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Chapter 1

Introduction

I don’t read, but, I’ll tell you one thing for sure: I wouldn’t trust no words written down

on no piece of paper, especially from no “Dickinson” out in the town of Machine.

Jim Jarmusch’s Dead man (1995)

You have probably seen products bearing fair trade labels in supermarkets. Fairness, there,

refers to the ethical basis of trading those goods. In this thesis, however, by fairness we

refer to the basic property of atomicity, i.e. either the seller receives the money and the buyer

receives the goods, or none of them does so. This is thus a property of the means of the trade,

rather than the trade itself. Our focus is on security protocols which facilitate (fair) exchange

in electronic commerce.

In conventional commerce, deals are usually administered by law. If a customer pays for a

product to a vendor and the vendor fails to deliver the product (as stated in their contract), then

the customer can resort to litigation, which is enforceable by law. In electronic commerce,

however, litigation is often not viable. This is because adequate laws to evaluate and judge

based on electronic documentsmay be lacking, the exchange partnersmay not be governed by

the same law (e.g. they may live in different countries) and, more importantly, the accountable

real world party behind an electronic agent may not be traceable, cf. [San97].

The current practice of electronic commerce, therefore, heavily relies on trusted third

parties. Most electronic commerce sites, for instance, offer little beyond browsing their cat-

alogues, while contract signing and payment often consist of entering a credit card number.

The trust in these sites is largely built upon the trust users have in the credit card companies,

which keep records and in case of fraud, provide compensation. Achieving fairness in elec-

tronic commerce in fact turns out to be impossible if there is no presumed trust among the

involved parties [EY80].

When there is a mediator who is trusted by all the exchange partners, conceptually, the

items subject to exchange can be sent to the trusted entity and then he would distribute them

if all the items arrive in time. Otherwise, he would simply abandon the exchange. This

mechanism is inefficient and can be improved by reducing the involvement of the trusted

party, such that he would need to play a role only when something goes amiss in the exchange.

Such protocols are preferable when assuming that most exchange partners are honest and,

thus, failed exchanges are infrequent (hence being optimistic). Design and formal analysis of

optimistic fair exchange protocols constitute the content of this thesis.
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Let us assume that Alice and Bob wish to exchange some data electronically. We note

that in general one of the exchange partners, say Alice, receives what she wishes after Bob

has received his desired item. Fairness thus partly refers to an event in the future: When Bob

receives the money, Alice either has received the goods or will (inevitably) receive them in

the future. Properties which stipulate the inevitability of an event are usually referred to as

liveness properties, hence comes keeping fairness alive.

Overview

This thesis is the result of research performed in the context of the ACCOUNT project, which

was funded by the Dutch organisation for scientific research (NWO). The ACCOUNT project

addresses accountability in electronic commerce. According to Bella and Paulson, account-

ability “reduces the need for trust” [BP06]. They argue that “[classical] security protocols

establish secure communications over insecure networks. Typically they ensure that no at-

tacker can obtain sensitive information or impersonate another person. The protocol protects

Alice and Bob, who trust one another, from hostile parties. This scenario is inappropriate

when Alice does not even know Bob, let alone trust him. Purchasing goods over the Inter-

net requires trusting the merchant with your credit card details, even if a protocol such as

SSL protects against outsiders”. Developing tools “to analyse accountability in existing e-

commerce protocols” and designing “new protocols for electronic negotiation and payment”

are the primary goals of the ACCOUNT project [CEF03]. This thesis can correspondingly be

divided into two parts.

Part I: Designing fair exchange protocols

After introducing security protocols, in general, and fair exchange protocols, in particular

in § 2, we present a fair certified email protocol, which is an instance of fair exchange, in § 3.

A certified email protocol enables Alice to send an email to Bob in exchange for a receipt.

The receipt is a proof that shows Bob has received the email. A fair certified email protocol

guarantees fairness in this exchange: Bob receives the email iff Alice receives the receipt.

A unique feature of the proposed certified email protocol is that it relies on key chains

to reduce the amount of storage that the trusted entity requires (recall that trusted entities

unavoidably have a role in any optimistic fair exchange protocol). A key chain is a sequence

of keys such that each key in the chain is derived by applying a certain function to the pre-

vious element. Using key chains in security protocols can perhaps be traced back to Lam-

port [Lam81].

This certified email protocol gives the reader a taste of the sort of the protocols that are to

be analysed later. As a matter of fact, this protocol has been designed at a very late stage of our

research, and has not yet been formally analysed. However, if the reader finds it difficult to

believe that this protocol is secure, despite the informal justification that is provided, then he
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or she is probably very well motivated to look into the formal verification of similar protocols,

which is the topic of the second part of the thesis.

Another fair exchange protocol that we designed, and did formally verify, within the

ACCOUNT project, is a fair non-repudiation protocol. Non-repudiation guarantees that an

agent cannot deny having sent or received a message, if it has actually done so in the course

of the protocol. To achieve this, protocol participants usually collect evidences, evidence of

origin and evidence of receipt, which can later be presented to a judge. Such a protocol is fair

iff these evidences are exchanged in a fair manner. See § 6.2.2 and also [CCT05].

Part II: Formal analysis of fair exchange protocols

Security protocols are notoriously difficult to design and fully understand. Formal verification

can shed some light on how a security protocol behaves in the presence of a particular intruder

model. The intruder model has to reflect the hostile environment in which the protocol is

going to be deployed. If the intruder model is weaker than the real world intruder, the formal

analysis is unsound. This means that provably secure protocols may easily be subverted

in practice, as the model has underestimated the intruder’s power. Conversely, an intruder

model which is stronger than the real world adversary can lead to rejecting protocols which

are secure enough in practice, but susceptible to exotic attacks in the model. Note that security

is in many situations achieved at the expense of efficiency.

The intruder model which is most often used in the security literature is called the Dolev-

Yao intruder model after [DY81, DY83]. In this model, there is one intruder, comprising all

the outsider and insider corrupted parties, which has control over the entire communication

network. It intercepts all messages that have been transmitted and can store them for its fu-

ture use. It can encrypt, decrypt and sign messages if it knows the corresponding keys; it can

compose and send new messages using its knowledge as well. It can remove or delay mes-

sages in favour of others being communicated. “[It] is a legitimate user of the network, and

thus in particular can initiate a conversation with other users” [DY83]. A formal definition of

this intruder model is given in § 4.

As the Dolev-Yao intruder can destroy all the transmitted messages, no liveness property

can in general be proved in this model. Achieving liveness in distributed systems requires

some guarantees on the quality of the communication media. This is because disrupting

the communication channels can potentially isolate the parties involved in the system and,

then, reaching any non-trivial common state simply becomes impossible, cf. [FLM86]. The

Dolev-Yao intruder model is thus too strong for verifying liveness, and its power regarding

destroying messages has to be limited. But, how much limited? In practice, protocols rely

on resilient channels. According to Asokan “a message inserted into a resilient channel will

eventually be delivered” [Aso98]. Note that only an eventual delivery is sufficient to satisfy

resilience and, in particular, no conditions are put on delivery time. It is in fact not hard

to realise a resilient channel, although the resulting channel might not be suitable for fast
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communications. For instance, if Bob blocks Alice’s Internet connection at home to prevent

her from accessing her electronic bank account, Alice can always walk to a nearby branch of

the bank. Protecting Alice from intruders who can physically isolate her falls beyond what

security protocols provide.

The first topic that we address in § 5 concerns formalising an intruder model which does

not indefinitely delay delivering messages. We introduce a carefully crafted fairness con-

straint that excludes, from the model, the executions in which messages are indefinitely

delayed. A fairness constraint, not to be confused with fairness in exchange, refers to the

scheduler in the model. Security protocols are modelled as a collection of independent pro-

cesses which interact by message passing. In the model, conceptually, a scheduler assigns

turns to these processes to send or receive message or perform internal computations. A

fairness constraint, intuitively, determines which schedules are not realistic. For instance,

if Alice is never scheduled in the model, no security protocol can authenticate her to Bob,

simply because Alice is never given a chance to take any step in the model. Such unrealistic

executions need to be omitted from further (formal) analysis.

The fairness constraint which reflects resilient channels turns out to be complicated,

mainly because it depends on the events that have occurred in the past. Simplifying this

fairness constraint in a way which suits automatic formal verification techniques is the sec-

ond subject studied in § 5. We achieve this by slightly modifying the Dolev-Yao intruder.

Roughly speaking, the modified Dolev-Yao intruder marks certain messages with a special

tag. These tags are not visible to the honest parties which interact with the intruder, and

are used solely in the formalisation. The resulting model, i.e. the modified intruder plus the

simple fairness constraint, is proved to be equal to the Dolev-Yao intruder model under the

resilient communication channels assumption. Several examples are presented to motivate

and clarify the proposed intruder model, which is suitable for efficient verification of liveness

properties of security protocols.

In § 6, we use the intruder model and fairness constraint developed in § 5 to formally

verify two protocols: A fair payment protocol for purchasing time sensitive data in mobile

environments [VPG01], and a fair digital rights management scheme [NPG+05, TKJ07].

Time sensitive information, such as current stock exchange quotes and location depen-

dent information in mobile services, may lose their value over time. To enable the customers

to roll back the exchanges which are excessively delayed, the protocol of [VPG01] assumes

that each customer is equipped with a smart card. The protocol is intended for mobile appli-

cations, where “a vendor sells a digital [time sensitive item] to a mobile customer who pays

for it electronically” [VPG01]. We observe that this payment protocol, analysed in § 6, does

not achieve one of its liveness goals, namely the termination for the vendor. As our intruder

model is geared towards verifying liveness, detecting this flaw serves as an empirical basis

for the effectiveness of the model.

The fair digital rights management scheme of [NPG+05, TKJ07] aims at providing a

secure environment for secure exchange of content-right bundles among trusted computing
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devices, such as iPods. Trusted devices are tamper-resistant hardware that follow their cer-

tified software. They use (e.g. render) each content exactly as is instructed by its associated

right. A legitimate content provider, such as iTunes, is the original distributor of protected

content-right bundles. A content purchased from the provider can further be traded among

the trusted devices, if this is allowed by the associated right. This scheme heavily relies

on trusted devices. We describe how our formalisation reflects the characteristics of these

devices.

The last chapter of the thesis is devoted to a partial order reduction technique for verify-

ing optimistic fair exchange protocols. In automatic verification techniques (such as model

checking and constraint solving), we often require to enumerate all possible interleavings of

actions performed by protocol participants. Partial order reduction algorithms identify and

avoid generating identical interleavings, modulo the properties that are to be verified, to re-

duce the time and memory used in verification. A characteristic of optimistic fair exchange

protocols is that their participants have certain choice points in the course of the protocol. The

partial order techniques previously developed for security protocols (such as [CJM00a]) do

not consider such choice points and, thus, are not readily applicable to these protocols. In § 7,

we extend the reduction technique of [CJM00a] to so-called branching security protocols, in

which participants may have choice points.

Origins of the chapters

Section 2.2.1 is based on an unpublished literature review that Simona Orzan and me have

recently conducted on the solvability of fair exchange.

Chapter 3 is based on [CTM07]. Jan Cederquist, Ricardo Corin and me initially discussed

the possibility of using forward key chains to reduce the amount of information stored by

trusted entities in the non-repudiation protocol of [CCT05]. Jan and me later on followed the

idea and designed a certified email protocol based on key chains. Sjouke Mauw helped with

the cryptographic details of this protocol.

Chapter 5 is mainly based on [CT06]. Back in 2004, while working on [CT04], we noticed

the difficulty of adding resilient channels to the Dolev-Yao intruder model in a provably

correct manner. We published an early technical report on this issue [CT05], and in [CT06]

we give an intruder model which is equivalent to the Dolev-Yao intruder, except that it cannot

indefinitely delay messages over resilient channels. This model was first used in [CCT05]

to verify a fair non-repudiation protocol. The case studies reported in chapter 6 are based

on [CT04, CCT05, TKJ07].

Chapter 7 describes a partial order reduction algorithm for security protocols. This algo-

rithm has been presented in [FTW07]. The experimental results are taken from [TWL07].
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Road map

The thesis is written in separate chapters. Each chapter comes with its own road map and

short introduction. Related and future work, when relevant, and conclusions appear for each

chapter separately. These chapters are however not entirely self contained. Some preliminary

notions and notations are given in § 2 and § 4, and are only referred to in other chapters.

Therefore, the reader is encouraged to read § 2 before § 3, and chapters 2 and 4 before §§ 5 –

7. The following diagram shows the dependency relation between the chapters of the thesis.

§ 2 § 4-

§ 3
?

§ 5- § 6-

§ 7
?



Chapter 2

Fair exchange

Road map In this chapter we first introduce security protocols in general, and then focus

on fair exchange protocols. Next, we review some of the main ideas and results on tackling

the fair exchange problem

2.1 Security protocols

A distributed system consists of a finite number of processes that interact by some commu-

nication means. In the thesis, we only consider the message passing setting, where processes

communicate by sending and receiving messages over communication channels. A collection

of communication channels is called a communication network. We write

A → B : m,

when processA submits messagem to the communication network, with the intention that it

should be delivered to processB. A synchronous channel guarantees to deliver messages in a

timely manner, with a pre-known time bound, while asynchronous channels deliver messages

eventually, but no time bounds are put on them. Channels may in general lose or duplicate

messages. Unless explicitly stated, we do not consider such faulty channels. 1

A protocol assigns an algorithm to each participating process, such that using the com-

munication primitives available to the processes, they can achieve a certain common goal.

A synchronous protocol assumes that the processes execute in lock-step, i.e. there is an up-

per bound on the difference between computation speeds of each two processes, and that the

communication network is synchronous. Asynchronous protocols do however not assume

these properties. A fault tolerant protocol achieves its goal even if some of the participating

processes are faulty.

Different failure models are used in distributed systems to characterise how a faulty pro-

cess may misbehave. One of the simplest model is crash failure, in which the failed process

simply dies, i.e. ceases to act afterwards. It may however send out any subset of the messages

that it was supposed to send at the moment of crash. In the Byzantine failure model [LSP82],

a faulty process may deviate from the algorithm assigned to it in any fashion it wants, but its

1As is described later, the attacker is modelled as a process that can inject messages into the channels and remove

messages from (some of) the channels, even if the channels are assumed to be non-faulty.
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view is local, i.e. it only sees what is passed to it by its neighbours, and its effect is local as

well, i.e. it can only send messages to its neighbour processes.

Cryptographic or security protocols are fault tolerant protocols which use cryptography

to attain their goals. In computer security, the Dolev-Yao model [DY81, DY83], denotedDY ,

is usually considered as the hostile environment model. In this model, there is one malicious

process (called attacker, intruder, etc), comprising all the outsider and insider corrupted par-

ties, which has control over the entire communication network. 2 It intercepts all messages

that have been transmitted and can store them in its knowledge set. It can also remove or

delay messages in favour of others being communicated. “[It] is a legitimate user of the net-

work, and thus in particular can initiate a conversation with other users” [DY83]. Security

protocols are typically designed to protect the interests of the honest participants, i.e. those

who faithfully follow the protocol, in presence of the DY attacker (for a critique on the DY

model in face of the emergingmobile ad-hoc protocols see, e.g., [Gli07]). Honest participants

only follow the protocol, and, are in general not required to take any steps to detect or thwart

attacks.

TheDY attacker can be seen as a Byzantine process which is sitting in the centre of a star-

like network topology. All other processes therefore communicate through DY , hence the

network being of connectivity 1. 3 Network connectivity indeed plays a role in the possibility

of distributed tasks, performed in presence of malicious parties, see [FLM86, Syv97].

2.1.1 Ideal cryptography

The DY model is usually associated with the ideal cryptography assumption. In ideal cryp-

tography, messages exchanged in protocols are thought of as formal terms rather than strings

of bits [DY81, DY83]. Cryptographic apparatus available to the participants are therefore ab-

stract operations which can manipulate messages solely according to the formal rules which

define them. We start describing this concept with an example. Let {m}s
k denote encrypting

messagem with key k using a symmetric encryption algorithm (hence the superscript s). In

ideal cryptography, without knowing k, no information on m can be extracted from {m}s
k

and, moreover, k cannot be inferred from {m}s
k alone.

Ideal cryptography thus adopts a black and white view of the matter, while cryptography

traditionally relies on probabilistic reasoning and computational tractability, see e.g. [MVO96,

Gol05]. This simplification allows us to abstract away the cryptographic functions used in

a protocol and, instead, focus on the security of the protocol itself (see example 2.1 below).

There are however drawbacks. For instance, consider a protocol which requires Alice to send

message {0}s
k to Bob. If the exclusive or function, denoted ⊕, is used for encryption, i.e.

{m}s
k = m ⊕ k, then ideal cryptography does not provide a sound abstraction for the imple-

2Any number ofDY attackers can be modelled as a singleDY attacker by merging their knowledge sets [SM00].
3A network has connectivity c iff at least c nodes need to be removed to disconnect the network.
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mentation. This is because an attacker who knows the terms of the protocol 4 can freely derive

k, as 0 ⊕ k = k, while this is deemed impossible according to ideal cryptography. The ideal

cryptography assumption is therefore of little use when reasoning about protocols which in-

herently rely on algebraic properties of encryption algorithms (for instance, Diffie-Hellman’s

key exchange protocol [DH76]).

Below, we formally define the syntax of messages exchanged in security protocols. Let

T be a set of atomic terms, and P ⊆ T be the set of protocol participants’ identities. It is

assumed that P is publicly known.

2.1. DEFINITION. The syntax of messages is formally defined as:

m ::= t | m, m | h(m) | {m}s
m | {m}a

pk(p) | {m}a
sk(p) ,

where t ∈ T represents any atomic term, and p ∈ P .

Intuitively, ·, · denotes pairing and h(·) represents a one-way hash function. The term {m1}s
m2

is the encryption ofm1 with keym2 using a symmetric encryption algorithm.

We differentiate symmetric and asymmetric encryption techniques.5 For p ∈ P , pk(p)

and sk (p) denote, respectively, the public and secret private keys of p ∈ P . Encrypting m

with p’s public key using an asymmetric encryption algorithm is denoted by {m}a
pk(p). En-

crypting with p’s secret private key {m}a
sk(p) represents signing. When public key encryp-

tion is used, usually, a public directory associates participants with their corresponding public

keys. Following [DY83], we assume “the public directory is secure and cannot be tampered

with; everyone has access to all [pk (p)]; only [p] knows [sk(p)]”.

The attacker’s deduction capabilities in the ideal cryptography world of [DY83] can in-

formally be described as follows:

• Pairing: m1, m2 can be composed by knowing both m1 and m2. Conversely, from

(m1, m2), bothm1 andm2 can be extracted.

• Hash functions: h(m) can be composed by knowing m; and from h(m) alone, m

cannot be extracted.

• Symmetric encryption: {m}s
k is incomprehensiblewithout knowing k. Similarly, with-

out knowingm and k, {m}s
k cannot be constructed, except by eavesdropping.

• Asymmetric encryption: Recall that pk(p), for all p ∈ P , is known to everyone. There-

fore, anyone can construct {m}a
pk(p) when knowing m. However, {m}a

pk(p) reveals

nothing about m, without knowing sk (p). Similarly, without knowing m and sk(p),

{m}a
sk(p) cannot be constructed, except by eavesdropping.

4Following Kerckhoffs’s principle [Ker83], details of cryptographic algorithms and protocols must not require

secrecy, i.e. they are assumed to be publicly known. The keys used in the algorithms may however require secrecy.
5In symmetric encryption both encryption and decryption keys are assumed to be secret, while in asymmetric (or

public key) encryption, the encryption key is publicly known. Thus, it can be assumed that in symmetric encryption,

encryption and decryption keys are equal.
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As cipher algorithms are assumed to be ideal in the DY model, the attacker can subvert

a protocol only by exploiting the logic of the protocol. To clarify the idea, we present an

example from Dolev and Yao’s seminal paper [DY81].

2.1. EXAMPLE. The problem is “transmitting a secret plain-text M between two users”.

Consider the following protocol addressing this problem:

A → B : {M, A}a
pk(B)

B → A : {M, B}a
pk(A)

Dolev and Yao prove that, in their model, this protocol does not revealM to the attacker, i.e.

A can considerM a secret. However, “improving” the protocol by adding another layer of

encryption, as shown below, makes the protocol breakable.

A → B : {{M}a
pk(B), A}a

pk(B)

B → A : {{M}a
pk(A), B}a

pk(A)

In this protocol,B, the responder, peels off the message which is encrypted for him and sends

it back to A, the originator. Intuitively, B acts as an oracle 6 that decrypts the messages

which are encrypted using pk(B). The DY attacker Z can thus get access toM :

A → B : {{M}a
pk(B), A}a

pk(B)

B → A : {{M}a
pk(A), B}a

pk(A)

Z → A : {{{M}a
pk(A), B}a

pk(A), Z}a
pk(A)

A → Z : {{{M}a
pk(A), B}a

pk(Z), A}a
pk(Z)

Z → A : {{M}a
pk(A), Z}a

pk(A)

A → Z : {{M}a
pk(Z), A}a

pk(Z)

This attack shows a flaw in the protocol’s logic, which persists even if the cryptographic

primitives used are secure.

We are now ready to formally define theDY attacker’s deduction abilities. Let Γ be a set

of messages. We write Γ ⊢ m to denote that the DY attacker can constructm using Γ.

2.2. DEFINITION. Below, the rules labelled with CR and DR, respectively, represent com-

position and decomposition abilities of the DY attacker. For a set of messages Γ we have:

• Members of Γ are readily available to DY .

m ∈ Γ
CR,DR

Γ ⊢ m

6According to [Car94], Dolev and Yao were the first to present examples of oracle flaws in security protocols.

These flaws are not limited to pedagogical examples. See, e.g., [NTCT07], where an oracle flaw in a recent assured

delete protocol is reported.
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• DY can pair messages and can decompose pairs.

Γ ⊢ m1 Γ ⊢ m2
CR

Γ ⊢ m1, m2

Γ ⊢ m1, m2
DR

Γ ⊢ m1

Γ ⊢ m1, m2
DR

Γ ⊢ m2

• DY can hash messages.

Γ ⊢ m
CR

Γ ⊢ h(m)

• DY can perform symmetric encryption and decryption.

Γ ⊢ m1 Γ ⊢ m2
CR

Γ ⊢ {m1}s
m2

Γ ⊢ {m1}s
m2

Γ ⊢ m2
DR

Γ ⊢ m1

• DY can perform asymmetric encryption and decryption. 7

Γ ⊢ m
CR

Γ ⊢ {m}a
pk(p)

Γ ⊢ m Γ ⊢ sk(p)
CR

Γ ⊢ {m}a
sk(p)

Γ ⊢ {m}a
pk(p) Γ ⊢ sk(p)

DR
Γ ⊢ m

Decidability issues

Given a non-empty set of messages Γ, the set {m | Γ ⊢ m}, though infinite, is recursive, i.e.

for an arbitrary messagem, whether Γ ⊢ m holds or not, is decidable [CJM98, CLS03]. The

question Γ ⊢ m? , also known as ground reachability, intuitively characterises what a passive

attacker can learn by eavesdropping, when Γ represents the collection of messages exchanged

in the protocol. More interesting is the problem of reachability in cryptographic protocols:

Given a protocol description, to determine whether the DY attacker, possibly playing an

active role, can use the protocol to reach an error state, e.g. disclosure of a secret.

Solvability of the reachability problem depends not only on the attacker’s power, but also

on the participant’s computing capabilities. Recall that in § 2.1 we declared that a protocol

“assigns an algorithm to each participating process”. Using Rice’s theorem [Ric53] it comes

7Note that DY is not allowed to extract message contents from signatures alone. This corresponds to assum-

ing that signature schemes do not provide message recovery. Any signature scheme with message recovery (such

as [RSA78]) can nonetheless be converted into a signature scheme which conceals message contents by simply

signing hash values of messages. See § 11.2.3 of [MVO96] for detailed discussions.
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as obvious that, with this liberal definition of participants, the reachability problem is unde-

cidable, even if no cryptographic primitives are used, cf. [HT96]. The set of secure protocols

in this setting is in fact not recursively enumerable (see, e.g., [Tor03]).

Putting certain restrictions on the participants can fortunately make the reachability prob-

lem decidable. Even and Goldreich [EG83] study protocols in which participants can take a

finite number of steps, and in each step can only apply (or cancel) encryption and appending

on a received message and send the result back to the network, hence being called ping-pong

protocols. 8 The reachability problem is decidable for ping-pong protocols even when the

participants can replicate (i.e. each participant can engage in an unbounded number of pro-

tocol executions) [EG83]. However, if the participants are allowed to apply these operations

on half-words (i.e. parts of messages) the reachability problem becomes undecidable [EG83]

(see also [ALV01]). In fact, if the participants of ping-pong protocols are allowed to have

cyclic specifications, the reachability problem becomes undecidable, even when no half-word

computations or process replications are allowed [HS04].

On the positive side, the reachability problem is decidable, when the participants are

acyclic, cannot replicate and are specified as simple rewrite rules or process terms [ALV01,

Bor01, RT01, MS01]. Roughly, the idea is to model the infinitely branching behaviour of

DY using symbolic transitions, the analysis of which turns out to be amenable to automation.

See [CLS02, TEB06, CDL06] for general surveys on decidability results in the DY model.

Decidability results encourage using ideal cryptography, as automatic security proofs are

thereby facilitated. Automation however comes at the expense of sacrificing soundness: A

protocol proved secure in the ideal cryptography model can be susceptible to attacks which

exploit algebraic properties of cryptographic apparatus used in instantiating the protocol.

For example, see Ryan and Schneider’s attack [RS98b] on a protocol which, assuming ideal

cryptography, had been proved correct in [Pau97]. Proving the actual software or hardware

implementation of a protocol secure is yet another (perhaps big) step farther.

To liftDY’s ideal cryptography limitations, two major approaches have been investigated:

First, is to enrich the DY model with the features of cryptographic primitives used in imple-

menting security protocols. For instance, as ⊕ is abundantly used in cryptographic protocols,

we could add the following rule to the list of DY’s deduction rules:

Γ ⊢ m1 Γ ⊢ m2
CR

Γ ⊢ m1 ⊕ m2

Defining the corresponding decomposition rule, i.e. to specify what can be derived from

m1 ⊕ m2, is not obvious. For example, the straightforward rules (Γ ⊢ m1 ⊕ m2, Γ ⊢

m2) =⇒ Γ ⊢ m1 and (Γ ⊢ m1 ⊕ m2, Γ ⊢ m1) =⇒ Γ ⊢ m2 are not sufficient. This

is because {a ⊕ b ⊕ c, a ⊕ c} ⊢ b, which indeed holds, does not follow from these rules, if

commutativity of ⊕ is not taken into account. For more on this see [CLS03, CKRT03].

8Ping-pong protocols were first studied by Dolev and Yao [DY81].
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The second approach to reconcile the ideal cryptography assumption with the actual cryp-

tographic primitives is to determine the criteria under which protocols that are proved correct

in the DY model may be securely instantiated with real cryptographic primitives. For more

on this approach see, e.g., [AR00, BP05].

2.2 Fair exchange protocols

Fair exchange protocols are a class of security protocols which aim at exchanging digital

items in a fair manner. Informally, fair means that all involved parties receive a desired item

in exchange for their own, or none of them does so. There exist various flavours of the fair

exchange (FE) problem, e.g. fair contract signing (CS), fair payment (FP), fair certified email

(CEM), fair exchange of secrets (ES) and fair non-repudiation (NR) protocols. Below, we

introduce these FE variants via examples:

• CS: Alice and Bob have agreed on a contract and would like to sign it electronically. 9

Alice gives her signature on the contract to Bob, only if she receives the contract signed

by Bob. Similarly, Bob signs the contract and passes it to Alice, only if he receives

Alice’s signature. In short, they want to simultaneously exchange their signatures.

• FP: Alice sees Bob’s electronic book on the Internet and wants to buy it, but she does

not want to send her digital coins to Bob before receiving the book and making sure that

it is indeed what he has advertised. Similarly, Bob does not want to send his electronic

book to Alice before receiving Alice’s coins and making sure that they are genuine.

They want to simultaneously exchange their digital items.

• CEM and NR: Alice wants to send an email to Bob in exchange for a receipt. The

receipt is a proof that shows Bob has received the email. It thus has to in some way

specify the content of the email. Bob is in turn willing to send back the receipt to Alice

only if he actually receives Alice’s email. Notice that in this case, Alice and Bob do

not aim at simultaneous exchange. This is because of the inherent asymmetry of the

problem: The receipt depends on the content of the email.

• ES: Alice and Bob each possess a secret that is not known to the other one. Alice would

like to exchange her secret with Bob’s in a “secret exchange party”, but she does not

want to reveal her secret unilaterally, and likewise for Bob. Note that this exchange

is meaningful only if Alice and Bob know “something” about the other party’s secret.

Otherwise, any protocol that distributes random bits would be acceptable, since Alice

would think that the junk is actually Bob’s secret, and similarly for Bob.

9Fair and private contract negotiation protocols are discussed in, e.g., [FA05].
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Although these problems are similar and we refer to them collectively as FE, there are

subtle differences between them. For instance, CEM and CS are different in simultaneity, and

CEM is different from ES in that the receipt of an email is not precisely defined in CEM, and

can thus be different from one protocol to another (as it happens to be in practice), while ES is

to exchange the secrets themselves. It is also notable that in ES the participants are assumed to

know something about the other party’s secret, which is a trivial precondition when it comes

to CS: Signatures are the subject of exchange, and digital signatures always have a verification

algorithm associated to them. In NR protocols, the aim is to fairly exchange evidences,

such that Alice receives an evidence of receipt iff Bob receives an evidence of origin on a

certain document. Moreover, the participants are required to be accountable for (i.e. cannot

deny) the promises they utter in the course of the exchange. We do not distinguish NR and

CEM protocols in this document, since these are conceptually very similar. The challenge in

NR protocols is to exchange the evidences in a fair way, otherwise, non-repudiation of the

evidences can easily be achieved using standard digital signatures, cf. [ZG97b].

In the literature, there is no consensus on what FE protocols (or its variants) have to

provide. Below, we informally describe the goals that a generic FE protocol for two parties,

named A and B below, achieves (à la [Aso98]).

• Timeliness states that any honest participant can terminate the exchange unilaterally,

i.e. without any help from the opponent. Timeliness guarantees that none of the partic-

ipants can arbitrarily force the other one to wait for the termination of the exchange.

• Effectiveness states that if both parties are honest and willing to perform the exchange

and none of them abandons the exchange, then the protocol terminates in a state where

A hasB’s item and vice versa. This is in fact a functional sanity check for the protocol.

• Fairness states that ifA terminates the protocol in a state whereA hasB’s item, thenB

terminates the protocol in a state where B has A’s item, and vice versa. This property

is often referred to as strong fairness [Aso98].

Any protocol that achieves these goals is said to solve FE. We remark that each variant of

FE can have its own specific requirements. See [BVV84] for a formal study on the relations

between some of the FE variants.

2.2.1 Solvability of fair exchange

In this section, we focus on solvability of the FE problem.

Synchronous protocols

Even and Yacobi [EY80], and independentlyRabin [Rab81], studied simple variants of the FE

problem. In [EY80], a notion of mutual signature on a message (the CS problem) is studied.
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They informally reason that “if the judicator is not active during the ordinary operation of

the system”, then no two-party protocol can achieve agreement, where agreement means that

when a party can compute the signature, the other one can also do so. Their argument goes

as: “Assume that, after n communications, [Alice] has sufficient information for efficient

calculation of [the mutual signature], but that this is not true for n − 1 communications.

We conclude that [Bob] transmits the nth communication, and therefore the first time [Bob]

has sufficient information is after n′ communications, where n′ 6= n. This contradicts [the

definition of agreement]”.

Rabin considers the similar problem of simultaneous exchange of secrets between two

non-trusting entities Alice and Bob (the ES problem). He deduces that the problem is unsolv-

able: “Any [exchange] protocol must have the form: Alice gives to Bob some information I1,

Bob gives to Alice J1, Alice gives to Bob I2, etc. There must exist a first k such that, say,

Bob can determine [Alice’s secret] from I1, . . . , Ik, while Alice still cannot determine [Bob’s

secret] from J1, . . . , Jk−1. Bob can withhold Jk from Alice and thus obtain [Alice’s secret]

without revealing [his own secret]”.

Since these problems are instances of FE, their unsolvability implies unsolvability of FE

in the corresponding models. Both these arguments clearly stress on the malicious act of

withholding the last message. They can thus be summarised as: No two-party protocol with

one Byzantine process, even with synchronous communication channels, can solve FE. This

result naturally carries over to asynchronous protocols. We remark that a crucial feature of

this model is that no party is trusted by other process(es). A process is trusted iff it is publicly

known that the process is (and remains) non-faulty. DeMilo, Lynch and Merritt formalised

the impossibility arguments mentioned above in [DLM82].

In [BGW88] and, independently, in [CCD88], the authors derive general solvability re-

sults regarding the secure multi-party computation (SMPC) problem. These results are per-

tinent to our discussion, since FE appears to be an instance of SMPC. In [BGW88] it is

established that, in a fully connected network of synchronous channels, n-party SMPC, and

thus FE, is achievable if there are at most t Byzantine participating processes, with t < n
3 .

They also prove that there exist SMPC problems which, with t ≥ n
3 Byzantine processes, are

unsolvable for n parties. The results of [EY80, Rab81] clearly show that FE is one of these

problems. See [GL02a] for an excellent review on further developments in SMPC.

We note that the possibility results of [BGW88, CCD88] do not imply the solvability of

FE in the DY model, simply because the connectivity of the network is 1 in the DY model,

while these results are stated in complete graph topologies. In fact, reaching distributed

consensus, a problem conceptually similar to FE, is impossible if the network connectivity is

less than 2t + 1, with t Byzantine processes [FLM86].
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Asynchronous protocols

In asynchronous systems, the impossibility result of [FLP85] and its extension in [MW87]

imply that multi-party FE is unsolvable even if one of the processes is subject to crash fail-

ure. 10 For two-party exchanges, this result has been derived in [PG99] by reducing the

distributed consensus problem to FE. It is worth mentioning that the impossibility result

of [EY80] (and [Rab81, DLM82]) is based on the malicious act of withholding parts of in-

formation, whereas [PG99] proves impossibility of FE in the presence of benign, but not

“malicious”, failures, as a result of lack of knowledge to decide termination in asynchronous

systems. These, thus, concern orthogonal difficulties in solving FE, and none of them directly

implies the other one.

Up until now, we focused on the effects of process failures, as opposed to channel fail-

ures, on solving the FE problem. Below, we consider the case of lossy channels, while

assuming that processes are all honest (i.e. correct). In distributed computing, the limitations

on reaching agreements in the presence of lossy channels is usually described using the gen-

erals paradox [Gra78]: “There are two generals on campaign. They have an objective (a hill)

that they want to capture. If they simultaneously march on the objective they are assured

of success. If only one marches, he will be annihilated. The generals are encamped only a

short distance apart, but due to technical difficulties, they can communicate only via runners.

These messengers have a flaw, every time they venture out of camp they stand some chance

of getting lost (they are not very smart.) The problem is to find some protocol that allows the

generals to march together even though some messengers get lost.”

Gray informally shows that such a protocol does not exist [Gra78]. This has later on been

formally proved in, e.g., [YC79, HM84]. Note that the generals problem can be reduced to

two-party FE in a straightforward way. The impossibility result stated above, thus, implies

that FE is unsolvable in the presence of channel failures, even with honest participants.

Halpern and Moses furthermore prove that in the presence of channel failures, “any pro-

tocol that guarantees that whenever either party attacks the other party will eventually attack,

is a protocol in which necessarily neither party attacks” [HM84]. This result implies that in

optimistic FE protocols even with all honest participants, resilient channels are unavoidable

(optimistic protocols are described below).

2.2.2 A selective literature review

The hare said, “We need a just judge to hear us both, and based on fairness, settle the

dispute”. The partridge said, “On the shores of this river lives a pious cat who fasts all

day and prays all night”.

Nasrallah Monshi’s Kalileh o Demneh (ca. 1200 AD)

10We note that the possibility results of [BCG93] are not in contradiction to this impossibility statement,

as [BCG93] only provides probabilistic termination (or timeliness).
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Below, we review some of the main ideas and results on solving the FE problem in the DY

model. This review is selective. In particular, we do not touch upon various multi-party and

valued-added FE protocols (some of these are however discussed in subsequent sections).

Synchronous protocols are also mostly absent from our review. For general surveys on the

topic see also [Aso98, Sch00, KMZ02, Cha03, Kre03, Nen05, Gon05].

There are three general constructions for FE, based on the degree of the involvement

of trusted third parties (TTP). The first group needs no TTPs, e.g. the protocols of [Blu81,

Rab81, EGL85, Cle90, BOGMR90, MR99], see also [FGY92] for a historical survey on

these protocols. These are based on gradual release of information or gradual increase of

privileges and require exchanging many messages to approximate fair exchange, as deter-

ministic asynchronous FE with no trusted parties is impossible (see § 2.2.1). Protocols of the

second group need the TTP’s intervention in each exchange, e.g. see [BT94, CTS95, ZG96a,

ZG96b, DGLW96, FR97, AG02]. In the literature, these are sometimes called protocols with

in-line or on-line TTPs. 11 These protocols have a fixed, usually small, number of message

exchanges, and are thus more appealing in practice. However, the TTP can easily become

a communication bottleneck or a single target of attacks, as it is involved in each exchange.

Protocols of [Rab83, RS98a] can also be listed in the second group as they require the TTP to

be active during each exchange. However, a slight difference is that, intuitively, the TTPs in

the latter protocols need not be aware of being involved in such exchanges. The third group

of FE protocols, known as optimistic protocols, require the TTP’s intervention only if fail-

ures, accidentally or maliciously, occur, e.g. see [Eve83, ZG97a, ASW97, Mic97, ASW98a,

ASW98b, BDM98, ZDB99, MK01, Mic03, PCS03, DR03, CCT05]. Therefore, honest par-

ties that are willing to exchange their items can do so without involving any TTP. Optimistic

protocols are called protocols with off-line TTPs.

Optimistic FE protocols typically consist of three sub-protocols: exchange protocol (also

called optimistic protocol), recovery protocol and abort protocol. Figure 2.1 depicts a generic

optimistic FE protocol. The regions in which recovery and abort protocols are alternative

possibilities are also shown in the figure. In the exchange protocol, that does not involve

the TTP, the agents first commit to release their items and then they actually release them.

The commitments and the exchanged items are respectively denoted by cA, cB and iA, iB

in figure 2.1. Process A can run the recovery protocol if the opponent B has committed to

exchange, but A has not received B’s item, and vice versa. A participant aborts (cancels)

the exchange if she does not receive the opponent’s commitment to the exchange. Optimistic

protocols typically require the communication channels to and from the TTP to be resilient,

i.e. messages be delivered within an arbitrary but finite amount of time. 12 This guarantees

11On-line TTPs, although being involved in each exchange, act only as a light-weight notary, as opposed to to

in-line TTPs which directly handle the items subject to exchange, cf. [ZG96c].
12Note that resilient channels are required in theDY model, where there is no direct (secure) link between protocol

participants, i.e. messages pass through the attacker process. Therefore, in contrast to asynchronous channels which

guarantee eventual delivery from one end of the channels to the other, resilience limits the attacker’s abilities.
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that, in case of failure, protocol participants can eventually consult the TTP. Assuming that

malicious or accidental failures are infrequent (hence being optimistic), optimistic protocols

put less load on the TTP, compared to the protocols of the second group.

A B

cA

abort cB

recoveryiA

recovery iB

Figure 2.1: Optimistic FE - exchange pattern

Pivotal to the working of optimistic protocols is the nature of the items that are subject

to exchange. It has been shown in [SW02] that optimistic FE is impossible if the exchanged

items are neither generatable nor revocable. 13 An item is generatable if the TTP can generate

the item from a participant’s commitment to release that item, and an item is revocable if the

TTP can revoke the validity of that item. In general, digital items are neither generatable

nor revocable. However, cryptographic tools, such as verifiable encryption, can make certain

digital items generatable. For instance, see [ASW98b, Che98, PCS03, DR03, Ate04, DJH07]

for techniques to enable the TTP to generate participants’ signatures from their commitments

(see also [RR00]). We remark that these techniques involve heavy cryptographic machinery.

In contrast, there are not many digital items that can be revoked by the TTP (see below).

The impossibility result of [SW02] comes as no surprise when noticing that if a wronged

Bob resorts to the TTP, he wishes (at least) one of the following services: Either the TTP can

generate the item that he has expected, which is impossible if the item is not generatable, or

the TTP can revoke the item that he has lost (i.e. currently being in the possession of Alice),

which is impossible if the item is not revocable. The TTP can however provide Bob with

an affidavit declaring that Bob has indeed been cheated (by Alice). In this case, Bob only

achieves weak fairness [Aso98], which might not satisfy Bob. Below, we explore how such

affidavits can be used to provide strong fairness in CS, CEM and NR protocols.

The goal is to provide strong fairness without using costly cryptographic tools such as

verifiable encrypted signatures. The idea is to exploit a freedom that is inherent to the def-

13In general, no such restriction applies to FE protocols with in-line or on-line TTPs.
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initions of CS, CEM and NR: In these FE variants, the protocol (designer) is free to define

what constitutes a, e.g., mutually signed contract, a signed receipt, or evidence of origin.

Therefore, these protocols devise dispute resolution procedures to evaluate (or interpret) the

digital assets that are collected in the protocol. Dispute resolution procedures can thereby be

tailored to grade affidavits from the TTP as, for instance, a valid evidence of origin. This idea

has been used in many FE protocols such as [ZG97a, ASW98a, ZDB99, KMZ02, GRV05,

CCT05, CTM07]. Note that these protocols enforce the structure of the exchanged items,

hence being called invasive [ASW98a]. Non-invasive protocols are more favourable, but

come at high computation costs, as they rely on unconventional cryptographic tools, as in,

e.g., the signature exchange protocols of [ASW98b].

A partial remedy to invasiveness is to make the TTP invisible [Mic97], such that there

would not be any difference between the evidences collected in optimistic runs and those

issued by the TTP. Note that the structure of the evidences is still determined by the pro-

tocol, hence the result may be an invasive protocol (e.g. as in [Mic03]). The exchanged

items however would not reveal whether the TTP was involved in the exchange or not. For

protocols with invisible, or transparent, TTPs see, e.g., [Mic97, ASW98a, MK01, MS02,

Mic03, Ate04]. As is put by Asokan, “typically, non-invasiveness implies invisibility of third

party” [Aso98].

Now we turn to fair exchange of revocable items. Generally, it is hard to revoke digi-

tal items. However, certain payment systems can in principle provide revocable coins, e.g.

see [JY96, Vog03]. Fair payment protocols which employ revocable money (orders) are pre-

sented in [ASW98a, Vog03]. A separate group of protocols for exchanging revocable items

exploits the freedom in the definition of CS, CEM and NR, just as mentioned earlier. These

not only prescribe a tailored dispute resolution procedure to grade the TTP’s messages as

valuable evidences, but also they require the TTP to in some situations participate in the

dispute resolution phase of the protocol in order to revoke evidences collected by the partici-

pants. Examples of protocols following this idea are [Eve83, FPH00, FPH02, MD02, Zho04,

WBZ04, FPH04]. These protocols require three messages in their exchange sub-protocols,

compared to optimistic protocols for generatable items that require four messages. It has

been shown in [Sch00] that three messages is the minimum number of messages in exchange

sub-protocols, given that the TTP is allowed to participate in the dispute resolution phase,

while this number is four if the TTP is not allowed to do so. Of course, requiring the TTP’s

intervention in the evidence verification phase is a drawback for these protocols: Evidences

carry no meaning until the TTP declares that they are not revoked. 14

Most FE protocols assume that the items subject to exchange are idempotent [Aso98],

meaning that receiving (or possessing) an item once is the same as receiving it multiple

times. For example, once Alice gets access to Bob’s signature on a contract, receiving it

later does not add anything to Alice’s knowledge. The idempotency assumption reflects

the mass reproducibility of digital items. However, there exist protocols for exchanging

14Such protocols are sometimes called non-monotonic [Ate04].
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digital non-idempotent items. Electronic vouchers [FKT+99, FE03] are prominent exam-

ples of non-idempotent items. Depending on the implementation, right tokens in digital

rights management systems can as well be considered as digital non-idempotent items, e.g.

see [CIK+06, TKJ07]. The current approach to securely use non-idempotent items is to

limit their distribution to trusted computing devices, which are nowadays becoming more

prevalent. Protocols for handling non-idempotent items, being FE protocols or not, usu-

ally require that items are neither created nor destroyed in the course of the protocol, e.g.

see [FKT+99, TIHF04]. This resembles the money atomicity property in electronic com-

merce, stating that money is neither destroyed nor generated in exchanges [Tyg96].

Using trusted devices in FE is not limited to exchanging non-idempotent items. These

are used for exchanging idempotent items as well, mainly in order to increase protocols’

efficiency or flexibility. Examples are [TMI+06] to reduce the number of messages to three

in the optimistic sub-protocol, [VPG01] for exchanging time-sensitive items, and [TMH06]

for optimistic exchange of non-revocable, non-generatable items (recall that optimistic FE

requires that at least one of the items be either revocable or generatable [SW02]). 15 See

also [AV04, AGGV05, FFD+06, GR06] on using trusted devices in FE.

Several results regarding optimal efficiency of asynchronous two-party optimistic CS and

CEM protocols have been derived in [PSW98, Sch00]. Themain results regarding the optimal

number of messages in exchange sub-protocols are mentioned above: Three messages when

the TTP is allowed to intervene in the dispute resolution phase, and four messages otherwise.

Therefore, protocols which require only three messages in the exchange sub-protocol and do

not rely on TTP’s intervention in the dispute resolution phase are not fair. For instance, the

protocols of [Mic03] do not provide timeliness.

The authors of [PSW98] also show that the TTP needs to be stateful (i.e. to keep states

of disputed exchanges) to guarantee fairness in asynchronous optimistic protocols. From

a practical point of view, this result is of great relevance: Optimistic FE not only requires

TTPs for recovering from unfair transient states, it needs TTPs which maintain persistent

databases, containing the states of disputed exchanges, for virtually an indefinite amount of

time. Naturally, in long runs, TTPs may crash or be compromised. 16 Mechanisms to limit

the damages of these defects are described below. Before that, we remark that the optimistic

protocols with stateless TTPs are either unfair, such as [Mic03, Ate04, NZB04] which do not

provide timeliness 17, or rely on synchronous communication channels, such as [ES05b].

To demotivate malicious TTPs from cheating on protocol participants, Asokan introduces

15The protocol of [VPG01] does not provide timeliness, as is pointed out in [Vog03], and the protocol of [TMH06]

is susceptible to a replay attack (we skip describing the attack, as it would require a detailed description of the

protocol, and the attack is also rather obvious). The ideas behind these protocols can however be salvaged with some

changes.
16The notion of compromisable trustee may seem to be paradoxical. We note that being trusted does not imply

being trustworthy, e.g. see [Gol06b].
17These protocols in fact require channels which can buffer messages for virtually an indefinite amount of time,

thus merely delegating the “stateful-ness” to a different entity.
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protocols in which TTPs are verifiable [Aso98]. Given that corrupted TTPs do not simply

disappear, in a protocol with verifiable TTP, wronged participants can prove TTP’s misbe-

haviour to an external court. Verifiability and transparency of TTPs are however not mutually

attainable as is noted by Asokan, e.g. see [GJM99] for a concrete protocol where these two

requirements clash.

To reduce the dependency of protocols on availability and sanity of one TTP, distributed

TTPs can be used. In [AdG01] parts of the TTP’s job are delegated to intermediary semi-

trusted agents to reduce the TTP’s burden, and in [SXL05, RRN05] secret sharing schemes

are used so that, to subvert the protocol, an attacker needs to compromise several TTPs.

Note that distributed TTPs in general need to run some atomic commit protocol to ensure

the consistency of their (distributed) database. We remark that atomic commit protocols

are nearly as expensive as FE, cf. [Tyg96, Tan96b, LNJ01, AFG+04]. There are several

alternatives to FE which do not need TTPs at all, but can only provide a weak notion of

fairness. Below we discuss two of them.

The concept of rational exchange of Syverson [Syv98] seeks to achieve fairness, with

no TTPs, assuming that the parties are rational, i.e. they try to maximise their benefits. This

assumption is in contrast to the pessimistic view prevalent in the security community that

honest parties should be protected even from self-damaging attackers. The idea is “not to

enforce compliance with the protocol, but to remove incentives to cheat”, cf. [Jak95]. A few

scenarios in which rational exchange can be of practical use are mentioned in [Syv98].

Game theory can provide valuable insights into the properties of exchange protocols,

when assuming that their participants are rational agents, rather than categorising them as

malicious and honest parties, who blindly act regardless of their interests. For more on this

approach see [San97, BH99, SW02, IIK02, CMSS03, BHC04, IZS05, ADGH06, TW07a].

Concurrent signatures proposed in [CKP04], and further investigated in [SMZ04,WBZ06,

TSS06], provide a weak alternative to fair exchange. These generally do not require any TTP

interventions. The idea is that Alice and Bob produce two ambiguous signatures which be-

come bound to their corresponding signers only when a keystone is released by Alice. The

main shortcoming of the construct is that Bob has no control over the termination of the

protocol, and, moreover, Alice can secretly show Bob’s signature to other parties before pub-

lishing the keystone. A few scenarios in which this level of fairness is adequate are mentioned

in [CKP04].

To conclude this section, we point out some of the resources which can be of use when

designing FE protocols. Many of the prudent advices [AN96] and attack scenarios known for

authentication and key distribution protocols [Car94, CJ97] are pertinent to FE protocols as

well. Papers specifically focusing on FE are unfortunately scarce.

We note that compilations of FE protocols are almost non-existent, [KMZ02] being a

notable exception. New protocols are constantly devised with subtle differences between

their assumptions, methods and goals, thus making it difficult to oversee general techniques.

As of design methodologies, [Aso98, PVG03] discuss constructing generic FE protocols
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and [GRV05] provides templates for conservative NR protocols. The collections of attacks

on NR and CEM protocols, presented respectively in [Lou00] and [SWZ06], give design-

ers an opportunity to assess their new protocols against known attacks. These are however

not well classified, and in particular flaws stemming in the interaction between protocols

and cryptographic apparatus used in them are mostly omitted (see [DR03] for an example of

such attacks on FE protocols). Concerning attacks on multi-party CS, [MR06] introduces a

startling attack that demonstrates the subtlety of these protocols (see also [CKS04, MKR05]).

Optimality results, although known for two party FE protocols [Sch00], in multi-party cases

are yet to be investigated. We are not aware of any comprehensive survey on existing for-

mal techniques for verifying FE protocols (see [Mea03] on formal verification of security

protocols in general). This would be highly desirable for practitioners.



Chapter 3

A certified email protocol using key chains

In this chapter, as an example of FE protocols, a certified email protocol is designed and

thoroughly studied.

3.1 Introduction

Alice wants to send an email to Bob. She wishes to receive an evidence of receipt when Bob

receives (and is able to read) the email. Bob is willing to send back an evidence of receipt

to Alice only if he receives an evidence of origin along with Alice’s email. Certified email

(CEM) protocols are to provide such services.

There exist several CEM protocols in the literature (see § 2.2.2 for a survey). Among

various value-added CEM protocols we mention [Mic97] on CEM with transparent TTPs,

[KM01] on CEM with no selective receipt, [Ate04] on passive recipient CEM and [SZW05]

on CEM with temporal authentication. Multi-party CEM has also attracted considerable

attention [ASW96, KM00, FPH02, KH06]. See also [SWZ06] for a recent review on common

pitfalls in designing CEM protocols. Below, we motivate our CEM protocol.

In order to achieve strong fairness, asynchronous optimistic CEM requires stateful TTPs,

see § 2.2.2. Therefore, the amount of information that has to be stored by the TTP, virtually

for an indefinite amount of time, is a serious concern in these protocols. In this chapter

we introduce an asynchronous optimistic CEM protocol, with stateless recipients, that aims

at reducing the TTP’s storage requirements using key chains [Lam81], while guaranteeing

strong fairness. Intuitively, a key chain is a sequence of keys such that each key is derived by

applying a function to the previous one.

The proposed protocol is based on a practical aspect of CEM exchanges: Once two

participants have started exchanging emails, usually several emails are exchanged between

them. This observation motivates our proposed CEM protocol which imposes an initiali-

sation overhead, but is more efficient for exchanging several emails. Except for the use of

key chains, our proposed protocol is conceptually similar to the existing FE protocols such

as [ZG97a, ASW98a, CCT05].

Roadmap In § 3.2, we present the assumptions on which our protocol is based, along with

some notations. The design goals are described in § 3.3. The protocol is presented in two

steps: First we give a high level description of a naı̈ve design of the protocol in § 3.4. By
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first describing this, we show the main idea underlying the protocol. The naı̈ve design is not

efficient and in § 3.5 we explain an efficient version of the protocol in detail. In § 3.6 we

discuss the security of the proposed protocol and analyse how it achieves the design goals.

§ 3.7 concerns practical issues and implementation considerations of the protocol. § 3.8

concludes the chapter with comparing our protocol with existing schemes.

3.2 Notations and assumptions

In the following,M denotes the content of the email being exchanged.

Hostile environment We assume the DY attacker model, see § 2.1. The attacker controls

the communication network and can also compromise any protocol participant, except for

trusted entities. The protocol has to protect the interests of the honest participants (those who

faithfully follow the protocol) in this hostile environment.

Communication channels assumptions We assume resilient communication channels be-

tween each participant and the TTP. A message inserted into a resilient channel is eventually

delivered (cf. § 2.2.2). The channels connecting non-trusted protocol participants are how-

ever under complete control of attackers. Therefore, no assumption is made on delivering

messages over these channels; in particular messages can get lost.

Cryptographic notations and assumptions We assume ideal cryptographic apparatus à

la Dolev and Yao [DY83] as is described below (see also § 2.1.1). A message m encrypted

with the symmetric key k is denoted {m}s
k, from which m can be extracted only using k.

Moreover, it is assumed that k cannot be derived from {m}s
k alone. We assume the exis-

tence of a public key infrastructure. The notations pk (p) and sk (p) represent the public and

private keys of entity p, respectively. It is assumed that everyone has access to pk(p) for

any entity p, and sk(p) is initially only possessed by p. In asymmetric encryption we have

{{m}a
sk(p)}

a
pk(p) = {{m}a

pk(p)}
a
sk(p) = m. Encrypting with a private key denotes signing.

We also assume access to an ideal secure hash function h (e.g. see [MVO96]) that satisfies:

• One-wayness: Given a h(m) for whichm is not known, it is infeasible to computem′

such that h(m′) = h(m).

• Collision-resistance: It is infeasible to find m and m′, such that h(m) = h(m′),

whilem 6= m′.

For {h(m)}a
sk(p), we write (m)p.

TTP assumptions We assume T is a trusted entity. T maintains a secure database, with

entries of the form 〈X, Y, Z, W 〉, whereX and Y are participant identities, Z is a key andW

contains a random number. Associated with each such entry, T stores a linked list, initially

of length zero. Each element of such a linked list is of the form (i, status(i)), where i ∈ N

and status(i) stores the status of resolved exchanges. A special flag å indicates an aborted
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exchange, and for recovered exchanges, a hash value (described in § 3.5.3) is stored. Thus,

status(i) ∈ {0, 1}ℓ ∪ {å}, for a finite ℓ. We let å 6∈ {0, 1}ℓ.

Idempotency assumption Exchanged items, i.e. emails and evidences, are assumed idem-

potent. Therefore, to receive an email or receipt twice is not different from receiving it once

(meaning that it is not considered as an attack).

3.3 Design goals

One of the most fundamental requirements for CEM protocols is non-repudiation. Non-

repudiation guarantees that an agent cannot deny having sent or received an email message,

if it has actually done so in the course of the protocol. To achieve this, protocol participants

usually collect evidences, evidence of origin (EOO) and evidence of receipt (EOR), which

can later be presented to a judge.

The second requirement for CEM protocols is to satisfy the fair exchange properties. Fair

exchange consists of three properties:

• Timeliness states that an honest participant can unilaterally, or with the help of the TTP,

terminate the protocol run, i.e. reach a state where it has no further pending operations

to perform in that protocol run.

• Effectiveness states that if honest A and B engage in the protocol and are willing to

exchange emails for receipts, then, assuming that communication channels do not ex-

cessively delay delivering messages, the protocol will terminate in a state where B has

received the email contentM and EOO, and A has received EOR.

• Fairness states that if A terminates the protocol in a state where she possesses EOR,

thenB terminates (or has terminated) the protocol in a state where he possesses bothM

and EOO; and if A terminates the protocol in a state where she does not possess EOR,

then B terminates the protocol in a state where he possesses neitherM nor EOO.

Confidentiality is another requirement for CEM protocols which states that the exchanged

email content should not be revealed to anyone (including the TTP), except to the intended

receiver. Our proposed protocol does not directly address confidentiality. However, if confi-

dentiality is desired, the exchanged email contentM can be substituted with the actual email

content encrypted for the receiver using his public key or a shared secret key.

3.4 A naı̈ve protocol

In most existing NR and CEM protocols, the initiator uses a separate key to encrypt the email

to be sent, for each single exchange. If the exchange goes amiss, the parties can resort to a

TTP, that will store the key along with some other information about the exchange, such as
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involved parties, a hash value of the email content and an exchange label (e.g. see [GRV05]).

This information is stored virtually for an indefinite amount of time, see § 3.8.

We aim at reducing the amount of information stored by the TTP using key chains. A

chain of keys is a sequence of keysK0, . . . , Kn such thatKi := H(Ki−1), for i > 0, where

H is a publicly known one-way collision-resistant hash function. The key K0 is the chain’s

seed. The key chain is initiated by the initiator Alice who chooses a seed K0 and shares it

with the TTP. They moreover agree on the maximum number n of exchanges that Alice can

perform using the chain. Afterwards, Alice traverses the chain backwards and she usesKn−i

(for i ≤ n) to encrypt the message in the ith exchange. Since the functionH is assumed to be

one-way, i.e. givenH(x) it is infeasible to compute x, the key used in ith exchange remains

unknown to the receiver Bob unless he knows one of theKj for j ≤ i. However, since Alice

traverses the chain backwards, the keys seem to be fresh and independent.

The ith exchange starts with Alice sending an email to Bob, encrypted usingKn−i, a key

that Bob does not know (yet). Bob commits to the exchange by acknowledging the reception

of the encrypted email. Afterwards Alice sends Bob the key and, finally, Bob acknowledges

the reception of the key. In this scenario the TTP interferes only when a party does not

receive the message he or she expects. Intuitively, when a party can prove that the opponent

has committed to the exchange, then the TTP provides that party with the encryption key

along with some affidavits. When key chains are used, in order to produce the key used in

any resolved exchange, the TTP only needs to store the seed. The TTP’s storage requirements

are thus reduced.

Obviously, this protocol is not purely optimistic because Alice needs to set up a chain with

the TTP. However, if the number n of exchanges is large enough, then the gained reduction

in required storage space of the TTP will, in many practical applications, compensate the

overhead of the initial setup phase. But, one single problem undermines the efficiency of

this protocol: It is costly to abort an exchange. This is because of the following situation:

Assume that exchange number i is aborted. This means that Kn−i is not revealed to Bob,

but he gets hold of the encrypted email. This can happen for instance when Alice sends the

encrypted email to Bob, but afterwards aborts the exchange because Bob is slow in replying.

Now if the protocol proceeds and the (i + 1)th session terminates successfully, then Bob

learnsKn−(i+1). Because of the way the chain is constructed, Bob can easily computeKn−i

(that is H(Kn−(i+1))) and decrypt the email content of the aborted session at will. Fairness

is thus violated in this situation. Therefore, if an exchange is aborted, Alice needs to abandon

using the rest of the chain altogether and set up a new key chain with the TTP. This can

potentially impose a huge efficiency penalty on the protocol. The next section describes a

way to circumvent this problem.
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3.5 The main protocol

Here we describe our asynchronous optimistic fair CEM protocol. This protocol uses keys

in a key chain for encrypting emails that are exchanged. Once this chain has been initialised,

emails can be encrypted and exchanged, each time with a new key of the chain. The protocol

also provides a way for the initiator to revoke an entire key chain.

Each exchange (or attempt to exchange) that uses the optimistic protocol (and possibly

also the recovery and abort protocols) is called a protocol round. An initialisation phase

followed by a number of protocol rounds is called a protocol session. After the initialisation

phase, the initiator can send emails to the responder. Each protocol session belongs to one

unique initiator-responder pair. However, the protocol naturally allows concurrent sessions.

An agent can thus be involved in different sessions with different partners at the same time.

3.5.1 Initialisation

The initiator A chooses a random key K0, the seed of the key chain, from a large key do-

main K. Let H : K → K be a publicly known one-way collision-resistant hash function and

G : K → K be a publicly known acyclic function, i.e. ∀k, i. Gi(k) 6= k. 1 For i ≥ 0, we

define Ki+1 := G(Ki) and K ′i := H(Ki). We require that H and G do not commute, i.e.

given aH(k) for which k is unknown, it is infeasible to computeH(G(k)) (see § 3.7).

K0 K1 Ki

K ′0 K ′1 K ′i

. . . . . .

H H H

GGG

Figure 3.1: Double key chain

The sequence K ′0, K
′
1, . . . of keys is used for encrypting the emails which are to be ex-

changed. Clearly any K ′i can be calculated from K0 using H and G (see figure 3.1). To

initialise a session, A sends the seed K0 and the identity of the potential responder (of the

session) B to the TTP T . 2

10. A → T : {A, B, K0,nc}a
pk(T )

20. T → A : sid , cert, (nc, cert)T

(3.1)

where the certificate cert := (A, B, sid)T and nc is an unpredictable nonce chosen by A to

prevent replay attacks (see § 3.7), and sid is a unique session identifier chosen by T .

1For G to be acyclic, we require an infinite K. In practice, usually infinite key spaces are approximated with a

sufficiently large key space, cf. [MVO96].
2We use superscripts for message numbers in order to unambiguously refer to them in the text.
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A nonce is a number used once. A nonce is thus always fresh. An extra requirement for

nonces is unpredictability, which can be achieved via, e.g., randomness, cf. [AN96].

T stores entries of the form 〈initiator , responder , seed , sid〉, where seed is the seed

chosen by A. The key chain rooted at seed can be used for sending CEMs from initiator

to responder . When T receives message 10, it looks for the entry 〈A, B, K0, ∗〉 in its

database. If 〈A, B, K0, ∗〉 is not already present in its database, then T chooses a fresh

session identifier sid and adds 〈A, B, K0, sid〉 to the database. The TTP then sends back

message 20, a confirmation of that it approves this session. If 〈A, B, K0, ∗〉 already exists in

the database, T ignores the request (and sends back an error message to A).

Differently than in the protocol sketch in § 3.4, in the main protocol it is not needed to

specify the maximum number n of exchanges. In the protocol sketch, since Alice needed to

traverse the chain backwards, n was used to specify the start point of the chain traversal. In

the main protocol the entire chain is obscured using H . So it is not needed to put any order

on the key chain traversal. Hence, it is not needed to specify n.

3.5.2 Exchange sub-protocol

Each protocol round has an order number i, which initially is 0 and can arbitrarily grow. After

each round the initiator A increments i. The ith protocol round is as follows

1ex . A → B : A, B, T, i, sid , h(K ′i), {M}s
K′

i
,EOOM , cert

2ex . B → A : EORM

3ex . A → B : K ′i
4ex . B → A : EORK′

(3.2)

Where

• EOOM := (B, T, h(K ′i), {M}s
K′

i
, i, sid)A

• EORM := (EOOM )B

• EORK′ := (A, K ′i, {M}s
K′

i
)B

Here h is a secure hash function, which can be chosen to beH . In the first message, A sends

the encrypted email content {M}s
K′

i
, the hash value of the encryption key h(K ′i) and the

session certificate (A, B, sid)T . The responderB checks the correctness of the message and

commits himself to receive the email by sending message 2ex , if he trusts T . Then A sends

the key K ′i. Agent B checks that this key matches the hash value of the key that he received

in message 1ex . Finally, if the key is correct, B sends a confirmation of having received the

key. The number i is only used implicitly by B when he resolves the protocol round.
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3.5.3 Recovery sub-protocol

The initiator A may run the recovery protocol after having received message 2ex in proto-

col 3.2, by presenting EORM to the TTP. This shows that A has actually sent EOOM to B,

ensuring that B is also able to receive a recovery token for that exchange. Agent A typically

runs the recovery protocol to complete the EOR (as defined in § 3.5.5 below), if she does not

receive message 4ex . The responder B may run the recovery protocol after receiving mes-

sage 1ex , in order to get the encryption key. The recovery protocol initiated by P ∈ {A, B}

starts with the following message:

1r. P → T : fr, A, B, h(K ′i), h({M}s
K′

i
), i, sid ,EORM (3.3)

where fr is a flag used to identify the recovery request. On receiving this message, T per-

forms the following tests:

• T checks if the signatures in the message are genuine and if its own identity is given as

the designated TTP.

• T checks whether there is an entry in its database matching 〈A, B, ∗, sid〉.

• If the previous tests succeed, then the result of the query would be a unique entry

〈A, B, K0, sid〉 (see § 3.5.1). Subsequently T uses the retrievedK0 to check whether

h(H(Gi(K0))) matches h(K ′i) in the message.

If the results of all these tests are affirmative, then T checks whether round i has already been

resolved or not. For each key chain (corresponding to one single entry 〈A, B, K0, sid〉 in T ’s

database) and each exchange i ≥ 0 that is resolved at T , T stores whether that exchange has

been recovered or aborted in a status variable status(i) (cf. § 3.2). If status(i) has not been

initialised in T ’s database, it sets status(i) := h({M}s
K′

i
). 3 Then T proceeds as if status(i)

had already been set for the exchange, as is described below.

If status(i) has already been initialised in the database, T sets v := ⊥ if status(i) = å,

and sets v := K ′i in case status(i) = h({M}s
K′

i
). Then T sends the following message and

terminates this resolve transaction.

2r. T → P : v, (A, B, h({M}s
K′

i
), v, i, sid)T (3.4)

The message (A, B, h({M}s
K′

i
),⊥, i, sid)T , where⊥ is a special flag that denotes an aborted

exchange, serves as an abort token. When P receives this message, it can safely quit the

protocol round. The messageK ′i, (A, B, h({M}s
K′

i
), K ′i, i, sid)T serves as a recovery token

for P (see evidences in § 3.5.5).

3Note that if the hash function h produces hash values of ℓ bits length, i.e. h : {0, 1}∗ → {0, 1}ℓ , then we have

status(i) ∈ {å} ∪ {0, 1}ℓ .
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If ¬(status(i) = h({M}s
K′

i
)) or any of the tests mentioned above fails, then T ignores

the recovery request and sends back the followingmessage, tagged with the special flag error:

2r. T → P : error, (error, mr)T (3.5)

where mr is the content of the message sent in step 1r (protocol 3.3). This indicates a

misbehaviour, and based on this message, P can quit the protocol round. Note that P needs

to be sure of the freshness and authenticity of this message, which is attained by T ’s signature

onmr. This is needed to prevent simple replay attacks.

3.5.4 Abort sub-protocol

The initiator A may abort an exchange at any stage, provided that the exchange has not been

recovered already. Typically A aborts if she does not receive message 2ex . On the other

hand, the responder B can never explicitly request the TTP to abort an exchange that has

been initiated by A. To abort an exchange,A sends T the following message:

1a. A → T : fa, A, B, h({M}s
K′

i
), i, sid , abrt (3.6)

where abrt := (fa, B, T, {M}s
K′

i
, i, sid)A and fa is a flag identifying the abort request.

On receiving this message, T checks A’s signature on abrt and its own identity in the

message, and it queries its database with 〈A, B, ∗, sid〉 only if they match. The result is

a unique 〈A, B, K0, sid〉 (see Initialisation phase). Then T checks whether session i has

already been resolved, by checking whether status(i) has been initialised in its database or

not. If not, T sends back the following message:

2a. T → A : (A, B, h({M}s
K′

i
),⊥, i, sid)T (3.7)

This message serves as an abort token and whenA receives it, A can safely quit the protocol.

Then, T sets status(i) := å and terminates this resolve transaction. Similarly, if status(i)

has already been set in T ’s database as status(i) = å, then T sends the above message and

terminates the resolve transaction.

If status(i) has already been set in T ’s database indicating a recovery, i.e. ¬(status(i) =

å), then T tests whether status(i) = h({M}s
K′

i
). If the test succeeds, T sends the following

message and terminates this resolve transaction:

2a. T → A : (A, B, h({M}s
K′

i
), K ′i, i, sid)T (3.8)

This message constitutes a recovery token forA, for this exchange.

If ¬(status(i) = h({M}s
K′

i
)) or if 〈A, B, ∗, sid〉 does not exist in T ’s database, or if any

of the tests mentioned above fails, then T ignores the abort request and sends back an error

message:

2a. T → A : error, (error, abrt)T (3.9)
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Note that an abort token does not necessarily mean that an exchange has not finished suc-

cessfully, since A can abort an already completed exchange. An abort token merely indicates

that T will never issue a recovery token (hence releasing the key) for that particular protocol

round, uniquely identified with sid and i.

3.5.5 Evidences and dispute resolution

In case of a dispute, the parties can present evidences to an external judge. We note that each

protocol round (of each protocol session) has an associated EOO and EOR.

The evidence of receipt EOR, desired by A, consists of

A, B, T, M, i, sid , K ′i, cert,EORM ,EORK′ ,

if it is obtained by running the exchange protocol. If A uses the recovery or abort protocols,

then the last two elements EORM ,EORK′ are replaced by the recovery token from the TTP,

i.e. (A, B, h({M}s
K′

i
), K ′i, i, sid)T .

The evidence of origin EOO, desired by B, consists of

A, B, T, M, i, sid , K ′i, EOOM .

A judge settles a dispute by simply checking whether the EOR or EOO presented by

the disputing parties are genuine. We emphasise that abort tokens have no weight in these

evidences. Therefore, having an abort token does not override or revoke having a recovery

token. The purpose of the abort protocol is solely to guarantee timeliness for the initiator.

3.5.6 Revoking compromised key chains

In practice it may happen that A’s computer is compromised and the key chain seed is re-

vealed to an attacker. In such situations, A might want to revoke the key chain she has set up

with the TTP. 4 Therefore, the protocol allows A to ask the TTP, at any moment, to mark her

key chain as obsolete:

A → T : fo, cert, (fo, cert)A (3.10)

Here fo is a flag that denotes a request to mark the chain identified by cert as obsolete.

Upon receiving this message, T checks A’s signature and if cert is a genuine certificate

from T to A, and, only if this is the case, marks the entry 〈A, B, ∗, sid〉, which is unique, as

obsolete. Marking an entry as obsolete means that T will not recover or abort protocol rounds

connected to that entry any more. But T will behave as usual if it is queried about a protocol

round for which a status value has already been set. This mechanism ensures that A cannot

4We do not discuss methods for revoking A’s private key, in case it is compromised by the attacker. Revoking

keys in PKIs has extensively been studied, e.g. see [BDTW01].
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cheat B by first resolving an exchange and then marking the chain as obsolete (purporting

that Bob would not be able to recover exchanges that use an obsolete chain).

We remark that revoking a key chain does not protect contents of the emails that belong

to previously aborted protocol rounds: If the attacker records the communications between

A and B, and subsequently compromises the key chain that A has used to send CEMs to B,

then it can read the contents of emails from all previous protocol rounds (including those)

which were aborted.

A prudent Alice would only store the last elements of the key chains that she uses. For

instance, after encrypting an email usingK ′i, Alice would only needKi+1 for future encryp-

tion, thus K0, · · · , Ki can be permanently discarded. Then, if G is a one-way function, the

attacker does not learn the value of the keys used in previously aborted protocol rounds 5 by

breaking into Alice’s computer. This defensive strategy is not effective if G is reversible.

3.6 Security analysis

In this section we justify the protocol by informally showing that it achieves the design goals

described in § 3.3. A difficulty in formal (finite state) verification of the protocol is handling

the key chains: Even in a finite session model, a malicious Alice can select to use keys

arbitrary deep in the chain, effectivelymaking the state space infinite. Various abstraction and

data independencemethods can in principle be used to alleviate this difficulty, e.g. see [Laz99,

HS06]. These however need to be carefully adapted to the setting of our protocol. Formal

verification of this protocol is hence left as future work.

Before focusing on the goals of the protocol, we state two relevant properties of the TTP’s

database.

1. Persistence: If, for a certain sid , T assigns å or some h(M) to status(i), then this

value is never changed in the future. Persistence follows from the TTP’s specification

according to the protocol: T assigns values to status(i), only if status(i) does not

already have a value. The logic of the TTP is summarised in figure 3.2.

For each i (of each sid ), the finite state (Mealy) machine of the TTP may be at one of

the following states: Unresolved sU , aborted sA and recovered sR. If the TTP receives

an abort request while being at state sU , it grants the request (i.e. sends back an abort

token) and moves to state sA, and similarly for other cases. In figure 3.2, a and r stand

for valid abort and recovery requests, and A and R stand for the corresponding abort

and recovery tokens, respectively.

2. Consistency: If, for a certain sid , T assigns status(i) with å, then ∀M. status(i) 6=

h(M), and vice versa. Consistency follows from the definition of å, see § 3.2.

5The keys that belong to successful exchange rounds are ultimately revealed by Alice (or the TTP), and thus the

attacker does not need to break into Alice’s computer to obtain them.
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Figure 3.2: The Mealy machine of the TTP

In the following, we discuss why the protocol’s design goals are achieved. For conve-

nience, below, A and B denote the initiator and the responder parties, respectively.

• Non-repudiation: If A possesses EOR (see § 3.5.5), then she either has EORK′ or the

recovery token for that round. In the first case, she can show that B has received both

{M}s
K′ andK ′. In the second case, B has {M}s

K′ and either he has or he can receive

K ′ by using the recovery protocol. Agent B is therefore able to extractM. Moreover,

B cannot deny that he is able to obtainM because of his signatures in EOR. Similarly,

if B possesses EOO, he can show that A has indeed sent K ′ and {M}s
K′ , because of

here signatures in EOOM . Note that it is only A (or the TTP on behalf of A) who is

able to generateK ′.

• Timeliness: The agents A and B terminate a protocol round either by completing the

exchange protocol, or by executing the recovery or abort protocol. AgentA can run the

abort protocol at any time. She can also run the recovery protocol after she has received

the secondmessage in the exchange protocol. AgentB can recover the protocol after he

has received the first message in the exchange protocol. Termination is guaranteed by

the fact that the channels to the TTP are resilient. Note that termination of B depends

on that he has the identity of the designated TTP signed byA in the first message of the

exchange protocol (as it is in protocol 3.2). This is because A would otherwise be able

to cheat B by resolving at a TTP which is not known (or trusted) to B, hence leaving

B in an unfair situation.

To show that the degree of fairness does not decrease for an honest participant after

termination, it is enough to show that, if A (B) has terminated and not received EOR

(M and EOO), then B (A) will not receiveM or EOO (EOR). But, if A (B) has

terminated and not received EOR (M and EOO), then we infer that the protocol round

was aborted, and in an aborted round,B (A) cannot learnM or EOO (EOR).

• Effectiveness: IfA andB faithfully follow the exchange protocol and messages are not

excessively delayed, A receives EOR iff B receivesM and EOO.

• Fairness: As mentioned above (effectiveness), if the exchange protocol terminates nor-

mally then A receives EOR and B receivesM and EOO. Thus, in this case the pro-
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tocol round terminates in a fair state. If the exchange protocol is (accidentally or ma-

liciously) interrupted, then the agents resolve the round using the recovery and abort

sub-protocols. There are three main cases to consider. For each one of them we will

show that both agents can resolve the round, and when they have done so a fair state is

reached:

1. Both agents run the recovery protocol. Agent A can only recover the protocol

round by presenting EORM to the TTP, hence proving that B has indeed re-

ceived EOOM in the interrupted exchange protocol. In this case, because of per-

sistence and consistency of the TTP’s database, B can also recover and receive

the encryption key used in that round.

2. Agent A aborts the round and afterwards B runs the recovery protocol. Agent

A can abort a round at any stage, unless that round has already been resolved.

Afterwards whenB runs the recovery protocol, the TTP responds with a message

containing a special flag that denotes that the round was already aborted (because

TTP’s database is persistent and consistence). Thus, none of the agents get their

evidences, and B does not receive the encryption key.

3. Agent B recovers the round and afterwards A runs the abort protocol. When A

runs the abort protocol (and the round is already recovered), the TTP responds

with the recovery token (because TTP’s database is persistent and consistence).

Now both agents have their evidences, andB has received the encryption key and

is able to obtainM.

The agents can run the recovery and abort protocols also after an normal termination

of the exchange protocol. But this has no effect on the evidences EOR and EOO.

It may seem as if it could be a problem that A can reuse a key K ′i that has been used

in a previous (possibly recovered or aborted) protocol round, to initiate a new round.

But, as we will show here, it is in A’s own interest to never reuse keys. Since EORK′

and the recovery token contain h({M}s
K′), A needs either to sendK ′ in the exchange

protocol or to recover the exchange in order to receive EORK′ or the recovery token

and complete the EOR. In the first case, the exchange protocol terminates successfully,

leaving A and B in the same fair state. In the second case, there are three possibilities:

(1) The key K ′i has been used in a protocol round that terminated normally: In this

case, the protocol executes normally, i.e. as if i is a fresh (not reused) index. (2) The

key K ′i has been used in a protocol round that was recovered: If B is honest, B will

also recover, and when they recover, bothA andB receive an error message (unless the

email content is actually exactly the same as what has already been recovered). This

leaves A and B in the same (fair) state. (3) The key K ′i has been used in a protocol

round that was aborted: A receives neither the recovery token nor the last message

from B. Thus, A cannot collect an EOR, neither can B collect EOO.
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Potentially A could abort a completed exchange and then start a new protocol round

with the same email content and key. In the new round, if A fails to continue the

exchange protocol after receiving EORM , B receives an abort token when he tries to

resolve, since the TTP has actually stored that round as aborted. But, because of the

idempotency assumption (see § 3.2), A does not gain anything more than what she

had before reusing the key and the email content. Moreover, the abort token does not

override the EOO that B has already collected. Thus the level of fairness achieved by

B is not decreased.

We finally remark that if A maliciously uses a key that has been revealed to B earlier

(or later), then B can easily (by violating the protocol) obtain an EOO without sending

message 2ex .

3.7 Implementation considerations

Security of the initialisation phase We motivate that in practice it is reasonable to re-

quire A to sign parts of message 10 of the initialisation phase (§ 3.5.1) as

10′. A → T : {A, B, K0,nc, (K0,nc)A}a
pk(T )

20′. T → A : sid , cert, (nc, cert)T

(3.11)

If A cannot generate unpredictable nonces with high entropy (e.g. see [CA-01]), then the

initialisation protocol 3.1 can be subverted as is described below (the attacker is called Z , and

Z(X) means that the attacker pretends to be participantX).

A → Z(T ) : {A, B, K0,nc}a
pk(T )

Z(A) → T : {A, B, L,nc}a
pk(T )

T → A : sid , cert, (nc, cert)T

In this scenario, the attacker can send the second message only if the value of nc is pre-

dictable. The result is that T initiates a session between A and B, which A believes usesK0

as its seed, while the seed is in fact L. If the protocol requires A to sign the nonce nc (as in

protocol 3.11), then to avoid the attack, having fresh (but not necessarily unpredictable) nc

would be enough, which is easier to achieve in practice.

Similarly, if A choosesK0 poorly, an undetectable on-line guessing attack (see [DH95])

can reveal the value of K0: The attacker would guess a key L and then ask T to initiate a

session between A and B with L as its seed: Z(A) → T {A, B, L,nc}a
pk(T ). If L = K0,

then T would send an error message to Z , thus confirming Z’s guess. Such an attack would

be impossible if (K0,nc)A is included in the message, as is in protocol 3.11.

Our last motivation addresses denial of service attacks. In practice, because of its resource

constraints, T may not be able to accept all valid requests. If the requests are signed by their

initiators, T would be able to deploy a fair quota system.
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Type flaw attacks Type flaw happens when (a part of) a message is interpreted as having

a different type from the intended one. In the described sub-protocol there are possibilities

for type confusion which can easily be avoided by simply tagging messages and signatures

with their purpose. For instance, a malicious A, exploiting B’s signature onK ′i, {M}s
K′

i
(as

EORK′ in protocol 3.2), could get access to B’s signature on EOOM ′ in another session.

This scenario can be prevented by letting EORK′ = (fEORK′ , A, K ′i, {M}s
K′

i
)B , and so

forth. See [HLS03, LYH04] for general methods to prevent type flaws.

Constructing hash chains The non-commutativity requirement on H and G (see § 3.5.1)

rules out choosing, e.g., G(k) = k orG(k) = H(k). This also implies that if forG a simple

linear function, such asG(k) = k+1, is selected, thenH should be non-incremental [BGG94].

Hash chains can in practice be constructed using SHA-1 hash functions [EJ01] as H . A

choice for G can be MD5 [Riv92]. Other options for these would be to use various HMAC

constructions [BCK96] or secure block cipher encryption algorithms.

In light of the recently discovered weaknesses of the SHA family of hash functions (e.g.

see [WYY05]), we notice that collision resistance is not of paramount importance to our

protocol. There are two ways to counter collision attacks. The first is to add redundancy to

M (before encryption) in message 1ex . In this way a collision between the keys k and k′

can be detected because the incorrect key yields an incorrect message after decryption. The

second approach is to require T , instead of the initiator A, to determine the initial keyK0.

A common problem with hash chains is that when the length of a chain is increased, in

practice the chance that a collision between that chain and another one occurs increases. A

standard solution (e.g. see [HJP05]) to this problem is to reduce the chance of collision by

using the corresponding indexes when computing hash values. For an in-depth discussion on

constructing and implementing hash chains we refer to [HJP05].

Symmetric key encryptions Symmetric encryptions of the proposed protocol can be im-

plemented using the AES encryption standard [NIS01]. Using hash functions to construct

keys enforces fixed key lengths, e.g. 160 bits if SHA-1 is used forH . We note that currently

AES with 128-bit keys is considered secure. Therefore, the result of the hash function can be

truncated to 128 bits to fit into the AES standard. 6

3.8 Conclusions and related work

In this chapter, we have introduced an asynchronous optimistic CEM protocol with stateless

recipients. 7 The protocol relies on key chains to reduce the storage requirements of the TTP,

improving on existing schemes that achieve strong fairness. We have analysed the protocol

6The Rijndael algorithm, on which the AES is based, in fact allows using 160-bit keys, while the AES standard

only supports 128, 192 and 256 bit key sizes [DR02].
7We do not require the receiver to keep any information regarding his state in the current protocol round, while

being stateless in [Ate04] is much finer and refers to the current protocol session.



3.8. Conclusions and related work 39

informally and showed that it guarantees non-repudiation, effectiveness, (strong) fairness and

timeliness.

Related work We use hash chains of keys for repeated encryption in CEM protocols. The

idea of using hash chains in security protocols can be traced back to [Lam81], where these

are used for repeated authentication. Hash chains have later on been used in various authen-

tication protocols, e.g. [ABC+98, PTSC00], and key management systems, e.g. [Dae98].

There is no general consensus in the literature on the requirements of CEM protocols.

For example, in [ZG96a, AG02], it is not considered necessary for CEM protocols to pro-

vide EOO. In [Ate04] it is argued that timeliness for the receiver is not required in CEM

protocols. Conversely, in [Mic03], timeliness for the sender is deemed unnecessary. We aim

at strong fairness which guarantees timeliness for both parties, and provides EOO and EOR.

Below we study the efficiency and compare the TTP’s storage requirements and the

number of messages in the exchange protocol, between our proposed protocol and exist-

ing schemes. Existing schemes often require the TTP to store the key used for each single

exchange along with the identities of the participants, the hash of the exchanged message and

typically also a unique exchange identifier, e.g. see [GRV05] for a review. In our protocol

the TTP only needs to store one seed for each chain and the status of recovered or aborted

rounds. When resolving, the TTP has to perform a few hash function computations in our

protocol. However, these are in general very cheap. So, when exchanging multiple certified

emails, our protocol outperforms the existing asynchronous optimistic CEM protocols (that

provide strong fairness) in the amount of information stored by the TTP. Note that the pro-

tocols of [Mic03, Ate04, NZB04], which only need stateless TTPs, are not strongly fair, i.e.

they do not guarantee timeliness for either sender or receiver. 8 Other protocols with stateless

TTPs, such as [DGLW96], are not optimistic, or rely on synchronous communication chan-

nels as in [ES05b]. In fact, it has been shown in [Sch00] that asynchronous optimistic CEM

with stateless TTPs cannot provide strong fairness, see also § 2.2.2.

Concerning the number of messages in the exchange protocol, according to [Sch00],

four messages is the least to achieve strong fairness for asynchronous optimistic CEM pro-

tocols. Existing CEM protocols with only three messages in the optimistic phase are not

strongly fair: The protocols of [Mic03] do not guarantee timeliness of the sender. The pro-

tocols of [FPH00], [MD02] (fixing a flaw in [FPH00]), [WBZ04] (fixing a flaw in [FPH00]

and [MD02]), [FPH02] and [Zho04] (fixing a flaw in [FPH02]) achieve fairness only under

the rather unrealistic assumption that the cheater party collaborates with the cheated party

and attends the court, in case of a dispute. In these protocols, since some of the collected

evidences can conceptually be revoked based on other evidences (cf. [Eve83, PSW98]), only

a weak notion of fairness is attainable. See also § 2.2.2.

8These protocols in fact require a channel which buffers messages for an indefinite amount of time, thus only

delegating the “stateful-ness” to a different entity.





Chapter 4

Formal methods

A book which does not contain its counterbook is considered incomplete.

Jorge Luis Borges’s Tlön, Uqbar, Orbis Tertius (1940)

Roadmap To formally study whether a security protocol achieves its design goals, first we

need to specify the protocol in a formal language. For this purpose we use process algebra,

which is the topic of § 4.1. Let us say that L specifies the protocol that is to be analysed.

To verify L, we can specify the ideal behaviour of the protocol as another system Lideal

and use a suitable observational equivalence ≈ to (dis)prove L ≈ Lideal . This approach,

although elegant and powerful, requires heavy human interaction, e.g. see [AG97, GR01,

Can02, Hüt02].

Another approach is to specify the desired properties of the protocol in a modal logic and,

then, check if L satisfies the modal formulae. We choose this approach and use µ-calculus

as the property specification language, which is the topic of § 4.2. For verifying protocol

behaviours against their goals we use finite state model checking, which is discussed in § 4.3.

4.1 Process algebra

For specifying protocol participants and the DY intruder, we use the process algebraic lan-

guage µCRL [GP95], which is an extension of ACP [BK85] with abstract data types. Our

results do however not depend on this choice in any crucial way, as µCRL is similar to other

general purpose process algebras. What follows provides a brief introduction to µCRL, while

its complete syntax and semantics are given in [GP95], see also [GR01, Fok07].

A µCRL specification consists of data type declarations and process behaviour defini-

tions, where processes and actions can be parametrised with data. Data are typed in µCRL

and types can have recursive definitions. Each non-empty data type has constructors and pos-

sibly non-constructors associated to it. The semantics of non-constructors is given by means

of equations. The presence of a data sort Bool of Booleans with constants T and F as con-

structors, and the usual connectives ∧, ∨ and ¬ as non-constructors, is always assumed. We

describe these concepts via an example in § 4.1.2.

The specification of a component is a guarded recursive equation that is constructed from

a finite set of action labels, process algebraic operators and recursion variables. The set of
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action labels is denoted Act . All members of Act , except for a designated action label τ for

silent steps, may be parametrised with data to construct actions. When a(d) is an action with

action label a ∈ Act and data parameter d, we write λ(a(d)) = a. For a set of actions A, we

let λ(A) = {λ(a) | a ∈ A}. Operator λ is merely a means to explicitly refer to action labels.

The process algebraic operators + and · denote nondeterministic choice and sequential

composition, respectively: The process p + q can behave either as process p or as process q,

and the process p · q behaves as process p and when p terminates (if it ever does), it continues

as process q. The constant δ denotes a deadlock process, i.e. a process which cannot perform

any actions. Recursion variables, which can be parametrised with data, are used in the natural

way, e.g.X = a ·X , with a ∈ Act , describes a process that performs action a and then recurs

(performs an infinite number of a actions in sequence). A recursive equation is guarded if all

its recursion variables are preceded by an action.

The summation operator Σd:D p(d), where d is a free variable in process p(d), provides

the possibly infinite choice over a data typeD. The conditional construct p ⊳ b ⊲ q, with b :

Bool , behaves as p if b = T and as q if b = F. For instance, the constructΣd:D p(d)⊳f(d)⊲δ,

with f : D → Bool , forces choosing d values in p(d) that satisfy f . The operator · has the

strongest precedence, the conditional construct binds stronger than +, and + binds stronger

than Σ.

The parallel (asynchronous) composition p‖q interleaves the actions of p and q. More-

over, actions from p and q may synchronise, when this is explicitly allowed by a predefined

commutative associative partial function | : Act ×Act → Act . Two actions can synchronise

only if their data parameters are semantically equal. This implies that synchronisation can be

used to represent data transfer between processes. Encapsulation ∂H(p), which renames all

occurrences of actions from setH in p into the deadlock action δ, can be used to force actions

into communication. For example, with a, b, c ∈ Act and a|b = c, the process (a.δ)‖(b.δ)

behaves as a.b.δ + b.a.δ + c.δ. Therefore, ∂{a,b}((a.δ)‖(b.δ)) = c.δ.

Next, we define labelled transitions systems, which provide a semantics for µCRL speci-

fications.

4.1.1 Labelled transition systems

A labelled transition system (LTS) L is a tuple (S, s0, A,Tr), where S is a countable set of

states, s0 ∈ S is the initial state, A is a set of actions and Tr ⊆ S × A × S is the transition

relation. A transition (s, a, s′) ∈ Tr , denoted s
a
→ s′, intuitively indicates that the system

can move from state s to s′ by performing action a. L is finite if S and A are both finite.

For a ∈ A, we abuse the notation and write a(s) = {s′ ∈ S | s
a
→ s′}. The set of enabled

actions at state s is defined as en(s) = {a ∈ A | ∃s′ ∈ S. s
a
→ s′}. For a set of states S,

we have a(S) = {a(s) | s ∈ S} and en(S) = {en(s) | s ∈ S}. With enT (s) we denote

the set of enabled transitions at s, that is enT (s) = {(s, a, s′) | a ∈ en(s) ∧ s′ ∈ a(s)}. A
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state s is called deadlock iff en(s) = ∅. We say L is deterministic iff ∀s ∈ S. |enT (s)| ≤ 1. 1

LTS L is called single-image iff ∀a ∈ A, s ∈ S. |a(s)| ≤ 1. Note that being single-image

does not entail determinacy. For example, the LTS of figure 4.1 is single-image, but it is

not deterministic. As a convention, in graphical representation of LTSs the initial state is

distinguished by having an unlabelled arrow pointing to it that does not have any source. Let

→+ be the transitive closure of ∪a∈A
a
→. An LTS is acyclic iff ¬∃s ∈ S. (s, s) ∈→+.

Obviously, finiteness does not entail acyclicity.

A trace, or execution, rooted at state s is a sequence of actions α = α1 · α2 · · · such that

αi ∈ en(αi−1(· · ·α1(s))) for i ≥ 1. We write π(s), with s ∈ S, for the set of traces that

emanate from s. The empty trace, denoted by ǫ, belongs to π(s) for any s. As an example, in

the LTS of figure 4.1 we have π(s0) = {ǫ, a, b}. A trace α is said to be in L if α ∈ π(s0).

a b

Figure 4.1: A simple LTS

To a trace α = α1 · α2 · · · , we attribute a sequence of states sα = sα
0 · sα

1 · · · and

a sequence of transitions tα = tα1 · tα2 · · · , such that sα
0 = s0, s

α
i ∈ αi(s

α
i−1) and tαi =

(sα
i−1, αi, s

α
i ). The sequence of ready transitions associated to trace α, denoted by T α, is

defined as enT (sα
0 ), enT (sα

1 ), · · · . Clearly tαi ∈ T α
i . Note that in single-image LTSs, s

α, tα

and T α are unique for each α. A trace α is maximal if it is either an infinite sequence or it

reaches a deadlock state, i.e. ∃i. en(sα
i ) = ∅.

Fairness constraints are used to avoid unrealistic model behaviours which do not reflect

realistic executions of the system. 2 Executions which violate fairness constraints are usually

omitted from further (formal) analysis. For example, consider a communication channel

between A and B, which may lose messages but is never cut (such a channel can be used to

implement resilient channels of § 2.2.2). An execution of the system in which A sends an

infinite number of messages but only a finite subset of them reaches B is deemed unfair.

Below, we define a fairness constraint, called F0, stating that each transition which be-

comes available infinitely often, is realised infinitely often. This constraint is often necessary

when analysing nondeterministic asynchronous systems. Note that even when system com-

ponents are deterministic per se, nondeterminism in the model is typically unavoidable when

they are executed in parallel. Our definition of F0-fair traces coincides with the concept of

fair choice from states in [QS83] and the strong notion of fairness 3 in [Fra86].

1We note that deterministic is an overloaded adjective, and our use can be substantially different from what the

reader might expect from “deterministic” systems.
2Fairness constraints on LTSs should not be confused with fairness in exchange protocols as defined in § 2.2.
3This condition states that ∀θ ∈ Tr . F∞ enabled(θ) ⇒ F∞ executed(θ).
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4.1. DEFINITION. Let α be a trace in a finite LTS L = (S, s0, A,Tr). We say α is F0-fair iff

• if α is finite, namely α = α1 · · ·αn, then α is maximal (i.e. T α
n = ∅).

• if α is infinite, namely α = a1 · a2 · · · , then for each θ ∈ Tr , if {i | θ ∈ T α
i } is infinite,

then so is {i | θ = tαi }.

When a trace α corresponds to multiple traces of states and transitions in L, then for α to

be fair, at least one of these sequences should satisfy the conditions of definition 4.1. This

is motivated by considering fairness as a property of traces, in which transitions play only a

supporting role. We recall that in single-image LTSs, each trace has a unique sequence of

states (and hence transitions) associated to it.

Various fairness constraints have been introduced in the literature and the relations among

them have been studied, e.g. see [Fra86, VV06]. In fact F0 is among the strongest fair-

ness constraints that can be devised for finite state systems, cf. [Fra86]. We have defined

F0-fair traces at the level of transitions, as opposed to actions, to more easily reject cer-

tain traces as unfair. Consider, for example, the infinite trace α = a · b · a · b · · · in

({s0, s1, s2}, s0, {a, b}, {s0
a
→ s1, s1

a
→ s2, s1

b
→ s0}). If definition 4.1 was based on

actions, not transitions, then the trace α would have been considered fair in this LTS, despite

the fact that it visits s1 infinitely often but from there never performs a to move to s2. In fact,

the soundness of our main results in § 5 depends on the F0 notion of fairness, in which if a

transition is infinitely often enabled, then it should be infinitely often realised.

To each µCRL specification we associate an LTS in which states represent process terms

and transitions are labelled with the actions that can be performed by that process term. The

semantics of µCRL describes how such LTSs are composed [GP95]. For instance, the LTS

associated to the processX = Σb:Boolsend(b).X with Act = {send} is shown in figure 4.2.

See also § 7.2.1.

send(T)send(F)

Figure 4.2: The LTS describing X = Σb:Bool send(b).X

To efficiently generate and manipulate state spaces associated with processes, the µCRL

language comes with the benefit of a strong tool support. We refer to [Wou01, BFG+01,

GL02b, BCL+07, Fok07, BLPW07] for discussions on functionalities and internal details of

the µCRL tool-set.

4.1.2 Specifying security protocols in µCRL: An example

Below, as an example, we describe how to specify a simple authentication protocol (used

in [Tan96a] to demonstrate reflection attacks) and the DY intruder, along with its data ma-
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nipulation abilities, in µCRL. The µCRL language and tool-set have been used in formal

specification and verification of various security protocols. See, for instance, [Pan02, CT04,

CCT05, COPT07, TKJ07, CPT07]. In this example, we introduce several patterns and con-

cepts to which we will return in the rest of the thesis. Our specification in many ways follows

the approach of Clarke et al. [CJM98] and Paulson [Pau98].

The protocol of our example can informally be described as follows. It is assumed that A

and B share a secret symmetric keyKAB , and rA and rB are nonces.

A → B : A, rA

B → A : rB , {rA}s
KAB

A → B : {rB}s
KAB

The protocol is intended for mutual authentication. However, it is susceptible to the following

reflection attack.
Z(A) → B : A, rZ #1

B → Z(A) : rB , {rZ}s
KAB

#1

Z(A) → B : A, rB #2

B → Z(A) : r′B , {rB}s
KAB

#2

Z(A) → B : {rB}s
KAB

#1

In this attack scenario, the intruderZ , impersonatingA, opens two sessions withB and solves

B’s challenge in the first session (i.e. “please compute {rB}s
KAB

if you are really A”) using

B in the second session. The attack is feasible only if B permits concurrent sessions.

We consider a small system consisting of one honest party, B, and the DY attacker who

tries to impersonate A. We thus let P = {A, B,DY}. Let T = {t1, · · · , tℓ} be a finite

set of atomic terms, and P ⊂ T . For simplicity, below, we omit asymmetric encryption

primitives (cf. § 2.1.1). First, we define the sort of messages exchanged in the protocol. With

this definition, an induction principle comes for free.

sort Msg

func t1, · · · , tℓ :→ Msg

·, · : Msg × Msg → Msg

h : Msg → Msg

{·}s
· : Msg × Msg → Msg

The constants (elements of T ) and the message constructors (pairing 4, hashing and encryp-

tion) constitute the constructors for theMsg data type. These are defined under the keyword

func in µCRL, while the keyword map is used when defining non-constructor functions

associated to data types. Next, term rewriting, denoted by⇒, 5 is used to define equality for

Msg . The µCRL tool-set acts as a term rewriter and assumes that the rewrite rules which

4To improve readability, we sometimes put parentheses around pairs of messages.
5To denote rewriting we use⇒, while logical implication is denoted by =⇒ .
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specify data types constitute a weakly terminating and confluent system [GP95]. This guar-

antees that data equivalence between closed terms is decidable.

Semantic equality in ideal cryptography collapses to syntactic identity, i.e. two messages

are equal iff they are identical. The elements of Msg , therefore, constitute a free algebra,

meaning that no relations (except identity) on Msg are assumed. This abstraction is restric-

tive, as it does not capture the algebraic properties of the cryptographic primitives used in

protocols, cf. § 2.1.1. In fact, extending this algebra even with an explicit decryption opera-

tor (along with the corresponding equality relation) gives strictly more power to the attacker.

The latter shortcoming can be circumvented by, intuitively, requiring protocol specifications

to not have any encryption operator applied on a variable by itself, see [Mil03, LM05].

map · = · : Msg × Msg → Bool

var m, m′, m1, m
′
1 : Msg

rew t1 = t1 ⇒ T · · · tℓ = tℓ ⇒ T

(m, m′) = (m1, m
′
1) ⇒ m = m1 ∧ m′ = m′1

h(m) = h(m′) ⇒ m = m′

{m}s
m′ = {m1}s

m′
1

⇒ m = m1 ∧ m′ = m′1

Inequalities also have to be defined. This is because the above rewrite rules for equality

lead to unspecified states. For example, these do not determine whether t1 = h(t2) holds

or not, simply because the left-hand side of no rule matches this. Inequalities are defined

in a natural way: Different kinds of messages are distinct, with ti = tj ⇒ F for i 6= j,

h(m) = {m1}s
m2

⇒ F, and so forth.

This completes our specification of the Msg data type. Next, we specify the attacker’s

deduction abilities. To represent DY’s knowledge, we use a set of messages. In practice,

often ordered lists, instead of sets, are used. This gives a normal form for message sets and,
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thus, avoids storing the same object multiple times in different representations.

sort Set

func ∅ :→ Set

ς(·, ·) : Msg × Set → Set

map · ∈ · : Msg × Set → Bool

add(·, ·) : Msg × Set → Set

· ∪ · : Set × Set → Set

· ⊆ · : Set × Set → Bool

· = · : Set × Set → Bool

var m : Msg

S, S′ : Set

rew m ∈ ∅ ⇒ F

m ∈ ς(m′, S) ⇒ (m = m′) ∨ (m ∈ S)

add(m, S) ⇒ if (m ∈ S, S, ς(m, S))

∅ ∪ S′ ⇒ S′

ς(m, S) ∪ S′ ⇒ add(m, S ∪ S′)

∅ ⊆ S′ ⇒ T

ς(m, S) ⊆ S′ ⇒ m ∈ S′ ∧ S ⊆ S′

S = S′ ⇒ S ⊆ S′ ∧ S′ ⊆ S

In this specification, we define if : Bool × Set × Set → Set as if (T, S1, S2) ⇒ S1

and if (F, S1, S2) ⇒ S2.

Let Γ represent DY’s knowledge set. To capture the deduction rules of definition 2.2,

we follow the approach of [CJM98] and [Pau98]. 6 We first maximally decompose Γ us-

ing DR rules, and then define a synthesise function synth which only implements the CR

rules of definition 2.2 on the resulting decomposed set. This entire procedure corresponds to

computing synth(analz(Γ)) in the terminology of [Pau98].

The DR rules are implemented in three phases. In the first phase, encrypted messages

are not decrypted:

map decomp : Msg → Set

var m, m′ : Msg

S : Set

rew decomp(t1) ⇒ ς(t1, ∅) · · · decomp(tℓ) ⇒ ς(tℓ, ∅)

decomp((m, m′)) ⇒ decomp(m) ∪ decomp(m′)

decomp(h(m)) ⇒ ς(h(m), ∅)

decomp({m}s
m′) ⇒ ς({m}s

m′, ∅)

The decomp function is extended to sets of messages in the natural way. In the second phase,

the function decrypt extracts the messages which are encrypted with those keys that can

6The expositions of [CJM98, Pau98] are different from ours as they assume that the keys used for symmetric

encryption have a distinct type and cannot be an arbitrary message (i.e. atomic key assumption).
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immediately be synthesised (the function synth is defined later). decrypt is to be applied as

decrypt(decomp(Γ), decomp(Γ)).

map decrypt : Set × Set → Set

var S, S′ : Set

m, m′ : Msg

rew decrypt(∅, S) ⇒ ∅

decrypt(ς(t1, S), S′) ⇒ add(t1, decrypt(S, S′))
...

decrypt(ς(tℓ, S), S′) ⇒ add(tℓ, decrypt(S, S′))

decrypt(ς(h(m), S), S′) ⇒ add(h(m), decrypt (S, S′))

decrypt({m}s
m′, S), S′) ⇒ if (synth(m′, S′),

decomp(m) ∪ decrypt(S, S′),

add({m}s
m′ , decrypt(S, S′)))

In case (parts of) keys are encrypted using other keys, the decrypt function needs to be

iterated to capture all possible decryptions. For instance, for Γ = {t1, {t2}s
t1

, {t3}s
t2
}, we

expect that Γ ⊢ t3, while decrypt(Γ, Γ) ⇒ {t1, t2, {t3}
s
t2
}. We name the last phase of

decomposition as decrypt∗:

map decrypt∗ : Set → Set

var S : Set

rew decrypt∗(S) ⇒ if (S = decrypt(S, S),

S,

decrypt∗(decrypt(S, S)))

Now, we turn to the synth function which implements the CR rules of definition 2.2.

map synth : Msg × Set → Bool

var m, m′ : Msg

Γ : Set

p, p′ : P

rew synth(t1, Γ) ⇒ t1 ∈ Γ · · · synth(tℓ, Γ) ⇒ tℓ ∈ Γ

synth((m, m′), Γ) ⇒ synth(m, Γ) ∧ synth(m′, Γ)

synth(h(m), Γ) ⇒ h(m) ∈ Γ ∨ synth(m, Γ)

synth({m}s
m′ , Γ) ⇒ {m}s

m′ ∈ Γ ∨ (synth(m, Γ) ∧ synth(m′, Γ))

To decide Γ ⊢ m, we check whether synth(m, decrypt∗(decomp(Γ))) ⇒ T or not. It has

been proved in [CJM98] that this procedure is terminating and indeed implements the de-

duction rules of definition 2.2, while assuming that only atomic keys are used. A similar

approach is taken in [Bol96, Pau98]. Below, we informally contend that for any finite Γ, pos-

sibly containing messages encrypted with composed keys, decrypt∗(decomp(Γ)) terminates

after a finite number of iterations.
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We first define a function to count the number of encrypted messages appearing in a set

of messages: Define ne : Msg → N as ∀t ∈ T . ne(t) = 0, ne(h(m)) = 0, ne({m}s
m′) =

ne(m) + 1 and ne(m, m′) = ne(m) + ne(m′). For a set of messages S, let ne(S) =

Σm∈Sne(m) and ne(∅) = 0. The claim is that, for a finite set S such that decomp(S) =

S, the function decrypt∗(S) terminates after at most ne(S) + 1 iterations. Define Si =

decrypt(Si−1, Si−1) and S0 = S. Note that Si 6= Si−1 iff an encryption appearing in Si−1

is decrypted in Si. Since the number of encryptions appearing in S is ne(S), after ne(S)

iterations all the encryptions are decrypted or cannot be decrypted at all using the terms

appearing in Sne(S). Therefore, in the ne(S) + 1th iteration, decrypt∗ reaches a fixed point,

and thus terminates. 7 This completes our data specification part.

Below, we specify the participants of our simple authentication protocol. In this, we

follow the approach ofWoo and Lam [WL93]: “The specification in fact describes . . . distinct

local protocols, each of which specifies the actions of one of the participating principals”.

Our specification of the DY process is generic, while protocol participants are assigned with

protocol specific code, as is shown below.

First, we give the definitions of action labels.

act sendB, recvB, sendI , recvI , sendB , recvB : Msg

authB

comm sendB|recvI = sendB

sendI |recvB = recvB

Intuitively, Bob uses sendB(m) and recvB(m) actions for sending and receivingm ∈ Msg

data term over public channels. Moreover, sendB and recvB may synchronise, respectively,

with recvI and sendI intruder actions and the resulting actions are distinguished by their

bold font. The action authB is used to denote the point at which B believes (or claims) that

he has authenticated A. We assume that there is no A in the system and, instead, the DY

intruder wants to convince B that he is A. The specification for B goes as follows.

Bob (rB : Msg) = ΣX:Msg

(recvB(X) ⊳ fst(X) ∈ P ⊲ δ)·

sendB(rB, {snd(X)}s
K(fst(X)))·

recvB({rB}s
K(fst(X)))·

authB · δ

Here fst and snd , when applied to a message pair (m, m′), return m and m′, respectively,

and when applied to other messages fst(m) = snd(m) = m. The function K characterises

the set of keys that Bob shares with other participants: K(A) is the key that B shares with A,

namelyK(A) ⇒ KAB, etc.

7As computing decrypt∗ can be non-terminating (e.g. using inner-most strategy), a special treatment of the if

structure is needed when generating LTSs using the µCRL tool-set. For this purpose, the lazy rewriter jitty should

be instantiated as the rewrite engine, see [Pol01].
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Below we specify the DY attacker process:

DY(Γ : Set) = Σm∈Msg

recvI(m) · DY(decrypt∗(decomp(m) ∪ Γ))

+

Σm∈Msg

sendI(m) · DY(Γ) ⊳ synth(m, Γ) ⊲ δ

TheDY attacker, as discussed before, simply intercepts all messages, adds them to its knowl-

edge set Γ, and can send messages if he can synthesise them from Γ. Note that when adding

new messages to Γ, Γ is maximally decomposed and decrypted. Checking synth(m, Γ) is

thus equal to checking synth(m, decrypt∗(decomp(Γ))), cf. [CJM98]. A benefit of decom-

posing, before adding messages, is that Γ does not grow unnecessarily: In our specification,

receiving, e.g., the message t1, {t2}s
t1
when Γ = {t1, t2} does not change Γ. 8 This can

further be optimised by adding only those messages to Γ that cannot be synthesised using

Γ, namely to define add alternatively as add(m, S) = if (synth(m, S), S, ς(m, S)). As we

see in the following, keeping Γ minimal can reduce the size of the resulting LTS, which is

advantageous for model checking purposes.

To initiate the system, we allow Bob to execute two parallel sessions. As mentioned

earlier, this is necessary for the reflection attack of [Tan96a] to work. The initial knowledge

of DY is defined as Γ0 = ς(DY , ς(A, ς(rA, ∅))). We thus have

init L = ∂{sendB ,recvB ,sendI ,recvI}(Bob(rB1
)‖Bob(rB2

)‖DY(Γ0))

To check the authentication property of the protocol, we need to test if the action authB

ever occurs in L. This is because authB shows that B believes he is talking to A (in this

instantiation), and as A is absent in L, it must be DY who has successfully impersonatedA.

For a formal treatment of how the LTS corresponding to L is constructed, we refer to

the operational semantics of µCRL [GP95]. See also § 7.2.1. In L, intuitively, each state

corresponds to the Cartesian product of the states of the two Bob processes and the state

of the DY processes. The state of (each) process Bob is uniquely determined by the pro-

cess remaining to be executed by Bob. The state of the DY process is characterised by Γ.

Therefore, syntactically different Γ sets would lead to different intruder states. For example,

Γ1 = ς(A, ς(rA, ∅)) and Γ2 = ς(rA, ς(A, ∅)), although semantically equal, are syntactically

different, and would thus represent “different” intruder states. A simple way to avoid such

superfluous states is to implement Γ as an ordered set (see [CT04, CCT05, TKJ07] for such

specifications).

We also note that the LTS associated to L is in general infinite. This is because the DY

process can generate an infinite number of messages and pass them to B as, e.g., X . Note

that Bob generates only data terms that belong to finite data domains. If Bob could non-

deterministically choose, e.g., keys from an infinite domain, then L would become infinitely

8This optimisation method has been used in [RG97].
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branching, regardless of the intruder’s abilities. To keep L finite, we could, for instance,

limit the range of terms that B accepts as X . For example, by letting recvB(X) ⊳ fst(X) ∈

P ∧ snd(X) ∈ {rA, rB1
, rB2

} ⊲ δ, the synchronisation sendI |recvB automatically ensures

that the messages not acceptable by B are not sent by DY , hence making L finite. This ab-

straction is tenable only if B can detect the type of each part of the received messages, e.g.,

via type tags (cf. [HLS03]). Type flaw attacks are thus obscured in this type-correct con-

struction. 9 This approach is widely used in finite state model checking for security protocols

(e.g. [MMS97, LBL+99, RSG+00, KR01, CCT05]). Other solutions to keep L’s state space

finite include restricting the depth of DY’s deduction proofs (e.g. [CJM98]) or imposing a

bound on message lengths.

We remark that DY’s ability to generate fresh atomic terms does not need to be limited

when assuming type-correct messages in L: It can generate and use fresh atomic terms, one

by one. This is due to the following features of process Bob: It is acyclic and non-replicating,

and, moreover, it can infer the form of X . If Bob was cyclic or replicating, then he could

receive a fresh value from the attacker in each round, hence making L infinite. In caseX was

a term encrypted for A, which Bob could not parse, then the type-correct assumption would

not entail finite L, simply because the data typeMsg has an infinite domain.

This example completes our introduction to process algebraic specification of crypto-

graphic protocols. For µCRL specifications of larger security protocols see § 6.

4.2 Modal logics

To formulate (un)desired properties of protocols, we use the alternation-free fragment of the

regular µ-calculus. This choice gives us enough expressiveness (properties of the security

protocols can be expressed in this logic, fairness constraints can naturally be encoded as part

of logic, etc), and it can efficiently be model checked. Below, we shortly introduce this logic,

while its complete syntax and semantics can be found in [MS03]. For a general introduction

to µ-calculus we refer to [BS01].

Formulae of alternation-free regular µ-calculus are interpreted on LTSs and can be model

checked in polynomial time on finite systems. These consist of state formulae, which may

contain regular formulae. Regular formulae describe sets of traces 10 and are built upon

action formulae and the standard regular expression operators. We use ‘·’, ‘∨’, ‘¬’ and ‘∗’ for

concatenation, choice, complement and transitive-reflexive closure, respectively, of regular

formulae. For example, the trace a·a·b·c·cbelongs to the regular trace formula a∗·¬(a∨c)·c∗.

9The vocabulary type-correct is borrowed from [RG97]. A similar concept is called strong typing abstraction

in [HLS03]: “Most protocol analysis techniques adopt the strong typing abstraction, where all messages considered

in the analysis are assumed to be well-typed. This corresponds to an assumption that all agents can ‘magically’ tell

the true types of messages.”.
10Here we use “trace” to refer to any sequence of actions, cf. § 4.1.1.
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A state formula, characterising a set of states, is built upon propositional variables, stan-

dard Boolean operators, the possibility modal operator 〈 〉, the necessity modal operator [ ],

and the minimal and maximal fixed point operators µ and ν. The symbols F and T are used in

both action formulae and state formulae. In action formulae they represent no action and any

action and in state formulae they denote the empty set and the entire state space, respectively.

The wild-card action parameter ‘ ’ represents any parameter of an action. Given LTS L and

state s in L, we write s |= φ to denote that state s satisfies formula φ. If s is the initial state

of L, we may also write L |= φ.

4.1. EXAMPLE. Let L be an LTS and s be a state in L. When R is a regular formula, s

satisfies 〈R〉T iff there exists a trace α in L, emanating from s, such that α ∈ R. Similarly,

s |= [R]F iff, for any trace α that emanates from s, we have α 6∈ R. Going back to the

example of § 4.1.2, to verify authentication, we can check if L |= [T∗.authB ]F holds.

A state satisfies µX. f iff it belongs to the minimal solution of the fixed point equation

X = f(X), with f being a monotonic state formula and X a variable (correspondingly

defined for the greatest fixed point operator ν). Here, the formula f represents a mapping

from sets of states to sets of states: A set S of states is mapped to those states where f holds,

under the assumption that the recursion variable X evaluates to T for states inside S, and

to F for states outside S. For f being monotonic, X may only occur under an even number

of negations in f . The image of S, under the mapping f , is denoted by FIX (f, X=S)

(here we borrow our notations from § 7.3 of [Fok07]). To compute µX. f , initially we let

X = ∅ (with set inclusion being the partial ordering on sets of states, the least and the

greatest element are the empty set and the set of all states, respectively). Next, we repeatedly

compute Si+1 = FIX (f, X=Si) for i ≥ 0. This iterative computation reaches a fixed point

when Si = Si+1, for some i. The set Si is then said to satisfy µX. f . 11

4.2. EXAMPLE. The pattern ϑ = µX. 〈T〉T ∧ [¬a]X , with a ∈ Act , captures inevitable

reachability of a. Since µ is the minimal fixed point operator, we initially letX = ∅. After the

first iteration,X contains all the states that can perform the action a, and from which no other

action can be performed. After the nth iteration,X contains all states from which every trace

contains within n transitions the action a. So as a fixed point formula, µX.(〈T〉T ∧ [¬a] X)

holds in those states from which every maximal trace eventually contains the action a.

Alternation-free formulae, intuitively, avoid alternation of µ and ν operators. These for-

mulae can efficiently be model checked in the CADP verification tool-set [FGK+96]. The

following example shows how fair reachability can be modelled in this logic.

4.3. EXAMPLE. Let L be the LTS corresponding to process p = a ·p+b.δ, where a, b ∈ Act ,

demonstrated in figure 4.3. Note that b is not inevitably reachable from s0, because of the

11Intuitively, µ corresponds to a finite number of iterations through the recursion, while ν insists on an infinite

number of iterations.
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b
a

Figure 4.3: The LTS of example 4.3

cycle. However, if we confine our attention to fair traces (see definition 4.1), then b is indeed

(fairly) inevitably reachable from s0. Thus, L 6|= φ1, but L |= φ2.

φ1 = µX. 〈T〉T ∧ [¬b]X

φ2 = [(¬b)∗]〈T∗ · b〉T

Intuitively, φ2 states that while b has not happened, there is always a path to b. Therefore, if

fair traces are considered, this path(es) should eventually be taken, hence b should eventually

be reached.

Another modal logic which is used in the thesis is an action-based variant of the linear

temporal logic (LTL) [Pnu77]. This logic, which is subsumed by regular alternation-free

µ-calculus, is described in § 7.2.3.

4.3 Formal verification

We use finite state model checking to verify finite models of security protocols, expressed

in µCRL, against their requirements, expressed in alternation-free regular µ-calculus. As we

merely make use of existing tools and techniques, details of model checking algorithms are

not discussed here (see, e.g., [CGP00, MS03]). Instead, we motivate this choice for validation

of FE protocols.

As mentioned in § 2.1.1, checking even simple properties such as reachability in security

protocols, in presence of DY , is in general undecidable. This makes automated security

proofs generally out of reach. Semi-automated methods can be used to formally reason about

security protocols, see, e.g., [Bol96, DS97, Pau98, BP01, AB03, ES05a]. These, nonetheless,

require non-negligible human intervention to guide the proofs.

Systems describing the behaviour of security protocols in the DY model tend to be infi-

nite. However, restricting participants behaviours guarantees decidability for many security

related questions in such infinite systems. In particular, with acyclic participant specifica-

tions, assuming a bounded number of protocol sessions makes reachability [RT01, MS01]

and certain branching properties [KKW05, KK05], which comprise requirements of FE pro-

tocols, decidable, although the system remains infinite.
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In FE protocols, a natural way to model TTPs (and in some cases, content vendors as

well, see [CT04]) is to represent them as cyclic 12 processes: The TTP receives a resolve

request, processes the request, updates its database, and recurs. With cyclic participant pro-

cesses, reachability is not decidable in security protocols [HS04]. In fact, even if these cycles

are idle (i.e. do not consume or generate messages), then checking strategy properties is un-

decidable [KKT07]. Strategy properties, intuitively, concern strategies of one process, e.g.

the attacker, to reach a goal in spite of a coalition of the other processes in a protocol. These

properties encode in particular the requirements of FE protocols [KR01]. Therefore, auto-

matic security proofs for FE protocols is unattainable, if we stay faithful to cyclic processes

in the model. We can however confine to finite cyclic state spaces, the pros and cons of which

are discussed below.

To enforce finite state spaces for security protocols, the infinitely branching behaviour of

DY 13 has to be limited as well (besides assuming a finite number of protocol rounds). For this

purpose, it is usually assumed that the messages are type-correct (see § 4.1.2). Furthermore,

we need to assume that the number of fresh atomic terms generated by (cyclic) participants

and the intruder is bounded. 14 These assumptions degrade the impact of finite state security

analyses, compared to infinite state decision algorithms, as it, e.g., obscures type flaw attacks.

Nonetheless, no decision procedure exists for FE properties when considering cyclic par-

ticipant specifications. Therefore, using existing decision algorithms for FE requirements is

penalised by incomplete participant specification. Conversely, opting for finite state analysis

has the benefit of natural and complete specification of participants, but does not allow the

attacker to generate an unbounded number of fresh atomic terms, and lacks the capability

of detecting type flaws. Here, we favour the second approach. A thorough analysis would

incorporate both these methods to get a more detailed perspective of protocols.

It is also worth mentioning that finite state analysis can usually benefit from an expres-

sive specification language. For instance see the specification of § 4.1.2 and § 6, which can

readily be translated into executable programs. Whereas most existing decidability results

for security protocols hinge on the assumption that protocol participants are specified as very

simple rewrite rules. To model, e.g., the TTP of a FE protocol in such a rewrite framework

seems rather awkward, and certainly far from how it would be implemented in practice, e.g.

see the specification of TTPs in [KKW05, KKT07].

Below, we comment on the general use of formal methods in verifying security protocols,

mostly from a critical point of view. Benefits of formal methods in the security of systems

are abundantly described in the literature, see, e.g., [Mea03].

Security proofs derived in the Dolev-Yao model have to be taken with great prudence,

12The class of cyclic processes is not comparable with the class of recursive processes à la [Pau97].
13Recall that Γ 6= ∅ implies that {m | Γ ⊢ m} is infinite.
14A similar restriction is applied in [CV02, CKR+03] where the authors consider a setting in which some partic-

ipants can engage in an unbounded number of sessions, while the others cannot. Those who can participate in an

unbounded number of sessions can only generate a bounded number of fresh atomic terms.
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as these generally abstract away cryptographic details of the protocols (for more on this

see § 2.1.1), often consider only a bounded number of protocol sessions, and study proto-

cols in isolation (cf. [KSW98]). “Security models and formal methods”, in general, “do not

establish security. Systems are hacked outside the models’ assumptions”, as Dorothy Den-

ning put it [Den99]. See also [Gol06a, Kob07] on the notion of “proof” in security proofs.

Formal techniques can however serve well as bug hunters. Security flaws are almost

constantly reported and not only serve as a justification for yet-another formal technique

or tool which has found them, but are also counted as valuable contributions of the formal

methods community to the security community. These have however not been as warmly

embraced by security researchers. Perhaps partly because, in this game, protocol designers

are the community under attack, and partly because many flaws found by formal methods

are not considered as significant attacks, e.g. they study a protocol out of the context for

which it has been designed, cf. [Pan00, PG06]. Since formal methods in general do not

provide security proofs, reporting some witness of insecurity gains superficial importance, as

otherwise, seemingly, formal verifications are of no use. Reported security flaws should thus

be accepted with just as much of circumspection as security proofs.

One could however rightly argue that these flaws refine the conditions under which a pro-

tocol behaves as expected. This takes us to the third use of formal methods in security engi-

neering. Formal methods have excelled in precisely defining security problems and providing

insights into their solutions. Notable examples are formalisation of various non-interference

concepts [FG01], classifying security requirements [Low97, Mea04] and guidelines in de-

signing authentication protocols [KG91, BFM03].





Chapter 5

Verifying liveness in security protocols

Death is forever. It doesn’t matter when it begins.

Emir Kusturica’s Crna mačka, beli mačor (1998)

5.1 Introduction

Liveness aspects of security protocols, stipulating that some desired event will inevitably

occur, have only recently found a role on the scene with the requirements emerging from

electronic commerce applications. Fair payment, certified email, non-repudiation and elec-

tronic contract signing protocols are examples of relevant applications (see § 2.2). These

protocols all aim at a liveness requirement, namely termination of the protocol in a fair state.

In general, liveness requirements of security protocols cannot be achieved unless mes-

sages are eventually delivered over (some) communication channels. This is a result of the

impossibility of reaching agreement in the presence of faulty channels, cf. the generals para-

dox [Gra78], described in § 2.2.1.

In modelling security protocols, following the approach of Dolev and Yao [DY83], the

communication media are assumed to be under complete control of the intruder. The DY

intruder can in particular destroy transmitted messages. For liveness properties to hold in the

DY intruder model, the assumption that the intruder does not disrupt (some of) the commu-

nication channels must therefore be added. A channel which guarantees to eventually deliver

messages, even in the presence of the DY intruder, is called resilient (defined in § 5.4.2).

Here we investigate the suitability of the DY intruder model for automatic verification of

liveness properties with the resilient communication channels (RCC) assumption.

To impose RCC on the DY intruder, we recognise two possibilities: Either RCC can be

applied as a fairness constraint such that the behaviours of the model which violate RCC are

excluded from subsequent analyses, or we can change the specification of DY to an RCC-

conforming intruder. First, we investigate the RCC assumption, and notice that some features

of RCC are very complicated. In particular, resilient channels are sensitive to adding or

removing prefixes, meaning that what has happened in the past determines what needs to be

done in the future. For instance, if a message is sent to a resilient channel twice, then the

message needs to be delivered twice. Whereas if the prefix of the execution which contains

the first send action is removed from the system, then the message needs to be delivered
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only once. This indicates that RCC does not directly fit in the standard notion of fairness

constraints, i.e. those “insensitive to addition or deletion of prefixes” [Pra94]. Using RCC as a

fairness constraint in verifying liveness properties would thus not be efficient, as complicated

constraints often degrade the efficiency of verification techniques, cf. [EL86].

We present a modified intruder model, restricted by a much simpler fairness constraint,

that is proved to be equivalent to a DY intruder that does not indefinitely delay the delivery

of messages over resilient channels. In particular, for an arbitrary protocol and a liveness

property, it is proved that if theDY intruder finds an attack (counterexample) for the property

without violating the RCC assumption, then our proposed intruder model finds a correspond-

ing attack, and vice versa. For safety properties, which do not require the RCC assumption,

our intruder model is equivalent to DY , after action renaming. Finally, we illustrate how

liveness requirements of FE protocols can be checked using the proposed intruder model.

Liveness aspects of FE have often been left out from (mechanised) formal analyses, as

in, e.g., [BP01, SM02, AB03, ES05a], see also our related work § 5.6. There are however at

least two reasons why it is crucial to check liveness requirements of these protocols. Let us

refer to them as the theoretical reason and the pragmatic reason. The theoretical reason is

that FE inherently contains liveness properties. The non-termination flaws, in the protocols

of, e.g., [ASW97, ZDB99, VPG01], respectively reported in [ASW98b, GRV05, Vog03],

would not have been found if liveness of participants had been taken for granted. In fact,

“identifying [termination] problem and providing an effective solution” to it is considered as

“probably the most important contribution” of [ASW98b].

The pragmatic reason is that certain behaviours might be missing in protocol models

or represented differently from their realisations. Any protocol in practice, arguably, only

has finite runs (e.g. there are always time-out operations), and safety properties (stating that

undesirable states are not reachable) may therefore seem sufficient. However, in modelling

security protocols, timing aspects are usually abstracted away (see [Mea03] for a survey). For

example, if a loop is mistakenly specified in Apache’s rewrite module [Eng97], theoretically

there can be a livelock in the server model that should be detected, even if the bogus server is

not in practice endlessly trapped. As another example, a typical requirement for a FE protocol

between Alice and Bob states that, if Alice receives a desired item from Bob, then Bob will

eventually receive his desired item from Alice as well (see § 2.2). This is a liveness property

that is violated if there is either a deadlock situation, such that Bob cannot progress after

Alice has got her item, or a livelock situation, such that Bob runs into an endless execution

(maliciously devised to prevent him to ever reach his goal). The latter situation sets up a

threat alarm, although the realisation does not necessarily exhibit endless executions, e.g.

Bob at some point gives up the exchange in an unfair state.

Roadmap § 5.2 contains definitions and notations that are used later in the chapter. In § 5.3

we present a formalisation of the RCC assumption. In § 5.5 we propose an intruder model

that is proved to be equivalent to a DY intruder that respects the RCC assumption. As an

application of the proposed intruder, formal verification of FE protocols is discussed in § 5.5.3
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(verification case studies are reported in § 6). In § 5.6, we discuss our related work, and

in § 5.7 we conclude the chapter.

5.2 Modelling security protocols

This section describes how we model protocols and intruders. We consider an asynchronous

communication model with no global clock. A security protocol is modelled as an asyn-

chronous composition of a finite number of processes with names. These processes model

the roles of participants of the protocol. In a protocol, the set of process names is denoted P .

We overload P to also represent the protocol itself.

Processes communicate by sending and receiving messages. We let Msg be the set

of all message contents that can be communicated (for a recursive formalisation of Msg

see § 4.1.2). We assume that messages sent to the network are always tagged with the iden-

tity of the intended receiver of the message: 〈q, m〉, with q ∈ P , denotes that message

m ∈ Msg is intended to be delivered to q. To send and receive a message m ∈ Msg over

the public communication channels, a process p ∈ P performs the actions sendp(〈q, m〉)

and recvp(〈p, m〉), respectively. 1 The public communication network net is also seen as a

process (equipped with some internal buffer), that is external to P .

Even though process p sends message m with the intention that it should be received by

process q, it is in fact the network (the process net) that receives the message from p, and it

is from the network that q can receivem. The communications between protocol participants

and net are assumed to be synchronised (see § 4.1), meaning that p can receive a message

m from net iff at the same time net can send m to p, and vice versa. It is assumed that

net is always ready to receive messages from other processes. The communication between

participants of a protocol via net is nevertheless asynchronous and a participant has in general

no guarantees about the origins of the messages it receives.

Apart from send and recv actions 2, all other actions of processes in P are assumed not

to communicate with any process outside P . These can denote, e.g., internal decisions or

communications between protocol participants through secure private channels (cf. § 4.1.2).

To avoid name clashes, internal actions of different processes are assumed to be disjoint.

To model the DY intruder that has complete control over the network, we assume that it

plays the role of the network (i.e. net ). The intrudermay thus schedule messages and possibly

insert its own messages into the network. Besides being the network, the intruder can also

have legitimate roles in protocols (which is required, e.g., in modelling FE protocols). The

1The process name p is redundantly used in recvp(〈p, m〉) only to ensure the semantic consistency between the

data terms of send and recv actions.
2The subscripts of sendp and recvp actions are suppressed when the context is clear, or when the discussion

holds for any p ∈ P .
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following process specifies DY (recall the notations introduced in § 4.1).

DY(Γ : Set) = Σq∈P,m∈Msg

recv I(〈q, m〉) · DY({m}
⋃

Γ)

+

Σq∈P,m∈Msg

sendI(〈q, m〉) · DY(Γ) ⊳ synth(m, Γ) ⊲ δ

As we focus on the concurrency aspects of theDY process, its data manipulation capabilities,

namely
⋃

and synth functions, are left unspecified here (a formal specification of these

is presented in § 4.1.2). They are however assumed to implement the deduction rules of

definition 2.2. The set Γ represents DY’s knowledge. We write Γ0 for the initial value of Γ

(usually containing process identities, public keys, private keys of corrupted parties, etc.)

To facilitate communications, for every process p ∈ P we define

recvI |sendp = sendp

sendI |recvp = recvp

Amerit of using synchronous communication between P andDY (as it plays the role of net)

is that DY cannot send messages which P does not accept, simply because synchronisations

with the corresponding actions of P would fail (cf. § 4.1.2). This allows us to inductively

define the (infinite) setMsg of possible messages in a generic way, so that the intruder spec-

ification does not depend on the protocol being analysed.

For an example of a protocol specification in the presence of DY we refer to § 4.1.2. In

the rest of this chapter, we study LTSs L that result from the interactions between the DY

intruder and a protocol P , i.e. L = ∂H(P‖DY(Γ0)), where H = {sendp, recvp | p ∈

P} ∪ {sendI , recvI}, P denotes the initial state of P and Γ0 is the initial knowledge set of

the intruder. No assumptions are put on acyclicity or determinacy of L. We however assume

that L is finite. Besides, since in single-image LTSs a trace corresponds to a unique sequence

of states, we focus on single-image LTSs in the following to simplify the presentation. Our

results (e.g. theorem 5.1) do also hold in LTSs which are not single-image. This is intu-

itively because we present translations between LTSs which map a single sequence of states

to another one, in single-image LTSs. These translations would instead simply map sets of

sequences of states to each other in case LTSs were not single-image.

5.3 Safety, liveness and the DY intruder

Requirements of systems can usually be divided into safety and liveness classes. Below,

we define these classes and investigate how these requirements are achievable for security

protocols in the presence of DY .

LetA be a countable set. A∗ andAω denote the set of finite and infinite sequences overA,

respectively. Below, the notion of traces is used to refer to any sequence of elements in A,
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cf. § 4.1.1. Let A∞ be the set of all traces of the elements of A, namely A∞ = A∗ ∪ Aω.

The empty trace is denoted by ǫ. A trace property φ is a recursive subset of A∞, thus being

characterised by a function φ : A∞ → Bool . The property ¬φ is defined as A∞ \ φ. Trace

properties can be divided into two classes: Safety properties (stating that something bad will

never happen) and liveness properties (stating that something good will eventually happen).

Below, we formally define these classes. Our definitions are slightly different from [AS84],

because we use LTSs to describe our models, while total Kripke structures are used in [AS84].

For a trace α = α1 · α2 · · ·αi · · · we write αi for the trace α1 · α2 · · ·αi, when i is less

than or equal to the length of α. The concatenation of α and α′ is denoted α · α′.

5.1. DEFINITION. A trace property φ is a safety property iff

∀α ∈ A∞. ¬φ(α) =⇒ (∃i.∀α′ ∈ A∞. ¬φ(αi · α′)).

5.2. DEFINITION. A trace property φ is a liveness property iff

∀α ∈ A∗.∃α′ ∈ A∞. φ(α · α′).

It is worth mentioning that safety properties are closed sets in the natural topology on Aω,

while liveness properties are dense sets [AS84]. Therefore, any trace property can be ex-

pressed as the intersection of a safety property and a liveness property [AS84].

Any LTS defines a trace property by itself. Given an LTS L = (S, s0, A,Tr), 3 the trace

property defined by L is π(s0). For example, the LTS corresponding to process p = a · b · δ,

with a, b ∈ A, defines the trace property {ǫ, a, a · b}. For a trace property φ and state s, we

write s |= φ iff π(s) ⊆ φ. When s0 |= φ, we may write L |= φ. In other words, L satisfies φ

iff the property defined by L is contained in φ. Note that if ǫ was not a member of each π(s),

then deadlock states would undesirably satisfy any (liveness) trace property. 4

We remark that complements of some liveness properties turn out to be safety properties

and vice versa [Pra94]. This however does not imply that checking, say, liveness properties

can be reduced to checking safety. This is because, although L |= ¬φ implies L 6|= φ, indeed

L 6|= ¬φ does not imply L |= φ, hence being in general inconclusive.

A fairness constraint is a function which given an LTS L maps traces of π(s0) to {T, F},

cf. the F0 constraint of definition 4.1. Note that there is a slight difference between fairness

constraints and trace properties: Fairness constraints accept (or reject) a trace, in general, de-

pending on the LTS in which the trace occurs, while trace properties are defined independent

of any particular LTS, cf. [VV06]. To define fairness constraints independent of LTSs, we

could annotate traces with their corresponding ready transitions (see § 4.1.1). 5 For a trace

property φ and fairness constraint F , we write s |=F φ iff ∀α ∈ π(s). F(α) =⇒ φ(α).

3In general, A in L can be different from the set based on which the properties are defined. We can however

without loss of generality consider their union in both definitions.
4We can think of ǫ as a technical means to mimic the deadlock state stuttering of [AS84].
5Fairness constraints in general need not be expressed in terms of trace properties. These are defined, for instance,

using CTL formulae in the SMV model checker [McM00, CGP00]. The annotation method mentioned above does

not cover fairness in such cases, as CTL is a branching logic.



62 5. Verifying liveness in security protocols

In verifying liveness properties, note that only maximal traces of L are of interest. This is

because intuitively liveness talks about a “good” thing which eventually occurs. Therefore,

a finite trace that can still be extended in L does not constitute an evidence that the “good”

thing is not forthcoming. This maximality condition can be seen as a fairness constraint. We

say a trace α in L is F1-fair iff it is maximal in L. Note that F0(α) =⇒ F1(α), for any LTS

L and α in L (see § 4.1.1 for the definition of F0).

Most security properties can be expressed as safety properties. Secrecy, for instance, is

a trace property only consisting of traces which do not contain action secret.revealed, with

secret.revealed denoting the point a secret is revealed to the intruder. There are however

security properties which cannot be encoded as safety properties. For instance consider the

following goal auth for authentication protocols: If A terminates a run of protocol P appar-

ently with B, then B will terminate the same run of protocol P apparently with A. It is easy

to see that authentication as defined above is a liveness property: Any trace α ∈ A∗ that does

not belong to auth can be extended with B.authenticates.A action to satisfy auth. 6

As another example, let action available denote the point where a web service is ready to

serve clients. A liveness property containing all the traces in which available occurs infinitely

often is the most natural candidate to formalise resisting denial of service attacks. Similarly,

in FE, the termination requirement can be encoded as a liveness, but not as a safety, property.

TheDY intruder model has originally been devised to check safety properties of security

protocols. Liveness properties in general do not hold in this model, as DY can deliberately

disrupt all communication channels. To check liveness properties in the DY model, some

modifications to the model are thus necessary.

In practice, to uphold liveness properties, resilient channels are usually assumed. These

channels guarantee to eventually deliver messages transmitted over them intact (cf. § 2.2.2

and § 3.2). We refer to this assumption as RCC. Back to the DY model, RCC implies that

DY cannot destroy messages transmitted over resilient channels. DY can however delay

and shuffle these, inject fabricated messages in between them, and so forth. We recognise

two possibilities to embed RCC in the DY model: We can either impose RCC as a fairness

constraint such that the behaviours of the model which violate RCC are excluded from subse-

quent analyses, or we can change the specification of theDY process to an RCC-conforming

intruder. In the following, we investigate these possibilities.

5.4 Resilient communication channels assumption

People never give your message to anybody.

J. D. Salinger’s The catcher in the rye (1951)

6Authentication is usually specified as a safety property in the literature, stating that when A terminates a run of

protocol P apparently with B, then B should have been in some way involved in this run of P , cf. [Low97]. For an

authentication protocol which fails to achieve auth, as defined above, see [Syv94].
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This section discusses resilient channels from a practical point of view, to provide some

insight and motivations for our modelling choices.

In heterogeneous networks, such as the Internet, communication channels can be faulty.

They may for instance lose, duplicate and reorder messages transmitted over them. Intu-

itively, no non-trivial liveness property of protocols can be guaranteed with faulty channels.

This is because messages sent over these channels may all be discarded. The protocol should

therefore achieve its goals with no public communications. Such goals amount to trivial

properties in asynchronous systems.

In order to guarantee liveness, stronger assumptions on communication channels are re-

quired. For instance, most optimistic FE protocols rely on resilient channels, see § 2.2.2.

According to Asokan “a message inserted into a resilient channel will eventually be deliv-

ered” [Aso98]. Although this is an asymptotic restriction, i.e. no bounds are placed on the

order or the time of delivering messages, resilient channels are not available in most prac-

tical situations. Available faulty channels can nonetheless be used to provide resilience, as

described below. Assuming RCC in security protocol thus helps us to abstract from the un-

derlying mechanisms which actually provide resilience.

There are various ways to construct resilient channels from faulty ones. Let us assume

that A and B are connected with a faulty channel c which may lose, duplicate and reorder

messages. To distinguish c from a transient channel, we assume that there is a bound on the

number of messages that c can discard. We say that a channel is fair lossy iff any message

which is inserted to one end of the channel an infinite number of times, is delivered to the

other end of the channel an infinite number of times. 7 If c is a fair lossy channel, which may

duplicate and reorder messages, then, essentially, retransmission and tagging allow A and B

to construct a reliable FIFO channel on top of c, e.g. see Stenning’s protocol [Ste76, Lyn96].

In the DY intruder model, it is assumed that the only possible means of communication

betweenA andB isDY . TheDY intruder, however, need not be a fair lossy medium and can

destroy all the messages that are transmitted through it. Therefore, no reliable channel may

be constructed between A and B in the DY model. Nevertheless, the assumption that DY

controls all communication media between A and B is often impractical. For instance, in

wireless networks, given that jamming is only locally sustainable, A and B can always move

to an area where they can send and receive messages. Ultimately, two principals who fail

to properly establish a channel over computer networks can resort to other communication

means, such as various postal services. These services, albeit being orders of magnitude

slower than computer networks, are very reliable and well protected by law.

We thus postulate that any A and B who are willing to communicate can eventually

establish a (fair lossy) channel, despite DY’s obstructions. To add this postulation to the DY

model, weakening DY to the extent that it behaves as a fair lossy channel is adequate.

As mentioned earlier, many security protocols abstract away from the underlying mech-

7This corresponds to the strong loss limitation condition in [Lyn96]. A weaker variant of this requirement states

that if an infinite number of messages are sent to the channel, then some infinite subset of them are delivered.
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anism of providing reliable channels and, instead, rely on RCC. Although a fair lossy DY

might provide a suitable level of abstraction for checking, e.g., Stenning’s protocol, for check-

ing higher level security protocols we need a coarser abstraction for an RCC-conformingDY .

This is the topic of the next section.

5.4.1 Embedding RCC in the DY model: An intuitive description

To structure our intuitive understanding of RCC, we make the following choices explicit:

R1. DY not only eventually delivers all messages transmitted over resilient channels, but it

is also infinitely often ready to accept messages being sent to resilient channels.

R2. A message sent to a resilient channel may be “discarded” (by DY) only when it has

been delivered to its recipient or is from some time onwards never accepted by its

purported recipient.

Since we have assumed that the role of the communication network is played by a process,

namely DY , we need to ensure that this process does receive messages on resilient channels.

R1 reflects this modelling decision. In practical terms, R1 may be read as: Resilient channels

cannot be removed from the network. They may however be temporarily unavailable.

R2, although innocent looking, can cause counter-intuitive behaviours in case protocols

directly exploit the buffer resilient channels provide. For instance, consider a protocol in-

volving two processes p and q specified as p = sendp(〈q, m1〉) · sendp(〈q, m2〉) · δ and

q = recvq(〈q, m2〉) · recvq(〈q, m1〉) · ı̄ · δ. Note that action ı̄ is reached only if the commu-

nication channel connecting p to q has a buffer, so that the messages can be delivered in the

reverse order. This may seem to be a spurious behaviour in the system. We contend that in a

real network, messages can be shuffled such that ı̄ is reached. This shuffling is also allowed in

our model, because of R2, considering it as a consequence of asynchronous communication

and network interface buffers.

Substituting R2 with a condition which requires delivering messages only in the right or-

der would enable channels to discard more messages and still be considered resilient. This

modelling alternative would thus result in a weaker condition compared to the resilient chan-

nels à la Asokan [Aso98]. Consequently, strictly stronger intruder models can be obtained,

the practical relevance of which might be interesting to investigate. A theoretical question

pertinent to this observation is determining the weakest resiliency condition that is needed to

achieve fair exchange, cf. [GHK+07].

We note that R2 does not prevent the channel (played by DY) to wait till a message be-

comes undeliverable and then destroy it. For instance, when process q = recvq(〈q, m1〉).δ +

recvq(〈q, m2〉).δ is waiting to receive a message and messagesm1 andm2 are both buffered

in the channel, after sendingm1 to q, messagem2 can be destroyed without violating R2.

Assuming R2 (or, instead, assuming that resilient channels would never destroy mes-

sages) implies that no bounds can a priori be placed on a channel’s buffer size. For instance,
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consider a protocol consisting of two processes specified as p(n : N) = sendp(〈q, n〉) ·p(n−

1)⊳n > 0⊲δ, and q(n, n′ : N) = recvq(〈q, n〉) ·q(n+1, n′)⊳n < n′⊲recvq(〈q, n′〉) · ı̄ ·δ.

For any n′ ∈ N, processes q(1, n′) an p(n′), communicating over a resilient channel, can pro-

duce action ı̄ according to R2, while the channel’s buffer size is n′, hence unbounded. This

is a well-known fact that implementing reliable channels in asynchronous systems requires

infinite storage for buffering messages. Finite buffers may overflow and thus cause message

losses, cf. [BCT96]. No channel with an infinite buffer can practically be realised. We thus

associate a loose buffer size to RCC.

R3. For a given n ∈ N, a channel that realises RCCn (called an RCCn channel) guarantees

that, if a message is sent n′ times to the channel, then the channel will eventually deliver

at leastmin(n, n′) instances of the message intact to its destination (if the message has

a recipient).

Note that an RCCn channel’s buffer may in general not be finite, if the number of distinct

messages submitted to the channel are infinite.

RCCn is clearly a weaker constraint than RCC. In fact, for each n, we can construct a

protocol such that when assuming RCCn action ı̄ is not produced in the protocol, while with

RCC it is. For instance, consider the aforementioned processes p(n′) and q(1, n′), which

cannot produce ı̄ while assuming RCCn, with n < n′. These can however produce ı̄, when

assuming RCC. Therefore, if a protocol achieves a liveness goal in an RCCn network, it will

also achieve it in any RCCm network for m ≥ n. To simplify our formalisation, from this

point on, we focus on RCC1. Confining to RCC1 also comes to terms with practice as it is

not advised to use the same message for different purposes in a protocol [AN96].

5.4.2 RCC as a fairness constraint

First we recapitulate our reasoning steps: Let P be a protocol aiming at a liveness prop-

erty φ, say, the inevitable reachability of ı̄. The LTS describing ∂H(P‖DY(Γ0)) is called L

(see § 5.2). An attack on P is a trace α in L such that α 6∈ φ, e.g. a trace belonging to Lwhich

does not contain ı̄. We observe that ǫ belongs to any L, while it belongs to no φ (assuming

that φ is a non-trivial liveness property). Therefore, certain fairness constraints need to be

applied such that only legitimate traces of L are compared against φ.

To allow maximal progress for honest participants we would for instance require that any

legitimate trace needs to be maximal, namely fair à la F1 (see § 5.3 for the definition of F1),

cf. [ACC07]. Otherwise, an honest Bob who does not receive a certain message fromAlice in

the optimistic protocol might never try contacting the TTP (see § 3). Fairness à la F0 seems

also to be a natural requirement for legitimate traces. This is to exclude any trace in which

a process is never scheduled. Below, for a trace α in L, we define a fairness constraint that

determines whether DY respects RCC1 in α or not. We will see that F0 or F1, although

relevant, are not the proper constraints.
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Motivations

We first motivate why simply F0 or F1 cannot be used as RCC1. This discussion also shows

subtleties in precisely capturing RCC1.

Observe that the DY process as defined in § 5.2 is not allowed to remove messages from

Γ. Therefore, restricting L’s behaviours to only fair traces à la F1 does not properly imple-

ment RCC1. The following example clarifies the problem. Below, let π
∞(s) be the set of

maximal traces in π(s).

5.1. EXAMPLE. Let p = sendp(〈q, t1〉) · δ and q = recvq(〈q, h(t1)〉) · ı̄ · δ. Consider

the system L = ∂H(p‖q‖DY(∅)). Let φ be the set of traces that contain ı̄. We derive

π∞(s0) = {sendp(〈q, t1〉).recvq(〈q, h(t1)〉).̄ı}. Indeed, s0 |=F1
φ, hence L |=F1

φ. This

result is absurd, because the protocol described by p and q is defunct. The action ı̄ is reached

only because the fairness constraint that we impose, namely the maximality constraint F1,

forces DY to, in some sense, help the participants. 8

A similar behaviour can be observed when considering F0 in protocols with cyclic pro-

cesses. This is demonstrated in the following example.

5.2. EXAMPLE. Let p = sendp(〈q, t1〉)·p and q = recvq(〈q, t1〉)·q+recv q(〈q, t1, t1〉)·̄ı·δ in

the setting of example 5.1. We note that sendω
p (〈q, t1〉) ∈ π∞(s0). Therefore, π

∞(s0) 6⊆ φ,

implying s0 6|=F1
φ. This trace is however not fair according to F0, simply because process

q is never scheduled. In fact the only F0-trace in π(s0) is the following trace:

sendp(〈q, t1〉).(sendp(〈q, t1〉) ∨ recvq(〈q, t1〉))∗.recvq(〈q, t1, t1〉).

send∗p(〈q, t1〉).̄ı.sendω
p (〈q, t1〉)

Therefore, s0 |=F0
φ. This is absurd, as reaching ı̄ in the protocol is a courtesy of DY .

Apparently, if the DY process could explicitly destroy parts of its knowledge Γ, then it

could destroy t1 in example 5.1 to avoid being forced by F1 to send h(t1) to q. This would

however not solve the problem of example 5.2, because process p constantly fills Γ. The

following example explores this direction.

5.3. EXAMPLE. In the setting of example 5.2, we define an intruder process which can ex-

8“Forcing” the intruder only arises in modelling by ignoring other possible behaviours of the intruder.
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plicitly remove elements of its knowledge (cf. § 5.2):

DYr(Γ : Set) = Σq∈P,m∈Msg

recvI(〈q, m〉) · DYr({m}
⋃

Γ)

+

Σq∈P,m∈Msg

sendI(〈q, m〉) · DYr(Γ) ⊳ synth(m, Γ) ⊲ δ

+

Σm∈Γ

remI(m) · DYr(Γ \ {m})

Figure 5.1 depicts the LTS corresponding to L = ∂H(p‖q‖DYr(∅)). Observe that the F0-

fair traces in π(s0) indeed contain ı̄.

ı̄ı̄

s0

recvq(〈q, t1〉)

recvq(〈q, t1, t1〉)

sendp(〈q, t1〉)

sendp(〈q, t1〉)

sendp(〈q, t1〉)

sendp(〈q, t1〉)

sendp(〈q, t1〉)

remI(t1)

remI(t1)

sendp(〈q, t1〉)

remI(t1)

Figure 5.1: LTS of the protocol of example 5.3.

Formalisation

The previous examples suggest that RCC1 is similar to F0 and F1. However, F0 and F1

are too strong to be included in RCC1. Namely, according to F0 any possibility which is

infinitely often available, should be infinitely often realised. In contrast, RCC1 does allow

indefinitely ignoring a possibility which is infinitely often available, if the possibility is, e.g.,
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delivering a message which has never been submitted to the network (the pair t1, t1 in exam-

ple 5.2). Similarly, F1 considers a finite trace fair only if it is maximal, while this condition

may force DY to deliver a message beyond what RCC1 would require (e.g. delivering mes-

sage h(t1) in example 5.1). As we will show, the difficulty in having RCC as a fairness

constraint lies mainly in a need to look back and check the actions that have happened.

Below we characterise the set of actions that an RCC1 channel can ignore. This set

contains the set of actions that deliver messages which have not been sent to the channel after

their last delivery (if ever).

5.3. DEFINITION. Associated to trace α = α1 · α2 · · · in LTS L = (S, s0, A,Tr), we define

the sequenceΘα = Θα
0 · Θα

1 · · · as the following: (recall from § 4.1.1 that sα = sα
0 · sα

1 · · · )

Θα
i = {(sα

i , recvq(〈q, m〉), s′) ∈ Tr | ∀p ∈ P , j < i. αj = sendp(〈q, m〉)

=⇒ ∃j < k < i. αk = recvq(〈q, m〉)}

Note that Θα
i ⊆ T α

i , for any i. Now, we are ready to define RCC1 as a fairness constraint.

5.4. DEFINITION. Trace α = α1 · α2 · · · in LTS L = (S, s0, A,Tr) is fair according to

RCC1, called Fr-fair, iff

• If α is finite, either it is maximal or it ends in a state where only transitions from Θα

are available, namely:

α = α1 · · ·αn =⇒ T α
n \ Θα

n = ∅

• If α is infinite, then for each θ ∈ Tr , if {i | θ ∈ T α
i \Θα

i } is infinite, then so is {i | θ =

tαi }.

We note that, in general, Fr(α) does not imply F0(α), simply because T α
i \ Θα

i ⊆ T α
i .

Similarly, Fr(α) does not imply F1(α), because ∅ ⊆ Θα
i . Below, we see how conditions R1,

R2 and R3 are met when applying Fr.

• In the DY process, recvI action is always available. Moreover, send actions never

appear in Θ, hence always being treated fairly. R1 is thus satisfied in Fr-fair traces.

• While a submitted message is not delivered, recv for that message does not appear

in Θ. If the message has a recipient, then recv corresponding to the message appears

in T , henceFr forcingDY to eventually deliver the message. Now, R3 states that if the

message is delivered once,DY does not need to deliver it again unless it is submitted to

the channel again. In fact, this exact condition is encoded in Θ. Therefore,Fr satisfies

R2 and R3.

RCC1, as specified above, is a complicated condition. In particular, computingΘ requires

looking back deep in the past and, moreover,Θ depends on message contents, which are not

a priori known when analysing security protocols. The following example shows how finite

state transducers can be used to computeΘ.
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5.4. EXAMPLE. Given a trace α in LTS L, we define a function to characterise Θα, i.e. to

determine at each state si whether a certain recv belongs to Θi or not. For each mes-

sage m that appears as a parameter of actions in α, let am,q = recvq(〈q, m〉) and ām,q =

sendp(〈q, m〉), for any p ∈ P . For each such aq,m we construct a finite state transducer

as depicted in figure 5.2. This transducer, given α as input, produces a sequence of T and F

values with which we label the states of sα.

am,q

ām,q

¬am,q

¬ām,q

FT

Figure 5.2: Finite state transducer of example 5.4.

To determine whether at state si, transition (si, am,q, s
′) belongs to Θi or not, we look

at the label that the corresponding transducer would assign to si: A T means that the tran-

sition belongs to Θi (and conversely for F). In LTS ({s0, s1, s2, s3}, s0, {a, ā},Tr) with

Tr = {(s0, ā, s1), (s1, a, s2), (s2, a, s3)}, for trace α = ā · a · a we have T, F, T, T assigned

respectively to s0, s1, s2, s3. Therefore, RCC1 does not require taking action a at state s2,

as the corresponding transition belongs to Θ2. Note that to model RCC (with unbounded

buffer) a push-down transducer would be required. 9

Intuitively, Fr is not local, in the sense that to decide whether a certain transition should be

treated fairly or not, we need to look far back in the trace, and a priori we do not know how

far. Below, we formalise this intuition using the local testability notion of [MP71].

Given a finite trace α ∈ A∗ and a natural number k, define lk(α), rk(α) and ik(α) as,

respectively, the left-end segment of α of length k, the right-end segment of α of length

k, and the set of interior segments of α of length k. When the length of α is less than or

equal k, then lk(α) = rk(α) = α and ik(α) = ∅. We say that a trace property φ is k-

testable iff ∀α, α′ ∈ A∗, if lk(α) = lk(α′), rk(α) = rk(α′) and ik(α) = ik(α′), then

α ∈ φ ⇐⇒ α′ ∈ φ. We say φ is locally testable if it is k-testable for a natural k > 0.

Roughly speaking, monitoring a trace through a window of a bounded size and recording

the observations (without counting or preserving any order) is enough to determine whether

the trace belongs to a locally testable property or not. Locally testable properties are a proper

subset of star-free regular languages and can be implemented using relatively simple loop-

free circuits [MP71]. Star-free regular languages in turn are as expressive as LTL confined to

finite traces (see, e.g., [Eme90]). Below, we show that Fr is not locally testable.

9Our use of finite state transducers should not be confused with the way finite state acceptors (usually Büchi

automata) are used to encode temporal properties, as in, e.g., [VW86].
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5.1. LEMMA. Fr is not locally testable.

Proof: Assume, towards a contradiction, that Fr is locally testable. Therefore, Fr is

k-testable for a natural number k. Let {a, ā, ı} ⊆ A in the context of example 5.4. Consider

the following two traces α and α′ belonging to LTS L.

α = ık.ā.ık.ā.ık.a.ık

α′ = ık.ā.ık.a.ık.ā.ık

Assume further that α and α′ are not maximal in L. Note that α ∈ Fr and α′ 6∈ Fr in L.

Observe that lk(α) = lk(α′) = ık and rk(α) = rk(α′) = ık. Similarly, ik(α) = ik(α′) =

{ık} ∪0≤j≤k−1 {ık−j−1a ıj} ∪0≤j≤k−1 {ık−j−1ā ıj}. Therefore, according to k-testability

of Fr, we should have Fr(α) ⇐⇒ Fr(α
′). Thus a contradiction is reached. Intuitively,

since instances of a and ā are placed at least k points apart, an observer watching through a

window of width k cannot detect that, e.g., in α no a occurs between the two ā.

In verification, simple fairness constraints are preferred for efficiency reasons, cf. [EL86].

In the following, we describe a modified DY process, so that a simpler fairness constraint

can capture its RCC1-conforming behaviours. The constraint proposed in the next section is

locally testable and it does not depend on message contents.

5.5 An intruder model for verifying liveness

We consider an arbitrary protocol P and a liveness property φ. Our goal is to verify whether

∂H(P‖DY(Γ0)) |=Fr
φ holds or not. In this section, we propose an intruder model I†, such

that

∂H(P‖DY(Γ0)) |=Fr
φ ⇐⇒ ∂H(P‖I†(Γ0, ∅)) |=F† φ,

with fairness constraint F† being much simpler than Fr.

The intruder model I† is presented in § 5.5.1 and we study the relation between the LTSs

resulting from ∂H(P‖DY(Γ0)) and ∂H(P‖I†(Γ0, ∅)) in § 5.5.2. EncodingF† in alternation-

free regular µ-calculus is the topic of § 5.5.3.

5.5.1 Modified intruder model

The modified intruder process I† is the same asDY (see § 5.2), except that besides Γ, we use

another set B to store the messages that have been received but not yet sent by the intruder. 10

Moreover, a separate send action, send
†
I , for sending messages not belonging to B, is used to

10For providing RCCn, with n > 1, B can be modelled as a multi-set.
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detect and avoid behaviours of the intruder that are not required by RCC1.

I†(Γ,B : Set) = Σq∈P,m∈Msg

recvI(〈q, m〉) · I†({m}
⋃

Γ, {〈q, m〉} ∪ B)

+

Σq∈P,m∈Msg

sendI(〈q, m〉) · I†(Γ,B \ {〈q, m〉}) ⊳ 〈q, m〉 ∈ B ⊲ δ

+

Σq∈P,m∈Msg

send
†
I(〈q, m〉) · I†(Γ,B) ⊳ synth(m, Γ) ∧ 〈q, m〉 6∈ B ⊲ δ

We let the initial state of I† be (Γ0, ∅), and for all p ∈ P , we let send
†
I |recvp = recv†p.

Moreover, the set H is extended to also include send
†
I (cf. § 5.2).

As earlier, a fairness constraint is needed to restrict the behaviour of the intruder. In-

tuitively, set B plays the role of the resilient channels’ buffer, and action recv† marks the

elements of Θ. RCC for I† can thus be stated with no reference to Θ or message contents.

Below, as a convention, when t = s
a
→ s′, we use λ(t) and λ(a) interchangeably, and like-

wise for sets of transitions and sets of actions (see the definition of λ in § 4.1).

5.5. DEFINITION. Trace α = α1 · α2 · · · in LTS L = (S, s0, A,Tr) is F†-fair iff

• If α is finite, either it is maximal or it ends in a state where only recv† actions are

available, namely:

α = α1 · · ·αn =⇒ λ(T α
n ) ⊆ {recv†}

• If α is infinite, then for each θ such that λ(θ) 6= recv†, if {i | θ ∈ T α
i } is infinite, then

so is {i | θ = tαi }.

This fairness constraint can informally be stated as: No possibilities enabled infinitely often,

except for recv† actions, may be excluded forever. Note thatF† does not depend on message

contents. Moreover, in the definition ofF†, we can locally determine at each state whether an

outgoing transition needs to be treated fairly or not. This is a benefit over the Fr condition,

which requires looking back and inspecting the set of send and recv actions for all message

contents that appear in the trace (see example 5.4). In contrast to Fr, no memory is needed

for implementing F†, and instead, the buffer B in the specification of I† effectively encodes

the history of traces as far as it is relevant to F†.

Discussions

The concept of locally testable fairness constraints as is used here resembles local fairness of

Alur and Henzinger [AH03] in the sense that these both strive to define fairness constraints

which can be reduced to a local (per state) conflict resolution procedure. However, in [AH03],
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a fairness constraint refers to two sets of transitions, such that if the first set occurs infinitely

often in a fair trace, then the second set should also occur infinitely often. Roughly speaking,

the notion of locality there requires that whenever a member of the first set is enabled at a

state, then so is a member of the second set. In such cases, an unfair trace results only out

of an unfair local conflict resolution algorithm, when both these sets are explicitly given. In

contrast, our locality condition indicates that the members of the second set (the set whose

members have to be treated fairly) can be determined only by local inspection.

Fairness constraints often concern infinite executions, that is, finite traces are by definition

always fair (e.g. see [Fra86, CGP00]). Whereas, Fr and F† put conditions also on finite

traces, hence being relevant even to finite acyclic LTSs. 11 The root of this difference lies in

the DY’s definition in § 5.2, which lacks the ability to remove messages from its knowledge.

As traditionally the DY model has been used for verifying safety properties, the ability to

remove messages has been considered irrelevant and, thus, ignored.

We give a faithful specification of DY in [CT06], in which the intruder can explicitly

choose to terminate. With this capability, requiring maximum progress for finite traces does

not force the intruder to do more than what is required by RCC (cf. example 5.1) and, there-

fore, maximal finite traces are also counted as RCC-fair. Here we choose not to follow the

approach of [CT06], because the presentation and proofs would become so convoluted that

the main ideas of the model get obscured. 12

Prasad Sistla characterises fairness properties as those “insensitive to addition or deletion

of prefixes” [Pra94]. According to this definition, F† qualifies as a fairness constraint, while

Fr does not. We note that RCC is not a fairness property as well, as it is sensitive to prefixes.

RCC is however an abstraction for the actual mechanisms that provide resilient channels.

In fact, RCC would be unachievable in practice without imposing a fairness constraint on

communication channels. See § 5.4 on realisation of resilient channels.

5.5.2 Equivalence of the two intruder models

For an arbitrary protocol P , let L = ∂H(P‖DY(Γ0)) and L† = ∂H(P‖I†(Γ0, ∅). In this

section, it is proved that for any liveness property φ we have

L |=Fr
φ ⇐⇒ L† |=F† φ.

This result hinges on certain assumptions: recv† is assumed not to appear as an action label

in L and φ is assumed to saturate the equivalence relation ∼{recv,recv†} (defined below).

5.6. DEFINITION. For B ⊆ A and traces α = α1 ·α2 · · · and α′ = α′1 ·α
′
2 · · · belonging to

A∞, we write α ∼B α′ iff ∀i. αi = α′i ∨ (αi ∈ B ∧ α′i ∈ B).

11Compare it to § 4.3 in [VV06], where a general definition of fairness constraints is proposed which indeed can

put conditions on finite traces as well.
12In [CT06] we did not assume single-image LTSs. As a results we had to handle sets of sequences in mapping L

and L† and vice versa. The simple simulation relation used in § 5.5.2 would not then be sufficient and a variant of

ready trace equivalence had to be used [Gla93].
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Clearly,∼B defines an equivalence relation.

5.7. DEFINITION. A trace property φ ⊆ A∞ saturates an equivalence relation iff for each

equivalence class C of the relation, either C ⊆ φ or φ ∩ C = ∅.

Intuitively, a property that saturates ∼B does not distinguish the elements of B. For ex-

ample, in LTL terms (see definition 7.4), φ = ♦(̄ı) and φ = ♦(recv ∨ recv†) both satu-

rate ∼{recv,recv†}, but ♦(recv) does not. 13

Observe that each state s in L is uniquely characterised by the pair (P, Γ), where P

contains the states of honest processes of P along with their local variable bindings, and Γ is

the knowledge set of DY . To refer to the components of state s, we write s.P and s.Γ. Each

state s† in L† is uniquely characterised by the tuple (P, Γ,B), where P contains the states of

honest processes of P and Γ and B are the knowledge sets of I†. Similarly we write s†.P ,

s†.Γ and s†.B to refer to the components of s†. Below, as a convention, the † superscript is

used to refer to the elements of L†. Next, we define simulation for LTSs, modulo a relation

on action labels. Below, λ(B), with B ⊆ Act , denotes the set of action labels which appear

in B (recall the notations of § 4.1).

5.8. DEFINITION. For two LTSs L1 = (S1, s01,Act ,Tr1) and L2 = (S2, s02,Act ,Tr2),

we say L2 simulates L1 modulo a relation ρ ⊆ λ(Act) × λ(Act), denoted L1 ≤ρ L2, iff

there exists a relation R ⊆ S1 × S2 such that:

(i) R(s01, s02).

(ii) ∀s1 ∈ S1, s2 ∈ S2. R(s1, s2) ∧ s1
a1→ s′1 ∈ Tr1 =⇒

∃s′2 ∈ S2, a2 ∈ Act . s2
a2→ s′2 ∈ Tr2 ∧ R(s′1, s

′
2)

∧ ρ(λ(a1), λ(a2)).

To clarify the idea of simulation modulo a relation on action labels, we continue with a simple

example. Let p = sendp(〈q, t〉) · δ and q = recvq(〈q, t〉) · q be two processes. Figure 5.3

shows LTSs corresponding to L = ∂H(p‖q‖DY(∅)) and L† = ∂H(p‖q‖I†(∅, ∅)). The sets

beside states show the content of Γ,B pair of I† in those states, and similarly for DY . We

note that L† ≤ρ L, with ρ = {(sendp, sendp), (recvp, recvp), (recv
†
p, recvp)}. The

simulation relation R is depicted in figure 5.3 with dotted lines.

Below, via a few lemmas, we establish a close relation between L and L†.

5.2. LEMMA. L ≤f L†, with f = {(ℓ, ℓ) | ℓ ∈ λ(Act)}∪{(ℓ, ℓ′) | ∃q ∈ P . ℓ = recvq ∧ℓ′ =

recv†q}.

Proof: Construct R as R(s, s†) iff s.P = s†.P and s.Γ = s†.Γ. Obviously R(s0, s
†
0).

Now, assume s
a
→ s′ and R(s, s†). We distinguish three cases for a:

13We abuse the notation and define sets of actions based on their action labels. For instance, set {recv} stands

for the set of all actions that have recv as action label, namely {a ∈ Act | λ(a) = recv}.
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recvq(〈q, t〉)

sendp(〈q, t〉)

{}

{}, {}

{t}, {〈q, t〉}

recv
†
q(〈q, t〉)

{t} {t}, {}

sendp(〈q, t〉)

recvq(〈q, t〉)

Figure 5.3: Comparing LTSs resulting from DY (left) and I† (right).

• a is an internal action: It only depends on s.P and only changes the state of the corre-

sponding honest process(es). Therefore, a can faithfully be simulated in L†.

• a = sendp(〈q, m〉): It only depends on s.P and addsm to s.Γ. Clearly, s†.P allows

performing the send action andm is added to s†.Γ. Moreover, 〈q, m〉 is added to s†.B,

which does not affect the R relation.

• a = recvq(〈q, m〉): It depends on s.P and s.Γ. We observe that s.Γ = s†.Γ and,

thus, I† can also simulate DY . The only difference is that if 〈q, m〉 ∈ s†.B, then the

resulting action will be called recv†q(〈q, m〉). Note that since both (recvp, recvp)

and (recvp, recv
†
p) belong to f, I† can in any event simulate DY .

This completes our proof.

5.3. LEMMA. L† ≤f−1 L with f−1 given as the inverse image of f, namely f−1 = {(ℓ, ℓ) |

ℓ ∈ λ(Act) ∧ ¬∃q ∈ P . ℓ = recv†q} ∪ {(ℓ, ℓ′) | ∃q ∈ P . ℓ = recv†q ∧ ℓ′ = recvq}.

Proof: Construct R as R(s†, s) iff s†.P = s.P and s†.Γ = s.Γ. Obviously R(s†0, s0).

Now, assume s†
a†

→ s′† and R(s†, s). Note that for any state s†, we have 〈q, m〉 ∈ s†.B =⇒

synth(m, s†.Γ) = T. A case analysis of a† (similar to the case analysis of lemma 5.2)

completes the proof.

As we used the same simulation relation R in these lemmas, in the following we fix the

notation and write R(s, s†) iff s.P = s†.P and s.Γ = s†.Γ.
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5.4. LEMMA. Any trace α in L can be uniquely translated to a trace α† in L† such that

R(sα
i , sα†

i ), for all i ≥ 0, and vice versa.

Proof: Let α = α1 · · ·αi · · · be a trace of L. As L ≤f L†, the sequence of states sα

corresponds to a sequence of states s† in L†, such that R(sα
i , s
†
i ) and s

†
0

α
†
1→ s
†
1

α
†
2→ · · · with

(λ(αi), λ(α†i )) ∈ f, for all i ≥ 0. To show the uniqueness of the translation, we note that the

set F (ℓ) = {ℓ′ | (ℓ, ℓ′) ∈ f} is a singleton, except when ℓ = recvq, for some q ∈ P . In

this case, we have F (recvq) = {recvq, recv
†
q}. Let us assume that αi = recvq(〈q, m〉).

Observe that only one of the elements of f(αi) would be enabled at s
†
i−1. This is due to the

definition of I†: When synth(m, s
†
i .Γ) = T, action send

†
I(〈q, m〉) can be performed only if

〈q, m〉 6∈ s†.B (see § 5.5.1). This shows the uniqueness of the resulting α† in L†.

Translating traces from L† to L works similarly (in fact, simpler, as f−1 is a function, in

contrast to f which is a relation).

Let α and α† be traces respectively in L and L†. Lemma 5.4 states that α can be uniquely

translated to L†. As a convention, we write f(α) for the resulting trace. Trace f−1(α†) is

defined similarly. Note that since φ saturates ∼{recv,recv†}, we have α ∈ φ ⇐⇒ f(α) ∈ φ

and α† ∈ φ ⇐⇒ f−1(α†) ∈ φ. The translation relations f and f−1 therefore preserve φ.

5.1. THEOREM. For an arbitrary protocol P with a liveness property φ, the following holds

∂H(P‖DY(Γ0) |=Fr
φ ⇐⇒ ∂H(P‖I†(Γ0, ∅)) |=F† φ

Proof: We show that if α is a trace in L such that ¬Fr(α), then ¬F†(f(α)), and vice

versa. Since φ is preserved by f and f−1, showing that fairness constraints agree, in the above

sense, is enough to prove the theorem.

We start by assuming ¬Fr(α), with α being a trace in L. For sf(α) (sequences of states

corresponding to f(α) in L†) we write s†. According to lemma 5.4, ∀i ≥ 0. R(sα
i , s
†
i ).

Consider two cases for α: Finite and infinite. If α is finite, namely α = α1 · · ·αn, then

¬Fr(α) means that enT (sα
n) has at least one element (i.e. enabled transition) which does

not belong to Θα
n. We claim that en(s†n) has an element (i.e. enabled action) which label is

not recv†. To see why, note that if the enabled transition of sα
n has an action label different

from recv, then it is present at s†n as well (according to lemma 5.2), proving the claim.

Now, assume that the enabled transition of sα
n has recvq(〈q, m〉) as its action. Since it

does not belong to Θα
n we conclude that the corresponding message belongs to s†n.B (recall

definition 5.3 introducing Θ). Therefore, I† cannot do send
†
I(〈q, m〉) and has to instead

perform sendI(〈q, m〉), thus resulting in recvq(〈q, m〉) in L†. This proves the claim. Let

us now assume that α is infinite. ¬Fr(α) means that some transition not belonging to Θα

is infinitely enabled, but not infinitely often performed. The same rationale as in the above

argument shows that then an action not equal to recv† is infinitely often enabled in L† on the

run of f(α), but not infinitely often performed by f(α). Therefore, ¬F†(f(α)).
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Now assume ¬F†(α†), with α† being a trace in L†. This means that α† is ignoring an

action which label is not recv†. A similar argument as above (in fact a simpler argument,

since f−1 is a function) shows that this implies that f−1(α†) ignores a transition that does not

belong to Θf−1(α†), hence ¬Fr(f
−1(α†)).

When checking safety properties, no fairness constraints are applied. The intuition be-

hind this is that since attacks on safety properties are finite traces, the intruder does not gain

anything by quitting the protocol. Whereas for subverting a liveness requirement the intruder

may in principle by quitting the protocol prevent the honest parties from ever reaching a cer-

tain goal. When no fairness constraints are applied, the process DY is equivalent to process

I†, after renaming send
†
I to sendI actions. Hence, the LTSs resulting from the interactions

between an arbitrary protocol with these two intruder models are isomorphic after renaming

(see lemmas 5.2 and 5.3). The following theorem articulates this observation. Recall that φ,

the property to be checked, saturates ∼{recv,recv†}.

5.2. THEOREM. For an arbitrary protocol P with a safety property φ, the following holds

∂H(P‖DY(Γ0)) |= φ ⇐⇒ ∂H(P‖I†(Γ0, ∅)) |= φ

Since any trace property can be written as the intersection of a liveness property and a

safety property [AS84], any security property which is a trace property can be checked using

the I† intruder model. We illustrate this in particular for FE properties in chapter 6.

5.5.3 A liveness property for FE

In this section we focus on a general liveness property which can in particular encode the

requirements of FE protocols: When action ı happens, reaching ı̄ is inevitable. 14 For instance,

the fairness requirement of FE protocols (see § 2.2) states that once A receives her desired

item, denoted by action ı, B will inevitably receive his desired item, denoted by ı̄. In short, ı

is inevitably followed by ı̄.

FE protocols are concerned with protecting an honest party from possible malicious be-

haviour of the opponent. Therefore, when verifying FE, the intruder is a legitimate, though

malicious, principal of the protocol. Note that the Fr and F† constraints do not rule out any

(malicious) behaviour of the intruder as a principal. In particular, the intruder can prema-

turely abort the protocol as a principal, while continuing being the network. This is because

sending any message by the intruder is deemed unnecessary in Fr and F
† when the mes-

sage is not buffered in resilient channels, even if the message is supposed to be sent by the

legitimate role that the intruder plays in the protocol.

In § 5.5.2 we showed that verifying liveness properties with the RCC1 assumption can

be done using a modified intruder model and a simpler fairness constraint. Below, we use

14This property is sometimes called responsiveness, e.g. see [AS84].
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the regular alternation-free fragment of µ-calculus (see § 4.2) to encode this liveness property

under the F† fairness constraint:

ϕ = [T∗ · ı · (¬̄ı)∗]〈(¬recv†( ))∗ · ı̄〉T

The intuitive meaning of ϕ is, whenever ı has happened but ı̄ has not (yet) occurred, there

is an execution path to ı̄ that does not contain any recv† actions. DY is thus not forced

in such executions to collaborate more than delivering received messages. Formula ϕ is

equivalent to φ under the fairness constraint F†, where φ states the inevitable reachability

of ı̄ after ı, namely φ = [T∗ · ı] µX. (〈T〉T ∧ [¬̄ı]X), cf. [MS03]. The following example,

which studies the protocols of examples 5.1 and 5.2 with the I† intruder model, gives an

intuitive explanation of ϕ.

5.5. EXAMPLE. Recall example 5.1. Let p = sendp(〈q, t1〉) · δ and q = recvq(〈q, h(t1)〉) ·

ı̄ · δ. Here, we study L† = ∂H(p‖q‖I†(∅, ∅)). Let φ be the set of traces that contain ı̄. We

implement φ under the F† constraint as ϕ′ = [(¬̄ı)∗]〈(¬recv†( ))∗ · ı̄〉T. Note the difference

between ϕ and ϕ′. Figure 5.4 shows L†. As is evident in the LTS, the only trace sprouting out

of s0 which contains ı̄, also contains a recv† action in between. Consequently, s0 6|= ϕ′.

sendp(〈q, t1〉)s0
ı̄recv

†
q(〈q, h(t1)〉)

Figure 5.4: LTS of the first protocol of example 5.5.

Now we turn to example 5.2. Recall that p = sendp(〈q, t1〉) · p and q = recvq(〈q, t1〉) ·

q + recvq(〈q, t1, t1〉) · ı̄ · δ. Figure 5.5 depicts the LTS L† = ∂H(p‖q‖I†(∅, ∅)). Consider

the property ϕ′ as above. Observe that the only path to ı̄ from s0 passes recv
†
q(〈q, t1, t1〉).

sendp(〈q, t1〉)

s0

sendp(〈q, t1〉)

recv
†
q(〈q, t1, t1〉)

ı̄

recv
†
q(〈q, t1〉)

sendp(〈q, t1〉) recvq(〈q, t1〉)

sendp(〈q, t1〉)

sendp(〈q, t1〉)

Figure 5.5: LTS of the second protocol of example 5.5.

Therefore s0 6|= ϕ′.
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It is worth mentioning that in case sending messages which are not required by RCC

would help the intruder to launch an attack on the protocol, F† does not prevent the intruder

to do so. Conversely, if the messages buffered in resilient channels are all undeliverable, Fr

allows the intruder to ignore them. The following two examples clarify these concepts.

5.6. EXAMPLE. We consider processes p = sendp(〈q, t1〉) · δ and q = recvq(〈q, t1〉) · ı̄ ·

δ + recv q(〈q, t1〉) · recvq(〈q, t1〉) · δ. Let L† = ∂H(p‖q‖I†(∅, ∅)). Figure 5.6 depicts L†.

Consider the property ϕ′ as in example 5.5. Observe that s0 6|= ϕ′. This is because [(¬̄ı)∗]

s0

sendp(〈q, t1〉)

recv
†
q(〈q, t1〉)

recvq(〈q, t1〉)

recvq(〈q, t1〉) ı̄

s1

Figure 5.6: LTS of the protocol of example 5.6.

can take the system from s0 to s1, from which no trace leads to ı̄.

5.7. EXAMPLE. Let two processes p and q be defined through the following equations:

p = sendp(〈q, h(t1)〉) · p1

p1 = sendp(〈q, t2〉) · p1

q = Σv∈{t1,t2}recvq(〈q, h(v)〉) · recvq(v) · ı̄ · δ,

with t1, t2 ∈ T and t1 6= t2. As in the previous examples, consider L
† = ∂H(p‖q‖I†(∅, ∅))

and the liveness property ϕ′ (defined in example 5.5). Figure 5.7 shows L†. Observe that p

sends an infinite number of t2 to I†. This is however simply ignored, since t2 is undeliverable

to q. Indeed, L 6|= ϕ′. Note that imposing a naı̈ve fairness constraint such as “if a message

is sent infinitely often to the resilient channel, it is infinitely often delivered”, below referred

to as fc, would lead to absurd results. This is because for any maximal trace α† in L† we

have fc(α
†) = F, thus, fc(α

†) =⇒ φ(α†) evaluates to T for any φ (cf. example 5.2).

Consequently, L† |=fc
φ for any φ. Clearly, fc is not suitable for formalising RCC1.

We observe that often only some of the channels in a communication network need to

be resilient in order to achieve liveness (e.g. only channels to and from the TTP need to be

resilient). 15 One way to implement this in I† is to add a function ζ, characterising messages

15Similar protocol specific constraints can easily be expressed in our intruder model. For example, see the intruder

specifications in the case studies of § 6.
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s0

recvq(〈q, h(t1)〉)

sendp(〈q, h(t1)〉)

sendp(〈q, h(t1)〉)

sendp(〈q, h(t1)〉)

Figure 5.7: LTS of the protocol of example 5.7.

which should be added to the buffer (set B) of resilient channels. The new specification of I†

is then (cf. § 5.5.1):

I†(Γ,B : Set) = Σq∈P,m∈Msg

recvI(〈q, m〉) · I†({m}
⋃

Γ, {〈q, m〉} ∪ B)

⊳ζ(〈q, m〉)⊲

recvI(〈q, m〉) · I†({m}
⋃

Γ,B)

+

Σq∈P,m∈Msg

sendI(〈q, m〉) · I†(Γ,B \ {〈q, m〉}) ⊳ 〈q, m〉 ∈ B ⊲ δ

+

Σq∈P,m∈Msg

send
†
I(〈q, m〉) · I†(Γ,B) ⊳ synth(m, Γ) ∧ 〈q, m〉 6∈ B ⊲ δ

The function ζ can for instance depend on contents of messages, their destination (e.g. mes-

sages destined to a trusted entity), etc. See [CT04] for an example of such a ζ function.

We conclude this section by briefly describing one of the most interesting attacks that

has been reported on timeliness. The attack was discovered by Boyd and Kearney [BK00]

on an optimistic fair certified email protocol, proposed by Zhou, Deng and Bao in [ZDB99]

and [ZDB00]. In this protocol, Alice, the sender of the email, starts by sending a message

to Bob, which contains her commitment not only to the email text, but also to a key which

is used to encrypt the email (recall figure 2.1). At this early stage, Bob does not know the

key used for encrypting the email, and thus cannot check whether Alice’s commitment to the

key is genuine or simply a random bit string. Alice can exploit this ignorance of Bob in the

scenario described below.

Alice sends a random bit string to Bob instead of her commitment to the key. After re-

ceiving Bob’s commitment (message 2 in figure 2.1), Alice stops the optimistic protocol. Bob

cannot resolve to the TTP, simply because the TTP needs Alice’s commitments; and to the

TTP it is not clear whether Bob is sending a bogus message as Alice’s commitment to the key,

or Alice has sent a bogus message to Bob. On the other hand, Alice can simply resolve the
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exchange whenever she wishes, because she can compose and send a genuine key commit-

ment to the TTP, and resolve the exchange. Only after Alice has resolved the exchange, the

TTP allows Bob to resolve (in the protocol of Zhou et al., the TTP treats previously resolved

exchanges differently from the exchanges which has never been disputed).

In this scenario, Bob can terminate the exchange only with Alice’s help. Therefore the

propertyϕ is violated in this protocol, not because ı̄ is unreachable, but because it is reachable

only via the actions of the intruder (i.e. Alice). Note that when Alice terminates the exchange,

Bob can terminate it as well. Therefore, fairness is not violated. The flaw described above

reflects the fact that Bob cannot unilaterally terminate the exchange.

5.6 Related work

Below, we review some notable work in formal analysis of (liveness aspects of) FE protocols

and compare them to our method.

Based on a decision procedure presented in [KKW05], Kähler and Küsters propose a

constraint solving approach to analyse finite rounds of contract signing protocols, while the

intruder is provided with unbounded fresh data [KK05]. Instead of resilient channels, they

use synchronous authenticated confidential channels, thus restricting the intruder’s abilities.

Protocol participants are modelled as acyclic non-replicating processes. The liveness aspects

of FE requirements then naturally disappear and, under certain conditions, the resulting safety

properties are shown to be decidable. Had the intruder been given the power to delay mes-

sages over resilient channels, a fairness constraint similar to Fr’s condition on finite traces

would have been necessary for the model of [KK05]. In comparison, our results are stated

for an arbitrary protocol that can possibly contain cyclic participants, provided that the inter-

action between the protocol and DY results in a finite state space (see below). Our analysis

method, as well as the finite state analysis techniques discussed below, do not detect type-flaw

attacks (see § 4.3). 16 Remarkably, it is possible to detect these attacks in [KK05].

The results of [KK05] are extended by Kähler, Küsters and Truderung, with proving the

decidability of a large fragment of alternating-time µ-calculus on the infinite models induced

by acyclic non-replicating security processes [KKT07]. 17 This fragment of alternating time

µ-calculus notably comprises the game-based security properties of FE as formalised by Kre-

mer and Raskin (see below). In the formalisation of [KKT07], resilient channels are modelled

as a fairness constraint, used as a precondition for protocol requirements: They consider for-

mulae of the form fc =⇒ φ, with fc being the fairness constraint that guarantees eventual

16We note that in our approach it is possible to detect simple type-flaw attacks, where an atomic term of a certain

type is confused with an atomic term of another type. However, compound type-flaws, where a composition of

several terms is accepted as a term of another type, are not detectable in our method.
17In the formalisation of [KKT07], the participants are allowed though to loop only as a means to mimic the

situation where they do not have any other action to perform. Such loops thus merely let a deadlock state to stutter,

without consuming or generating messages.
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message delivery over resilient channels and, φ the goal of the protocol. The constraint fc

requires that any resilient channel which buffers messages is eventually emptied (see § 5

in [KKT07]). Notice that if a message which is undeliverable (e.g. it has no recipient) is sent

over resilient channels, then in any maximal trace, fc is violated, cf. example 5.7. In such

situations, fc =⇒ φ would evaluate to T for any φ. To avoid such absurd results, an exact

formalisation of the assumptions based on which protocols are modelled or using a fine tuned

fairness constraint (such as Fr) in [KKT07] seem to be necessary.

Moreover, [KKT07] shows that when the participant processes are allowed to have idle

cycles (i.e. self-loops in which they do not consume or generate messages), then the game-

based security properties are not decidable, cf. [HS04]. See also § 4.3.

We aim at automatic verification of FE protocols with cyclic specifications. Finiteness

of the LTSs resulting from the interaction between a protocol and the intruder models is

thus required in our analysis (see § 4.3). This poses some limitations: First, only a finite

number of actual protocol sessions can be considered. To be precise, protocol participants

cannot be provided with unbounded sources of fresh data and cannot replicate. They can

only run a finite number of protocol sessions and then either terminate or turn into puppet

participants, which loop without generating new data. This restriction cannot be easily lifted

in automatic verification techniques, since security of protocols in general is undecidable

(see § 2.1.1). Second, if there are processes in the protocol with loops in their specifications,

then the intruder cannot in general be provided with unbounded sources of new data (such as

fresh nonces). In fact, trusted parties are often looping participants that perpetually resolve

incoming requests in optimistic FE protocols [Aso98]. As another example, a vendor selling

a finite number of items, that waits for a purchase request, handles it and recurs, can also be

modelled as a looping participant. The type-correct assumption is also generally required in

our analyses to keep the state space finite. See also § 4.3.

In finite state analysis, the liveness aspects of FE have sometimes been left out from for-

mal verification, e.g. see [SM02, GR03, DM05]. There are however notable exceptions [KR01,

CCT05, ACC07]. Kremer and Raskin present a game-based semantics for FE properties,

which can neatly expresses the desired behaviours of FE protocols [KR01]. The verification

of FE requirements is then reduced to certain strategy problems. For instance, fairness for

Alice can be expressed as “a coalition of Bob and [non-resilient] channels does not have a

strategy to obtain [email contentM] without Alice having a strategy obtain a non-repudiation

of receipt evidence” [KR01]. To exclude unrealistic behaviours of the model, a fairness con-

straint similar to F0 is put on the transition system in [KR01]. Their formalisation thus in

principle suffers from the problems demonstrated in examples 5.1 and 5.2. Moreover, the

DY intruder in [KR01] (which is combined with all corrupted insider parties) is specified

constructively, i.e. a finite number of messages are presumed (or manually anticipated) as

the set of messages that the intruder can receive, compose, etc. This formalisation clearly

does not capture the infinite behaviour of the intruder. As their intruder’s specification can

only keep track of a finite pre-determined set of messages, it is dependent on the particular
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protocol being analysed. This is in contrast to our generic recursive definition of DY .

In [CCT05] we report an implementation of the intruder model I† for analysing a fair

non-repudiation protocol.

Armando, Carbone and Compagna use LTL for specifying protocol requirements and

fairness constraints [ACC07]. Given a security protocol model L, requirement φ and fairness

constraint fc, they check L |= (fc =⇒ φ). Their fairness constraints capture both the

RCC-conforming behaviour of DY and the maximal progress of the honest processes. The

authors also give an interesting overview on why some of the assumptions commonly made

when analysing security protocols may fail when checking liveness properties. The fairness

constraints used in [ACC07], however, strongly depend on the protocol being analysed and,

thus, need to be devised for each protocol separately. Besides, [ACC07] provides no formal

justification of these constraints. For instance, to model resilient channels as a fairness con-

straint, they require that each submitted message, should be delivered. This condition serves

as the antecedent of the goals the protocol needs to achieve, i.e. as fc in the aforementioned

formula. It is easy to see that if a (malicious) process submits a message which is not deliv-

erable (e.g. no process would receive it), then fc =⇒ φ evaluates to T for any φ (see also

example 5.7). To avoid such absurd results, a formal exposition of the assumptions based on

which the approach is devised seems to be necessary.

In the context of machine-checked proofs, Wei and Heather have mechanised Schneider’s

verification [Sch98] of Zhou-Gollmann non-repudiation protocol [ZG96b] in PVS [WH07].

They use the stable failures semantics of CSP to reason about liveness. Intuitively, the stable

failure semantics of process p consists of pairs (α, failureα), where α is a trace of p which

cannot be extended by any internal actions, and the set failureα contains the actions that p

can refuse after executing α. To model the liveness property that action ı̄ inevitably occurs,

using this semantics, [WH07] requires that any trace α either contains ı̄, or ı̄ does not belong

to failureα for all (α, failureα). We note that this approach suffers from the problem demon-

strated in example 5.1, namely ı̄ in this example does not belong to any failureα, and yet the

protocol does not guarantee the liveness property in the presence of an RCC-complyingDY .

In formalising RCC, we have essentially determined scheduling abilities of the intruder.

Cortier, Küsters and Warinschi have a similar concern in [CKW07], chiefly in the com-

putational model of cryptography. They argue why only fair scheduling of messages, à

la [BPSW02], is not enough, and maximal progress of the processes involved in FE should

also be guaranteed by fairness constraints. Themodel of [CKW07] contains a scheduler, apart

from the intruder, while, to achieve finiteness without sacrificing inductive definitions, in our

model the scheduler is the intruder. These have however the same goal, namely limiting the

intruder’s abilities just enough to impose RCC.
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5.7 Conclusions

In this chapter we studied some concurrency issues regarding the Dolev-Yao intruder model

which arise when verifying liveness properties. A liveness property does not hold in general

in this model without the resilient communication channels assumption. We have given a

formalisation of RCC, whose complexity indicates that the standard DY intruder, obliged to

respect RCC, is not suitable for automatic verification. We have thus proposed a modifiedDY

intruder model that respects RCC and fits in the existing verification frameworks. The fact

that the proposed intruder model can be implemented in a general purpose process algebra

equips us with already well developed tools and techniques for modelling and verification.

In § 6, this intruder model is used to verify two FE protocols.





Chapter 6

Verifying liveness: Case studies

6.1 Introduction

This chapter reports on two verification case studies using the intruder model of § 5.

In § 6.2, we verify a fair payment protocol proposed in [VPG01]. We observe that the

protocol does not achieve timeliness. As our intruder model is geared towards verifying

liveness, detecting this timeliness flaw serves as an empirical basis for the effectiveness of

the model. This case study appears first in the chapter and, thus, is described in great detail.

A fair digital rights management scheme, originally described in [NPG+05] and further

extended in [TKJ07], is studied in § 6.3. This scheme heavily relies on trusted computing

devices. We describe how our formal specification captures the characteristics of trusted

devices. We also discuss how the verification phase has to accordingly be adapted to these

changes in the specification. The core of the analysis technique nevertheless remains the

same for the cases studies of § 6.2 and § 6.3.

Related work

Formal verification of security protocols in general is discussed in § 4.3. Formal verification

of FE protocols, and in particular their liveness aspects, is reviewed in § 5.6. Formal verifica-

tion of functionality of electronic commerce protocols, i.e. with no malicious party involved,

can perhaps be traced back to [And92]. See also [HTWC96, KS03]. Further related work

specific to each case study appears in its corresponding section.

6.2 Analysing a fair payment protocol

Vogt, Pagnia and Gärtner describe a protocol for fair exchange of time sensitive data [VPG01].

Time sensitive, in this context, refers to the information that loses its value over time, such as

stock exchange quotes and location dependent information in mobile services. We note that

when exchanging time sensitive data, a mere eventual delivery is not satisfactory, cf. § 2.2.

To enable the customers to roll back the exchanges which are excessively delayed, the

protocol of [VPG01] assumes that each customer is equipped with a trusted computing de-

vice, e.g. a smart card. The protocol is intended formobile applications, where “a vendor sells



86 6. Verifying liveness: Case studies

a digital [time sensitive item] to a mobile customer who pays for it electronically” [VPG01].

Below, we describe this protocol. 1

6.2.1 Protocol description

The protocol aims at fair exchange of time sensitive data for some amount of money, between

a customer (C) and a vendor (V ). The exchange uses a bank (B) as an on-line trusted entity 2

who manages the payment system. The payment system used in the protocol is assumed

to support revocable payments, meaning that B has the power to roll back any payment

transaction if needed, cf. § 2.2.2. Besides, a tamper-proof smart card (S) is attached to C. It

is only through C that S can communicate with other parties.

It is assumed that cryptographic mechanisms are used to protect the integrity, authenticity

and confidentiality of messages. Each party has therefore a resilient secure channel to com-

municate with S and B. Consequently, “eavesdropping, replay, and forging of messages are

assumed to be impossible” [VPG01]. In case the attacker is the owner of S, namely C, it can

permanently or temporarily disconnect S. Otherwise, S is tamper-proof.

The protocol starts when C wishes to purchase item d, offered by V , for the amount a. 3

A description h(d) of d is assumed to be publicly known. A description function can for

instance be a certified hash value of the content. We refer to [PVG03] for various solutions

to secure item description and validation in FE. Note that the item d is confidential and, thus,

should not be revealed to C unless it pays for it.

Below we describe the intended scenario of the protocol when all the participants are

honest. This scenario is shown in protocol 6.1. At step 1, C sends a query to S for buying the

item, which is described by h(d) (namely d), for amount a. At step 2, S sends this request

to V , possibly putting its signature on the payment order, the issuer’s identity (C) and the

identity of the beneficiary (V ). At step 3, if a is the amount for which V wants to sell d,

it sends a to B. If a contains a genuine payment order from C (which B can establish via

checking, e.g., C and S’s digital signatures in a) and C has the amount a in its account, then

B transfers the amount a from C’s account to V ’s. Note that because of the secure channels

assumption made above, a cannot be replayed to maliciously charge C with this amount

again. In practice, a should carry a fresh serial number and so forth. Afterwards, at step 4,

B informs V that the money has successfully been transferred. At step 5, V acknowledges

the payment by sending d to S. Note that the confidentiality assumption, mentioned above,

implies that C cannot extract d from message 5, e.g. because d is sent encrypted with the

public key of S. After receiving this message, S makes sure that d, received from V , matches

h(d), received from C.

1A minimal-delay variant of the protocol is also presented in [VPG01], which is not covered in our study. This

variant is nonetheless susceptible to the timeliness flaw that we discuss here.
2If the payment mechanism allows off-line validation of payments, then B may be off-line.
3Our exposition of the protocol is slightly different from [VPG01]. There, an agreement between C and V on

the item and its price happens outside the protocol. Whereas, here, we make this step explicit.
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1. C → S : a, h(d), V

2. S → V : a, h(d), V

3. V → B : a, V

4. B → V : transfer(a)

5. V → S : d

S matches d against h(d)

6. S → C : h(d)?

7. C → S : yes

8. S → C : d

(6.1)

At step 6, S asks C whether the item described by h(d), namely d, is still desirable for C

or not. Since the protocol addresses exchanging time sensitive items, this step is of crucial

importance, as it allows C to reject the exchange, in case the exchange has been excessively

delayed. Note that if C agrees with receiving the item at step 7, by answering yes to S, the

transfer of d from S toC happens locally, i.e. no further communications over open networks

are needed. Therefore, if at step 7, d is still of value to C, so will it be at step 8. 4

Some alternative scenarios are possible in the protocol. If C does not have the required

amount of money a in its account, or if V does not want to sell d for the amount a, then S

receives ¬ack (a), and will subsequently inform C of the result:

4′. B → V : ¬transfer(a)

5′. V → S : ¬ack (a)

6′. S → C : ¬h(d)

(6.2)

In this case, S contacts B to abort the exchange (protocol 6.3, below). This is necessary,

because otherwise a malicious V could simply send ¬ack (a) to S, even afterB transfers the

amount a to V ’s account.

Similarly, C may answer no to the question h(d)? at step 7. Before step 7, C has also the

choice to send the message no to S to cancel the exchange (e.g. if C does not want to wait

till S asks h(d)?). In all these cases, S will contact B to revoke the payment (if it has been

transferred to V ’s account). This is called aborting the exchange:

1a. S → B : ¬a, V (6.3)

After receiving this message, B will never transfer a to V ’s account. In case a has already

been transferred to V ’s account, B revokes the payment. According to the resilient channels

assumption, this message will eventually reach B. Therefore, if a time sensitive item arrives

late, C can drop the item and eventually get its money back (via S and B). We also remark

that, although from V ’s point of view this protocol is not optimistic (as V has to contact B

4We remark that we have not left out any details of the protocol as it appears in [VPG01]. Unfortunately, the

protocol even in its original form is underspecified and only verbally described.
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in each exchange), the customer C needs to contact B only when a purchased item does not

arrive in time.

Observe that V has no guarantees about the termination of the protocol, as at any mo-

ment a can be revoked. This is because, at step 7, C may arbitrarily delay answering S.

Therefore, unless a payment is revoked, V cannot be sure about C’s answer (yes or no to S)

in the exchange. In other words, the protocol does not provide timeliness for V (cf. § 2.2), al-

though this is one of the design goals according to [VPG01]. In our formal analysis, described

below, this flaw is indeed detected.

6.2.2 Formal analysis

In this section we describe the steps followed to formally verify the protocol presented

in § 6.2.1. Our approach is based on finite-state model checking, which (usually) requires

negligible human intervention and, moreover, produces concrete counterexamples, i.e. attack

traces, if the protocol fails to satisfy a desired property. However, a complete security proof

of the protocol cannot, in general, be established by model checking. For an overview on

formal methods for verifying FE protocols, see § 4.3. We first specify the protocol and the

intruder model in the µCRL process algebraic language, see § 4.1. The µCRL tool-set can

symbolically reduce and automatically generate LTSs associated to specifications, cf. § 4.1.2.

Second, we state the properties effectiveness, timeliness and fairness (see § 2.2), which

are mentioned as the design goals of the protocol in [VPG01], in the regular alternation-free

µ-calculus, see § 4.2. Finally, we check the protocol model with regard to the properties using

the model checker EVALUATOR 3.0 from the CADP tool-set [FGK+96]. Below, these steps

are described in detail.

Formal specification of the protocol

In FE protocols, besides protection from external intruders, each honest participant needs to

be protected from his or her interlocutor as well. In our formal models, we consider two

versions of each participant: Honest and malicious. An honest participant faithfully follows

the protocol. To model a malicious participant we let theDY intruder process entirely control

the participant. Our analyses thus have three cases: (i) both C and V behave according to the

protocol, (ii) C is malicious, while V is honest and (iii) V is malicious, while C is honest.

The case where both C and V are malicious players is not of our interest, as the protocol has

to protect only honest players: A player who deliberately reveals its secret keys can hardly

be protected. Note that S and B are assumed trusted and, thus, always follow the protocol.

We start with specifying the honest versions of C and V . 5 The specifications of B

and S follow these. Since channels are authenticated, participants can always check the

5Here, we give the specifications of honest processes for one protocol round. This is enough to reveal the

timeliness flaw of the protocol and, moreover, gives a more clear view of the idea behind the protocol and also the

attack. In [CT04] we associate nonces to each exchange and, thus, scale up these specifications to multiple rounds.
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origin of each message. Therefore, we extend the notation of § 5 so that each message

is tagged with both the identity of its intended recipient and the identity of its genuine

sender. We write sendA→B(m) and recvA←B(m) as shorthands for sendA(〈B, A, m〉)

and recvA(〈A, B, m〉), respectively. In the specifications, instead of parentheses we use in-

dentation to clarify bindings.

C = Σd∈Item,a∈Price,v∈Pv

sendC→S(a, h(d), p)·

recvC←S(h(d)?)·

Σt∈{yes,no}
sendC→S(t) · δ

⊳t = no⊲

sendC→S(t)·

recvC←S(d) · δ

+

recvC←S(¬h(d)) · δ

+

sendC→S(no) · δ

In C’s specification, Item is the set of items available in our model and Price is the set

of money orders that C can issue. Here, we assume Item = {d1, d2} and Price = {a1, a2}.

Since the criteria based on which C decides whether an item has arrived timely or not fall

out of the scope of the protocol, in our specification these possibilities appear as a non-

deterministic choice between yes and no. The set Pv consists of vendor identities, which we

instantiate with Pv = {V }. As a side remark, observe that recvC(〈C, d〉) only accepts the

item to which C has referred in message 1 of protocol 6.1.

V = Σd∈Item,a∈Price

recvV←S(a, h(d), V )·

sendV→B(a, V )·

recvV←B(transfer(a)) · sendV→S(d) · δ

+

recvV←B(¬transfer(a)) · sendV→S(¬ack (a)) · δ

+

sendV→S(¬ack (a)) · δ

The bank B is specified as a cyclic process which perpetually resolves the disputes

brought up by S and answers V ’s money transfer requests. The action revokeB(a, p) is

performed to model revoking the transaction which transferred a to p’s account (if it ever
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happened in the past). The details of this procedure depend on the payment system used (e.g.

see [JY96, Vog03]) and are thus abstracted away in our model. Abstracting away the payment

system implies that we cannot model the situation where C does not have enough credits at

B. This can however be simulated by assuming that V rejects such requests after privately

consulting B (note that V has the choice to simply reject a purchase request).

In the specification of S, for clarity, we model the abort protocol as a separate process.

B(U : Set) = Σa∈Price,p∈Pv

recvB←p(a, p)·

sendB→p(¬transfer (a)) · B(U)

⊳(a, p) ∈ U⊲

sendB→p(transfer(a)) · B(U)

+

recvB←S(¬a, p) · revokeB(a, p) · B((a, p) ∪ U)

S = Σa∈Price,d∈Item,p∈Pv

recvS←C(a, h(d), p)·

sendS→p(a, h(d), p)·

recvS←p(ack (a))·

sendS→C(h(d)?)·

recvS←C(yes) · sendS→C(d) · δ

+

recvS←C(no) · abort(a, p)

+

recvS←p(¬ack (a)) · sendS→C(¬h(d)) · abort(a, p)

+

recvS←C(no) · abort(a, p)

abort(a, p : Msg) = sendS→B(¬a, p) · δ

Our formalisation contains a DY intruder which does not disrupt resilient channels.

Therefore, all messages exchanged in the protocol are guaranteed to be eventually deliv-

ered to their destination. Since liveness properties are part of FE requirements, we use the

intruder model I†, defined in § 5.5.1, along with F† as the fairness constraint. See § 5.

The intruder, as discussed above, is not separated from malicious participants. To reflect

the authenticated and secure channels assumption, the intruder is not able to comprehend

messages not destined to it and, moreover, it cannot send a message with a sender tag different
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from its own identity (and the identities of the processes that it has corrupted). It can however

schedule all the messages exchanged between the participants of the protocol.

In scenario (ii), i.e. malicious C and honest V , the intruder is specified by instantiating

id = C in algorithm 6.1 (cf. § 5.5.1). The intruder model for scenario (iii) can likewise be

derived by letting id = V . In scenario (i), the intruder is assumed to be an outsider, i.e.

none of the players of the protocol are corrupted. This corresponds to id = DY , where

DY 6∈ {C, V, S, B}, in algorithm 6.1. Below, we give the formal specification of these

scenarios (see the notations of § 4.1.2 and § 5).

• Scenario (i): L(i) = ∂H(C‖V ‖B‖S‖I†DY(Γ(i), ∅)), where Γ(i) = {C, V, S, B,DY}∪

{h(d) | d ∈ Item} ∪ {yes, no}.

• Scenario (ii): L(ii) = ∂H(V ‖B‖S‖I†C(Γ(ii), ∅)), where Γ(ii) = Γ(i) ∪ Price .

• Scenario (iii): L(iii) = ∂H(C‖B‖S‖I†V (Γ(iii), ∅)), where Γ(iii) = Γ(i) ∪ Item.

I
†
id(Γ,B : Set) = Σp,q∈P,m∈Msg

recvI(p, q, m) · I†({m}
⋃

Γ, {(p, q, m)} ∪ B)

⊳p = id⊲

recvI(p, q, m) · I†(Γ, {(p, q, m)} ∪ B)

+

Σp,q∈P,m∈Msg

sendI(p, q, m) · I†(Γ,B \ {(p, q, m)}) ⊳ (p, q, m) ∈ B ⊲ δ

+

Σp,q∈P,m∈Msg

send
†
I(p, q, m) · I†(Γ,B)

⊳q = id ∧ synth(m, Γ) ∧ (p, q, m) 6∈ B ⊲ δ

Algorithm 6.1: The intruder process, subsuming corrupted parties

Properties

In the following, we discuss and formalise the design goals of the protocol via a few lem-

mas and theorems. To prove these in our models, we use finite state model checking of

alternation-free regular µ-calculus formulae (see § 4.2). In verifying effectiveness, scenario

(i) is considered, while timeliness and fairness are verified for the scenarios (ii) and (iii). First

come a few auxiliary lemmas.

A (malicious) customerC could possibly get hold of an item d by other means than from

S in action sendS→C(d). To show that this is not the case, we verify the following lemma.
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6.1. LEMMA. L(i) and L(ii) satisfy the following property for any d ∈ Item:

[(¬sendS→C(d))∗.reveal(d)]F,

where reveal(d) is an internal action that the intruder performs when it learns d. We can

model this by adding the following alternative choice to the intruder process in algorithm 6.1:

Σd∈Itemreveal(d).I†id(Γ,B) ⊳ synth(d, Γ) ⊲ δ.

6.2. LEMMA. L(i) and L(iii) satisfy the following properties for any d ∈ Item:

[T∗ · sendC→S(a, h(d), V ) · T∗ · sendS→C(d) · T∗ · sendS→B(¬a, V )]F

[T∗ · sendC→S(a, h(d), V ) · T∗ · sendS→B(¬a, V ) · T∗ · sendS→C(d)]F

And L(ii) satisfies the following properties:

[T∗ · recv†S←C(a, h(d), V ) · T∗ · sendS→C(d) · T∗ · sendS→B(¬a, V )]F

[T∗ · recv†S←C(a, h(d), V ) · T∗ · sendS→B(¬a, V ) · T∗ · sendS→C(d)]F

This lemma states that S, the smart card, never revokes the payment for a content which

has been revealed to C. Lemmas 6.1 and 6.2 imply that if C learns an item, the associated

payment is never revoked by S. The fact that B does not revoke any payment unless S

requests it, is established with the following lemma.

6.3. LEMMA. L(i), L(ii) and L(iii) satisfy the following property for any a ∈ Price and

p ∈ Pv:

[(¬sendS→B(¬a, p))∗ · revokeB(a, p)]F

Effectiveness (cf. § 2.2): According to Asokan et al. [ASW98b], when checking effec-

tiveness, we assume that the “two honest players [C and V ] interact directly with each other.

The adversary in this case can interact with [trusted entities], but cannot interfere with the

interaction of [C and V ], except insofar as the adversary still has the power to schedule both

[C’s and V ’s] interaction with [trusted entities]”. Effectiveness then means that “it is infea-

sible for the adversary . . . to prevent [C and V ] from successfully exchanging [their items]”,

when “neither players ‘times out”’. To model this scenario we use L(i), except that in L(i)

C may send no to S, and V may not want to sell d for a, while C and V are assumed not

to “time out”. Therefore, below, we explicitly exclude these time out cases when checking

effectiveness. 6

6.1. THEOREM. L(i) satisfies φ1 and φ2 for any a ∈ Price and d ∈ Item:

φ1 = [T∗ · sendC→S(a, h(d), V )·

(¬(sendC→S(no) ∨ sendV→S(¬ack (a)) ∨ recvC←S(d))))∗]

〈T∗ · recvC←S(d)〉T

φ2 = [T∗ · sendC→S(a, h(d), V )·

(¬(sendC→S(no) ∨ sendV→S(¬ack (a)) ∨ recvV←B(transfer(a)))))∗]

〈T∗ · recvV←B(transfer(a))〉T

6Recall that the lemmas and theorems of this section are all established using finite state model checking.
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This theorem, intuitively, states that if no time out happens, in L(i), C will receive the item it

desires (φ1) and the bank will transfer the corresponding price to V ’s account (φ2), under fair

scheduling (à la definition 4.1). To complete the picture, we need to ensure that V ’s money

is not revoked afterwards. This is guaranteed by lemmas 6.2 and 6.3.

Timeliness: Timeliness states that each honest process can finalise the exchange with

no help from the opponent, cf. § 5.5.3. From C’s point of view, finalising the exchange

means that it either receives d or ¬h(d) from S, or it deliberately sends no to S to cancel the

exchange. As a shorthand we write terminate(C) = recvC←S(d) ∨ recvC←S(¬h(d)) ∨

sendC→S(no). We prove the following lemma for timeliness of C.

6.2. THEOREM. In L(iii), the following property holds for any d ∈ Item and a ∈ Price:

[T∗ · sendC→S(a, h(d), V ) · (¬terminate(C))∗]〈(¬recv†( ))∗ · terminate(C)〉T

The termination condition for V is more involved. Similar to theorem 6.2, we at least re-

quire that inL(ii), V can always reach recvV←B(transfer(a)) or recvV←B(¬transfer(a)),

without any help from C. This is however not a sufficient condition for V ’s termination, be-

cause the transferred money can in general be revoked. Therefore, in the following formula,

we write terminate
1

2 (V ) = recvV←B(transfer(a)) ∨ recvV←B(¬transfer (a)).

6.3. THEOREM. In L(ii), the following property hold for any a ∈ Price:

[T∗ · sendV→B(a, V ) · (¬terminate
1

2 (V ))∗]〈(¬recv†( ))∗ · terminate
1

2 (V )〉T

Even after receiving transfer(a) from B, V cannot be sure that in future revokeB(a, V )

does not happen. This is confirmed by model checking the following property in L(ii):

〈T∗ · recvV←B(transfer (a)) · T∗ · revokeB(a, V )〉T

We thus further require that if revokeB(a, V ) is reachable after recvV←B(transfer(a)), then

it is reachable without any help from C as well. Although this is is a weak guarantee for V ,

it does not hold in L(ii), as model checking refutes the following claim.

6.1. CLAIM. In L(ii), the following property holds for any a ∈ Price:

[T∗ · recvV←B(transfer(a))]

(〈T∗ · revokeB(a, V )〉T =⇒ 〈(¬recv†( ))∗ · revokeB(a, V )〉T)
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Model checking refutes claim 6.1 with the following counterexample:

〈initial state〉

recv
†
S←C(a1, h(d1), V )

sendS→V (a1, h(d1), V )

recvV←S(a1, h(d1), V )

sendV→B(a1, V )

recvB←V (a1, V )

sendB→V (transfer(a1))

recvV←B(transfer (a1))

recv
†
S←C(no)

sendS→B(¬a1, V )

recvB←S(¬a1, V )

revokeB(a1, V )

〈goal state〉

This shows a trace of the protocol which reaches revokeB(a1, V ) only with C’s contribution.

Therefore, the claim of [VPG01] that “the protocol will terminate for any party which behaves

correctly (i.e., according to the protocol)” does not hold, cf. [Vog03]. See below for a partial

correction to this flaw.

Fairness (cf. § 2.2): We split up the notion of fairness into fairness for C and V individ-

ually. The following lemma addresses fairness for C: If C does not receive the item, then S

inevitably revokes the payment, without any help from V .

6.4. THEOREM. In L(iii) the following property holds for any d ∈ Item and a ∈ Price:

[T∗ · sendC→S(a, h(d), V )·

(¬revokeB(a, V ))∗ · (sendS→C(¬h(d)) ∨ sendC→S(no)))·

(¬revokeB(a, V ))∗]〈(¬recv†( ))∗ · revokeB(a, V )〉T

Note that theorem 6.2 ensures that either C receives its desired item or one of the actions

sendS→C(¬h(d)) or sendC→S(no) will occur.

Fairness for V is defined correspondingly: If C receives an item, then V receives the

corresponding transfer(a). From lemmas 6.1–6.3 we know that if C gets hold of an item,

the corresponding payment is never revoked.

6.5. THEOREM. L(ii) satisfies the following property for any d ∈ Item and a ∈ Price:

[T∗ · recv†S←C(a, h(d), V ) · (¬recvV←B(transfer(a)))∗ · reveal(d)]F

Discussions

Using finite state model checking we proved lemmas 6.1– 6.3 and theorems 6.1– 6.5, and

refuted claim 6.1. Therefore, the protocol provides effectiveness and fairness. Timeliness is

however only achieved for the customer.
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Various practical aspects of this protocol are discussed in [VPG01, CT04]. In particular,

as a remedy to its timeliness flaw, in [CT04] we propose adding a timeout action to S, such

that after experiencing a certain delay between sending message 6 and receiving message 7, S

would assume that C’s answer is no and proceed accordingly. This solution, however, hinges

on the assumption that C does not disconnect S altogether. This is a tenable assumption

when considering, for instance, services provides for cell phones. In such services, S has to

be connected to the network to be of any use for C. A malicious C can then prevent V from

knowing the result of the exchange, only at the expense of not using its cell phone, cf. rational

exchanges in § 2.2.2.

We remark that fair exchange of time sensitive data is in general believed to be hard.

According to Asokan “the optimistic approach is inappropriate to exchange time-sensitive

items (e.g., current stock quotes). Fair exchange of time-sensitive items over open networks

is a difficult problem, regardless of the technique. Even if we use an online third party (instead

of the the optimistic approach), the protocol will not be secure against an attacker who can

disrupt communication channels long enough” [Aso98]. See also [Jak95, Syv98].

In this case study, the protocol uses resilient confidential authenticated channels. The

intruder’s power is therefore mostly restricted to scheduling messages over such channels.

We have also analysed a fair non-repudiation protocol [CCT05] which explicitly uses crypto-

graphic apparatus to achieve confidentiality and authenticity over channels, instead of simply

assuming these features. This study is however omitted here because of its similarity to the

presented case studies. The formal verification of this non-repudiation protocol has been

tightly coupled with the design phase of the protocol. The analysis has thus been more fo-

cused on optimising and fine tuning the protocol, while designing it, rather than testing a

fixed design. In particular, we use model checking to minimise the protocol, such that omit-

ting any term from the messages would endanger either the functionality or the security of

the protocol. For a complete report on this analysis see [CCT05].

6.3 Analysing a fair DRM scheme

The fair DRM scheme of [NPG+05, TKJ07] aims at providing a secure environment for

secure exchange of content-right bundles among trusted computing devices.

Trusted devices are tamper-proof hardware that follow their certified software. They use

(e.g. render) each content exactly as is instructed by its associated right. Our study does

not address semantics and derivations of rights in DRM systems. This constitutes a whole

separate body of research, e.g. see [PW02]. We focus on formal analysis of the transactional

properties of the studied DRM scheme.

A challenge in DRM is that the owners of trusted devices are in general untrusted. They

may collude to subvert the protocol. They can, in particular, deliberately switch off their own

devices (cf. crash failure in § 2.1.). In our analysis we consider two groups of trusted de-
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vices, one group owned by the intruder, and one owned by an irrational party. The irrational

party uses the protocol in an arbitrary manner, it complies with the protocol, but does not ac-

tively try to protect its interests. The intruder as usual controls the communication channels.

Figure 6.1 shows a scenario with two trusted devices td, in which the intruder controls one

trusted device and the other one is owned by owner .

TTP

DY

td td

owner

Figure 6.1: The DRM scheme

A legitimate content provider, (abusively) referred to as trusted third party (TTP), is also

employed in the scheme. The TTP is the original distributor of protected content-right bun-

dles. A content purchased from the TTP can further be traded among the trusted devices, if

this is allowed by the associated right. The payment system is assumed also to be managed

by the TTP in our analysis, while in practice it can be delegated to a trusted banking server,

cf. [NPG+05, TKJ07]. The TTP is assumed impartial in its behaviour and eventually avail-

able to respond to requests from trusted devices. The channels between trusted devices and

the TTP are assumed to be resilient.

The analysis of this DRM scheme appears in [TKJ07], and largely overlaps with the case

study of § 6.2. Modelling trusted devices nonetheless needs certain considerations in our

formal analysis. Therefore, in the following, we focus on these issues.

Atomic actions

In the DRM scheme of [NPG+05, TKJ07], trusted devices are able to perform local atomic

blocks of actions: Multiple actions of each trusted device can be logically linked in the device,

such that either all or none of them are executed. Implementing atomic blocks of actions is

a well studied topic in concurrency control, e.g. see [MHL+92]. We remark that non-local

atomic actions (i.e. atomic actions not necessarily belonging to the same process) can be used

to model fair exchange requirements, cf. [Tyg96].

Consider the LTS L = ∂H(P‖I†(Γ0, ∅)) as defined in § 5. To each action a in L we

assign a process name ℵ(a), which reflects the process that performs a, cf. § 7.3.2. The set
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of actions that appear in process p are naturally associated with p. Actions resulting from

synchronisations, such as a in a = b|c, are associated with both ℵ(b) and ℵ(c). For instance,

in the model of § 5, if a = sendp(m), then ℵ(a) = p. We say action a belongs to process p,

iff ℵ(a) = p.

6.1. DEFINITION. We say the set of actions At = {a1, · · · , an} in L is atomic iff in any

trace α of L either all or none of ai, with i ∈ {1, · · · , n}, appear. A set of atomic actions is

local iff they belong to the same process and for all α in L, if αj = ai and αj′ = ai′ , with

ai, ai′ ∈ At , then ∀j < k < j′. ℵ(αk) = ℵ(ai) =⇒ αk ∈ At .

To model atomic actions in process p we can simply join them using the sequential composi-

tion operator ·. It is clear that either all or none of such actions would appear in any execution

of the system (assuming maximal progress, cf. § 5.4.2).

Let us assume a trusted device owned by the intruder be specified by pt, a process à

la § 4.1. To enable the intruder to turn off the device (i.e. pt), we compute p
+off
t by sub-

stituting each action a appearing in p with the process a + off .δ. The resulting model of

pt can obviously perform off at any moment and cease to act afterwards, thus reflecting the

intruder’s ability to turn the device off at will. 7

We note that p
+off
t is not able to perform any atomic actions. As mentioned above, atomic

actions are modelled as a collection of sequentially composed actions. Let {a, b} be a set of

atomic actions modelled in pt as a · b. To retain local atomicity, we add the off .δ alternative

to either both or none of them. For pt = a · b · p′ we thus get p+off
t = ((a · b) + off .δ) · p′.

This mechanism allows us to model the effect of atomic actions and also the ability of the

intruder to turn off a trusted devices at any moment, except when performing atomic blocks

of actions, in our formalisation [TKJ07].

Modelling the TTP

In the protocols of [NPG+05, TKJ07] the TTP needs to authenticate the trusted devices be-

fore exchanging information with them. This is necessary in order to prevent various replay

attacks and right masquerading (see also § 7.5.1). The TTP process therefore requires fresh

nonces in each exchange. If we model the TTP as a cyclic process as in § 6.2, then the state

space would not be finite, since the TTP can keep on generating fresh nonces. However,

limiting the TTP to a finite number of exchanges makes it susceptible to denial of service

attacks. Namely, the intruder can simply exhaust the TTP process before the honest parties

get the chance to resolve their exchanges at the TTP. Note that since the attacker is a legit-

imate user of the protocol in FE protocols, the TTP cannot simply avoid responding to the

attacker’s resolve requests. In practice, such attacks are mitigated by putting time limits on

transactions with the TTP, recovering the service of the TTP after a short delay, etc.

7This construction may not optimised. For instance, for p = a · p′ + b · q, with a, b ∈ Act , we get p+off =

(a + off · δ) · p′ + (b + off · δ) · q, which can be simplified to p+off = a · p′ + b · q + off .δ.
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As we abstract away from such low-level aspects in our model, instead, the action η

is used to indicate that all TTP processes in the model are exhausted by the intruder. In

other words, as long as this action has not occurred yet, there is still at least one TTP thread

available to resort to. The eventual fair reachability under the F† constraint is replaced with

the following property in this model (recall the property of § 5.5.3).

ϕ = [(¬η)∗ · ı · (¬(̄ı ∨ η))∗]〈(¬recv†( ))∗ · ı̄〉T

This property intuitively states that if ı happens, while the TTP resolves disputes, there is

a fair path (with no help from the intruder) to ı̄. The simplicity of this solution shows the

flexibility of our protocol and property specification formalisms, when addressing protocol

specific constraints.



Chapter 7

Partial order reduction for security protocols

7.1 Introduction

Two main approaches to automatic verification of security protocols are model checking and

constraint solving. Both these techniques in principle need to enumerate all possible inter-

leavings of actions performed by protocol participants. Partial order reduction (POR) tech-

niques identify and avoid generating identical interleavings, modulo the properties that are

to be verified, to reduce the time and memory used in verification. Clarke, Jha and Mar-

rero [CJM00a, CJM03] were the first to formally present a POR algorithm for security pro-

tocols and determine the class of modal properties that are preserved by it. They observe that

the knowledge of the Dolev-Yao intruder model in the course of each protocol run is non-

decreasing and, intuitively, with more knowledge the intruder can do more (harm). There-

fore, when verifying security protocols which yield finite executions, in the presence of the

DY intruder, it is safe to prioritise actions that increase the intruder’s knowledge over other

actions. This is the heart of the POR algorithm of [CJM00a], which was originally used in

BRUTUS [CJM00b], a model checker tailored for security protocols. This algorithm has also

been mentioned in [MS01] as a means to reduce the number of constraint sets that have to be

solved in order to verify a security protocol.

The POR algorithm of [CJM00a] assumes that security protocols are non-branching,

meaning that each participant at each state of the protocol has at most one single action to

perform. 1 This assumption has been widely used in the literature for modelling various au-

thentication and key distribution schemes since the early years of security protocol analysis,

e.g. see the ping-pong protocols of [DY81].

In practice, however, participants of, e.g., authentication protocolsmay have choice points.

They can for instance take alternative actions when a received message does not match a cer-

tain pattern, or when a timeout occurs. Therefore, any faithful model of these protocols

has to allow such choice points in the specification as well. More importantly, some se-

curity protocols inherently prescribe more than one possible behaviour for the participants.

Prominent examples of such security protocols are optimistic fair exchange protocols, includ-

ing non-repudiation, fair payment, certified email and electronic contract signing protocols

1Note that the notion of non-branching refers to the participating processes, although it is used as a qualifier for

protocols. Naturally, non-branching protocols are not necessarily deterministic, see § 7.2.1.
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(see § 2.2). Participants of these protocols can choose between continuing the normal flow

of the protocol and resorting to a trusted entity, in case of long delays of the opponent or

communication failures. These protocols can be properly modelled only if choice points are

allowed in the specification of their participants.

Road map In this chapter, we extend the POR algorithm of Clarke et al. to handle branch-

ing security protocols, i.e. protocols in which participants have choice points. To achieve this,

in § 7.2 we present an enriched model of security protocols that explicitly allows condition-

als and choice points in the specification of participants. § 7.3 motivates why the algorithm

of [CJM00a] falls short in addressing branching security protocols. There, we also present

our extension to this algorithm.

Our focus is on how the extended POR algorithm can be used in explicit state model

checking of security protocols. The application of the extended POR algorithm to constraint

solving for security protocols is briefly discussed in § 7.4. Some experimental results are

presented in § 7.5. In § 7.6, we conclude this chapter with comparing our work to existing

POR techniques for security protocols and discussing some future research directions.

7.2 Preliminaries

The model we use in this chapter is in some ways more restrictive, compared to the model

of § 5. We thus prefer to define some basic concepts anew. In particular, here, we do not allow

direct communication between honest processes, while this is allowed in § 5. This condition

is necessary to ensure that each action of the protocol changes the state of at most one honest

process (this is used in lemma 7.1). More importantly, cyclic participants are excluded from

our current model, see our future work § 7.6.

7.2.1 Modelling security protocols

We model a security protocol P as a finite number of honest message-passing processes

{p1, · · · , pn} which communicate through the DY intruder. The intruder comprises all cor-

rupted parties and, also, controls the communication media. We start with defining the set of

messages, cf. § 4.1.2.

7.1. DEFINITION. Let MF be a set of function symbols and MV be a set of message vari-

ables. The set of messagesMsg is inductively defined as:

• m ∈ MV =⇒ m ∈ Msg

• m1, · · · , mk ∈ Msg =⇒ f(m1, · · · , mk) ∈ Msg , if f is a k-ary function symbol in

MF . For function symbols of arity 0 (serving as constants), instead of f() we write f .

The function var : Msg → 2MV returns all variables which occur in a message. We define

var(M) = ∪m∈Mvar (m). A messages m is called closed iff var(m) = ∅. The set of all
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closed messages isMsgc. Let σ be a partial function σ : MV → Msgc. The domain of σ is

denoted by d(σ). For a messagem ∈ Msg , we obtainmσ by simultaneously substituting all

variables v ∈ var (m) ∩ d(σ) inm with their corresponding σ(v).

Below, we describe the behaviour of honest processes. Each honest process is an (ex-

tended) LTS (Σ, s0, A,Tr), with the extra condition that each action a ∈ A is a pair a =

(l, m), also denoted l(m), where l is the action’s label and m ∈ Msg is the action’s pa-

rameter. When a = l(m), we write λ(a) = l and Ω(a) = m. The set of all action labels

of A is defined as λ(A) = ∪a∈Aλ(a). We say that A is closed iff var(Ω(A)) = ∅, where

Ω(A) = ∪a∈AΩ(a).

LTSs describing honest processes are required to be finite, acyclic, single-image. A pro-

tocol P = {p1, · · · , pn} is called non-branching iff all pi are deterministic. Otherwise, P

is called branching. We remark that both branching and non-branching protocols in general

result in non-deterministic LTSs (see the definitions of § 4.1.1).

To interact with the communication media, a process p ∈ P has two designated actions

sendp(〈q, m〉) and recvp(〈p, m〉), in which message m ∈ Msg is produced and consumed,

respectively, while q is the identity of the intended recipient process (so thatm can be routed

to its destination). We may omit the address tag q from 〈q, m〉 when confusion is unlikely.

Apart from send and recv , all actions of honest processes are assumed internal, i.e. not

communicating with other processes.

Internal actions typically denote security claims of protocol participants or their internal

decisions. We assume that all internal actions of process p contain p as a subscript. For

example, secretp(m) can be an internal action performed by p when concluding that m is a

secret. Note that internal actions can also have messages as parameters.

Let p ∈ P be an honest process described by Lp = (Σp, s0p, Ap,Trp). We partition

λ(Ap) into three mutually disjoint sets: Rp, Sp and Ip, where Rp = {recvp}, Sp = {sendp}

are Ip = {λ(ap) | ap is an internal action of p}. Since all the actions of processes are sub-

scripted with their corresponding process names, we haveAp ∩Aq = ∅, for any two different

processes p, q ∈ P . To avoid name clashes, we further assume var(ΩAp
) ∩ var(ΩAq

) = ∅.

Each process p ∈ P is enriched with a special set of internal action labels Bp ⊆ Ip that

model its internal choices. These action labels can behave as Boolean functions and affect

the execution flow of the process, i.e. pmay use the results of these functions to decide which

branch to follow (cf. the check primitive in [CE02]). For each action label inBp we thus have

∀lp ∈ Bp. lp : Msgc → {T, F} (7.1)

Below we definewell-formed processes. Intuitively, a well-formed process can only send,

and decide based on, closed messages in the course of any protocol execution. However, recv

actions may contain, and subsequently instantiate, non-closed parameters. 2

2Our model of protocol participants is in many ways similar to the strand space formalism of [JHG99].
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7.2. DEFINITION. A process p is called well-formed iff the following property holds in any

trace α in Lp:

∀i. λ(αi) 6∈ Rp =⇒ var(Ω(αi)) ⊆ ∪1≤j<ivar (Ω(αj)).

We require all members of P (i.e. honest participants) to be well-formed processes.

Now, we turn to modelling theDY intruder. We do not explicitly modelDY as a separate

process. The semantics of security protocols, described below, implicitly models the be-

haviour of the intruder. As always, DY comprises all malicious participants and, moreover,

controls the entire communication network (cf. § 5). The latter feature implies that all mes-

sages are channelled through the intruder and the intruder is always ready to receive messages

from other processes. We follow the convention thatDY adds all the intercepted messages to

its knowledge, which is a set of messages. We assume that the state of the intruder is uniquely

described with its knowledge set. The DY intruder can also send a closed message, if it can

deduce the message from its knowledge. We do not explicitly define the deduction function

· ⊢ · : Msgc × 2Msgc

→ {T, F}, as our results do not depend on its features, except for its

monotonicity: ∀m ∈ Msgc, X, Y ∈ 2Msgc

. X ⊆ Y =⇒ (X ⊢ m =⇒ Y ⊢ m). Note that

the deduction system of definition 2.2 is indeed monotonic.

In our model, DY is not allowed to perform internal actions by itself. This is because

intruder internal actions in principle do not change the knowledge of the intruder, while they

may change the state of the intruder. This would contradict the aforementioned assumption

that the state of the intruder is an injective function of its knowledge. Intruder’s internal

actions may however be useful in referring to DY’s state, as in, e.g., § 7.5.1.

To circumvent this shortcoming, we can add a dummy process dy to P , which is triggered

only byDY . WhenDY wishes to perform an “internal” action aDY(m), it would instruct dy ,

e.g. by sending a designated message, to perform the corresponding action ady(m) (which is

internal to dy). Otherwise, dy is modelled as an honest process. For convenience, below, we

subscript the internal actions of dy with DY , i.e. we write aDY for ady .

Semantics

We attribute an asynchronousmessage exchange semantics to security protocols, as is defined

below. Let p1 = (Σ1, s01
, A1,Tr1), · · · , pn = (Σn, s0n

, An,Trn) be n honest participants

of protocol P = {p1, · · · , pn}, which runs in the presence of the DY intruder. We let Γ0

denote the initial knowledge of DY .

7.3. DEFINITION. The product of processes p1, · · · , pn andDY , denoted p1⊗· · ·⊗pn⊗DY ,

is an LTS L = (Σ, s0, A,Tr), in which each state s = 〈x0, · · · , xn, Γ, σ〉 contains the state

of each process of P , the intruder knowledge Γ and also a partial function σ : MV → Msgc.

The sets Σ, Tr and A are the smallest sets which satisfy the following conditions:

• Initial state: s0 = 〈s01
, · · · , s0n

, Γ0, ∅〉 ∈ Σ.
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• Internal actions:

If 〈x0, · · · , xi, · · · , xn, Γ, σ〉 ∈ Σ, and ∃m′ ∈ Msg , lpi
∈ Ipi

. (xi, lpi
(m′), x′i) ∈ Tr i,

then 〈x0, · · · , xi, · · · , xn, Γ, σ〉
lpi

(m)
→ 〈x0, · · · , x′i, · · · , xn, Γ, σ〉 ∈ Tr with m =

m′σ. If lpi
∈ Bpi

(see equation 7.1), then it is additionally required that lpi
(m) = T.

Note thatm ∈ Msgc, since pi is well-formed.

• send actions:

If 〈x0, · · · , xi, · · · , xn, Γ, σ〉 ∈ Σ and ∃m′ ∈ Msg. (xi, sendpi
(m′), x′i) ∈ Tr i, then

the transition 〈x0, · · · , xi, · · · , xn, Γ, σ〉
sendpi

(m)
→ 〈x0, · · · , x′i, · · · , xn, Γ ∪ {m}, σ〉

belongs to Tr , withm = m′σ. Note thatm ∈ Msgc, because pi is well-formed.

• recv actions:

If 〈x0, · · · , xi, · · · , xn, Γ, σ〉 ∈ Σ and ∃m′ ∈ Msg . (xi, recvpi
(m′), x′i) ∈ Tr i,

then the transition 〈x0, · · · , xi, · · · , xn, Γ, σ〉
recvpi

(m)
→ 〈x0, · · · , x′i, · · · , xn, Γ, σ′〉

belongs to Tr ifm = m′σ′ ∈ Msgc ∧ Γ ⊢ m. Moreover, σ′ should satisfy σ ⊆ σ′ and

d(σ′) = d(σ) ∪ var (m′).

We fix the notation and write Lf (standing for the full LTS), described by (Σf , s0f , Af ,Trf ),

for the product p1 ⊗ · · · ⊗ pn ⊗ DY . We define the functionK : Σf → 2Msgc

to return the

intruder’s knowledge set at a given state.

Observe that the set of labels of elements ofAf can be partitioned into three disjoint sets:

λ(Af ) = R ∪ S ∪ I, where R = ∪p∈P{recvp}, S = ∪p∈P{sendp} and I = ∪p∈PIp.

We choose to write the elements of S and R in bold face, i.e. send and recv, in contrast

to send and recv . The action recvp is the result of the communication between the intruder

process (which we do not explicitly specify) and p performing a recvp action (and similarly

for sendp and sendp).

We remark that performing a recvp(m) action depends not only on the state of p, but also

on the intruder’s ability to construct the messagem. Whereas for a sendp(m) to happen, no

condition is put on the intruder’s state. Similarly, internal actions of a process can happen

with no conditions on other processes’ or the intruder’s states.

It is worth mentioning thatLf is single-image. This is because all processes pi are single-

image, Api
∩ Apj

= ∅ for i 6= j and, moreover, the communication actions (sendp(m) and

recvp(m)) are uniquely named. 3 As we only consider well-formed processes, Af is closed.

Moreover, Lf is acyclic since all pi are (by definition) acyclic. However, we cannot claim

that Lf is finite based on the finiteness of pi, because the DY intruder is not necessarily

finite. In fact, it can compose an infinite number of messages with consecutively pairing

a single constant value (see § 2.1.1). However, usually model checking algorithms hinge

on the finiteness of the model, and so does our proposed POR algorithm. Therefore, in the

3A single recvp(〈p, v〉) action in p, with v ∈ MV , can produce several recvp actions in Lf . These will

however have distinct closed messages assigned to v.
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following discussions we assume that Lf is finite (for a complementary discussion, see § 7.4

on POR for constraint solving approaches). In current practice of model checking security

protocols, finiteness of the model can be achieved by, for instance, assuming typed messages

(see § 4.1.2).

7.2.2 State space generation

A state space generation algorithm for security protocols is providedwith the LTSs p1, · · · , pn

as input specification, and generates Lf (see definition 7.3), as output.

Algorithm 7.1 shows a typical generation algorithm for finite LTSs (in our model, security

protocols are assumed to result in finite LTSs, see § 7.2.1). Here, we confine to the traversal

strategy and abstract away from generating the output (file). In algorithm 7.1,Open is the set

of visited, but not yet expanded states, and Closed is the set of visited and expanded states.

When Open is implemented as a queue, the resulting traversal strategy is breadth-first, while

implementingOpen as a stack results in a depth-first strategy. Definition 7.2.1 determines s0

and the value of en for each state, in the given specification (recall the notations of § 4.1.1).

1: Open := ∅;Closed := ∅

2: Open.insert(s0)

3: while Open 6= ∅ do

4: s := Open.extract

5: Closed .insert(s)

6: for all a ∈ en(s) do

7: if a(s) 6∈ Closed ∧ a(s) 6∈ Open then

8: Open.insert(a(s))

Algorithm 7.1: State space generation

7.2.3 Partial order reduction

The main principle of POR is to exploit the commutativity of concurrently executed actions

in order to generate only a sufficient fraction of the state space. For general introductions to

POR see [PPH97, CGP00]. Here, we mainly follow the ample set method [Pel97, Pel98].

A POR algorithmprescribes a method to select ample(s) at each state s, with ample(s) ⊆

en(s), such that exploring only elements of ample(s), instead of the entire en(s), is enough

to preserve a certain class of desired properties. This corresponds to changing line 6 of

algorithm 7.1 to for all a ∈ ample(s) do.

For a given specification, let L and L′ be the full LTS generated by an exhaustive gener-

ation algorithm (e.g. algorithm 7.1) and the LTS produced by a POR algorithm por, respec-

tively. For a set of trace propertiesΦ, we say por preservesΦ iff ∀φ ∈ Φ. L |= φ ⇐⇒ L′ |=
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φ. We aim at the trace properties that are expressible in LTL−X, as the class of properties

preserved by our POR algorithm. Below, we describe the syntax of LTL−X properties.

7.4. DEFINITION. Given a set of actions AP , which at least contains the symbolic action⊤,

the set of formulae of LTL is inductively defined as: 4

• Every member of AP belongs to LTL.

• If φ1 and φ2 belong to LTL, then so do ¬φ1, φ1 ∨ φ2, Xφ1 and φ1Uφ2.

The connectives∧ and =⇒ are defined in the standard way. The formula φ1Uφ2, intuitively,

expresses that eventually φ2 will become true and, before that, property φ1 holds all the time.

As a convention, we write ♦φ for⊤Uφ and �φ for ¬♦(¬φ).

The semantics of LTL−X formulae is given below. We write L, s |= φ if φ, a formula

expressed in LTL, holds in all traces α ∈ π(s) in LTS L. When L, s0 |= φ, we may write

L |= φ. We simply write s |= φ when L is clear from the context. The relation |= is

inductively defined below. For trace α = α1 · · ·αi · · · , we define αi∞ = αi · · · , when i is

less than or equal to the length of α.

• L, α |= a, with a ∈ AP , iff α1 = a or a = ⊤.

• L, α |= ¬φ iff ¬(L, α |= φ).

• L, α |= φ1 ∨ φ2 iff L, α |= φ or L, α |= φ2.

• L, α |= Xφ iff L, α2∞ |= φ.

• L, α |= φ1Uφ2 iff ∃k. L, αk∞ |= φ2 ∧ ∀j.1 ≤ j < k =⇒ L, αj∞ |= φ1.
5

The logicLTL−X is defined by removing the next time operatorX fromLTL. This operator

generally defies effective POR [Pel97].

We continue with some preliminary definitions. Consider an arbitrary LTS L. For each

trace α = α1 · α2 · · · in L, we label the state sα
i with αi+1 (recall the definitions of § 4.1.1).

The label assigned to state s is denoted by label(s). An action a is called invisible with

respect to a setAP ′ ⊆ AP iff for each s and s′ such that s′ = a(s), we have label(s)∩AP ′ =

label(s′)∩AP ′. Otherwise, a is called visible. If a 6∈ AP , then clearly a is an invisible action

for the class of properties expressible in LTL−X. An independence relation IND ⊆ A × A

is the largest anti-reflexive relation, such that for each state s and each (a, a′) ∈ IND , if

s1 = a(s) and s′1 = a′(s), then ∃s2. s2 = a′(s1) ∧ s2 = a(s′1). The dependence relation

DEP is defined as DEP = A × A \ IND . Two actions a and a′ are called dependent iff

(a, a′) ∈ DEP . Nowwe recall a well-known theorem onLTL−X-preserving POR in general

LTSs (e.g. see [Pel97]).

4We note that LTL formulae are originally defined on Kripke structures, where AP represents a set of atomic

propositions attributed to states. We consider an action based variant of LTL, as our models are LTSs, rather than

Kripke structures. Such translations have been well studied in the literature [NV95, Pel97, Gia99].
5For U and X to be well-defined, the transition relation of L has to be total.
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7.1. THEOREM. If the ample set of a POR algorithm satisfies the following properties, then

the POR algorithm preserves LTL−X.

C0. ample(s) ⊆ en(s); and ample(s) = ∅ only if en(s) = ∅.

C1. Along every trace in the full state space that starts at s, the following condition holds:

An action (outside ample(s)) that is dependent on an action in ample(s) cannot be

executed without an action in ample(s) occurring first.

C2. If ample(s) 6= en(s), then every a ∈ ample(s) is invisible.

C3. No cycle contains a state in which some action a is enabled, but is never included in

ample(s) for any state s on the cycle.

Intuitively, C0 is a sanity check. Note that C1–C3 do not prevent selecting ∀s. ample(s) = ∅,

while this trivial case is excluded by C0. Condition C1, roughly speaking, states that in any

trace α ∈ π(s), in the full LTS, if α1 6∈ ample(s), then the actions of α can be permutated

such that the resulting trace starts with an action in ample(s) and, moreover, belongs to

π(s). See also [Pel97, Pel98] for intuitive explanations of C1. Below, via an example, we

informally describe the idea behind the conditions C2 and C3.

7.1. EXAMPLE. Figure 7.1 shows L1, in which actions ap and bq are independent. We are

interested in property φ = ♦ap. Clearly, L1 |= φ.

bq

ap

ap

bq

Figure 7.1: LTS L1 of example 7.1.

Intuitively, since ap and bq are independent, if only one of them is explored at the initial

state, the resulting LTS also satisfies φ. We can thus assign ample(s0) = bq.

Now, consider L2 of figure 7.2, in which ap and bq are indeed independent. Clearly, ex-

ploring only bq at s0 results in an LTS in which φ does not hold, althoughL2 |= φ. Condition

C3 prevents this choice for ample(s0) in L2.

bq

bq

ap

Figure 7.2: LTS L2 of example 7.1.

This ample set is also not suitable in L1 when we are interested in property φ′ = ♦(bq ∧

♦ap). In this case, C2 prevents us from exploring only bq at s0, since bq is visible in φ′.
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We use theorem 7.1 to prove that our proposed POR algorithm preserves LTL−X prop-

erties. Regarding Lf , we assume that λ(AP) ⊆ R ∪ I, i.e. only recv actions and internal

actions can explicitly be referred to in the properties. The set of visible internal action labels

is denoted byV, i.e.V = I ∩ λ(AP ).

7.3 POR for security protocols

In this section, first, we briefly describe the POR algorithm of [CJM00a]. This is a POR

algorithm tailored for verifying security-related properties of non-branching protocols, such

as authentication and key distribution protocols. Next, we extend this algorithm to cover

branching security protocols, such as optimistic FE protocols.

7.3.1 POR for non-branching security protocols

In [CJM00a] it is observed that the knowledge of theDY intruder is non-decreasing, and with

more knowledge more states are reachable to the intruder. This intuitively implies that send

actions, which typically increase the intruder’s knowledge, can be prioritised over other ac-

tions in security protocols. This is the heart of the POR algorithm for non-branching security

protocols that is proposed in [CJM00a]. The set of actions to be explored at each state s,

namely ample(s), is chosen in [CJM00a] as follows:

• If en(s) contains an invisible internal action, then ample(s) is a singleton containing

an arbitrary invisible action picked from en(s).

• Suppose en(s) does not contain an invisible internal action, but does contain a send

action. Then, ample(s) is a singleton containing an arbitrary send action of en(s).

• If en(s) does not contain an invisible action or a send action, then ample(s) = en(s).

Via an example we give an informal reason why recv actions cannot be prioritised over send

actions.

7.2. EXAMPLE. Figure 7.3 depicts processes p and q and the product p ⊗ q ⊗ DY , with

Γ0 = {t0}. There, it is assumed that f ∈ MF and v ∈ MV may only be instantiated

with closed messages of a certain type t. The only members of t are t0 and t1. We are

interested in checking the LTL−X property φ = ♦sendp(f(t1)) in this system. Note that if

the POR algorithm prioritises recvp(t0) action over sendq(t1), then it would not preserve

φ. Similarly, none of the recvp(t0) and recvp(t1) may be prioritised over the other one.

Here, a key observation is that possiblyK(s) ⊂ K(s′), when s′ is reached from s by a send

action. Since ⊢ is monotonic, generally more recv actions can be instantiated at s′ than s.

Note that since the participating processes are assumed to be acyclic, no infinite sequence
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qp

recvp(v)

sendp(f(v))

sendq(t1)

recvp(t0)

sendq(t1)sendq(t1)

recvp(t0)

sendp(f(t1))

sendp(f(t0))

sendp(f(t0))

sendq(t1)

recvp(t1)

Figure 7.3: LTSs of example 7.2.

of send actions is possible. This is crucial for the correctness of this algorithm, because,

otherwise, the algorithm would run into such a sequence and indefinitely ignore exploring

other possibilities.

To specify the requirements of security protocols, Clarke et al. consider a first order logic

with a past time modal operator, where quantifiers range over finite sets of protocol partici-

pants, etc. (quantifiers thus serve merely as syntactic shorthands). They augment this logic

with explicit epistemic operators. Their POR algorithm is shown to preserve formulae of this

logic. For a comparison of the logic of [CJM00a] with LTL−X, see § 7.6.

7.3.2 POR for branching security protocols

Motivations

The POR algorithm of [CJM00a] is not suitable for branching security protocols. Examples

of branching security protocols are various optimistic fair exchange protocols, see § 2.2.

Participants of these protocols can usually choose between multiple send , recv and internal

actions. These are therefore modelled as finite, acyclic, single-image, but non-deterministic,

processes. Taking only one send from a process into the ample set is not safe in these cases,

because it can in principle disable other actions of that process. The following example

clarifies the idea.

7.3. EXAMPLE. Figure 7.4 shows processes p and q, along with the LTS of p ⊗ q ⊗ DY ,

where Γ0 = ∅. Note that the dotted transitions and states will never be explored, if the POR

algorithm of [CJM00a] is used. In this case, undesirably, it is not detected that the intruder

can in fact learn t′, hence missing a potential security breach.



7.3. POR for security protocols 109

sendq(〈p, t〉)

qp

sendq(〈p, t〉)

sendp(〈q, t〉)

sendp(〈q, t〉)

sendq(〈p, t〉)
recvp(〈p, t〉)

sendp(〈q, t′〉)
recvp(〈p, t〉)

sendp(〈q, t′〉)

sendp(〈q, t〉)

Figure 7.4: The LTSs of example 7.3.

This motivates extending the POR algorithm of [CJM00a]. Below, we introduce our POR

algorithm for branching security protocols. Next, we show that the proposed POR algorithm

indeed preserves LTL−X properties.

POR algorithm

Recall that p1⊗· · ·⊗pn⊗DY is described by the LTS Lf = (Σf , s0f , Af ,Trf ). We follow

the idea of [CJM00a]: We prioritise transitions with action labels of the setVc ∪S over those

of R ∪ V, where Vc = I \ V. However, since processes can branch in our model, if one

action of process p is taken into the ample set, then all other actions of p enabled at that state

should be taken as well. Hence, actions ofVc ∪ S can be prioritised over others only if their

corresponding process does not perform any action from V ∪ R at that state. This raises a

new problem, which does not appear in non-branching protocols. The problem is described

below.

Let p be a process and, consider the following two scenarios: First, the case where p

can only perform one sendp action at state s ∈ Σp. Second, the case where p can perform

sendp and recvp at state s, but the recvp action of p is not present inLf as recvp, because the

intruder does not have enough knowledge to compose that message (cf. definition 7.3). These

two scenarios are represented in exactly the same way in Lf ,
6 while the POR algorithm has

to distinguish them. This is because in the first scenario POR can prioritise p’s action over

other actions, while in the second scenario it cannot.

6The problem that is discussed here is specific to explicit state space generation and is in principle not relevant

to constraint solving approaches, cf. § 7.4.
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A solution to this problem is to statically pre-process the LTSs of the participating pro-

cesses by adding a dummy κp action as an always-available alternative to recvp actions in

every LTS p. We assume that κp actions are solely used for this purpose in the specification.

7.5. DEFINITION. Given a process p = (Σp, s0p
, Ap,Trp), a κ-translation of p is an LTS

pκ = (Σp, s0p
, Ap ∪ {κp}, addκ(Trp)), where addκ is defined as addκ(∅) = ∅ and

addκ({(s, a, s′)} ∪ T ) =

{

{(s, κp, s
′} ∪ {(s, a, s′)} ∪ addκ(T ) if λ(a) = recvp

{(s, a, s′)} ∪ addκ(T ) otherwise

The internal actions κp can subsequently be used to detect the existence of non-enabled recvp

actions at each state, even when the corresponding recvp action is not present in Lf . This

intermediate translation step is also required to relate the reduced LTS to Lf , as is described

below.

Given a specification of a set of honest processes p1, · · · , pn, our POR algorithm is per-

formed in two steps. We first construct pκ
1 , · · · , pκ

n, following definition 7.5. Next, an ample

set method is used to generate a sufficient fragment of Lκ = pκ
1 ⊗ · · · ⊗ pκ

n ⊗DY . We prove

that the final result of these two steps is stuttering equivalent to the full LTS Lf , meaning that

it preserves LTL−X properties (see, e.g., [CGP00]).

In the following discussions, we write Lκ = (Σκ, sκ
0 , Aκ,Trκ). Observe that Σκ = Σf ,

sκ
0 = s0f and Aκ = Af ∪ {κp | p ∈ P} and, given Trf , definition 7.5 is used to derive Trκ.

We can thus partition λ(Aκ) into three disjoint sets: λ(Aκ) = I ∪ S ∪ Rκ, where Rκ =

R ∪ {κp | p ∈ P}. All κ actions are added to R, since these actions have to be treated

as (artificial) recv actions. We define the projection function ℵ : Aκ → P as ℵ(a) = p if

a = κp or a = ap(m) for somem ∈ Ω(Aκ). Intuitively, ℵ(a), with a being an action, returns

the identity of the process which performs a.

7.6. DEFINITION. The relation ∼⊆ Aκ × Aκ is defined as ∀a, a′ ∈ Aκ. a ∼ a′ ⇐⇒

ℵ(a) = ℵ(a′).

Clearly ∼ is an equivalence relation, and thus partitions Aκ into equivalence classes, such

that each class contains only actions performed by one particular process. The set of all

equivalence classes in X ⊆ Aκ is the quotient set ofX by ∼, and is denoted by X
∼ .

For action a ∈ Aκ the equivalence class [a] is defined as [a] = {a′ ∈ Aκ | a ∼ a′}. At

state s, we write [a]s = [a]∩ en(s). LetX ⊆ Aκ. We define V(X) = {a ∈ X | λ(a) ∈ V}.

Intuitively, V(X) consists of all the visible internal actions which occur in X . The function

R is similarly defined as R(X) = {a ∈ X | λ(a) ∈ Rκ} (recall that κp actions belong to

Rκ). Functions I and S are defined likewise. We let ∂κ(X) = X \ {κp | p ∈ P}.

Before defining which requirements the ample set in POR for branching security proto-

cols has to satisfy, we note that definition 7.6 can be applied to Lf , simply becauseAf ⊆ Aκ.

As mentioned earlier, our POR algorithm receives pκ
1 , · · · , pκ

n as input, so the conditions

which are checked for ample set refer to this setting (having Lκ in mind). Nevertheless, the

final LTL−X preserving result is proved with regard to Lf as the full LTS (see theorem 7.2).
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7.7. DEFINITION. At each state s, the set of actions to explore, i.e. ample(s), is constructed

in two phases. First, we construct an ample0(s) set that satisfies the following requirements:

r0. ample0(s) ⊆ en(s); and ample0(s) = ∅ =⇒ en(s) = ∅.

r1. For all a ∈ en(s), if a ∈ ample0(s), then [a]s ⊆ ample0(s).

r2. V(ample0(s)) 6= ∅ =⇒ en(s) ⊆ ample0(s).

r3. R(ample0(s)) 6= ∅ =⇒ en(s) ⊆ ample0(s).

And in the second phase, we define ample(s) = ∂κ(ample0(s)).

Requirement r0 is a sanity check, cf. condition C0 in theorem 7.1. Requirement r1 states

that if one action of process p is explored, all other enabled actions of p have to be explored

as well, since, otherwise, they may disable each other. This requirement was not included

in [CJM00a] that only deals with non-branching protocols. Requirements r2 and r3, similar

to [CJM00a], prevent prioritising visible internal actions and recv actions over any other

action, respectively. As κ actions are merely an artificial apparatus to detect the existence of

recv actions in case the corresponding recv actions are not present in the state space, there

is no reason to explore κ actions. Therefore, after constructing ample0, all κ actions are

removed from further explorations.

Algorithm 7.2 shows constructing an ample set that meets the requirements of defini-

tion 7.7. We emphasise that this algorithm receives pκ
1 , · · · , pκ

n as its input.

1: Open := ∅;Closed := ∅

2: Open.insert(s0)

3: while Open 6= ∅ do

4: s := Open.extract

5: Closed .insert(s)

6: Construct
en(s)
∼ (see definition 7.6) and name its elements as c1, . . . , cℓ.

7: T := {ci, i ∈ {1, . . . , ℓ} | V(ci) ∪ R(ci) = ∅}

8: if T 6= ∅ then

9: Pick a c ∈ T

10: ample(s) := c

11: else if T = ∅ then

12: ample(s) := ∂κ(en(s))

13: for all a ∈ ample(s) do

14: if a(s) 6∈ Closed ∧ a(s) 6∈ Open then

15: Open.insert(a(s))

Algorithm 7.2: POR for branching security protocols
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Preserving LTL−X properties

Below, we show that for branching security protocols any POR algorithm that meets the

requirements of definition 7.7 preserves LTL−X properties. We start with a few auxiliary

lemmas.

7.1. LEMMA. In Lf , and similarly in Lκ, For any two actions a and a′, we have [a] 6=

[a′] =⇒ (a, a′) ∈ IND .

Proof: Since ℵ(a) 6= ℵ(a′), clearly a and a′ are performed by different processes. Let

us assume that a, a′ ∈ en(s), for some s ∈ Σf . We distinguish the following cases:

• λ(a), λ(a′) ∈ I ∪ S: In this case, if s
a′

→ s1, then a ∈ en(s1). Similarly, if s
a
→ s2,

then a′ ∈ en(s2). These clearly follow from definition 7.3.

• λ(a), λ(a′) ∈ I ∪R: Similar to the previous case.

• λ(a) ∈ S and λ(a′) ∈ R: Note that K(s) ⊢ Ω(a′). Therefore, the intruder does

not require the information contained in Ω(a) to construct Ω(a′). Otherwise, these

would not be enabled in the same state (recall that a, a′ ∈ en(s)). If s
a′

→ s1, then

definition 7.3 implies that a ∈ en(s1). Now, we show that if s
a
→ s2, then a′ ∈ en(s2).

Observe that K(s) ⊆ K(s2), therefore, according to the monotonicity of ⊢, we have

K(s2) ⊢ Ω(a′), hence a′ ∈ en(s2).

Moreover, if s
a.a′

→ s′ and s
a′.a
→ s′′, then s′ = s′′. This is because performing a has no

effect on the state of the process that performs a′ and vice versa, as processes do not directly

communicate with each other, but only via the intruder. This completes the proof.

7.2. LEMMA. Assume R([a]s) = ∅ in Lκ. Then, in Lf , s
a′

→ s′ with [a] 6= [a′], implies

[a]s = [a]s′ .

Proof: Consider Lf . Since ℵ(a) 6= ℵ(a′), according to lemma 7.1, ∀b ∈ [a]. (b, a′) ∈

IND , and consequently, for any b ∈ [a], s
b
→ s1 and s

a′

→ s′ imply that ∃s2. s′
b
→ s2.

Therefore [a]s ⊆ [a]s′ . Now, we need to show that [a]s′ ⊆ [a]s. Note that the enabledness of

actions of I andS only depend on the state of the process performing them (see definition 7.3).

As the state of ℵ(a) is the same in s and s′ (because s
a′

→ s′ and ℵ(a) 6= ℵ(a′)), I([a]s) =

I([a]s′) and similarly for S. However, actions of R also depend on the state of the intruder,

i.e. when a process is waiting to receive a message, the intruder’s knowledge determines

what messages, if any, can be sent to that process. Here, R([a]s) = ∅ in Lκ implies that in

particular κp 6∈ en(s), with p = ℵ(a), in Lκ (recall that ∀p ∈ P . κp ∈ Rκ in Lκ). Therefore,

κp is not enabled at s
′ in Lκ, as well. As a result, R([a]s′) = ∅ in Lκ. This implies that also

in Lf , R([a]s′ ) = ∅, completing the proof.
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7.1. PROPOSITION. Let a ∈ en(s) (in Lf and Lκ) and assume that R([a]s) = ∅ in Lκ. For

all traces α = α1 · · ·αi · · · , such that α ∈ π(s) in Lf , we have

∀i.
(

(a, αi) ∈ DEP =⇒ ∃j ≤ i. αj ∈ [a]s

)

Proof: Let (αi, a) ∈ DEP , for some i. According to lemma 7.1, (a, αi) ∈ DEP =⇒

αi ∈ [a]. Two cases are possible here:

• If i = 1, then obviously letting j = i completes the proof.

• If i > 1, assume ∀j < i. αj 6∈ [a]s. We prove that then αi ∈ [a]s. The assumption

in particular implies that α1 6∈ [a]s. Since α1 ∈ en(s), we deduce that α1 6∈ [a].

Therefore, according to lemma 7.1, (a, α1) ∈ IND . As R([a]s) = ∅ in Lκ, lemma 7.2

implies that [a]s = [a]sα
1
in Lf (recall that the sequence of states associated to α is

denoted sα, see § 4.1.1). Repeating this argument, we can show that [a]sα
1

= [a]sα
2
, . . .,

and finally [a]sα
i−1

= [a]sα
i
in Lf . Hence [a]s = [a]sα

i
. Since αi ∈ [a], and clearly

αi ∈ [a]sα
i
, it follows that αi ∈ [a]s.

This completes our proof.

Now we are ready to prove the main theorem about our POR algorithm. Given is specifi-

cation of a branching security protocol p1, · · · , pn, with Lf = p1 ⊗ · · · ⊗ pn ⊗DY . Let por

be a POR algorithm in which ample sets satisfy the conditions of definition 7.7. We write

Lpor for the LTS generated by applying por on pκ
1 , · · · , pκ

n.

7.2. THEOREM. ∀φ ∈ LTL−X. Lf |= φ ⇐⇒ Lpor |= φ.

Proof: We show that the conditions C0, C1, C2 and C3 of theorem 7.1 hold for our

proposed ample set. Condition C0 holds because of r0. Condition C1 holds because of

proposition 7.1. Condition C2 holds because of r2 and r3. Recall that we assume that only

members of V ∪ R, which is equivalent to V ∪ ∂κ(Rκ), appear in the properties being

verified. Condition C3 holds simply because we consider acyclic security protocols.

7.4 POR in constraint solving

Constraint solving for analysing security protocols has mostly been used in verifying non-

branching protocols. However, recently the constraint solving approach of [MS01] has been

extended to a large class of branching security protocols, namely contract signing proto-

cols [KK05]. In the previous sections we focused on POR algorithms for explicit state model

checking settings. Below we sketch how our POR algorithm can be used in the constraint

solving setting.
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We first cast the constraint solving approaches of [MS01] and [KK05] to our formalism.

Given a specification p1, · · · , pn, we construct the product of the LTSs p1 × · · · × pn, where

p × q is defined in the following.

7.8. DEFINITION. Given p = (Σp, s0p
, Ap,Trp) and q = (Σq, s0q

, Aq,Trq), p × q is the

LTS (Σp × Σq, (s0p
, s0q

), Ap ∪ Aq,Trp×q), where Trp×q is

Trp×q = {(sp, sq)
a
→ (s′p, sq) | (sp, a, s′p) ∈ Trp} ∪

{(sp, sq)
a
→ (sp, s

′
q) | (sq, a, s′q) ∈ Trq}

Note that p and q do not communicate directly (only indirectly via the intruder). The resulting

p × q can be seen as an uninstantiated state space (i.e. the actions of Ap×q contain messages

with uninstantiated variables). In constraint solving approaches, every maximal trace of p1 ×

· · ·×pn is examined by a constraint solving algorithmCS to decide whetherDY can trick the

processes of P to execute this path and, if so, whether it constitutes an attack or not. We note

that algorithm 7.2 can readily be used in generating a sufficient fragment of the uninstantiated

state space p1 × · · · × pn, when the depth-first exploration strategy is adopted.

We remark that in this scenario the infinitely branching behaviour of the DY intruder

is captured in the CS phase, cf. [MS01, KK05]. Moreover, calculating κ-translations can

altogether be omitted from the POR algorithm in this setting. This is because in the generation

phase, no recvp action will be hidden as a result of the intruder’s lack of knowledge: The

intruder’s abilities are modelled in the later phase of CS .

For other optimisation techniques regarding constraint solving for security protocols we

refer to [MS01, CE02, BMV03].

7.5 Experimental results

The proposed POR algorithm (algorithm 7.2) only relies on local tests, namely ample(s) can

be constructed with inspecting en(s) at each state, and no cycle detection mechanism is re-

quired in our setting. This implies that a distributed implementation of the algorithm can be

very efficient, as no POR-specific inter-workstation communications would be required. Be-

low, we report some experimental results based on a distributed breadth-first implementation

of algorithm 7.2, hereafter call DPOR, in the distributed µCRL tool-set [BFG+01, BCL+07].

In the distributed setting, usually, a number of client machines work together to generate

the state space, while a manager process keeps track of their progress. These machines are

connected with an asynchronous communication network. Algorithm 7.4 shows the part of

our DPOR algorithm which is ran by each client machine. The manager decides to terminate

the generation, when no new states are found. The code for the manager process is presented

in algorithm 7.3. We refer to [Wij07] for details of distributed state space generation.

In algorithm 7.4, we have included standard constructs for distributed state space gen-

eration: Each client process has a unique identity ID and maintains its own local vari-
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Require: set of IDs

1: repeat

2: NextLevel := F

3: for all ID ∈ set of IDs do

4: RecvFromClientNewStatesFound(ID, v)

5: NextLevel := NextLevel ∨ v

6: if ¬NextLevel then

7: SendToClients(finish)

8: else

9: SendToClients(¬finish)

10: until ¬NextLevel

Algorithm 7.3: Manager process in DPOR

ables Open , Closed , etc. Client processes are also provided with a hash function # that

assigns to each state a unique owner, which is the process responsible for its expansion.

The procedure SendToClientsNextLevel(S), with S being a set of states, sends the states

of S to their corresponding owners (determined by #). Conversely, the procedure S :=

ReceiveFromClientsNextLevel() receives from all clients the states that are to be processed

by the current client and returns them in the set S. The procedures RecvFromMgr() and

SendToMgrNewStatesFound(ID, |S| > 0) are used to communicate with the manager. The

procedure RecvFromMgr() asks the manager if the client should continue the generation and

SendToMgrNewStatesFound sends a Boolean value (i.e. if |S| > 0) to the manager. This

informs the manager whether the client has found any new state in the current round or not.

The counterparts of these commands appear in the manager process, algorithm 7.3. Note that,

via communicating with the manager, the clients synchronise their progress.

We remark that the purpose of using theClosed set in algorithm 7.4 is to avoid state revis-

its, and it is not needed to guarantee the termination of the algorithm, if the LTSs are acyclic.

Therefore, this set can gradually be removed from memory and be stored on high latency

media (e.g. disks), in case memory limits are reached, without endangering the termination

of the algorithm. For similar approaches to memory management see [BLP03, HW06].

7.5.1 A case study

To demonstrate the effectiveness of the proposed POR algorithm we have modelled a Digital

Rights Management (DRM) protocol, described in detail in [TKJ07], see also § 6.3. Below,

we briefly describe this protocol and our experimental results using an implementation of

DPOR algorithm 7.4 in the distributed µCRL tool-set.

The protocol of [TKJ07] comprises a finite set of trusted content rendering devicesC and

a finite set of trusted entities T . The goal of the protocol is to provide a secure environment

for fair exchange of digital items among the members of C in peer-to-peer exchanges, and
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Require: ID , # : Σ → set of IDs

1: Open := ∅;Closed := ∅

2: if #(s0) = ID then

3: Open := {s0}

4: repeat

5: Next := ∅

6: for all s ∈ Open \ Closed do

7: Construct
en(s)
∼ (see definition 7.6) and name its elements as c1, . . . , cℓ.

8: T := {ci, i ∈ {1, . . . , ℓ} | V(ci) ∪ R(ci) = ∅}

9: if T 6= ∅ then

10: Pick a c ∈ T

11: ample(s) := c

12: else if T = ∅ then

13: ample(s) := ∂κ(en(s))

14: for all a ∈ ample(s) do

15: Next := Next ∪ a(s)

16: SendToMgrNewStatesFound(ID, |Next | > 0)

17: command := RecvFromMgr()

18: if command 6= finish then

19: SendToClientsNextLevel(Next)

20: Closed := Closed ∪ Open

21: Open := ReceiveFromClientsNextLevel()

22: until command = finish

Algorithm 7.4: Breadth-first DPOR for branching security protocols

between a member of C and a member of T in the so called direct purchases. The attacker is

external to C ∪T , as these are all trusted. It may however own some of the content rendering

devices, and thus deliberately operate them. In case of malicious acts or excessive delays, the

wronged (trusted) device can resort to one of the trusted entities (hence having choice points).

The finite set D contains the items available to the trusted devices in the protocol. Each item

is bundled with a right declaring the terms of use of that particular item. The set of rights is

denoted R. To keep the state space finite, each c ∈ C has access to a finite set Nc of nonces

to start fresh exchanges.

Design goals

The design goals of the protocol include secrecy of the exchanged contents, resisting content

masquerading and providing fair exchange [TKJ07]. Below, we briefly explain and, then,
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express these properties in LTL−X.
7

• Secrecy requires that no element of D is ever revealed to the intruder. We thus allow

the intruder to perform an internal action revealDY(d), 8 once d ∈ D can be derived

from its knowledge, i.e. when Γ(s) ⊢ d, this action becomes available to the intruder,

see § 7.2.1. The following property formalises secrecy.

∀d ∈ D . ¬♦(revealDY(d))

Note that since D is finite, ∀d ∈ D can be rewritten into a finite number of conjunc-

tions. Therefore, ∀ is merely a syntactic shorthand and does not go beyond LTL−X.

• Content masquerading happens when content d1 is passed off to a trusted device as

content d2, with d1 6= d2. A way to resist content masquerading is to ensure that if a

trusted device does not request d, then the intruder can never feed it with d.

∀d ∈ D , p ∈ P . ¬ ((¬requestp(d))Uupdatep(d))

Actions requestp and updatep represent the points where p requests a content and

updates its local set of right-content bundles with a received content, respectively.

• Fairness in exchange requires that if p, a trusted device, pays q for a content, it will

eventually receive it (see also § 2.2). Below, price(d), with d ∈ D , is the price tag

associated with d. The term p.q.price(d).d denotes a payment order from p to q, for

the amount price(d), related to the exchange of item d. The actions make and cash

have their intuitive meaning.

∀d ∈ D , p, q ∈ P . �(makep(p.q.price(d).d)) =⇒

¬♦cashq(p.q.price(d).d)

∨ ♦updatep(d))

The setting of the experiment

In our experiments, we have used machines with a single 64 bit Athlon 2.2 GHz CPU and 1

GB RAM, running Linux FEDORA CORE 6, connected with Gigabit Ethernet (1Gbps). In the

following, measured time refers to elapsed time (wall clock time), that is the time taken from

the beginning till the end of an experiment. Therefore, this is not only computation time,

but also reflects periods of waiting, etc. The experiments were performed using the µCRL

tool-set version 2.17.13, which implements the DPOR algorithm. 9

7To avoid cluttering the properties, various cases where a content is traded with a peer device or a trusted provider,

or when an intruder-fabricated right is attached to a content, are ignored here. A detailed analysis would also contain

resisting right masquerading, etc., cf. [TKJ07].
8Compare with lemma 6.1.
9The µCRL tool-set is available at http://www.cwi.nl/˜mcrl/, under the GNU GPL conditions.
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Table 7.1: Effectiveness of DPOR. (Time is in min:sec format.)

Instance Exhaustive DPOR Reduction

|Nc| |T | # States Time # States Time in # States in Time

1 2 89,155 02:27.74 45,871 01:56.49 48.5% 21.2%

2 2 277,459 06:23.82 145,559 05:21.97 47.5% 16.1%

1 3 2,674,940 52:47.48 1,082,122 34:09.28 59.5% 35.3%

2 3 11,896,384 269:08.64 4,794,745 169:40.64 59.7% 36.9%

Effectiveness of DPOR

In this section, we discuss the effectiveness of our DPOR algorithm by comparing the number

of states and generation time when using the DPOR algorithm versus exhaustive distributed

breadth-first state space generation (both implemented in the µCRL tool-set). In table 7.1,

we consider four instances of the DRM protocol described above, with|C | = 2 and |D | =

|R| = 1. The number of fresh nonces available to each rendering device is denoted by |Nc|,

and |T | denotes the number of concurrent trusted party processes. The time column shows

the amount of time required by 16 machines (15 clients, and one manager) to complete the

generation task. It is worth mentioning that state expansion is in general time consuming in

security protocols, as it involves matching the messages that protocol participants can receive

to the messages that the attacker can construct.

In table 7.1, we observe that for large state spaces approximately a 60% reduction in

the number of states is achieved. Although DPOR loads the generation algorithm with extra

computation, the gained reduction definitely compensates for it, as is evident from the time

columns.

Some common characteristics of these state spaces are reported in table 7.2. Given a

finite LTS L = (Σ, s0, A,Tr ), for s ∈ Σ, we define d(s) = mini{(s0, s) ∈→i}, where

→i=→ × →i−1 and →1= ∪a∈A
a
→ (see the notations of § 4.1.1). The depth of L is

max{d(s) | s ∈ Σ}. The average fan-out of L is computed as |Tr |
|Σ| . Note that the depth

column appears once in table 7.2 because our POR algorithm does not change the depth. We

observe that in all the experiments, the average fan-out of the reduced state space is less than

the full one. See, e.g., [Pel04] on how these parameters correlate to the time and memory

typically used in state space generation.

The results of table 7.1 unfortunately cannot readily be compared with existing tools

implementing POR for security protocols, e.g. [CJM00a, CM05]. This is because these tools

do not deal with branching security protocols. Going back to non-branching protocols, our

algorithm coincides with the algorithm of [CJM00a]. We expect the algorithm of [CM05] to

yield more reductions, compared to our algorithm, when analysing non-branching protocols.

This is because the algorithm in [CM05] has been optimised for a rather narrow subset of

LTL−X, which is the class of properties preserved by our POR algorithm. See also § 7.6.
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Table 7.2: State space characteristics.

Instance Depth Average Fan-out

|Nc| |T | Full state space Reduced state space

1 2 24 2.85 1.40

2 2 36 2.74 1.38

1 3 27 3.44 1.48

2 3 47 3.36 1.46

Table 7.3: Scalability of DPOR. (Time is in min:sec format.)

``````````̀Instance

# Machines
1 4 8 16

|Nc| |T | Time Time Time Time

1 2 11:56.44 04:45.27 03:16.72 01:56.49

2 2 43:14.15 15:54.48 10:15.75 05:21.97

1 3 374:33.38 123:44.43 71:45.94 34:09.28

2 3 2676:34.70 1286:15.36 356:18.81 168:05.45

Scalability of DPOR

In table 7.3, we compare the generation time required by DPOR using different numbers of

machines. As was explained earlier, since the DPOR algorithm does not require extra com-

munications to synchronise on the POR pruning part, we expect it to scale up well. Figure 7.5

shows the results of this table on log-scale graphs. These measurements indeed confirm that

DPOR exhibits reasonable scalability.

A phenomenon that can be observed in the case of (|Nc|, |T |) = (2, 3), is that the speed-

up factor 10 for 8 and 16 machines experiments are absurdly high. Although reasoning based

on the speed-up factor has some defects (e.g. see [Cro94]), nonetheless, we find it illuminat-

ing to discuss why this irregularity appears.

Through the experiments on the (2,3) case, we witnessed that when using 1 and 4 ma-

chines, the available RAM of the client machines is not enough (distributed implementation

is often motivated because of memory limitations of single machines). Therefore, the oper-

ating system starts swapping, i.e. using high-latency disk memory besides RAM. Therefore,

these experiments take much more time than expected. For instance, the reduced state space

of the (2,3) case is roughly 5 times larger than the reduced state space of the (1,3) case (see

table 7.1), whereas table 7.3 shows that when using 1 and 4 machines, the (2,3) case is about

nine times slower than the (1,3) case. This is due to the time penalty imposed by swapping.

10Speed-up factor here is defined as t1
tn
, where t1 is the time required by one machine to perform the generation

using the parallel algorithm, and tn is the time required by n parallel machines to perform the same job.
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Figure 7.5: Elapsed time in DPOR

7.6 Conclusions, related and future work

In this chapter we have extended the POR algorithm of [CJM00a] to branching security pro-

tocols. The proposed algorithm has been implemented in the µCRL general-purpose state

space generation tool-set. Our POR algorithm is in fact built upon a priority beam search

mechanism which has recently been added to the µCRL framework [TW07b, Wij07].

Related work

Algorithms for POR are an established branch of model checking and state space generation

fields, see, e.g., [PPH97, Pel98, CGP00]. As finding an optimal ample set is NP-hard [Pel93],

many POR algorithms in the literature focus on a particular setting and propose heuristics for

computing a (near-)optimal ample set in that setting, e.g. see [Pel97]. Our work can be seen

as one of these heuristics, which preserves LTL−X for a large class of security protocols.

When it comes to distributed POR, a major issue is to find an efficient way to satisfy the

cycle condition, see C3 in theorem 7.1. Among notable work which tackle this problem in

the distributed setting are [PG02, BČMŠ05]. Our work is in a sense orthogonal to this work,

as the cycle condition is irrelevant in cycle-free state spaces, which is our framework. In

contrast, we propose an algorithm to efficiently find a suitable subset of en(s) to be explored

at each state s, with solely local inspections. See also our future work.

POR techniques for analysing security protocols can perhaps be traced back to [SS98],
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where some methods to reduce the number of states when verifying security protocols are

proposed, but no formalisation of the techniques is provided. Similarly, [Bas99] applies

heuristics to prune the search space of security protocols, but only intuitively justifies them.

Clarke et al. [CJM00a] were the first to present a POR algorithm for security protocols and

formally prove its properties. Their algorithm is tailored for non-branching protocols. The

focus of this chapter has been on extending this algorithm to branching protocols. The logic

that is used in [CJM00a] is in general incomparable to LTL−X. It is a subset of LTL−X in

the sense that it only allows past timemodal operator♦−1, which can be simulated inLTL−X

(see, e.g., [LMS02]). 11 We however note that since models of their logic are acyclic finite

Kripke structures, any formulae of LTL−X can, with some overhead, be expressed in terms

of the ♦−1 operator. The logic of [CJM00a] is nonetheless richer than LTL−X in that it

explicitly allows using epistemic operators. For instance, they can specify properties such as

EDY(m) =⇒ ¬∃p ∈ P . ♦−1Ep(m), where m ∈ Msgc and Ex(m) states that process x

knows m, that is Kx ⊢ m with Kx being the knowledge set of process x (cf. § 7.2.1). The

aforementioned property thus intuitively stipulates that the knowledge of honest processes

is never shared with the intruder. In order for their POR algorithm to preserve this logic, it

is required that terms which refer to the intruder’s knowledge appear only negatively in the

properties. To see why, consider the property φ = (Ep(t0) =⇒ ♦−1EDY(t1)), stating that

if the honest process p knows t0, then in some past time the intruder knew t1. Now, consider

processes p = recvp(v).δ, with v ∈ MV , and q = sendq(t1).δ, and consider the system

Lf = p ⊗ q ⊗ DY , such that Γ0 ⊢ t0, but Γ0 6⊢ t1 (recall the definitions of § 4.1). If sendq

is prioritised over recvp, the property φ would hold in the reduced LTS, while this is not

the case in Lf , thus φ is not preserved. We do not need to put such a constraint on our POR

algorithm, since epistemic operators are not allowed to appear explicitly in LTL−X.

In [CM05], a POR algorithm for non-branching security protocols has been proposed

that gains more reductions compared to [CJM00a], but preserves a narrow subset of LTL−X

properties: Only properties of the form♦EDY(t), where t ∈ Msgc, are considered in [CM05].

Future work

Extending our POR algorithm to cover cyclic processes seems to be possible using standard

techniques to handle cycles in POR algorithms, as presented in, e.g., [CGP00]. This however

needs to be fully investigated.

It must be interesting to experiment with various classes of security protocols to assess

the effectiveness of DPOR in different settings. Our current observations on optimistic FE

protocols suggest that in many cases the ample sets computed using our POR algorithm are

singletons. This can potentially be exploited to devise a nearly as effective POR algorithm,

which preserves the branching logicCTL∗−X
. This can potentially be used to check branch-

ing security properties, such as anonymity.

11Given a trace α = α1 · · ·αi · · · , let αi∞ |= ♦−1φ iff ∃j. 1 ≤ j ≤ i ∧ αj∞ |= φ.
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A third direction for future investigations is related to POR with deferral. Deferring

certain actions can apparently be of use in generating state spaces for checking security-

related properties. For instance, consider the authentication property φ = �(authp(q) =⇒

♦−1authq(p)), interpreted as: If p authenticates q, then in some past time q should have

authenticated p as well. We contend that in generating acyclic state spaces of authentication

protocols (when checking φ), action authq(p) can be postponed, i.e. not explored as long as

possible. Let α be a trace in the LTS that is to be checked against φ. We consider two cases:

• If action authq(p) appears before authp(q) in α, then clearly α ∈ φ. Therefore, ex-

ploring authq(p) actions early is useless to our purpose, which is looking for coun-

terexamples for φ.

• Else, either authq(p) does not appear in α at all, or authq(p) appears after authp(q)

in α. These two situations are not distinguished by φ, namely in both cases α 6∈ φ.

Therefore, we can always postpone taking authq(p) while generating state spaces for check-

ing φ. As mentioned above, our POR tool-set is built upon a priority beam search mechanism.

Therefore, negative priorities, which can in principle implement deferrals, are available to our

tool-set. The theoretical basis of such reductions is however yet to be investigated.
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Concluding remarks

We conclude the thesis with recapitulating our main contributions and, then, pointing out

some future research directions.

This thesis concerns design and formal analysis of optimistic fair exchange protocols.

In § 3, we design a novel fair certified email protocol. A certified email protocol enables Alice

to send an email to Bob in exchange for a receipt. The receipt is a proof that shows Bob has

received the email. A fair certified email protocol guarantees fairness in this exchange: Bob

receives the email if and only if Alice receives the receipt. Optimistic fair exchange protocols

(including our certified email protocol), if deployed in asynchronous settings such as the

Internet, require stateful trusted judicators. Intuitively, the exchange partners are provided

with fallback scenarios, in which they can resolve a dispute at the judicator. To maintain

fairness, the judicator needs to keep certain information about each resolved dispute, virtually

for an indefinite amount of time. The novelty in our proposed protocol is to reduce the amount

of the storage that the judicator requires, using forward hash chains. The idea is to establish

a forward (double) chain of keys to secure the exchanges between Alice and Bob, and store

only the seed of the chain at the judicator. The judicator can derive the required keys at will,

only using the seed.

Design and formal analysis of protocols are in fact tightly related. Designing a protocol

requires a clear understanding of the goals that are to be achieved. In this early phase, formal

methods can help us with clarifying the goals, determining the class of achievable goals, etc.

After a protocol has been designed, it is desirable to validate the design against its goals.

Formal methods provide us with the required tools and techniques to tackle this problem as

well. In short, before starting to design a protocol and after completing the design, formal

methods can be of great use.

In our experience, formal methods have also been helpful while designing protocols.

Precisely specifying the behaviour of the protocol participants in formal languages brings

hidden assumptions and difficulties to the front. This helps developers to more aptly gear the

design towards its goals.

The above discussions mainly concern qualitative properties of security protocols, such as

preserving secrecy. In verifying quantitative aspects of protocols (for example, various effi-

ciencymeasures), formal methods are still in their primary development stages. Nevertheless,

our experience shows that model checking can be used to minimise a security protocol in a

safe manner, i.e. the minimised protocol satisfies the desired (qualitative) properties and, be-
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sides, it contains only message terms which, if removed, endanger either the functionality or

the security of the protocol.

Using formal methods has its own downside. A first issue is the risk of oversimplifying

protocols. Formal techniques provide insightful information about a protocol’s model, not

the protocol’s implementation. Therefore, wrong modelling decisions can lead to unsound

analyses. This is in fact a major problem, since modelling a protocol in its full detail is often

too convoluted and expensive to be practical. In this thesis, we have carefully studied how

formal models may soundly reflect resilient channels. Resilient channels are abundantly used

in optimistic fair exchange protocols and, thus, appear in their models as well.

According to Asokan, “a message inserted into a resilient channel will eventually be de-

livered” [Aso98]. A natural way to encode a resilient channel into a protocol model is to de-

vise a fairness constraint which excludes all the executions that violate this condition. In § 5,

we show that such a fairness constraint turns out to be complicated, in the following sense: It

is not locally testable, i.e. to tell whether an execution is fair or not, it is required to look arbi-

trarily deep into the history of the execution, and, moreover, the fairness constraint depends

on the contents of the messages that are transmitted in the protocol. As complex fairness con-

straints are not suitable for automatic verification techniques (such as model checking), we

propose a modified intruder model and a much simpler fairness constraint, which implement

the desired resilience condition. The proposed simple fairness constraint is indeed locally

testable, and does not depend on the message contents.

Our study shows that most existing formal analyses which incorporate resilient channels

represent them in an unsound manner. Namely, there are protocols which do not achieve

their goals in any environment that provides resilient channels, while, in contrast, the formal

models of these protocols satisfy the goals. 1 This of course does not immediately refute the

results already established by these analyses. This however shows that such results cannot

be readily related to the real world implementations of protocols in the presence of resilient

channels. This underlines the difficulties in representing practical security concepts soundly

in their models.

Another major problem in using formal techniques is the expertise that is required to use

them. Model checking and constraint solving have provided partial solutions to this problem

in analysing security protocols, by automating a large part of the analysis. Once the model

and the desired properties of a protocol are described in proper formal languages, verifying

whether the model satisfies the properties or not, is done with negligible human intervention.

These techniques, however, typically suffer from the state space explosion problem. Roughly

speaking, to verify the properties, the models have to be unfolded. The resulting unfolded

models in most practical cases tend to become prohibitively large, thus making the analysis

costly in terms of memory and time. To tackle this problem, we have extended an existing

partial order reduction technique to optimistic fair exchange protocols. This essentially makes

larger protocol models with more details amenable to automatic formal verification.

1We remark that these “counterexample” protocols are not necessarily abundant in practice.
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Some future research directions

Regarding our certified email protocol (proposed in § 3), we note that since forward key

chains are by definition infinite, the state space of (even the smallest instantiation of) the

protocol becomes infinite. Devising sound and complete abstraction techniques (such as

those presented in [PV04]) to make automated verification of the protocol possible is our

next step.

On the formalisation side, there are plenty of unknowns to us. Our formalisation of

resilient channels aims at verifying liveness security properties. Fairness in exchange is a

liveness security requirements, and so is abuse-freeness (see, e.g., [GJM99]). It would be in-

teresting to see how our results can be applied to the analysis of abuse-free protocols. A more

fundamental question concerns extending our formal model to infinitely branching LTSs,

which result from security protocols without assuming strongly typed messages. We believe

it is possible to lift our results to such LTSs. Another relevant research question is characteris-

ing the weakest form of resilience condition under which a certain class of liveness properties

hold for security protocols.

An alternative approach to formalise resilient channels, and analyse liveness, is to use

partial order semantics (such as strand spaces [JHG99]), instead of the total order semantics

that we have adopted in the thesis. How this would affect our formalisation and optimisation

techniques is an intriguing issue, yet to be studied.

Related to the partial order reduction section, it would be interesting to extend the pro-

posed algorithm to facilitate checking properties with the fairness constraints devised in § 5.

A question which is of, perhaps only, theoretical interest is precisely determining the

relations between the fair exchange problem and its cousins in the distributed computing

world, namely distributed consensus and atomic commit problems. Some first results have

already been established in this direction, e.g. see [PG99, AFG+04].
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[KK05] D. Kähler and R. Küsters. Constraint solving for contract-signing protocols. InCONCUR

’05, volume 3653 of LNCS, pages 233–247. Springer, 2005.
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Samenvatting

Eerlijk duurt het langst

Ontwerp en formele verificatie van optimistische fair exchange protocollen

Dit proefschrift bestaat uit twee gedeeltes, namelijk het ontwerp en de verificatie van optimistische “fair

exchange” protocollen.

Het eerste gedeelte draait om een nieuw gecertificeerd email-protocol, waarmee Alice een email

naar Bob kan sturen, in ruil voor een ontvangstbewijs. Dit is een fair exchange protocol: Bob ontvangt

de email dan en slechts dan als Alice het ontvangstbewijs krijgt. Een dergelijke uitwisseling is alleen

mogelijk indien een vertrouwde derde partij bij het protocol betrokken is. De kracht van het protocol

ligt in het gebruik van sleutel-ketens, waardoor deze derde partij minder opslagruimte nodig heeft om

fairness te kunnen garanderen.

In het tweede gedeelte wordt een modellering van indringers, met een zorgvuldig ontworpen fair-

ness beperking, ontwikkeld die het mogelijk maakt om liveness aspecten van optimistische fair ex-

change protocollen te verifiëren. Ons indringer-model is equivalent met het standaard Dolev-Yao

indringer-model, behalve dat ieder bericht dat door een communicatiekanaal wordt verstuurd uitein-

delijk zijn bestemming dient te bereiken. Dergelijke betrouwbare communicatiekanalen zijn cruciaal

in de meeste optimistische fair exchange protocollen. Om op empirische wijze de effectiviteit van ons

indringer-model aan te tonen, worden twee protocollen voor electronische betaling en voor digitale

rechten formeel geanalyseerd op basis van dit model.

Verder wordt een bestaande “partiële ordening reductie” techniek uitgebreid, zodat deze techniek

toepasbaar wordt op optimistische fair exchange protocollen. In deze protocollen hebben de deelnemers

gedurende de uitwisseling gewoonlijk zekere keuzemomenten, die een speciale behandeling vereisen in

de partiële ordening reductie techniek. De schaalbaarheid en effectiviteit van de techniek worden door

middel van enkele case studies aangetoond.
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