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Abstract 

This study investigates the indications of nonlinear dynamic structures in electroencephalogram 

signals. The iterative amplitude adjusted surrogate data method along with seven nonlinear test 

statistics namely the third order autocorrelation, asymmetry due to time reversal, delay vector 

variance method, correlation dimension, largest Lyapunov exponent, nonlinear prediction error 

and approximate entropy has been used for analysing the EEG data obtained during self paced 

voluntary finger-movement. The results have demonstrated that there are clear indications of 

nonlinearity in the EEG signals. However the rejection of the null hypothesis of nonlinearity rate 

varied based on different parameter settings demonstrating significance of embedding dimension 

and time lag parameters for capturing underlying nonlinear dynamics in the signals. Across 

nonlinear test statistics, the highest degree of nonlinearity was indicated by approximate entropy 

(APEN) feature regardless of the parameter settings. 

 

Keywords: Electroencephalogram, Nonlinearity, Surrogate data, Approximate entropy 

 

1. Introduction 
Today, processing and analysis of biological signals such as electroencephalogram (EEG) are actively 

pursued to improve understanding and diagnosis of pathological conditions; examples of which include 

epilepsy, dementia, schizophrenia and sleep disorders. Also, there are many research studies on EEG 
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signals that allow further understanding of brain dynamics of healthy subjects during performance of 

different cognitive tasks, perceptual tasks, no-task (resting) states and different sleep stages [1, 2, 3]. In 

addition, recent years have seen many developments involving utilisation of EEG for Brain Computer 

Interface (BCI) design [4, 5]. 

Conventional analysis of EEG signals utilise the time and frequency based methods. However 

the requirements for further characterisation and a better understanding of biological signals have led to an 

increasing interest in methods adopted from nonlinear dynamics theory [1, 6, 7, 8, 9, 10, 11]. Although 

signals produced by a biological system seem very unlikely to be linear, their nonlinear nature may not be 

reflected in recorded signals. In the absence of nonlinear behaviour, it is not favourable to use nonlinear 

analysis methods as they are more complex and computationally expensive in comparison to their linear 

counterparts. A requirement exists therefore that, before application of nonlinear analysis methods, the use 

of such advanced measures should be justified by the properties of the data.  For example, nonlinear EEG 

synchronisation of professional pianists were compared to musically naive subjects during sequential finger 

movement but without establishing the nonlinear behaviour of the EEG [12]. 

There are many studies investigating the nonlinearity of EEG signals. The majority of these 

studies focused on EEG signals recorded from healthy  subjects and patients with pathological conditions 

(i.e.  epilepsy, schizophrenia and dementia) as well as signals recorded from patients with sleep disorders 

during different sleep stages. The general conclusion of these research studies recorded from healthy 

subjects during resting state hasn’t shown any indications of low-dimensional chaos where only weak 

nonlinearity is observed [1, 13, 14]. On the other hand, there were strong indications of nonlinearity (in 

some cases associated with low-dimensional chaos) in EEG signals recorded from subjects with 

pathological  conditions compared to EEG signals recorded from healthy subjects [1, 15, 16, 17, 18]. 

Nonlinear measures such as approximate entropy have been employed to measure the level of 

anaesthesia [19]. However, only a few handful studies have shown the existence of nonlinearity in EEG 

signals during self paced movement. Studies in [20, 21] used four nonlinear features, namely correlation 

dimension, Kolmogorov entropy, nonlinear prediction and largest Lyapunov exponents to analyse the 

nonlinear dynamic changes in EEG during voluntary self paced movements, which indicated several 

transients between chaos-like states to almost periodic states.  In this study, we perform a comprehensive 

investigation on the indications of nonlinearity in self paced voluntary finger movement EEG signals using 

a number of test statistics with the surrogate data method. 

The surrogate data method has been used to test for the null hypothesis that the data is generated 

by a linear stochastic process measured by a memoryless and possibly nonlinear observation function [22]. 

Testing of the null hypothesis is based upon results generated from seven nonlinear test statistics namely, 

the third order autocorrelation, asymmetry due to time reversal, delay vector variance method, correlation 

dimension, largest Lyapunov exponent, nonlinear prediction error and approximate entropy. We have also 

looked into two different embedding parameter selection methods for estimation of nonlinear test statistics 

and the significance of embedding parameters on the ability of test statistics for capturing underlying 

nonlinear structures. The primary aim of this investigation is to demonstrate that the application of 

nonlinear dynamic measures for characterisation of finger movement EEG signals is justified using 

approximate entropy as an indicator of nonlinearity. 

 



2. EEG Data Set 
In this study, we have utilised EEG signals recorded from healthy subjects during an idle (resting) state and 

during flexion/extension of left index finger. A part of the data set and some of the test statistics have also 

been utilised in our recent publication investigating the characterisation ability of nonlinear features in 

comparison to linear features [23]. 

The EEG data set was recorded from nine right handed subjects (all subjects were male), with ages 

ranging from 23 to 46. Subject 8 was experienced using a BCI system based on self-paced movement, 

subjects 3 and 5 had experience in offine BCI experiments and the remaining subjects were naive to BCI 

use. Signals were acquired using a Guger Technologies g.Bsamp device. EEG signals were recorded over 

the motor cortex from five bipolar channels located at C3, C1, Cz, C2 and C4, referenced to the right 

mastoid. Electromyogram (EMG) signals were recorded from the flexors of the left forearm for labeling of 

movement and non-movement related EEG. All data was sampled at 256 Hz. 

Within each run, the subjects were asked to perform self paced flexion/extension of the left index 

finger whilst a fixation cross was visible on the screen. They were instructed to perform each movement for 

5-10 seconds and to rest for a minimum of 10 seconds between movements. As the data was un-cued the 

number of trials within each run was variable. Each subject performed three runs in a single session. Each 

run lasted for 610 seconds where the subjects had 5 seconds of pre-waiting and post-waiting periods before 

and after the fixation cross appeared on the screen for 600 seconds. The timing scheme of a run is 

illustrated in Figure 1. Instructions were given to concentrate on the fixation cross as much as possible 

during each run. The EMG signals were observed after each recording session to ensure that the subjects 

performed flexion/extension of index finger for a sufficient period of time (minimum of 5 seconds) and had 

sufficient breaks between each movement trial (minimum of 10 seconds). 

 

 

 

Figure 1: The timing scheme of the experimental paradigm. 

 

3. Methods 
Most statistical nonlinearity analysis studies utilise the Monte-Carlo approach proposed by Theiler and 

Prichard [24], which is also referred to as surrogate data method. The surrogate data are the realisations of 

the null hypothesis that signals are tested against. In the context of nonlinearity analysis, the signals are 

tested against the null hypothesis of linearity. The idea is to estimate a test statistic from the original data 

and an ensemble of surrogates that mimic the linear properties of the original data, and test the probability 

that they come from the same distribution. The null hypothesis is rejected if the test statistic of original data 

is not from the same probability distribution as surrogates. The essential issues in surrogate data method are 



definition of null hypothesis, surrogate data generation method and selection of test statistics. 

 

3.1. The Null Hypothesis of Linearity 

There are two types of null hypothesis: simple and composite. The simple null hypothesis asserts that the 

data is generated by a specific linear process. An example of simple null hypothesis would be that the 

generated data is a random realisation of a specific linear process driven by Gaussian white noise with zero 

mean and unit variance. Although this hypothesis is straightforward, it is unrealistic - especially for EEG 

signals, as it is almost impossible to know the specific linear process generating the data. Therefore a more 

general null hypothesis, referred to as composite null hypothesis would be that the process that generated 

the data is a member of family of processes. An example of a composite null hypothesis is that the data is 

generated by a Gaussian white noise with unknown mean and variance. 

 

3.2. Surrogate Data Generation 

The realisation of composite null hypothesis is achieved by imposing desired linear properties of the 

original time series on the surrogate data while the rest of the properties are randomised. According to 

Theiler et. al [25], three linear properties of particular interest are mean, variance and autocorrelation 

function.  The Wiener-Khinchin theorem states that the autocorrelation is equal to the inverse Fourier 

transform of the power spectrum1 of corresponding time series [16, 22, 26]. This is related to the fact that 

linear time series convey all necessary information in the amplitude spectrum while phase spectrum is 

irrelevant for characterisation of these time series.  Thus in the case of linear signals, disruption of phase 

spectrum does not have any effect on the amplitude distribution of the signal. On the other hand the 

nonlinear signals have precisely aligned phases and disruption in the phase alignment strongly influences 

the signal amplitude [16, 27]. 

Fourier Transform (FT) based surrogates are a straightforward way of realisation of composite null 

hypothesis that the time series is generated by a linear stochastic process driven by Gaussian white noise.  

Using this method the surrogates are constrained to preserve the same amplitude spectrum thus having 

same linear properties (i.e. mean, variance and autocorrelation) as the original data. The FT based surrogate 

method works well with data which is known to have Gaussian distribution. However in more realistic 

situations, the time series data does not necessarily follow a Gaussian distribution. In this case, the use of 

FT based surrogates can lead to false rejection of the null hypothesis. The most general hypothesis that 

refines deviation from Gaussian distribution is that the times series is generated by a linear stochastic 

process, driven by Gaussian white noise and followed by memoryless, monotonic and possibly nonlinear 

observation function s(·), sn = s(xn). Theiler et. al. [25] proposed Amplitude Adjusted Fourier Transform 

(AAFT) method for generating the surrogate data following this null hypothesis. With AAFT method, the 

observation function is used to change signal distribution of original data to follow Gaussian distribution 

for generation of surrogates and afterwards rescaling the surrogate data back to follow the same distribution 

as original data. Schreiber and Schmitz [22] demonstrated that the AAFT method can introduce a bias 

towards a slightly flatter amplitude spectrum, i.e. a white noise spectrum, for short and strongly correlated 

data. Schreiber and Schmitz proposed the iterative Amplitude Adjusted Fourier Transform (iAAFT) 

                                                           
1 i.e. Amplitude spectrum. 



method in order to address this problem. It has been shown by Schreiber and Schmitz that the iAAFT 

method provides an essential improvement over the AAFT method. In this study, we have utilised the 

iAAFT method to generate the surrogate time series. 

 

3.3. Nonlinear Test Statistics 

In the literature, the higher order statistics methods and nonlinear dynamics theory methods are widely 

used for estimating nonlinear test statistics from original and surrogate time series [15, 16, 26]. In this 

study, we have utilised two measures from the higher order statistics domain, namely the third order 

autocorrelation and asymmetry due to time reversal and five measures from the nonlinear dynamics theory 

domain namely the approximate entropy, largest Lyapunov exponents, correlation dimension, nonlinear 

prediction error and delay vector variance method. 

 

 

3.4. Higher Order Statistics Measures 

Third Order Autocovariance: The third order autocovariance (C3) is a higher order extension of the 

autocovariance method that measures the dependence of a time series on the time shifted versions of itself 

[16]. This measure is given by: 
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where x(n) is the time series, N is the length of time series and τ is the time lag. 

 

Asymmetry Due to Time Reversal: Asymmetry due to time reversal (REV) measures the irreversibility of 

time series, and is an indicator of a strong sign of nonlinearity [16]. This measure is given by: 
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where x(n) is the time series, N is the length of time series and τ is the time lag. 

 

3.5. Nonlinear Dynamic Measures 

State Space Reconstruction: The first step in nonlinear dynamic measure estimate is state space 

reconstruction. At this stage, univariate data is transformed to its trajectory in multidimensional state space. 

Suppose that a single scalar measure {x(t), t=1,...,N} is measured from the system using an observation 

function g(·) such that: 

)),(()( tsgtx =  (3) 
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where s(t) stands for the state of system at time t, M is the representation of m dimensional state space. The 

single scalar time series, x(t) will not provide a complete representation of the states of the dynamical 

system. According to Takens theorem [28], this can be achieved by representing single scalar time series as 

time lagged versions of itself such that: 
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where τ is time lag, m is the embedding dimension and yt is state vector at time t. 

 

The selection of the embedding dimension, m, and time lag, τ, parameters are important to achieve 

a good reconstruction of the time series in state space. In this study, we have used two approaches for the 

selection of embedding parameters. In the first approach, we utilised conventionally used false nearest 

neighbors method [27, 29] and first local minimum of mutual information function [27, 29] (MMI&FNN) 

for selection of these embedding parameters. 

In the second approach, we have selected the embedding dimension, m, and time lag, τ, pairs by 

minimisation of the nonlinear prediction error (GA with NLPE). This method utilises genetic algorithm 

(GA) for joint estimation of embedding dimension, m, and time lag, τ, parameters. During the estimation 

process the candidate embedding dimension and time lag pairs are generated and evolved by GA and the 

quality of reconstruction is assessed with the NLPE measure.  The NLPE measure is a locally linear 

forecasting method that exploits deterministic structures in a time series.  This method works by deriving 

neighbourhood relations from the time series and using these relations to predict future time series points.  

By using this method, the aim is to obtain an embedding that spreads the data in phase space based on the 

deterministic dynamic evolution of the system.  A more detailed information about this approach can be 

found in our previous work [30]. 

 

Approximate Entropy Method: The approximate entropy (APEN) is a measure that quantifies the 

irregularity of a time series. This was proposed by Pincus [31]. This measure can be estimated as follows: 
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where Nv is the number of vectors in state space, r is the tolerance of the comparison, yi and yj are vectors 

reconstructed in state space ||.|| represents the Euclidean distance between vectors and Θ(x) is the heaviside 

function such that Θ(x)=1 if x>0 and Θ(x)=0 if x<0. The approximate entropy APEN(m,r) is obtained by: 
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where N is the length of time series and m is the embedding dimension. 

 

Largest Lyapunov Exponent: Largest Lyapunov exponent (LLE) quantifies the average exponential 

divergence of nearby trajectories in state space where the sensitive dependence on initial conditions is 

obtained. In the literature several algorithm has been proposed for the calculation of LLE [11, 27, 29]. In 

this study, we have used Rosenstein’s algorithm [32] where the LLE measure can be estimated as follows: 

• For each state space vector yj the distance to the nearest neighbor yi is calculated: 



,)0( jij yyd −=  (11) 

• Then the two neighboring points are evolved in state space by time t to calculate the new 

separation distance: 

,)( titjj yytd ++ −=  (12) 

• The largest Lyapunov can be calculated using a least squares fit to the average line defined 

by: 

)(ln)( tdtL j=  (13) 

where ln is the natural logarithm and ⋅  denotes the average over all values of j. 

 

Correlation Dimension: Correlation dimension (CD) is a measure of the dimensionality of the space 

occupied by state vectors [11, 27, 29]. This measure is also referred to as fractal dimension2. There are 

several algorithms for the estimation of CD, in this study we have utilised the Grassberg-Procaccia 

algorithm [11, 27, 29]. Using this algorithm, the correlation dimension is estimated by first calculating 

correlation integral, C(r), which is defined in (8), over a range of r values. Then the plot of log C(r) versus 

log r should have a linear scaling region whose slope in the limit of small r and large N, is the correlation 

dimension. 
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Nonlinear Prediction Error: The nonlinear prediction error (NLPE) is a simple algorithm which exploits 

the deterministic structure in the time series [27]. This algorithm works by constructing local linear models 

on a given state space vector. 

First, the state vectors {yt = [x(t), x(t-τ),…, x(t-(m-1)τ)]} reconstructed from univariate time series, 

{ x(t); t=1,…,N} are divided into train, Ytrain and test sets, Ytest in which every state vector yt = [x(t), x(t-τ), 

…, x(t-(m-1)τ)] in the train and test sets has a future sample point, x(t+T) for T step ahead prediction. 

Therefore for every state vector yi, with corresponding target x(i+T) in the test set, k nearest neighbors from 

the train set {yj; j=1, …,k}, with corresponding targets {x(j+T); j=1, …,k} are grouped together. In order to 

do the prediction a linear model defined by: 
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is fitted to k state vectors and their target values. The model parameters {a0,…,am} are estimated using a 

recursive least squares algorithm. Following this the prediction error is calculated as 

)(ˆ)( TixTixe +−+=  where )(ˆ Tix +  is the predicted sample point and )( Tix + is the actual sample 

point. In this study we have set T to 1 and k to 1/10 of total number of state vectors in the train set. 

 

Delay Vector Variance Method: Delay vector variance (DVV) is a method proposed by Guatama et al. 

[16] for measuring the unpredictability of a time series in state space and has been applied in a BCI setting 
                                                           
2A fractal dimension is any dimension measurement that allows noninteger values. 



[33]. The DVV method involves the following steps: 

• The state vectors yt are reconstructed in state space from univariate time series, x(t), where every 

vector has a future sample point, x(t+T); 

• The mean, µd , and the standard deviation, σd, of all pairwise state vector distances are calculated, 

ji yy −  where
 

ji ≠ ; 

• For each vector, yk in state space, sets )( dk rΩ  are created by grouping state space vectors that are 

closer to yk than a certain distance rd such that }|{)( dikidk ryyyr ≤−=Ω ; 

• The distance rd is taken from the interval [ ]dddddd nn σµσµ *};,0max{ +− . Note that nd is a 

parameter controlling the span over which to perform DVV analysis (set to 4 in this study as 

suggested by Gautama et al [16]); 

• For every state space vector in the set, the variance of the corresponding targets )(2
dk rσ is computed. 

The variance measure is considered valid if the set )( dk rΩ contains at least 30 state space vectors. 

The average variance corresponding targets from all sets normalised by the variance of the time 
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3.6. Hypothesis Testing 

The null hypothesis of linearity is tested by comparing a nonlinear test statistic, estimated from the original 

time series and an ensemble of surrogate time series. The null hypothesis is rejected if statistics from the 

original time series do not come from the same probability distribution as statistics generated from the 

surrogate time series. Since the distribution of test statistics is not known we have employed a rank-based 

test as suggested by Theiler and Prichard [24]. A total of Ns surrogate time series are generated for each of 

the original time series. The test statistics for the original, to and Ns surrogate time series, {ts,i |i = 1, ..., 

Ns} are calculated and the test statistics {to, ts,i} are sorted in increasing order, after which the position 

index r of to is determined. In this study, Ns is set to 49. 

For hypothesis testing with a significance level of 0.05, a right tailed test is rejected if rank r of 

original time series exceeds 47 and a two tailed test is rejected if rank is less than 2 or greater than 48. 

One-sided tests are used if the test statistic of the original data deviates from the test statistics of 

the surrogates only in a specified direction.  For DVV statistics, we have performed a right tailed test as it 

quantifies the predictability of the time series and higher values are expected from original data compared 

to surrogates. For NLPE statistics, we have performed left tailed test as it quantifies unpredictability of the 

time series and lower values are expected from original data compared to surrogates. For the rest of the test 

statistics, we have performed a two-tailed test. 

 

4. Results 
The null hypothesis of linearity was tested based on each channel for all subjects.  The signals from each 

channel were analysed using a moving window of 256 data points with an overlap of 32 



 

data points.  Embedding dimension and time lag pairs for extraction of nonlinear test statistics were estimated 

individually for each subject. Embedding dimension was set to m=4 for subject 8 and to m=5 for the rest of the 

subjects; time lag was set to τ = 2 for subject 8; τ = 3 for subjects 4, 7; τ = 4 for subjects 1, 2, 3, 9; and τ = 5 

for subjects 5, 6. The GA with NLPE method led to same embedding dimension and time lag pairs for all 

subjects except subject 4, where embedding dimension was set to m=8 for subject 4 and to m=10 for rest of the 

subjects, time lag was set to τ = 1 for all subjects. 

As mentioned in Section 2, the data set was recorded during flexion/extension of left index finger 

(denoted as ’on’ class) and resting states (denoted as ’off ’ class).  Using nonparametric Mann-Whitney test, no 

significant differences were observed between the rejection rates of on and off classes. Therefore the 

indications of nonlinearity were investigated based on all EEG segments (without considering the class 

information) in the corresponding EEG data set. 

The rejection of the null hypothesis of linearity rates for EEG segments from different channels using 

MMI&FNN and GA with NLPE methods are presented in Figures 2 and 3. The graphs are representative of the 

mean and the standard deviation of rejection rates from each channel averaged over three sessions for each 

subject. 

The graphs in Figure 2 demonstrate that the highest indications of nonlinearity were given by APEN 

measure for subjects 1-7, DVV and LLE features for subject 8 and DVV, LLE and APEN measures for subject 

9. The rest of the test statistics indicated relatively lower rejection rates.  Simialrly, the results in Figure 3 show 

that the highest indications of nonlinearity were given by APEN measure for subjects 1-8, DVV and APEN 

measures for subject 9 and the rest of the features indicated relatively lower rejection rates. 

Using statistical Friedman test with a significance level of 0.05, no significant differences were found 

between the rejection rates of different channels for subjects 1-9 for both cases (MMI & FNN and GA with 

NLPE)3. 

Significant differences between rejection rates using the MMI&FNN and GA with NLPE methods for 

selection of embedding parameters were investigated using a statistical Wilcoxon test with a significance level 

of 0.05. No significant differences were observed between the rejection rates for all the subjects, except subject 

8. 

                                                           
3 The statistical tests were performed based on comparing the rejection rates of each feature from different channels and also 
based on comparing rejection rates of all features from different channels. 



 

 

Figure 2: The mean and the standard deviation of the rejection rates of real movement EEG segments grouped 
by nonlinear test statistics estimated using parameters from MMI&FNN method for each subject and recording 
site. 

 



 

 
Figure 3: The mean and the standard deviation of the rejection rates of real movement EEG segments grouped 
by nonlinear test statistics estimated using parameters from GA with NLPE method for each subject and 
recording site. 
 

 

5. Discussion and Conclusion 
In this study, we have investigated the indications of nonlinear structures in self-paced voluntary finger 

movement EEG. Our main motivation behind the investigation of nonlinear structures in the EEG time series 

was to justify the applicability of the corresponding nonlinear features for characterisation (i.e. feature 

extraction) of these signals. 

The results have demonstrated that there are clear indications of nonlinearity, with varying rates 

depending on the test statistics and parameter settings. However, no significant differences were observed 

between the rejection rates of EEG segments recorded during resting state and exion/extension of left index 

finger. 

Across nonlinear test statistics, APEN feature has consistently indicated highest indications of 

nonlinearity in all subjects. Moreover the results have illustrated the importance of the selection of embedding 

dimension and time lag parameters for state space reconstruction. Especially the findings has shown that the 

selection of optimal embedding parameters is crucial for capturing underlying nonlinear dynamics in the 



 

signals. While the overall results does not prove that the time series are of low-dimensional chaotic nature, the 

EEG signals were found to be consistent with the hypothesis that there are indications of nonlinear structures in 

these time series. These findings suggest that the nonlinear test statistics utilised in this study can offer a further 

characterization and understanding in the context of feature extraction and classification of corresponding self-

paced voluntary finger movement EEG signals, which will be useful for a number of applications such as BCI 

[4, 5], keystroke dynamics [34], biometrics [35] etc. 
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