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Abstract
This study investigatethe indicationsof nonlinear dynamic structures electreencghalagyram
signals. Theterative amplitude adjusted surrogate data metdonh with sevennorlinear test
statisticsnamely thethird order autocorrelation, asymmetrglue to timereversal,delay vector
variance method, correlation dimensidargest Lyapunov exponent, nonlinegrediction error
and approximate entropyas been used faanalysingthe EEGdata obtainedluring self paced
voluntary finger-movementThe results havedlemonstrated thathere are clear indications of
nonlinearityin the EEG signals. However theejectionof the null hypothesis of nonlinearity rate
varied based omlifferent parameter settings demonstrating significantembeddingdimension
and time lagparametersfor capturing underlying nonlinear dynami@s the signals. Across
nonlineartest statistics,the highest degree ofonlinearitywas indicatedby approximate entropy
(APEN) feature regardles$ theparameter settings.
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1. Introduction
Today, processing and analysis of biological signstlich aslectroencephalogrartEEG) are adively
pursued to improve understanding and diagnosisattigiogical conditions; examples of which include

epilepsy, dementia, schizophrenia and sleep diserddso, there are many research studies on EEG
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signals that allow further understanding of braynaimics of healthy subjects during performance of
different cognitive tasks, perceptual tasks, né-t@esting) states and different sleep stages [B].2In
addition recent years have seen many developments involving uitisaof EEG for Brain Computer
Interface (BCI) design [4, 5].

Conventionalanalysis of EEG signals utilise the time and freguyebased methods. However
the requirements for further characterisation abetéer understanding of biological signals hawkttean
increasing interest in methods adopted from noalirdynamics theory [1, 6, 7, 8, 9, 10, 11]. Althbug
signals produced by a biological system seem valikely to be linear, their nonlinear nature may be
reflected in recorded signals. In the absence ofimear behaviour, it is not favourable to use nudr
analysis methods as they are more complex and datinelly expensive in comparison to their linear
counterparts. A requirement exists therefore thefpre application of nonlinear analysis methols, use
of such advanced measures should be justified dytbperties of the data. For example, nonlinda® E
synchronisation of professional pianists were camg&o musically naive subjects during sequenitnejdr
movement but without establishing the nonlinearawébur of the EEG [12].

There are many studies investigating the nonlitgasf EEG signals. The majority of these
studies focused on EEG signals recorded from heatthbjects and patients with pathological condgio
(i.e. epilepsy, schizophrenia and dementia) as$ agebignals recorded from patients with sleeprdiss
during different sleep stages. The general conmtusif these research studies recorded from healthy
subjects during resting state hasn't shown anycatitins of low-dimensional chaos where only weak
nonlinearity is observed [1, 13, 14]. On the othand, there were strong indications of nonlineafiity
some cases associated with low-dimensional chaosgEG signals recorded from subjects with
pathological conditions compared to EEG signatemed from healthy subjects [1, 15, 16, 17, 18].

Nonlinear measures such as approximate entropy beea employed to measure the level of
anaesthesia [19]. However, only a few handful stssidiave shown the existence of nonlinearity in EEG
signals during self paced movement. Studies in PAQ,used four nonlinear features, namely correfati
dimension, Kolmogorov entropy, nonlinear predictiand largest Lyapunov exponents to analyse the
nonlinear dynamic changes in EEG during voluntaelf paced movements, which indicated several
transients between chaos-like states to almosbgierstates. In this study, we perform a comprsiven
investigation on the indications of nonlinearityself paced voluntary finger movement EEG signaiag
a number of test statistics with the surrogate dathod.

The surrogate data method has been used to testefarull hypothesis that the data is generated
by a linear stochastic process measured by a méessrgnd possibly nonlinear observation functid?i.[2
Testing of the null hypothesis is based upon resgdinerated from seven nonlinear test statistioseha
the third order autocorrelation, asymmetry dueineetreversal, delay vector variance method, caticela
dimension, largest Lyapunov exponent, nonlineadipt®mn error and approximate entropy. We have also
looked into two different embedding parameter d@ecmethods for estimation of nonlinear test stats
and the significance of embedding parameters onatiility of test statistics for capturing underlgin
nonlinear structures. The primary aim of this irigation is to demonstrate that the application of
nonlinear dynamic measures for characterisatiorfirfer movement EEG signals is justified using

approximate entropy as an indicator of nonlinearity



2. EEG Data Set

In this study, we have utilised EEG signals recdrftem healthy subjects during an idle (restingtestand
during flexion/extension of left index finger. A paf the data set and some of the test statibtie® also
been utilised in our recent publication investiggtithe characterisation ability of nonlinear featuin
comparison to linear features [23].

The EEG data set was recorded from nine right hédisdbjects (all subjects were male), with ages
ranging from 23 to 46. Subject 8 was experiencddgua BCI system based on self-paced movement,
subjects 3 and 5 had experience in offine BCI @rpents and the remaining subjects were naive to BCI
use. Signals were acquired using a Guger TechredagBsamp device. EEG signals were recorded over
the motor cortex from five bipolar channels locasdC3, C1, Cz, C2 and C4, referenced to the right
mastoid. Electromyogram (EMG) signals were recorfileth the flexors of the left forearm for labeling
movement and non-movement related EEG. All datasaawpled at 256 Hz.

Within each run, the subjects were asked to perfegthpaced flexion/extension of the left index
finger whilst a fixation cross was visible on tleween. They were instructed to perform each movérioen
5-10 seconds and to rest for a minimum of 10 sesdmaween movements. As the data was un-cued the
number of trials within each run was variable. Eaabject performed three runs in a single ses&anh
run lasted for 610 seconds where the subjects rst@nds of pre-waiting and post-waiting period®ize
and after the fixation cross appeared on the scfeer600 seconds. The timing scheme of a run is
illustrated in Figure 1. Instructions were givendoncentrate on the fixation cross as much as Iplessi
during each run. The EMG signals were observed afieh recording session to ensure that the ssbject
performed flexion/extension of index finger forwfgient period of time (minimum of 5 seconds) amatl

sufficient breaks between each movement trial (mim of 10 seconds).

Self paced
finger movement

Fixation Cross

———— } } —————

091 23 45 E‘r[|]5 610 timeins
| | |
Fre-waiting Post-waiting
period period

Figure 1. The timing scheme of thexperimental paradigm.
3. Methaods

Most statistical nonlinearity analysis studiesis#ilthe Monte-Carlo approach proposed by Theiler an
Prichard [24], which is also referred to as surtegiata method. The surrogate data are the reéafisabf
the null hypothesis that signals are tested againghe context of nonlinearity analysis, the silgnare
tested against the null hypothesis of linearitye Tthea is to estimate a test statistic from thginal data
and an ensemble of surrogates that mimic the lipegperties of the original data, and test the pbality
that they come from the same distribution. The hyflothesis is rejected if the test statistic éfioal data

is not from the same probability distribution asregates. The essential issues in surrogate datsochare



definition of null hypothesis, surrogate data gatien method and selection of test statistics.

3.1. The Null Hypothesis of Linearity

There are two types of null hypothesis: simple aathposite. The simple null hypothesis asserts ttiat
data is generated by a specific linear processexample of simple null hypothesis would be that the
generated data is a random realisation of a spduifiar process driven by Gaussian white noisk nétro
mean and unit variance. Although this hypothesistrigightforward, it is unrealistic - especially feEG
signals, as it is almost impossible to know thecHjielinear process generating the data. Therefoneore
general null hypothesis, referred to as compositehypothesis would be that the process that gaadr
the data is a member of family of processes. Anmpta of a composite null hypothesis is that thedsit

generated by a Gaussian white noise with unknowennasmd variance.

3.2. Surrogate Data Generation

The realisation of composite null hypothesis isieedd by imposing desired linear properties of the
original time series on the surrogate data whike st of the properties are randomised. According
Theiler et. al [25], three linear properties of tpadar interest are mean, variance and autocdioala
function. The Wiener-Khinchin theorem states tthat autocorrelation is equal to the inverse Fourier
transform of the power spectrtirof corresponding time series [16, 22, 26]. Thiselgted to the fact that
linear time series convey all necessary informaiiorthe amplitude spectrum while phase spectrum is
irrelevant for characterisation of these time seri@hus in the case of linear signals, disruptbphase
spectrum does not have any effect on the amplitid&ibution of the signal. On the other hand the
nonlinear signals have precisely aligned phasesdisrdption in the phase alignment strongly infloes
the signal amplitude [16, 27].

Fourier Transform (FT) based surrogates are agsiifairward way of realisation of composite null
hypothesis that the time series is generated liyear stochastic process driven by Gaussian wihiteen
Using this method the surrogates are constrainggréserve the same amplitude spectrum thus having
same linear properties (i.e. mean, variance anatatrelation) as the original data. The FT basetbgate
method works well with data which is known to haBaussian distribution. However in more realistic
situations, the time series data does not necbs$altow a Gaussian distribution. In this caseg thse of
FT based surrogates can lead to false rejectiameofull hypothesis. The most general hypothesis th
refines deviation from Gaussian distribution istttize times series is generated by a linear stdichas
process, driven by Gaussian white noise and foltbtye memoryless, monotonic and possibly nonlinear
observation function §( s, = sk,). Theiler et. al. [25] proposed Amplitude AdjustEdurier Transform
(AAFT) method for generating the surrogate datéofeing this null hypothesis. With AAFT method, the
observation function is used to change signal idistion of original data to follow Gaussian distrtion
for generation of surrogates and afterwards rasgalie surrogate data back to follow the sameibligion
as original data. Schreiber and Schmitz [22] denmated that the AAFT method can introduce a bias
towards a slightly flatter amplitude spectrum, aewhite noise spectrum, for short and stronglyelated

data. Schreiber and Schmitz proposed the iterafimglitude Adjusted Fourier Transform (IAAFT)

Li.e. Amplitude spectrum.



method in order to address this problem. It hamis&®wn by Schreiber and Schmitz that the IAAFT
method provides an essential improvement over tA&TAmethod. In this study, we have utilised the

IAAFT method to generate the surrogate time series.

3.3. Nonlinear Test Statistics

In the literature, the higher order statistics me#and nonlinear dynamics theory methods are widel
used for estimating nonlinear test statistics fromginal and surrogate time series [15, 16, 26]tHis
study, we have utilised two measures from the higirder statistics domain, namely the third order
autocorrelation and asymmetry due to time revaardlfive measures from the nonlinear dynamics theor
domain namely the approximate entropy, largest uyap exponents, correlation dimension, nonlinear

prediction error and delay vector variance method.

3.4. Higher Order Statistics Measures
Third Order Autocovariance: The third order autocovariance (C3) is a highedeorextension of the
autocovariance method that measures the dependéactime series on the time shifted versions s#lft

[16]. This measure is given by:

Cc3(r) =ﬁ 3" (x(n) CK(n - 1) [X(n - 21)),

n=2r+1

(1)

wherex(n) is the time seriedl is the length of time series anés the time lag.

Asymmetry Due to Time Reversal: Asymmetry due to time reversal (REV) measuresrteeersibility of

time series, and is an indicator of a strong sigmomlinearity [16]. This measure is given by:

REV@):FE:%:?égfﬂn%-ﬂn—T»3 )

where x(n)is the time seried\ is the length of time series andis the timelag.

3.5. Nonlinear Dynamic Measures

State Space Reconstruction: The first step in nonlinear dynamic measure edBmia state space
reconstruction. At this stage, univariate dataassformed to its trajectory in multidimensionaltstspace.
Suppose that a single scalar measw@){t=1,...,N is measured from the system using an observation

functiong(:) such that:

X(t) = o(s(t)), (3)
g:M 5 R (4)
snOM OR", (5)

wheres(t) stands for the state of system at tityl is the representation af dimensional state space. The
single scalar time serieg(t) will not provide a complete representation of #tates of the dynamical
system. According to Takens theorem [28], this lsarachieved by representing single scalar timeseas

time lagged versions of itself such that:



f:R - R, (6)
y, = f(x(t)) = [x(t), x(t = 7),... x(t = (M=-1)7))] (7)

wherer is time lagm s the embedding dimension apds state vector at time

The selection of the embedding dimensi@nand time lags, parameters are important to achieve
a good reconstruction of the time series in stpges. In this study, we have used two approachethéo
selection of embedding parameters. In the firstreggh, we utilised conventionally used false neares
neighbors method [27, 29] and first local minimufmmtual information function [27, 29] (MMI&FNN)
for selection of these embedding parameters.

In the second approach, we have selected the ennigediinensionm, and time lagz, pairs by
minimisation of the nonlinear prediction error (Gifith NLPE). This method utilises genetic algorithm
(GA) for joint estimation of embedding dimensian, and time lagz, parameters. During the estimation
process the candidate embedding dimension andléighpairs are generated and evolved by GA and the
quality of reconstruction is assessed with the NLBR&asure. The NLPE measure is a locally linear
forecasting method that exploits deterministic cutes in a time series. This method works bywvilegi
neighbourhood relations from the time series andguthese relations to predict future time seriesis.

By using this method, the aim is to obtain an endibegithat spreads the data in phase space basiw on
deterministic dynamic evolution of the system. Armdetailed information about this approach can be

found in our previous work [30].

Approximate Entropy Method: The approximate entropy (APEN) is a measure thantffies the

irregularity of a time series. This was proposedPincus [31]. This measure can be estimated assll

e ]
cr= v ®)
=1 v
whereNv is the number of vectors in state spacks, the tolerance of the comparisgnandy,; are vectors
reconstructed in state spat# represents the Euclidean distance between veatal®(x) is the heaviside
function such tha®(x)=1 if x>0 and®(x)=0 if x<0. The approximate entropy APEN() is obtained by:
ApEr(m,r) =®"(r) - ®™(r)
9)

N-(m-1)

m —_ l m
O ;'”[Ci ) 0

whereN is the length of time series antis the embedding dimension.

Largest Lyapunov Exponent: Largest Lyapunov exponent (LLE) quantifies the rage exponential
divergence of nearby trajectories in state spaceravithe sensitive dependence on initial conditisns
obtained. In the literature several algorithm hasrbproposed for the calculation of LLE [11, 27].28
this study, we have used Rosenstein’s algorithrh\8fere the LLE measure can be estimated as follows

. For each state space vegypthe distance to the nearest neighyaas calculated:



— 11
d; O =]y -y, ()
. Then thetwo neighboring points are evolved in state space ibye t to calculate the new

separation distance:

— 12

d, 0 =]y, = i (2

. The largest Lyapunov can be calculated using atlegsares fit to the average limkefined
by:

— 13

L(t) = (Ind, (1)) (13)

whereln is the natural logarithm an@] denotes the average over all valueg of

Correlation Dimension: Correlation dimension (CD) is a measure of thmatisionality of the space
occupied by state vectors [11, 27, 29]. This meassiralso referred to as fractal dimen$iohhere are
several algorithms for the estimation of CD, instlitudy we have utilised the Grassberg-Procaccia
algorithm [11, 27, 29]. Using this algorithm, thercelation dimension is estimated by first calcinigt
correlation integralC(r), which is defined in (8), over a rangerofalues. Then the plot of 10g(r) versus

log r should have a linear scaling region whose slogénimit of smallr and large\, is the correlation
dimension.

.. dInC(r)
CD=lim lim ——~£
r-oN-= dInr (14)

Nonlinear Prediction Error: The nonlinear prediction error (NLPE) is a simplgorithm which exploits
the deterministic structure in the time series [IHis algorithm works by constructing local lingaodels
on a given state space vector.

First, the state vectorgi{= [x(t), X(t<),..., X(t-(m-1))]} reconstructed from univariate time series,
{x(); t=1,...,N are divided into train.\Yya, and test setsYi.sin Which every state vectgy = [x(t), x(t<),
..., X(t-(m-13)] in the train and test sets has a future samplietpx(t+T) for T step ahead prediction.
Therefore for every state vectgr with corresponding targeti+T) in the test sek nearest neighbors from
the train sety;; j=1, ...,K}, with corresponding target{j+T); j=1, ...,k} are grouped together. In order to
do the prediction a linear model defined by:

x(j+T)=a,+ ay;() 15)
i=1

is fitted tok state vectors and their target values. The modeimeters 4,...,a} are estimated using a
recursive least squares algorithm. Following thike t prediction error is calculated as

e= <\x(i +T) - %(i + T)D where X(i +T) is the predicted sample point axdi +T) is the actual sample

point. In this study we have s€to 1 andk to 1/10 of total number of state vectors in tlaniset.

Delay Vector Variance Method: Delay vector variance (DVV) is a method proposgdQuatama et al.

[16] for measuring the unpredictability of a timeries in state space and has been applied in s&@hg

2A fractal dimension is any dimension measuremeattaliows noninteger values.



[33]. The DVV method involves the following steps:

. The state vectorg, are reconstructed in state space from univariate seriesx(t), where every
vector has a future sample poixft+T);

. The meanyy , and the standard deviation, of all pairwise state vector distances are cateudl,
lyi = y;|| wherei # j ;

. For each vectory, in state space, sef,(r,) are created by grouping state space vectors that a

closer toy, than a certain distancgsuch thatQ , (ro) ={vy; |y, = vi|[< ra}
. The distance is taken from the interva[lmaX{ O,y —Ngo 4} gy + Ny *0, ] Note thatny is a

parameter controlling the span over which to penfddVV analysis (set to 4 in this study as

suggested by Gautama et al [16]);

. For every state space vector in the set, the vegiahthe corresponding targe® (ry ) is computed.
The variance measure is considered valid if thelsgfr,) contains at least 30 state space vectors.
The average variance corresponding targets fronsedi normalised by the variance of the time

serieso, results in the measure of unpredictability? (r, ) :

(16)

3.6. Hypothesis Testing
The null hypothesis of linearity is tested by comipg a nonlinear test statistic, estimated fromdhginal
time series and an ensemble of surrogate timesserte null hypothesis is rejected if statistiasnirthe
original time series do not come from the same abdly distribution as statistics generated frone t
surrogate time series. Since the distribution ef gatistics is not known we have employed a izeded
test as suggested by Theiler and Prichard [24btal ©f Ns surrogate time series are generated for each of
the original time series. The test statistics fog original, to and Ns surrogate time serids;, [{ = 1, ...,
Nst are calculated and the test statistitg {} are sorted in increasing order, after which thasipion
indexr oft, is determined. In this studisis set to 49.

For hypothesis testing with a significance levelOdd5, a right tailed test is rejected if rankf
original time series exceeds 47 and a two tailstliserejected if rank is less than 2 or greatan 8.

One-sided tests are used if the test statistib@foriginal data deviates from the test statistics
the surrogates only in a specified direction. BMV statistics, we have performed a right tailesttas it
guantifies the predictability of the time seriesldngher values are expected from original data pamed
to surrogates. For NLPE statistics, we have peréarifeft tailed test as it quantifies unpredictapibf the
time series and lower values are expected fromraiglata compared to surrogates. For the resteofest

statistics, we have performed a two-tailed test.

4. Results

The null hypothesis of linearity was tested basedeach channel for all subjects. The signals feamh

channel were analysed using a moving window of 2%§a points with an overlap of 32



data points. Embedding dimension and time lagspfair extraction of nonlinear test statistics westimated
individually for each subject. Embedding dimensiees set tan=4 for subject 8 and tm=5 for the rest of the
subjects; time lag was settc= 2 for subject 8z = 3 for subjects 4, 7¢ = 4 for subjects 1, 2, 3, 9; and= 5

for subjects 5, 6. The GA with NLPE method led tonge embedding dimension and time lag pairs for all
subjects except subject 4, where embedding dimengés set tan=8 for subject 4 and tm=10 for rest of the
subjects, time lag was setde 1 for all subjects.

As mentioned in Section 2, the data set was recodiging flexion/extension of left index finger
(denoted as 'on’ class) and resting states (deremedff ’ class). Using nonparametric Mann-Whitrtest, no
significant differences were observed between thjection rates of on and off classes. Therefore the
indications of nonlinearity were investigated based all EEG segments (without considering the class
information) in the corresponding EEG data set.

The rejection of the null hypothesis of linearites for EEG segments from different channels using
MMI&FNN and GA with NLPE methods are presented igufes 2 and 3. The graphs are representativeeof th
mean and the standard deviation of rejection rites each channel averaged over three sessionsafdr
subject.

The graphs in Figure 2 demonstrate that the higihegtations of nonlinearity were given by APEN
measure for subjects 1-7, DVV and LLE featuressianject 8 and DVV, LLE and APEN measures for subjec
9. The rest of the test statistics indicated reddyi lower rejection rates. Simialrly, the resutimigure 3 show
that the highest indications of nonlinearity weieeg by APEN measure for subjects 1-8, DVV and APEN
measures for subject 9 and the rest of the featndésated relatively lower rejection rates.

Using statistical Friedman test with a significateeel of 0.05, no significant differences were ridu
between the rejection rates of different channetsstibjects 1-9 for both cases (MMI & FNN and GAthwi
NLPE).

Significant differences between rejection ratesigisghe MMI&FNN and GA with NLPE methods for
selection of embedding parameters were investigasaty a statistical Wilcoxon test with a significa level
of 0.05. No significant differences were observetiveen the rejection rates for all the subjectsepksubject
8.

3 The statistical tests were performed based on adnpthe rejection rates of each feature fromedéffit channels and also
based on comparing rejection rates of all featfrman different channels.
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Figure 2: The mean and the standard deviation e@fé¢fection rates of real movement EEG segmentspgch
by nonlinear test statistics estimated using patarsédrom MMI&FNN method for each subject and refing
site.
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Figure 3: The mean and the standard deviation e@féfection rates of real movement EEG segmentspgch

by nonlinear test statistics estimated using patarsefrom GA with NLPE method for each subject and
recording site.

5. Discussion and Conclusion

In this study, we have investigated the indicatiaisnonlinear structures in self-paced voluntamygér
movement EEG. Our main motivation behind the ingesiton of nonlinear structures in the EEG timeieser
was to justify the applicability of the correspomgli nonlinear features for characterisation (i.aatdee
extraction) of these signals.

The results have demonstrated that there are abelications of nonlinearity, with varying rates
depending on the test statistics and parameteingettHowever, no significant differences were obsd
between the rejection rates of EEG segments redaddeing resting state and exion/extension of iledtex
finger.

Across nonlinear test statistics, APEN feature bassistently indicated highest indications of
nonlinearity in all subjects. Moreover the restigs/e illustrated the importance of the selectioembedding
dimension and time lag parameters for state spaoenstruction. Especially the findings has shovat the

selection of optimal embedding parameters is ctuiga capturing underlying nonlinear dynamics ireth



signals. While the overall results does not prdwat the time series are of low-dimensional chaotiture, the

EEG signals were found to be consistent with theoklyesis that there are indications of nonlinearcstires in

these time series. These findings suggest thaidhknear test statistics utilised in this study odfer a further

characterization and understanding in the contéfg¢ature extraction and classification of corresgiog self-

paced voluntary finger movement EEG signals, whidhbe useful for a number of applications suchB#3l
[4, 5], keystroke dynamics [34], biometrics [35¢.et

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

(9]

[10]

[11]
[12]

C. J. Stam. Nonlinear dynamical analysisBEG and MEG: Review of an emerging field. Clinical
Neurophysiology, vol. 116, no. 10, pp. 2266—-23010)320

S. Cheng, H. Lee, C. Shu, and H. HElectroencephalographistudy of mental fatigua visual
display terminal taskslournalof Medical and Biological Engineering, vol. 27, r&.pp. 124-131,
2007.

R. Acharya,E. C. P. Chua, K.C. Chua, L. C. Min, and Tramura. Analysis andautomatic
identification of sleep stages using higher order spectimternational Journalof Neul
Systems, vol. 20, no. 6, pp. 509-521, 2010.

C. N. Gupta and R. Palaniappan. Enhanced detect visual evoked potentials in brain-computer
interface using genetic algorithm and cyclostatignanalysis. Computational Intelligence and
Neuroscience, vol. 2007, article ID 28692, 12 pagé87, doi:10.1155/2007/28692.

J. Wilson and R. Palaniappan. Analogue mousmteo control via an online steady state visual
evoked potential (SSVEP) brain-computer interfdoairnal of Neural Engineering, vol. 8, no.2, 2011,
doi: 10.1088/1741-2560/8/2/025026.

H. OsterhageF. Mormann, T. Wagner, and K.ehnertz.Measuring thelirectionality of coupling:
Phase versus state space dynamics applicationto EEG time seriesinternational Journabf
Neural Systems, vol. 17, no. 3, pp. 139-148, 2007.

I. A. Rezek and S. JRoberts.Stochastic complexity measures for physiologicgnal analysis.
IEEE Transactionsn BiomedicaEngineering, vol.45, no. 9, pp. 1186-1191, 1998.

M. I. Owis, A.H. Abou-Zied, A. M. Yousef, and .YWM. Kadah. Study of features based won-
linear dynamical modelling in ecarrhythmiadetection and classification. IEEEansactionn
BiomedicalEngineering, vol.49, no. 7, pp. 733-736, 2002.

E. Olbrich, P.Acherman,and P. F. Meier. Dynamics of human EEGeurocomputing, vol.52-
54, pp. 857-862, 2003.

M. Dyson, T. Balli, J. Q. Gan, F. SepulvedadaR. Palaniappan. Approximatentropy for EEG
based meemen detection. Proceedings dfet 4thinternationalWorkshop onBrain-Computer
Interfaces,Graz,Austria,pp. 110-115, 2008.

M. Akay. NonlinearBiomedical Signal Processing, vol. Il. IEEE Prex3)1.

C. Calmels, M. Hars, GJarry, and C. J. Stam. Non-linear EE&ynchronization during
observation:Effects of instructions and expertise. Psychophysiology, vol. 47, %0pp.799—
808, 2010.



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
[28]

M. Casdagli. Chaos andeterministic versus stochastic non-linear modeling.Journal Royal
StatisticsSociety B, vol. 52, no. 2, pp. 303-328, 1991.

R. A. Stepien. Testing fonon-linearityin EEG signal of healthy subjects. Actdeuiobiologiae
Experimentalis, vol 62, no. 4, pp. 277-281, 2002.

R. G.Andrzejak,K. Lehnertz,F. Mormann, C. Rieke, and C. E. Elgbrdicationsof nonlin-ear
deterministic and finite-dimensional structuresin time series of brain electricahctivity:
Dependence on recording region and brain statesi@lyReview E, vol. 64, no. 6: 061907-8,
2001.

T. Gautama,D.P. Mandic, and M.M.V. Hullelndications of nonlinear structuresin brain
electricalactivity. Physical Review E, vol. 67, no. (4): 046204-5, 2003

Y. Lee, Y. Zhu, Y. Xu, M. Shen, H. Zhang, aid Thakor. Detection ofnonlinearity in the
EEG of schizophrenipatients.Clinical Neurophysiology, 112(7):1288-1294, Jul\020

J. P. MPijn, D. N. Velis, M. van der Heyden, J. DeGoede, W van Veelen, and F. H. Lopes
da Silva. Nonlinear dynamics of epileptic seizumsthe basis ointracranialEEG recordings.
Brain Topography, vol. 9, pp. 1-22, 1997.

S. Fan, J. Yeh, B. Chen, and J. Shieh. Comparof EEGapproximateentropy and com- plexity
measures of depth ahaesthesiduringinhalationalgeneralanaesthesia. Journaf Medical and
Biological Engineering, vol.31, no. 5, pp. 359-366, 2010.

D. Popivanovand J.DushanovaNon-linear EEG dynamic changes and their probablationto
voluntary movement organization. Neuroreport, vol10, no. 7, pp. 1397-1401, 1999.

J. Dushanovaand D.Popivanov.Non-linear dynamicestimationof EEG signalsaccompaping
self-pacedgoal-directedmovementsNonlinear Dynamics, Psychology, and LifScienes vol. 5,
no. 4, pp. 1397-1401, 2001.

T. Schreiber and A. SchmitzSurrogatetime series. Physica INonlinear Phenomenavol. 142
(3-4), no. 346—-382, August 2000.

T. Balli and R. PalaniappancClassification of biological signals using lineandanonlinear
features. Physiologicdlleasurements, vol31, no. 7, pp. 903-920, July 2010.

J. Theiler and DPrichard. Constrainedealization Monte-Carlo method forhypothesistesting.
Physica D:Nonlinear Phenomena, vo94, no. 4, pp. 221-235, July 1996.

J. Theiler, P. S. Linsay, and D. M. Rubin. &ging nonlinearity in data with long coherence
times. In A. S. Weigend and N. A. Gershenfeld, (EdBime SeriesPrediction: Foreastingthe
Future andUnderstandingthe Past, SantaFe Institutgtudies in the Science donplexity
Proceedingsyol. XV, pp. 429-455Addison-Wesley, Reading, MA, 1993.

D. P. Mandic, M. Chen, TGautama, M. M. V. Hulle, and A. Constantinides.On the
characterisation of the deterministic/stochastiand linear/nonlinear natureof time series.
Proceedingsof the Royal Society AMathematical,Physical andEngineeringSciences, vol. 464,
pp. 1141-1160, 2008.

H. Kantz and T. SchreibeMNonlinear Time Series AnalysisCambridgeUniversity Press;1997.

F. TakensDetecting strangattractorsin turbulence.Lecture Notes inMathematicsyvol. 898,
chapter,pp. 366-381, 1981.



[29] J. C.Sprott. Chaos andTime-series Aalysis. Oxford University Press, 2003.

[30] T. Balli and R.PalaniappanMinimising prediction error for optimal nonlinearadelling of eeg
signals using genetilgorithm.Proceedingof the 4thInternationallEEE EMBS Conference on
NeuralEngineering,Antalya, Turkey, pp. 363—-366, 2009.

[31] S. M. Pincus. Approximate entropy as a measure of system complexiBroceedingsof the
National Academy of Sciences, vol. 88, no. 6, #872-2301, 1991.

[32] M. T. Rosenstein, J. J. Colins, and C. J. decd. Practical method for calculating largest
Lyapunov exponents from small data sets. Physic&lBnlinear Phenomena, v o165, pp. 117—
134, 1993.

[33] T. Balli, R. Palaniappan, and D. P. Mandic. e linearity/non-linearity of mental activity EEf@r
brain-computer interface design. IFMBE Proceediofy8 Kuala Lumpur International Conference
on Biomedical Engineering, Kuala Lumpur, Malaygip, 451-454, part 10, vol. 15, December 11-14,
2006.

[34] K. Revett. A bioinformatics basedpproachto user authenticationvia keystrokedynamics
International Journabf Control,Automationand Systems, vol. 7, no. 1, pp. 7-15, 2009.

[35] R. PalaniappanTwo-stage biometri@authenticationmethod usinghough activity brain waves.

International Journadf Neural Systems, vol. 18, no. 1, pp. 59-66, 2008.

Authorsshort biographies:

Tugce Balli completed her PhD in 2011 in the SchafoaComputer Science and Electronic Engineerinthe
field of intelligent biomedical signal processirgy. Balli joined the School of Engineering arrchitecture,
Istanbul Kemerburgaz University, Istanbdiurkey as a lecturer in 2012. Her research interestidiec

EEG and ECG signal analysis and brain-computerfaxtes.

Ramaswamy Palaniappan is a senior lectureDepartmen of Engineering, School of Technology,
University of Wolverhampton,Telford, UK. Dr Palaniappan’s research interest lie in theaaof biosignal
analysis and machine learning, where he has puddisiver 130 research papers in addition to two text

books in engineering.



