2. TIMED REBECA

pi pi
a={ } q = {{ping, po, 0,)}
o =(ping, 1) o =(ping, 2)
I r=2
po po
a={ } q={({pong,pi, 1,)}
r=e r=e€
Time=0 Time=1

ping T:ping _time+1___ pong _ T:pong,

O—0O0—0—0—">0

O,
%
Time=0 Time=0

pi pi

q = {{ping, pi, 0,)} a={ }

- o =(ping, 2)

r=€ r_=Z _________
po po

q={ } %w{(pong,pi. 1,00)}
g=€ vEe
%me r=e

Figure 2.5: The beginning part of the FGTS of the ping pong example

equivalence relation between two states to make the transition systems finite, called
shift equivalence relation. Intuitively, in shift equivalence relation two states are equiv-
alent if and only if they are the same except for the parts related to the time (values of
now, resuming times, arrival times and deadlines of messages) and shifting the times
of those parts in one state makes it the same as the other one. The formal definition
of shift-equivalence relation is depicted in Definition 2.

Definition 2 (Shift-Equivalence Relation between States). Assume that S is a set
of state of a given fine-grained semantics FGTS = (S, so, Act,—, AP, L). Two states
s, s € S are in shift-equivalence relation if and only if for all x € AID where s(x) =
(Vgy Gy Oyt 72) and §'(x) = (v, q., 00, t,, 1), there exists A € N such that the fol-
lowing conditions hold:

/

VU, =1,
_ /
® 0, =0,
o t, =t +A

e, =1 +AVr,=r =c¢

for o, = ((acy, Mgy, pra, ary, dl,)|T,) and 0!, = ((ac,, mg.., prl, arl,, dl.)|T.) there
are ac, = ac,, mg, = mg.,, pry = pry, ary = ar, + A, and dl, = dl, + A and
this rule is valid for the other elements of T, and T)..

O

2.3. EXPERIMENTAL RESULTS 17

This way, instead of preserving the absolute value of time, only the relative dif-
ference of timing parts of states is preserved. As discussed in [26], shift equivalence
relation makes transition systems of the majority of Timed Rebeca models finite.

In a state space which is made finite using shift equivalence relation, there is a
possibility of having Zeno behavior. As the model of time in Timed Rebeca is discrete,
the execution of an infinite number of message servers in zero time is the only scenario
of exhibiting Zeno behavior, since the minimum elapses of time in Timed Rebeca are
one unit. Therefore, if there is a cycle in the state space of a Timed Rebeca model
which does not contain progress-of-time states, the model exhibits Zeno behavior. This
can be detected by a depth-first-search (DFS) in O(V + E), as shown in Algorithm 1.
In this algorithm, we assume that a Boolean variable is associated with each state
indicating whether the state is in the search stack, called recStack. The condition in
line 11 of the algorithm checks if the state s’ is re-visited in zero time. As mentioned
in the semantics of Timed Rebeca, the function now(-) returns the time of its given
state.

Algorithm 1: ZenoF'ree(s) analyzes the state space of a model for Zeno-freedom.

Input: State s of a fine-grained transition system T
Output: The part of T reachable from s is Zeno-free or not
1 begin

2 visited + ()

3 foreach state s’ € SUCCESSORS(s) do

4 if ' ¢ visited then

5 visited < visited U {s'}

6 recStack(s') < true

7 if ZenoFree(s') =false then

8 L return false

9 B recStack(s’) <« false

10 else

11 if recStack(s’) = true Anow(s’) = now(s) then
12 L return false

13 return true

In line 3 of Algorithm 1, the foreach statement traverses all transitions of the
transition system. As the processing time of each transition is constant, the overall
running time of the algorithm is O(V + E).

2.3 Experimental Results

To compare the efficiency of the proposed semantics, we have to prepare a set of case
studies which are modeled by Timed Rebeca and the size of their state spaces which
are generated based on the standard semantics are shown. Note that for each case
study we describe an overview of that case, then, present the source code.

18 CHAPTER 2. TIMED REBECA

Configuration | Standard Semantics
#States Time

1 customer 9 1< sec
2 customers 107 1< sec
3 customers 550 1< sec

4 customers | 2.86K 1< sec
5 customers | 16.9K 1< sec
6 customers 114K 2 secs
7 customers 884K 3 sec

Table 2.2: Model checking times and size of state spaces for the standard semantics of
the ticket service system

2.3.1 Ticket Service System

My first example is the model of a Ticket Service system. The overview of this example
is presented in Section 2.1. We created the extended version of this model and varying
in the number of customers.

The Timed Rebeca model of this system for the case of five customers, shown in
Listing 2.4, contains three different reactive classes: Customer, Agent, and TicketService.
Customers periodically ask for tickets by sending the message requestTicket to the
agent in message server try (line 13). Upon sending requestTicket, the customer sets
its state variable sent to true to show that it sends a ticket request and waits for the re-
sponse. This variable will be used in a TCTL formula which measures the service time
of the system. Agent forwards the received requests immediately to TicketService.

Listing 2.4: The model of a ticket service o4 switch(id) {

system with five customers 25 case 1: cl.ticketIssued();
26 case 2: c2.ticketIssued();

1| reactiveclass Customer { 27 case 3: c3.ticketIssued();

2 knownrebecs { Agent a; } 28 case 4: c4.ticketIssued();

3 statevars { byte id; } 29 case 5: c5.ticketIssued();

4 Customer (byte myId) { 30 }

5 id = myId; 31 ¥

6 self.try(Q; 32|}

7 } 33| reactiveclass TicketService {

8 msgsrv try() { 34 knownrebecs { Agent a; }

9 a.requestTicket (id); 35 statevars { int issueDelay; }

10 b 36 TicketService(int myIssueDelay) {

11 msgsrv ticketIssued() { 37 issueDelay = myIssueDelay;

12 self.try() after(30); 38 }

13 } 39 msgsrv requestTicket (byte id) {

1413 40 delay (issueDelay) ;

15| reactiveclass Agent { 41 a.ticketIssued(id);

16 knownrebecs { 42 }

17 TicketService ts; 43|}

18 Customer cl1, c2, c3, c4, cb; 44| main {

19 } 45 Agent a(ts, c1, c2, c3, c4, c5):0);

20 msgsrv requestTicket(byte id) { 46 TicketService ts(a):(2);

21 ts.requestTicket (id) deadline(24); 47 Customer c1(a): (1), c2(a):(2), <«

22 } <c3(a):(3), c4(a):(4), c5(a):(5);

23 msgsrv ticketIssued(byte id) { 48|}

As specified by the deadline primitive (line 24), the forwarded request must be
served before the passage of 24 units of time. The ticket service system issues a ticket
and informs Agent about the issued ticket (line 38). This process takes 2 units of

2.3. EXPERIMENTAL RESULTS 19

Configuration | Standard Semantics
#States Time

1 Sensor 75 1< sec
2 Sensors 389 1< sec
3 Sensors 2.15K 1 sec

4 Sensors 12.37K 12 secs

Table 2.3: Model checking times and size of state spaces for the standard semantics of
the Gas Sensing system

time, which is specified in line 37. Agent sends the issued ticket to its corresponding
customer (line 27) and the customer unsets its state variable sent.

The characteristics of the state spaces which are generated for this model are pre-
sented in Table 2.2.

2.3.2 A Toxic Gas Sensing and Rescue System

My second example models a lab environment in which the level of a toxic gas changes
over time. If this level rises above a certain threshold, the scientist’s life is in danger.
Sensors in the lab constantly measure the amount of toxicity in the air and send the
measurements to a central controller which periodically checks whether the scientist
is in danger. If so, it notifies the scientist about the danger. The scientist should
acknowledge the alarm; if he fails to do so in a timely manner, the controller notifies a
rescue team. When the team reaches the lab it notifies the controller that the scientist
has been rescued. If the controller does not receive this notification, it reaches the
conclusion that the scientist has lost his life.

Our Timed Rebeca model of this system is shown in Listing 2.5 and contains
four reactive classes: Sensor, Controller, Scientist, and Rescue in the model.
The sensors periodically measure the level of toxic gas in the environment (which is
modeled by the nondeterministic assignment in line 12). After sensing, they report the
measured data to the only Controller instance. Upon receiving the measured data
from each Sensor (in the report message server), Controller stores the value in its
corresponding sensorVal state variable.

Periodically, in the checkSensors message server, Controller checks if the values
are above the normal. If high toxicity is detected, Controller alarms Scientist (by
sending him abortPlan), and schedules a task to check for the scientist’s acknowledg-
ment (line 47). It also resets the sensor values to normal to prevent sending repeated
alarms for the same event. If the controller does not receive an ack message from
Scientist, the rescue team is informed about the situation. Again, the controller
sets a time-out for receiving the rescue notification by sending itself a checkRescue
message (line 56).

In this model, the network delay is assumed to be one time unit (line 1). The
period of measurements done by the sensors is 10 (line 89), and the period of the
controller checking the sensors’ data is 15 time units (line 32). The time-outs for
receiving acknowledgment from the scientist and the rescue team are 5 and 7 time
units (lines 30 and 31), respectively. Finally, the team reaches the lab in 5 time units
(line 83).

20 CHAPTER 2. TIMED REBECA

Listing 2.5: Timed Rebeca model of the 47 self.checkSciAck() after(sciDL);
toxic gas sensing and rescue system 48|}
49 self.checkSensors() after(ctrlCheckDelay);

1| env int netDelay = 1; 50 sensorVal0 = 0;

2| reactiveclass Sensor { 51 sensorVall = 0;

3| knownrebecs { Controller ctrl; } 52| 3

4| statevars { 53| msgsrv checkSciAck() {

5 int period, gasLevel; 54 if ('scilck) {

6| 1 55 rescue.go() after(netDelay);
7| Sensor(int myPeriod) { 56 self.checkRescue() after(rescueDL);
8 period = myPeriod; 57 }

9 self.doReport(); 58 scilck = false;

10| } 59| 1}

11| msgsrv doReport() { 60| msgsrv checkRescue() {

12 gasLevel=7(0,1); 61 if (!sciRescued)

13 ctrl.report(gasLevel) after(netDelay); 62 sciDead = true;

14 self.doReport() after(period); 63 else

15| } 64 sciRescued = false;

16| } 65| 2}

17 66| msgsrv ack() { sciAck = true; }
18| reactiveclass Controller { 67|}

19| knownrebecs { 68

20 Sensor sensorO, sensorl; 69| reactiveclass Scientist {

21 Scientist scientist; 70| knownrebecs { Controller ctrl; }
22 Rescue rescue; 71| msgsrv abortPlan() {

23| } 72 ctrl.ack() after(netDelay);

24| statevars { 731}

25 int sensorValO, sensorVall; 74| ¥

26 boolean sciAck, sciRescued, sciDead; 75

27 int rescueDL, ctrlCheckDelay, sciDL; 76| reactiveclass Rescue {

28| ¥ 77| knownrebecs { Controller ctrl; }
29| Controller() { 78| statevars {

30 rescueDL = 7; 79 int reachDelay, rescueDL;

31 sciDL = 5; 80| 1}

32 ctrlCheckDelay = 15; 81 Rescue() {

33 self.checkSensors(); 82 rescueDL = 10;

34| } 83 reachDelay = 5;

35| msgsrv report(int value) { 84| ¥

36 if (sender == sensor0) 85| msgsrv go) { ... }

37 sensorVal0 = value; 86|}

38 else 87

39 sensorVall = value; 88| main {

401 } 89| Sensor sensorO(ctrl):(10);

41| msgsrv rescueReached() { 90| Sensor sensorl(ctrl):(10);

42 sciRescued = true; 91| Scientist scientist(ctrl):();

43| ¥ 92| Rescue rescue(ctrl):();

44| msgsrv checkSensors() { 93| Controller ctrl(sensor0O, sensorl, <
45 if (sensorValO > O || semnsorVall > 0) { <sscientist, rescue):();

46 scientist.abortPlan() after(netDelay); 94| }

The characteristics of the state spaces which are generated for this model are presented
in Table 2.3.

2.3.3 The IEEE 802.11 RTS/CTS Collision Avoidance
Protocol

The next example is the simplified version of IEEE 802.11 RTS/CTS protocol for
collision avoidance in wireless networks. Using this protocol, when a node decides to
send data to another node, it sends a Request to Send (RTS) message to the destination
node, which is expected to reply with a Clear to Send (CTS) message. Other nodes
in the network which receive an RTS or a CTS message wait for a certain amount of
time, making the medium free for the two communicating nodes. This mechanism also
addresses the hidden node problem, which occurs when two nodes want to send data to
the same node. The destination node is in the transmission range of both senders, but

2.3. EXPERIMENTAL RESULTS 21

the senders are out of the transmission ranges of each other (and therefore unaware of
each other’s decision to send a message). In the protocol, the destination node sends a
CTS message to only one of the senders. The other sender waits for a random amount
of time, and then sends an RTS message to the destination node again. Furthermore,
this protocol solves the exposed node problem as well, where two adjacent nodes send
data to two different destination nodes, so the interference of data transfer of adjacent
senders results in message collision. The problem is solved by preventing the senders
from sending data after receiving the CTS message from other sender nodes.

Our Timed Rebeca model of the protocol, shown in Listing 2.6, has two reactive
classes: Node and RadioTransfer. Each Node knows a RadioTransfer actor, which
is responsible for broadcasting its messages to all nodes in the sender’s transmission
range. We assume that each node has two nodes in its transmission range and that
the transmission delay is two units of time.

To transmit data, the sender sends an RTS message to the receiver (through its
RadioTransfer actor, line 35) and waits for the response. When an RTS message is
delivered, the receiver checks whether the network is busy (line 47). If so, it sends an
RTS message to itself after a random back0ff (modeled by a nondeterministic choice
among the values {4,5}). If the receiver is not the target of the message, it marks
the status of the network as busy (line 54). Otherwise, it sends a CTS message to the
sender (line 47). When a node receives a CTS message, it checks whether it is the
target of the message. If so, it sends its data. If not, it sets the network status to idle
(rcvCTS message server, lines 59-61).

Listing 2.6: Timed Rebeca model of the 35 self.sendRTS() after(?(4,5));
IEEE 802.11 collision avoidance protocol 36|
37| msgsrv sendData() {

1| reactiveclass RadioTransfer { 38 radioTransfer.passData(id, dest);

2| knownrebecs { Node nodel, node2; } 39 self.sendRTS() after(dataRate);

3| RadioTransfer() {} 40| }

4| msgsrv passRTS(int sndr,int rcvr) { 41| msgsrv rcvRTS(int sndr,int rcvr) {

5 delay(2); 42 if (revr == id) {

6 nodel.rcvRTS(sndr,rcvr); 43 if (channleIdle) {

7 node2.rcvRTS (sndr,rcvr) ; 44 channleldle = false;

8 } 45 radioTransfer.passCTS(id, sndr);
9| msgsrv passCTS(int sndr,int rcvr) { 46 } else {

10 delay(2); 47 self.rcvRTS(sndr,rcvr) after(?7(4,5));
11 nodel.rcvCTS(sndr,rcvr); 48 }

12 node2.rcvCTS(sndr,rcvr); 49 } else {

13|} 50 channleldle = false;

14| msgsrv passData(int sndr,int rcvr) { 51 }

15 nodel.rcvData(sndr,rcvr); 52 }

16| % 53| msgsrv rcvCTS(int sndr,int rcvr) {
17(} 54 if (revr == id)

18| reactiveclass Node { 55 self.sendData();

19 knownrebecs { RadioTransfer radioTransfer; } 56 else

20| statevars { 57 channleldle = true;

21 int dest, id, dataRate; 58 }

22 boolean channleldle; 59| msgsrv rcvData(int sndr,int rcvr) {
23| } 60 channleldle = true;

24 Node(int myId, int myDest, boolean chldle, <> g1 }

—int myRate) { 62|}

25 id = myId; 63| main {

26 dest = myDest; 64| RadioTransfer rti(n2, n4):(), rt2(n3, <«
27 channleIdle = chldle; —n1): (), rt3(n4, n2):(), rté(nl, «
28 dataRate = myRate; —n3):0;

29 self.sendRTS() after(dataRate); 65 Node ni(rt1):(1,2,true,2),
30| —n2(rt2):(2,3,true,5), «
31 msgsrv sendRTS() { —n3(rt3):(3,4,true,2), <+
32 if (channleldle) —n4(rt4):(4,1,true,5);
33 radioTransfer.passRTS(id, dest); 66| ¥
34 else

22 CHAPTER 2. TIMED REBECA

Configuration | Standard Semantics

#States Time
2 Clients 107 1< sec
3 Clients 550 1< sec
4 Clients 2.86K 1< sec
5 Clients 16.9K 1< sec

Table 2.4: Model checking times and size of state spaces for the standard semantics of
the CA protocol

The characteristics of the state spaces which are generated for this model are pre-
sented in Table 2.4.

2.3.4 Network on Chip (NoC)

Our first example is a model of a network on chip (NoC), a promising architecture
paradigm for many-core systems. In NoC designs, functional verification and perfor-
mance evaluation in the early stages of the design process are suggested as ways to
reduce the fabrication cost. As an example of a NoC, we modeled and analyzed ASPIN
(Asynchronous Scalable Packet switching Integrated Network), which is a fully asyn-
chronous two-dimensional NoC design [48]. In a two-dimensional NoC design, each core
is placed in a 2D mesh and has four adjacent cores and four internal buffers for storing
the incoming packets (one for each direction). Different routing algorithms have been
proposed for the two-dimensional NoC design, including XY, OE, and DYAD routing
algorithms. In the following example, we consider the XY routing algorithm. Using
the XY routing algorithm, packets are moving along the X direction first, and then
along the Y direction, to reach their destination cores. In ASPIN, packets are trans-
ferred through channels, using a four-phase handshake communication protocol. The
protocol uses two signals, namely Req and Ack, to implement this four-phase hand-
shaking protocol. This way, to transfer a packet, first the sender sends a request by
raising the Req signal, and waits for an acknowledgment which is the raising of the Ack
signal by the receiver. In the third phase, the data is sent. Finally, after a successful
communication, all of the signals return to zero.

The timed version of ASPIN was investigated in [49] using simulation and model
checking against deadlock freedom and schedulability properties. In addition to the
functional correctness, the Afra toolset was used for estimating the maximum end-to-
end latency of the model.

The simplified version of the Timed Rebeca model of ASPIN is shown in Listing 2.7,
which contains two different reactive classes: Manager and Router. The Manager does
not exist in real NoC systems. Here, it is used as the starter of the model. It sends
the combination of inReq and inRegMinus messages to a router to ask for packet
generation. This way, different traffic scenarios are generated by modifying the code
of Manager. In the example of Listing 2.7, one packet is generated in the router r00
which must be routed to the router r11 (Lines 19 and 20). To make sure successful
delivery of this packet, two other messages are sent in lines 21 and 22. Using this
pattern, different traffics can be generated easily.

2.3. EXPERIMENTAL RESULTS 23

Router is the model of a core in an ASPIN design. Its specification contains four
known rebecs which are its neighbor cores (line 29), a composite id which includes
its X-Y position (line 32), buffer variables which show that the buffers are enabled
or busy (line 33), a variable which counts the number of received packets (received
in line 32), and many other control variables. The communication channel between
neighbors is modeled by the message passing of Rebeca. Trying for the delivery of a
packet is started by sending an inReq message to a router. The receiver router accepts
the packet if its input buffer is free (line 48).

Listing 2.7: The model of an ASPIN NoC 48] if (inBufFulllinPort] == false){
49 dInAck((byt inPort + 2 4, inAD);
1| env short maxTime = 28000; sendInAck((y‘e)(ln °r)/ inAD)
50 self.process(inPort, Xtarget, <
2| env short rAlg = 1; .
3| env byte writeD = 2: —Ytarget,id, false, <~
4 y ’ <—»false)after ((writeD * <~
o <+inBufSizeTest)+ readD);
5| reactiveclass Manager (60){ 51
6| knownrebecsq{ 52 }else { ... }
7 Router r00, r10, r20, r30, 53 }
8 r01, rii, r21, r3i, 54| msgsrv process(byte inPort, byte Xtarget, <
9 r02, r12, r22, r32, .
10 £03. 13, r93. r33: —byte Ytarget,byte id, boolean <~
1) ’ ’ ’ ’ <isPushed, boolean justPush) {
55 byte routeD;
12| Manager(){ 56
3) generate(); 57 if ((inBufID[inPort][0] == id) || <«
15 £ 04 } —>isPushed == true){
| MSESTV rese Tt 58 if (passedFlit == 0) {
16| void generate(){ .
59 if (rAlg == 1) {
17 rO1l.reStart ()after(wholeCycle); .
: . 60 outPort = XYrouting(Xtarget, Ytarget);
18 ril.checkRecieved(2) after(maxTime);
K 61 routeD = routeXYD;
19 r00.inReq(4,1,1,1) after (18); 62 }
20 rOO.?nRequnus(4) after (18 + prodD); 63 else if (rAlg == 2{ ... }
21 r00.inReq(4,1,1,2) after (110); .
) : 64 else if (rAlg == 3){ ... }
22 r00.inRegMinus(4) after (110 + prodD);
65 } else { ... }
23 -
24| ¥ 66
25| 3 67 if (outRegEnable[inPort] == true){
. 68 waitedOutReq[inPort] = outPort;
26| reactiveclass Router(80) { .
69 self.portSchedule(outPort, inPort) <
27| knownrebecs {
<—after(routeD + schdD + outRD);
28 Manager manager; 70 }
29 Router N, E, S, W; 71 3
30| 72| 3}
31 statevars {
73 byte XY ti byte Xt t, byte Yt t
32 byte Xid, Yid, received; yte Kfrouting(byte Xtarge yte Ytarget) {
33 bboolean[5] inBufFull, outBufFull I byte outPort = 0;
34 b :o[z??2] 12pu t;t f outbuttu 75 if (Xtarget > Xid) outPort = 1;
35 yee OUEFOrTELT; 76 else if(Xtarget < Xid) outPort = 3;
36| 3 T herd else if (Ytarget > Yid) outPort = 2;
37| Router(byte X, byte Y){ 78 else if(Ytarget < Yid) outPort = 0;
ouver yre &, byre 79 else outPort = 4;
38 Xid = X;
80 return outPort;
39 Yid = Y;]1 }
40 for(byte i=0;i<5;i++){]2
41 waitedOutReq[i] = 5; 83| 3
42 outReqEnable[i] = true; .
43 tPortPtr [i][0]= -1; 84| main {
m } outfortrir L1 T 85| Manager m(r00, r10, ..., r33):0);
45 86| Router r00(m,r03,r10,r01,r30):(0,0), <«
46 3 e —r10(m,r13,r20,r11,r00): (1,0), ..., <
47 inR (byte inPort, byte Xt N —~r23(m,r22,r33,r20,r13):(2,3), <+
msgsrv infeq (byte inPort, byte Rtarget, < <r33(m,r32,r03,r30,r23) : (3,3) ;
—byte Ytarget,byte id){ 87l 3

Upon accepting a packet, an acknowledgment is sent to its sender and an internal
message is scheduled to process this packet (lines 49 and 50). Processing of a packet
takes place in the message server process. If there is a packet for processing (line
58), one of the routing algorithms is selected to send the packet to the appropriate

24 CHAPTER 2. TIMED REBECA

Configuration | Standard Semantics
#States Time

3 Packets 442 1s
4 Packets 1,239 2s
5 Packets 3,117 7s
6 Packets 9,907 358

7 Packets 35,746 6.8m
8 Packets 136,666 1.4h

Table 2.5: Model checking times and size of state spaces for the standard semantics of
the NoC model

neighbor (lines 59 to 64). As shown the details of routing by XY algorithm in line 60,
the output port of a packet is computed by the private method XYrouting. As shown
in lines 75 to 79, the destination port of a packet is computed based on the value of
X and Y of both the source router and the destination router. The 2D mesh of this
model is formed in the main block of the model by setting known rebecs based on the
locations of the routers.

The characteristics of the state spaces which are generated for this model are pre-
sented in Table 2.5.

2.3.5 Hadoop YARN Scheduler

Hadoop [50] is a framework for MapReduce, a programming model for generating and
processing large data sets [51]. MapReduce has undergone a complete overhaul in its
latest release, called MapReduce 2.0 (MRv2) or YARN [52]. The fundamental idea
of YARN is to split up the major functionalities of the framework into two modules,
a global ResourceManager (RM) and per-application ApplicationMaster (AM). RM
arbitrates resources among all of the applications in the system. AM negotiates with
RM for the resources to manage the life cycle of its running applications. So, on a
Hadoop cluster, there is a single RM and for every job, there is a single AM. It is
possible to set different policies in YARN for dispatching jobs and resources to AMs
based on the deadlines, the jobs priorities, the arrival times of jobs, etc.

In the Timed Rebeca model of Listing 2.8, the YARN system is modeled using
two reactive classes: ResourceManager and ApplicationMaster. Message server
checkQueue models the main behavior of RM by looking for a free AM and assigning a
job to it. Lines 34 to 43 of checkQueue illustrate how a job is assigned to aml (the first
Application Master) if the status of aml is FREE. The specification of the job which is
sent to aml is in the head of the queue of jobs (line 9).

After sending the specification, the job is removed from the queue of jobs (lines
38 to 41) and another job is generated and added to the queue of jobs to model the
arrival of a new job (line 42). The same behavior is implemented for the other AMs. In
ResourceManager, state variable fifoQueue, as the queue of jobs, keeps track of the
deadlines of jobs. In lines 48 to 58 of checkQueue, the deadlines of jobs are decreased
by one unit to model the time elapse for waiting jobs.

In this model, we simplified the behavior of application masters to perform their
assigned jobs successfully. This takes place by setting 2 as the completion time of all

2.3. EXPERIMENTAL RESULTS 25

jobs (line 90). Setting this value to more than the value of dline results in missing
the deadline and non-successful termination of the job. As shown in line 98, each
application master keeps the number of the performed jobs. To avoid state space
explosion, the value of this counter is set to 0 after performing 5 successful jobs (line
99).

Listing 2.8: The model of a Hadoop YARN 54 fifo_queue[J] = fifo_queuel[J + 11
system with three application masters 22) I

1| reactiveclass ResourceManager(5) { 57 fifo_queue [QUEUE_SIZE - 1] = <«

2| knownrebecs { <—DEFAULT_DL;

3 AppMaster aml, am2, am3; 58 }

4 x 59 T++;

5| statevars { 60 }

6 int FREE, BUSY; 61 self.checkQueue() after(1);

7 int appMasterl, appMaster2, appMaster3; 62| 3}

8 int m_queue_misses, m_update_miss, < 63| msgsrv update(boolean deadline_miss) {
—m_job_complete, DEFAULT_DL, <> 64 m_queue_misses = 0;
—QUEUE_SIZE; 65 m_update_miss = 0;

9 int [4] fifo_queue; 66 m_job_complete = 0;

10| % 67 if (deadline_miss == true) {

11 68 m_update_miss = 1;

12| ResourceManager() { 69 } else {

13 FREE = 1; 70 m_job_complete = 1;

14 BUSY = 0; 71 }

15 appMasterl = FREE; 72 if (sender == aml) {

16 appMaster2 = FREE; 73 appMasterl = FREE;

17 appMaster3 = FREE; 74 } else if(sender == am2) {

18 m_queue_misses = 0; 75 appMaster2 = FREE;

19 m_update_miss = 0; 76 } else if(sender == am3) {

20 m_job_complete = 0; 7 appMaster3 = FREE;

21 DEFAULT_DL = 3; 78 }

22 fifo_queue[0] = DEFAULT_DL; 79| 3

23 fifo_queue[1] = DEFAULT_DL; 80| ¥

24 fifo_queue[2] = DEFAULT_DL; 81

25 fifo_queue[3] = DEFAULT_DL; 82| reactiveclass AppMaster(5) {

26 QUEUE_SIZE = 4; 83| knownrebecs {

27 self.checkQueue(); 84 ResourceManager rm;

28| } 85| }

29| msgsrv checkQueue() { 86| statevars { int doneJobs; }

30 m_queue_misses = 0; 87

31 m_update_miss = 0; 88| AppMaster() { doneJobs = 0; }
32 m_job_complete = 0; 89| msgsrv runJob(int dline) {

33 int I = 0; 90 int completion = 2;

34 if (appMasterl == FREE) { 91 boolean deadline_miss;

35 appMasterl = BUSY; 92 if (completion > dline) {

36 aml.runJob(fifo_queue[0]); 93 deadline_miss = true;

37 I=0; 94 rm.update (deadline_miss) after(dline);
38 while(I < QUEUE_SIZE - 1) { 95 } else {

39 fifo_queue[I] = fifo_queue[I + 1]; 96 deadline_miss = false;

40 I++; 97 rm.update(deadline_miss) <~
41 } —rafter (completion) ;
42 fifo_queue [QUEUE_SIZE - 1] = DEFAULT_DL; gg doneJobs++

43 } 99 if (doneJobs > 5) doneJobs = 1;
44 if (appMaster2 == FREE) { ... } 100 }

45 if (appMaster3 == FREE) { ... } 101 %

46 I=20; 102| }

47 int J = 0; 103| main {

43 while(I < QUEUE_SIZE) { 104| ResourceManager rm(aml, am2, am3):();
49 fifo_queue[I]--; 105| AppMaster ami(rm):();

50 if (fifo_queue[I] == 0) { 106| AppMaster am2(rm):();

51 m_queue_misses++; 107| AppMaster am3(rm):();

52 J =1 108| }

53 while(J < QUEUE_SIZE - 1) {

The characteristics of the state spaces which are generated for this model are pre-
sented in Table 2.6.

26 CHAPTER 2. TIMED REBECA

Configuration | Standard Semantics

#States Time
1 AMs 180 <ls
2 AMs 5,506 1s
3 AMs 177,989 14.5m

Table 2.6: Model checking times and size of state spaces for the standard semantics of
the Hadoop Yarn model

2.3.6 WSAN Applications

As the fourth example, we present a realtime data acquisition system for structural
health monitoring and control (SHMC) of civil infrastructures [53]. This system has
been implemented on top of the Imote2 [54] wireless sensor platform, and has been de-
ployed for long-term monitoring of several highway and railroad bridges. The SHMC
application development has proven to be particularly challenging: it has the com-
plexity of a large-scale distributed system with realtime requirements while having
the resource limitations of low-power embedded WSAN platforms. Ensuring the safe
execution of an SHMC requires modeling the interactions between the components
of the data acquisition nodes, which are CPU, sensor, and radio transmission com-
ponents, as well as interactions between the nodes. In this application, all periodic
tasks (sample acquisition, data processing, and radio transmission) are required to be
completed before the start of their next period. In addition, each node has to send its
processed data to a central station. To handle the communication between the nodes
and the central station, a communication protocol is required. The schedulability of
the models of this application using Timed Rebeca is investigated in [55|. Here, we
showed how other properties can be model checked using the TCTL model checking
of Timed Rebeca.

The simplified version of the Timed Rebeca model of WSAN, shown in Listing 2.9,
contains five different reactive classes: Sensor, CPU, Misc (for miscellaneous tasks un-
related to sensing or communication), CommunicationDevice, and WirelessMedium.
The model of a WSAN node concerns the data acquisition, processing, and radio trans-
mission primarily. Having Sensor, CPU, and CommunicationDevice for a WSAN node,
the developed Timed Rebeca model closely mimics the structure of the real applica-
tion. The configuration of this model is specified by the values of the environment
variables in lines 1 to 7. Based on these values, there are six nodes in the environment
(line 2) and the sampling rate of the nodes is 25 samples per 1000 units of time (line
1). Each node packs two acquired data elements in one packet (line 3). The time spent
for the internal activities of a node is specified in lines 4 to 6.

The main activity of this model is started by executing sensorLoop of Sensor.
In this loop, based on the specified sampling rate, data is acquired by Sensor and it
is sent to CPU (lines 17-21). There is the same behavior in Misc. These two actors
send messages to CPU, which are handled by the sensorEvent and miscEvent message
servers respectively (lines 33-35 and line 46). The message server sensorEvent starts
the processing of the acquired data by sending a sensorTask message. In sensorTask,
the schedulability of the processing of the acquired data is checked (lines 37 and 38),
it is packed into one packet (line 40), and the packed data is sent by the communi-
cation device of this node if it reaches the limit which is specified by bufferSize.

2.3. EXPERIMENTAL RESULTS 27

The communication protocol between nodes is implemented in the method send of
Communication Device (We developed TDAM and B-MAC communication protocols
in [55]). In the current implementation, before sending data, the freedom of the com-
munication device is checked (line 64) then the needed messages are scheduled for
sending data (line 68).

Listing 2.9: The model of a WSAN appli- 54 int sendingPacketsNumber;
CaﬁiOIl 55 CommunicationDevice receiverDevice;
56 }
1| env int samplingRate = 25; 57 CommunicationDevice(byte myId) {
2| env int numberOfNodes = 6; 58 id = myId;
3| env int bufferSize = 2; 59 sendingData = 0;
4| env int sensorTaskDelay = 2; 60 sendingPacketsNumber = 0;
5| env int OnePacketTT = 7; 61 receiverDevice = null;
6| env int miscTaskDelay = 10; 62 }
7| env int tmdaSlotSize = 10; 63 msgsrv send(CommunicationDevice <
8| env int miscPeriod = 120; <»receiver, int data, int <
9| env int packetMaximumSize = 112; —>packetsNumber) {
10 64 assertion(receiverDevice == null);
11| reactiveclass Sensor(10) { 65 sendingPacketsNumber = packetsNumber;
12 knownrebecs { CPU cpu; } 66 receiverDevice = receiver;
13 Sensor() { self.sensorFirst(); } 67 sendingData = data;
14 msgsrv sensorFirst() { 68 medium.getStatus();
15 self.sensorLoop() after(?7(10, 20, 30)); 69 }
16 } 70 msgsrv receiveStatus(boolean result) { <>
17 msgsrv sensorLoop() { ... }
18 int period = 1000 / samplingRate; 71 msgsrv receiveResult(boolean result) { <
19 cpu.sensorEvent (period) ; ...}
20 self.sensorLoop() after(period); 72 msgsrv receiveData(CommunicationDevice <—
21 } —receiver, int data, int <«
22|} —receivingPacketsNumber) { ... }
23 73| >
24| reactiveclass Misc(10) { ... } 74
25 75| reactiveclass WirelessMedium(5) {
26| reactiveclass CPU(10) { 76 statevars {
27 knownrebecs { a4 CommunicationDevice senderDevice;
28 CommunicationDevice senderDevice, <« 78 CommunicationDevice receiverDevice;
—receiverDevice; 79 int maxTraffic;
29 Sensor sensor; 80 }
30 } 81 WirelessMedium() {
31 statevars { int samples; } 82 senderDevice = null;
32 CPU() { samples = 0; } 83 receiverDevice = null;
33 msgsrv sensorEvent (int period) { 84 maxTraffic = (125 * 1024) / 8;
34 self.sensorTask(period, <« 85 }
—rcurrentMessageWaitingTime) ; 86 msgsrv getStatus() { ... }
35 } 87 msgsrv broadcast(CommunicationDevice <
36 msgsrv sensorTask(int period, int lag) { <sreceiver, int data, int <«
37 int tmp = period - lag - <« —spacketsNumber) { ... }
—rcurrentMessageWaitingTime; 88 msgsrv broadcastingIsCompleted() {
38 assertion(tmp >= 0); 89 senderDevice = null;
39 delay(sensorTaskDelay) ; 90 receiverDevice = null;
40 samples += 1; 91 }
41 if (samples == bufferSize){ 92| }
42 senderDevice.send(< 93
—sreceiverDevice,0,1); 94| main {
43 samples = O; 95| WirelessMedium medium():();
44 } 96 CPU cpu (sensorNodeSenderDevice, <
45 } —receiver, sensor):();
46 msgsrv miscEvent() { 97 Sensor sensor(cpu):();
—delay (miscTaskDelay); } 98 Misc misc(cpu): ()}
47|} 99 CommunicationDevice <
48 —>sensorNodeSenderDevice <
49| reactiveclass CommunicationDevice (10) { < (medium) : ((byte)1);
50 knownrebecs { WirelessMedium medium; } 100 CommunicationDevice <+
51 statevars { —receiver (medium) : ((byte)O0);
52 byte id; 101| »
53 int sendingData;

28 CHAPTER 2. TIMED REBECA
Configuration | Standard Semantics
#States Time
25-5-3-10 1,741 <ls
33-6-4-2 1,934 <ls
25-5-4-10 3,718 1s
30-6-4-2 9,353 1s
25-6-4-2 34,503 2s
20-6-4-2 57,621 3s

Table 2.7: Model checking times and size of state spaces for the standard semantics of

WSAN model

To model the effect of Ether is the wireless communication and transmission con-
flict, we developed WirelessMedium. Communication devices send broadcast mes-
sages to the wireless medium to send data to other communication devices and the
receivers of broadcast data send broadcastingIsCompleted to inform it received the

data successfully.

The characteristics of the state spaces which are generated for this model are pre-

sented in Table 2.7.

Chapter 3

TCTL Model Checking for Timed
Rebecal

TTSs are expressive enough for modeling the behavior of the majority of realtime dis-
tributed systems; however, the formal verification of TTS is PSPACE-complete [37].
Therefore, currently, there is no polynomial time algorithm for the verification of T'TSs.
The most widely used model checking toolset, e.g. UPPAAL, only supports a limited
subset of Timed Computation Tree Logic (TCTL) which can be model checked effi-
ciently [30]. The source of this inefficiency in the analysis of TTS and timed automata
is in how the passage of time is modeled. The model of time in TTS is dense time, i.e.
the passage of time from a state to another state is a nondeterministically chosen real
number from an interval.

On the other hand, a wider range of properties can be analyzed for simpler fam-
ilies of timed models in polynomial time. The simplicity of these models lies in the
discretization of the passage of time. In these models, the passage of time is modeled
by a natural number which is chosen nondeterministically from an interval. The basic
approach of such simplifications is proposed in [41], [42] by assuming that each tran-
sition takes exactly one time unit. Later, a minor extension has been added to this
work by allowing the existence of instantaneous transitions (zero time transitions) in
[43]. Finally, Timed Transition Graph (TTG) [44] and Durational Transition Graph
(DTG) [45] extended the former works by associating discrete time duration with tran-
sitions. Although TTG and DTG are less expressive than TTS, they can be model
checked in polynomial time for a wide range of properties. For example, there is a
polynomial time algorithm for model checking of DTGs against TCTL< > properties
(i.e. TCTL properties without any sub-formula of the form ® U=¢ ¥). The algorithm
performs model checking against formula ® for a transition system with V' states and
E transitions in O(V - (V 4+ E) - |®|) [45]. Here, we are going to use the same ap-
proach for the model checking of FGTSs of Timed Rebeca models. To this end, we
reviewed the details of these model checking algorithms in Section 3.1. Note that,
while TCTL< > can be model checked for DTGs in polynomial time, the model check-
ing against TCTL_ properties (i.e. TCTL properties with sub-formulas of the form
® U= V) is an NP-hard problem. We also improved the running time of the algorithm
of [45] from O(V - (V + E)-|®|) to O((VIgV + E)-|®|). The newly proposed algorithm
is worst-case optimal for the model checking of TCTL< > properties since its running

!This chapter is an improvement and extension of the results published in [36].

30 CHAPTER 3. TCTL MODEL CHECKING FOR TIMED REBECA

time is the same as the tight running time of the CTL model checking algorithm [46].
This algorithm is presented in detail in Section 3.2.

3.1 Timed Model Checking of Discrete Time
Systems against TCTL properties

As discussed in [37], timed transition system is expressive enough for modeling the
behavior of the majority of realtime systems. However, the verification algorithms of
timed transition systems are PSPACE-complete. In practice, it is hard to use timed
transition systems for the efficient analysis of real-world systems. The same holds
for the verification of realtime systems with dense time presented in other semantics
(region transition system, etc.) [46]. For the latter case, there is an efficient algorithm
for the verification of a subset of TCTL properties which does not have nested timed
quantifiers.

In contrast, there are many timed models for modeling of discrete time systems
which can be verified efficiently in polynomial time. Discrete time is the time model
in which passage of time is modeled by natural numbers. A Durational Transition
Graph (DTG), is a timed transition system where the duration intervals of transitions
are interpreted in the domain of natural numbers [45]. This way, a transition with
a bounded duration interval [a,b] between two states s and s can be assumed as
b — a + 1 different nondeterministic transitions from s to s’ with different duration
values of a,a+1,--- ,b.

Definition 3 (Durational Transition Graph). A durational transition graph is a tuple
DTG = (S, sg,—, AP, L) where S is the set of states, sq is the initial state, -C S X
T x S is the transition relation, AP is the set of atomic propositions, and L : S — 247
1s a labeling function.

Here, Y is the set of all the possible finite (v € Y Av = [n,m]|-n,m € IN) or right-open
infinite (v € T ANv = [n,00) -n € IN) intervals. O

DTGs can be model checked against Timed CTL (TCTL) properties [46] efficiently.
TCTL is a realtime variant of CTL aimed to express properties of timed systems.
TCTL is used for model checking of both discrete time and dense time systems. In
TCTL, the until modality is equipped with a time constraint such that the TCTL
formula ® U” ¥ holds for the state s if and only if ¥ holds in the state s’ while ® holds
in all states from s to s’ and the time difference between s and s’ satisfies condition p.
The syntax of TCTL is formally described in the following definition.

Definition 4 (Syntax of TCTL). Any TCTL formula is formed according to the fol-
lowing grammar:
Dimp|-® | NG | Ep|Ap

where p is an atomic proposition and @ is a path formula. A path formula in TCTL
1s formed according the following grammar:

p =0, U™ P,

where ¢ is a natural number and ~ € {<, <, =,>,>}. In addition to the until modality,
the globally and finally path modalities can be equipped with time constants. Asin CTL,
these modalities can be constructed using the until modality [45], and can be safely

3.1. TIMED MODEL CHECKING OF DISCRETE TIME SYSTEMS AGAINST
TCTL PROPERTIES 31

omitted from the syntax and semantics of (T)CTL. However, in this chapter, we use
these modalities to make formulas easier to read and understand. Also, note that ||
1s defined as the size of the formula ®, which is the number of modalities’ instances in
®. For example, for a given TCTL formula ® = E(AG= &) US2 E(®y U< ®3) the
value of |®| is three as there are two EUs and one AG in the formula. 4

In the following, we present the semantics of TCTL properties over DT Gs based on
the work of [45]. The clauses of Definition 6 show the conditions when a given TCTL
formula ® holds for state s € S of DTG = (S, sg, —, AP, L). Here, we assume that
Paths(DTG, s) represents the set of all valid timed paths of DTG starting from s € S

in the form of s % $1 LN , as described below.

Definition 5 (Set of Timed Paths). In a given durational transition system DTG =
(S, s0,—, AP, L), a sequence m = (So,dy), (s1,d1),--- where s; € S and d; € T is a
valid timed path if and only if for any pair of (s;,d;) there is (s;,v,S;41) €— and
d; € v. The set Paths(DTG,s) is defined as the set of all valid timed paths of DTG
which are started from the state s. U

Definition 6 (Semantics of TCTL). A given TCTL formula ® holds for state s of
DTG = (8, s9,—, AP, L) as described by the following items.

e sE pif and only if p € L(s)

e sF —® if and only if s ¥ ®

s FE &y APy if and only if s F &y and s F &,

s E E®;Ud, if and only if 37 € Paths(DTG,s) AIn > 0 (s, E $3) A
(D icion) di satisfies condition ~c) A (VO < j<n - s;F®q)

s F AP, Ud, if and only if V7 € Paths(DTG,s) Adn > 0- (s, E $3) A
(D icom di satisfies condition ~c) A (VO < j<n - s;F @)

g

Using the above semantics for the model checking of DTGs against TCTL formulas
requires resolving the nondeterminism of durations of transitions. The meaning of a
duration of a transition between two states can be interpreted in different ways. Here,
we introduce two interpretations of durations on a transition, called jump semantics
and continuous-early semantics [45]. In these two timed transition systems, instead of
an interval, only one natural number is associated with each transition as its duration.
For a given transition (s, [n,m], s') the mentioned semantics are interpreted as follows.

Jump Semantics. In this semantics, moving from the state s to the state s’ takes an
integer time d € [n,m]. Here, before starting transition from s to ¢, the value
of d is determined, and then the system waits for d units of time and it reaches
state s’ at time t + d. Figure 3.1b shows how this semantics works for the DTG
of Figure 3.1a. The idea of this semantics is the same as the semantics of Timed
Transition Graph [44] and the semantics of Timed Rebeca as it is described in
Section 2.2.2.

32 CHAPTER 3. TCTL MODEL CHECKING FOR TIMED REBECA

(a) A DTG with three states (b) The timed transition system of
the DTG assuming the jump se-
mantics

(c¢) The timed transition system of the DTG as-
suming the continuous-early semantics

Figure 3.1: An intuitive representation of the timed transition systems with respect to
the jump and continuous-early semantics (it shows the continuous-early semantics as
nondeterminism is resolved immediately in the first Sy) [45].

Continuous-Early Semantics. In contrast to the jump semantics, in the case of a
transition from the state s to the state s’ with a duration d € [n, m], the waiting
time is not specified at the start time of the transition. Using the continuous-
early semantics, the system first waits for n units of time in state s, then, at each
point in time interval [0, m — n] it can leave s and go to §’. Figure 3.1c shows
how this semantics works for the DTG of Figure 3.1a.

For a given DTG, two timed transition systems generated based on jump semantics
and continuous-early semantics are not bisimilar. This can be shown by TCTL formu-
las which are satisfied by one of them but are violated by the other one. For example,
in the DTG of Figure 3.1a, TCTL property A(EF(s3) US® (s3V s3)) is satisfied in
the timed transition system of its jump semantics. As shown in Figure 3.1b state s;
satisfies E'F'(s3), and after leaving s1, formula sy V s3 is satisfied in less than 5 units
of time. In contrast, as shown in Figure 3.1c, after passage of time by one unit, the
second s; in the path to sy does not satisfy neither EF(s3) nor sp V s3. Therefore, the
property is violated in this case.

Using either jump or continuous-early semantics, there are polynomial-time model
checking algorithms for TCTL< > properties; however, model checking of TCTL_,
TLTL, and TCTL* properties remain PSPACE-complete. In the following, we review
the model checking algorithm of DT'Gs in jump semantics against TCTL< > properties
according to [45]. As in the model checking of CTL properties, here, we show how the
satisfaction set Sat(®) is computed for a given formula ®. The running time of the
algorithm to find Sat(-) for a DTG with the jump semantics is O(V - (E + V) - |®|)
where V' is the number of states, F is the number of transitions, and |®| is the size of
formula ®.

3.1. TIMED MODEL CHECKING OF DISCRETE TIME SYSTEMS AGAINST
TCTL PROPERTIES 33

Let DTGy = (S, 80,—, AP, L) be a DTG of a given model M. The extended
version of the standard CTL model checking algorithm is used to support EU™ and
AU™¢ sub-formulas. The cases for p, =®, and ®; AP, are the same as their counterparts
in CTL. The following four cases show how the extension works for timed sub-formulas

of types E(®U~V¥) and A(PU~W).

Sat(E(® U=V)): Assume that DTG5 is the induced subgraph of DTG\ over S’ =
Sat(E(®UW)), including only the states satisfying E(®UW). This can be done
using the standard CTL model checking in O(V + E). In addition, the weight of
each transition of DTG5 is set to the lower bound of its corresponding duration
interval in DTG . This way, state s € S is in Sat(E(®@U=¢V)) if and only if
running a single source shortest path algorithm from state s € S’ results in
finding a path from s to s’ where s’ = ¥ and the weight of the path is not bigger
than c¢. So, one round of the algorithm (with the running time of O(V + E)) is
needed for each state of S’. As a result, the total running time of this algorithm

s O(V+E)+V-(V+E)=0(V-(V+E)).

Sat(E(®U=°V)): Assume that a new atomic proposition Pscc+ (e is defined. Each
state s is labeled by Pscc+ (o) iff s is a member of a strongly connected component
(SCC), in which all of the states satisfy ® and at least one of the transitions
inside the SCC results in non-zero progress in time. Labeling S" with Pscc+(a)
can be done using an extension of Tarjan’s algorithm [47] for detecting SCCs in
O(V + E), resulting in DT'G,.

The induced subgraph DTG of DTG, is defined over S’ = Sat(E(®UW)), in-
cluding only the states satisfying E(®UW). This way, s € S’ is in Sat(E(®U=°V))
if and only if one of the following conditions holds.

e There is an acyclic path from s to a state satisfying ¥ and the overall weight
of the path between them is not less than c.

e State s satisfies CTL formula E(® U(Pscc+ @) AE(® U ¥))). Satisfying this
formula, there is a path from s to a state which satisfies ¥ through some
state s" where s’ = Pgoc+(@). This way, by cycling in the SCC containing
', the elapsed time can be increased to more than any constant value c.

For each state, checking for both conditions requires a search algorithm in O(V +
E). As aresult, the total running time of this algorithm is O((V + E)+V - (V +
E) =0V -(V+E)).

Sat(A(® U=°V)): using the equivalence relations A(® USCT) = AF=¢ UA-E((-¥)U
(=@ A =V)) and AF=¢W¥ = -E(-¥ U>“T) A =E(=V U Pscco(-y)), this case
is reduced to a combination of the previous cases. A given state s satisfies
proposition Pgcco(—y) if and only if s is in a SCC in which all of the states satisfy
-, and zero is associated with all transitions of the SCC as the progress of time.
Using an extension of Tarjan’s algorithm, states with Pgcco(—y) are determined in
O(V+E); so, the total running time of this algorithm is O((V+E)+V-(V+E)) =
oWV -(V+E)).

Sat(A(® Uz°V)): using the equivalence relation A(® Uz°T) = AG<° (PAA (P U>T))
and AG<¢® = -EF~°—®, this case is reduced to a combination of the previous
cases. S0, the total running time of this algorithm is O(V - (V + E)).

34 CHAPTER 3. TCTL MODEL CHECKING FOR TIMED REBECA

As the model checking of DTGs in the continuous-early semantics is out of the
scope of this thesis, it is not described here.

3.2 Improving the TCTL< > Model Checking
Algorithm

In the previous section, we illustrated how DTGs can be model checked against
TCTL< > properties with running time O(V - (V + E) - |®|). In this section, we
show how the two phases of the TCTL< > model checking algorithm are combined to
develop a new TCTL< > model checking algorithm with running time O(V gV + E).
Here, we show how the algorithm works for calculating Sat(.) for two primitive cases
E(®U=¢¥) and E(® U=¢¥). As shown in the previous section, other TCTL formu-
las can be constructed using EUS¢, EU=¢, and other untimed CTL operators and
modalities with the maximum overhead of O(V + E). Therefore, the overall cost of
the preparation and the model checking is O(V' gV + E) for all cases.

Before describing the new algorithm, we review how the CTL model checking al-
gorithm calculates the value of Sat(E(® U W)). One of the implementations of this
algorithm is an iterative algorithm, called enumerative backward search [46]. As shown
in Algorithm 2, in the initial step, 7" is defined to be the set of states satisfying ¥
(line 2). Based on the semantics of the until modality, these states satisfy E(® U V).
Then, iteratively, other states are added to T'. In each iteration, a state s € S\ T is
added to T if and only if s = ® and at least one of the successors of s is in T (lines
4 to 8). Note that in this section, we assume that for a given formula E(®U=¥) or
E(®U=°U) the values of Sat(®) and Sat(¥) are computed in advance.

Algorithm 2: Enumerative backward search for computing Sat(E(® U V)) [46]
Input: Finite transition system TS with set of states S and CTL formula
E(®U V)
Output: Set of Sat(E(@UV)) ={se S|sE=E(®UV)}
begin
T < Sat(¥)
Q<+ T
foreach state s € () do
Q + Q\{s}
foreach state s’ € PREDECESSORS(s) do
if & ¢ TNs' = then
Q+ Qu{s'}
L T+ TuU{s}

© W N o O A W N+

10 return 7'

As described in the following sections, some modifications are applied to this algo-
rithm to support the timed until modality. The major modification of the algorithm
is in the state selection policy (in line 4 of the algorithm). Two different policies are
required for the timed modalities EUS¢ and EU=*.

3.2. IMPROVING THE TCTL< > MODEL CHECKING ALGORITHM 35

3.2.1 Calculating Sat(E(® U= ¥))

The main idea of the new model checking algorithm is in performing reversed Dijkstra
single source shortest path (SSSP) instead of using classic Dijkstra SSSP. The extension
of reversed Dijkstra SSSP used here traverses a given state space from the goal states
(which are states of Sat(¥)) to their ancestors. This way, as both finding states
satisfying E(® U V) and checking the time constraint are started from the goal states,
they can be combined together. The details of the new algorithm for calculating
Sat(E(® U=¢V)) are depicted in Algorithm 3. In the new algorithm, @ is defined as a
Fibonacci max-heap which stores pairs of (key, value) where key is an integer number
and value is a state. The value of a key in () is interpreted as the minimum distance
to one of the states which satisfies ¥ (denoted by 0) of its paired state. Four functions
EMPTY_HEAP, PUT, EXTRACT_MIN, and DECREASE_KEY are used for creating an empty
Fibonacci max-heap, putting a pair (key, state) in a heap, extracting the pair with
the minimum key, and decreasing the key of a given state, respectively. In addition,
the function low time : S x S — N is defined to retrieve the lower bound of the
associated progress of time with the transition between two given states.

Algorithm 3: Enumerative backward search for calculating Sat(E(® US¢¥))

Input: A DTG with the set of states S and the TCTL< > formula E(® U=¢ V)
Output: Sat(E(®PU=V))={se S|sEE@U=V)}

1 begin

2 T « Sat(¥)

3 () < EMPTY_HEAP

4 foreach state s € S\ T do

5 if s = ® then

6 dg +— 00

7 foreach state s’ € SUCCESSORS(s) do
8 if s € T then

9 L L ds < min{d,, Low_time(s,s’)}
10 PUT(Q, ds, s)

11 while @ # () do

12 (0s,8) < EXTRACT_MIN(Q)

13 if 6, > c then

14 L break

15 T+ TU{s}

16 foreach state s’ € PREDECESSORS (s) do
17 if ¢ TNs' = then

18 0y < 05 + low_time(s’,s)

19 L DECREASE_KEY((Q, s', d4)

20 return T’

As shown in Algorithm 3, the initialization part of the algorithm is in lines 2 to 10.
During the initialization, all of the states of Sat(¥) are added to T' (the return value
of the algorithm) as they satisfy Sat(E(® U°¥)). The other states of S are added to
Fibonacci max-heap). The key of a given state s € S\ T is set to infinity except

36 CHAPTER 3. TCTL MODEL CHECKING FOR TIMED REBECA

in case a state s’ € T is an immediate successor of s. For such a state the key is set
to low time(s,s’). If s has transitions to more than one state in 7', the key is the
minimum time value of those transitions. The initialization running time is O(V + E)
as the vertices and edges are visited once.

In addition to some changes in the initialization part, some modifications to the
main part of the CTL model checking algorithm are required. The main part of the
new algorithm is in lines 11 to 19. One of the differences between the main part
of the new algorithm and the main part of the algorithm of CTL model checking in
Algorithm 2 is in the termination condition of line 13. The termination condition is
required in the new algorithm as the backward search must stop when ¢ is bigger than
c.

The other difference is in updating d of states in lines 18 and 19. Intuitively, when a
new state s is added to T, maybe d of the predecessors of s is changed as there is a new
path via s to the states which satisfy W. Therefore, § of PREDECESSORS(s) is decreased
in lines 18 and 19. Note that if the newly found value is bigger than the previous value,
DECREASE_KEY does nothing. The new algorithm requires O(V') number of extractions
from the Fibonacci max-heap @ and O(F) number of decreasing keys (in the worst
case, extracting a state results in decreasing the keys of all of its predecessors). In a
Fibonacci max-heap of size n, the amortized running time of extracting an element is
O(lgn) and decreasing a key is O(1). Hence, the running time of the main part of the
algorithm is O(V' lgV + E). As a result, the total running time of the new algorithm
isO(VIigV + E).

Theorem 1. Algorithm 3 computes the set of states of a DTG which satisfy a given
TCTL< property E(®U=CW).

Proof. Assume that there is a state s € S which satisfies the formula E(® US¢ W),
As s satisfies E(® US¢W); there is a state s’ € S such that s’ satisfies ¥, there is a
path between s and s’ where the length of the path is less than ¢, and all of the states
between s and s satisfy ®. Using the new algorithm, reversed Dijkstra starts from s’
as it satisfies U (lines 2 to 10). Using reversed Dijkstra (ignoring the modifications
which are made to support property satisfaction in lines 13 and 17), starting from
s', the algorithm visits s and associates a value which is less than ¢ with s (as there
is a path between s and s’ with the length of less than ¢). Reversed Dijkstra is not
terminated before reaching s because of the conditional statement of line 13 as the
length of the path is less than c. Also, as all of the states between s and s’ satisfy
®, the algorithm does not miss the states of the path between s and s’ because of the
conditional statement of line 17. Therefore, s € Sat(E(® US¢W¥)) which is computed
by the new algorithm. The same argument is valid for proving that if the new algorithm
puts a state s in Sat(E(® U=¢W)), the state s satisfies the formula E(® Us¢¥). [

3.2.2 Calculating Sat(E(® U=° 1))

As described in Section 3.1, the algorithm of finding Sat(E(® U=¢¥)) is reduced to
two cases. A given state s € S is in Sat(E(® U2¢V)) if and only if there exists a
simple path from s to one of the states of Sat(V) and the duration of the path is at
least ¢, or there exists a path with at least one non-zero cycle from s to one of the
states of Sat(V) (the elapse of time can be increased to more than ¢ by traversing the
cycle). Note that all the states on the mentioned paths satisfy ®.

3.2. IMPROVING THE TCTL< > MODEL CHECKING ALGORITHM 37

The new approach to calculate Sat(E(® U=¢W¥)) is like the approach of calculating
Sat(E(® U=¢W)). In this case, the enumerative backward search starts from a state
which has the maximum level in BFS traverse of DTG, called the deepest state. This
state is selected because of the fact that before starting the process of a state, all of
its successor states must be processed, which is guaranteed by selecting the deepest
state. This way, the states conforming to the first case are calculated. To handle the
second case, during the backward search, if the search reaches a state which is marked

by the label Psceo+(a), the state is put in Sat(E(® U= ¥)).

For the efficient implementation of this algorithm, we define () as an ordinary max-
heap. Three functions EMPTY_HEAP, PUT, and EXTRACT_MAX are used for creating an
empty heap, putting a pair (key,value) in a heap, and extracting the pair with the
maximum key, respectively. The function level : S — IN is defined to retrieve the
levels of states in BFS traverse of transition systems. Note that the value of the level
of states can be associated with states during the generation of transition systems
without additional cost or after that by time complexity of O(V + E). We also assume
that each state has an additional field which shows the maximum distance from this
state to one of the states which satisfy W (denoted by A). The details of the new
algorithm are depicted in Algorithm 4.

Algorithm 4: Enumerative backward search for computing Sat(E(® Uz°¥))

Input: A DTG with the set of states S, the TCTL< > formula E(® U2¢¥), and
the set of states SC'C' as the states in cycles of which all members are in

Sat(P)
Output: Sat(E(®U=V)) ={s€ S|s E E(®U=V)}
1 begin
2 T+ 0
3 () < EMPTY_HEAP()
4 foreach state s € S do
5 A, 0
6 if s = U then
7 L PUT((Q, level(s), s)
while @ # () do
(levels, s) < EXTRACT _MAX (@)
10 foreach state s’ € PREDECESSORS (s) do
11 if ¢ TNs' = then
12 if s € SCC then
13 L A < 00
14 else
15 L A+ Ay +up_time(s,s)
16 Ay max{A, Ay}
17 PUT(Q, level(s'), s')
18 if Ay > ¢ then
19 L T+ Tu{s}

20 return 7'

38 CHAPTER 3. TCTL MODEL CHECKING FOR TIMED REBECA

The initialization part of Algorithm 4 is in lines 2 to 7. During the initialization, A
of all the states are set to zero and any state s € Sat(V) is added to @ in the form of
a pair (level(s),s). As none of the states in this step satisfies the timing constraint
of the formula, T" has no member and it is set to the empty set. The initialization part
running time is O(V'1g V') as all of the vertices must be visited once and in the worst
case (is built by calling PUT for V' times.

The main part of the algorithm is in lines 8 to 19. One of the differences between the
main part of this algorithm and the standard CTL algorithm’s main part (Algorithm 2)
is in the policy of adding elements to 7. Here, instead of adding s’ to T immediately
after extracting it, s’ is added to T when it satisfies a timing constraint, as shown
in line 19. The other difference is in lines 12 to 16 where A of states are updated.
Normally, A of a state s is set based on the value of A of its successors. But, in the
case of s is a member of SCC, there is the possibility of increasing A to an arbitrarily
large value by cycling from s to itself. So, A of s is set to infinity to address this
fact. In this part of code, the function up time : S x S — N is defined to retrieve
the upper bound of the associated progress of time with the transition between two
given states. The new algorithm requires O(V') number of extractions from heap @
and O(FE) number of processing the predecessors of states (i.e. the maximum number
of edges). As the running time of extracting from a heap of n elements is O(lgn), the
running time of the main part of the algorithm is O(V1gV +(V+E)) = O(VIgV+E).
As a result, the total running time of the algorithm is O(V1gV + E).

Theorem 2. Algorithm 4 computes the set of states of a DTG which satisfy a given
TCTLs property E(®U=¢W).

Proof. As this algorithm finds Sat(.) in two different cases, we split the proof into the
following two cases.

1. Assume that s € S satisfies E(® U2°¥) and s’ € S is a state where s satisfies ¥
and there is a path between s and s’ such that all of the states in the path satisfy
®. Also, assume that there is a state s” € S in the path between s and s’ such
that the label Pgoc+ (e is associated with s”. In this case, as the algorithm is
developed based on Algorithm 2, all of the states in the path between s and s" are
explored as they satisfy E(® U V). During this exploration, upon visiting s” the
value of A is set to the infinity, and it is added to Sat(E(® U=¢W¥)). The same
procedure happens for all of the ancestors of s” too, because of the statement
of line 16. Therefore, all of the ancestors of s” are put in Sat(E(® U2¢¥)),
including s.

2. Assume that s € S satisfies E(® U=¢W) and s’ € S is a state where s’ satisfies
U and there is a path between s and s’ such that all of the states in the path
satisfy ®. Also, assume that this path is the longest acyclic path between s and
other states which satisfy W. In this case, upon extracting s’ from @, the value
of A of its predecessors is overwritten as the longest path ends to s’ (lines 15 and
16 of Algorithm 4). The same argument is valid for the predecessor of s’ and
the other predecessors in the path from s to s’. As a result, reaching s results in

setting the value of A to the length of the maximum acyclic path between s and
s' and adding s to Sat(E(® U=z°W)).

The same argument is valid for proving that if the new algorithm puts a state s in
Sat(E(® U=2¢W)), the state s satisfies the formula E(® U=¢ V). O

3.3. CASE STUDIES AND EXPERIMENTAL RESULTS 39

Combining the above two algorithms, we have the following result.

Theorem 3. There is an O(V1gV + E) - |®|) algorithm for model checking of DTGs
with V' states and E transitions against a TCTL< > property ®. U

Note that for the dense transition systems where the number of transitions is
asymptotically larger than VgV (ie., E = Q(VIgV)), this algorithm is the most
efficient algorithm for the model checking against TCTL< >~ properties. This is be-
cause the running time of the algorithm is O(E'-|®|), which is the same as the running
time of the optimal CTL model checking algorithm [46].

Corollary 1. The proposed TCTL< > model checking algorithm is the asymptotically
optimal algorithm for dense transition systems.

Based on the fact that a given Timed Rebeca model is Zeno-free and its fine-grained
transition system is a DTG, the newly proposed TCTL< > model checking algorithm
in Section 3.2 can be used for the model checking of Timed Rebeca models. This fact
is stated in Lemma 1.

Lemma 1. The fine-grained transition system of a Timed Rebeca model is a DTG.

Proof. For a given Timed Rebeca model M, T'S y is transformed to its equivalent DTG
(DTG) using mapping of actions. This mapping function associates zero with taking-
message and internal transitions and associates an interval with each progress-of-time
transition. Note that as one value is associated with each progress-of-time transition of
TS, the time interval which is associated with its corresponding transition in DTG
has tight bounds which are the same as the value of the progress-of-time transition.

O

As aresult, for a given TCTL< > formula @, the polynomial time algorithm of DTG
model checking can be used for model checking the fine-grained transition systems of
Timed Rebeca models.

Corollary 2. There is an O((V1gV + E) - |®|) algorithm for the model checking of
Timed Rebeca models against TCTL< > property ®. U

3.3 Case Studies and Experimental Results

We perform four different examples in different sizes to illustrate how efficiently the
improved algorithm works. The selected examples are a simplified version of a NoC
system with 16 cores, a simplified version of the Scheduler of Hadoop, a Ticket Service
system, and an application of Wireless Sensor and Actuator Networks (WSAN). For
each example, we provide both an intuitive and a detailed description of the model and
then discuss the gained reduction. We also present the TCTL formula which the model
is model checked against it. In the presented TCTL formulas, atomic propositions are
defined as boolean expressions based on the values of the state variables of actors.
For example, the atomic proposition which shows the equality of the state variable
x of actor a to 3 is shown by a.x == 3. We choose the state space size and the
model checking time consumptions as the performance metrics of the model checking
algorithms.

40 CHAPTER 3. TCTL MODEL CHECKING FOR TIMED REBECA

Configuration State Space Generation Model Checking Time
#States Time Old Algorithm | Improved Algorithm

3 Packets 442 1s <lIs <Is
4 Packets 1,239 2s 6s <ls
5 Packets 3,117 7s 2.8m <l1s
6 Packets 9,907 35s 40m 1s

7 Packets 35,746 6.8m >5hf 58

8 Packets 136,666 1.4h >5ht 16s

Table 3.1: The size of state spaces and the gained reductions in the NoC example in
different scenarios. The T sign on the reported times shows that the model checking
passed the time limit (5 hours).

Configuration State Space Generation Model Checking Time
#States Time Old Algorithm | Improved Algorithm

1 AMs 180 <Is <Is <Is

2 AMs 5,506 Is 16s <ls

3 AMs 177,989 14.5m >5h' 18.8m

Table 3.2: The size of state spaces and the gained reductions in the Hadoop Yarn
example with default configuration. The } sign on the reported times shows that the
model checking passed the time limit (5 hours).

3.3.1 Network on Chip (NoC)

Our first example is the model of a network on chip (NoC). The overview and detailed
description of this example are presented in Section 2.3.4. We created the extended
version of this model and varying in the number of packets.

We model checked this model against the bounded response which is formulated
as E(rll.received <= 2) US?*’(r11.received > 2). This formula makes sure that
there is a path in which before passing 250 time units more than two packets are
received by the router r11. As shown in Table 3.1, sending 7 or 8 packets results in
passing the time limit of the model checking (we set it to 5 hours) in the case of using
the old model checking algorithm. However, the new algorithm computes the results
in a reasonable time.

3.3.2 Hadoop YARN Scheduler

Hadoop YARN scheduler is the second example of this section which its overview and
detailed description of this example are presented in Section 2.3.5. We created the
extended version of this model and varying in the number of application masters.

We used E(am2.doneJobs <= 4) U=!(am2.doneJobs > 4) formula for the model
checking of the Yarn model. This formula makes sure that there is a path in which
before passing 10 time units the second application master finishes five jobs (the same
property can be checked for the other application masters). As shown in Table 3.2,
having 3 application master results in passing the time limit of the model checking in
case of using the old model checking algorithm. However, the new algorithm terminates
in 18 minutes.

3.3. CASE STUDIES AND EXPERIMENTAL RESULTS 41

Configuration State Space Generation Model Checking Time
#States Time Old Algorithm | Improved Algorithm

2 Customers 7 <l1s <Is <ls

3 Customers 360 <Is <Is <ls

4 Customers | 1,825 <ls 1s 1s

5 Customers | 10,708 6s 2s 1s

6 Customers | 73,461 3.4m 2.2m 1.7m

Table 3.3: The size of state spaces and the gained reductions in the Ticket Service
example with different numbers of customers.

3.3.3 Ticket Service

Our third example is the model of a Ticket Service system. The overview and detailed
description of this example are presented in Section 2.3.1. We created the extended
version of this model and varying in the number of customers.

Making sure about the upper bound of the end-to-end response time to the cus-
tomers’ requests is the property we checked for this model. We have to make sure
that in all states, the time elapse between sending a request and receiving a ticket
is less than a specific number. In the following formula, we ensure that in case of
five customers, there is an upper bound of 16 time units for the response time of the
system.

AG=*((cl.sent — AF='®*~cl.sent)A--- A (c5.sent — AF='*~c5.sent))

Note that this formula has to be transformed into the base form which only con-
tains existential until modalities using AG=‘¢p = - EF=‘-¢ = E true U<—¢ and
AF=¢¢p = =E-¢UZtrue A - E-¢ U P, 0-¢) - As the state spaces are checked to be
Zeno free prior to start the TCTL model checking, E-¢ U P,.0(-4) is empty and there
is AF=¢¢p = ~E-¢ U= true.

The numbers of Table 3.3 shows that both of the algorithms perform model checking
in a reasonable time. However, the newly proposed algorithm is less than two times
better than the old one. The gained performance of the new TCTL model checking
algorithm in this example is not as significant as the aforementioned two examples
because of the fact that a limited number of states pass the first phase of the old
algorithm. Therefore, there are few states which have to pass the second phase of the
algorithm, which is a costly algorithm. In the previous examples, all of the states pass
the first phase, result in executing the second phase algorithm over all of the states.

3.3.4 WSAN Applications

As the fourth example, we present the WASN model. The overview and detailed
description of this example are presented in Section 2.3.6. We created the extended
version of this model and varying in the timing and configuration of the model.
Checking for utilizing the communication channel in every 50 units of time is
the property we used for the model checking of this example with different con-
figurations. This property can be formulated in TCTL in the safety like formula
AG=%(A(freeChannel) US*°(—~freeChannel)), which has to be transformed to the
base forms, as we did in the previous example. We verified the WSAN application in

42 CHAPTER 3. TCTL MODEL CHECKING FOR TIMED REBECA

Configuration State Space Generation Model Checking Time
#States Time Old Algorithm | Improved Algorithm
25-5-3-10 1,741 <ls <ls <ls
33-6-4-2 1,934 <ls <ls <ls
25-5-4-10 3,718 Is <ls <ls
30-6-4-2 9,353 1s <ls <ls
25-6-4-2 34,503 2s <ls <ls
20-6-4-2 57,621 3s <ls <ls

Table 3.4: The size of state spaces and the gained reductions in WSAN example with
different configuration.

different configurations, varying the value of the sampling rate, the number of nodes,
the packet size, and the sensor task delay.

The results of these experiments are depicted in Table 3.4. In each row, the con-
figuration (the numbers which are separated by a dash) is the combination of the
sampling rate, the number of nodes, the packet size, and the sensor task delay of the
experiment, respectively. As shown in Table 3.4, the time consumption of the model
checking is less than one second for all cases and changing the configuration of the
model does not result in the generation of large state spaces.

Chapter 4

State Space Reduction by Folding
Transitions!

In this chapter, we propose a reduction technique, called “Folding Instantaneous Tran-
sitions”, to make the model checking of object-based models against TCTL< > cheaper.
Using this reduction technique, we will propose an approach for the model checking
of TCTL= properties in polynomial time. As mentioned before, having instantaneous
transitions, the problem of model checking against TCTL_ properties is reducible to
the Subset Sum problem which is well-known to be NP-complete [45]. By eliminating
instantaneous transitions, the resulting transition system can be model checked against
TCTL properties efficiently. In the proposed algorithm, for a given TCTL formula, if
small values are used as timed quantifiers of TCTL modalities, the time complexity of
model checking is reduced to O((VigV + E) - |®]).

The idea of folding instantaneous transitions is developed based on the fact that
the instantaneous transitions take no time to execute; so, the system cannot “stay” in
the states whose outgoing transitions are all instantaneous. Hence, these states are
not observable to the verifier (as an external observer). Applying this technique, a new
transition system is created, called folded timed transition system (FTS). The details
of eliminating instantaneous transitions is presented in the following section.

4.1 Folding Instantaneous Transitions

Folding instantaneous transitions is a reduction technique that eliminates all instan-
taneous transitions as well as all transient states from DTGs. Note that in the mod-
els of timed systems, instantaneous transitions take priority over non-instantaneous
ones. So, any state which has an instantaneous outgoing transition cannot have non-
instantaneous transitions. Hence, there are two types of states: the ones whose out-
going transitions are all instantaneous (called transient states), and the ones which
have no outgoing instantaneous transition (called progress-of-time states). There is a
transition between two states of an F'TS if and only if the two states are consecutive
progress-of-time states in their corresponding DTG. Figure 4.1 illustrates how a DTG
(at the left side) is transformed to its corresponding FTS (at the right side). In the
figure, the dotted states are the initial states and the states with thick borders are
the progress-of-time states. As shown in the figure, if the instantaneous transitions
branch into a set of paths that have later observable differences, there is a nondeter-

!This chapter is an improvement and extension of the results published in [36].

44 CHAPTER 4. STATE SPACE REDUCTION BY FOLDING TRANSITIONS

Figure 4.1: Example of how folding instantaneous transitions reduction works

ministic choice in the outgoing observable ancestor of its corresponding FTS (outgoing
transitions with d; and dy labels in the right side figure).

Note that the result of folding instantaneous transitions is not in the bisimulation
relation with its corresponding DTG; so, there is no guarantee for preserving the
result of model checking against all properties on FTSs. This is because of the fact
that this approach eliminates transient states from the transition system regardless
of the values of their atomic propositions and branching points. But, in some cases
where modelers prefer to model check properties based on the observable behaviors of
systems, folding instantaneous transition technique can be used safely. This preference
is widely considered in the object-oriented paradigm. Meyer in [56] said that object
instances satisfy properties in all “stable” times. Then he defined it as “Stable times
are those in which the instance is in an observable state”. He mentioned that the time
of the instance creation and after /before method calls are observable states of objects.
Considering this preference in the verification of Timed Rebeca models, we have to
defined stable times and observable states. The definition of observable states in Timed
Rebeca is different from Meyer’s definition. In Timed Rebeca, observable states are
progress-of-time states as they are the only states in which systems are allowed to
stay. So, although folding instantaneous transitions eliminates some transient states,
it can be used for the analysis of Timed Rebeca models which considers the observable
behaviors of actors.

To present the formal definition of F'TS, at the first step, we need to define npts :
S — 29 which finds the set of the nearest progress-of-time states from a given state.
For a given state s € S, all states in npts(s) are progress-of-time states and there is
no progress-of-time state in the paths from s to the states of npts(s).

Definition 7 (Nearest Progress-of-Time States). For a given model M and DTG, =
(S, s0, =, AP, L) and two states s,s' € S, ' is in npts(s) if and only if s’ is a progress-

4.2. COMPLETE TCTL MODEL CHECKING OF DTGS 45

of-time state and for all valid paths between s and s’ such as ™ = (s,d), (s1,d1), (S2,ds),
< (Sn,dyn), (8',d), none of s1,89,- -, s, are progress-of-time states. O

Using the definition of the nearest progress-of-time state, the definition of FTS is
straightforward as below.

Definition 8 (Folded Transition System). For a given DTGy = (S, so, —, AP, L),
its corresponding folded transition system is defined as the tuple FTS(DTG) =
(S, 50, =, AP, L), where:

e S' C S which contains all progress-of-time states, and the initial state.

o For all s, s, € S, there exists (s),d, sy) €— if and only if s, € npts(s}). The
value of d is the value of the time elapsed associated with the outgoing transition
of sy (which is a progress-of-time transition). For the initial state, d is set to
zero.

g

As the states and transitions of an FT'S can be assumed as the subset of its corre-
sponding DTG, an FTS can be model checked against TCTL< > properties using the
previously proposed algorithm.

Corollary 3. The F'TS of a given DTG can be model checked against the TCTL< >
property ® in O(V1gV + E) - |P|).

4.2 Complete TCTL Model Checking of DTGs

In addition to reducing the size of state spaces, here, we show that the approach of
[57] can be used for efficient model checking of TCTL_ properties respect to FTSs in
pseudo-polynomial time. Then, we discuss that for a wide range of complete TCTL
properties, the running time of model checking algorithm is reduced to O((V1gV +
E) - |®]) for TCTL property ®.

As known in graph theory, the problem of finding a path between two vertices in a
weighted graph of which the weight equals to a given number (called finding the exact
path length (EPL) problem) the weight of the path, is an NP-complete problem (using
a reduction from finding the EPL between two states to the subset-sum problem [58]);
so, there is no known polynomial time algorithm for solving the EPL problem. Based
on this fact, the authors in [45] showed that the problem of model checking for the exact
time condition is an NP-complete problem. Therefore, there is no known polynomial
time algorithm for model checking of TCTL properties; however, the TCTL< > subset
can be model checked in polynomial time.

On the other hand, as discussed in [57], there is a pseudo-polynomial algorithm for
finding the EPL between two vertices in a weighted graph. The running time of this
algorithm is O(W?V?3 + |k|-min{|k|, W} - (V + E)), where V is the number of vertices,
E is the number of edges, k is the value which EPL looks for, and W is the biggest
number in the set of absolute values of weights of edges. This algorithm works in the
following two phases.

e Preprocessing: In this phase, the given graph is processed with a relaxation
algorithm. As a result, the weights of the edges are updated such that the signs

46 CHAPTER 4. STATE SPACE REDUCTION BY FOLDING TRANSITIONS

of the weights are the same in different paths (this algorithm works for graphs
with positive, negative, and zero weight edges). The running time of this phase

is O(W?2V3).

e Finding-Path: In the second phase, the EPL between the two input vertices is
found in the relaxed graph. The running time of this phase is O(|k|-min{|k|, W} -
(V+E)).

In the case of finding the EPL in the FTS of a DTG, W is the biggest time elapsed
of the FTS transitions. The value of k is the time quantifier of the given TCTL_
formula (e.g., for TCTL_ formula 3®U=5V¥ the value of k is five). This way, finding
the EPL is possible in polynomial time as for a wide range of TCTL formulas, the
time quantifiers are small constant values (in comparison to the size of the transition
system). However, there is no limitation on the value of W.

Lemma 2. There is an O((V + E) - |®|) algorithm for model checking of FTSs against
TCTL— property ® with a small constant time quantifier k.

Proof. As the FTS of a DTG has only progress-of-time states and transitions, the
weights of all of the transitions are positive integer numbers (assume that the biggest
weight is 1) and there is no need for a relaxation phase with cost O(W?2V3). Therefore,
the running time of the model checking algorithm is reduced to O(|k| - min{|k|, W} -
(V+E)).

On the other hand, the time quantifier is assumed to be a small constant integer
number. Hence, k is a constant number in finding its corresponding EPL. Having a
constant value for k, the value of min{|k|, W} is at most k. As a result, the running
time of finding the EPL in a state space is reduced from O(|k|- min{|k|, W} - (V + E))
to O(Jk]*- (V+ E)) =O0(V + E). O

Theorem 4. An FTS can be model checked against a TCTL property ® with small
constant time quantifiers in the time complexity order of O((V1gV + E) - |®]).

Proof. This follows directly from Corollary 3 and Lemma 2. m

4.3 Model Checking of the FTSs of Timed Rebeca
Models

As the second step for the efficient model checking of Timed Rebeca models, we will
show how the F'T'Ss of Timed Rebeca models are generated without a significant run-
time overhead. As the following lemma (together with Algorithm 5) illustrates, we
can combine generating the state space, checking for Zeno behavior, and generating
the FTS to decrease the execution cost of the generation of FTSs. In this algorithm,
transition systems are generated using Bounded-DFS.

Starting from the initial state sg, the set of the nearest progress of time states of
the initial state (npts(sg)) are generated (in the first iteration of the while loop in
lines 7 to 14). At the next iteration, for each state of npts(sg), its set of the nearest
progress of time states are found, and so on. As in each iteration only states between
consecutive progress-of-time states are generated in a DFS manner, the algorithm is
called Bounded-DFS state space generation. Like ordinary DFS, Bounded-DFS is a

4.3. MODEL CHECKING OF THE FTSS OF TIMED REBECA MODELS 47

Algorithm 5: The state space is generated for the given Timed Rebeca model
or null is returned in the case of Zeno behavior in the model.
Input: A Timed Rebeca model M, a labling function L, a set of atomic
propositions AP
Output: The result F'TS or null if the model has Zeno behavior

1 V < {GENERATE_INITIAL_STATE(M)} » The set of all of the states

2 hasZeno < false » Flag for Zeno behavior detection

3 begin

4 S < {GENERATE_INITIAL_STATE(M)} » The set of the states of
result FTS

5 N < ENQUEUE(sg) » The set of the next level states

6] » The set of the transitions of FTS

7 while HAS_ELEMENTS(N) A —hasZeno do

8 s <+ DEQUEUE (V)

9 N’ < Bounded_DFS(s)

10 foreach state s’ € N do

11 time < PROGRESS_OF _TIME(s)

12 S+ Sus

13 ——— U(s, time, §')

14 N < ENQUEUE_ALL(N")

15 if hasZeno = true then

16 L return null

17 else

18 L return (5, sg,—, AP, L)

19 Procedure Bounded DFS(s)
20 () < GENERATE_SUCCESSOR_STATES(s)

21 R+ » The set of states of npts(s)
22 foreach state s’ € (Q do

23 if IS_PROGRESS_OF_TIME(s’) then

24 R+ RUS

25 continue

26 else

27 if s’ ¢ V then

28 V+Vus

29 recStack(s') <+ true

30 R < R UBounded_DFS(s’)

31 recStack(s') <+ false

32 else

33 if recStack(s’) = true Anow(s’) = now(s) then
34 L hasZeno < true

35 return R

48 CHAPTER 4. STATE SPACE REDUCTION BY FOLDING TRANSITIONS

recursive procedure, defined in lines 19 to 35. In each round, if a progress-of-time state
is found, it is put in the set R as the return value (line 24).

Otherwise, Bounded-DFS is invoked to explore the successor states of the newly
generated state (lines 26 to 34); meanwhile, the existence of a cycle without an elapse
of time is checked to detect Zeno behavior (line 33). This way, as each state is visited
at most twice (at the generation time and when DFS continues exploration through its
successors) and each transition is traversed once (at the generation time), the overall
running time of checking for Zeno behavior and generating the FTS is O(V + E).

Note that in Algorithm 5, the function PROGRESS_0F_TIME maps its given progress-
of-time state to the value of its only outgoing timed transition.

Lemma 3. The FTS of a given Timed Rebeca model M can be generated in O(V +E).
O

Corollary 4. The FTS of a given Timed Rebeca model can be generated and model
checked against TCTL property ® in O(V1gV + E) - |®|).

4.4 Case Studies and Experimental Results

To illustrate the applicability of the proposed reduction technique, we apply it to the
examples of Section 3.3. We choose the state space size and the model checking time
consumptions as the performance metrics. The values of these metrics are compared in
a table for each case study. In the tables, Original is used to refer to the original state
spaces and Reduced is used to refer to the reduced state space (i.e., FTSs). As the
reduction technique applied on-the-fly without a significant overhead, we do not report
the spent time for the state space generation. Note that the property specifications of
the examples are the same as that of in the previous chapter.

4.4.1 Network on Chip (NoC)

Our first example is a model of a network on chip (NoC), a promising architecture
paradigm for many-core systems. The overview and detailed description of this exam-
ple are presented in Section 2.3.4.

The effect of applying the reduction technique is shown in Table 4.1. In the NoC
model, increasing the number of sent packets results in a slight increment in the gained
reduction, which is because of the increment of the concurrency level of the model. In
other words, increasing the number of packets results in the interleaving of transitions
which correspond to routing the packets. The interleaving of these transitions are
omitted in the FTS of the model and as there is no conflict between the routes of the
packets (it is because of the traffic pattern we have chosen for this model), eliminating
the effect of the interleaving of transitions results in FTSs which have approximately
the same sizes.

Table 4.1 also shows that TCTL model checking on the reduced transition system
results in the model checking of the models in less than a second.

4.4. CASE STUDIES AND EXPERIMENTAL RESULTS

Configuration State Space Generation Model Checking Time
#States Orig. | #States Red. | Gain | Orig. Red.

3 Packets 442 68 84% | <ls <ls

4 Packets 1,239 122 91% | <l1s <ls

5 Packets 3,117 126 96% | <ls <1s

6 Packets 9,907 129 98% 1s <1s

7 Packets 35,746 102 99% | b5s <1s

8 Packets 136,666 117 99% | 16s <ls

49

Table 4.1: The size of state spaces and the gained reductions in the NoC example in
different scenarios

Configuration State Space Generation Model Checking Time
#States Orig. | #States Red. | Gain | Orig. Red.

1 AMs 180 56 69% | <ls <ls

2 AMs 5,506 1,283 % | <ls <ls

3 AMs 177,989 24,639 86% | 18.8m <ls

Table 4.2: The size of state spaces and the gained reductions in the Hadoop Yarn
example with default configuration

4.4.2 Hadoop YARN Scheduler

Hadoop [50] is a framework for MapReduce, a programming model for generating and
processing large data sets, selected as the second example. The overview and detailed
description of this example are presented in Section 2.3.5.

The same as the model of NoC, applying FTS technique reduces the size of state
spaces significantly, as shown in Table 4.2. Also, increasing the number of the ap-
plication masters increases the gained reduction. It is because of the fact that the
application masters are working in parallel and the interleaving of their parallel activ-
ities is eliminated by FTS. Table 4.2 also shows that the time is reduced to less than
one second when the FTS technique is applied.

4.4.3 Ticket Service

Our third example is the model of a Ticket Service system. The overview and detailed
description of this example are presented in Section 2.3.1.

Table 4.3 shows that applying FTS technique improves the performance of the
model checking. The same as the previous examples, applying FTS technique reduces
the size of state spaces significantly and increasing the number of the customers in-
creases the gained reduction.

4.4.4 WSAN Applications

As the fourth example, we present a realtime data acquisition system for structural
health monitoring and control (SHMC) of civil infrastructures. The overview and
detailed description of this example are presented in Section 2.3.6.

50 CHAPTER 4. STATE SPACE REDUCTION BY FOLDING TRANSITIONS

Configuration State Space Generation Model Checking Time
#States Orig. | #States Red. | Gain | Orig. Red.

2 Customers 7 10 8% | <ls <ls

3 Customers 360 40 89% | <ls <ls

4 Customers 1,825 184 90% 1s <ls

5 Customers 10,708 1,047 90% 1s <1s

6 Customers 73,461 6,997 91% | 1.7Tm 1s

Table 4.3: The size of state spaces and the gained reductions in the Ticket Service
example with different numbers of customers

Configuration State Space Generation Model Checking Time
#States Orig. | #States Red. | Gain | Orig. Red.
25-5-3-10 1,741 402 % | <ls <ls
33-6-4-2 1,934 451 TT% | <ls <ls
25-5-4-10 3,718 945 5% | <ls <ls
30-6-4-2 9,353 2,774 1% | <ls <ls
25-6-4-2 34,503 10,368 0% | <ls <ls
20-6-4-2 57,621 17,714 69% | <ls <ls

Table 4.4: The size of state spaces and the gained reductions in WSAN example with
different configuration

We verified the WSAN application in different configurations, varying the value of
the sampling rate, the number of nodes, the packet size, and the sensor task delay. The
results of these experiments are depicted in Table 4.4. In each row, the configuration
(the numbers which are separated by dashs) is a combination of the sampling rate,
the number of nodes, the packet size, and the sensor task delay of the experiment,
respectively. As shown in Table 4.4, the effectiveness of the reduction technique is
reduced in configurations which result in bigger state spaces. This is because of the fact
that changing the configuration of WSAN in this way does not increase the number
of messages which are sent at the same time. So, the chance of finding transient
transitions is decreased as there is no increment in the number of simultaneously

executing instantaneous transitions.

Chapter 5

Big-Step Semantics of Timed Rebecal

In the previous chapters, we described the standard semantics of Timed Rebeca in the
form of timed transition system and showed how it can be used for model checking
against TCTL properties. Although this semantics provides TCTL model checking
facilities, unfortunately, it suffers from the usual state space explosion problem. The
transition system contains arbitrary interleavings of independent actions of the various
components of a distributed system, resulting in a large state space. In the presence
of a global clock and timing information, this may become even more common.

In this chapter, we propose a very different semantics, called Floating Time Transi-
tion System (FTTS), as a big-step semantics of timed actor-based models. States in a
FTTS contain the local time of each actor, in addition to values of their state variables
and the bag of their received messages. However, the local times of actors in a state
can be different, and there is no unique value for time in each state. Such a semantics
is reasonable when one is only interested in the order of visible events. FTTS may
not be appropriate for analyses that require reasoning about all synchronized global
states of a Timed Rebeca model. The key features of Rebeca actors that make FTTS
a reasonable semantics are having no shared variables, no blocking send or receive,
single-threaded actors, and atomic (non-preemptive) execution of each message server
which gives us an isolated message server execution. This means that the execution of
a message server of an actor will not interfere with the execution of a message server of
another actor. Therefore, we can execute all the statements of a given message server
(even delay statements) during a single transition. This makes the transition system
significantly smaller because there will be only one kind of action, which is taking a
message and executing the corresponding message server entirely.

For timed systems, the norm is to show that there is a timed weak bisimulation
relation between two timed transition systems to prove that they preserve the same
set of timed branching-time properties (e.g. TCTL). Proving the existence of such a
relation is impossible when one of the transition systems does not have progress-of-
time transitions, which is the case of the relation between FGTS and FTTS. Here,
we will prove that the actions and the execution time of the actions are preserved in
FTTS using an innovative approach for defining a relation between the states of a
FGTS and its corresponding FTTS. Since the starting time of the execution of actions
is also preserved, we can prove the preservation of any timed property of actions that
is bisimulation invariant. Examples of such properties include p-calculus with weak
modalities.

!This chapter is an improvement and extension of the results published in [59] and [2].

52 CHAPTER 5. BIG-STEP SEMANTICS OF TIMED REBECA

Our bisimulation proof relies on observing that the FTTS semantics exploits key
features of the actor model of computation. In such a model there is no shared memory;,
and sends and receives are non-blocking. Moreover, actors are single-threaded, with
message servers being executed non-preemptively. This means that message servers
can be executed in an isolated fashion, as is carried out in FTTS, without compromis-
ing the semantics of the model. Since our correctness proof of FTTS relies only on
certain features of the actor model (rather than something specific to timed Rebeca), it
suggests that FT'TSs can be used in the analysis of other actor models and languages,
and more generally, in other asynchronous event-based models.

5.1 Semantics of Timed Rebeca in FTTS

In this section, we present the big-step semantics of Timed Rebeca in FTTS. The
big-step semantics of Timed Rebeca in FTTS can be defined in terms of a transition
system, as shown in the following.

Definition 9. For a given Timed Rebeca model M, FTTS = (S, sq, Act’,—, AP, L)
is its floating time semantics where S is the set of states, sq is the initial state, Act’ is
the set of actions, —C S x Act’ x S is the transition relation, AP is the set of atomic
propositions, and L : S — 247 is the labeling function, described as the following.

o The global state of a Timed Rebeca model s € S in FTTS s the function s :
AID — (Var — Val) x P(Msg™) x Stat® x N x NU {e}, which is the same as
the definition of states in the fine-grained transition system of Timed Rebeca.
In comparison with the fined-grained transition system, the values of remaining
statements and resuming time are set to € for all actors in the floating time
transition system. In addition, there is no gquarantee for the local times of actors
to be the same. As a result, actors in the floating time transition system are in
the form of (v, q,€,t,€).

e [n the initial state of the model, for all of the actors, the values of state variables
and content of the actor’s message bag are set based on the statements of its
constructor method, and the remaining statements is set to €. The local times of
the actors are set to zero and their resuming times are set to e.

e The set of actions is defined as Act’ = MName.

e The transition relation —C S x Act’ x S defines the transitions between states
that occur as the results of actors’ activities including: taking a message from
the message box, executing all of the statements of its corresponding transition
system. For proposing the formal definition of —, we have to define the notion
of idle actors. An actor in the state (v, q,¢€,t,1) is called idle, i.e., it is not in the
middle of executing a message. A given state s is idle, if s(x) is idle for every
actor x. We use the notation idle(s, x) to denote the actor identified by x is idle
in state s, and idle(s) to denote s is idle. Using these definitions, two states

s,s' € S are in relation s §' if and only if the following conditions hold.
— idle(s) A idle(s"), and

— 351,89, ,8, € S,z € AID - s =5 sy — - > 5, > § AWy €
AID [{z}, 1 <i<n-—idle(s;,x) Aidle(s;,y)

5.2. AN ACTION-BASED WEAK BISIMULATION BETWEEN THE TWO
SEMANTICS 53

s(x) = (v, q,(delay(e)|o),t,r) Ar =t

(delay)

T

s = slx — (v,q,0,t+ eval,(e),r + eval,(e))]

Note that in the big-step semantics, the delay statements is modified to increase
the local time of actors, in addition to their resuming time, shown below.

o AP contains the name of all of atomic propositions.

e Function L : S — 247 associates a set of atomic propositions with each state,
shown by L(s) for a given state s.

g

The same as Section 2.2, we illustrate how FTTS is created for the ping pong
example of Listing 2.3 in Figure 5.1. As shown in the detailed contents of the first and
second states, execution of the message server ping results in progress in the local time
of pi by 2 units and putting the pong message in the bag of po. Note that the local
time of po in this state is 0 as it does not execute any messages server. Performing
transition from the second state to the third one, the local time of po is increased to
1 as the delay statement in the message server pong is executed. Also, a message is
sent to pi which is put in the bag of pi with release time for 2.

As there is no difference between the structure of states in FGTS and FTTS, the
notion of shift-equivalence relation works for making FTTSs finite.

5.2 An Action-Based Weak Bisimulation between
the Two Semantics

As described in Section 5.1, in FTTS representation of a Timed Rebeca model, all
the statements of a message server are executed at once during a < transition. In
contrast, the fine-grained semantics executes one statement at a time and interleaves
the execution of different message servers. We demonstrate despite these differences,
this two semantics are equivalent in some sense. To this end, we define an action-based
weak bisimulation (observational equivalence) relation between FGTS = (S, so, Act, —
JAP L) and FTTS = (S, s9, Act’, —, AP, L) for a given Timed Rebeca model M. Note
that this relation exists for Timed Rebeca models which do not have nondeterministic
assignments.

Prior to the formal definition of the relation between the states of FTTS and
FGTS the following definitions and proposition are required to make the relation easy
to understand.

We begin by defining the observable and 7 actions in both transitions systems.
All actions in FTTSs are observable. In FGTSs, only taking-message transitions are
observable. Therefore, time transitions and internal transitions in FGTSs are assumed
to be 7 transitions. In other words, only taking-message actions are observable in
FGTSs and FTTSs. This definition conforms the definition of events and observer
primitives in the actor model which is introduced by Agha et. al. in [60] as a reference
actor framework.

54 CHAPTER 5. BIG-STEP SEMANTICS OF TIMED REBECA

t=0
i a={{pong, pi, 1,)}

ping pong ping
))

))
pi pi
t=0 t=2
i q = {{ping, pi, 0,)} i a = {{ping, po, 2,)}
o o

Figure 5.1: The beginning part of the FTTS of the ping pong example

At the second step, we define the function sent : S — Pn(Msg) to capture the
already sent message from its given actor in a given state, as presented by sent(s,z) =
{(ac,mg,pr,ar,dl) | Jy € AID-s(y) = (vy, @y, 0y, ty, 7y) A(ac, mg, pr,ar,dl) € g,Nac =

Next, we define the notion of a completing trace for an actor x in FGTS state s as
an execution which results in completing the execution of the message server of = that
has already commenced in state s. Note that during a completing trace for x the other
actors, may complete their message servers (or not), and may start the execution of
new message servers. We begin by first defining an execution trace.

Definition 10 (Execution Trace). An execution trace from the state s in FGTS is a

., . acty acty
sequence of transitions from s to one of its reachable states s', shown by s — s;

actyp,
"8]

Definition 11 (Completing Trace for an Actor). A given execution trace s ach, 51 acte

cee Sy allny o from the state s € S to state s € S in FGTS is a completing trace for
the actor x if and only if the following conditions hold:

e The execution of currently executing message server of x is finished in s, i.e.
’ A ’
8 (‘T> - (U:m qma €, txa 6)'

o There is no other state in the trace where the execution of currently erecuting
message server of x is finished, i.e. Ni € [1,n] - s;(x) = (vi,, Gip, Tips tin, Ti,) —

Oi, # €.

This way, we make sure that x finishes the execution of its currently executing message
server and it does not execute any taking-message transition from s to s'.

Here, we also define CT(s,x) as a function which returns one of the completing
traces of the actor x from the state s (no matter which one in the case there are more
than one completing trace from s for the actor x) and CT as a set of all completing

5.2. AN ACTION-BASED WEAK BISIMULATION BETWEEN THE TWO
SEMANTICS 95

traces from all of the state of S. In the case of s(x) = (vs, gs, €, ts, €), there is CT (s, x) =
€ as no more action 1s needed for completing the execution of a message server of x in

S.]

Note that as there is no preemption in the message server execution and there is
no infinite message server body in Timed Rebeca, there is a completing trace for all
the actors from all of the states.

We define three functions on the completing traces. The first one returns the
valuation function of the state variables of the specific actor at the last state of the
trace (the actor that the completing trace is defined for). The second one returns the
time of the last state of the trace. The third one returns the bag of messages that
are sent by the specific actor during the execution of its currently executing message
server. Note that for a give transition (s, Tgengd, ') €—, we defined the method sent
which returns the message which is sent by 7,.,q in transition from s to s'.

Definition 12 (Three Functions on completing traces). Three function statevars :
CT — (Var — Val), now : CT — N, sent : C'T — Msg is defined as the following. In

the following we assumed that completing trace CT(S x) =5 ey gy 22y L 2ny g

rom the state s for the actor x where s'(x) = (V' €.t €) is given.
J > Qo g

’1:7

o statevars(CT(s,x)) returns the valuation function of state variables of x in the
target state of the completing trace CT(s,x), i.e., statevars(CT(s,z)) = vl.

o now(CT(s,x)) returns the local time of x in the target state of the completing
trace CT (s, x), i.e., now(CT(s,x)) =t,.

o sent(CT(s,x)) returns a bag of messages which are sent by actions of C'T(s,x),
i.e., sent(CT(s,x)) = {(ac,mg,pr,ar,dl)|Vj € [1,n]-act; = Tsena/\sent((s;, act;,
%M)wmwwmﬂﬂ

]

Based on the isolated execution of actors (there is no shared variable and no pre-
emption in the execution of message servers) we can easily conclude that in case of
having more than one completing trace for an actor, any of the completing traces ends
in the same values for the state variables, the same local time, and the same bag of
sent messages.

Proposition 1 (Completing Traces End in the Same Final Condition). Assume that
there are two different completing traces ct, and cty from a given state s € S and
actor x. There are sent(ct;) = sent(cty), now(ct;) = now(cty), and statevars(cty) =
statevars(cts).

Proof. As mentioned in the semantics of Timed Rebeca, execution of a message server
is not interfered with the execution of message servers of the other actors as in Timed
Rebeca there is no shared variable or any kind of preemption of execution of message
servers. In addition, we assumed that there is no nondeterministic expression in mes-
sages servers of actors. Therefore, in all the completing traces from state s, execution
of 7 transitions which are related to the actor x ends in the same values for state
variables and bag of sent messages. On the other hand, as delay statements which
are related to the execution of the message server of x are the same in two different
completing traces, the time at the target states of ct; and ct, are the same. O

56 CHAPTER 5. BIG-STEP SEMANTICS OF TIMED REBECA

Note that this proposition is valid when there is no nondeterminism in the body of
message servers. At the beginning of this section, we made clear that in this work we
address Timed Rebeca models which do not have nondeterministic assignments.

Next, we define a projection function for states of FGTS and FTTS. Projection
functions extract values of state variables and the collection of messages which are sent
by one actor from a given FGTS or FTTS state. Using these projection functions,
we get uniform views from states of FGTS and FTTS which are necessary for the
definition of the action-based weak bisimulation relation. To this end, as the execution
of a message in FGTS is completed in several steps, the projection function in FGTS
is defined based on completing traces to be able to have access to the valuation of
state variables and bags of sent messages after completing the execution of currently
executing messages.

Definition 13 (Projection Function in FGTSs). For a given FGTS state s € S and ac-
tor x the function Proj(s,x) returns a collection of statevars(CT(s,x)), now(CT(s,x)),
and sent(s,x) U sent(CT (s, x)). O

Directly from the above definition, it is concluded that the projection function in
FGTSs returns similar data for two consequent states which their transition is not a
taking-message transition.

Proposition 2 (Only taking-message transitions change the result of the projection

functions). Considering two states s,u € S such that there is s 2 w and act is not a
taking-message action, there is Yo € AID - Proj(s,x) = Proj(u,x).

Proof. Proof by contradiction. Assume that act is not a taking event-action and
there is an actor x € AID - Proj(s,x) # Proj(u,x). Also, assume that s(z) =
(Vg Quy Oz, tey 72). In this case, as transitions of actors do not affect the parts of the
other actors which are related to the projection function, act belongs to x and con-
sequently o, # € and r, # €. Note that act cannot be a progress-of-time as it does
not affect the parts of the other actors which are related to the projection function
results in Proj(s,z) = Proj(u,z). Based on the definition completing traces, one
of the completing traces of x from s contains u, as x can finish the execution of the
statements of ¢, continuing the execution from w. As a result, the valuation of the
state variables, the set of sent messages, and the time of actors at the target state
of the completing trace of s and u are the same, which is in contradiction with the
assumption of Proj(s,x) # Proj(s,u). O

In contrast to FGTSs, the execution of a message in FTTSs is completed in one step;
therefore, the projection function in FTTSs is defined based on the current content of
states.

Definition 14 (Projection Function in FTTSs). For a given FTTS state s € S and
actor © where s(x) = (Vg Gu, €, Lz, €),the projection function Proj'(s,x) returns a col-
lection of v, t,, and sent(s,x).]

Using the above definitions, we define the action-based weak bisimulation relation
among states of FGTS and FTTS. Two states in FGTS and FTTS are in an action-
based weak bisimulation relation if and only if the projections of states according to
all actors are the same. This way, we will prove that two states have the same future
behavior in Theorem 5. Figure 5.2 shows how states in a FGTS are mapped to their

5.2. AN ACTION-BASED WEAK BISIMULATION BETWEEN THE TWO
SEMANTICS 57

ping T:ping __time+1___pong _ 1:pong

ping pong ping

Figure 5.2: How states in FGTS (at the top of the picture) are mapped to their
corresponding states in FTTS (at the bottom of the picture) which have the same
future behaviors, for the ping pong example of Listing 2.3

corresponding states in its FT'TS, for the transition systems of the ping pong example
of Listing 2.3. As the observational behavior of s; and s] are the same (only the
observable action ping is enabled), s; is mapped to s|. The observational behavior of
So, s3, and s4 are the same as the observational behavior of s}, as the observable action
pong will appear after them, and so on.

Definition 15 (Relation among States of FGTS and FTTS). A FGTS state s € S and
an FTTS state s € S are in relation R C S xS if and only if Proj(s,x) = Proj'(s',x)
holds for every actor x. O

Directly from the definition of the relation R it is concluded that the bag of enabled
messages in s and s’ are the same, i.e they contain messages with the same signature
and the same execution time and their corresponding actors can take them to start to
execute (actors are not busy with executing other messages).

Proposition 3 (Relation R preserves enabled messages). A FGTS state s € S and an
FTTS state ' € S which are in the relation R have the same bag of enabled messages.

Proof. Based on the fact that s R ¢ it is concluded that V x € AID - Proj(s,x) =
Proj'(s',x) and V¥ x € AID - sent(s,z) U sent(CT(s,z)) = sent(s',z), results in
Usearp (sent(s,x) Usent(CT(s,x))) = Uzeap (sent(s’,z)). Now, considering the
message bags of the actors, the formula is rewritten to (J,c 4,p (02 U sent(CT (s, x))) =
Usearp (04) where o, is the bag of messages for actor x in the state s and o7, is the bag
of messages for actor x in the state s’. As the messages in | J,. 4, sent(CT (s, x)) will
be send in the future, none of the enabled messages in s are in |, o ,p sent(CT (s, x)).
Therefore, enabled messages in (J, . 4;p (0%) are in (U, . 4;p (02)-

On the other hand, based on the definition of the enabled messages, the completing
trace of their corresponding actors are empty traces. Assume that x is the identifier
of one of the actors which have enabled messages in s. Also, assume that there are
s(x) = (Vg, Qu, Opy b,) and §'(x) = (v, ., €, t.,€). Having CT(s,z) = () results in
now(CT(s,z)) = t, which implies ¢, = t/. Therefore, the taking message time of
enabled messages for actors in s is the same as that of in s’. Considering this fact,
there are the same enabled messages in the bags of actors in s and s’ and their taking
message times are the same. 0

58 CHAPTER 5. BIG-STEP SEMANTICS OF TIMED REBECA

Having the same bag of enabled messages in two given states s and s where s R ¢/,
we are able to prove that s and s’ have the same future behavior. To this end, we have
to prove that R is an action-based weak bisimulation relation.

Definition 16 (Action-based weak bisimulation relation). A relation P over two tran-
sition systems TS, = (S1, $1,, Acty, —, APy, L1) and TSy = (Sa, so,, Acty, =, APs, Ly)
where T'Sy is T-free transition system, is an action-based weak bisimulation relation if
the following conditions hold for states of TS, and TS,.

1. V¥s1,t1 € Sy and sy € Sy where sy P so, in the case of s1 — t; where a € Acty
then 3 ty € Sy such that sy ==1t, and t; P ty and in the case of sy — t; there is

tl P S9.

2. Vsg,ty € Sy and s1 € Sy where s1 P sq, for a message o € Acty such that sy == t,
then 3 s',s" ...,s% t, €S (for k>0) such that s; = s’ = 5" 5 - 5 ¢ and
t1 P ts. O]

Theorem 5. The relation R is an action-based weak bistmulation relation between
states of FGTSs and FTTSs.

Proof. To prove that the first condition of action-based weak bisimulation relation, we
assume that there are two FGTS state s,u € S and two FTTS state s',u' € S such
that s R s’. Also, we assume that there is a transition between s and u in the form of

s 2% 4. Based on the type of act the following two cases are possible.

The action act is a taking-message action: Based on the definition of the rela-
tion R, in this case, projection function for all of the actors in s and u return the
same value except for the sender and receiver of the message which corresponds
to act. Assume that this message is (ac,mg, pr,ar,dl) and it is in the bag of
actor x. For the sender actor ac the difference is in the bag of sent messages,
results in sent(u, ac) = sent(u, ac)/{(ac,mg, pr,ar,dl)}.

For the receiver actor, there is a completing trace CT'(u, z) such that Proj(u,x)
returns the valuation of state variables of = from the target state of CT(u,x)
and messages which are sent by x in v in union with messages which are sent
during CT(u, x).

As act is an enabled message in &, there is s o g, So, the projection function
returns valuation of state variables and the sent messages of x after the execution
of all of the statements of the message server mg in v/ which is the same as what
projection function returns in u. Therefore, there is © R u’ as the results of the
projection functions in v and u' are the same for all of the actors.

The action act is not a taking-message action: For this case, based on the Propo-
sition 2, u and s are in relation R. This way, doing a progress of time transition
or internal transition from s results in stuttering in s” as one of the properties of
action-based weak bisimulation relations.

To prove the second condition, as all the transitions in FTTS are taking-message
transitions, act must be a taking-message transition. To this end, the argument which
is presented above for the case of action act is a taking-message action can be used.

Finally, we have to show that the initial states of the transitions systems are in the
relation R. As the program counter of all of the actors in sq is set to €, the completing

5.3. COMPARING TO THE OTHER REDUCTION TECHNIQUE 59

traces started from s, are e. Therefore, the valuation of the state variables, sent
messages, and time of the actors is computed based on the values in sy which is the same
as their corresponding values in sp, results in Vo € AID-Proj(sg,x) = Proj'(sy,z). O

We discussed in Section 5.1 that in actor systems we are interested in relations
among actions of systems and the time where they are triggered (messages are taken
from bags). So, we have to find the most expressive action-based logic which is pre-
served in action-based weak bisimulation relation. As mentioned in [61], weak bisimu-
lation relation preserves properties in form of modal p-calculus with weak modalities.
Weak-bisimulation relation does not preserve complete modal p-calculus. Weak modal
p-calculus has the same syntax as modal p-calculus, where we assume that the dia-
mond ({a)p) and box ([a]¢) modalities are restricted to observable transitions, i.e.,
action a must be a taking-message transition. The semantics of this logic is identical
to that of p-calculus, except for the semantics of the diamond and box operators — a
state s satisfies (a)¢ if there is an execution starting from state s to ¢, such that a is
the only visible action, and ¢ satisfies (inductively) ¢. The semantics of box is defined
dually.

Corollary 5. Transition systems of Timed Rebeca models in FGTS and FTTS are
equivalent with respect to all formulas that can be expressed in modal p-calculus with
weak modalities where the actions are taking messages from bags.]

5.3 Comparing to the Other Reduction Technique

Here, we give an overview of the reduction techniques which are proposed for the
realtime systems and illustrate differences between FTTS and those techniques.

Partial Order Reduction. The reduction from FGTS to FTTS has aspects that
are similar to partial order reduction (POR). In fact, the relationship between POR
and FTTS is subtle. FTTS is unaware of any independence relation, persistence/ample
sets for timed actor systems that will result in POR techniques producing F'TTS as the
reduced transition system. Moreover, not only is the formal relationship between FTTS
and POR nontrivial, POR techniques for timed systems were empirically compared
against the FTTS semantics and found that the FTTS results in smaller transition
systems.

Timed Automata. Modeling of realtime distributed systems with asynchronous
message passing between components using synchronous communication of automata
increases the number of states dramatically (because of many synchronizations among
automata for model asynchronous behavior).

We can apply some techniques, like using committed states, to reduce the number
of states of the resulting region transition system; although, we still need points of
synchronization. During the parallel composition of the network of timed automata,
related to each component, different automata need to synchronize on the following
four actions.

1. A message is sent,
2. A message is taken from the message bag to start to execute,

3. A transition modeling passage of time,

4. Tt is the time for a sent message to be delivered to its receiver.

60 CHAPTER 5. BIG-STEP SEMANTICS OF TIMED REBECA

Therefore, messages of each component cannot be processed in one step. The exe-
cution of each message must be divided into some parts when one of the following
synchronizations are required.

To reduce the number of states some reduction techniques are proposed for verifi-
cation of timed automata models. In [32] authors proved that instead of a global clock
synchronization among all timed automata in a network of timed automata, the syn-
chronization of clocks is only required in communication between two timed automata.
Therefore, they allowed clocks to increase independently and they only synchronize the
clocks when two timed automata want to communicate. This way, the third item of
the synchronization actions (see above) is omitted and other three synchronization
points are considered in the parallel composition of timed automata. This work is
continued in [33]| by applying the proposed reduction technique in model checking of
timed extension of LTL. In FTTS, instead of four synchronization points which are
required for generating region transition system (or three synchronization points in
case of using reductions of [32] and [33]), one synchronization point is required. This
synchronization point is on the release time of messages. Therefore, using FTTS re-
quires less number of synchronizations, which results in executing each message in one
step.

5.4 Experimental Results

We extended Afra to support model checking of Timed Rebeca models based on the se-
mantics of FTTS?. The current version of the model checking toolset supports schedu-
lability and deadlock-freedom analysis and assertion-based verification of Timed Re-
beca models using FTTS. We provide four case studies of different sizes to illustrate
the reduction in state space size, number of transitions, and time consumption of the
model checking using F'T'TS in comparison with FGTS. The selected case studies are
the models of a Wireless Sensor and Actuator Networks (WSAN), the simplified ver-
sion of Scheduler of Hadoop, a Ticket Service system, and simplified version of 802.11
Wireless Protocol.

5.4.1 Hadoop YARN Scheduler

Hadoop [50] is a framework for MapReduce, a programming model for generating and
processing large data sets, selected as the second example. The overview and detailed
description of this example are presented in Section 2.3.5. Here, we used two versions
of Hadoop model which differ in the behavior of task queues. The first model has a
normal task queue and the second one has a priority task queue.

As shown in Tables 5.2 and 5.1, the gained reduction in this example is less than
40 percent. This limited gain is because of the fact that there is few number of delay
statements in the Hadoop model, so, there is a poor chance of having split transitions

in its FGTS.

2The latest version of the toolset is accessible from http://rebeca-lang.org/alltools/Afra

http://rebeca-lang.org/alltools/Afra

5.4. EXPERIMENTAL RESULTS 61

Config FTTS FGTS Reduction

States | Trans. | Time | States | Trans. Time | States | Trans.
1 AM 375 707 1< sec 581 913 <1lsec| 35% 24%
2 AMs | 1.40K | 2.90K 1 sec 2.10K | 3.83K 1 sec 33% 24%
3 AMs | 5.10K | 133K | 2secs | 7.02K | 16.7K | 2 secs 28% 20%
4 AMs | 28.19K | 92.87K | 70 secs | 37.82K | 116.7K | 78 secs | 25% 20%

Table 5.1: Comparing the number of states and transitions in FGTS and FTTS of
YARN example with priority queue

Config FTTS FGTS Reduction
States | Trans. Time States | Trans. Time States | Trans.
1 AM 44 62 1< sec 69 87 1< sec | 36% 29%

2 AMs | 351 614 1< sec 557 848 1<sec | 37% 28%
3AMs | 191K | 4.23K 1 sec 2.73K 5.29K 1 sec 30% 20%
4 AMs | 15.41K | 42.06K | 18 secs | 20.61K | 50.73K | 18 secs 25% 17%
5AMs | 113.6K | 378.1K | 25 mins | 27.4K | 453.3K | 27 mins | 23% 17%

Table 5.2: Comparing the number of states and transitions in FGTS and FTTS of
YARN example with normal queue

Config FTTS FGTS Reduction

States | Trans. | Time | States | Trans. | Time | States | Trans.
33-6-4-2 977 1.5K 1< sec | 1.92K | 2.52K | 1< sec | 49% 41%
25-5-4-10 | 1.85K | 2.54K | 1< sec | 3.72K | 4.55K | 1< sec | 50% 44%
30-6-4-2 475K | 5.78K | 1< sec | 9.35K | 10.46K | 2 secs | 50% 45%
25-6-4-2 17.02K 20K 5 secs 34.5K | 37.85K | 24 secs | 51% 47%
20-6-4-2 28.19K | 32.19K | 16 secs | 57.62K | 62.21K | 64 secs | 51% 48%

Table 5.3: Comparing the number of states and transitions in FGTS and FTTS of
WSAN example

5.4.2 WSAN Applications

As the second example, we present a realtime data acquisition system for structural
health monitoring and control (SHMC) of civil infrastructures. The overview and
detailed description of this example are presented in Section 2.3.6.

In the case of the WSAN model, in each row, the size (the numbers which are
separated by dashes) is a combination of the sampling rate, the number of nodes, the
packet size, and the sensor task delay of the model, respectively. As the complexity
of these examples is greater than the Yarn model, the reduction is about 50%. It is
because of the fact that the majority of message servers in the WSAN model shows
timed behavior, results in increasing the chance of having split transitions in its FGTS.

62 CHAPTER 5. BIG-STEP SEMANTICS OF TIMED REBECA

Config FTTS FGTS Reduction
States | Trans. | Time | States | Trans. | Time | States | Trans.

1 Customer 5 6 1< sec 8 9 1< secs | 38% 33%

2 Customers 51 77 1< sec 7 107 1< sec 34% 28%

3 Customers 252 418 1< sec 360 550 1< sec 30% 24%
4 Customers | 1.29K | 2.21K | 1< sec | 1.82K | 2.89K | 1< sec 30% 24%
5 Customers | 7.53K | 12.8K | 1< sec | 10.7K | 16.9K | 1< sec 30% 24%
6 Customers | 51.6K | 84.7K | 2secs | 73.56K | 114K 2 secs 30% 26%
7 Customers | 408K | 650K | 18 secs | 582K | 884K | 24 secs | 30% 26%

Table 5.4: Comparing the number of states and transitions in FGTS and FTTS of
Ticket Service example

Config FTTS FGTS Reduction
States | Trans. Time States | Trans. Time States | Trans.

2 Interfaces | 1.12K | 2.09K 2 secs 1.92K | 2.62K 2 secs 10% 4%
3 Interfaces | 59K 196K | 122 secs | 61K 198K | 153 secs 3% 1%

Table 5.5: Comparing the number of states and transitions in FGTS and FTTS of CA
protocol

5.4.3 Ticket Service

Our third example is the model of a Ticket Service system. The overview and detailed
description of this example are presented in Section 2.3.1.

The trend of changes in the case of Ticket Service example is the same as that of in
the WSAN model. Increasing the number of customers results in increasing requests
for issuing a ticket. Issuing a ticket is served by a message server which contains a
delay statement. So, the execution of this message server is split into two parts. As a
result, having more customers results in having to split message server executions and
increasing the efficiency of using FTTS in comparison to FGTS.

5.4.4 The IEEE 802.11 RTS/CTS Collision Avoidance
Protocol

The fourth example is the model of a Collision Avoidance protocol. The overview
and detailed description of this example are presented in Section 2.3.3. There are

some exceptional models in which the state space size and the number of transitions
in FGTS and FTTS are close to each other. The model of the Collision Avoidance
protocol is one of them. As there is no delay statement in the body of the message
servers of Collision Avoidance protocol, the execution of the message servers takes
place without the progress of time. Therefore, atomic execution of message servers
in FTTS and the rather fine-grain execution of message servers in FGTS results in
state spaces with comparable sizes. The effectiveness of FTTS is reduced in this kind
of models. Table 5.5 also shows that using FTTS reduces the model checking time
consumption (even in the case of the Collision Avoidance protocol). It is because of

5.4. EXPERIMENTAL RESULTS 63

the simplicity of the generated state space in FTTS, using the atomic execution of
message servers.

Chapter 6

Case Studies

In this section, we introduce three different case studies, analyzed using the technique
and the toolset of this thesis, which are “Analyzing Wireless Sensor and Actuator
Networks”, “Analyzing Different Scheduling Policies in YARN”, and “Functional and
Performance Analysis of NoCs”. The first case study is developed by the author of this
thesis as a part of the contributions of the thesis. The second and third case studies
are developed in two independent master theses by Helgi Leifsson in [62] and Zeynab
Sharifi in [63], respectively; so, they cannot be counted as the contributions of this
thesis.

6.1 Analyzing Wireless Sensor and Actuator
Networks'

Wireless sensor and actuator networks (WSANSs) can provide low-cost continuous mon-
itoring. Building WSAN applications is particularly challenging because of the com-
plexity of concurrent and distributed programming, networking, realtime requirements,
and power constraints. As a result, it can be hard to find a configuration that satisfies
these constraints while optimizing the resource usage. A common approach to address
this problem is to perform an informal analysis based on conservative worst-case as-
sumptions and empirical measurements. This can lead to poor utilization of resources.
For example, a workload consisting of two periodic tasks would be guaranteed to be
safe only if the sum of the two worst-case execution times (WCET) were less than the
period of both of the two tasks. Whereas, it is possible in practice to have many safe
schedules violating this restriction.

Another approach for this problem is a trial and error. For example, in [53], an
empirical test-and-measure approach based on binary search is used to find config-
uration parameters: worst-case task runtimes, timeslot length of the communication
protocols, etc. Trial and error is a laborious process, which nevertheless fails to provide
any safety guarantees for the resulting configuration.

A third possibility is to extend scheduling techniques that have been developed
for realtime systems [65] so that they can be used in WSAN environments. Unfortu-
nately, this turns out to be difficult in practice. Many WSAN platforms rely on highly
efficient event-driven operating systems such as TinyOS [66]. Unlike a realtime operat-
ing system (RTOS), event-driven operating systems generally do not provide realtime

!This chapter is an improvement and extension of the results published in [55] and [64].

6.1. ANALYZING WIRELESS SENSOR AND ACTUATOR NETWORKS 65

(@
t

Figure 6.1: An example of an event graph

scheduling guarantees, priority-based scheduling, or resource reservation functionality.
Without such support, many schedulability analysis techniques cannot be effectively
employed. For example, in the absence of task preemption and priority-based schedul-
ing, unnecessarily conservative assumptions must be used to guarantee correctness in
the general case.

We propose an actor-based modeling approach that allows WSAN application pro-
grammers to assess the performance and functional behavior of their developed codes
throughout the design and implementation phases. The developed models are ana-
lyzed using model checking to determine the parameter values resulting in the highest
resource utilization. A WSAN application is a distributed system with multiple sen-
sor nodes, each comprised of the independent concurrent entities: CPU, sensor, radio
system, and bridged together via a wireless communication medium which uses a trans-
mission control protocol. Interactions between entities, both within a node and across
nodes, are concurrent and asynchronous. Moreover, WSAN applications are sensitive
to timing, with soft deadlines at each step of the process that is required to ensure
correct and efficient operation.

Due to the performance requirements and latencies of operations on sensor nodes,
coordination among sensing, data processing, and communication activities is required.
In particular, once a sample is acquired from a sensor, its corresponding radio trans-
mission activities must be performed. At the same time, data processing tasks must
be executed (for example, because of the environmental changes in the temperature,
a kind of data compensation must be applied on sensor data to adjust the acquired
values). Moreover, the timing of radio transmissions from different nodes must be
coordinated using a communication protocol.

6.1.1 Preliminaries: Event Graphs

At the first step of modeling WSAN applications, we need to introduce event graphs
in which a highly abstracted view of scheduling events can be depicted. Event graphs
have a single type of node and two types of edges, i.e. jagged and ordinary edges. The
nodes represent events in a system. Edges correspond to the scheduling of other events
[67]. In this graph, the initial event is shown by jagged edges. Edges can optionally be
associated with an enabling guard, i.e. a boolean condition, for scheduling an event
and/or a time delay which means that an event will be scheduled after the delay.
Figure 6.1 shows an example of an event graph where the event B is scheduled by the
event A if its associated guard (i) is evaluated to true, at ¢ units of time later than
the current time.

Event graphs are widely used in the engineering community for the simulation and
analysis of complex systems. More specifically, they are used to graphically represent
discrete-event simulation models.

66 CHAPTER 6. CASE STUDIES

process \-
data

Figure 6.2: The event graph of a WSAN sensor behavior

deliver to
sender
device

(there| is
enough | data)

=
© § deliver to
0 o sender
;‘é °g° device
~ & Radio
Sensor Actor CPU Communication
Actor Device Actor

Figure 6.3: How events of a WSAN sensor are associated with actors

6.1.2 The Actor Model of WSAN Applications

The characteristics of Timed Rebeca make it useful for modeling WSAN applications:
many concurrent processes and interdependent realtime deadlines. Observe that com-
mon tasks such as sample acquisition, sample processing, and radio transmission are
periodic and have well-known or easily measurable periods. This makes the analysis
of worst-case execution times feasible. However, because of the event-triggered nature
of applications, initial offsets between the tasks are variable.

At the first step of proposing an actor model for the WSAN applications, we need
to have a look into the interaction of the components and the events which are trig-
gered and served by them. Based on the specification of WSAN applications, there
are many nodes which have the role of data acquisition and data transmission. For
data acquisition, a node has a set of sensors which periodically acquire data from the
environment and send the data to the processing unit of the node. The processing
unit is responsible for validating the data and storing it in an internal buffer. Upon
receiving enough data, the processor unit sends the data to the radio communication
unit. The radio communication unit tries to send data via a wireless medium, consid-
ering a predefined communication protocol. The event graph of this model is depicted
in Figure 6.2. The majority of WSAN applications can be modeled using this graph;
although, minor modifications may be needed.

We split up the event handlers of the events of Figure 6.2 into three different actors,
depicted in Figure 6.3 and add one additional actor for carrying out miscellaneous tasks
unrelated to sensing or communication. This additional actor is necessary for making
the model close to its real configuration. The three actors are called Sensor (for
the data acquisition), CPU (processing unit), and RCD (a radio communication device)
together with the additional actor is called Misc. Sensor collects data and send it to
CPU for further data processing. Meanwhile, CPU may respond to messages from Misc
by carrying out other computations. The processed data is sent to RCD to forward it
to a data collector node actor.

Composing the collection of sensor nodes to develop a complete WSAN application
requires that the wireless communication medium is specified and a communication

6.1. ANALYZING WIRELESS SENSOR AND ACTUATOR NETWORKS 67

medium
status

broadcast
data
receive
data

Figure 6.4: How events of wireless communication mechanism are associated with
actors

Radio Ether Actor
Communication

Device Actor

Radio Comm.
Device (RCD)

A—A

A Monitored An Imote2 device
Structure running TinyOS

The Actor Model

Figure 6.5: Modeling the behavior of a WSAN application in its real-world installation
in the actor model

protocol is implemented in radio communication devices. Note that the process of
sending a packet is controlled by a wireless network communication protocol. We model
the communication medium as an actor (Ether) and the receiver node also by the actor
RCD. Using the actor Ether facilitates modularity: specifically, implementation of the
Media Access Control (MAC) level details of communication protocols is localized.
As a result, different implementations of communication protocols can be replaced
without significantly impacting the remainder of the model. As shown in Figure 6.4,
Ether serves events for receiving the status of the medium and broadcasting data. For
the development of different communication protocols, different combinations of these
two events can be triggered to model the behavior of the protocols.

During the application design phase, different components, services, and protocols
may be considered. For example, TDMA [68] as a MAC-level communication protocol
may be replaced by B-MAC [69] with minimal changes. In a nutshell, using the
mentioned association of events with actors, a given WSAN application is modeled by
actors as shown in Figure 6.5.

6.1.3 Schedulability Analysis of a Stand-Alone Node

We now illustrate our approach using a node-level Timed Rebeca model of a WSAN
application to check for possible deadline violations. Specifically, by changing the tim-
ing parameters of our model, we find the maximum safe sampling rate in the presence

68 CHAPTER 6. CASE STUDIES

of other (miscellaneous) tasks in the node. Then, we show how the specification of
a node-level model can be naturally extended to a network-wide specification. Note
that the values which are used in this model (e.g. radio transmission time, sensor
task delay, etc) are come from the real implementation of a WSAN application in the
domain of structural health monitoring.

Following the mapping of Figure 6.5, the Timed Rebeca model for the four different
reactive classes is presented in Listing 6.1 through Listing 6.3. As shown in Listing 6.1,
the maximum capacity of the message bag of Sensor is set to 10, the only actor which
Sensor knows about is of type CPU (line 4), and Sensor does not have any state
variables. The behavior of Sensor is to acquire data and send it to CPU periodically.
This behavior is implemented using sensorLoop (lines 10-14) which sends the acquired
data to CPU (line 12). The sent data must be served before the start time of the next
period, specified by the value of period as the parameter of deadline.

Recall that there is a nondeterministic initial offset after which the data acquisition
becomes a periodic task. To represent this property, Sensor which sends a sendLoop
message to itself; the message is nondeterministically delivered after one of 10, 20, and
30 (line 8). After this random offset, the sensor’s periodic behavior is initiated. Note
that in line 1, the sampling rate is defined as a constant. A similar approach is used
in the implementation of the Misc reactive class.

Listing 6.1: The Timed Rebeca implementation of Sensor reactive class

1| env int samplingRate = 25; // Hz

2

3| reactiveclass Sensor(10) {

4| knownrebecs { CPU cpu; }

5

6| Sensor() { self.sensorFirst(); }

7| msgsrv sensorFirst() {

8 self.sensorLoop() after(?(10, 20, 30)); // ms
9| }
10| msgsrv sensorLoop() {
11 int period = 1000 / samplingRate;
12 cpu.sensorEvent () deadline(period);
13 self.sensorLoop() after(period);
14| ¥
15|}

The behavior of CPU as the target of Sensor and Misc events is more complicated
(Listing 6.2). Upon receiving a miscEvent, CPU waits for miscTaskDelay units of
time; this represents computation cycles consumed by miscellaneous tasks. Similarly,
after receiving the sensorEvent message from Sensor, CPU waits for sensorTaskDelay
units of time; this represents cycles required for the intra-node data processing. Data
must be packed in a packet of a pre-specified bufferSize (line 16) and when the
threshold is reached (line 17), CPU asks senderDevice, to send the collected data in
one packet (line 18).

Listing 6.2: The Timed Rebeca implementation of CPU reactive class

env int sensorTaskDelay = 2; // ms
env int miscTaskDelay = 10; // ms
env int bufferSize = 3; // samples

reactiveclass CPU(10) {
knownrebecs {RCD senderDevice, receiverDevice;}
statevars { int collectedSamplesCounter; }

© 00 3O Utk W N

CPU() { collectedSamplesCounter = 0; }

6.1. ANALYZING WIRELESS SENSOR AND ACTUATOR NETWORKS 69

10

11| msgsrv miscEvent() {

12 delay (miscTaskDelay) ;

13| }

14| msgsrv sensorEvent() {

15 delay(sensorTaskDelay) ;

16 collectedSamplesCounter += 1;

17 if (collectedSamplesCounter == bufferSize) {
18 senderDevice.send(receiverDevice, 1);
19 collectedSamplesCounter = 0;

20 }

211

22|}

As this is a node-level model, communication between nodes is omitted and the
behavior of RCD is limited to waiting for some amount of time (line 6 of Listing 6.3);
this represents the sending time of a packet.

Listing 6.3: The node-level implementation of RCD

env int OnePacketTT = 7; // ms(transmission time)

reactiveclass RCD (2) {
RCDO { }
msgsrv send(RCD receiver, byte numOfPackets) {
delay(OnePacketTT * numOfPackets);
}
}

0~ O U W N

Note that computation times (delay’s) depend on the low-level aspects of the
system and are application-independent; they can be measured prior to starting the
design of applications. For schedulability analysis, we set the deadline for messages
in a way that any scheduling violations are caught by the model checker.

6.1.4 Schedulability Analysis of Multi-Node Model with a
Distributed Communication Protocol

Composing the models of stand-alone nodes to have a multi-node model requires that
the wireless communication medium Ether be specified and a communication protocol
is implemented for radio communication devices. Recall that nodes in the multi-node
model periodically send their data to an aggregator node (Listing 6.5). The sending
process is controlled by a wireless network communication protocol. The reactive class
Ether (Listing 6.4) has three message servers: which are responsible for sending the
status of the medium, broadcasting data, and resetting the condition of the medium
after a successful transmission.

Broadcasting data takes place by sending data to an RCD which results in setting
the values of senderDevice and receiverDevice to their corresponding actors. So,
the status of Ether can be easily examined by the value of receiverDevice (i.e.,
using null as the value of receiverDevice is interpreted as the medium is free, line
13). This way, upon sending data successfully, the value of receiverDevice and
senderDevice must be set to null to show that the transmission is completed (lines
30 and 31).

Data broadcasting is the main behavior of Ether (lines 16 to 28). Before the
start of broadcasting, Ether status is checked (line 17) and data-collision error is
raised in the case of two simultaneous broadcasts (line 26). With a successful data
broadcast, Ether sends an acknowledgment to itself (line 20) and the sender (line 22),

70 CHAPTER 6. CASE STUDIES

and informs the receiver of the number of packets sent to it (line 24). In addition to
the functional requirements of Ether, there may be non-functional requirements. For
example, the Imote2 radio offers a theoretical maximum transfer speed of 250 kbps.
When considering only the useful data payload (goodput), this is reduced to about
125 kbps.

Listing 6.4: The Timed Rebeca implementation of Ether reactive class

1| env int OnePacketTT = 7; // ms(transmission time)
2

3| reactiveclass Ether(5) {

4| statevars {

5 RCD senderDevice, receiverDevice;

6] }

7

8| Ether() {

9 senderDevice = null;

10 receiverDevice = null;

11 >

12| msgsrv getStatus() {

13 ((RCD) sender) .receiveStatus(

14 receiverDevice != null);

15 }

16| msgsrv broadcast(RCD receiver, int packets) {
17 if (senderDevice == null) {

18 senderDevice = (RCD)sender;

19 receiverDevice = receiver;

20 self .broadcastingIsCompleted()

21 after(packets * OnePacketTT);

22 ((RCD) sender) .receiveResult (true)
23 after(packets * OnePacketTT);

24 receiver.receiveData(receiver, packets);
25 } else {

26 ((RCD) sender) .receiveResult (false);
27 }

28|

29| msgsrv broadcastingIsCompleted() {
30 senderDevice = null;
31 receiverDevice = null;
32|
33|}

We now extend RCD to support communication protocols. Listing 6.5 shows the
Timed Rebeca implementation model of TDMA protocol. TDMA protocol defines
a cycle, over which each node in the network has one or more chances to transmit a
packet or a series of packets. If a node has data available to transmit during its allotted
time slot, it may be sent immediately. Otherwise, packet sending is delayed until its
next transmission slot. This way, the packet transmission of one sensor node does not
interfere with the other sensor nodes. Having more sensor nodes only results in having
shorter time slots, so the presence of sensor nodes can be abstracted and modeled as
making time slots shorter. Using this abstraction, compositional verification of WSAN
applications against schedulability and deadlock-freedom properties become feasible as
only one node which is in communication with the central node has to be considered
for networks in any size.

The periodic behavior of TDMA slot is handled by hand1eTDMAS1lot message server
which sets and unsets inActivePeriod to show that whether the node is in its allotted
time slot. Upon entering into its slot, a device checks for pending data to send (line
32) and schedules hand1eTDMASlot message to leave the slot (line 31). On the other
hand, when CPU sends a packet (message) to an RCD, the message is added to the other
pending packets which are waiting for the next allotted time slot. tdmaSlotSize is the

6.1. ANALYZING WIRELESS SENSOR AND ACTUATOR NETWORKS 71

predefined size of the TDMA slots, and currentMessageWaitingTime is the waiting
time of this message in the bag of its receiver.

Listing 6.5: The Timed Rebeca implementation of TDMA protocol in RCD

1| env int OnePacketTT = 7; ms (transmission time)

2

3| reactiveclass RCD (10) {

4 knownrebecs { WirelessMedium medium; }

5| statevars {

6 byte id;

7 int slotSize, sendingData;

8 boolean busyWithSending, inActivePeriod;

9 RCD receiverDevice;

10

11

12| RCD(byte myId) {

13 id = myId;

14 inActivePeriod = false;

15 sendingData = 0;

16 busyWithSending = false;

17 receiverDevice = null;

18 ce

19 }
20| msgsrv send(RCD receiver, int data, int packetsNumber) {
21 assertion(receiverDevice == null);
22 receiverDevice = receiver;
23 sendingData = data;

24 self.checkPendingData() ;

25| '}

26| msgsrv handleTDMASlot () {

27 inActivePeriod = !inActivePeriod;

28 if (inActivePeriod) {

29 int remainedTime = tmdaSlotSize - currentMessageWaitingTime;
30 assertion(remainedTime > 0);
31 self.handleTDMASlot () after(remainedTime);
32 self.checkPendingData() ;
33 } else {
34 self.handleTDMASlot () after((tmdaSlotSize * (numberOfNodes - 1))- currentMessageWaitingTime) ;
35 }
36|
37| msgsrv checkPendingData() { ... }
38| msgsrv receiveStatus(boolean result) { ... }
39| msgsrv receiveResult(boolean result) { ... }
40| msgsrv receiveData(RCD receiver, int data, int receivingPacketsNumber) {
41 if (receiver == self) {
42 delay(receivingPacketsNumber * OnePacketTransmissionTime) ;
43 }
44| X
45|}

For the sake of simplicity, some details of RCD are omitted in Listing 6.5. The
complete source code (which implements the B-MAC protocol) is available on the
Rebeca web page.

B-MAC protocol is designed for low power Ad-Hoc networks in which some sender
nodes send data to a receiver. Like the other low power protocols, B-MAC uses
periodical sleep/wake-up cycles. During wake-up times, the node listens for incoming
data transmissions. If there is no data to receive, the listen state is interrupted and the
node moves to sleep state by turning off the radio device. Otherwise, the node stays in
the listen state for complete data transmission. The sleep periods of nodes may differ,
making B-MAC an asynchronous communication protocol. When a node wants to
send, it turns on the radio and starts sending an announcement. This announcement
is long enough to make sure that it has overlap with the wake-up time of the data
receiver. Afterwards, the sender transmits data to the target address. In order to

72 CHAPTER 6. CASE STUDIES

reduce the amount of needed energy, clear channel assessment is used with the aim of
better separation between signals and noise on the channel. B-MAC has an application
interface for flexible configuring parameters. A good value for this sometimes depends
on the use case, so, this can be adjusted by a higher layer application.

We now extend RCD to implement B-MAC protocols, depicted in Listing 6.6. In
contrast to TDMA, B-MAC RCD tries to detect free channel status and sends data
upon receiving a request from CPU (line 20). In the case of detecting free channel,
the data is sent immediately (line 24). This way, collisions may occur; so, RCD has
to wait for some amount of time and resend data (line 23). B-MAC protocol does
not need complicated and expensive synchronization methods. It also avoids data
fragmentation. So, it would be more complicated to coordinate long messages and
B-MAC expects short messages, which is common for the size of packets of WSAN
nodes.

Based on this fact, the presence of sensor nodes can be abstracted and modeled as
the possible number of collisions before a data communication is performed successfully.
Using this abstraction, efficient verification of WSAN applications becomes feasible as
only one sensor node which is in communication with the central node has to be
considered for networks in any size. Any data transmission of this sensor node maybe
encounter a collision. The maximum number of the collisions is the number of sensor
nodes in the model. So, in the Rebeca code for RCD, for each data transmission,
we have a non-deterministic choice between a successful transmission or a collision.
During model checking, in the case of collision, data transmission with zero, one, ...,
up to n collisions are considered where n is the number of sensor nodes. The Timed
Rebeca model of this protocol is available on the Rebeca home page?.

Listing 6.6: The Timed Rebeca implementation of B-MAC protocol in RCD

env int OnePacketTT = 7; ms (transmission time)

1

2

3| reactiveclass RCD (10) {

4| knownrebecs { WirelessMedium medium; }
5| statevars {

6 byte id;

7 int sendingData;

8 RCD receiverDevice;

9| }

10

11| RCD(byte myId) {

12 id = myId;

13 sendingData = 0;

14 receiverDevice = null;

15| }

16| msgsrv send(RCD receiver, int data, int packetsNumber) {
17 assertion(receiverDevice == null);

18 receiverDevice = receiver;

19 sendingData = data;

20 medium.getStatus();

21

22| msgsrv receiveStatus(boolean result) {

23 delay((numberOfNodes/2) * (OnePacketTT + 1));

24 medium.broadcast (receiverDevice,sendingData, packetsNumber);
25 delay(OnePacketTT * packetsNumber) ;

26| %

27| msgsrv receiveResult(boolean result) { ... }

28| msgsrv receiveData(RCD receiver, int data, int receivingPacketsNumber) { ... }
29|}

2The latest version of this model is accessible as one of examples which are developed in TARO
project from http://rebeca-lang.org/allprojects/TARO

http://rebeca-lang.org/allprojects/TARO

6.1. ANALYZING WIRELESS SENSOR AND ACTUATOR NETWORKS 73

Once a complete model of the distributed application has been created, Afra verifies
whether the schedulability properties hold in all reachable states of the system. If there
are any deadline violations, a counterexample will be produced, indicating the path—
sequence of states from an initial configuration—that results in the violation. This
information can be helpful with changing the system parameters, such as increasing
the TDMA time slot length or reducing the sampling rate, to prevent such situations.

6.1.5 Generalization of the Approach for Any WSAN
Application

Here, we summarize the modeling approach and describe the way of extending it to
make the approach applicable for the other WSAN applications. It is noteworthy that
the actor-based approach is aligned with the structure of WSAN applications with
different types of behaviors. Loosely coupled actors as the units of concurrency, with
asynchronous message passing, and event-driven computation, are natural candidates
for modeling such systems. The semantic gap between the model and the real-world
system that has to be modeled is small, this so-called fidelity of the model to the
system makes modeling easier and also makes the model easy to understand. Also, the
possibility of building an understandable model with the least needed effort illustrates
the usability of the model.

There is a natural rule for mapping a WSAN application to the actor model.
Each entity in a WSAN application that is running concurrently, and is serving or
creating events, has to be mapped into an actor. Therefore, two events which are
served concurrently will be served by two different actors. In contrast, if there are two
triggered events which are sent to the same entity and are served sequentially, then
this entity is mapped to an actor which serves both events.

The simplest scenario is when there is no concurrent activity within each node in
a WSAN application. In this scenario, the network communication among nodes are
directly mapped to asynchronous communication among actors, and intra-node activ-
ities of each node are mapped into the event handlers of the corresponding actor. In
a more general case, we recognize five different actors in a WSAN application, Sensor,
CPU, Misc, RCD, and Ether. Here, the events created by sensors and miscellaneous
activities have to be served by CPU and then sent to other nodes in the network.

One may want to make the model even more general as there may be more than one
sensor in each node (e.g. one for humidity and one for temperature measurements).
In this case, two different actors are needed to model the concurrent (data acquisition
and) event creation of sensors. Also, in the case of using multi-core CPUs inside a
node, more than one CPU actor has to be associated with a node and the incoming
tasks from sensors and miscellaneous activities have to be dispatched among them.
Note that handling a multi-core CPU in a node requires developing a task scheduler
which must be run on one of the cores and dispatches the incoming tasks to appropriate
CPUs. A modeler may perform these activities using event graphs or associating events
with actors directly.

In addition to the mapping of entities to actors, we also need to model different
communication protocols among nodes. The current implementation of Ether, ex-
plained in Section 6.1.4, serves two events which facilitates modeling of any wireless
node-to-node communication protocol. Basically, no modification is needed in this
code for supporting other node-to-node communications protocols. However, one may

74 CHAPTER 6. CASE STUDIES

want to develop a WSAN application in which a node broadcasts data to some other
nodes. In this case, Ether must be extended to support multi-node data broadcasting,
multicasting, or anycasting.

6.1.6 Experimental Results

To illustrate the applicability of this approach, we present a case study involving real-
time continuous data acquisition for structural health monitoring and control (SHMC)
of civil infrastructure [53]. SHMC is fed with algorithms that control centralized or
distributed control elements such as active and semi-active dampers. The control algo-
rithms attempt to minimize vibration and maintain stability in response to excitations
from rare events such as earthquakes, or more mundane sources such as wind and
traffic. The system we examine has been implemented on the Imote2 wireless sensor
platform [53|, which features a powerful embedded processor, sufficient memory size,
and a high-fidelity sensor suite required to collect data of sufficient quality for SHMC
purposes. These nodes run the TinyOS operating system, supported by middleware
services of the Illinois SHM Services Toolsuite [70]. They used in several long-term
developments of several highway and railroad bridges [71].

SHMC application development has proven to be particularly challenging: it has
the complexity of a large-scale distributed system with realtime requirements while
having the resource limitations of low-power embedded WSAN platforms. Ensuring
safe execution requires modeling the interactions between CPU, sensor, and radio
within each node, as well as interactions among the nodes. Moreover, the applica-
tion tasks are not isolated from other aspects of the system: they execute alongside
tasks belonging to other applications, middleware services, and operating system com-
ponents. In the application we consider, all periodic tasks (sample acquisition, data
processing, and radio packet transmission) are required to complete before the next
iteration starts. Our results show that a guaranteed safe application configuration
can be found using the Afra model checking tool. Moreover, this configuration im-
proves resource utilization compared to the previous informal schedulability analysis
used in [53], supporting a higher sampling rate or a larger number of nodes without
violating schedulability constraints.

Based on the specification, WSAN nodes in flexible data acquisition system can be
configured to support realtime collection of high-frequency, multi-channel sensor data
from up to 30 wireless smart sensors at frequencies up to 250 Hz. As it is designed
for high-throughput sensing tasks that necessitate larger networks sizes with relatively
high sampling rates, it falls into the class of data-intensive sensor network applications,
where efficient resource utilization is critical since it directly determines the achievable
scalability (number of nodes) and fidelity (sampling frequency) of the data acquisition
process. Configured on the basis of network size, associated sampling rate, and desired
data delivery reliability, it allows for near-realtime acquisition of 108 data channels on
up to 30 nodes—where each node may provide multiple sensor channels, such as 3-axis
acceleration, temperature, or strain—with minimal data loss. In practice, these limits
are determined primarily by the available bandwidth of the IEEE 802.15.4 wireless
network and sample acquisition latency of the sensors. The accuracy of estimating
safe limits for sampling and data transmission delays directly impacts the system’s
efficiency.

6.1. ANALYZING WIRELESS SENSOR AND ACTUATOR NETWORKS 75

Sampling Rate

Figure 6.6: Maximum sampling rate in case of using TDMA protocol and setting the
value of sensorTaskDelay to 2ms

6.1.6.1 Finding the Maximum Sampling Rate

In this part, we considered applications where achieving the highest possible sampling
rate that does not result in any missed deadline is desired. This is a very common
requirement in WSAN applications in the SHMC domain in particular. We begin
by setting the value of OnePacketTT to 7ms (i.e., the maximum transmission time of
this type of applications) and fixed the value of sensorTaskDelay, miscPeriod, and
miscTaskDelay to some predefined values. In addition to the sampling rate, the num-
ber of nodes in the network and the packet size remain variable. By assuming different
values for the number of nodes and the packet size, different maximum sampling rates
are achieved, shown as a 3D surface in Figure 6.6. As shown in the figure, higher sam-
pling rates are possible when the buffer size is set to a larger number (there is more
space for data in each packet). Similarly, increasing the number of nodes decreases the
sampling rate: in competition among three different parameters of Figure 6.6, the cases
with the maximum buffer size (i.e., 9 data points) and minimum number of nodes (i.e.,
1 node) results in the highest possible maximum sampling rates. Decreasing the buffer
size or increasing the number of nodes, non-linearly reduces the maximum possible
sampling rate.

A server with Intel Xeon E5645 @ 2.40GHz CPUs and 50GB of RAM, running Red
Hat 4.4.6-4 as the operating system was used as the host of Afra. We changed the
size of the state space from less than 500 to more than 140K states, resulting in model
checking times ranging from 0 to 6 seconds. Analyzing the specifications of the state
spaces, some relations between the size of the state spaces and the configurations of the
models are observed. For example, the largest state spaces correspond to configurations
where sensorTaskDelay, bufferSize, and numberOfNodes are set to large values.

6.1.6.2 Real-World Applications

Although we showed that how WSAN applications can be modeled by Timed Rebeca
and be analyzed by Afra, its usability for the real-world applications has to be dis-

76 CHAPTER 6. CASE STUDIES

cussed. To illustrate how practical is the approach of this paper, we performed two
examinations.

In the first one, we tried to use the approach for the analysis of a real-world
installation of an SHMC application. To this end, the parameters of the model are set
to values which are determined by a real-world installation of an SHMC application
and the communication protocol of the model is set to TDMA. Our results show that
the current manually-optimized installation can be tuned to an even more optimized
one: by changing the configuration based on the findings of using analysis approach
of this work, the performance of the system safely improved by 7% percent.

In the second examination, we tried to figure out the effect of using two different
widely used communication protocols, B-MAC and TDMA, on the performance of the
system using the approach of this work. B-MAC (Berkeley Media Access Control) is
a MAC-level protocol for WSAN applications which uses adaptive preamble sampling
scheme. This technique consists of sampling the medium at fixed time periods. Using
B-MAC, every node samples the medium at fixed intervals to figure out nodes which
are willing to communicate. If there is a node which has a data packet to send,
sender senses the medium if it is free, takes a small back-off and then sends the data
packet. This way, data packets are sent as soon as the communication medium is
free. But, the possibility of communication loss because of transmission collisions is
increased. In contrast, TDMA protocol allocates to each node an exclusive time slot for
communication and guarantees collision-free media access in that slot. This behavior
allows reducing preamble transmissions to save more energy. But, as they afford longer
slots with a larger sleeping part, a ready data packet may wait for a longer time to
be sent. We also changed the value of sensorTaskDelay in the supported maximum
sampling rate, considering 648 different configurations. The maximum sampling rate
found for each configuration is depicted in Figure 6.7; the figure shows that increasing
the value of sensorTaskDelay as the representer of intra-node activities, decreases
the sampling rate dramatically. Conforming the theoretical expectation, they also
show that using B-MAC results in achieving higher sampling rates in comparison with
TDMA, as the waiting times of ready to send data packets in B-MAC are smaller than
that of TDMA.

6.2 Analyzing Different Scheduling Policies in
YARN

MapReduce is a programming paradigm for generating and processing large data sets
[72]. In this paradigm, users have to specify a map function that processes a pair of
key/value into a set of intermediate pairs of key/value. Users also specify a reduce
function that merges all intermediate values associated with the same intermediate
key.

Hadoop is a framework for MapReduce [52|, and YARN (Yet Another Resource
Negotiator) is a part of Hadoop. YARN leaves the responsibilities of job scheduling and
task progress monitoring to a Resource Manager (RM). These activities include doing
task bookkeeping, keeping track of tasks, maintaining counter totals, and restarting
failed or slow tasks. An Application Master (AM) negotiates with the RM for access
to resources. This way, it manages the life-cycle of applications like MapReduce jobs
running on a cluster. Considering a cluster, there is one instance of RM and for every

6.2. ANALYZING DIFFERENT SCHEDULING POLICIES IN YARN 7

Sampling Rate
sampling Rate

o o
3 3
5]
& &
o >
g g
5]
=} 3
3 2
g g
5 5
8]
6
e 6 \?\\ — 6
— 5 Buffer Size 4\\3\ ! //{ 5
Number of Nodes P 3 Number of Nodes
L
—t
(d) B-MAC, Sensor task delay is 10ms
o o
2 3
] 5
2 2
o o
g g
2)
g g
5 H
8 H
E -
3 e
Buffer Size <
3 e
\\2— T Number of Nodes
17
o o
2 3
5]
& &
o >
g g
5]
3 3
3. 2
5 g
H 5
8 8

Buffer Size

(g) TDMA, Sensor task delay is 30ms (h) B-MAC, Sensor task delay is 30ms

Figure 6.7: Maximum possible sampling rate in case of different communication pro-
tocols, number of nodes, sensor internal task delays, and radio packet size

78 CHAPTER 6. CASE STUDIES

job there is one instance of AM, and jobs can be made up of many tasks. YARN can
use different policies for dispatching jobs to AMs based on deadlines, priorities, and
arrival times of jobs. Note that the current implementation of YARN does not support
preemption.

The author in [62] developed ReGen (Rebeca Generator) as a Java application
that generates Timed Rebeca codes for Hadoop YARN models with different policy,
job arrival patterns, and job length pattern parameters. He also ran the back-end
analyzer of Timed Rebeca and gathered results for comparing the efficiency of different
dispatch and job eviction policies in YARN clusters. To this end, a Timed Rebeca code
is generated using the following structure, for each configuration.

e ResourceManager class

— Known rebecs

— State variables

Constructor
— Message server for checking queues every timeunit

Count deadline misses in the queues
Sort the incoming queues based on deadline
Dispatch production jobs to free AMs

* X X X

Preempt research jobs for production jobs if no free AMs Dispatch
checkpoints to free AMs

Preempt high laxity/deadline jobs for low laxity/deadline checkpoints
Dispatch research jobs to free AMs

Preempt high laxity /deadline jobs for low laxity /deadline incoming jobs
Unlock AM mutexes

Determine the number of incoming jobs

* X X X X

*

Determine the length of each incoming job, compute deadline and put
job in queue

* Determine priority of each incoming job, and modify

* length of high priority jobs if needed

— Message server for updates from AMs

* Process whether deadline was missed or job completed
x Compute the margin between deadline and time remaining
x Update the RMs information on the AM

— Message server for checkpoints from AMs

x Store the deadline and time remaining
x If not possible, count checkpoint queue overflow
x Update the RMs information on the AM

e AppMaster class

— Known rebecs

— State variables

6.3. FUNCTIONAL AND PERFORMANCE ANALYSIS OF NOCS 79

Policy | Mean Deadline Misses | Job Req. Success Rate | AM Jobs Success Rate
EDF 25.96 70.37% 77.20%
FIFO 31.16 64.68% 86.79%
MDF 30.55 66.52% 99.89%
Priority 25.65 71.07% 81.36%

Table 6.1: Comparing the KPIs of scheduling policies in a configuration in favor of
EDF

Constructor

Message server for running jobs

x If a research job is running, preempt and send a checkpoint
x If no job is running, send an update to the RM

x Start processing by sending a process message to self if receiveing a new
job

— Message server for processing jobs

x If job completes or deadline runs out, send update to RM
x Otherwise, continue processing by sending a process message to self

e Main function

— Create actors

Analyzing the Timed Rebeca model of each configuration, the mean deadline
misses, job request success rate, and AM job success rate is computed as KPIs. It
is assumed that deadline misses are the sum of jobs that missed their deadlines while
running and jobs that missed their deadlines while waiting in the queue. The job
request success rate is the ratio of jobs completed that were submitted to the RM. The
AM job success rate is the ratio of jobs completed that were submitted from the RM
to the AMs. The authors presented a wide range of analysis varying the scheduling
policy and model configuration. In Table 6.1 and Figure 6.8 we presented the results
of analyzing EDF scheduling policy in the case that configuration is in favor of EDF.
In this experiment, the length of submitted jobs is nondeterministically chosen from 1
to 6, and 20 percents of the jobs have high priority.

6.3 Functional and Performance Analysis of NoCs

Through technology shrinkage, multiprocessor systems on chips have emerged as a vi-
able solution to the growing complexity. Network on chip (NoC) is a promising inter-
connection paradigm for these systems. Globally Asynchronous Locally Synchronous
(GALS) approach [73| has gained attention in designing of NOCs. However, GALS-
based NoCs encounter two significant challenges: (1) functional verification for making
sure that the desired properties are met, and (2) performance evaluation in various
stages of the design process for choosing the appropriate design parameters.

As fabrication cost is high, it is desirable to tackle the mentioned challenges prior
to the production of the first prototype and even in the early stages of design pro-
cess. So, it is crucial to have models of the systems with proper details, to perform

80 CHAPTER 6. CASE STUDIES

Mean deadline misses - 100 traces, 100 timeunits - uniform arrival, nondet length
75 1
o
70 4
85 | =
80

55 1

50

35

Mean deadline misses

30
25

20

1 2 3 4 5
Concurrent jobs

l = EDF -& FIFO MDF PR\OR\TY|

Figure 6.8: Mean deadline misses for a scenario in favor of EDF in the case of changing
the number of concurrent jobs

design-time model-based analysis. Prior to this work, there was no model for GALS
NoCs containing appropriate details which are needed for the verification against both
functional and performance properties. In this work, authors used model checking to
confront both challenges simultaneously and realize the use of one model for verify-
ing both functional and performance properties. The proposed model can be used
for estimating end-to-end packet latency, as well as checking functional properties,
e.g. deadlock freedom and successful delivery of packets to destinations. Functional
and timing behaviors, communication protocol, routing and scheduling algorithms are
considered in the proposed model.

One of the major issues in asynchronous systems is the lack of a reference clock,
results in interleaved executions of processes. Therefore, in GALS NoCs, a sent packet
might be delayed by a different number of disrupting packets and may have various
end-to-end latencies, in addition to the network congestion based packets disruption.
Thus, timing analysis in these systems is required to make valid design decisions for
avoiding deadline misses for traveling packets. For analysis of such systems, it is
essential to consider all possible behaviors of the systems. However, existing work
based on simulation techniques cannot be applied for exhaustive verification. Also,
ensuring correctness to a certain degree using simulation is highly time-consuming and
infeasible in some cases. Formal methods and more specifically model checking are
alternative approaches that can be used for both performance evaluation and correct-
ness checking considering exhaustive search in the behaviors of system [74]. Using
Timed Rebeca model with formal verification support using Afra allowed authors to
model the asynchronous behavior of GALS NoC naturally. Similarities between the
computational model of Timed Rebeca and GALS NoCs, lead authors to a natural
and easy to understand model. Due to the asynchronous communication, applying an
exhaustive verification on large NoCs may result in the state space explosion. To alle-
viate this problem they presented a method based on compositional verification. The
method computes the maximum end-to-end latency in GALS NoCs with XY routing

6.3. FUNCTIONAL AND PERFORMANCE ANALYSIS OF NOCS 81

algorithm in two steps. It breaks the path of a packet to its destination into hori-
zontal and vertical sub-paths and then performs latency estimation in each sub-path
separately. Finally, the results for each sub-path are combined to get latency esti-
mation of the whole path. To illustrate the applicability of the proposed approaches,
the authors modeled and analyzed ASPIN (Asynchronous Scalable Packet-switching
Integrated Network) [48], which is a fully asynchronous two-dimensional GALS NoC
design using XY routing algorithm.

6.3.1 GALS NOC Model in Timed Rebeca

Focusing on the above properties the topology of the communication, routing algo-
rithm, buffer status, and communication protocol have to be considered in the Time
Rebeca model of GALS NoCs, together with the timing behaviors. Considering these
details, the full state space for a specific traffic pattern is produced and analyzed
against deadlock-freedom and the successful arrival of each packet properties. In order
to estimate maximum end-to-end packet latency, buffer delays and channel delays are
also considered in the model. The elements of a GALS NoC can be modeled as the
following in Timed Rebeca.

e Router: Each router is mapped to an actor which communicates with its neigh-
boring routers through message passing. The processing delay of a router is
modeled by “delay” statement. The routing algorithm of a router is implemented
as a body of a message server, called reqSend. Based on the port which a packet
entered to the router, it decides to which port the packet has to be sent. Since
ASPIN uses Round Robin scheduling algorithm, the scheduler of Timed Rebeca
is used as the scheduler of the model.

e Buffer: Router buffers are modeled as an array of elements (packets). In the
proposed model, the actors’ queues model buffers, and the number of packets in
the buffer is kept track using a counter state variable as the number of elements in
buffers. Having this information, adaptive and dynamic routings can be modeled.
Delay of writing and reading to/from buffers are modeled by “after” specifiers.

e Packet: Abstracting away the details, a packet is modeled by a pair of its
identifier and destination.

e Channel (Link): Channels are modeled by message passing. Delay of passing
through a channel is modeled by “after” specifier.

e Communication protocol: The body of message servers can be changed to
develop different communication protocols of GALS NoCs.

Listing 6.7 shows the structure of ASPIN in Timed Rebeca. Based on the instan-
tiated actors in the main part of Listing 6.7, a 4x4 NoC is defined. Packets of the
network are generated by the Manager actor. Packets can be generated at any time
and traffic pattern.

Packets are transferred through channels, using four-phase handshake communica-
tion protocol. The channel functionalities are modeled by means of message passing
in the Timed Rebeca model. Four-Phase handshake protocol is modeled using three
message servers: reqSend, giveAck, and getAck. A router calls its reqSend message
server to send a request to its neighbors; reqSend requires a destination address that

82 CHAPTER 6. CASE STUDIES

shows the destination of the packet as a parameter. The function XY-routing selects
which neighboring router the packet should be sent to, and then giveAck message
server of the selected neighbor router is called.

Listing 6.7: The structure of the ASPIN 5 4
architecture GALS NoC in Timed Rebeca 16| Router(byte X, byte ¥) { ... }
17| msgsrv init() { ... }
1| reactiveclass Manager { 18| msgsrv getAck() { ... }
2| knownrebecs { 19| msgsrv reqSend(byte Xtarget, byte Ytarget) <
3 Router r00, r10, ..., r33; —{ ...}
4} 20| msgsrv giveAck(byte Xtarget, byte Ytarget) <«
5| msgsrv generateTraffic() { ... } { ...}
6|2} 21|}
7| reactiveclass Router { 22| main {
8| knownrebecs { 23| Manager m(r00,r10, ... ,r33): ();
9 Router North, East, South, West; 24| Router r00(r03,r10,r01,r30): (0,0);
10, % 25| Router r10(ri13,r20,r11,r00): (1,0);
11| statevars { 26 ...
12 byte Xid, Yid; 27| Router r33(r32,r03,r30,r23): (3,3);
13 byte[4] bufNum; 28(}
14 boolean[4] full, enable, outMutex;

Following four-phase protocol, request signal of the sender is raised until it receives
an acknowledgment signal. While waiting for the acknowledgment signal, the router
cannot send any packet from that port. We assigned enable boolean variable to each
output port of the router to model this functionality. Whenever a packet is sent from
an output port, the corresponding enable becomes false (line 7). For sending the
acknowledgment signal the getAck message server is invoked. The giveAck message
server first checks the address of the destination of the packet. If the address is the
same as the current router, then the actor will consume the packet (line 14). Otherwise,
it checks if the corresponding input buffer has enough capacity to store the packet, if
there is enough capacity the packet will be stored and an acknowledgment is sent to
the sender by calling its getAck message server (line 19). Then, it will be sent to the
other neighboring routers calling their reqSend message server. If the buffer is full
the packet will not be stored in the receiver’s buffer and the sender should wait for an
acknowledgment from the receiver until the buffer has an empty space.

Listing 6.8: A part of the body of a router 15| pufNunlenterancebirection]++;
of the ASPIN architecture 19 ((Router)sender) .getAck() deadline(50);
20 self.reqSend(Xtarg, Ytarg) after(100);
1| msgsrv reqSend(byte Xtarg, byte Ytarg) { 21 3}
2| if (Xtarg > Xid) { 22| }
3 byte leavingDirection = ...; 23| msgsrv getAck(int directionS){
4 if (outMutex[leavingDirection]) { 24 enable[directionS] = true;
5 East.giveAck(Xtarg, Ytarg) after(50); 25| bufNum[directionS] = <
6 outMutex[leavingDirection] = false; — (byte)bufNum[directionS] - 1;
7 enable[leavingDirection] = false; 26| full[directionS] = false;
8 } else 27| if (sender == N) {
9 self.reqSend(Xtarg, Ytarg) after(50); 28 outMutex[0] = true;
10| } else if(Xtarg < Xid) { ... } 29| } else if (sender == E){
11y ... 30 outMutex[1] = true;
12|} 31| } else if (sender == S){
13| msgsrv giveAck(byte Xtarg, byte Ytarg) { 32 outMutex[2] = true;
14| if(Xtarg == Xid && Ytarg == Yid) { 33| 3} else if (sender == W){
15 //Consume the packet 34 outMutex[3] = true;
16| } else if (! (Xtarg == Xid && Ytarg == Yid)) { 35| 3
17 byte enteranceDirection = ...; 36|}

6.3. FUNCTIONAL AND PERFORMANCE ANALYSIS OF NOCS 83

100
90
80
70
60
50
40
30
20
10

Latency (time cycles)

o
N
5]
IS
wu
o
o)}

Scenari Scenario 2 Scenario 3 Scenari Scenario Scenari

®XY I Odd-Even #% DyAD

Figure 6.9: Comparing the packet latency in different routing algorithms

6.3.2 Experimental Results

For the case of functional correctness, authors consider deadlock-freedom and correct
packet sending properties. The first property automatically checked by Afra. For the
second one, they considered two correctness properties. The first property is to check
whether a packet sent from a source has reached its destination. For checking this
property packetSent and packetReceived state variables are added to the router
model and G (packetSent — F packetReceived) LTL property is defined. This way,
if a packet is sent then packetSent is set to true, and if that packet is reached to its
destination, packetRecieved of the destination actor is set to true. In addition to this
property, it is needed to check whether all packets in the network were sent. To do so,
allSent state variable is declared and it is set to trueif the number of sent packets is
the same as the number of the existing packets in the NoC. This way, the property is
defined by the LTL property F allSent .

In addition to the functional correctness, authors performed some performance
evaluation on the model. As the first goal, they compared the performance of using
Odd-FEven, XY, and DyAD routing algorithms in the presence of six typical scenarios.
As shown in Figure 6.9 in the first three scenarios, DyAD and Odd-FEven avoid con-
gestion by monitoring their neighbors and thus have less end to end packet latency.
Also, DyAD has better results than Odd-FEven because it exploits the low latency of
deterministic routings in low traffics. The second three scenarios show distributed
traffic in which disrupting packets exist in all possible directions, by which the target
packet can get to its destination. These scenarios investigate the impact of low latency
of deterministic routings which is the result of their simplicity in contrast to adaptive
routing algorithms. As shown in Figure 6.9, XY shows the best performance, as stated
in [75], because XY has a global and long-term knowledge about the traffic, it exhibits
better results than the others.

As the second goal, the authors used HSPICE simulation of ASPIN model to val-
idate the proposed formal and compositional method. The results of the simulation
match the results from formal and compositional methods while effort for simulation
is much higher. The reason is because of the more details that are considered in the
HSPICE model. The similarity of the results shows that in spite of the fact that our
methods are not considering the same amount of details they are still eligible for the
required measurements. By this comparison we show how using our method in the
early stages of design can help the designer to make suitable architectural decisions

84 CHAPTER 6. CASE STUDIES

Latency (time cycles)

%
%

® Timed Rebeca Analysis 7 HSPICE Simulation

Figure 6.10: Comparing the timing behavior of the Timed Rebeca model with the
HSPISE implementation of ASPIN architecture GALS NoC

according to the performance parameters of the system. To compare the results of the
formal approach to the simulation results, they extracted buffer read and buffer write
delays from HSPICE simulation of ASPIN for 32nm CMOS technology and normalized
to C-element Muller gate to convert them from Float to Integer. Delay of read and
write operations on a buffer was considered 19 and 6 time units, respectively. Produc-
ing and consuming a packet in a core cause delays of 10 and 19 time units, respectively.
They considered capacity of two entries for input buffers and one for output buffers.
Figure 6.10 shows results for estimating the maximum latency of packets in the spec-
ified scenarios compared to results of the simulation and results of estimation using
our compositional method.

Chapter 7

Previous Work on Analyzing Timed
Rebeca Models

As the earliest attempts for analyzing Timed Rebeca models, an approach is developed
for model checking of Timed Rebeca models using transformation from Timed Rebeca
models to networks of timed automata. The resulting timed automata are model
checked against TCTL properties using the UPPAAL toolset. The details of this ap-
proach is presented in Section 7.1. Another work on model checking of Timed Rebeca
is based on mapping timed actors to Realtime Maude. This enables a formal model-
based methodology which combines the convenience of intuitive modeling in timed
actors with formal verification of Realtime Maude. Realtime Maude is supported by
a high-performance toolset providing a spectrum of analysis methods, including sim-
ulation through timed rewriting, reachability analysis, and (untimed) linear temporal
logic (LTL) model checking as well as timed CTL model checking. The details of this
approach is presented in Section 7.2.

7.1 Semantics of Timed Rebeca In Timed Automata

Timed automata [11] is one of the most widely used modeling languages for modeling
of realtime systems and is supported by UPPAAL toolset!. Because of successful
results in modeling and verification of different types of realtime systems, including
[27]-[29], UPPAAL was chosen as the back-end model checker for verification of Timed
Rebeca models. Therefore, a mapping from Timed Rebeca models to networks of timed
automata was proposed in [5]. We tried to implement the optimized mapping of this
approach to achieve the smallest possible state space of Timed Rebeca models. Our
experiments showed that modeling of asynchronous message passing between actors
using synchronous communication of timed automata results in large state spaces, even
for small case studies.

In the proposed mapping, each actor is mapped into two timed automata, called
the rebec-behavior automaton and rebec-bag automaton. Additionally, one timed au-
tomaton, called the after-handler automaton, is defined to handle the behavior of
after primitive for all actors. To reduce the number of clocks in the model, one global
clock pool is defined. This clock pool contains a predefined number of clocks. When
a timed automaton requires a clock, it picks a clock from the pool using selectClock

Thttp:/ /www.uppaal.org

86 CHAPTER 7. PREVIOUS WORK ON ANALYZING TIMED REBECA

function. To illustrate the mapping, the timed automata for the ticket service model
of Figure 2.3 is described as the running example in the rest of this section.

7.1.1 Rebec-Behavior Automaton

The rebec-behavior automaton models the behavior of an actor according to the state-
ments of its message servers and valuations of state variables. The state variables of
each actor are mapped into variables of its corresponding rebec-behavior automaton.
After receiving a message in rebec-behavior automaton of each actor, the first transi-
tion checks the received message and based on that the behavior of the corresponding
message server is modeled in the succeeding transitions. To model the behavior of
a message server, its statements are mapped to transitions of timed automata as de-
scribed in the following. In the following items, we assume that each statement is
modeled by some outgoing transition from state S. The label of the outgoing transi-
tions are in form of tuple of (a, g, c) in which a is the action, g is the guard, and ¢ is
the set of clocks that are reset during the transition.

e Conditional statement if (cond){---}: is mapped to transition ¢ from S to S’
The label of ¢ is set to (—, g, —) in which g is the same as the cond expression of
the conditional statement.

e Assignment statement var = exp: is mapped to transition ¢ from S to S’. The
label of t is set to (a, —, —) in which a assigns the value of exp to the variable
var.

e Non-Deterministic assignment statement var =7(expy,--- ,exp,): is mapped to
transitions ¢q,---t, from S to Sj---S/. The label of t; is set to (a;,—, —) in
which a; assigns the value of exp; to the variable var.

e Delay statement delay(d): in mapping of a delay statement one clock and one
additional state is required. In this case, the mapping results in transition t;
from S to S’ and transition ¢, from S” to S”. The label of ¢; is set to (a, —, —) in
which a is the action of selecting a clock from the global clock pool. The clock
is selected from pool of clocks using selectClock function. Assume that ¢l is the
selected clock. The guard of state S’ is set to ¢l < d and the label of ¢, is set to
(—,g,—) in which g equals to ¢/ = d. Based on this mapping, the active state
of the timed automaton is forced to stay in S’ for d units of time. Mapping of
delay statement in line 12 of Listing 2.2 is shown in Figure 7.1a.

e Sending message statements: For message sending, one clock is attached to each
message to show its sent time. This clock is used for checking the release time
and deadline of messages. The clock is returned to the pool when the message
is delivered to the rebec-behavior automaton for execution. The channel send is
used if the message is sent immediately and the channel after, if the sent message
is associated with a value for after primitive. Messages which are sent via the
send channel are directly put in the rebec-bag of their receivers. Messages which
are sent via the after channel are put in an internal buffer in the after-handler
automaton. Mapping of sending message in line 13 of Listing 2.2 is shown in
Figure 7.1b.

7.1. SEMANTICS OF TIMED REBECA IN TIMED AUTOMATA 87

clocks[currentClockID] = O mclocks[currentClockID] ==3
© @ @

clocks[currentClockIiD] <=3

(a) Mapping from delay statement of line 11 of Listing 2.2 to timed
automata in case of having delay of 3 units of time

(b) Mapping from sending message statement of line 12 of Listing 2.2
to timed automata

Figure 7.1: Implementation of delay and sending message statements of Listing 2.2 in
timed automata.

Upon completion of the execution of a message server, a rebec-behavior automaton
will back to its initial state and the outgoing transition is requesting for the next
message. To illustrate the mapping of reactive classes to rebec-behavior automata,
the rebec-behavior automaton of Customer reactive class of Listing 2.2 is shown in
Figures 7.2. For the transition from S0 to SI1 the action of the transition is set to
receiving a message from the rebec-bag automaton. Based on the message name, which
is stored in currentMessage, the execution point is directed from S7 to one of S2 or S3.
In this timed automaton, the execution of the ticketIssued message server is started
from S2 and the execution of the ¢ry message server is started from S3. The rebec-
behavior automata of Agent and TicketService are shown in Figures 7.3 and 7.4
respectively.

senaer=tnis, recelver=inis,

s2 message=TRY, enableTime=30, sS4
clocksIt]=0, clocklD=t C
t=selectClock() after!
currentMessage S6
S0 receive? == TICKET_ISSUED C
@ setMessagelnfo()
i currentMessage
rece!ver --TRY
== this
t=selectClock() send! 55
C

sender=this, receiver=AGENT,
message-=1, clocks[t]=0,
clocklD=t, deadline=INFINITY

L J

Figure 7.2: The rebec-behavior automaton of Customer reactive class of Listing 2.2

7.1.2 Rebec-Bag Automaton

The rebec-bag automaton handles the behavior of the message bag of an action using
an internal buffer, called message@ as shown in Figure 7.5. The messages which are
sent to an actor are received by rebec-bag, regardless of the state of the corresponding
rebec-behavior automaton. Then, rebec-bag automaton delivers received messages upon
the requests of its corresponding rebec-behavior automaton. Additionally, the rebec-

88 CHAPTER 7. PREVIOUS WORK ON ANALYZING TIMED REBECA

sender=this, arg[0]=1d,
receiver=TICKETSERVICE,
message-=1, clocks[t]=0,
clocklD=t, deadline=5

S2

S4

t=selectClock() send!

currentMessage
== REQUEST_TICKET

SO0)
receive?
@ setMessagelnfo()
currentMessage

receiver == TICKET_ISSUED

== this

t=selectClock() send!

sender=this, message=2,
receiver=CUSTOMER, clocksIt]=0,
clockID=t, deadline=INFINITY

\

S5

S6

J

Figure 7.3: The rebec-behavior timed automaton of Agent reactive class of Listing 2.2

currentMessage

receive? S .. REQUEST_TICKET \;2\1 < issueDelay \;3\ send! S4
~© ~©) ~©) — C
setMessagelnfo() t=selectClock() t=selectClock() sender=this, receiver=AGENT,
receiver t<issueDelay message=2, clocksit]=0,
== this clocklID=t, deadline=INFINITY

Figure 7.4: The rebec-behavior timed automaton of TicketService reactive class of

Listing 2.2

bag automaton is responsible for handling message deadlines. Figure 7.5 shows the
timed automaton of rebec-bag. As shown in Figure 7.5, rebec-bag inserts the incoming
messages into its buffer (transition from SI to S3), discards messages with passed
deadlines from its buffer (self loop transition in S7), and extracts the messages from
its buffer and delivers them (transition from S7 to S2). Extracting a message from the
buffer is done by shift function which is used as the update function of the transition

from S2 to S1.

S0

messageQ[0]'=NULL and
busy[owner]
seceive!

deliver()

tail<N
send?
insertMessage()

initialize()

receiver
==owher

i: int[0,N-1]

messageQ)i] != NULL and
deadlineQYi] != INFINITY and
clocks[clockIDQYi]]>deadlineQi]

Figure 7.5: Timed automaton of rebec-bag

7.1. SEMANTICS OF TIMED REBECA IN TIMED AUTOMATA 89

7.1.3 After-Handler Automaton

The after-handler automaton handles the messages which should be delivered to rebec-
bag in the future (messages which are sent by after primitive). The after-handler
automaton accepts messages and put them into its buffer until the release time of
them. When a message in the buffer of after-handler is released, it is sent to its
corresponding rebec-bag automaton. Figure 7.6 shows the timed automaton of after-
handler. As shown in Figure 7.6, the incoming messages are inserted into its buffer by
transition from S7 to S2. The messages are extracted from the buffer of after-handler
and are delivered in their release times by self loop transition on S7.

SO

tail<N
after?
insertMessage()

send!
deliver(i)
messageQ][i] '= NULL and
clocks[clockIDQYi]]==
enableTimeQ[i]

S2

messageQ[0]==NULL or
clocks[clocklDQ[0]] <=
enableTimeQ[0]

Figure 7.6: Timed automaton of after-handler

7.1.4 Analysis of Network of Timed Automata

The parallel composition of the resulting timed automata and the schedulability anal-
ysis of the model is done using UPPAAL [30].

Modeling of asynchronous message passing between actors using synchronous com-
munication of automata increases the number of states dramatically [31]. However,
some techniques can be applied, like using committed states, to reduce the number
of states of the resulting region transition system. In the parallel composition of the
network of timed automata, related to an actor model, different automata need to
synchronize on the following four actions.

1. A message is sent (on after or send channels).

2. A message is taken from the message bag to start to execute.

3. A transition modeling a delay statement is reached in an automaton.
4. Tt is the time for a sent message to be delivered to its receiver.

This will increase the number of states and is the main reason that using a network of
timed automata is not an ideal approach for models in which elements communicate by
asynchronous message passing. Additionally, the time consumption of the analysis of
the models is increased dramatically by increasing the number of actors of the model,
as the number of clocks grows linearly with the number of actors.

To reduce the number of states, some reduction techniques are proposed for ver-
ification of timed automata models. In [32| authors proved that instead of global
clock synchronization among all timed automata in a network of timed automata, syn-
chronization of clocks is only required between two timed automata when they want

90 CHAPTER 7. PREVIOUS WORK ON ANALYZING TIMED REBECA

to communicate. Therefore, they allowed clocks to increase independently and they
only being synchronized when two timed automata want to communicate. This way,
the third item of the synchronization actions (see above) is omitted and other three
synchronization points need to be considered in the parallel composition of timed au-
tomata. This work is continued in [33] by applying the proposed reduction technique
in the model checking of timed extension of LTL. Later in [34] a new approach is sug-
gested for partial order reduction in component-based systems. This approach is only
applicable for systems where components work in three phases: reading from their
input ports, performing their internal operations, and writing the result of the internal
operations to their output ports. Based on these phases, the progress of time and
inter-component timing complexity of phase two can be modeled using a single clock.
This reduction technique is not applicable for timed automata derived from Timed Re-
beca models. As phases two and three cannot be separated in Timed Rebeca models.
It is because of the fact that because message passings and internal actions of actors
are interleaved in Timed Rebeca.

7.2 Semantics of Timed Rebeca in Realtime Maude

In this section, we explain how the semantics of Timed Rebeca have been formalized
in Realtime Maude in an object-oriented style as presented in [4]. Note that only an
overview of this semantics is presented in this section and the detail description can
be found in [4].

In the Realtime Maude semantics of Timed Rebeca, each actor is represented by
an object instance of class Rebec, and each undelivered message is represented by a
(“delayed”) message. As a result, a state of an actor system consists of the actors and
a set of undelivered messages.

When defining the semantics of a language in rewriting logic, each event/action—
such as sending a message or executing an assignment statement—is typically for-
malized by a rewrite step (see, e.g., [35]). However, that approach leads to many
interleavings that may render exhaustive state space analysis unfeasible. One novel
contribution of this semantics is in considering the fact that the execution of a mes-
sage server cannot be preempted in Timed Rebeca, which allows “grouping together” all
consecutive deterministic instantaneous actions and executing them in a single rewrite
step.

Section 7.2.1 explains the statics: how a Timed Rebeca state is represented in
Realtime Maude, and how a Timed Rebeca model is translated into Realtime Maude.
Section 7.2.2 formalizes the instantaneous dynamic behaviors of Timed Rebeca in
Realtime Maude, and Section 7.2.3 formalizes the timed behaviors of Timed Rebeca.
The entire executable Realtime Maude semantics of Timed Rebeca is available at
Rebeca homepage 2.

7.2.1 Representing Timed Rebeca Models in Realtime Maude

In the Realtime Maude representation of a Timed Rebeca model the following infor-
mation must be kept track: (i) the actors in their current states; (ii) the declarations
of the (message servers of the) reactive classes; and (iii) the set of as-yet undelivered
messages.

2http:/ /rebeca-lang.org/allprojects/ TR2RTMaude

7.2. SEMANTICS OF TIMED REBECA IN REALTIME MAUDE 91

Representing Rebecs An actor is modeled in Realtime Maude by an object in-
stance of the following class Rebec:

class Rebec | classId : ClassName,
stateVars : Valuation,
queue : Msglist,
toExecute : Statements .

The attribute classId denotes the name of the reactive class of the actor. The at-
tribute stateVars is a valuation that maps the state variables of the actor to their
current values and also maps the name of known rebec to their corresponding identi-
fiers. To avoid name clashes, the class name together with ‘-’ is added to the beginning
of the state variable name. The message queue of an actor is stored in the queue at-
tribute as a ‘::’-separated list of messages. Finally, the attribute toExecute denotes
the remaining statements that the actor has to execute during the execution of the
current message server.

7.2.1.1 Valuations

Timed Rebeca actors may have state variables of three types: Integer, Boolean, and
state variables that refer to other actors. In the Realtime Maude model, a sort Rid
for actor names/identifiers is assumed as the name of the third type:

State variables of sort Integer in the Timed Rebeca model are represented by a con-
stant of sort IntVar in Realtime Maude; Boolean state variables and variables pointing
to other actors are modeled as constants of sort BoolVar and RidVar, respectively.

The sort Valuation represents mappings from variables to their current values as
a set of terms of the form var-name |-> value, as the following:

sort Valuation .

op _|->_ : IntVar Int -> Valuation [ctor]

op _|->_ : BoolVar Bool -> Valuation [ctor]

op _|->_ : RidVar Rid -> Valuation [ctor]

op _ _ : Valuation Valuation -> Valuation [ctor assoc comm id:
emptyValuation]

op emptyValuation : -> Valuation [ctor]

7.2.1.2 Messages and Message Lists

Communication between actors takes place when an actor sends a message to another
actor (or to itself). The message is put into the multiset of undelivered messages until
its message delay ends. It is then delivered to the receiver’s message queue. Delivered
messages are declared by:

msg _with_from_to_deadline_ : MsgHeader Valuation Rid Rid TimeInf -> Msg .
So, a delivered message
msgHeader with parameters from snd to rcur deadline relativeDeadline

contains a header (the message name), its arguments, the identity of the sender actor,
the identity of the receiver, and the time remaining until the expiration of the message.
A message queue is a : :-separated list of delivered messages:

92 CHAPTER 7. PREVIOUS WORK ON ANALYZING TIMED REBECA

sort MsglList .

subsort Msg < MsgList .

op nil : -> Msglist [ctor]

op _::_ : MsgList MsglList -> MsglList [ctor assoc id: nil]

Program Statements Since the definitions and behaviors of program statements of
Timed Rebeca are very similar to their equivalent statements in the ordinary program-
ming languages, we omitted their definition from this part. The detailed representation
of Timed Rebeca statements in Realtime Maude is presented in [4].

7.2.1.3 Representing Message Servers

A Timed Rebeca model defines reactive classes with their message servers. Since the
message servers do not change dynamically, they are not include in the state. Instead,
the function

op msgServer : ClassName MsgHeader -> StatementlList .

which defines the message server for each reactive class and message header. The
message names are prefixed by the class name to prevent naming conflicts. This
function also gives the body of the constructors by treating them as messages with the
header constructor. This way, msgServer(Heater, constructor) equals

(on := false) ;
(send run with noArg to self deadline INF after 0)

7.2.1.4 Messages in Transit

Messages in transit have the form dly(m,t), where m is a message as described in
Section 7.2.1.2 and ¢ is the remaining delay of the message. Such messages are declared
as the following.

sort DlyMsg .
subsort Msg < DlyMsg < NEMsgConfiguration .
op dly : Msg Time -> DlyMsg [ctor right id: 0]

When the remaining delay of a delayed message becomes 0, the message becomes
“undelayed”.

The Realtime Maude state representing a Timed Rebeca state during the execution
of a Timed Rebeca model, therefore, contains a message dly(m, d) for each undelivered
message m with remaining messaging delay (“after”) d.

7.2.2 Instantaneous Dynamics

This section presents the semantics of the “instantaneous actions” of Timed Rebeca. As
mentioned, all consecutive instantaneous deterministic actions are performed together
“atomically” in one rewrite step.

7.2. SEMANTICS OF TIMED REBECA IN REALTIME MAUDE 93

Receiving a Message The following rewrite rule causes an undelayed message to be
delivered; i.e., removed from the set of undelivered messages in the state and appended
to the message queue of the receiving actor:

rl [readMessage]
(M with ARGS from O to 0’ deadline DL)
< 0’ : Rebec | queue : MSGLIST >
=>
< 0’ : Rebec | queue : MSGLIST :: (M with ARGS from 0 deadline DL) > .

Serving a Message In the following rewrite rule, an idle actor (toExecute is
noStatement) takes the first message from its queue and starts executing the state-
ments in the corresponding message server by putting them into its toExecute at-
tribute. In addition, the actual arguments in the message to be “served” are included
in the execution environment stateVars. To clean up at the end of the execution, a
new statement removeVars is appended to the end of the statements in the message
server:

rl [takeMessage]
< 0 : Rebec | stateVars : SVARS,
queue : (M with VAL from 0’ deadline DL) :: MSGLIST,
classId : CN,
toExecute : noStatement >

< 0 : Rebec | stateVars : SVARS VAL (sender |-> 07),
queue : MSGLIST,
toExecute : msgServer(CN,M) ;
removeVars (VAL (sender |-> 07)) > .

Note that the mapping SVARS VAL (sender |-> 0’) contains the valuation of the
state variables of the receiving actor (SVARS), together with the valuation of actual
parameters (VAL) and the mapping of the keyword sender to the sender of the message
(sender |-> 07).

7.2.2.1 Executing Immediate Statements

As already mentioned, when executing a message server, it is possible to execute as
many statements as possible together instead of executing them one-by-one, avoid-
ing a lot of unnecessary interleavings. However, it may not be possible to execute
the entire body of a message server atomically, because a delay statement forces the
execution to stop. Furthermore, since nondeterministic assignment leads to multiple
successor states, it would make this semantic model too complex. As a result, these
two statements are considered as special cases that cannot be grouped by the other
statements.

The basic idea is to define three functions that act on a sequence of statements,
the first of which is immediate, and specify the result of executing the whole sequence
as (i) the new state variables mapping, (ii) new messages to be sent, and (iii) the
“leftover” statements that could not be executed as a group. The parameters to these
functions are: (1) the identifier of the executing actor, (2) the state variables and the
known rebecs of the actor, (3) the list of statements to execute in a group, (4) the

94 CHAPTER 7. PREVIOUS WORK ON ANALYZING TIMED REBECA

name of the executing class, and (5) a set of undelivered messages. The last parameter
is used especially by the newMsgs function to append the new messages to the current
configuration.

The rewrite rule for executing as many consecutive immediate statements as pos-
sible in one step can be executed only if the toExecute of the actor starts with an
immediate statement. The actor then applies the accumulated changes to its local
state at once and changes its toExecute to what remains after executing as many
immediate statements as possible. Some new messages may have been generated that
are added to the configuration. The computation performed by these functions goes
on as long as possible; the functions “return” when there are no more statements to be
performed or when a ‘“non-immediate” statement must be performed.

7.2.2.2 Delay

When the executing actor encounters a delay statement, it evaluates the delay expres-
sion in the current valuation. Then it leaves the delay statement at the beginning of
its toExecute until the remaining delay becomes 0, when the actor just continues with
the next statement. Decreasing the remaining delay is done by the tick rule explained
in Section 7.2.3:

crl [evaluateDelayExpression]
< 0 : Rebec | stateVars : SVARS, toExecute : delay(IE) ; SL >
=>
< 0 : Rebec | toExecute : delay(evalIntExp(IE, SVARS)) ; SL >
if not (IE :: Int)

7.2.3 Timed Behavior

The following “standard” object-oriented tick rule [12] is used to model that time may
advance all the way until the next time when some “event” must take place:

The variable SYSTEM matches the entire state of the system. The function mte (maximal
time elapse) determines how much time can advance in a given state. If an instanta-
neous rule is enabled, it must be executed immediately; therefore, mte of a state must
be zero when an instantaneous rule is enabled in that state.

var SYSTEM : Configuration .

var T : Time .

crl [tick] : {SYSTEM} => {elapsedTime(SYSTEM, mte(SYSTEM))} in time T
if T <= mte(SYSTEM)

The function mte is the minimum of the mte of each actor and each message in
the soup. As mentioned above, the mte must be 0 when the actor has a statement
to execute which does not have the form delay(i), for an integer ¢ > 0; in the latter
case, the mte equals 7. If there are no statements to be executed, the mte equals 0 if
the actor has a message in its queue, and equals the infinity value INF if the message
queue is empty.

The function elapsedTime models the effect of time elapsed on a state as follows:
the effect of time elapsed on an actor is that the remaining time until the message
deadline is decreased according to the elapsed time for each message in the queue.
Furthermore, the remaining delay of a delay statement being executed is also decreased

7.3. EXPERIMENTAL RESULTS 95

Configuration | Standard Semantics | TA Based Semantics
#States Time #States Time
1 customer 9 1< sec 801 1< sec
2 customers 107 1< sec 19M 5 hours
3 customers 550 1< sec - 24> hours T
4 customers | 2.86K 1< sec - 24> hours T
5 customers | 16.9K 1< sec - 24> hours T
6 customers 114K 2 secs - 24> hours T
7 customers | 884K 3 sec - 24> hours!

Table 7.1: Model checking times and size of state spaces, using two different semantics
for the ticket service system. The t sign on the reported time shows that model
checking takes more than the time limit (24 hours).

according to the elapsed time. For messages traveling between actors, their remaining
delays and deadline are decreased according to the elapsed time. In both cases, if the
deadline expires before the message is treated, the message is purged (i.e., becomes
the empty configuration none).

7.3 Experimental Results

To compare the efficiency of the proposed semantics, we have to prepare a set of case
studies which are modeled by Timed Rebeca and compare the size of their state spaces
which are generated based on the semantics described in timed automata, realtime
Maude, and direct semantics of this chapter. As there is no systematic way to figure
out recurrent behaviors of models in the Realtime Maude based semantics, generated
transition systems are infinite (time goes to infinity); so, they can not be included in
the comparisons. The comparison for two other semantics is depicted in the following
sections. Note that for each case study we describe an overview of that case, present
the source code, and discussed on gained efficiencies or weaknesses.

7.3.1 Ticket Service System

My first example is the model of a Ticket Service system. The overview of this example
is presented in Section 2.1. We created the extended version of this model and varying
in the number of customers.

The results of Table 7.1 make it clear that the approach of using timed automata
for the analysis of Timed Rebeca models results in the state space explosion even for
the small sized models. It is mainly because of the unnecessary interleavings among
automata and variables valuations.

7.3.2 A Toxic Gas Sensing and Rescue System

The second example of this section is the toxic gas sensing model. The overview and
detailed description of this example are presented in Section 2.3.2.

96 CHAPTER 7. PREVIOUS WORK ON ANALYZING TIMED REBECA

Configuration | Standard Semantics | TA Based Semantics
#States Time #States Time

1 Sensor 75 1< sec - 24> hours |

2 Sensors 389 1< sec - 24> hours T

3 Sensors 2.15K 1 sec - 24> hours T

4 Sensors 12.37K 12 secs - 24> hours T

Table 7.2: Model checking times and size of state spaces, using two different semantics
for the Gas Sensing system. The { sign on the reported time shows that model checking
takes more than the time limit (24 hours).

Configuration | Standard Semantics | TA Based Semantics
#States Time #States Time

2 Clients 107 1< sec - 24> hours |

3 Clients 550 1< sec - 24> hours |

4 Clients 2.86K 1< sec - 24> hours |

5 Clients 16.9K 1< sec - 24> hours |

Table 7.3: Model checking times and size of state spaces, using two different semantics
for the CA protocol. The { sign on the reported time shows that model checking takes
more than the time limit (24 hours).

The performance of using timed automata is worse than using the fine-grained
semantics of Timed Rebeca, based on the values of Table 7.1. The time automata
approach does not work for even the simplest configuration.

7.3.3 The IEEE 802.11 RTS/CTS Collision Avoidance
Protocol

The next example is the simplified version of IEEE 802.11 RTS/CTS protocol for
collision avoidance in wireless networks.The overview and detailed description of this
example are presented in Section 2.3.3.

Table 7.3 clearly shows that the trend of values in this example is the same as the
previous one and the approach of mapping to time automata does not work for them.

Chapter 8

Conclusion and Future Work

This dissertation contains a set of techniques and algorithms which are developed to
improve the time and memory consumptions of model checking of timed actors.

At the first step, we propose techniques for improving model checking of discrete
time actors. To this end, we introduce a new model checking algorithm, which is
an optimal TCTL< > model checking algorithm for discrete time actors with dense
transition systems. So, discrete time actors can be model checked faster than before.
In addition to this improvement, we have proposed a reduction technique which works
based on the fact that the instantaneous transitions take no time to execute; so, the
system cannot stay in the states whose outgoing transitions are all instantaneous.
These states are not observable to the verifier so they can be eliminated from the
transition systems. Beside reducing the size of the transition system, applying the
reduction technique enables efficient TCTL_ model checking of timed actors.

Experimental evidence supports our theoretical observation that the new model
checking algorithm works efficiently and the reduction technique results in smaller
transition systems in general. In the case of models with many concurrently executing
actors, the time consumption of the model checking increased rapidly for the old TCTL
model checking algorithm; however, using the new algorithm avoids it. Although the
new TCTL model algorithm works more efficiently in comparison with the old one,
its time consumption is high for big transition system. For these cases, using the
FTS reduction technique results in up to 95% reduction in the size of the transition
systems. Therefore, we can efficiently model check more complicated models against
complete TCTL properties under certain conditions. Although we have used Timed
Rebeca to illustrate the techniques presented in this thesis, our results are not limited
to this language and can be applied to any modeling formalism with a discrete notion
of time. Note that before the work of this thesis, timed actor models have to be
transformed to Realtime Maude or timed automata for TCTL model checking, which
do not give acceptable execution performances. But, using the work of this thesis,
both of the old and improved TCTL model checking algorithms outperform time and
memory consumption of TCTL model checking in comparison to using transformations
to Realtime Maude or timed automata. This way, model checking of bigger transition
systems is possible.

At the second step, we introduced the notion of floating time transition system
(FTTS) for schedulability and deadlock freedom analysis of Timed Rebeca models.
FTTS exploits the key features of Timed Rebeca. In summary, having no shared
variables, no blocking send or receive, single-threaded actors, and non-preemptive
execution of each message server give us an isolated message server execution, meaning

98 CHAPTER 8. CONCLUSION AND FUTURE WORK

that execution of a message server of an actor will not interfere with execution of a
message server of another actors. Moreover, for checking schedulability and deadlock
freedom we can focus only on events. In FTTS, each transition shows releasing an
event, or in other words, execution of a message server of an actor. As a result, in each
state, actors may have different local times, but the transitions still give us a correct
order of release times of events of a specific actor. Experimental evidence support that
direct model checking of Timed Rebeca models using FTTS decreases both model
checking state space size and time consumption in comparison with the previously
proposed approaches. For example, in the case of models with many concurrently
executing actors, FTTS is up to 90% smaller than its corresponding transition system,
which is generated based on the standard semantics of Timed Rebeca. Therefore, we
can efficiently model check more complicated models. We also proved that there is
a weak bisimulation relation between timed transitions system — which is generated
based on the standard semantics of Timed Rebeca — and floating time transitions
system — as the big-step semantics for Timed Rebeca. So, a modeler can use FTTS
for verification of branching-time properties in addition to checking for schedulability
and deadlock freedom. Note that, although using FTTS for actor models results in
smaller transition systems, it only supports analysis of the event-based properties.

Note that our technique and the proofs are based on the actor model of computa-
tion where the interaction is solely based on asynchronous message passing between
the components. So, they are generalized enough to be applied to computation mod-
els which have message-driven communication and autonomous objects as units of
concurrency such as agent-based systems.

We also modeled an application of distributed realtime sensor and actuator net-
works (WSAN) in collaboration with two people from University of Illinois at Urbana-
Champaign. WSAN applications are very sensitive to their configurations: the effects
of even minor modifications to configurations must be analyzed. With little addi-
tional effort required on behalf of the application developer, my approach provides a
much more accurate view of an WSAN application’s behavior and its interaction with
the operating system and distributed middle-ware services than can be obtained by
the sort of informal analysis or trial-and-error methods commonly in use today. Our
realistic—but admittedly limited—experimental results support the idea that the use
of formal tools may result in more robust WSAN applications. This would greatly
reduce development time as many potential problems with scheduling and resource
utilization may be identified early.

Future Work. The work reported in this dissertation paves the way to several
interesting avenues for future work. In particular, we can define a special kind of DTGs
for the continuous time which conforms the requirements of dense-time actors and can
be model checked in polynomial time, using the same algorithm. It is also possible to
work on the categorization of TCTL properties to illustrate which category of TCTL
properties benefits more from the provided efficiency of the proposed algorithm.

In addition, we also go for defining FTTS for dense-time actors and relaxing the
limitation of having no non-deterministic assignment in the body of message servers.
This way, a wider range of systems can be modeled and analyzed using Timed Rebeca
and Afra.

For the case of WSAN applications, we only address the schedulability analysis
of WSAN components and did not consider the interference on the wireless channel
issues (the details of communication protocols). We assume that there is a reliable
wireless infrastructure in the application which provides guaranteed delivery of mes-

99

sages, which is a reasonable assumption for a wide range of deployments of structural
health monitoring and control systems. However, this work can be extended by taking
the details of communication protocols into account together with noises and unreli-
ability of wireless communication which results in errors. This way, only Ether and
RCD actors have to be modified to contain the details of the protocols. Note that the
implementation of the chosen MAC protocol as well as the interaction of the processing
hardware with the transmitter has to be added to RCD to take hardware and software
into account and provide combined analysis of the underlying hardware infrastructure
as well as the application software. Other different assumptions, including fairness in
access to B-MAC, time drift of actors, and uncertainties, can be added. Note that
extending the number of modeled MAC layer protocols also can be performed as a
future work of this thesis. Comparing the efficiency of MAC protocols in different
cases to study their characteristics will be one of the outcomes of this extension.

Bibliography

[1]
2]

3]

4]

[5]

[6]

17l

8]

19]

[10]

[11]
12]

[13]

C. Ptolemaeus, System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org, 2014.

M. Sirjani and E. Khamespanah, “On Time Actors”, in Theory and Practice of
Formal Methods, ser. Lecture Notes in Computer Science, vol. 9660, Springer,
2016, pp. 373-392.

A. H. Reynisson, M. Sirjani, L. Aceto, M. Cimini, A. Jafari, A. Ing6lfsdottir,
and S. H. Sigurdarson, “Modelling and Simulation of Asynchronous Real-Time
Systems Using Timed Rebeca”, Sci. Comput. Program., vol. 89, pp. 41-68, 2014.

7. Sabahi-Kaviani, R. Khosravi, P. C. Olveczky, E. Khamespanah, and M. Sir-
jani, “Formal Semantics and Efficient Analysis of Timed Rebeca in Real-Time
Maude”, Sci. Comput. Program., vol. 113, pp. 85-118, 2015.

M.-J. Izadi, “An Actor Based Model for Modeling and Verification of Real-Time
Systems”, Master’s thesis, University of Tehran, School of Electrical and Com-
puter Engineering, Iran, 2010.

M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer, “Modeling and Verification
of Reactive Systems using Rebeca”, Fundam. Inform., vol. 63, no. 4, pp. 385410,
2004.

M. Sirjani, F. S. de Boer, and A. Movaghar-Rahimabadi, “Modular Verification
of a Component-Based Actor Language”, J. UCS, vol. 11, no. 10, pp. 1695-1717,
2005.

C. Hewitt, “Description and Theoretical Analysis (Using Schemata) of PLAN-
NER: A Language for Proving Theorems and Manipulating Models in a Robot”,

Department of Computer Science, MIT, MIT Artificial Intelligence Technical
Report 258, Apr. 1972.

G. A. Agha, ACTORS - A Model of Concurrent Computation in Distributed
Systems, ser. MI'T Press series in artificial intelligence. MIT Press, 1990.

M. Sirjani and M. M. Jaghoori, “Ten Years of Analyzing Actors: Rebeca Ex-
perience”, in Formal Modeling: Actors, Open Systems, Biological Systems, 2011,
pp- 20-56.

R. Alur and D. L. Dill, “A Theory of Timed Automata”, Theoretical Computer
Science, vol. 126, no. 2, pp. 183-235, 1994.

P. C. Olveczky and J. Meseguer, “Semantics and Pragmatics of Real-Time Maude”,
Higher-Order and Symbolic Computation, vol. 20, no. 1-2, pp. 161-196, 2007.

W. Yi, “CCS + Time = An Interleaving Model for Real Time Systems”, in
ICALP, 1991, pp. 217-228.

BIBLIOGRAPHY 101

[14]

[15]

[16]

[17]

[18]

[19]

20]

[21]
22]

23]

[24]
[25]

[26]

S. Ren and G. Agha, “RTsynchronizer: Language Support for Real-Time Specifi-
cations in Distributed Systems”, in Workshop on Languages, Compilers, € Tools
for Real-Time Systems, R. Gerber and T. J. Marlowe, Eds., ACM, 1995, pp. 50—
59.

F.S. de Boer, T. Chothia, and M. M. Jaghoori, “Modular Schedulability Analysis
of Concurrent Objects in Creol”, in Fundamentals of Software Engineering, Third
IPM International Conference, FSEN 2009, Kish Island, Iran, April 15-17, 2009,
Revised Selected Papers, F. Arbab and M. Sirjani, Eds., ser. Lecture Notes in
Computer Science, vol. 5961, Springer, 2009, pp. 212-227.

M. M. Jaghoori, F. S. de Boer, and M. Sirjani, “Task Scheduling in Rebeca”, in
NWPT, 2007, pp. 16-18.

E. Albert, F. S. de Boer, R. Hahnle, E. B. Johnsen, R. Schlatte, S. L. T. Tarifa,
and P. Y. H. Wong, “Formal Modeling and Analysis of Resource Management for
Cloud Architectures: An Industrial Case Study Using Real-Time ABS”, Service
Oriented Computing and Applications, vol. 8, no. 4, pp. 323-339, 2014.

E. Khamespanah, Z. Sabahi-Kaviani, R. Khosravi, M. Sirjani, and M. Izadi,
“Timed-Rebeca Schedulability and Deadlock-Freedom Analysis Using Floating-
Time Transition System”, in Proceedings of the 2nd edition on Programming sys-
tems, languages and applications based on actors, agents, and decentralized con-
trol abstractions, AGERE! 2012, October 21-22, 2012, Tucson, Arizona, USA,
G. A. Agha, R. H. Bordini, A. Marron, and A. Ricci, Eds., ACM, 2012, pp. 23—
34.

7. Sabahi-Kaviani, R. Khosravi, M. Sirjani, P. C. Olveczky, and E. Khames-
panah, “Formal Semantics and Analysis of Timed Rebeca in Real-Time Maude”,
in FTSCS, C. Artho and P. C. Olveczky, Eds., ser. Communications in Computer
and Information Science, vol. 419, Springer, 2013, pp. 178-194.

J. Armstrong and E. T. Ab, “The Development of Erlang”, in In Proceedings
of the ACM SIGPLAN International Conference on Functional Programming,
ACM Press, 1997, pp. 196-203.

Erlang programming language homepage, http:/ /www.erlang.org.

L. Aceto, M. Cimini, A. Ing6lfsdottir, A. H. Reynisson, S. H. Sigurdarson, and M.
Sirjani, “Modelling and Simulation of Asynchronous Real-Time Systems using
Timed Rebeca”, in FOCLASA, M. R. Mousavi and A. Ravara, Eds., ser. EPTCS,
vol. 58, 2011, pp. 1-19.

L.-A. Fredlund and H. Svensson, “McErlang: A Model Checker for a Distributed
Functional Programming Language”, in /CFP, R. Hinze and N. Ramsey, Eds.,
ACM, 2007, pp. 125-136.

Mcerlang homepage, https://babel.ls.fi.upm.es/trac/McErlang)/ .

G. Agha and C. Hewitt, “Actors: A Conceptual Foundation for Concurrent
Object-Oriented Programming”, in Research Directions in Object-Oriented Pro-
grammang, 1987, pp. 49-74.

E. Khamespanah, M. Sirjani, Z. Sabahi-Kaviani, R. Khosravi, and M. Izadi,
“Timed Rebeca Schedulability and Deadlock Freedom Analysis Using Bounded

Floating Time Transition System”, Science of Computer Programming, vol. 98,
pp. 184-204, 2015.

102

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

37]

38

BIBLIOGRAPHY

K. G. Larsen, P. Pettersson, and W. Yi, “Diagnostic Model-Checking for Real-
Time Systems”, in Hybrid Systems, 1995, pp. 575-586.

J. Bengtsson, W. O. D. Griffioen, K. J. Kristoffersen, K. G. Larsen, F. Larsson,
P. Pettersson, and W. Yi, “Verification of an Audio Protocol with Bus Collision
Using UPPAAL”, in Computer Aided Verification, 8th International Conference,
CAV 96, New Brunswick, NJ, USA, July 31 - August 3, 1996, Proceedings,
R. Alur and T. A. Henzinger, Eds., ser. Lecture Notes in Computer Science,
vol. 1102, Springer, 1996, pp. 244-256.

M. Lindahl, P. Pettersson, and W. Yi, “Formal Design and Analysis of a Gear
Controller”, STTT, vol. 3, no. 3, pp. 353-368, 2001.

J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi, “UPPAAL - a
Tool Suite for Automatic Verification of Real-Time Systems”, in Hybrid Systems
III: Verification and Control, Proceedings of the DIMACS/SYCON Workshop,
October 22-25, 1995, Ruttgers University, New Brunswick, NJ, USA, R. Alur,
T. A. Henzinger, and E. D. Sontag, Eds., ser. Lecture Notes in Computer Science,
vol. 1066, Springer, 1995, pp. 232-243.

L. Lamport, “Real-Time Model Checking Is Really Simple”, in CHARME, D.
Borrione and W. J. Paul, Eds., ser. Lecture Notes in Computer Science, vol. 3725,
Springer, 2005, pp. 162-175.

J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi, “Partial Order Reductions for
Timed Systems”, in CONCUR, D. Sangiorgi and R. de Simone, Eds., ser. Lecture
Notes in Computer Science, vol. 1466, Springer, 1998, pp. 485-500.

M. Minea, “Partial Order Reduction for Model Checking of Timed Automata”, in
CONCUR, J. C. M. Baeten and S. Mauw, Eds., ser. Lecture Notes in Computer
Science, vol. 1664, Springer, 1999, pp. 431-446.

J. Hakansson and P. Pettersson, “Partial Order Reduction for Verification of
Real-Time Components”, in FORMATS, J.-F. Raskin and P. S. Thiagarajan,
Eds., ser. Lecture Notes in Computer Science, vol. 4763, Springer, 2007, pp. 211—
226.

P. C. Olveczky, “Semantics, Simulation, and Formal Analysis of Modeling Lan-
guages for Embedded Systems in Real-Time Maude”, in Formal Modeling: Actors,
Open Systems, Biological Systems - FEssays Dedicated to Carolyn Talcott on the
Occasion of Her 70th Birthday, G. Agha, O. Danvy, and J. Meseguer, Eds., ser.

Lecture Notes in Computer Science, vol. 7000, Springer, 2011, pp. 368—402.

E. Khamespanah, R. Khosravi, and M. Sirjani, “An Efficient TCTL Model Check-
ing Algorithm and a Reduction Technique for Verification of Timed Actor Mod-
els”, Sci. Comput. Program., vol. 153, pp. 1-29, 2018.

T. A. Henzinger, Z. Manna, and A. Pnueli, “Timed transition systems”, in Real-
Tvme: Theory in Practice, REX Workshop, Mook, The Netherlands, June 3-
7, 1991, Proceedings, J. W. de Bakker, C. Huizing, W. P. de Roever, and G.
Rozenberg, Eds., ser. Lecture Notes in Computer Science, vol. 600, Springer,
1991, pp. 226-251.

D. Lepri, E. Abraham, and P. C. Olveczky, “Timed CTL Model Checking in
Real-Time Maude”, in WRLA, 2012, pp. 182-200.

BIBLIOGRAPHY 103

[39]

[40]
[41]

[42]

[43]

|44]

[45]

|46]
[47]

48]

[49]

[50]
[51]

[52]

[53]

[54]

M. Archer, H. Lim, N. A. Lynch, S. Mitra, and S. Umeno, “Specifying and
Proving Properties of Timed I/O Automata in the TIOA Toolkit”, in 4th ACM
& IEEE International Conference on Formal Methods and Models for Co-Design
(MEMOCODE 2006), 27-29 July 2006, Embassy Suites, Napa, California, USA,
IEEE Computer Society, 2006, pp. 129-138.

C. B. Earle and L.-A. Fredlund, “Verification of Timed Erlang Programs Using
McErlang”, in FMOODS/FORTE, 2012, pp. 251-267.

E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan, “Quantitative Tem-
poral Reasoning”, 4, vol. 4, 1992, pp. 331-352.

S. V. A. Campos, E. M. Clarke, W. R. Marrero, M. Minea, and H. Hiraishi,
“Computing Quantitative Characteristics of Finite-State Real-Time Systems”,
in RTSS, IEEE Computer Society, 1994, pp. 266-270.

F. Laroussinie, P. Schnoebelen, and M. Turuani, “On the Expressivity and Com-
plexity of Quantitative Branching-Time Temporal Logics”, Theoretical Computer
Science, vol. 297, no. 1-3, pp. 297-315, 2003.

S. V. Campos and E. M. Clarke, “Theories and Experiences for Real-Time System
Development”, in, T. Rus and C. Rattray, Eds., 1994, ch. Real-time Symbolic
Model Checking for Discrete Time Models, pp. 129-145.

F. Laroussinie, N. Markey, and P. Schnoebelen, “Efficient Timed Model Checking
for Discrete-Time Systems”, Theoretical Computer Science, vol. 353, no. 1-3,
pp. 249-271, 2006.

C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press, 2008, pp. I-
XVII, 1-975.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Al-
gorithms (3. ed.) MIT Press, 2009.

A. Sheibanyrad, A. Greiner, and I. M. Panades, “Multisynchronous and Fully
Asynchronous NoCs for GALS Architectures”, IEEE Design € Test of Comput-
ers, vol. 25, no. 6, pp. 572-580, 2008.

7. Sharifi, M. Mosaffa, S. Mohammadi, and M. Sirjani, “Functional and Perfor-
mance Analysis of Network-on-Chips Using Actor-Based Modeling and Formal
Verification”, ECEASST, vol. 66, 2013.

Apache hadoop home page, http://hadoop.apache.org.

J. Dean and S. Ghemawat, “Mapreduce: Simplified Data Processing on Large
Clusters”, Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.

T. White, Hadoop - The Definitive Guide: Storage and Analysis at Internet Scale
(3. ed., revised and updated). O'Reilly, 2012.

L. Linderman, K. Mechitov, and B. F. Spencer, “Tinyos-Based Real-Time Wire-
less Data Acquisition Framework for Structural Health Monitoring and Control”,
Structural Control and Health Monitoring, 2012.

L. Nachman, R. Kling, R. Adler, J. Huang, and V. Hummel, “The Intel Mote
Platform: A Bluetooth-Based Sensor Network for Industrial Monitoring”, in Pro-
ceedings of the Fourth International Symposium on Information Processing in
Sensor Networks, IPSN 2005, April 25-27, 2005, UCLA, Los Angeles, Califor-
nia, USA, IEEE, 2005, pp. 437—-442.

104

[55]

[56]
[57]
[58]

[59]

[60]

[61]

62]
(63]

|64]

[65]

[66]

167]

BIBLIOGRAPHY

E. Khamespanah, K. Mechitov, M. Sirjani, and G. A. Agha, “Schedulability Anal-
ysis of Distributed Real-Time Sensor Network Applications Using Actor-Based
Model Checking”, in Model Checking Software - 23rd International Symposium,
SPIN 2016, Co-located with ETAPS 2016, Eindhoven, The Netherlands, April
7-8, 2016, Proceedings, D. Bosnacki and A. Wijs, Eds., ser. Lecture Notes in
Computer Science, vol. 9641, Springer, 2016, pp. 165—181.

B. Meyer, Object-Oriented Software Construction, 2nd Edition. Prentice-Hall,
1997.

M. Nykénen and E. Ukkonen, “The Exact Path Length Problem”, J. Algorithms,
vol. 42, no. 1, pp. 41-53, 2002.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

E. Khamespanah, M. Sirjani, M. Viswanathan, and R. Khosravi, “Floating Time

Transition System: More Efficient Analysis of Timed Actors”, in Formal Aspects

of Component Software - 12th International Conference, FACS 2015, Niterdi,

Brazil, October 14-16, 2015, Revised Selected Papers, C. Braga and P. C. Olveczky,
Eds., ser. Lecture Notes in Computer Science, vol. 9539, Springer, 2015, pp. 237—

255.

G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott, “A Foundation for Actor

Computation”,

C. Sprenger, “A Verified Model Checker for the Modal p-Calculus in Coq”, in
Tools and Algorithms for Construction and Analysis of Systems, 4th Interna-
tional Conference, TACAS 98, Held as Part of the European Joint Conferences
on the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28
- April 4, 1998, Proceedings, B. Steffen, Ed., ser. Lecture Notes in Computer
Science, vol. 1384, Springer, 1998, pp. 167-183.

H. Leifsson, “Analyzing Different Scheduling Policies in Natjam Using Timed
Rebeca”’, Master’s thesis.

7. Sharifi, “Formal Modeling and Analysis of Network-on-Chip”, Master’s thesis,
University of Tehran, School of Electrical and Computer Engineering, Iran, 2013.

M. Sirjani, E. Khamespanah, K. Mechitov, and G. Agha, “A Compositional
Approach for Modeling and Timing Analysis of Wireless Sensor and Actuator
Networks”, SIGBED Review, vol. 14, no. 3, pp. 49-56, 2017.

G. Lipari and G. Buttazzo, “Schedulability Analysis of Periodic and Aperiodic
Tasks with Resource Constraints”, Journal of Systems Architecture, vol. 46, no.
4, pp. 327-338, 2000.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System Archi-
tecture Directions for Networked Sensors”, SIGPLAN Notices, vol. 35, pp. 93—
104, 11 Nov. 2000.

A. H. Buss, “Modeling with Event Graphs”, in Proceedings of the 28th conference
on Winter simulation, WSC' 1996, Coronado, CA, USA, December 8-11, 1996,
J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain, Eds., IEEE
Computer Society, 1996, pp. 153-160.

BIBLIOGRAPHY 105

[68]

[69]

[70]

71

[72]

73]
[74]

[75]

A. El-Hoiydi, “Spatial TDMA and CSMA with Preamble Sampling for Low
Power ad-hoc Wireless Sensor Networks”, in Proceedings of the Seventh IEEE
Symposium on Computers and Communications (ISCC 2002), 1-4 July 2002,
Taormina, Italy, IEEE Computer Society, 2002, pp. 685—-692.

J. Polastre, J. L. Hill, and D. E. Culler, “Versatile Low Power Media Access for
Wireless Sensor Networks”, in Proceedings of the 2nd International Conference
on Embedded Networked Sensor Systems, SenSys 2004, Baltimore, MD, USA,
November 3-5, 2004, J. A. Stankovic, A. Arora, and R. Govindan, Eds., ACM,
2004, pp. 95-107.

[linois SHM Services Toolsuite, http://shm.cs.illinois . edu/software.
html.

B. F. Spencer Jr., H. Jo, K. Mechitov, J. Li, S.-H. Sim, R. Kim, S. Cho, L.
Linderman, P. Moinzadeh, R. Giles, and G. Agha, “Recent Advances in Wireless
Smart Sensors for Multi-Scale Monitoring and Control of Civil Infrastructure”,
Journal of Civil Structural Health Monitoring, pp. 1-25, 2015.

J. Dean and S. Ghemawat, “Mapreduce: Simplified Data Processing on Large
Clusters”, in 6th Symposium on Operating System Design and Implementation
(OSDI 2004), San Francisco, California, USA, December 6-8, 2004, E. A. Brewer
and P. Chen, Eds., USENIX Association, 2004, pp. 137-150.

[. T. R. for Semiconductors-ITRS, http://www.manmaker . com/manual, 2011.

C. Baier, B. R. Haverkort, H. Hermanns, and J. Katoen, “Performance Evalua-
tion and Model Checking Join Forces”, Commun. ACM, vol. 53, no. 9, pp. 76-85,
2010.

J. Hu and R. Marculescu, “Dyad: Smart Routing for Networks-on-Chip”, in Pro-
ceedings of the 41th Design Automation Conference, DAC 2004, San Diego, CA,
USA, June 7-11, 2004, S. Malik, L. Fix, and A. B. Kahng, Eds., ACM, 2004,
pp- 260-263.

http://shm.cs.illinois.edu/software.html
http://shm.cs.illinois.edu/software.html
http://www.manmaker.com/manual

School of Computer Science
Reykjavik University
Menntavegur 1

101 Reykjavik, Iceland

Tel. 4354 599 6200

Fax +354 599 6201

WWW.Tru.1is

www.ru.is

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Timed Rebeca as a Modeling Language
	Previous Analysis Techniques of Timed Rebeca Models
	Thesis Overview and Contributions

	Timed Rebeca
	Introduction to Timed Rebeca
	Standard Semantics of Timed Rebeca
	Abstract Syntax of Timed Rebeca
	Fine-Grained Semantics of Timed Rebeca
	Finite Transition Systems and Zeno Behavior

	Experimental Results
	Ticket Service System
	A Toxic Gas Sensing and Rescue System
	The IEEE 802.11 RTS/CTS Collision Avoidance Protocol
	Network on Chip (NoC)
	Hadoop YARN Scheduler
	WSAN Applications

	TCTL Model Checking for Timed Rebeca
	Timed Model Checking of Discrete Time Systems against TCTL properties
	Improving the TCTL, Model Checking Algorithm
	Calculating Sat(E(Uc))
	Calculating Sat(E(Uc))

	Case Studies and Experimental Results
	Network on Chip (NoC)
	Hadoop YARN Scheduler
	Ticket Service
	WSAN Applications

	State Space Reduction by Folding Transitions
	Folding Instantaneous Transitions
	Complete TCTL Model Checking of DTGs
	Model Checking of the FTSs of Timed Rebeca Models
	Case Studies and Experimental Results
	Network on Chip (NoC)
	Hadoop YARN Scheduler
	Ticket Service
	WSAN Applications

	Big-Step Semantics of Timed Rebeca
	Semantics of Timed Rebeca in FTTS
	An Action-Based Weak Bisimulation between the Two Semantics
	Comparing to the Other Reduction Technique
	Experimental Results
	Hadoop YARN Scheduler
	WSAN Applications
	Ticket Service
	The IEEE 802.11 RTS/CTS Collision Avoidance Protocol

	Case Studies
	Analyzing Wireless Sensor and Actuator Networks
	Preliminaries: Event Graphs
	The Actor Model of WSAN Applications
	Schedulability Analysis of a Stand-Alone Node
	Schedulability Analysis of Multi-Node Model with a Distributed Communication Protocol
	Generalization of the Approach for Any WSAN Application
	Experimental Results
	Finding the Maximum Sampling Rate
	Real-World Applications

	Analyzing Different Scheduling Policies in YARN
	Functional and Performance Analysis of NoCs
	GALS NOC Model in Timed Rebeca
	Experimental Results

	Previous Work on Analyzing Timed Rebeca
	Semantics of Timed Rebeca in Timed Automata
	Rebec-Behavior Automaton
	Rebec-Bag Automaton
	After-Handler Automaton
	Analysis of Network of Timed Automata

	Semantics of Timed Rebeca in Realtime Maude
	Representing Timed Rebeca Models in Realtime Maude
	Valuations
	Messages and Message Lists
	Representing Message Servers
	Messages in Transit

	Instantaneous Dynamics
	Executing Immediate Statements
	Delay

	Timed Behavior

	Experimental Results
	Ticket Service System
	A Toxic Gas Sensing and Rescue System
	The IEEE 802.11 RTS/CTS Collision Avoidance Protocol

	Conclusion and Future Work
	Bibliography

