
Complexity science for sleep stage classification

from EEG

Takashi Nakamura∗, Tricia Adjei∗, Yousef Alqurashi†, David Looney∗, Mary J. Morrell† and Danilo P. Mandic∗

∗Department of Electrical and Electronic Engineering, Imperial College London

London, SW7 2AZ, United Kingdom
†Sleep and Ventilation Unit, National Heart and Lung Institute, Imperial College London, and NIHR Respiratory Disease

Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust, and Imperial College London

London, SW3 6NP, United Kingdom

Email: {takashi.nakamura14, t.adjei15, y.alqurashi15, david.looney06, m.morrell, d.mandic}@imperial.ac.uk

Abstract—Automatic sleep stage classification is an important
paradigm in computational intelligence and promises consider-
able advantages to the health care. Most current automated
methods require the multiple electroencephalogram (EEG) chan-
nels and typically cannot distinguish the S1 sleep stage from
EEG. The aim of this study is to revisit automatic sleep stage
classification from EEGs using complexity science methods. The
proposed method applies fuzzy entropy and permutation entropy
as kernels of multi-scale entropy analysis. To account for sleep
transition, the preceding and following 30 seconds of epoch data
were used for analysis as well as the current epoch. Combining
the entropy and spectral edge frequency features extracted from
one EEG channel, a multi-class support vector machine (SVM)
was able to classify 93.8% of 5 sleep stages for the SleepEDF
database [expanded], with the sensitivity of S1 stage was 49.1%.
Also, the Kappa’s coefficient yielded 0.90, which indicates almost
perfect agreement.

I. INTRODUCTION

Sleep can be defined as a reversible behavioural state of

perceptual disengagement and unresponsiveness to the envi-

ronment. Sleep is also a complex amalgam of physiologic and

behavioural processes [1]. The function of sleep is not fully

understood yet, and among the many hypotheses proposed, the

most widely accepted ones are brain thermoregulation, brain

detoxification, tissue restoration and metabolic homeostasis

[2, 3]. Quality of sleep also reflects the state of body and

mind, and in addition, numerous sleep disorders are common

[4]; these disorders include insomnia, breathing disturbances

during sleep (i.e., sleep apnea), and narcolepsy, which are

diagnosed using polysomnography (PSG).

The PSG recording requires multiple electrodes which in-

cludes at least two EEG channels, two electrooculography

(EOG) channels to observe eye movements, at least one

chin electromyography (EMG) channel. The PSG recording

is usually conducted within a hospital or at a sleep centre.

After the recording, the PSG is analysed by experts in order

to identify individual sleep patterns. The classification of sleep

stages has been classically performed based on the visual

interpretation of each 30-second PSG epoch, according to the

Rechtschaffen and Kales (R&K) sleep scoring manual [5],

or the manual of the American Academy of Sleep Medicine

(AASM) [6]. The sleep stages include: wake (W), stage1 (S1),

stage2 (S2), stage3 (S3), stage4 (S4), and rapid eye movement

(REM) 1. The stages S3 and S4 are called slow wave sleep

(SWS) and these two stages are merged into one condition.

The main limitation of epoch based visual sleep scoring

is that it is extremely time-consuming. The scoring of 8
hours overnight PSG takes approximately 2 − 4 hours for

an expert [7]. In addition, the multiple electrode montage

disturbs patients’ sleep, also, with PSG recordings typically

occurring in hospitals, or other unfamiliar environments, some

patients find themselves unable to sleep as usual. In the last

two decades, computer based sleep staging has been developed

in order to minimise analysis time [8].

To alleviate the aforementioned problems, a large number

of automatic sleep stage algorithms, based on a small number

of electrodes have been reported. These methods are typically

based on feature extraction techniques and pattern recogni-

tion algorithms. In terms of the analysis data, the Physionet

SleepEDF database [9] has been available for more than 10

years. For datasets extracted from SleepEDF database, Imtiaz

et al. [10] calculated spectral band power and spectral edge

frequency (SEF) from two EEG channels. These methods

correctly classified 82.2% of epochs for a 5-stage task. Zhu

et al. [11] classified the sleep stages based on graph domain

features, and achieved an accuracy of 89.0%. Hassan et al.

[12] applied empirical mode decomposition (EMD) analysis

for a single lead EEG montage, and calculated 1st to 4th

statistical moments for each intrinsic mode function (IMF).

Their proposed method achieved 90.7% accuracy by boot-

strap aggregating decision tree. Recently, Silveria et al. [13]

reported 91.5% accuracy for 5-stage classification problems

when using discrete wavelet transform and random forests

classifiers (RF).

Among research groups who recorded PSG by themselves,

Liang et al. [14] recorded PSG from 20 healthy subjects,

and calculated multi-scale sample entropy (MSSE) and au-

toregressive coefficients from a single EEG channel. The

linear discriminant analysis (LDA) yielded 88.1% accuracy

for testing data. Şen et al. [15] used PSG recordings from 25

subjects to calculate multiple features and applied a feature

1For the ASSM manual, the stages are noted as non-REM stage 1-3 (N1,
N2, N3) and REM.



selection algorithm to reduce the dimension of the feature

matrix. The RF correctly classified 97.3% of epochs for

labeled 5-stage sleep. Overall, a large number of algorithms

have been proposed, combining a wide range of features and

classification algorithms, and the performance of each method

is evaluated by datasets recorded by the researchers themselves

or public datasets.

For the sleep stage classification, distinguishing between

S1 sleep and REM is the most challenging with state-of-the-

art papers. In the R&K sleep scoring guideline, S1 sleep is

defined as 50% of the epoch consists of relatively low voltage

mixed (2 − 7Hz) activity, and <50% of the epoch contains

alpha activity, whereas REM is represented by a relatively low

amplitude and mixed frequency (2−7Hz) EEG with episodic

rapid eye movements and the absence of (or reduced) chin

EMG activity [16]. Figure 1 shows the power spectral density

for two EEG channels (Fpz-Cz and Pz-Oz) of the SEDFx-

S dataset (see details in Section III-A1) with C = 5 sleep

stages. For the wake (W) condition, observe a peak in the alpha

band (8 − 13Hz). Since the alpha rhythm is predominantly

observed from the occipital lobe, the Pz channel has stronger

alpha than the Fpz. The alpha power reduced in the S1 stage,

and the strong peak around 13 − 14Hz was present for the

S2 stage. During the SWS stage, the delta activity become

larger, however, the spectrum of REM mostly overlapped with

that of S1 except for the beta band. In order to distinguish

between REM and S1, we consider an automatic sleep stage

classification problem based on structural complexity analyses

by means of entropy.
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Fig. 1. Power spectral density for two EEG channels (Fpz-Cz, and Pz-Oz)
from the SEDFx-S dataset with C = 5 sleep stages

Multi-scale entropy (MSE) [17] was introduced as a non-

parametric method for estimating dynamical complexity over

multiple scales of a time series. The MSE has been widely

utilised for physiological responses such as ECG [18] and EEG

[19]. We calculate MSE for evaluating multi-scale complexity

using fuzzy entropy (FE) and permutation entropy (PE). The

FE [20] is feasible for relatively short physiological signals

with a small embedding dimension, and is robust to noise.

Furthermore, the FE is more independent of data length and

has relative consistency. The PE detects dynamic changes in

a time series based on neighbouring data points requires less

computational time, and is robust for noisy real world time

series. As the computation of PE uses self-generated partitions

to create numeric symbols, the method is well suited to series

with poor stationarity, such as physiological signals [21].

In this paper, we make use of the robustness of structural

complexity measures to perform sleep stage classification

which yields the following advantages:

• The required number of EEG channels is reduced to one

or two channels of EEG, which is a prerequisite for both

portable and wearable devices.

• Structural complexity analyses as well as spectral edge

frequency (SEF) are able to distinguish between the S1

stage and REM sleep, which has been notoriously difficult

with the state-of-the-art methods using only EEG.

II. COMPLEXITY ANALYSIS

A. Multi-scale entropy

The multi-scale entropy (MSE) method [17] measures the

amount of structural complexity in a time series. The MSE

can be calculated from different types of entropy, such as

approximate entropy and sample entropy, with multiple coarse-

grained time series. Previously, multi-scale sample entropy

(MSSE) has been utilised for sleep stage classification in

[14]. In this study, we employ the fuzzy entropy [20] and the

permutation entropy [21] as kernels for entropy calculation.

Given an EEG signal with N data points {xi, i = 1 : N},

a coarse-grained time series {y(τ)} is first generated, where τ

is the scale factor. This is achieved by dividing a given EEG

signal into non-overlapping windows of length of τ , and by

averaging over as

y(τ) =
1

τ

jτ
∑

i=(j−1)τ+1

xi, 1 ≤ j ≤
N

τ
. (1)

Therefore, y(1) corresponds to the original EEG signal, while

the length of the coarse-grained time series, y(τ), is simply

the length of the original EEG signal divided by τ .

B. Multi-scale fuzzy entropy

Fuzzy entropy is calculated for each coarse-grained time se-

ries to yield the multi-scale fuzzy entropy (MSFE). For coarse-

grained time series with M samples {y(τ)(k), k = 1 : M}, a



vector sequence {Y
(τ),m
k , k = 1 : (M−m+1)} is constructed

with given m as follows:

{Y
(τ),m
k = {y(τ)(k), y(τ)(k + 1), ..., y(τ)(k +m− 1)} (2)

−y(τ)(k),

where y(τ)(k) =
1

m

m−1
∑

l=0

y(τ)(k + l), (3)

where Y
(τ),m
k denotes m consecutive y(τ) values starting from

the kth point, with the average of this sequence y(τ)(k) re-

moved. Here, the distance d
(τ),m
kl between Y

(τ),m
k and Y

(τ),m
l

is defined as,

d
(τ),m
kl = d

[

Y
(τ),m
k ,Y

(τ),m
l

]

(4)

= max
p∈(0,m−1)

|{y(τ)(k + p)− y(τ)(k)}

−{y(τ)(l + p)− y(τ)(l)}|. (5)

The distance d
(τ),m
kl represents the maximum absolute dif-

ference of the scalar components. The degree of similarity,

D
(τ),m
kl , between Y

(τ),m
k and Y

(τ),m
l is given by

D
(τ),m
kl (n, r) = µ(d

(τ),m
kl , n, r) (6)

= exp



−

(

d
(τ),m
kl

)n

r



 , (7)

where n and r are given parameters, and the fuzzy function

µ(d
(τ),m
kl , n, r) was chosen to be the exponential function.

Next, φ(τ),m(n, r) is set as follows,

φ(τ),m(n, r) =

1

M −m

M−m
∑

k=1





1

M −m− 1

M−m
∑

l=1,k ̸=1

D
(τ),m
kl



 .

Finally, the MSFE is given by

MSFE(τ,m, n, r,N) = lnφ(τ),m(n, r)− lnφ(τ),m+1(n, r).

Figure 2 illustrates MSFE analysis for two EEG channels

(Fpz and Pz) of the SEDFx-S dataset (see details in Section

III-A1) with C = 5 sleep stages; the parameters used to

calculate the MSFE were τ = 30, m = 2, n = 2, r =
0.15×(standard deviation of each epoch). The trends of MSFE

are similar when two EEG channels except W condition; since

the Pz has strong alpha rhythm (see Figure 1), the structural

complexity of the signal becomes smaller with larger scale τ .

C. Multi-scale permutation entropy

Permutation entropy (PE) is calculated for each coarse-

grained time series as the multi-scale permutation entropy

(MSPE) [22]. For a coarse-grained time series with M samples

{y(τ)(k), k = 1 : M}, the series of vectors of length d,

v
(τ)
d (k) = {y(τ)(k), y(τ)(k+L), ..., y(τ)(k+(d−1)L)} is first

calculated, where d is the embedding dimension and L time
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Fig. 2. MSFE analyses for two EEG channels from the SEDFx-S dataset with
C = 5 sleep stages, and scale τ = 30. The error bars represent the standard
error

delay. Then, the vector v
(τ)
d (k) is arranged in an increasing

order: {y(τ)(k+j1−1), y(τ)(k+j2−1), ..., y(τ)(k+jk−1)}.

For the sequence of length d, there is d! possible patterns, π,

called motifs. Let f(πj) define the frequency of occurrence

in the time series for each motif πj . The relative frequency is

then given by,

p(πj) =
f(πj)

M − d+ 1
. (8)

The PE for the time series is defined as the Shannon entropy

for the d! motifs,

H(d) = −
d!
∑

πj

p(πj) ln p(πj), (9)

while the normalised MSPE entropy is given by

0 ≤ MSPE(τ, d, L,N) =
H(d)

ln d!
≤ 1. (10)

Figure 3 illustrates MSPE analysis for two EEG channels

(Fpz, and Pz) of SEDFx-S dataset with C = 5 sleep stages;

the parameters used to calculate the MSPE are τ = 20, d = 5,

and L = 1.

III. METHODS

To evaluate the performance of the proposed method, the

EEG recording was obtained from the both SleepEDF database

[expanded] [9] and DREAMS Subjects database [23]. We

extracted features from each EEG channel, and applied them

to the classification algorithm. Figure 4 shows the flowchart

of the proposed analysis.
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Fig. 3. MSPE analyses for two EEG channels from the SEDFx-S dataset with
C = 5 sleep stages, and scale τ = 20. The error bars represent the standard
error

Fig. 4. Flowchart of an automatic sleep staging system

A. Data acquisition

1) SleepEDF database: The SleepEDF database [9] con-

sists PSG data of 8 subjects, which include 2 EEG, Fpz-Cz

and Pz-Oz (for simplicity, we denote Fpz and Pz later), 1 EOG

(horizontal), and 1 submental chin EMG. Each PSG is sampled

at 100 Hz and manually scored by well-trained technicians

based on the R&K manual. Recently, the SleepEDF database

[expanded] [24] has been made public, and contains in total

PSG recordings of 61 subjects.

Although the SleepEDF database is extensively used for

automatic sleep stage scorings [7, 10–14, 25], the usage of

the database varies for research groups. One problem is that

the database contains two types of PSG data: some of them are

recorded over 24 hours (titled as sc ∗), and the others contain

only overnight data (denoted by st ∗). In terms of sc ∗ data,

the majority of epochs were labeled as the wake condition,

because the data were obtained both over day and night

periods; in other words, the data contains a large number of

pre-sleep wake epochs (from afternoon to evening) and post-

sleep wake epochs (from morning to afternoon). Therefore,

most current analyses are biased towards the wake condition

which dominates the 24-hour data. To this end, we focus on

8-hour segment of EEG.

The lack of consistency in the data structure makes the

direct comparison between existing methods and the pro-

posed idea difficult. Here, we partitioned the dataset from the

SleepEDF database in three different ways in order to enable

comparisons with existing methods.

1) SleepEDF Whole (SEDF-W) - The number of subjects

is 8. We downloaded data from [9], and extracted whole

scored data (from hypnogram start time to last scored

data) and excluded epochs labeled "?". This dataset has

a similar form to the dataset used in [11, 12, 25].

2) SleepEDF [expanded] Whole (SEDFx-W) - The number

of subjects is 61. We downloaded data from [24], and

extracted whole scored data (from hypnogram start time

to last scored data) and excluded epochs labeled "?".

This dataset has a similar form to the dataset used in

[13]

3) SleepEDF [expanded] Sleep (SEDFx-S) - The number of

subjects is 61. We downloaded data from [24]. Imtiaz et

al. [26] proposed an open source toolbox for Matlab

to extract only overnight data in order to create a

standardised dataset. The toolbox truncates the data in

the following way:

• From light off time to light off time.

• if light off/on time is not available, from 15 min-

utes before the first scored sleep epoch to 15 min-

utes after the last scored sleep epoch.

This dataset has a similar form to the dataset used in

[10].

TABLE I
COMPARISON OF DATASETS - AFTER REMOVING NOISY EPOCHS (NUMBER

OF EPOCHS AND Ratio(italic)[%])

Dataset Wake
Sleep Stage

S1 S2 S3 S4 REM

SEDF-W
7943 581 3596 667 619 1589
53.0 8.2 51.0 9.5 8.8 22.5

SEDFx-W
74346 4715 27070 5056 3757 11755
58.7 9.0 51.7 9.7 7.2 22.5

SEDFx-S
6448 4676 26849 4996 3705 11749
11.0 9.0 51.7 9.6 7.1 22.6

DREAMS
3593 1181 8812 1381 1966 3017
17.9 7.2 53.6 8.4 12.0 18.4

Table I summarises the number of epochs and the ratio of

epochs with respect to each sleep stage for datasets extracted

from the SleepEDF database after the pre-processing. The ratio

for the wake condition, and the ratios for S1, S2, S3, S4, and

REM are calculated as follows:

Wake Ratio =
Number of wake epoch

Number of whole epoch
,



Sleep Ratio =
Number of each stage epoch

Number of whole sleep epoch
.

2) DREAMS database: The DREAMS Subjects database

[23] consists of 20 overnight PSG recordings from healthy

subjects, and the data are scored according to both the R&K

and AASM criteria. The PSGs are at least from two EOG

channels (P8-A1, P18-A1), three EEG channels (Cz-A1 or C3-

A1, Fp1-A1 and O1-A1) and one sub-mental EMG channel.

The sampling frequency is 200Hz. For this analysis, we only

used O1-A2 and Cz-A1 or C3-A1 channels (for simplicity,

we denote O1 and Cz or C3 later). Since the PSG data were

recorded overnight, not over 24-hours, we used all the data

except epochs labeled "sleep stage movement" and "unknown

sleep stage". We shall refer to this dataset as DREAMS, see

Table I.

B. Pre-processing

For the DREAMS dataset, the signal was downsampled

to 100Hz. Then, the epochs which contained amplitudes of

more than ±400µV were removed, since the amplitude of the

K-complex is almost always less than 400µV [27]. Epochs

containing NAN values were removed from the analyses.

Afterwards, the 4th order Butterworth filter with passband

from 0.5 − 30Hz was applied. In total, there were 58423

epochs for the SEDFx-S dataset; 11.0% of the data were scored

as awake, and 9.0%, 51.7%, 9.6 %, 7.1%, and 22.6% of sleep

data were scored as S1, S2, S3, S4, and REM, respectively.

C. Feature extraction

After the pre-processing, multi-scale fuzzy entropy (MSFE),

multi-scale permutation entropy (MSPE), and spectral edge

frequency (SEF) were calculated from each epoch of the EEG

channels.

1) Epoch length: The length of epochs for manual sleep

stage scoring was 30 seconds, and the epoch-based criteria are

often dependent on the preceding and following epochs. Here,

we extract epochs in two different ways: 1) use only the current

30 seconds epoch to calculate features, 2) enlarge the epoch

size from 30 seconds to 90 seconds; in other words, utilise

both the preceding and following 30 seconds of epoch data as

well as the current epoch to take account of sleep transition.

Since the sampling frequency was 100Hz, the length of each

epoch for the no overlap method is N = 3000, and N = 9000
data points were used for the proposed overlap methods. For

the overlap method, the first and last epoch of EEG recordings

were excluded from analyses.

2) Multi-scale entropy: For the MSPE, we chose maximum

scale τ = 20. When the window contains less than d! samples,

the PE can be calculated with the dimension equal to or less

than the d−1. The length of coarse-grained time series for no

overlapping epochs with scale τ = 20 is N=3000
τ=20 = 150 which

is larger than 5! = 120, so the PE with dimension d = 5 can

be calculated with L = 1. The parameters used to calculate

the MSFE were τ = 30, m = 2, n = 2, r = 0.15×(standard

deviation of each epoch).

3) Spectral edge frequency: The r% spectral edge fre-

quency (SEF) is the frequency below which r% of the signal

power is contained; in other words, SEFr corresponds to r%
of the signal power and is given by

fhigh
∑

f=flow

∥magnitude(f)∥2 ×
r

100
=

SEFr
∑

f=flow

∥magnitude(f)∥2.

Imtiaz et al. [28] used the difference between SEF95 and

SEF50, called SEFd, in order to detect REM stage; SEFd =
SEF95−SEF50. The SEF has been utilised for physiological

response analysis, specifically for EOG [29] and for EEG [10]

analysis. For the current analyses, we chose the frequency

ranges for SEF50, SEF95, and SEFd in the following bands;

δ − β = 0.5 − 30Hz, δ − α = 0.5 − 16Hz, θ = 2 − 8Hz,

α = 8 − 15Hz, αl = 8 − 11Hz, αh = 11 − 15Hz, and

β = 16− 30Hz.

D. Classification

The extracted features were normalised to between [0, 1]
before classification. As a classifier, the multi-class support

vector machine (SVM) with one-against-one class approach,

which uses voting strategies for each binary classification, was

employed [30]. The radial basis function (RBF) kernel was

used for the SVM given by

κ(x,x′) = exp(−γ|x− x|2). (11)

The parameters for classification were set to γ = 0.6− 4.

IV. RESULTS

Feature extraction parts was undertaken using Matlab

2015a, and the classification was conducted in Python 2.7.11

|Anaconda 2.3.0 (x86_64) operated on a MacBook Pro with

2.2GHz Intel Core i7, 16GB of RAM. First, we compared the

classification results using different features with no overlap

and overlap blocks. Then, we evaluated the classification

performance for C = 2− 6 class sleep stages (See, Table II).

Finally, we compared our methods to the existing methods

using the SleepEDF database.

TABLE II
SLEEP STAGE CLASSES (C)

C Sleep stages

6 Wake, S1, S2, S3, S4, REM
5 Wake, S1, S2, SWS(S3-4), REM
4 Wake, S1-2, SWS, REM
3 Wake, NREM(S1-4), REM
2 Wake, Sleep(REM & NREM)

A. Evaluation

The multi-class SVM with 10-fold cross-validation (CV)

was utilised, and the performance indicators to evaluate the

proposed methods were accuracy, sensitivity, precision, and

Cohen’s Kappa coefficient κ. κ determines the agreement

between scorers, with chance agreement removed. The values

between 0.00−0.20, 0.21−0.40, 0.41−0.60, 0.61−0.80, and

0.81 − 1.00 respectively correspond to slight, fair, moderate,

substantial, and almost perfect agreement [31].



B. Overlapping performance

Table III shows the classification accuracy for the SEDFx-S

dataset and DREAMS dataset for 5-stage classification, using

different features extracted from EEG. The overlap epoch

based method performed better than the conventional 30-

second epoch method. The classification accuracy using MSPE

and SEF features was the highest for both the SEDFx-S and

DREAMS datasets; 88.6% and 86.8% of epochs were correctly

predicted using the overlapping window, respectively. Figure

5 illustrates the labeled hypnogram and the predicted label for

subject sc4001e0 with no overlapping epochs (Upper) and with

overlapping epochs (Lower). Since the overlapping epochs

method extracted EEG not only from the current 30-second

epoch but also from the preceding and following epochs, the

predicted class was more smooth, e.g. 280-320 SWS epoch; on

the other hand, the result without overlapping epochs predicted

quick transitions, such epochs were not correctly predicted by

the overlapping method, e.g. transition from SWS to S2 at 100.

Overall, the overlap method performed slightly better than no

overlap epoch based feature extraction.

Table IV, V, and VI depict the confusion matrix obtained

from the classification results with multi-scale entropy and

SEF features by overlapped epoch obtained from the SEDF-

W dataset, the SEDFx-S dataset and the SEDFx-W dataset,

respectively. Since the majority of epochs were labeled as the

wake (W) condition in the SEDFx-W dataset, the sensitivity of

the W stages was approximately 10% higher than that of the

SEDFx-S dataset. Therefore, the accuracy for the SEDFx-W

dataset became higher.

TABLE III
CLASSIFICATION ACCURACY WITH 10-FOLD CV FOR C = 5 CLASS WITH

2 EEG CHANNELS (NO OVERLAPPING[%]/OVERLAPPING[%])

Dataset No of SEDFx-S DREAM

features (Fpz and Pz) (O1 and Cz(or C3))

MSFE 60 81.2/84.7 80.4/83.2
MSPE 40 81.2/83.5 80.0/83.8

MSFE + SEF 102 85.5/87.9 84.1/86.5
MSPE + SEF 82 86.2/88.6 84.3/86.8

C. Different class accuracy

Table VII shows the sensitivity and precision of the classi-

fication for different sleep stages C = 2 − 6 with MSPE and

SEF features by overlapped epoch obtained from the SEDFx-

S dataset. For the all 2- to 6-stages classification, the Kappa

values achieved almost perfect agreement, as 0.86, 0.88, 0.86,

0.84, and 0.81, respectively.

D. Comparison with previous approaches

Table VIII shows the S1 sleep stage sensitivity of the

proposed methods. In order to evaluate the performance, the

SEDF-W, the SEDFx-S, and the SEDFx-W were compared to

the results in [11, 12, 25], [10], and [13], respectively. The

sensitivities of the S1 stage are 51.7%, 57.8%, 49.1% for

the SEDF-W, SEDFx-S, and SEDF-W datasets, respectively.

TABLE IV
SEDF-W - CONFUSION MATRIX FOR C = 5-STAGE SLEEP CLASSIFICATION

USING MSFE AND SEF FEATURES WITH OVERLAPPING WINDOWS

EXTRACTED FROM THE FPZ CHANNEL

Algorithm
S(%)/P(%)

W S1 S2 SWS REM

R
ef

er
en

ce

W 7841 60 18 1 10 98.9/98.5

S1 65 300 127 4 84 51.7/61.1

S2 27 75 3330 115 47 92.7/90.3

SWS 7 1 150 1128 0 87.7/90.4

REM 18 55 62 0 1454 91.5/91.2

Kappa κ = 0.90, Accuracy = 93.8% (S:Sensitivity, P:Precision)

TABLE V
SEDFx-S - CONFUSION MATRIX FOR C = 5-STAGE SLEEP

CLASSIFICATION USING MSPE AND SEF FEATURES WITH OVERLAPPING

WINDOWS EXTRACTED FROM THE FPZ AND PZ CHANNELS

Algorithm
S(%)/P(%)

W S1 S2 SWS REM

R
ef

er
en

ce

W 5559 489 150 21 124 87.6/87.0

S1 545 2699 926 13 487 57.8/68.6

S2 149 490 24951 810 442 93.0/90.3

SWS 35 7 1161 7495 2 86.2/89.9

REM 104 248 452 3 10939 93.1/91.2

Kappa κ = 0.84, Accuracy = 88.6% (S:Sensitivity, P:Precision)

TABLE VI
SEDFx-W - CONFUSION MATRIX FOR C = 5-STAGE SLEEP

CLASSIFICATION USING MSFE AND SEF FEATURES WITH OVERLAPPING

WINDOWS EXTRACTED FROM THE FPZ CHANNEL

Algorithm
S(%)/P(%)

W S1 S2 SWS REM

R
ef

er
en

ce

W 73419 448 199 24 150 98.9/98.3

S1 758 2312 1009 10 620 49.1/65.4

S2 275 452 24929 845 563 92.1/89.0

SWS 55 7 1213 7530 7 85.5/89.5

REM 187 319 652 2 10592 90.1/88.8

Kappa κ = 0.90, Accuracy = 93.8% (S:Sensitivity, P:Precision)

TABLE VII
SEDFx-S - SENSITIVITY AND Precision (in italic) FOR SLEEP

CLASSIFICATION USING MSPE AND SEF WITH OVERLAPS

(%) C = 2 C = 3 C = 4 C = 5 C = 6

W 85.8 89.4 86.9 88.4 86.7 87.8 87.6 87.0 87.6 86.8

S1

98.8 98.3
96.3 96.3

92.8 91.6
57.8 68.6 57.9 68.1

S2 93.0 90.3 92.9 90.2

S3
86.1 90.1 86.2 89.9

64.9 69.6

S4 83.7 85.2

REM 92.4 91.7 92.2 91.8 93.1 91.2 93.1 91.2

Acc 97.4 94.5 91.0 88.6 86.6
κ 0.86 0.88 0.86 0.84 0.81

TABLE VIII
PERFORMANCE COMPARISON OF S1 STAGE SENSITIVITY(%) AMONG

EXISTING METHODS FOR C = 5-STAGE SLEEP CLASSIFICATION

Zhu et al. [11] 15.8 Imtiaz
29.8

Silveria
6.1

Hassan et al. [12] 47.0 et al. [10] et al. [13]
Hassan et al. [25] 37.4

Proposed SEDF-W 51.7 SEDFx-S 57.8 SEDFx-W 49.1

The proposed method was able to distinguish the S1 stage

better than other methods; however, discriminating the S1

stage still remains challenging. The sensitivity of the S1 is

smaller than the sensitivities for the other sleep conditions.

Table IX depicts the accuracies of various methods utilised for
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Fig. 5. Hypnogram (blue) and the predicted label (red) of subject sc4001e0 in the SEDFx-S dataset for the C = 5 class classification problem

a different SleepEDF database. The accuracies were highest

for the proposed method in C = 2 − 6 sleep state classi-

fication, except C = 2 stage classification in the SEDF-W

dataset. Overall, the proposed method outperformed almost

all other methods, regardless of the dataset extracted from the

SleepEDF database.

V. CONCLUSION

We have investigated the structural complexity analyses of

sleep EEG signals in sleep stage classification. This has been

achieved by using the MSFE and MSPE, instead of using only

spectral indices for sleep stage analysis. From the analyses

using both the SleepEDF and DREAMS Subjects databases,

we have found that the proposed features could be effectively

utilised for classifying sleep stages from a limited number of

EEG channels. For the SEDFx-W dataset, the proposed method

was able to classify 93.8% of 5 sleep stages with the Kappa

coefficient of 0.90 from a single channel EEG. Additionally,

it has been found that multi-scale entropy has been able to

improve the performance of discriminating the S1 sleep stages,

which has been the most challenging for automatic sleep stage

classification tasks.
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