111 research outputs found

    A NOVEL METHODOLOGY TO DESIGN SECURITY PROTOCOLS BASED ON A NEW SET OF DESIGN PRINCIPLES

    Get PDF
    This paper presents a novel design methodology based on a new set of design principles to develop step-by-step security protocols for up to three participants, guiding the designer on each step. It accompanies the designer through a succession of six abstraction levels proposed in this work: protocol objectives, protocol constraints, security mechanisms, message flow, protocol conformation and authentication tests. The methodology proposed is based on a new set of design principles extracted from different sources and combined using the systemic approach, which considers the designer and client’s security and functional needs. The resulting model separates highlevel tasks from implementation details, allowing the designer to specify the security requirements and functionality desired for each abstraction level. Consequently, the protocol design is linked with the best-fitting design principle. To corroborate the results of the methodology, the resulting protocol in the Alice and Bob notation in the fifth level is tested using the “Strand Spaces” Model. The Needham-Schroeder protocol with symmetric keys was successfully used as a test. The security goals achieved were: authentication, confidentiality, integrity, and non-repudiation

    Is it possible to decide whether a cryptographic protocol is secure or not?, Journal of Telecommunications and Information Technology, 2002, nr 4

    Get PDF
    We consider the so called “cryptographic protocols” whose aim is to ensure some security properties when communication channels are not reliable. Such protocols usually rely on cryptographic primitives. Even if it is assumed that the cryptographic primitives are perfect, the security goals may not be achieved: the protocol itself may have weaknesses which can be exploited by an attacker. We survey recent work on decision techniques for the cryptographic protocol analysis

    Keeping Fairness Alive : Design and formal verification of optimistic fair exchange protocols

    Get PDF
    Fokkink, W.J. [Promotor]Pol, J.C. van de [Promotor

    Journal of Telecommunications and Information Technology, 2002, nr 4

    Get PDF
    kwartalni

    Model checking security protocols : a multiagent system approach

    No full text
    Security protocols specify the communication required to achieve security objectives, e.g., data-privacy. Such protocols are used in electronic media: e-commerce, e-banking, e-voting, etc. Formal verification is used to discover protocol-design flaws. In this thesis, we use a multiagent systems approach built on temporal-epistemic logic to model and analyse a bounded number of concurrent sessions of authentication and key-establishment protocols executing in a Dolev-Yao environment. We increase the expressiveness of classical, trace-based frameworks by mapping each protocol requirement into a hierarchy of temporal-epistemic formulae. To automate our methodology, we design and implement a tool called PD2IS. From a high-level protocol description, PD2IS produces our protocol model and the temporal-epistemic specifications of the protocol’s goals. This output is verified with the model checker MCMAS. We benchmark our methodology on various protocols drawn from standard repositories. We extend our approach to formalise protocols described by equations of cryptographic primitives. The core of this extension is an indistinguishability relation to accommodate the underlying protocol equations. Based on this relation, we introduce a knowledge modality and an algorithm to model check multiagent systems against it. These techniques are applied to verify e-voting protocols. Furthermore, we develop our methodology towards intrusion-detection techniques. We introduce the concept of detectability, i.e., the ability of protocol participants to detect jointly that the protocol is being attacked. We extend our formalisms and PD2IS to support detectability analysis. We model check several attack-prone protocols against their detectability specifications

    Model Checking Security Protocols: A Multiagent System Approach

    Get PDF
    Security protocols specify the communication required to achieve security objectives, e.g., data-privacy. Such protocols are used in electronic media: e-commerce, e-banking, e-voting, etc. Formal verification is used to discover protocol-design flaws. In this thesis, we use a multiagent systems approach built on temporal-epistemic logic to model and analyse a bounded number of concurrent sessions of authentication and key-establishment protocols executing in a Dolev-Yao environment. We increase the expressiveness of classical, trace-based frameworks by mapping each protocol requirement into a hierarchy of temporal-epistemic formulae. To automate our methodology, we design and implement a tool called PD2IS. From a high-level protocol description, PD2IS produces our protocol model and the temporal-epistemic specifications of the protocol’s goals. This output is verified with the model checker MCMAS. We benchmark our methodology on various protocols drawn from standard repositories. We extend our approach to formalise protocols described by equations of cryptographic primitives. The core of this extension is an indistinguishability relation to accommodate the underlying protocol equations. Based on this relation, we introduce a knowledge modality and an algorithm to model check multiagent systems against it. These techniques are applied to verify e-voting protocols. Furthermore, we develop our methodology towards intrusion-detection techniques. We introduce the concept of detectability, i.e., the ability of protocol participants to detect jointly that the protocol is being attacked. We extend our formalisms and PD2IS to support detectability analysis. We model check several attack-prone protocols against their detectability specifications

    Formal Verification of an Electronic Voting System

    Get PDF
    Electronic voting (e-voting) systems that are used in public elections need to fulfil a broad range of strong requirements concerning both safety and security. Among these requirements are reliability, robustness, privacy of votes, coercion resistance and universal verifiability. Bugs in or manipulations of an e-voting system may have considerable influence on the life of the humans living in a country where such a system is used. Hence, e-voting systems are an obvious target for software verification. In this paper, we report on an implementation of such a system in Java and the formal verification of functional properties thereof in the KeY verification system. Even though the actual components are clearly modularized, the challenge lies in the fact that we need to prove a highly nonlocal property: After all voters have cast their votes, the server calculates the correct votes for each candidate w.r.t. the original ballots. This kind of trace property is dificult to prove with static techniques like verification and typically yields a large specification overhead

    Tidy: Symbolic Verification of Timed Cryptographic Protocols

    Get PDF
    International audienc

    Authentication and Key Management Automation in Decentralized Secure Email and Messaging via Low-Entropy Secrets

    Get PDF
    We revisit the problem of entity authentication in decentralized end-to-end encrypted email and secure messaging to propose a practical and self-sustaining cryptographic solution based on password-authenticated key exchange (PAKE). This not only allows users to authenticate each other via shared low-entropy secrets, e.g., memorable words, without a public key infrastructure or a trusted third party, but it also paves the way for automation and a series of cryptographic enhancements; improves security by minimizing the impact of human error and potentially improves usability. First, we study a few vulnerabilities in voice-based out-of-band authentication, in particular a combinatorial attack against lazy users, which we analyze in the context of a secure email solution. Next, we propose solving the problem of secure equality test using PAKE to achieve entity authentication and to establish a shared high-entropy secret key. Our solution lends itself to offline settings, compatible with the inherently asynchronous nature of email and modern messaging systems. The suggested approach enables enhancements in key management such as automated key renewal and future key pair authentications, multi-device synchronization, secure secret storage and retrieval, and the possibility of post-quantum security as well as facilitating forward secrecy and deniability in a primarily symmetric-key setting. We also discuss the use of auditable PAKEs for mitigating a class of online guess and abort attacks in authentication protocols
    corecore