14 research outputs found

    Combining rough and fuzzy sets for feature selection

    Get PDF

    Effect of nano black rice husk ash on the chemical and physical properties of porous concrete pavement

    Get PDF
    Black rice husk is a waste from this agriculture industry. It has been found that majority inorganic element in rice husk is silica. In this study, the effect of Nano from black rice husk ash (BRHA) on the chemical and physical properties of concrete pavement was investigated. The BRHA produced from uncontrolled burning at rice factory was taken. It was then been ground using laboratory mill with steel balls and steel rods. Four different grinding grades of BRHA were examined. A rice husk ash dosage of 10% by weight of binder was used throughout the experiments. The chemical and physical properties of the Nano BRHA mixtures were evaluated using fineness test, X-ray Fluorescence spectrometer (XRF) and X-ray diffraction (XRD). In addition, the compressive strength test was used to evaluate the performance of porous concrete pavement. Generally, the results show that the optimum grinding time was 63 hours. The result also indicated that the use of Nano black rice husk ash ground for 63hours produced concrete with good strengt

    EXPLOITING HIGHER ORDER UNCERTAINTY IN IMAGE ANALYSIS

    Get PDF
    Soft computing is a group of methodologies that works synergistically to provide flexible information processing capability for handling real-life ambiguous situations. Its aim is to exploit the tolerance for imprecision, uncertainty, approximate reasoning, and partial truth in order to achieve tractability, robustness, and low-cost solutions. Soft computing methodologies (involving fuzzy sets, neural networks, genetic algorithms, and rough sets) have been successfully employed in various image processing tasks including image segmentation, enhancement and classification, both individually or in combination with other soft computing techniques. The reason of such success has its motivation in the fact that soft computing techniques provide a powerful tools to describe uncertainty, naturally embedded in images, which can be exploited in various image processing tasks. The main contribution of this thesis is to present tools for handling uncertainty by means of a rough-fuzzy framework for exploiting feature level uncertainty. The first contribution is the definition of a general framework based on the hybridization of rough and fuzzy sets, along with a new operator called RF-product, as an effective solution to some problems in image analysis. The second and third contributions are devoted to prove the effectiveness of the proposed framework, by presenting a compression method based on vector quantization and its compression capabilities and an HSV color image segmentation technique

    Composed Fuzzy Rough Set and Its Applications in Fuzzy RSAR

    No full text

    Construcción QSAR de redes complejas de compuestos de interés en Química Farmacéutica, Microbiología y Parasitología

    Get PDF
    El diseño para la búsqueda y desarrollo de fármacos eficaces para el tratamiento de estas enfermedades, que supriman la eliminación o la degeneración celular respectivamente, es una de las líneas de investigación más importantes dentro de la química farmacéutica. En esto entra el diseño de fármacos; el diseño de fármacos está dedicado al desarrollo de modelos matemáticos para predecir propiedades de interés para una gran variedad de sistemas químicos incluyendo moléculas de bajo peso molecular, polímeros, biopolímeros, sistemas heterogéneos, formulaciones farmacéuticas, conglomerados de moléculas e iones, materiales, nano-estructuras y otros. Este tipo de predicciones no pretenden sustituir las técnicas experimentales sino complementar las mismas ayudando a obtener nuevas moléculas activas con mayor probabilidad de éxito, con la ventaja que ello supone en términos de ahorro de tiempo, recursos materiales, y muy importante: el refinamiento y reducción en el uso de animales de laboratorio. Esta metodología se basa en el uso de cálculos por ordenador y en las nuevas tecnologías de la informática. Las cuales pueden ser usadas: Para moléculas pequeñas: a) Estudios de relación cuantitativa estructura molecular-actividad farmacológica (QSAR) y de estructura molecular propiedades toxicológicas y eco-toxicológicas incluyendo mutagenicidad e carcinogénesis (QSTR). b) Predicción de propiedades químicas y fisicoquímicas de moléculas. Estudios de relación estructura molecular y propiedades de absorción, distribución, metabolismo y eliminación (ADME). c) Predicción de mecanismos de acción biológica de moléculas y evaluación in sílico de alta eficacia para grandes bases de datos (virtual HTS). Para macromoléculas: a) Estudios de interacción fármaco-receptor (neuronas). b) Bioinformática aplicada a estudios de relación secuencia-función y propiedades estructurales de ácidos nucleicos y proteínas. c) Búsqueda de nuevas dianas terapéuticas y “sitio activo” a partir de datos de Genómica, Proteómica. d) Búsqueda de biomarcadores para diagnóstico de enfermedades o como indicadores de contaminaciones. e) Predicción de propiedades fisicoquímicas de polímeros sintéticos, biopolímeros, materiales y nano-estructuras. f) Predicción, diseño, y optimización de enzimas mutadas para procesos biotecnológicos

    Computational fluid dynamics indicators to improve cardiovascular pathologies

    Get PDF
    In recent years, the study of computational hemodynamics within anatomically complex vascular regions has generated great interest among clinicians. The progress in computational fluid dynamics, image processing and high-performance computing haveallowed us to identify the candidate vascular regions for the appearance of cardiovascular diseases and to predict how this disease may evolve. Medicine currently uses a paradigm called diagnosis. In this thesis we attempt to introduce into medicine the predictive paradigm that has been used in engineering for many years. The objective of this thesis is therefore to develop predictive models based on diagnostic indicators for cardiovascular pathologies. We try to predict the evolution of aortic abdominal aneurysm, aortic coarctation and coronary artery disease in a personalized way for each patient. To understand how the cardiovascular pathology will evolve and when it will become a health risk, it is necessary to develop new technologies by merging medical imaging and computational science. We propose diagnostic indicators that can improve the diagnosis and predict the evolution of the disease more efficiently than the methods used until now. In particular, a new methodology for computing diagnostic indicators based on computational hemodynamics and medical imaging is proposed. We have worked with data of anonymous patients to create real predictive technology that will allow us to continue advancing in personalized medicine and generate more sustainable health systems. However, our final aim is to achieve an impact at a clinical level. Several groups have tried to create predictive models for cardiovascular pathologies, but they have not yet begun to use them in clinical practice. Our objective is to go further and obtain predictive variables to be used practically in the clinical field. It is to be hoped that in the future extremely precise databases of all of our anatomy and physiology will be available to doctors. These data can be used for predictive models to improve diagnosis or to improve therapies or personalized treatments.En els últims anys, l'estudi de l'hemodinàmica computacional en regions vasculars anatòmicament complexes ha generat un gran interès entre els clínics. El progrés obtingut en la dinàmica de fluids computacional, en el processament d'imatges i en la computació d'alt rendiment ha permès identificar regions vasculars on poden aparèixer malalties cardiovasculars, així com predir-ne l'evolució. Actualment, la medicina utilitza un paradigma anomenat diagnòstic. En aquesta tesi s'intenta introduir en la medicina el paradigma predictiu utilitzat des de fa molts anys en l'enginyeria. Per tant, aquesta tesi té com a objectiu desenvolupar models predictius basats en indicadors de diagnòstic de patologies cardiovasculars. Tractem de predir l'evolució de l'aneurisma d'aorta abdominal, la coartació aòrtica i la malaltia coronària de forma personalitzada per a cada pacient. Per entendre com la patologia cardiovascular evolucionarà i quan suposarà un risc per a la salut, cal desenvolupar noves tecnologies mitjançant la combinació de les imatges mèdiques i la ciència computacional. Proposem uns indicadors que poden millorar el diagnòstic i predir l'evolució de la malaltia de manera més eficient que els mètodes utilitzats fins ara. En particular, es proposa una nova metodologia per al càlcul dels indicadors de diagnòstic basada en l'hemodinàmica computacional i les imatges mèdiques. Hem treballat amb dades de pacients anònims per crear una tecnologia predictiva real que ens permetrà seguir avançant en la medicina personalitzada i generar sistemes de salut més sostenibles. Però el nostre objectiu final és aconseguir un impacte en l¿àmbit clínic. Diversos grups han tractat de crear models predictius per a les patologies cardiovasculars, però encara no han començat a utilitzar-les en la pràctica clínica. El nostre objectiu és anar més enllà i obtenir variables predictives que es puguin utilitzar de forma pràctica en el camp clínic. Es pot preveure que en el futur tots els metges disposaran de bases de dades molt precises de tota la nostra anatomia i fisiologia. Aquestes dades es poden utilitzar en els models predictius per millorar el diagnòstic o per millorar teràpies o tractaments personalitzats.Postprint (published version
    corecore