Complexity science for sleep stage classification from EEG

Abstract

Automatic sleep stage classification is an important paradigm in computational intelligence and promises consider- able advantages to the health care. Most current automated methods require the multiple electroencephalogram (EEG) chan- nels and typically cannot distinguish the S1 sleep stage from EEG. The aim of this study is to revisit automatic sleep stage classification from EEGs using complexity science methods. The proposed method applies fuzzy entropy and permutation entropy as kernels of multi-scale entropy analysis. To account for sleep transition, the preceding and following 30 seconds of epoch data were used for analysis as well as the current epoch. Combining the entropy and spectral edge frequency features extracted from one EEG channel, a multi-class support vector machine (SVM) was able to classify 93.8% of 5 sleep stages for the SleepEDF database [expanded], with the sensitivity of S1 stage was 49.1%. Also, the Kappa’s coefficient yielded 0.90, which indicates almost perfect agreement

    Similar works