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Abstract

Rough set theory (RST) has enjoyed an enormous amount of attention in recent years and has

been applied to many real-world problems including data mining, pattern recognition, and

intelligent control. Much research has recently been carried out in respect of both the development

of the underlying theory and the application to new problem domains. This paper attempts to

summarize the advances in RST, its extensions, and their applications. It also identifies important

areas which require further investigation. Typical example application domains are examined

which demonstrate the success of the application of RST to a wide variety of areas and disciplines,

and which also exhibit the strengths and limitations of the respective underlying approaches.

1 Introduction

The ability to deal effectively with insufficient or imperfect knowledge is a central motivating

factor in much of the research in the field of computational intelligence. In the areas of machine

learning, data mining, pattern recognition, and intelligent control, the ability to handle such

knowledge is of primary importance both in terms of theoretical advancement and practical

applications. The work in the area of rough set theory (RST; Pawlak, 1982), Pawlak (1991) offers

perhaps one of the most distinct and recent approaches in this respect.

Such is the worldwide nature of the attention that RST has attracted since its inception

(Komorowski et al., 1999) that much research and development has been carried out not only in

applying the theory to many and varied problem domains, but also to extending it theoretically.

This has resulted in a significant breadth and depth of work in the area. RST (Pawlak, 1982)

has been used as a tool to discover data dependencies and to reduce the number of attributes

contained in a data set using the data alone, requiring no additional information (Pawlak, 1982;

Pawlak, 1991; Polkowski & Skowron, 1998; Skowron et al., 2002). Since its inception, RST has

been successfully utilized to devise mathematically sound and often computationally efficient

techniques for addressing problems such as knowledge discovery from data, data reduction,

data significance evaluation, decision rule generation, and data-driven inference interpretation

(Pawlak, 2003). Given a data set with discretized attribute values, it is possible to find a subset

(termed reduct) of the original attributes using RST that are most informative; all other attributes

can be removed from the data set with minimal information loss. RST possesses many features in

common (to a certain extent) with the Dempster–Shafer theory of evidence (Shafer, 1976) and

fuzzy set theory (FST; Zadeh, 1965). It works by making use of the granular structure of the data

only. This is a major difference when compared with the Dempster–Shafer theory and fuzzy set

theory, which require probability assignments and membership values, respectively. The use of

only the data and their granularity ensures that no other assumptions are made about the data.

This approach has led to some researchers suggesting that this is a disadvantage rather than an



advantage of RST (Komorowski et al., 1999) as other numerical and contextual aspects are

effectively ignored. However, in disregarding such supplemental information, model assumptions

can be minimized.

Formally, a rough set is the approximation of a vague concept (set) by a pair of precise

concepts, called lower and upper approximations, which are a classification of the domain of

interest into disjoint categories. The lower approximation is a description of the domain objects

which are known with certainty to belong to the concept of interest, whereas the upper approx-

imation is a description of the objects which possibly belong to the concept. The approximations

are constructed with regard to a particular subset of attributes or features.

One of the primary drawbacks of RST lies in its inability to deal with real world data. Owing

mainly to the granular approach that RST uses to handle data, and the strict structure of

equivalence imposed, it does not allow any flexibility when dealing with measurement noise or

imperfection that is prevalent in real world data. However, most data sets contain real-valued

features and so it becomes necessary to perform a discretization step before employing RST for

knowledge discovery. Take for instance a weather forecasting system which records a number of

meteorological attributes, with one in particular that might be average rainfall. In reality, this is a

continuous and real-valued measurement. However, in order to apply RST to such a problem, this

attribute must be discretized with a set of labels such as light, medium, and heavy. This imposes

subjective human judgement on what is otherwise an objective measurement.

The deficiency of RST in handling real-valued data has resulted over the years in the devel-

opment of a number of extensions which aim to address this problem. There are two areas of RST

which have been considerably exploited in order to achieve this: modification of the equivalence

relation, and manipulation of the subset operator. These are the primary operations of RST and it

is unsurprising, therefore, that a number of extensions have been proposed with regard to these

areas. The tolerance rough set model (TRSM; Skowron & Stepaniuk, 1994) is a typical example of

an attempt to address this problem through the modification of the equivalence relation. Variable

precision rough sets (VPRS; Ziarko, 1993) allow the relaxation of the subset operator of tradi-

tional RST. This approach was originally formulated to analyse and identify data patterns which

represent statistical trends.

In addition to the use of alternative equivalence relations and modification of the subset

operator, there is also a third aspect of RST which has been exploited, that of the use of the

information contained in the boundary region, or region of uncertainty between the lower and

upper approximations (Hu et al., 2007a; Mac Parthaláin et al., 2007). This information, although

uncertain, can be useful in maximizing the performance of RST without changing the underlying

model or modifying the subset operators.

As well as directly extending RST, it has also been hybridized with other soft computing

methods such as fuzzy sets (Zadeh, 1965), genetic algorithms (GAs), neural networks, and sta-

tistical methods such as principal component analysis (PCA; Devijver & Kittler, 1982), etc. Such

hybridization has highlighted the value of employing RST, as its use often results in methods

which outperform such methods individually. In particular, the hybridization of RST with FST

(Zadeh, 1965) to form fuzzy-RST (Dubois & Prade, 1992) is perhaps the most important of all.

Fuzzy-RST (Dubois & Prade, 1992) attempts to take advantage of the complementary nature of

fuzzy sets and rough sets. The significance of this work is reflected in the level of research carried

out in this area and also to the number of applications of fuzzy-RST.

This paper attempts to offer a brief overview of the basic concepts which underpin RST. In

particular, the more recent extensions of RST are examined, as well as a look at some repre-

sentative theoretical application areas such as classification, clustering, and feature selection.

These theoretical applications are supported by three successful practical application examples in

breast cancer risk assessment, document classification, and gene expression, respectively.

The remainder of this paper is organized as follows. In Section 2, the preliminary concepts and

theoretical foundation of RST are outlined. Various rough set extensions (both past and recent)

such as tolerance rough sets, VPRS, dominance-based rough sets, vaguely quantified rough sets,
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and others are examined in Section 3. The hybridization of RST with other techniques is discussed

in Section 4, with particular emphasis on fuzzy-rough sets. A range of both theoretical and real

world example applications with regard to RST, and the above-mentioned extensions are dis-

cussed in Section 5. The final section concludes the paper and discusses identified important

further work.

2 Rough sets

In this section, the basic notions, definitions, and operations of RST are described. The upper and

lower approximation concepts, as well as how these can be used to minimize data, are also

explored. A small example is used to demonstrate all of the concepts described and show the

individual steps involved in employing RST. Heuristics for discovering reducts, and search

techniques are also discussed.

2.1 Basic concepts and theoretical background

Central to RST is the concept of indiscernibility. Let I ¼ ðU;AÞ be an information system, where

U is a non-empty set of finite objects (the universe of discourse) and A is a non-empty finite set of

attributes such that a : U! Va for every a 2 A. Va is the set of values that attribute a may take.

For any P � A, there is an associated equivalence relation IND(P):

INDðPÞ ¼ fðx; yÞ 2 U2 j 8a 2 P; aðxÞ ¼ aðyÞg ð1Þ

The partition of U, generated by IND(P), is denoted by U=INDðPÞ and can be defined as

follows:

U=INDðPÞ ¼ �fa 2 P : U=INDðfagÞg ð2Þ
where,

U=INDðfagÞ ¼ ffx j aðxÞ ¼ b; x 2 Ug j b 2 Vag ð3Þ
and,

A� B ¼ fX \ Y : 8X 2 A;8Y 2 B;X \ Y 6¼ yg ð4Þ

If (x, y)AIND(P), then x and y are indiscernible by attributes from P. The equivalence classes of

the P-indiscernibility relation are denoted by [x]P.

Let X � U. X can be approximated using only the information contained within P by con-

structing the P-lower and P-upper approximations of X:

PX ¼ fxj ½x�P � Xg ð5Þ

PX ¼ fxj ½x�P \ X 6¼ yg ð6Þ

Let P and Q be equivalence relations over U; then the positive, negative, and boundary regions

are defined by:

POSPðQÞ ¼
[

X2U=Q
PX ð7Þ

NEGPðQÞ ¼ U�
[

X2U=Q
PX ð8Þ

BNDPðQÞ ¼
[

X2U=Q
PX �

[
X2U=Q

PX ð9Þ

The positive region contains all objects of U that can be classified to classes of U=Q using the

information in attribute P. The boundary region, BNDP(Q), is the set of objects that can possibly,
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but not certainly, be classified in this way. The negative region, NEGP(Q), is the set of objects that

cannot be classified to classes of U=Q.

2.1.1 Example

To illustrate the above concepts, a short example in the form of an information system is

employed. There are four conditional attributes: a, b, c, and d, and a single decisional attribute, e.

Using the indiscernibilty concept, the data in Table 1 can be partitioned according to the

outcome. Va is the set of values that attribute a may take (in this case L, M, or N). In a decision

system, A ¼ fC [Dg where C denotes the set of condition attributes and D denotes the set of

decision attribute(s). There are associated equivalence relations with any P � A:

INDðPÞ ¼ fðx; yÞ 2 U2 j 8a 2 P; aðxÞ ¼ aðyÞg ð10Þ

For the data in Table 1—the partition of U by the attribute a would be:

U=INDðfagÞ ¼ ff1; 3; 4g; f2; 7g; f5; 6gg ð11Þ

And for the same table using attributes {b,c}

U=INDðfb; cgÞ ¼ ff1; 4g; f2; 6; 7g; f3g; f5gg ð12Þ

This relates to the partition or grouping of the attributes where: a5L (objects 1, 3, and 4), a5M

(objects 2 and 7), and a5N (objects 5 and 6). The equivalence classes of the P-indiscernibility relation

are denoted by [x]P. Let X � U. X can be approximated using only the information within P by

formulating lower and upper approximations of X as described previously.

2.2 Rough set dependency and other measures

An important aspect of data analysis is the discovery of dependencies between attributes. From an

intuitive point of view, an attribute or a set of attributes Q can depend on a set of attributes P,

denoted by P)Q if all values of attribute(s) in Q are determined uniquely by values of attribute(s)

from P. Another way of describing this is that Q depends totally on P if a functional dependency

exists between the values of Q and P.

Referring to the example in the previous section, the rough set dependency of the set of

attributes Q on a set of attributes P can be seen. For P;Q � A, it can be said that Q depends on P

to a degree k (where kA [0,1]) denoted by P)k Q if:

k ¼ gPðQÞ ¼
jPOSPðQÞ j
jU j ð13Þ

where

POSPðQÞ ¼
[

X2U=Q
PðXÞ ð14Þ

is the positive region of the partition of the universe with respect to P (i.e. the set of all elements

that can be classified uniquely into sets of the partition U=Q in terms of P).

Table 1 Example data set

xAU a b c d - e

1 M L N N H

2 L M M M F

3 M M L N F

4 M L N L G

5 N N L M G

6 N M M M F

7 L M M L G

368 N . MAC PARTHAL Á I N AND Q . SH EN



If k51, Q is completely dependent on P, if k,1 Q is partially dependent (to a degree—k) on P and

obviously, if k50, Q is completely non-dependent on P. Calculation of the relevant dependencies of

each attribute (or group of attributes) allows the significance of that attribute (or group) to be realized.

Taking the data from the example decision table (Table 1), the degree of dependency of

attribute {e} upon the attributes {b, c} is:

gfb; cgðfegÞ ¼
jPOSfb; cgðfegÞj

jU j

¼ jf3; 5gj
jf1; 2; 3; 4; 5; 6; 7; gj ¼

2

7

For the application of feature selection, the minimization of attributes can be realized through

the comparison of equivalence relations generated by sets of attributes ({b, c} for the purpose of

the previous example). Attributes are removed such that the minimized set provides an equivalent

predictive characteristic as the initial decision feature. This minimized set is termed a reduct and

can be defined as a subset R of the conditional attribute set C such that gRðDÞ ¼ gCðDÞ.
Other measures have also been used to discover rough set reducts. For instance, in Han et al.

(2004), a feature selection method which is based on an alternative dependency measure is pre-

sented. This technique was proposed to avoid the expensive calculation of discernibility functions

or positive regions. The authors replace the traditional rough set dependency measure with the

relative dependency measure, defined as follows for an attribute subset P:

kPðDÞ ¼
jU=INDðPÞ j
jU=INDðP [DÞj ð15Þ

The authors then demonstrate that R is a reduct if and only if kR(D)5 kC(D) and that 8X�R,
kX(D) 6¼ kC(D).

In addition, the entropy measure has been used in Jensen and Shen (2004b) to discover smaller

reducts than the rough set dependency measure alone. In this approach, although entropy is used

in the search for reducts, rough set dependency is still used as a termination criterion.

2.3 Minimal reducts and reduct discovery

Amethod for reducing data, demonstrated in the previous example, identifies equivalence classes using

the available attributes. If only those attributes that preserve the indiscernibility relation are retained,

any remaining attributes are redundant since their omission will not affect classification. There are

usually many such subsets of attributes; however, those which are minimal are termed minimal

reducts. A minimal reduct is therefore a minimal set of attributes that preserves the partitioning of the

universe and hence the ability to perform the same classification as the complete data set. In practical

terms, this means that no attributes can be removed from the subset without affecting the dependency

measure. If R be the set of all reducts, then minimal reducts RminDR can be defined as:

Rmin ¼ fX : X 2 R;8Y 2 R; jX j � jY jg ð16Þ

The search for minimal reducts is, however, non-trivial (Skowron & Rauszer, 1992; Swiniarski

& Skowron, 2003), and it can be demonstrated that the number of reducts for a given information

system with n attributes can be as much as:

m

bm=2c

� �
ð17Þ

The intersection of all the sets in R is termed the core. This set contains the attributes which

cannot be eliminated without the introduction of contradictions in the data.

Many rough set approaches for dealing with data opt for search techniques which tend to

balance the need for the discovery of minimal reducts with the computational overhead involved

in searching for such reducts. The greedy hill-climbing search (Chouchoulas & Shen, 2001) is such
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an example, and although it will not guarantee minimality, it is relatively efficient in terms of time/

space complexity—(n2 1 n)/2 for a data dimensionality of n. Other search techniques which also do

not guarantee minimality but which have been employed for the rough set methodology include

backward elimination (similar to hill climbing; Dash & Liu, 1997), compound selection (Molina

et al., 2002), and stochastic selection (Brassard & Bratley, 1996). However, where the discovery of

minimal reducts is necessary, this approach may not be acceptable, and this has frustrated efforts

to apply the rough set methodology to application domains which involve large numbers of

features and relatively few objects (Komorowski et al., 1999) such as gene expression data.

There are various search techniques and heuristics, however, which can be used to alleviate this

problem. GAs are an obvious candidate for this type of problem, and indeed the works in Jensen

and Shen (2004a) and Wróblewski (1995) employ such techniques to search for minimal reducts.

Although such techniques cannot guarantee minimality, they do offer an alternative which will

avoid local minima. Problems may arise when employing GAs for situations where the number of

data attributes is high, as the amount of time taken to discover reducts may increase considerably.

Another approach similar to GAs is particle-swarm-optimization (PSO; Wang et al., 2007),

which does not require operations such as crossover and mutation, but primitive and simple

mathematical operators, and is also efficient in terms of time/space complexity. Again, PSO will

not guarantee minimality of any reducts discovered but, like GAs, allows the search to escape

local minima. Other techniques similar to GA and PSO include ACO (ant-colony-optimization;

Jensen & Shen, 2004a; Jensen & Shen, 2005; Ke et al., 2008) and simulated annealing (Jensen &

Shen, 2004a). The approach in (Zhong et al., 2001) also offers an interesting insight into the

possible heuristics for finding minimal reducts.

The only way in which to ensure minimality is to conduct a complete search of all possible

reducts. An exhaustive search is an example of a complete search, but it does not necessarily follow

that a complete search must be exhaustive. A branch-and-bound search (Narendra & Fukunaga,

1977) is typical of a complete search that is non-exhaustive, whereas others include Boolean

propositional satisfiability (SAT; Davis et al., 1962). In Jensen and Shen (2008), the authors use a

SAT solver algorithm (Davis et al., 1962) to perform a complete search for rough set reducts. The

SAT algorithm can be used to perform a complete search of the feature space and thus discover

minimal reducts. Although the SAT problem is NP – complete, in practice the technique is both

computationally efficient and can guarantee the minimality of any discovered reduct. One of the

principal drawbacks of SAT, however, is that it can only be applied to discrete data domains.

3 Rough set extensions

The simplicity of the rough set approach is undoubtedly one of the main reasons for its success.

The two areas which are most often exploited in order to extend the approach are the equivalence

relation, and the subset operator, and these aspects are therefore the subject of a number of

extensions. In addition to these extensions, there is also a third aspect of RST which has been

exploited, that of the use of the information contained in the boundary region, or region of

uncertainty. The illustration in Figure 1 shows the main RST extensions in relation to the aspects

of the theory they extend to. The approaches are discussed here with reference to their underlying

concepts as well as their respective merits and drawbacks.

3.1 Variable precision rough sets

The VPRS approach (Ziarko, 1993) extends RST by relaxing the subset operator. It was originally

proposed in order to analyse and identify data patterns which represent statistical trends rather

than those which are functional. At the heart of VPRS is the idea of allowing objects to be

classified with an error smaller than a given predefined level or threshold. The introduction of this

threshold means that, unlike the traditional rough set approach, VPRS requires additional

information other than that contained within the data.
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If X ;Y � U, then the relative classification error is defined by:

cðX ;YÞ ¼ 1� jX \ Y j
jX j ð18Þ

Note that c(X,Y)5 0 if and only if XDY. A degree of inclusion can therefore be achieved by

allowing a certain level of error, b, in classification:

X�bY3cðX ;YÞ � b; 0 � b � 0:5 ð19Þ

Thus, by replacing D with the operator Db, the b-upper and b-lower approximations can be

formulated:

RbX ¼ fxj ½x�R�bXg ð20Þ

RbX ¼ fxj cð½x�R;XÞo1� bg ð21Þ

Note that when b 5 0, RbX ¼ RX .

Using this extension, the positive, negative, and boundary regions can now also be defined:

POSRbðQÞ ¼
[

X2U=Q
RbX ð22Þ

NEGRbðQÞ ¼ U �
[
X2Q

RbX ð23Þ

BNDRbðQÞ ¼
[
X2Q

RbX �
[
X2Q

RbX ð24Þ

Returning to the example data set in Table 1, Equation (22) can be used to calculate the

b-positive region for R5 {b, c}, X5 {e}, and b 5 0.4. Setting b to this value means that a set is

considered to be a subset of another if they share about half the number of elements. The

partitions of the universe of objects for R and X are:

U=R ¼ ff1; 4g; f2; 6; 7g; f3g; f5gg
U=X ¼ ff1g; f2; 3; 6g; f4; 5; 7gg

For each set A 2 U=R and B 2 U=X , the value of c(A, B) must be less than b if the equivalence

class A is to be included in the b-positive region. Considering A5 5 gives

cðf5g; f1gÞ ¼ 14b

cðf5g; f2; 3; 6gÞ ¼ 14b

cðf5g; f4; 5; 7gÞ ¼ 0ob

Figure 1 A taxonomy of rough set extensions
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Therefore, object 5 is added to the b-positive region as it is a b-subset of {4, 5, 7} (and is in fact

a traditional subset of the equivalence class). Taking A5 {2, 6, 7}, a more interesting case is

presented:

cðf2; 6; 7g; f1gÞ ¼ 14b

cðf2; 6; 7g; f2; 3; 6gÞ ¼ 0:3333ob

cðf2; 6; 7g; f4; 5; 7gÞ ¼ 0:66674b

Here, the objects 2, 6, and 7 are included in the b-positive region as the set {2, 6, 7} is a b-subset

of {2, 3, 6}. Calculating the subsets in this way leads to the following b-positive region:

POSR;bðXÞ ¼ f2; 3; 5; 6; 7g

Compare this with the positive region generated previously: {3, 5}. Objects 2, 6, and 7 are now

included due to the relaxation of the subset operator. Consider a decision table ðU;C [DÞ, where
C is the set of conditional attributes and D the set of decision attributes. The b-positive region of

an equivalence relation Q on U may be determined by:

POSR;bðQÞ ¼
[

X2U=Q
RbX

A more comprehensive investigation of reducts for the VPRS approach may be found in Beynon

(2000, 2001), and Kryszkiewicz (1994). No general comparative studies appear to have been carried

out with regard to comparing the rough set and the VPRS methods, although in Thangavel

et al. (2006), the authors compare feature selection methods based on both RST and VPRS.

As indicated previously, the VPRS approach requires the specification of an additional parameter

(b). This parameter can be approximated by repeated experimentation. However, problems may

arise if searching for true reducts, as the VPRS approach incorporates an element of inaccuracy in

determining the number of classifiable objects.

3.2 Tolerance rough sets

The TRSM (Skowron & Stepaniuk, 1996) can be useful for application to real-valued data. TRSM

employs a similarity relation to minimize data as opposed to the indiscernibility relation used in

classical rough sets. This allows a relaxation in the way equivalence classes are considered. The

effect of employing this relaxation means that the granularity of the rough equivalence classes has

been blurred slightly. This flexibility enables a change to occur in the boundaries of the former

rough or crisp equivalence classes and objects may now belong to more than one so-called tolerance

class which is TRSM equivalent of a rough set equivalence class.

The tolerance threshold (t) is a global similarity threshold which determines the required level

of similarity for inclusion within a tolerance class. The specification of this threshold, however, is a

departure from the traditional rough set approach, which relies only upon the information contained

in the data.

In this approach, suitable similarity relations must be defined for each feature, although the

same definition can be used for all features if applicable. A standard measure for this purpose,

given in Skowron and Stepaniuk (1996), is:

SIMaðx; yÞ ¼ 1� j aðxÞ� aðyÞ j
j amax� amin j

ð25Þ

where a is a considered feature, and amax and amin denote the maximum and minimum values of a,

respectively. When considering the case where there is more than one feature, the defined simi-

larities must be combined to provide an overall measure of similarity of objects. For a subset of

features, P, this can be achieved in many ways, including the following approaches:

ðx; yÞ 2 SIMP;t ()
Y
a2P

SIMaðx; yÞ � t ð26Þ
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ðx; yÞ 2 SIMP;t ()

P
a2P

SIMaðx; yÞ

jP j � t ð27Þ

where t is a global similarity threshold which determines the required level of similarity for

inclusion within a tolerance class. The framework also allows for the specific case of traditional

rough sets by defining a suitable similarity measure (e.g. complete equality of features) and

threshold (t 5 1). Further similarity relations are summarized in Nguyen and Skowron (1997a),

but are not included here. From this, the tolerance classes that are generated by a given similarity

relation for an object x are defined as:

SIMP; tðxÞ ¼ fy 2 U j ðx; yÞ 2 SIMP; tg ð28Þ

Lower and upper approximations are defined in a similar way to those of traditional RST:

PtX ¼ fx jSIMP; tðxÞ � Xg ð29Þ

PtX ¼ fx jSIMP; tðxÞ \ X 6¼ yg ð30Þ

The tuple hPtX ; PtXi is known as a tolerance rough set (Skowron & Stepaniuk, 1994). Using this,

the positive region and dependency functions can be defined as follows:

POSP; tðQÞ ¼
[

X2U=Q
PtX ð31Þ

gP; tðQÞ ¼
jPOSP; tðQÞ j

jUj ð32Þ

These definitions are analogous to the traditional rough set concepts and can be applied in the

same way as demonstrated in Section 2.1.1. To demonstrate the approach, a sample data set is

included in Table 2, which has three real-valued conditional attributes and a single crisp-valued

decision attribute.

For this example, the similarity measure is the same as that given in 26 for all conditional

attributes, with t 5 0.8. The choice of this threshold allows attribute values to differ to a limited

degree, with close values considered as though they are identical.

Thus, by making A5 {a}, B5 {b}, C5 {c}, and F5 {f}, the following tolerance classes are generated:

U=SIMA;t ¼ ff0; 1; 2g; f3; 4; 5gg
U=SIMB;t ¼ ff0; 2; 3; 4g; f1g; f5gg
U=SIMC;t ¼ ff0g; f1g; f3; 4; 5g; f2gg
U=SIMF ;t ¼ ff0; 2; 5g; f1; 3; 4gg

U=SIMfa; bg;t ¼ ff0; 2g; f1g; f3; 4g; f3; 4; 5g; f4; 5gg
U=SIMfa; cg;t ¼ ff0g; f1g; f2g; f3; 4; 5g; f3; 4; 5gg
U=SIMfb; cg;t ¼ ff0; 2g; f1g; f3; 4g; f5gg

U=SIMfa; b; cg;t ¼ ff0g; f1g; f2g; f3; 4g; f4; 5gg

Table 2 Real-valued data—example

Object a b c f

0 20.4 20.3 20.5 No

1 20.4 0.2 20.1 Yes

2 20.3 20.4 20.3 No

3 0.3 20.3 0 Yes

4 0.2 20.3 0 Yes

5 0.2 0 0 No
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It is apparent that some objects belong to more than one tolerance class. This is a result of employing a

similarity measure rather than the strict equivalence of the conventional rough set model. Using these

partitions, a degree of dependency can be calculated for attribute subsets, providing an evaluation of

their significance in the same way as previously outlined for the crisp rough case.

From the lower approximation, the positive and boundary regions can then be generated thus:

POSB;tðFÞ ¼
[

X2U=F
BtX ¼ f1; 5g

BNDB;tðFÞ ¼
[

X2U=F
BtX �POSB;tðFÞ ¼ f0; 2; 3; 4g

These concepts can be then employed in the same way as those of traditional rough sets to

partition the data.

3.3 Dominance-based rough sets

The dominance-based rough set approach (DRSA; Greco et al., 2001) is an extension of RST for

multi-criteria decision analysis. In contrast to traditional RST, DRSA employs a dominance

relation instead of an equivalence relation. This allows DRSA to deal with the inconsistencies

which are typical of criteria- and preference-ordered decision classes.

The ordering of data describing decision situations is naturally related to preferences of con-

sidered condition and decision attributes. Traditional RST does not have the ability to deal with

ordinal data in the same way that DRSA does. This is because DRSA employs a dominance

relation in place of the traditional rough set equivalence relation.

In DRSA, data are represented in decision table form. Let S ¼ hU;Q;V ; f i, whereU is a non-empty

set of finite objects, Q is a finite set of criteria, and V ¼
S

q2QVq, where Vq is the set of values that the

criterion q can take, and f : U 	 Q! V is an information function such that f ðx; qÞ 2 Vq for every

ðx; qÞ 2 U 	 Q. The set Q consists of condition criteria C, and the decision class D. Note that f(x,q) is

the evaluation of object x on criterion q 2 C, while f(x,d) is the decision class assignment for that object.

In order for DRSA to operate effectively on pre-ordered data, the approach employs a

‘preferencing’ or ‘outranking’ relation. A typical example is: 
q; x
 q y, which means that x is

preferential to or ‘outranks’ y with respect to q. The values that q can take constitute a subset of

real numbers—R, such that Vq � R, and the preference relation is a simple order between real

numbers Z such that x
 q y() f(x, q)Zf(y, q) holds. This relation is straightforward for a

simple maximization criterion, for example, an exam result—‘the higher, the better’. For criteria

where the opposite is true, for example, student failure-rate (‘the less, the better’), the relation can

be satisfied by negated values of Vq. If P � C, it can be said that x dominates y, denoted by xDpy,

if x is ‘better’ than y for every criterion from P, x
 q y, 8q2P. For each P � C, the dominance

relation DP is reflexive and transitive. Given that P � C and x 2 U,

DþP ðxÞ ¼ fy 2 U : yDpxg ð33Þ

D�P ðxÞ ¼ fy 2 U : xDpyg ð34Þ

These are termed the P-dominating set and P-dominated set, respectively.

As the DRSA deals with ordinal data and objects, the manipulation of the data is carried out

with respect to the ranking of decision classes. Let T5 {1,y , n}. The domain values of decision

criterion, Vd, consist of n elements (it is assumed that Vd 5T) and induce a partition of U into n

classes Dc5 {Dct, tAT}, where Dct ¼ fx 2 U : f ðx; dÞ ¼ tg. Each object x 2 U is assigned to only

one decision class Dct, tAT. All of the classes are preference-ordered according to an increasing

order of class indices, that is, 8r, sAT | rZ s, objects from Dcr are preferential to the objects from

Dcs. Thus, the upward and downward unions of classes, respectively, can be defined as:

Dc�t ¼
[
s�t

Dcs Dc�t
[
s�t

Dcs t 2 T ð35Þ
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In DRSA, the knowledge being approximated is a collection of upward and downward unions

of decision classes. The knowledge granules employed for approximation in DRSA are the

P-dominating and P-dominated sets, which are analogous to the equivalence classes of traditional

RST. The P-lower and the P-upper approximation of Dc�t ; t 2 T are denoted PðDc�t Þ and PðDc�t Þ,
respectively, and can be defined as follows:

PðDc�t Þ ¼ fx 2 U : DþP ðxÞ � Dc�t g ð36Þ

PðDc�t Þ ¼ fx 2 U : D�P ðxÞ \Dc�t 6¼ yg ð37Þ

Similarly, the P-lower and the P-upper approximation of Dc�t , denoted by PðDc�t Þ and PðDc�t Þ,
respectively, can be defined thus:

PðDc�t Þ ¼ fx 2 U : D�P ðxÞ � Dc�t g ð38Þ

PðDc�t Þ ¼ fx 2 U : DþP ðxÞ \Dc�t 6¼ yg ð39Þ

As with traditional RST, the boundary regions of Dc�t and Dc�t can also be defined:

BNDPðDc�t Þ ¼ PðDc�t Þ�PðDc�t Þ ð40Þ

BNDPðDc�t Þ ¼ PðDc�t Þ�PðDc�t Þ ð41Þ
To demonstrate the basic concepts of the dominance rough set approach, a small example is shown

here. The example data set in Table 3 has three conditional attributes (a, b, c) and one decision attribute

(f) according to the decision attribute, the objects are divided into three preference-ordered classes:

Cls15 {q}, Cls25 {r}, and Cls35 {s}. Thus, the following unions of classes can be approximated:

> Cls�1 —the class of (at most) q objects
> Cls�2 —the class of at most r objects
> Cls�2 —the class of at least r objects
> Cls�3 —the class of (at least) s objects

The lower approximations of the class unions consist of the following objects:

> PðCls�1 Þ5 {0, 4}
> PðCls�2 Þ5 {0, 1, 2, 3, 4, 5, 7}5Cls�2
> PðCls�2 Þ5 {1, 2, 6, 7, 8, 9}
> PðCls�3 Þ5 {6, 8, 9}5Cls�3

Therefore, only classes Cls�1 and Cls�2 cannot be approximated without uncertainty. The upper

approximations can be shown to be:

PðCls�1 Þ ¼ f0; 3; 4; 5g
PðCls�2 Þ ¼ f1; 2; 3; 5; 6; 7; 8; 9g

Table 3 Dominance-based rough set approach—example

Object a b c f

0 C C G q

1 D C G r

2 C D G r

3 G C D q

4 G G C q

5 G C C r

6 D D G s

7 D C C r

8 C C D s

9 D C D s
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While the boundary regions for Cls�1 and Cls�2 are:

BNDPðCls�1 Þ ¼ BNDPðCls�2 Þ ¼ f3; 5g

These concepts can be used in a similar way to those of traditional RST in order to deal with

ordinal data.

3.4 Vaguely quantified rough sets

In traditional RST, an object is a member of the upper approximation of a set if it is related to one of

the elements in the set, while the lower approximation only retains those objects related to all the

elements in the set. This is a result of the use of an existential quantifier in the definition of the upper

approximation, and the use of a universal quantifier for the lower approximation. For real world data

which include noise to a greater or lesser degree, this approach will inevitably suffer from classification

errors and inconsistency. The associated definition of the upper approximation may be too general (thus

resulting in very large sets), while the definition of lower approximation might be too rigid (resulting in

an empty set in the extreme case). Fuzzy RST (which is covered in the next section) exhibits similar

behaviour where the quantifiers ( and 8 are replaced by the sup and inf operations (Cornelis et al.,

2007). These operators, however, can be as susceptible to the effects of noise as their crisp counterparts.

As demonstrated previously in Section 3.1, thresholds are introduced in VPRS to deal with

these problems for the crisp case. In general, given 0, l, u, 1, an element y is added to the lower

approximation of a set A if at least (100 x u)% of the elements related to y are in A. Likewise,

y belongs to the upper approximation of A if more than (100 x l)% of the elements related to y.

This can be interpreted as a generalization of the rough set model using crisp quantifiers at least

(100 x u)%, and more than (100 x l)% to replace the universal quantifier which demands rigid

(at least 100%) membership for an element to be included in the lower approximation, and

the existential quantifier which demands membership that is non-zero (greater than 0%) for an

element to be included in the upper approximation.

In perhaps what is one of the most recent extensions of rough sets, the authors of (Cornelis

et al., 2007) introduce vague quantifiers like ‘most’ and ‘some’ to the rough set model. As a result

of this, an element y now belongs to the lower approximation of A if most of the elements related

to y are included in A. Similarly, an element belongs to the upper approximation of A if some of

the elements related to y are included in A. In addition, the vague quantifiers are modelled

mathematically in terms of the notion of fuzzy quantifiers in Zadeh (1965), so that the VQRS

model inherits not only the flexibility of VPRS for dealing with classification errors mentioned

previously, but also that of fuzzy sets for the expression of partial constraint satisfaction—by

distinguishing between varying levels of membership of both the upper and lower approximations.

The definitions used for the upper and lower approximations in VPRS can be relaxed, through the

use of vague quantifiers, to express that y belongs to the upper approximation of the set X to the extent

that some elements of y’s equivalence class (Ry) are in the set A, and y belongs to the lower approx-

imation of A to the extent that most elements of Ry are in X. In VQRS, it is implicitly assumed that the

approximations are fuzzy sets, that is, mapped from X to [0, 1], that evaluate the degree to which the

associated condition is fulfilled. The concept of a fuzzy quantifier in Zadeh (1965) is employed, that is, a

[0, 1]-[0, 1] mappingQ. The setQ is said to be regularly increasing, if it is increasing and it satisfies the

boundary conditions Q(0)50 and Q(1)51. Examples of fuzzy quantifiers can be generated by means

of the following parameterized formula, for 0ra , br1, and xA[0, 1],

Qða;bÞðxÞ ¼

0; x � a
2ðx� aÞ2

ðb� aÞ2 ; a � x � aþb
2

1� 2ðx�bÞ2

ðb� aÞ2 ;
aþb
2
� x � b

1; b � x

:

8>>>>><
>>>>>:

ð42Þ
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For instance, Q(0.1, 0.6) and Q(0.2, 1) may be used to reflect the vague quantifiers some and most,

respectively, from natural language.

The VQRS upper and lower approximations can be defined once the quantifier pair (Ql, Qu) has

been fixed such that:

mQu

RPX
ðyÞ ¼ Qu

jRPy \ X j
jRPyj

� �
ð43Þ

mQl

RPX
ðyÞ ¼ Ql

jRPy \ X j
jRPyj

� �
ð44Þ

In other words, an element y belongs to the lower approximation of X if most of the elements related

to y are included in X. Likewise, an element belongs to the upper approximation of X if some of the

elements related to y are included inX. Notice that whenX andRP are a crisp set and a crisp equivalence

relation, respectively, the approximations may still be non-crisp because of the use of vague quantifiers.

In the interests of brevity, and due to significant overlap with fuzzy-rough sets, an example is not

included here. Further detail and examples of VQRS, however, are covered in (Cornelis & Jensen, 2008).

3.5 Other rough set extensions

As mentioned previously, perhaps one of the most appealing aspects of traditional RST lies in its

simplicity. It is based on straightforward set operations and is computationally efficient. Exam-

ining the concepts described earlier in Section 2.1, the most obvious areas for further exploration

and extension are the equivalence relation and the subset operator, both of which are extended by

the VPRS/VQRS and TRSM/DRSA approaches, respectively. One possible avenue for further

exploration which has not been examined previously lies in a variable precision tolerance rough

set approach. Although this would involve the specification of two parameters, it could take

advantage of the benefits offered by both models: the ability to deal with real-valued data from

TRSM and the ability to handle noise from the VPRS approach.

There is also one further aspect of RST, however, that is often overlooked: the upper

approximation concept and its potential contribution to improving the performance of the rough

set model. Work in this area has included an approach which generates reducts that preserve the

rough upper approximation (Inuiguchi & Tsurumi, 2006), as well as an approach that considers

the upper approximation and proposes a feature selection algorithm based on a rough upper

approximation measure (Deogun et al., 1995).

Other techniques, such as those presented in Hu et al. (2007a), Mac Parthaláin et al. (2007), and

Mac Parthaláin and Shen (2009), consider the positive and boundary regions as conceptually

different entities, and attempt to use the boundary region information for both feature selection

and classification.

In particular, in Hu et al. (2007a), the authors employ a consistency measure for feature

selection in order to determine the classification of objects in the rough set boundary region and

use this information to search for reducts. The approach uses a greedy-type search to select

attributes which result in the greatest increase in the consistency value. Problems may arise,

however, if the data on which the approach is operating are inconsistent; in these cases, a stopping

threshold must be specified to avoid overfitting.

The approach in Mac Parthaláin et al. (2007), however, treats the data in the same way as those of

traditional crisp RST. The central idea of this approach is that, from an intuitive point-of-view, objects

in the boundary region of a given concept are more likely to belong to that concept if they are close to

the objects of the positive region. Thus, a distance measure is employed to determine the ‘closeness’ or

proximity of boundary region objects to those objects in the positive region. This proximity information

is then used in feature selection as a measure to determine the ‘goodness’ or value of potential reducts.

An approach which examines the boundary region of tolerance rough sets (and thus can also handle

real-valued data) based onMac Parthaláin et al. (2007) has also been proposed (Mac Parthaláin & Shen,
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2009). Also, in Nguyen and Slezak (2004), the authors discuss what they term ‘approximate reducts’,

based on exploiting the rough set boundary. However, the work does not outline their application.

Another interesting idea which is explored in Slowinski and Vanderpooten (1997) and Slo-

winski and Vanderpooten (2000) is the re-definition of the upper and lower approximation con-

cepts of RST. The definitions propose the use of fuzzy similarity, and tolerance, as opposed to

indiscernibility, although otherwise the framework remains unchanged from that of traditional

RST. Similar treatment is also given by the authors in Zhao and Zhang (2005) to VPRS to extend

the b-upper and b-lower approximations; however, only similarity is explored in this case.

4 Combining rough sets with other techniques

The combination of RST with other soft computing techniques to form hybrid systems has

highlighted the value of employing RST as a part of a wider framework for improving the overall

performance of such systems. Such hybrids include the combination of RST with neural networks,

GAs, evolutionary algorithms, and fuzzy sets. Very significantly, there is the hybridization of

rough sets and fuzzy sets to form fuzzy-RST.

4.1 Rough set hybridizations

It has been demonstrated that RST can be very effective for preprocessing data input for neural

networks (Jelonek et al., 1994). More recent work (Mak & Munakata, 2002) has compared the

rule extraction capabilities of both rough sets and neural networks and hybrid methods with ID3.

The work of Yahia et al. (2000) further reinforces the utility of employing RST either as a neural

network’s preprocessor or as a combined inference mechanism for medical diagnosis and is tested

on a hepatitis disease data set. Another approach for medical image classification is reported in

Shang and Shen (2002) that uses RST as a dimensionality reduction step before the application of

a neural networks based classifier. Further detail with regard to the use of rough sets and hybrid

methods for medical applications can be found in Pattaraintakorn and Cercone (2007).

In Li and Wang (2004), a hybrid rough set and neural networks approach for rule induction is

presented. This technique is applied to relatively large data sets in order to generate more concise and

accurate rules than either neural networks or rough sets alone. A feature selection algorithm is pro-

posed and rules are generated from a decision table based on the rough set discernibility matrix.

Reducts and rules are obtained using RST with neural networks employed to remove noisy data. Other

rough set/neural network hybrid approaches are also to be found in Jelonek et al. (1994), Mitra and

Banerjee (1996), Swiniarski et al. (1995), and Wang et al. (2005). In addition, it has been demonstrated

that rough sets can help to generate new models of neurons in Lingras (1996, 1997).

A review of the hybridization of RST with GAs is documented in Cordon et al. (2001). Prior to

this, the first hybridization based on lower and upper bounds of numeric ranges was proposed as a

rough-GA in Lingras and Davies (2001). Others include: genetic encoding in order to generate

rough set representations of clusters Lingras and West (2004), and a hybrid decision support

system for cancer detection Mitra and Mitra (2000). Genetic programming has also been allied

with rough sets for bankruptcy classification McKee and Lensberg (2002).

RST has also been hybridized with classical statistical methods such as PCA (Swiniarski, 1999),

Bayesian methods (Swiniarski, 1998), or wavelets (Wojdyllo, 1998). Such integration has resulted in

classifiers of better quality than those constructed through the use of RST alone (Browne et al., 1998).

In terms of hybridizing rough set extensions, a number of approaches have been proposed, such

as fuzzy-rough VPRS (Mieszkowicz-Rolka & Rolka, 2004), and dominance-based rough sets and

VPRS (Hu & Yu, 2004). An interesting idea that has not yet been explored is a VPRS and TRSM

hybrid. This would allow the flexibility to deal with real-valued data inherited from the TRSM

approach and the noise tolerance of the VPRS method. This would mean the specification of two

parameters, however, which would involve significant experimentation in order to establish ideal

values for a given set of data.
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4.2 Fuzzy-rough sets

FST was first proposed nearly 44 years ago (Zadeh, 1965) and RST will celebrate its 28th anniversary

this year (Pawlak, 1981). FST and RST complement one another (Dubois & Prade, 1992) and much

advantage has been taken of this fact. This is reflected in the breadth and depth of research which has

been undertaken in this particular hybridization of rough sets.

Note that fuzzy-rough sets should not be confused with existing approaches that directly combine

the use of RST for dimensionality reduction and that of FST for knowledge modelling for example

(Shen & Chouchoulas, 2002; Shan et al., 2002). Although successful in real-world applications, the

underlying ideas of such work are straightforward and hence are omitted from the discussions below.

There have been two main lines of thought in the hybridization of fuzzy and rough sets: the

constructive approach and the axiomatic approach. A general framework for the study of fuzzy-

rough sets from both of these viewpoints is presented in (Yeung et al., 2005). For the constructive

approach, generalized lower and upper approximations are defined based on fuzzy relations.

Initially, these were fuzzy similarity/equivalence relations (Dubois & Prade, 1992) but have since

been extended to arbitrary fuzzy relations (Yeung et al., 2005). The axiomatic approach is pri-

marily for the study of the mathematical properties of fuzzy-rough sets (Wu & Zhang, 2004).

In (Dubois & Prade, 1992), the authors define the fuzzy P-lower and P-upper approximations

as follows:

mPXðFiÞ ¼ inf
x
maxf1� mFi

ðxÞ;mXðxÞg 8i ð45Þ

mPXðFiÞ ¼ sup
x

maxfmFi
ðxÞ;mXðxÞg 8i ð46Þ

where Fi is a fuzzy equivalence class and X is the (fuzzy) concept to be approximated. The tuple

hPX ;PXi is known as a fuzzy-rough set. Also in the literature are definitions for rough-fuzzy sets

(Dubois & Prade, 1990; Srinivasan et al., 1998), which can be seen as a particular case of fuzzy-

rough sets. A rough-fuzzy set is a generalization of a rough set, derived from the approximation of

a fuzzy set in a crisp approximation space. In (Yao, 1997), it is argued that, in order to remain

consistent, the approximation of a crisp set in a fuzzy approximation space should be called a

fuzzy-rough set, and the approximation of a fuzzy set in a crisp approximation space should be

called a rough-fuzzy set, thus ensuring that both models are complementary. In this framework,

the approximation of a fuzzy set in a fuzzy approximation space is considered to be a more general

model, unifying both theories. However, most researchers consider the traditional definition of

fuzzy-rough sets in (Dubois & Prade, 1992) as standard. The specific use of min and max operators

in the above definitions is expanded in (Radzikowska & Kerre, 2002), where a wide range of fuzzy-

rough sets are constructed, with each member represented by a particular implicator and t-norm.

The properties of three typical implicators are investigated. Further investigations in this area can

also be found in De Cock et al. (2004), Thiele, (1998), Wu et al. (2005), Yeung et al. (2005).

In Boixader et al. (2000), Morsi and Yakout, (1998), an axiomatic approach is taken, but is

restricted to fuzzy T-similarity relations (and hence fuzzy T-rough sets). The properties of gen-

eralized fuzzy-rough sets are investigated in (Wu et al., 2003), and a pair of dual generalized fuzzy

approximation operators are defined based on arbitrary fuzzy relations. The approach presented

in (Mi & Zhang, 2004) introduces definitions for generalized fuzzy lower and upper approxima-

tion operators determined by a residual implication. Assumptions are found that allow a given

fuzzy set-theoretic operator to represent a lower or upper approximation from a fuzzy relation.

Different types of fuzzy relations produce different classes of fuzzy-rough set algebras.

The work in (Radzikowska & Kerre, 2004) generalizes the fuzzy-rough set concept through the

use of residuated lattices. An arbitrary residuated lattice is used as a basic algebraic structure, and

several classes of lattice-valued fuzzy-rough sets (a fuzzy-rough hybridization of L-fuzzy sets) and

their properties are investigated. In (Chen et al., 2006), a complete completely distributive (CCD)

lattice is selected as the foundation for defining lower and upper approximations in an attempt to

provide a unified framework for rough set generalizations. It is demonstrated that the existing

fuzzy-rough sets are special cases of the approximations on a CCD lattice for T-similarity relations.
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The relationships between fuzzy-rough set models and fuzzy topologies on a finite universe have

been investigated. The first such research was reported in (Boixader et al., 2000), where it was

proved that the lower and upper approximation operators were fuzzy interior and closure

operators, respectively, for fuzzy T-similarity relations. The work carried out in (Yeung et al.,

2005) investigated this for arbitrary fuzzy relations. In (Qina & Pei, 2005) and (Wu, 2005), it was

shown that a pair of dual fuzzy rough approximation operators can induce a topological space if

and only if the fuzzy relation is reflexive and transitive. The fuzzy interior (closure) operator is also

examined.

In addition to the previous approaches to fuzzy-rough hybridization, other generalizations are

possible. One of the first attempts at hybridizing the two theories is reported in (Wygralak, 1989),

where rough sets are expressed by a fuzzy membership function to represent the negative,

boundary, and positive regions. All objects in the positive region have a membership of one and

those belonging to the boundary region have a membership of 0.5, while those of the negative

region have a membership of 0 as they do not belong to the set of interest. Thus, in adopting this

approach, a rough set can be defined using FST. This also means that the rough set operators of

union and intersection are modified accordingly. In (Pedrycz, 1999), the author attempts to

address the problem where the fuzzy set representation of a rough set may be too precise, such that

a concept is described exactly once its membership function has been defined. The solution to this

is to employ an approximation of a family of fuzzy sets which the author terms a shadowed set.

Shadowed sets do not use exact membership values but instead use truth values and a zone of

uncertainty. A similar approach to that of (Wygralak, 1989) is applied where elements may belong

to a set with certainty (membership value 1), possibility (unit interval), or not belong (membership

value 0). These ideas of course correspond to the rough set positive, boundary, and negative

regions, respectively.

Another approach is reported in (Chimphlee et al., 2006a) where the rough set lower

approximation is employed, and elements are allowed to belong to this with certainty; however,

the boundary region or uncertain region is fuzzified and membership values of elements are

expressed in terms of a fuzzy membership function. The authors of (Mieszkowicz-Rolka & Rolka,

2004) apply a fuzzy-rough sets extension to the VPRS model described in Section 3.1 in an attempt

to capitalize on the advantages of both rough sets and fuzzy sets within the VPRS framework.

However, the VQRS approach of (Cornelis et al., 2007) as detailed in Section 3.4 also takes

advantage of these in a single approach as it employs fuzzy quantifiers and extends the VPRS

approach simultaneously.

5 Applications

In this section, a number of theoretical and real world application areas of RST, rough set

extensions, and fuzzy-RST are examined. The sheer number of applications and amount of work

that has been published in the area means that it would be impossible to cover all areas in

sufficient depth. Therefore, in this paper, three important areas of machine learning have been

chosen for close examination; classification, clustering, and feature selection. A review of each of

these areas is documented in the following sections. In each section, a further subsection is devoted

to an example of real-world application.

5.1 Classification

Classification concerns any problem in which a decision is taken or a forecast is made on the basis

of available knowledge or information. A classification algorithm allows repeated forecasts to be

made with regard to accumulated knowledge for new situations. Such algorithms can then be

applied in order to classify previously unseen objects. Each new object can be assigned to a

predefined set of classes, based on the observed values of suitably chosen attributes or features.
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It is interesting to note that, despite the level of interest in rough set classification which is borne

out by the number of publications in the area, no comprehensive survey of rough classification

has been published to date. Perhaps this is due in part to the fact that RST is often married with

other approaches when applied to the classification problem. Nevertheless, a number of RST-

based classifiers have been proposed. The first application of RST to the classification problem

is demonstrated in (Pawlak, 1984). The authors (Pawlak & Skowron, 1993; Skowron, 1993;

Slowinski et al., 2002) discuss the fundamentals of rough set rule induction for classification, but

no algorithms are proposed.

The earliest RST-based classification algorithm is described in (Pawlak et al., 1986). Later

examples were proposed in (Bell & Guan, 1998) and (Deogun et al., 1994), although the latter

focused on database mining. Much use has been made of rough classifiers which were integrated

into the learning from examples based on rough sets (LERS) framework (Grzymala-Busse &

Grzymala-Busse, 1995; Grzymala-Busse & Wang, 1996). In these methods, descriptions of con-

cepts are constructed through the calculation of all reducts for a given data set, by means of the

decision rules. In (Bazan et al., 2000), it is argued that these methods are not appropriate for

classifying unseen data, and thus a number of rough set classification methods are proposed which

address this problem. In addition, some new methods for rule induction from reducts, as well as

ways of dealing with real-valued data discretization, are also described (also within the LERS

framework). Similar aspects are also examined in Grzymala-Busse (2003) and Grzymala-Busse

(2006). Other research such as (Stefanowski, 1998) also concentrates on addressing some of the

shortcomings of the use of rough sets for rule induction as an aid to classification.

Rough set extensions have also been employed for classification. In (Ziarko, 2003), the author

discusses the use of VPRS for building decision tables from data models. Others which also

employ VPRS include (Glymin & Ziarko, 2007) and (Zhao & Zhu, 2006) for email spam filtering,

and general classification (Zhao et al., 2003). In (Wang et al., 2004), the authors have combined

VPRS with fuzzy clustering techniques to discover rules in process planning. In the same way that

VPRS has been applied to the classification task, so too has the TRSM, and a number of papers

have been published in this area. Applications include handwriting classification (Kim & Bang,

2000), web document classification (Yi et al., 2005), and geographical land classification (Yun &

Ma, 2006). Although a relatively new approach, VQRS has also been applied to the classification

of mammographic data (see Section 5 for further detail; Mac Parthaláin et al., 2010). The DRSA

has also been employed for rule induction (Shao & Zhang, 2004) and classification (Kot"owski

et al., 2008), albeit with application to ordinal data.

Initial attempts to use fuzzy-rough sets for classification were presented in (Sarkar, 2000),

which adopted a nearest neighbour (NN) type classifier approach. This approach attempted to

handle both the fuzzy uncertainty due to overlapping classes and the rough uncertainty caused by

a lack of informative features. A fuzzy-rough ownership function (a value which is influenced by

all training objects) was employed in an effort to capture both of the aforementioned aspects.

In addition, this also allows a possibilistic class membership assignment. The ownership function

is influenced by all of the objects in the training set, which in turn means that the number of

neighbours does not need to be defined. Other parameters must however be specified for success-

ful operation. In (Wang et al., 2005a), the authors extend the approach but divide the task of

classification into four parts. First, using a leave-one-out type of strategy, the fuzzy-rough own-

ership value is calculated for each training object for all classes. The ownership value indicates the

degree to which other objects support each individual object. Inconsistencies are then filtered from

the training data—a high fuzzy-rough ownership value indicates a class other than a known class.

Following this, representative points are selected from the processed training data and fuzzy-

rough ownership values are refreshed based on mountain clustering. Then, finally, test objects are

classified using only the representative training data from the previous step using the algorithm

proposed in (Sarkar, 2000).

Other NN classification methods which employ fuzzy-rough hybridization include (Bian &

Mazlack, 2003), which integrates rough uncertainty into the fuzzy kNN classifier using the definitions
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of fuzzy upper and lower approximations as defined in (Dubois & Prade, 1992). The membership

of a test object to the upper and lower approximations for every class is determined by k NN. In

addition, a similar approach is used in (Mac Parthaláin et al., 2010); once again, the fuzzy-rough

upper and lower approximations are used to determine the membership of test objects to a

particular class.

Little research has taken place in the area of fuzzy-rough decision tree induction, although there

is much interest in fuzzy decision trees because of their ability to model vagueness. The work on

fuzzy-rough decision trees outlined in (Bhatt & Gopal, 2004) employs the fuzzy-rough ownership

measure from (Sarkar, 2000), which is used to define a ‘fuzzy-roughness’ measure and fuzzy-rough

entropy measure. The node-splitting criterion is determined using the fuzzy-rough entropy mea-

sure. In (Jensen & Shen, 2008), a fuzzy decision tree algorithm based on the well-known fuzzy ID3

(Baldwin et al., 1997) approach is described. In this case, fuzzy-rough dependency is employed to

decide when node splitting should occur. An approach for rule induction using fuzzy rough sets is

proposed in (Hong et al., 2006) for generating certain and possible rulesets from hierarchical data.

5.1.1 Image data analysis for mammographic risk assessment

Breast cancer is a major health issue, and the most common among women in the European Union

(EU). It is estimated that 8–13% of all women will develop breast cancer at some point during their

lives. Furthermore, in the EU and United States, breast cancer is attributed as the leading cause of

death of women in their 40s. Mammography is a process whereby low-dosage X-rays are used to

generate images which can then be employed to examine the internal structure of the human breast for

both diagnosis and screening. In addition to mammographic imaging, other imaging techniques such

as magnetic resonance imaging (MRI) and ultrasound imaging may also be used. Although increased

incidence of breast cancer has been recorded, so too has the level of early detection through screening

in order to assess the risk of developing cancer using mammographic imaging and expert opinion.

However, even expert radiologists can sometimes fail to detect a significant proportion of mammo-

graphic abnormalities. In addition, a large number of detected abnormalities are usually discovered to

be benign following medical investigation. Existing mammographic computer-aided diagnosis (CAD)

systems concentrate on the detection and classification of mammographic abnormalities. As breast

tissue density increases however, the effectiveness of such systems in detecting mammographic

abnormalities is reduced significantly. In addition, it is known that there is a strong correlation

between mammographic breast tissue density and the risk of development of breast cancer. Automatic

classification, which has the ability to consider tissue density when searching for mammographic

abnormalities, is therefore highly desirable.

The approach in (Mac Parthaláin et al., 2010) describes the application of a number of rough

and fuzzy-rough approaches for dealing with mammographic risk assessment data. The objective

of this analysis is to determine the risk of developing cancer by classifying each woman or

mammogram according to a consensus class which has been agreed upon by three expert radio-

logists. The actual approach employs a fuzzy-rough framework. There are three steps: feature

extraction to extract the features from the raw image data, feature selection which removes noisy

irrelevant or redundant features from those extracted features, and classification to classify the

mammograms into one of four predefined classes. The work here focuses on a brief review of the

fuzzy-rough sets based classification step.

Efficient and, in particular, accurate classification of mammographic imaging is of high impor-

tance. Any improvement in accuracy for automatic mammographic classification systems can result

in a reduction in the amount of required expert analysis, thus improving the time taken to perform

breast abnormality risk assessment. In addition, by reducing inter-expert variation, the resulting

automatic risk assessments can be more accurate. The data in mammographic imaging is real-valued

and can also be noisy. Clearly, any classifier employed must therefore have the ability to deal with

such data. Discrete methods require that the real-valued data are discretized and thus may result in

significant information loss; however, the methods described here require no discretization, and are

based on fuzzy-RST which uses only the information contained within the data.
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The fuzzy-rough classifier employed in (Mac Parthaláin et al., 2010) is based on the NN clas-

sifier technique (Jensen & Cornelis, 2008) and can be seen in Figure 2. It works on the basic

principle that the lower and the upper approximations of a decision class, calculated by means of

the NNs of a test object y, provide good clues in order to predict the membership of the test object

to that class. The membership of a test object y to each (crisp or fuzzy) decision class is determined

via the calculation of the fuzzy lower and upper approximation. The algorithm outputs the

decision class with the resulting best fuzzy lower and upper approximation memberships. The

complexity of the algorithm is OðjC j � ð2jU jÞÞ. Note that, although a value for the parameter

k that is employed in the traditional kNN method is not required, it can be incorporated into the

algorithm to facilitate more detailed comparison by replacing by replacing line (2) with

‘N’getNearestNeighbours (y, k)’.

The algorithm is applied to two mammographic imaging data sets, which have been labelled

with the consensus opinion of 3 expert radiologists. The first of these is the Mammographic Image

Analysis Society (MIAS) database (Suckling et al., 1994), and the second is the Digital Database

of Screening Mammography (DDSM; Heath et al., 2000). The MIAS data set is composed of

Medio-Lateral-Oblique (MLO) left and right mammograms from 161 women (322 objects). Each

mammogram object is represented by 281 features extracted using the process detailed in (Oliver

et al., 2008). The spatial resolution of the images is 50mm3 50mm and is quantized to 8 bits with a

linear optical density in the range 0–3.2.

The DDSM database provides four mammograms, comprising left and right MLO and left and

right Cranio-Caudal (CC) views, for most women. To avoid bias, only the right MLO mammo-

gram for each woman is selected. The data set contains 832 mammograms (objects) and again 281

features obtained in the same manner as those for the MIAS data set above.

The class labels for each mammogram are the consensus opinion of three expert radiologists.

The four discrete labels ranging from 1–4, which are shown in Figure 3, relate to the BIRADS

classification (American College of Radiology, 1998), where 1 represents a breast that is entirely

fatty and 4 represents a breast that is extremely dense. The FRNN algorithm was compared

against several other algorithms including a fuzzy NN (Keller et al., 1985), a fuzzy-rough NN

FRNN-O (Sarkar, 2007; based on the measure in (Sarkar, 2000)), and an approach based on

VQRS (Cornelis et al., 2007)—VQNN vaguely quantified the NN. The classification accuracies

are obtained using 103 10-fold cross validation. The FRNN approach performs well compared

with the other classifiers achieving accuracies of 91.2% compared with 75.12% for FNN, 82.1%

for FRNN-O, and 72% for VQNN for the first data set. Values for the second data set also show

that FRNN performed better than did all of the other approaches (Mac Parthaláin et al., 2010).

5.2 Clustering

The clustering task is the unsupervised classification of data objects (patterns observations, data

vectors) into groups or clusters. Clustering has been addressed in many contexts and by

researchers of many different disciplines, and this reflects its applicability and popularity as an

Figure 2 The FRNN algorithm (FRNN(U; C; y,): U, the training data; C, the set of decision classes; y, the

object to be classified)
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important step in data analysis. Since both cluster analysis and RST form data groups, it is easy to

see the conceptual similarity between the upper and lower approximation constructs of rough sets

and formation of data clusters or groups. This similarity has meant that the rough sets lend

themselves easily to the clustering problem. A further advantage that RST offers is that it may also

provide scope for the discovery of ‘possible’ data clusterings through the use of the information

contained in the rough set boundary region.

Much of the interest in rough clustering has been relatively recent (Hirano & Tsumoto, 2000;

Hirano & Tsumoto, 2003; Peters et al., 2002). The application of rough sets to clustering is not

limited to the use of rough indiscernibility (Hirano & Tsumoto, 2003). For instance, a rough set

version of the classical k-means algorithm is proposed in (Lingras & West, 2004). Similarly, in

(Lingras et al., 2004), Kohonen SOM (self-organizing maps) were used to generate intervals of

clusters based on RST. The authors of (Malyszko & Stepaniuk, 2008) propose a rough set clus-

tering algorithm by combining entropy-based thresholding with rough sets.

The use of VPRS within the framework of the fuzzy c-means (FCM) algorithm (Bezdek, 1981;

Dunn, 1973) is documented in (Bao et al., 2006) where VPRS is employed to assign weights to each of

the features. The basis for the approach is VPRS but an extension is proposed for the variable

precision fuzzy-rough case. This is demonstrated by applying it to image analysis. VPRS is also used

along with fuzzy-rough sets in (Zheng & Wang, 2008) as part of a fault diagnosis system. As an aid to

fuzzy clustering in the general case in (Wang et al., 2005b), VPRS is employed for generating rules

from the fuzzy conditional and decision constructs of the fuzzy clustering algorithm. Although not as

popular as traditional RST or VPRS, TRSM has been applied to the clustering problem in

(Kawasaki et al., 2000) and (Ho & Nguyen, 2002), where the authors employ an algorithm to cluster

documents. Later work (Ngo & Nguyen, 2004) also used TRSM in a similar manner for clustering

web search results. The traditional rough set approach is extended in (Kumar et al., 2007) by using a

tolerance relation to form initial clusters; subsequent clusters are then formed using a constrained

similarity relation which is also used as a merging criterion to combine initially identified clusters.

There have been few applications of fuzzy-RST to clustering. Most approaches, such as those of

Wang et al. (2005b), mentioned previously, and Zhao et al. (2005), have tended to use both FST

and RST but in isolation rather than in terms of fuzzy-RST. Rough-fuzzy sets are employed in

Petrosino and Ceccarelli (2000) for texture separation in imaging, and in Pal (2004) the author also

describes the application of rough-fuzzy sets for clustering and employs an image segmentation

example to demonstrate this. In Chimphlee et al. (2006a), the authors propose a fuzzy-rough

extension of the well-known FCM clustering algorithm and apply it to network security intrusion

detection. Another fuzzy-rough approach which is also based on FCM is proposed in Hu and Yu

(2005). It remains to be seen whether further fuzzy-rough approaches for clustering will be

proposed, although it would seem that fuzzy-rough sets are well suited for such problems.

Figure 3 Example mammograms where breast tissue density increases from L-R corresponding to BIRADS

class I (far left) to class IV (far right)
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5.2.1 Document clustering

The clustering of documents is a difficult task for a number of reasons, mainly due to the textual

characteristics and unstructured format that every individual document takes. In Ho et al. (2006),

the authors describe a method to cluster documents using tolerance rough sets. Two algorithms

are described: one for hierarchical clustering and another for non-hierarchical clustering.

The approach can be broken down into two stages: the generation of tolerance classes, and the

manipulation and generation of the clusters. In the first step shown below in Figure 4, a set of

terms (words) is extracted from each document, and these are then assigned weights according to

occurrence. Each individual term (ti) is assigned a weight (wi) which reflects its importance in the

document; where i5 1, 2, 3,y, n with n being the number of extracted terms. A document is

denoted by dj 5 (t1, w1j; t2, w2jy; tn, wnj) and wiqA[0, 1]. The weights are calculated by means of a

frequency function, such that terms that occur often have a lower weight than those that rarely

occur. This ensures that terms that occur in all documents have a zero weight. Each document is

represented by a predefined number (R) of its highest weighted terms. All of the terms for all

documents denoted by T are used in a co-occurrence matrix to determine how terms are related to

one another. Using an uncertainty function derived from a tolerance relation, this matrix can then

be used to generate tolerance classes of terms in T. It is at this point that the tolerance value (t)

must be specified for the uncertainty function.

In the second stage of the approach shown in Figure 5, a concept is defined which is used for the

representation of clusters. This representation is what the authors term polythetic and must fulfil

three properties which relate to the documents under consideration and the terms (words) in each

document. Membership of each document to a cluster is defined in terms of a Bayesian minimum

error rate and can be used to build each of the clusters. Cluster similarity is carried out in the usual

manner, by employing a distance metric. It should be noted that clusters are built using only the

upper approximation of the tolerance rough set calculated from a subset of terms XDT.

A number of experiments are conducted using both hierarchical and non-hierarchical clustering

algorithms for both general clustering and information retrieval. In particular, the TRSM-based

approach is compared with a vector space model (VSM) approach to clustering for information

retrieval. This is an algebraic model for representing text documents as vectors of identifiers such as

Figure 4 Document clustering using tolerance rough sets—stage 1
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index terms. The TRSM-based method demonstrates that it can equal or outperform the VSMmethod.

This, however, requires that a range of tolerance values are specified for the uncertainty function.

It is interesting to note that there are a number of areas of this approach that could be covered

by using fuzzy-RST, thus eliminating the need for the subjective specification of the thresholding

value of the TRSM. In addition, a number of other thresholds relating to the number of the terms,

R, which should be considered for each document, could also be eliminated.

5.3 Feature selection

Feature selection (FS), which may also be referred to as attribute selection or semantics-preserving

attribute reduction, is a term used to describe the problem of selecting input attributes that are

most predictive of a given outcome. The FS problem is pervasive and can be encountered in many

areas of machine learning, pattern recognition, and signal processing. In contrast to other methods

for reduction of dimensionality, the FS approach preserves the original semantics or meaning of

the features following reduction. FS has been applied to tasks that involve data sets which contain

very large numbers of features (in the order of tens of thousands; Chouchoulas & Shen, 2001).

Without FS, such problems would prove to be computationally intractable.

As RST was originally proposed for supervised learning, it is no surprise, therefore, that one of the

many successful applications of RST has been in the area of FS. The basic tenet of RST, which means

that only the supplied data are employed for data reduction (with no additional information), has

many benefits in FS. Most other methods require at least some supplementary knowledge. The main

disadvantage of rough set-based FS in the literature is the restrictive requirement for all data to be

crisp, and hence the motivation to extend the rough set model as described in Section 3.

There are two main approaches when searching for rough set reducts: the dependency degree

approach and the discernibility matrix approach. Both approaches have been employed for rough

set-based FS, although the discernibility matrix approach is computationally expensive for large

data sets (Jensen & Shen, 2008), but some constructs (Pawlak, 1991) have been proposed to

alleviate this problem.

Among the earliest rough set-based dependency degree approaches to FS is the Preset algo-

rithm (Modrzejewski, 1993), which uses RST to rank features heuristically, within the assumption

of a noise-free binary domain. In Zhong et al. (2001), a rough set heuristic filter-based approach is

presented. The algorithm starts out by calculating the core of the data set (attributes that cannot

be removed without introducing inconsistency) and then it incrementally adds attributes based on

a heuristic measure. A threshold value is required as a stopping criterion to determine when a

reduct candidate is sufficiently ‘close’ to being a reduct. In Chouchoulas and Shen (2001), the

authors also present a filter-based method called rough set attribute reduction (RSAR), based on

the rough set dependency degree. It uses a greedy forward selection technique (starting with an

empty subset) that incrementally adds features that result in an increase in the dependency value.

Other approaches have also utilized this approach but used other measures such as entropy

Figure 5 Document clustering using tolerance rough sets—stage 2
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(Jensen & Shen, 2004b) and a boundary region measure (Mac Parthaláin et al., 2007) to search for

reducts. In terms of the discernibility matrix approach (Skowron & Rauszer, 1992), a number of

techniques have also been proposed, and algorithms such as that described in Nguyen and

Skowron (1997a) adopt this technique to search for reducts. Others also include (Øhrn, 1999) with

specific application to medical problem domains, and (Wang & Wang, 2001) which attempts to

address the computational complexity associated with discernibility matrices.

Although not as popular as the traditional rough set approach, VPRS has also been applied

to the FS problem. In Thangavel et al. (2006), the authors compare VPRS and traditional rough

set-based FS techniques. A fault-detection process which uses VPRS as an FS step is also

described in Li et al. (2006). The main disadvantage with approaches like VPRS is the specification

of additional tunable parameters, in this case b. As mentioned previously, the optimum value can

be obtained by repeated experimentation, but this may take considerable time depending on the

nature of the data being examined.

Applying rough set-based FS to domains where the data are real-valued has previously meant that

the data must be discretized beforehand. Tolerance rough sets have provided a solution to this

problem, however, and in (Jensen & Shen, 2008) the authors demonstrate how this can be achieved.

Unfortunately, the tolerance rough set approach requires a thresholding value which is specified by the

user and can only be automatically approximated by repeated experimentation. Human specification

of such a threshold, however, conflicts with the rough set ideology that only the information in the

data should be employed. As mentioned previously, this has resulted in the development of techniques

which extend the rough set concepts of the positive region and dependency function through the use of

fuzzy sets resulting in a number of fuzzy-rough set approaches (Shen & Jensen, 2004; Jensen & Shen,

2004a, 2004b, 2007, 2008, 2009; Hu et al., 2007b; Tsang et al., 2008). A greedy hill-climbing search

mechanism is then employed to search for subsets of features and a new fuzzy dependency measure is

employed as a stopping criterion. In Hu et al. (2006), an approach that employs information measures

for fuzzy indiscernibility relations is presented for the computation of feature importance. Reducts are

then calculated by employing a greedy selection algorithm. Comprehensive coverage is given to fuzzy-

rough FS approaches in Jensen and Shen (2008), which explores all aspects of generation of reducts,

and selection and search methods.

5.3.1 FS for gene expression data

The application of techniques such as machine learning, data mining, and pattern recognition to

areas of Bioinformatics has enjoyed much attention in recent years, and rough sets and their

extensions are no exception. One particular area within this field is the manipulation of gene

expression data. Owing to the very large number of genes in the sample data, the search space is

exponentially large, and thus any techniques which are applied to this type of data must be robust.

Rough set techniques are therefore an ideal candidate for the examination of such data.

Rough set FS is employed in Momin et al. (2006) as a dimensionality reduction step and applied

to a number of gene expression data sets. The FS step generates a number of reducts which are

then used to reduce the data before they are classified using a NN approach. The approach can be

described as a series of individual steps as shown in Figure 6. The first step involves discretizing

the data such that it can be used with the rough set approach. This discretization step involves the

search for partitions for each attribute domain. These partitions form new intervals to which

objects can be assigned. A Bayesian equal-width approach is used in this case, which handles

outliers in a sensible manner, but assumes uniform distribution of the data.

Having discretized the data, the FS step is then implemented, using a heuristic search described

below. The approach starts out with an empty set, to which those attributes that have a rough set

dependency (g . 0) are added incrementally. This generates a set of attributes from which reducts

can later be generated. A thresholding value is also specified at this point termed l; this value is

used to limit the cardinality of all generated reducts. All possible reducts of cardinality l are then

generated, but only those of g 5 1 are retained. A pruning of all super sets of reducts is then

carried out, and the data are reduced prior to the next step.
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The next stage is data reduction where all of the reducts are used to minimize the data by

selecting each of the features that appear in a given reduct from the data. Each reduced data set is

then classified. The classifier used here is kNN (Keller et al., 1985), which is an object-based

classifier learner.

The above process is applied to four publicly available data sets relating to various types of

cancer. Various values of l are used to generate the reducts for each of the data sets which are then

classified. For the kNN classifier, 3, 5, and 7 are selected for values of k, that is, the number of

neighbours considered. Discovery of an optimal value for k, however, may take considerable time.

A classification accuracy of 100% for all data sets is achieved for some but not all of the reducts

generated. The process of generating such large numbers of reducts, however, is computationally

expensive. The FS approach is compared with two other rough set approaches (Shen & Chouchoulas,

2000) and (Zhong et al., 2001), which also perform well; however, the authors argue that their method

performs better on the basis of classification results.

Again, as with the application example in Section 5.2.1, what becomes apparent is the number of

tunable parameters. Despite very high classification accuracies being achieved, these are subjective

and can influence the final result. The authors mention a parameter for the discretization of the

data, another for the FS approach, and of course k for the classification step. Note that if a hybrid

fuzzy-rough approach rather than the current rough set approach were to be employed, the

discretization step could be eliminated completely. This would also ensure that any potential loss

of information would not occur due to the discretization step.

6 Conclusion

This paper has presented an overview of RST and its extensions along with representative,

theoretical, and practical application examples. In particular, this review has introduced the basic

Figure 6 Feature Selection for gene expression data
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concepts of rough sets: upper and lower approximations, positive, negative, and boundary regions,

rough set dependency, and reducts. In order to further develop its potential field of applicability,

and to address its theoretical drawbacks in terms of application to real-valued, noisy, and ordinal

data, the extensions of RST are also explored. Specifically, tolerance rough sets, fuzzy-rough sets,

VPRS, dominance-based rough sets, and vaguely quantified rough sets are described in detail.

Other extensions and hybridizations which also extend the traditional RST are also covered.

There are a number of areas of RST, particularly with respect to the hybridization of rough sets

which remain to be explored. Fuzzy-rough classification is also an area which has much potential

as reflected in Section 5.1.1, as is the application of fuzzy-rough sets to the area of clustering.

It is interesting to note that in terms of rough set classification, and in spite of the level of

publication in this area, there has not been a comprehensive and far-reaching review of rough

set classification techniques. The reason for this may partly lie in the fact that RST is usually allied

to other soft computing methods when used for classification. This paper makes an initial con-

tribution towards such a review of the present work in this area.

The hybridization of rough set extensions also holds some potential. For instance, the marrying

of both the DRSM and VQRS would result in a noise-tolerant approach that would potentially

have the ability to handle ordinal real-valued data with the advantages of VPRS. The hybridi-

zation of the TRSM and VPRS would mean that advantage could be taken of the respective

flexibility of both approaches, albeit with two tunable parameters. The absence of tunable

parameters (and hence the adherence to the original principles of traditional RST) is one of the

most attractive properties of fuzzy-rough sets and the reason why it has gained so much recent

attention. This will undoubtedly also be the motivation for driving future research in this area, and

it is strongly believed that the fuzzy-rough set approach has much to offer both theoretically and

in terms of application to new problem domains.
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Mac Parthaláin, N. & Shen, Q. 2009. Exploring the boundary region of tolerance rough sets for feature

selection. Pattern Recognition 42(5), 655–667.

McKee, T. & Lensberg, T. 2002. Genetic programming and rough sets: a hybrid approach to bankruptcy

classification. European Journal of Operational Research 140(2), 436–451.

Mi, J. S. & Zhang, W. X. 2004. An axiomatic characterization of a fuzzy generalization of rough sets.

Information Sciences 160(1–4), 235–249.

Mieszkowicz-Rolka, A. & Rolka, L. 2004. Fuzzy implication operators in variable precision fuzzy rough sets

model. Lecture Notes in Computer Science (LNCS) 3070, Springer, Heidelberg, 498–503.

Mitra, S. & Banerjee, M. 1996. Knowledge based neural net with rough sets. In Methodologies for the

Conception, Design, Application of Intelligent Systems, Proceedings of the Fourth International Conference

on Soft Computing (IIZUKA’96), Yamakawa, T. & Matsumoto, G. (eds). World Scientific, 213–216.

Mitra, P. & Mitra, S. 2000. Staging of cervical cancer with soft computing. IEEE Transactions on Biomedical

Engineering 47(7), 934–940.

Modrzejewski, M. 1993. Feature selection using rough sets theory. In Proceedings of the 11th International

Conference on Machine Learning, New Brunswick, NJ, USA, 213–226.

Molina, L. C., Belanche, L. & Nebot, A. 2002. Feature selection algorithms: a survey and experimental

evaluation. In Proceedings of ICDM02, Maebashi City, Japan, 306–313.

Momin, B. F., Mitra, S. & Gupta, R. D. 2006. Reduct generation and classification of gene expression data.

Proceedings of the 2006 International Conference on Hybrid information Technology (ICHIT06) 1, 699–708.

Morsi, N. N. & Yakout, M. M. 1998. Axiomatics for fuzzy rough sets. Fuzzy Sets and Systems 100(1–3),

327–342.

Narendra, P. & Fukunaga, K. 1977. A branch and bound algorithm for feature subset selection. IEEE

Transactions on Computers C-26(9), 917–922.

Ngo, C. L. & Nguyen, H. S. 2004. A tolerance rough set approach to clustering web search results. In

Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases

(Pisa, Italy, September 20–24, 2004), Boulicaut, J., Esposito, F., Giannotti, F. & Pedreschi, D. (eds).

Lecture Notes in Computer Science 3202, Springer-Verlag New York, New York, 515–517.

Nguyen, S. H. & Skowron, A. 1997a. Searching for relational patterns in data. In Proceedings of the First

European Symposium on Principles of Data Mining and Knowledge Discovery, Trondheim, Norway,

265–276.

392 N . MAC PARTHAL Á I N AND Q . SH EN
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