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Abstract

Clinical experts assess the newborn brain devel
opment  by  analyzing  and  interpreting  maturityre
lated features in sleep EEGs. Typically, these features  
widely vary during the sleep hours, and their inform
ativeness  can  be  different  in  different  sleep  stages.  
Normally, the level  of muscle and electrode artifacts  
during the active sleep stage is higher than that dur
ing the quiet sleep that could reduce the informative
ness  of  features  extracted  from the  active  stage.  In  
this paper, we use the methodology of Bayesian aver
aging over  Decision  Trees  (DTs) to  assess  the  new
born brain maturity  and explore the informativeness  
of EEG features extracted from different sleep stages.  
This methodology has been shown providing the most  
accurate inference and estimates of uncertainty, while  
the use of DT models enables to find the EEG features  
most important for the brain maturity assessment.

1. Introduction

There  are  clinical  evidences that  the  newborn  brain 
development can be assessed from the maturity-related 
patterns  recognizable in  sleep electroencephalograms 
(EEG) [1], [2]. These patterns are used by clinical ex-
perts to estimate  a  newborn’s  physiological  age  [3], 
despite  the  fact  that  they  widely  vary  during  sleep 
hours  and  between  patients  that  makes  the  analysis 
difficult and laborious. Automated analysis of the ma-
turity-related  patterns  has  been  shown promising  to 
assist experts in clinical interpretation [2], [4]. 

Typically,  sleep  EEG  is  recorded  during  a  few 
hours and comprises one or more cycles of the active 
sleep (AS) and quiet sleep (QS) stages. These cycles or 
stages are recognizable in sleep EEG, and the inform-
ation about them is useful for clinical interpretation of 
maturity-related patterns [5]. 

From developmental  physiology it  is known that 
sleep stages are recognizable in newborn EEGs since 
approximately 30 weeks post-conception. At this age, 
the QS is recognized as  a  pattern  with  high  voltage 
bursts of delta, theta and alpha activity interrupted by 

periods with very low voltage. In contrast, the AS pat-
tern is recognized as a longer period of uninterrupted 
medium-voltage  theta  and  delta  activity.  The  cyclic 
variations in the voltage and frequency corresponding 
to the sleep stages become more distinguishable with 
the brain maturation. For full-term newborns, the AS 
pattern  is  characterized  by low to  moderate  voltage 
activity in theta, alpha and beta bands, whereas the QS 
pattern is often characterized by a high voltage delta 
activity [2], [5], [6]. 

It  has  been shown that  the QS and AS patterns 
were significantly different in terms of voltage, powers 
in the delta and theta bands, as well as in terms of the  
number and length of pseudo-stationary segments [7]. 
In [8], the dimensional complexity of neonatal  EEGs 
has been explored and shown to be significantly high-
er during  the AS. In  [9],  the sleep stages have been 
differentiated by using 88 statistical features represent-
ing the voltage, frequency and cepstral coefficients. A 
technique  for  segmentation  of  newborn  EEGs  into 
pseudo-stationary intervals to be then clustered by the 
mean  frequency  and  voltage  has  been  proposed  in 
[10]. As a result, the EEG intervals from the QS and 
AS stages were assigned to different clusters. In [11], 
a difference in the maturity-related patterns in the QS 
and AS stages has been found; particularly, the powers 
in theta and beta bands were most informative during 
the AS, whereas the alpha band was the most import-
ant feature during the QS. The most informative ma-
turity-related  feature  found in  [12] was the minimal 
voltage during the QS. 

In this paper, we aim to explore the  informative-
ness of EEG features extracted from the QS and AS 
stages  for the brain  maturity assessment.  In  general, 
feature importance is defined by the assessment meth-
od,  and  therefore  our  research  is  conditioned  on  a 
chosen approach.  Our  approach  to the assessment  is 
based on Bayesian averaging over classification mod-
els,  in  particularly,  over  decision  trees  (DTs)  [13], 
[14].  Recently,  this  methodology  has  been  shown 
promising for the assessment of brain maturity, while 
providing the information on EEG feature importance 
[15]. 
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The next sections of the paper are as follows. Sec-
tion 2 introduces the methodology of BMA over DTs. 
Section 3 describes the methods used for artifact  re-
moval  and  sleep  stage  segmentation.  Section  4  de-
scribes the experiments,  and Section 5 concludes the 
paper.

2. Bayesian model averaging over decision 
trees

Let us define parameters  Q of a DT to be trained 
on the data D represented by a m-dimensional input x. 
Given parameters Qi  we can  then  use the Bayesian 
theorem  to  count  the  class  posterior  distribution
p ( y∣Q , D) , where y = {1, C} an outcome of the DT 

for a given input  x,  and  C is the number of classes. 
Having  a  conditional distribution  p(Q∣D ) ,  we can 
draw N samples Qi from it and then write

p( y∣x , D)≃∑
i=1

N

p( y∣x ,Qi ,D )p(Qi∣D)=

1
N ∑

i=1

N

p( y∣x ,Qi , D)

In practice, the above approximation is efficiently 
made with Markov Chain Monte Carlo (MCMC) sim-
ulation technique. The main idea of this technique is 
to draw the samples Qi from a Markov Chain, that is a 
DT  model,  when  the  distribution p(Q∣D ) is station-
ary,  and  samples  are  drawn  from  areas  of  interest 
with  a high  density  of the  probability  (see e.g.  [13], 
[14]). 

The parameters of a DT are defined by the posi-
tion, attribute and rule given for each splitting node. 
Having priors, users can specify a maximal number of 
splitting nodes, an expected DT configuration, as well 
as the preferences of using splitting attributes. The use 
of priors enables to explore DTs which split the data 
in many ways, taking into account that the areas of in-
terest have to be sampled proportionally to the num-
bers of DT configurations.

In practice, when DTs are grown from given data,  
and their dimensionality is variable, the MCMC simu-
lation  has  to be extended with Reversible Jump (see 
e.g. [13], [14]). Within this extension, we can change 
the  dimensionality  of  a  DT  by using  the  birth and 
death moves. 

The  birth  move randomly splits  the  data  points 
falling in one of the DT terminal  nodes by adding a 
new splitting node with an attribute and a rule drawn 
from  the given  prior  distributions.  This  move  in-
creases the dimensionality of a DT. In the reverse, the 
death  move  decreases  the  dimensionality  and  ran-
domly picks a splitting node with two terminal nodes 
to make this node a terminal. 

The other moves are normally assumed as chan-
ging parameters of a DT: we can change a splitting at-

tribute  as  well  as  a  splitting  rule.  The  changesplit 
move picks a random splitting node and then changes 
its  attribute along with its  splitting  rule drawn from 
the given  prior  distributions.  The  changerule move 
picks a random splitting node whose rule is replaced 
by a new one drawn from a given prior distribution. 

The birth and death moves change the DT config-
uration that  enables the MCMC algorithm to explore 
possible ways of splitting  data.  The change-split  and 
change-rule enable the MCMC algorithm to explore a 
DT within its current dimensionality. The change-split 
move enables to make “large” jumps which increase 
the chance of sampling the posterior distribution from 
different  areas  of  interests,  whilst  the  change-rule 
move makes “local” jumps enabling to explore an area 
of interest in detail.

The MCMC algorithm starts exploring a DT con-
sisting  of one splitting  node with  parameters  (an  at-
tribute  and  a  rule)  which  were  randomly  assigned 
within the predefined prior distributions. Making the 
birth and death moves, the algorithm lets a DT grow. 
While the DT grows, its likelihood tends to increase.  
and therefore during this phase the Markov Chain  is 
unstable. This period named burnin should be preset 
sufficiently long in order for the Markov Chain to be-
come enough stable.  When  it  is achieved,  the  phase 
named  post burnin  is initiated during which the de-
sired  DT  parameters  are  collected  for  counting  the 
posterior distribution.

3. Artifact removal and segmentation of the 
quiet and active sleep stages

This section describes the methods used in our ex-
periments for removal of artifacts from sleep EEG and 
segmentation of the quiet and active sleep stages. 

3.1. Artifact removal

Typically,  newborn  sleep  EEG  recorded  via  the 
standard C3T3 and C4T4 electrodes are weak signals 
ranging between -127 and +127 V, and their average 
amplitude  is  typically  around  50  V.  During  sleep 
hours EEGs are contaminated by noise and artifacts, 
so that there is the need of cleaning EEG data. Before 
processing,  EEGs are  normally rectified to make all 
amplitudes positive. 

The variability of an EEG recorded during sleep 
hours of a newborn is quite high and can additionally 
affect the accuracy of recognition  of age-related pat-
terns  in  EEG.  We found that  the Mean-to-Deviation 
Ratio (MDR), defined as / was around 1.0, where 
and are the mean and standard deviation of rectified 
EEG amplitudes.

The  common artifacts,  such  as  muscle,  cardiac, 
eye blinking, breathing, and electrode movement, can 



be labeled by an expert and then removed from EEG 
data. In our EEG data, the rate of labeled artifacts was 
widely ranged from 0.01 to 0.5, and the average rate 
of artifacts was around 0.1. 

The EEGs were recorded in a number of clinics, 
and  artifacts  were labeled by different  EEG experts.  
Consequently, we could not expect that the EEG arti-
facts were labeled consistently and  so decided to re-
move from the EEG data only amplitude artifacts. We 
defined these artifacts as EEG samples of abnormally 
high amplitudes. Therefore, such artifacts can be auto-
matically detected by using the standard method of ad-
aptive thresholding (see e.g. [16]). 

The idea of this method is based on the observa-
tion that the probability of abnormal EEG samples is 
distinctly  smaller  than  that  of normal  samples.  For 
stationary signals,  the abnormality of samples can be 
adequately  estimated  in  terms  of  their  amplitudes. 
However, EEG are non-stationary signals, and abnor-
malities should be estimated within a window sliding 
over the EEG recording. The standard deviation over 
samples in a window has been shown providing more 
accurate estimates of the abnormality than  the mean 
over sample amplitudes as its value is more sensitive 
to the non-stationarity of EEG [16]. 

In our implementation, a window of length  W is 
moved over an EEG of length N, and the deviation d i

over samples in the window is counted for its central  

sample i=W
2
+1,. .., N−

W
2

. The probability distribu-

tion over d i is estimated in order to find the most fre-
quent value d, as well as the maximal deviation dmax . 
Consequently, we expect that the normal EEG samples 
appear most frequently with the deviation  d,  and the 
abnormal  samples  appear  with  a  higher  deviation. 
This  allows us  to  count  probability  qi  that  the  ith 
sample with deviation d i  is an artifact:

qi=
(di−d)

dmax

, d≤di≤dmax .

Given an acceptable probability of artifacts in the 
window, q0 , we can then label a sample as an artifact 
if its deviation exceeds the threshold d 0 :

d 0=d+(dmax−d)q0.

The above technique is based on finding a reason-
able  trade-off between the accuracy of artifact  detec-
tion and the amount of normal EEG samples being re-
moved.  In  our  experiments,  we  found  that  such  a 
trade-off is  achieved with  a  sliding  window of  10-s 
duration and q0=0.225 .

Figure 1 shows an example of removing artifacts 
from a sleep EEG. The upper plot shows the raw EEG 
which was massively contaminated by artifacts visible 
as samples of a high amplitude in the interval between 
120 and 200 min. The second plot shows the labels of 

these artifacts,  whose rate  was 0.126.  The third  plot 
shows the clean EEG. We see that the MDR of the raw 
EEG was 0.99, and for the clean EEG it increased to 
1.11 due to removal of the amplitude artifacts. 

3.2. Segmentation of the quiet and active sleep 
stages 

The background information about sleep patterns 
in  EEG given in  the Introduction inspired us to seg-
ment  EEG  into  quiet  (QS)  and  active  (AS)  sleep 
stages.  Similarly to the above technique of detecting 
EEG artifacts, these sleep stages can be segmented by 
adaptive thresholding. Within this technique, duration 
of  the  window  and  threshold  value  are  made  ad-
justable in  order  to achieve the best accuracy of seg-
mentation on EEG data labeled by an expert. Besides, 
the information about a minimal duration of QS stage 
and a maximal duration of breaks, which can happen 
during QS, are used to improve the segmentation ac-
curacy. 

In our experiments, a threshold was adapted to an 
EEG recording as follows. First, we counted the devi-
ation of samples, d k , k=1,. .. , K , in a window sliding 

over an EEG recording, where K=Ent( N−W
L ) is the 

number of windows counted in an EEG,  and  L is the 
window shift step. Then we counted a probability dis-

Figure 1. Segmentation of QS stages in EEG



tribution histogram, pi , i=1,. .. , M , over the deviation 
values v i , where M is the number of bins in the histo-
gram. Namely, the probabilities pi  are the portions of 
samples whose deviation values are between  v i  and 
v i+1 . Thus, given a probability P0 , we can find a bin 
M0 : 

∑
i=1

M0

pi≃P0 , M0≤M ,

and  then  choose a  corresponding  deviation  interval, 
whose center  is  defined  as  the  desired  threshold.  In 
this context, probability P0 is normally associated with 
a prior  on the frequency of an  event detected by the 
segmentation technique. 

In our experiments on EEG with the labeled QS 
stages, we have set P0=0.5 to reflect the fact that the 
QS intervals were, on average, of a half of an EEG re-
cording.  The  best  accuracy  of  segmentation  was 
achieved when the maximal duration of QS break in-
tervals was set equal to one  min.  The minimal dura-
tion  of QS intervals  was set  to seven min  to enable 
segmenting QS intervals fragmented at the beginning 
and at the end of an EEG recording.

The above technique was first  tested on a simu-
lated  EEG  which  has  been  modeled  by  smoothing 
white noise with  a  300-sample window and  weights 
equal to 1/300. Then we applied a 100-sample window 
with weights of 1/100 to simulate the two QS stages, 
the  first  between  30  and  60  min  and  the  second 
between 120 and  150 min,  so that  the  QS rate  was 
0.34. Finally, we set the amplitudes of the QS stages to 
be two times higher than those of AS stages. 

The upper  plot in  Figure 2 shows the simulated 
EEG as the solid line. The dash line in this plot shows 
the detected QS stages which,  as we observe, accur-
ately match the given model. The second plot shows 
the amplitude artifacts which were detected during the 
QS stages. The third plot shows the EEG cleaned from 
the artifacts. The lower plot illustrates the process of 
thresholding detection of QS stages in the clean EEG. 
The dashed line in  the third plot shows the result of 
QS  detection.  As  the  segmentation  is  made  on  the 
clean  EEG,  finally  we extend  the  duration  of sleep 
stages to the artifacts removed from the raw EEG. The 
resultant QS labels are shown in the upper plot as the 
dashed line.

The QS segmentation of a real EEG is illustrated 
in Figure 1. The upper plot shows that the QS stages 
have been properly segmented despite the high level of 
artifacts shown to be detected in the second plot. The 
window duration  W and shift  L were set to  30 s and 
1.5 s, respectively. 

In  the next section, we describe the experiments 
with EEG features extracted from the labeled QS and 
AS intervals. 

4. Experiments

In  our experiments  we used the methodology of 
BMA over DTs, described in Section 2, to assess the 
maturity of newborns of 36 and 41 weeks post-concep-
tion from sleep EEG recorded  via the standard  two-
electrode system: the first age group included 107 and 
the second 104 recordings. The artifacts were detected 
and removed, and the sleep stages in each EEG were 
segmented into QS and AS intervals as described in 
Section 3. 

Table 1 shows the rates of artifacts removed from 
the  QS and  AS intervals  as  well  as  from the whole 
EEG in each age group. The artifact rates are shown 
with the mean and 2 intervals counted over the EEG 
recordings.  We can  observe that  the  rate  of artifacts 
detected in the QS intervals is more than twice higher 
than that in the AS intervals. The second plot in Fig-
ure  1,  which  shows the  labeled  artifacts  in  the  raw 
EEG, confirms that the artifact rate in the QS intervals 
is higher  than  that  in  the AS intervals.  At the same 
time,  the artifact  rates in  EEGs of 36 and 41 weeks 
seem quite similar to each other. 

The rate of QS intervals in these experiments was, 
on average, 0.5 for both age groups. Within our seg-
mentation technique described in Section 3.2, this rate 
includes EEG samples which have been detected as ar-
tifacts. 

Figure 2. Segmentation of a simulated EEG



After  cleaning  and  segmentation,  each EEG has 
been represented with the spectral  powers in  the fol-
lowing six standard bands: (1) Subdelta, (2) Delta, (3) 
Theta,  (4)  Alpha,  (5)  Beta,  and  (6)  Beta2.  These 
powers have been computed with a fast Fourier trans-
form over 6-s epochs, which then were averaged with-
in each band in order to represent an EEG by a six-
element vector.

In  the  first  two experiments  with  the  Bayesian 
classification, we used the features extracted from the 
QS and AS intervals.  The third experiment has been 
run with the features extracted from the whole, unseg-
mented EEG in order to compare the informativeness 
of features within the BMA methodology. 

All  the  experiments  have  been  run  with  the 
identical settings for MCMC simulation. The length of 
the burn-in  phase and  the numbers of samples to be 
collected  during  the  post  burn-in  phase  were  set  to 
100,000 and 10,000, respectively. The probabilities of 
moves for birth,  death,  change-split,  and change-rule 
have been set to 0.15, 0.15, 0.1, and 0.6, respectively. 
The proposals for making the change-rule moves have 
been drawn from a normal distribution with the zero 
mean  and  the  standard  deviation  1.0.  The  minimal 
size of data splits has been set to 2. 

Table 2 shows the accuracy of the BMA obtained 
with the above settings within a 5-fold cross validation 
for the features extracted from the QS and AS stages 
as well as from the whole EEG.  The performance is 
shown by the mean accuracy within 2 standard devi-
ation intervals. The  entropy E is counted over an en-
semble of K models, collected during the post burn-in 
phase,  in order to estimate the uncertainty of the en-

semble: E=∑
i=1

K

pi log2(pi) , where  pi  are  the  class 

posterior probabilities of the DT models.
From  Table  2,  we  see  that  the  best  accuracy, 

85.75%, was  obtained  with  EEG  features  extracted 
from the QS stage. These features provide a distinctly 
higher performance than those extracted from the AS 
stage.

Figure  3 shows the  informativeness of the  EEG 
features  extracted  from  the  QS  and  AS  intervals.  
These  features  are  represented  by the  six  standard 
spectral  power bands.  Their  informativeness is  com-
pared on the QS and AS intervals of EEG in terms of 
the posterior  probabilities counted as the frequencies 

of using  these bands in  DT models collected during 
the post burn-in phase. 

From Figure 3, we observe that the two bands, (3) 
Theta and (4)  Alpha,  are most important  for the age 
classification. We can observe that the informativeness 
of the sleep stages seems different for bands (2) Delta 
and (5) Beta, and similar for the other bands. 

5. Discussion and conclusions

In this paper, we explored the informativeness of 
EEG features used for the newborn brain maturity as-
sessment  within  the  methodology of  Bayesian  aver-
aging over decision tree (DT) models.  This methodo-
logy has been shown providing the most accurate es-
timates of class posterior distribution, while the use of 
DT models has been shown capable of finding features 
making valuable contribution to the outcome. 

Based on clinical observations that  the EEG fea-
tures in various sleep stages are different, we assumed 
that there exist EEG intervals which provide the most 
informative  features.  We further  assumed  that  such 
features can be extracted from intervals of quiet sleep. 

For testing this assumption, the EEGs were auto-
matically segmented into the quiet and active sleep in-
tervals. Before the segmentation, the EEGs were auto-
matically cleaned from the amplitude  artifacts.  Both 
the  segmentation  and  artifact  detection  have  been 
made  with  the  standard  adaptive  thresholding  tech-
niques. For each sleep stage, the segmented EEG in-
tervals have been split into epochs and represented by 
the  standard  spectral  bands.  Finally,  each  band  has 

Figure 3. Posterior probabilities of EEG fea
tures for the AS and QS intervals

Table 1. Artifact rates in the sleep stages for 
both age groups

Sleep stage 36 weeks 41 weeks

QS 0.12±0.18 0.13±0.22

AS 0.05±0.07 0.05±0.08

QS and AS 0.09±0.12 0.09±0.14

Table 2. Performances of Bayesian age 
classification

Sleep stage Performance, % Entropy

QS 85.75±11.27 20.91±5.64

AS 76.73±29.34 26.31±3.74

QS and AS 81.98±13.76 22.26±4.08



been averaged over the epochs to represent  the EEG 
intervals by a vector entry. 

In our experiments, we used the EEG data recor-
ded from 211 newborns at age 36 and 41 weeks post-
conception. We found that the EEG features extracted 
from the quiet sleep intervals have provided more ac-
curate  age  classification  in  the  comparison  with  the 
features extracted from the active sleep intervals:  the 
mean accuracies of age classification were 85.75% and 
76.3%,  respectively.  Besides,  the  features  extracted 
from intervals  of quiet  sleep have provided  a  better 
performance in term of the ensemble entropy.

The above allows us to conclude that intervals of 
the quiet  sleep in  EEG are more informative for the 
newborn  brain  maturity assessment  within  the meth-
odology of BMA over DT models. Obviously, this res-
ult  is  conditioned  on the methods chosen  in  our re-
search  for  segmenting  EEG into sleep intervals,  ex-
tracting features from the segmented EEG intervals as 
well as for classification of age-related patterns. These 
issues will be further explored to extend the results. 
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