10,079 research outputs found

    Complexity science for sleep stage classification from EEG

    Get PDF
    Automatic sleep stage classification is an important paradigm in computational intelligence and promises consider- able advantages to the health care. Most current automated methods require the multiple electroencephalogram (EEG) chan- nels and typically cannot distinguish the S1 sleep stage from EEG. The aim of this study is to revisit automatic sleep stage classification from EEGs using complexity science methods. The proposed method applies fuzzy entropy and permutation entropy as kernels of multi-scale entropy analysis. To account for sleep transition, the preceding and following 30 seconds of epoch data were used for analysis as well as the current epoch. Combining the entropy and spectral edge frequency features extracted from one EEG channel, a multi-class support vector machine (SVM) was able to classify 93.8% of 5 sleep stages for the SleepEDF database [expanded], with the sensitivity of S1 stage was 49.1%. Also, the Kappa’s coefficient yielded 0.90, which indicates almost perfect agreement

    EEG sleep stages identification based on weighted undirected complex networks

    Get PDF
    Sleep scoring is important in sleep research because any errors in the scoring of the patient's sleep electroencephalography (EEG) recordings can cause serious problems such as incorrect diagnosis, medication errors, and misinterpretations of patient's EEG recordings. The aim of this research is to develop a new automatic method for EEG sleep stages classification based on a statistical model and weighted brain networks. Methods each EEG segment is partitioned into a number of blocks using a sliding window technique. A set of statistical features are extracted from each block. As a result, a vector of features is obtained to represent each EEG segment. Then, the vector of features is mapped into a weighted undirected network. Different structural and spectral attributes of the networks are extracted and forwarded to a least square support vector machine (LS-SVM) classifier. At the same time the network's attributes are also thoroughly investigated. It is found that the network's characteristics vary with their sleep stages. Each sleep stage is best represented using the key features of their networks. Results In this paper, the proposed method is evaluated using two datasets acquired from different channels of EEG (Pz-Oz and C3-A2) according to the R&K and the AASM without pre-processing the original EEG data. The obtained results by the LS-SVM are compared with those by Naïve, k-nearest and a multi-class-SVM. The proposed method is also compared with other benchmark sleep stages classification methods. The comparison results demonstrate that the proposed method has an advantage in scoring sleep stages based on single channel EEG signals. Conclusions An average accuracy of 96.74% is obtained with the C3-A2 channel according to the AASM standard, and 96% with the Pz-Oz channel based on the R&K standard

    Informativeness of sleep cycle features in Bayesian assessment of newborn electroencephalographic maturation

    Get PDF
    Clinical experts assess the newborn brain development by analyzing and interpreting maturity-related features in sleep EEGs. Typically, these features widely vary during the sleep hours, and their informativeness can be different in different sleep stages. Normally, the level of muscle and electrode artifacts during the active sleep stage is higher than that during the quiet sleep that could reduce the informative-ness of features extracted from the active stage. In this paper, we use the methodology of Bayesian averaging over Decision Trees (DTs) to assess the newborn brain maturity and explore the informativeness of EEG features extracted from different sleep stages. This methodology has been shown providing the most accurate inference and estimates of uncertainty, while the use of DT models enables to find the EEG features most important for the brain maturity assessment

    Approximate entropy as an indicator of non-linearity in self paced voluntary finger movement EEG

    Get PDF
    This study investigates the indications of non-linear dynamic structures in electroencephalogram signals. The iterative amplitude adjusted surrogate data method along with seven non-linear test statistics namely the third order autocorrelation, asymmetry due to time reversal, delay vector variance method, correlation dimension, largest Lyapunov exponent, non-linear prediction error and approximate entropy has been used for analysing the EEG data obtained during self paced voluntary finger-movement. The results have demonstrated that there are clear indications of non-linearity in the EEG signals. However the rejection of the null hypothesis of non-linearity rate varied based on different parameter settings demonstrating significance of embedding dimension and time lag parameters for capturing underlying non-linear dynamics in the signals. Across non-linear test statistics, the highest degree of non-linearity was indicated by approximate entropy (APEN) feature regardless of the parameter settings
    • …
    corecore