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Abstract — We consider the so called “cryptographic proto-
cols” whose aim is to ensure some security properties when
communication channels are not reliable. Such protocols usu-
ally rely on cryptographic primitives. Even if it is assumed
that the cryptographic primitives are perfect, the security
goals may not be achieved: the protocol itself may have weak-
nesses which can be exploited by an attacker. We survey recent
work on decision techniques for the cryptographic protocol
analysis.
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1. Introduction

Security questions are not new. They become increasingly
important, however, with the development of the Inter-
net. For example, the classical access control problem,
which has been studied in the context of operating systems
(e.g. [23, 26]), becomes more complex in a distributed en-
vironment where communication channels are not reliable.

How is it possible to secure communications on insecure
channels? As we will see, (perfect) cryptographic primi-
tives are a useful tool but security of the primitives does
not guarantee security of the protocols. Several protocols
had been thought to be secure : : : until a simple attack was
found (see [12] for a survey). Therefore, the question of
whether a protocol indeed achieves its security goals be-
comes crucial.
Until recently, most of the research in protocol analysis was
devoted to finding attacks on known protocols, but very few
works addressed proof techniques for protocol correctness.
This was partly due to the absence of adequate formal mod-
els for distributed communications in a hostile environment.
In the past 5 years or so, there were proposed several for-
mal models for security protocols (a rough description of
the models can be found in Section 2). This opened the
way for the use of formal methods and formal analysis of
protocols. In this survey, we address the problem of effec-
tiveness of such methods. What can we expect? For what
class of protocols are there decision algorithms for security
questions?
After explaining the communication and protocol models
in Section 2, we discuss the attacker model in Section 3.
We then survey the techniques: general techniques (which
do not necessarily yield decision algorithms) in Section 4,
finite state analysis (which is mainly useful for finding at-
tacks, but does not yield correctness proofs) in Section 5,
and, finally, decision results are surveyed in the core of the
paper, Section 6.

2. Abstract protocol modeling

In the presence of insecure communication channels, an
attacker may be able to observe network traffic and/or in-
tercept messages, modify them in transit, and construct fake
messages. In this context, securing communication relies
on a set of basic functions that we will refer to as cryp-
tographic primitives. For example, an encryption primitive
can be used to encode messages prior to transmission on
an insecure channel in such a way that the original mes-
sage content (cleartext) can only be retrieved by recipi-
ents who possess the “right” decryption key. A number
of cryptographic primitives have been designed to achieve
information security goals such as secrecy, integrity, au-
thentication, etc.

The analysis techniques discussed in this survey assume
perfect cryptography. This means that cryptographic prim-
itives are considered as black boxes satisfying certain prop-
erties, as described in Section 2.1 below. This assumption
by itself does not ensure security of the protocols. Even
if all cryptographic primitives used by the protocol are
perfectly secure, the protocol itself may have weaknesses
which can be exploited by an attacker, as described, e.g.,
in the Clark and Jacob survey [12]. Typically, an attacker
can observe and/or participate in some of the protocol ses-
sions and use the knowledge obtained from these sessions
when acting as a participant in subsequent sessions, per-
haps impersonating some of the agents. We will give ex-
amples of this below. This paper considers the following
problem: is it possible to decide, assuming perfect cryp-
tography, whether a given protocol is secure or not?

We must, of course, be more precise about what is a pro-
tocol and what is meant by “secure.” Informally, a pro-
tocol is a conversation between two or more agents (also
called principals) that aims to guarantee certain security
properties even if a malicious party has access to the com-
munication channel. A more formal definition is given in
Section 2.3. In Section 2.4, we describe common secu-
rity properties such as secrecy and authentication, and give
some examples.

2.1. Cryptographic primitives

In this section, we discuss abstract modeling of crypto-
graphic primitives such as encryption and one-way func-
tions. Other primitives such as digital signatures can be
modeled in a similar way.
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Symmetric encryption. Suppose that Alice and Bob share
a secret value K, which is not known to anybody else. The
problem of establishing such a shared secret is beyond the
scope of this survey – there are many protocols for achiev-
ing this, going back to the Diffie-Hellman key exchange
protocol [16]. If Alice wants to communicate privately
with Bob, she encrypts her messages with the secret K,
producing a (symmetrically encrypted) ciphertext, which
we will write as fmg$K . As part of the perfect encryption
assumption, we assume that the attacker cannot learn any-
thing about m from fmg$K unless he knows K. In particular,
an attacker cannot learn anything by comparing ciphertexts.

Moreover, the attacker cannot construct fmg$K unless he
holds K and m. The attacker may be able, however, to
obtain fmg$K from messages sent by other participants and
replay it without learning m. Note that, in theory, the at-
tacker can build all possible keys given a particular key
length, and try to decrypt the message with every possible
key. The perfect encryption assumption is an idealization
of the fact that the attacker has only a very low probability
of obtaining the cleartext of an encrypted message within
a reasonable time.

Public-key encryption. The symmetric encryption scheme
is not practical in many situations since every pair of prin-
cipals willing to communicate must share a secret. This is
the motivation for public-key encryption schemes, of which
RSA [46] is the best known. In a public-key encryption
scheme, every principal has its own key pair, consisting of
a public key K (used for encrypting messages), and a pri-
vate key K�1 (used for decryption). Everybody is allowed
to learn the public key K, but the private key is known to its
owner only. Therefore, any principal can encrypt messages
with K, producing ciphertext fmg!K , but only the principal
who knows K�1 can decrypt fmg!K to retrieve m. The per-
fect encryption assumption in this case states that, again, it
is impossible to learn m from fmg!K without knowing K�1.

One-way functions. Suppose an agent wants to send a long
file and be sure that the file is not altered during commu-
nication. This can be achieved by sending a digest of the
file in a secure way (e.g., digitally signed by the sender).
The recipient can then check the integrity of the received
message by computing its digest and comparing it with the
sender’s digest. For this purpose, many protocols make
use of one-way functions, also called digest functions or
hash functions. The most widely used hash functions are
MD5 [45] and SHA-1 [39]. It is assumed that one-way
functions cannot be inverted in the sense that it is com-
putationally infeasible to compute m given h(m), or find
m0 such that h(m0) = h(m).

Nonces. To prevent an attacker from recording messages
transmitted as part of one protocol session and replaying
them in another session, messages often include nonces.
A nonce is a value used no more than once for the same
purpose [21]. We assume that a nonce is a randomly gen-
erated value that satisfies the following properties:

Fresh. If two nonces are generated by different principals
or at different times, then they are different.

Unpredictable. An agent or the attacker cannot guess the
value of a nonce generated by another agent (although it
may able to learn it by analyzing protocol messages).

Many protocols only require freshness, in which case
nonces can be replaced by time stamps, which we will not
consider here.
The decision techniques surveyed in this paper assume,
unless explicitly stated otherwise, that neither encryp-
tion, nor one-way functions satisfy any algebraic proper-
ties. If viewed as term constructors, cryptographic opera-
tors form a free term algebra. This assumption does not
hold for many functions used in cryptographic applications.
For example, xor is self-canceling (xor(x;xor(x;y)) = y),
and basic RSA satisfies sigpk(A)(fmg!pk(A)) = m where
sigpk(A)

(x) is agent A’s public-key signature of x. There
is a wide class of encryption schemes and hash functions,
however, for which the free algebra assumption is realistic.

To summarize our view of cryptography, we consider cryp-
tographic functions as abstract black boxes satisfying cer-
tain properties. In our model, there is no notion of prob-
ability or partial data – the attacker either does not know
a value, or knows all bits with 100% certainty. Cryptanal-
ysis attacks that rely on probabilistic properties of crypto-
graphic functions are beyond the scope of the methods con-
sidered in this survey. In Section 3.3, we briefly mention
recent work on more realistic formal models of cryptogra-
phy.

2.2. Term algebra

In our abstract model, protocol messages are terms con-
structed out of:

� Plaintext messages m.

� Nonces.

� Pairing of two messages hM1;M2i (or, more gener-
ally, tupling).

� One-way, unary functions applied to messages h(M).

� Encrypted messages constructed from plaintext M
and key k. In general, for symmetric encryption we
can view k as an arbitrary term, which provides sup-
port, e.g., for symmetric session keys, i.e., keys which
are generated as part of each instance of the protocol.
We will distinguish between public-key and symmet-
ric encryption by using two distinct notations fMg!k
and fMg$k , respectively. Terms are constructed in
the same way in both cases, the only difference is
decryption: to decrypt fMg$k , it is necessary to
know k, whereas to decrypt fMg!k , it is necessary
to know k�1.
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2.3. Protocol specification

A protocol is a process parametrized by a (fixed and fi-
nite) set of agents who act as participants. Their names
are given as distinct variables (A;B; : : : ). Protocol speci-
fication consists of a finite sequence of rules of the form
A! B : M where message M is syntactically constructed
as described in Section 2.2. The intended (informal) mean-
ing is that A sends to B message M on a public, insecure
channel. The names which are used in the ith rule of the
protocol refer to the names used in previous steps of the
protocol, often in a somewhat ambiguous way, which has to
be made precise in the formal models. An instance of the
protocol, also called a session is the image of the protocol
by a substitution assigning concrete values to all variables.

2.4. Security properties

While there are many properties that a security protocol
may aim to guarantee, in this survey we will be concerned
mainly with secrecy and authentication.

Secrecy. There are many definitions of secrecy, and the
relationship between them is not clear [1]. For the purposes
of this survey we will say that a protocol preserves secrecy
of a datum d is the attacker cannot learn the value of d by
interacting with the protocol within the framework of the
conventional Dolev-Yao model as described in Section 3.
The goal of protocol analysis is then to determine if there
exists a protocol trace in which the attacker learns the value
of d. It is worth observing that this notion of secrecy
is not adequate for, e.g., electronic voting, where possible
values of the vote are known in advance and the goal of the
protocol is to preserve the confidentiality of the association
between a voter and his/her chosen value.

Authentication. There are also many definitions of authen-
tication (see, e.g., [30]). In a nutshell, an event e authen-
ticates agent A if e can occur only if a previous message
originated from A. The purpose of authentication is to en-
sure another agent B that he is indeed talking with A.
Both secrecy and authentication are trace properties, i.e.,
their violations can be found by looking at a single execu-
tion trace of the protocol. If the protocol process running
in parallel with the attacker process is viewed as a state
transition system, the protocol analysis problem for trace
properties can be stated as a reachability problem, i.e., the
problem of determining if the state in which the property
is violated is reachable from the protocol’s initial state.

There exist security protocols designed to achieve other
properties such as fairness, anonymity, non-repudiation, no
denial of service, among others, but they are beyond the
scope of this survey.

2.5. Example

The following protocol is perhaps the most (in)famous one
in the literature on formal analysis of security protocols. It’s
the (simplified) version of the Needham-Schroeder public-
key mutual authentication protocol [40]:

1: A! B : fA;NAg
!

KB

2: B! A : fNA;NBg
!

KA

3: A! B : fNBg
!

KB

In the first message agent A (Alice) sends to agent B (Bob)
her name together with a nonce NA, encrypting the pair
with Bob’s public key KB. Bob replies by sending back
nonce NA, together with his own nonce NB, encrypting the
pair with Alice’s public key KA. Finally, Alice sends back
Bob’s nonce encrypted with KB.

The goal of the protocol is mutual authentication. After
completing the protocol, Alice and Bob should be confi-
dent that they are talking to each other. More formally,
Alice, upon receiving the second message, should be con-
fident that this message was indeed sent by Bob (since only
Bob could decrypt Alice’s first message and learn the value
of NA). Bob, upon receiving the third message, should be
confident that it was Alice who sent message fA;NAg

!

KB
in

the first step, since nobody but Alice could decrypt Bob’s
message and learn the value of NB. A related goal of the
protocol is to preserve the secrecy of nonces NA and NB.

Gavin Lowe [29] discovered that the protocol fails to
achieve secrecy and authentication due to the following
(by now very well-known) attack:

1:1: A! I : fA;NAg
!

KI
The attacker, acting as a legitimate participant in
the protocol, is contacted by Alice.

1:2: I ! B : fA;NAg
!

KB
The attacker starts a new session of the protocol
with Bob, pretending to be Alice.

2:2: B! (A) : fNA;NBg
!

KA
Bob replies to message 1.2 according to the pro-
tocol specification (Bob thinks that message 1.2
came from Alice). Message 2.2 is intercepted by
the attacker.

2:1: I ! A : fNA;NBg
!

KA
The attacker replies to message 1.1 using the in-
tercepted message 2.2. At this point Alice, who
only observed messages 1.1 and 2.1, believes that
NB has been generated by I .

3:1: A! I : fNBg
!

KI
Alice replies to I ’s message 2.1 according to the
protocol specification.

3:2: I ! B : fNBg
!

KB
The attacker, again impersonating Alice, sends the
expected answer to message 2.2.

The authentication goals fail as follows:

� Upon reception of message 2.1, Alice should be con-
fident that the message has been constructed by I ,
which is not the case.
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� Upon reception of message 3.2, Bob should be con-
fident that A sent the message fA;NAg

!

KB
, which is

not the case.

In other words, Bob thinks he is talking with Alice, while
he is talking with the attacker.
The secrecy goal fails as follows: NB should be a secret
shared by Alice and Bob only, while message 3.1 allows
the attacker to learn it.

3. Attacker model

It is typically assumed that the set of principals consists of
two disjoint sets: the honest principals and the attackers.
The attackers may include dishonest protocol participants.
For most protocols, it is sufficient to analyze the security
of the protocol against a single attacker that combines the
knowledge and abilities of all dishonest principals.
The honest participants are assumed to follow the rules
of the protocol as defined in the protocol specification in
a mechanistic way. What they do when they receive a mes-
sage which does not match their expectation is left unspeci-
fied. It is assumed that they do not keep track of previously
completed sessions and, more generally, that they do not
play an active role in detecting or tracing possible attacks.

3.1. Dolev-Yao model

A common attacker model used in formal analysis of se-
curity protocols is the so called Dolev-Yao model, inspired
by [18]. Following the convention, we used the term Dolev-
Yao somewhat loosely. Some of the attacker models de-
scribed below are in fact richer than the original Dolev-Yao
model.
We assume that the attacker can eavesdrop on, remove,
and arbitrarily schedule messages sent on public communi-
cation channels. It can also create new messages from the
pieces of messages it already observed and insert them into
the channels. The attacker can split unencrypted messages
into pieces and decrypt encrypted terms if it knows the cor-
rect decryption key. It is assumed that messages contain
enough redundancy so that the recipient can always deter-
mine if decryption was successful (e.g., when the attacker
decrypts an encrypted nonce fNg$K with a key K0, he can
always tell whether K = K0). In the Dolev-Yao model, the
attacker has the choice to intercept any message transmitted
on a public communication channel and possibly replace it
with a message constructed from his a priori knowledge and
parts of the messages previously sent by any participant in
this or other session of the protocol.
The steps taken by honest participants following the pro-
tocol specification and (non-deterministic) actions of the
attacker give rise to an abstract model of the protocol as
a state transition system (e.g., [34]). The general approach
taken in formal analysis of security protocols is to ana-
lyze all feasible traces of the state transition system and
determine for each trace whether all of the desired security

properties are preserved. This task is complicated by the
following considerations:

� There can be arbitrarily many sessions (also known
as instances) of the protocol which can be interleaved
in an arbitrary way.

� One agent can participate in arbitrarily many ses-
sions at the same time. The memory of each agent
is, therefore, unbounded (as has been mentioned, an
agent’s memory is limited to uncompleted sessions).

� The attacker can generate an unbounded number of
messages.

� Nonces have limited scope: honest principals forget
nonces as soon as the corresponding instance of the
protocol has completed.

Among the formal models for protocol traces, the most
widely used are CSP [22, 29, 47, 48, 50], higher-
order logic [41], multiset rewriting [10, 11], and strand
spaces [54]. For information about the relation between
different models, see [11].

3.2. Spi-calculus

In the spi-calculus [2] the behaviour of honest protocol
participants is formalized as a process in a special-purpose
process calculus (basically, an extension of π-calculus [36]
with cryptographic operations). This process can be repli-
cated any number of times to model several instances of
the protocol running concurrently. The attacker can ob-
serve and participate in any communication in any possible
way. The model, however, also relies on the perfect cryp-
tography assumption.
Protocol security can then be expressed as observational
equivalence of two systems. In the first system, an arbitrary
process A (which models the public network controlled by
the attacker) is run concurrently with the process modeling
the actual protocol. In the second system, A is run concur-
rently with a process modeling an idealized specification of
the protocol which is secure by design. If the two systems
are observationally equivalent in the process-calculus sense
(taking into account cryptographic operations, e.g., fNg!K
and fN0g!K may not be distinguishable by the attacker who
does not know K), then the protocol is secure.
For example, secrecy can be modeled by considering an
attacker A that outputs a message on a designated channel
when it learns the secret. When run concurrently with the
ideal version of the protocol, A cannot possibly learn the
secret and thus never outputs on the channel. If A cannot
learn the secret from the actual protocol, it will not be
able to output on the channel when run concurrently with
the protocol, and the two systems will be observationally
equivalent, i.e.

P[secret] j A�obsP[any] j A:
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In addition to the notions of security supported by the
Dolev-Yao model, spi-calculus can be used to analyze im-
plicit flows since the attacker may perform comparisons
between observed messages and produce output depending
on the comparison results. For instance, the processes may
test encrypted (unknown) values for equality and perform
actions depending on the result of the test.

3.3. Probabilistic models

Recently, attempts have been made to develop analysis tech-
niques for more realistic formal models of cryptography
that go beyond the Dolev-Yao abstraction described in Sec-
tion 3.1. The goal is to replace “black-box” abstractions of
cryptographic primitives with probabilistic models. These
models include probabilistic polynomial-time process cal-
culus [27, 28] and more traditional (in the cryptographic
sense) simulatability-based models [9, 42–44]. No tools
have been developed so far for the mechanized analysis of
realistic formal security models.

4. General techniques

In general, there is no algorithm which takes a crypto-
graphic protocol as input and always outputs either “yes,
the protocol is secure”, or “the protocol is insecure and here
is an attack.” Both secrecy and authentication are undecid-
able in the Dolev-Yao model, and so are probably all the
interesting properties one might want to check [4, 14, 17].
We give more details on the sources of undecidability be-
low.
Despite this limitation, there exist semi-decision techniques
which can be automated in various ways. First, observe
that it is possible to design an algorithm which will always
find an attack (by the Dolev-Yao attacker) in finite time if
an attack exists and may not terminate if the protocol is
correct. This can be done by simply enumerating all traces
of the protocol’s state transition system. Then, in each state,
it can be decided if secrecy has been violated, as explained
in Section 6.1.
Other semi-decision techniques and tools include, but are
not limited to, Paulson’s inductive method [41], NRL Proto-
col Analyzer [33], Athena [51], and abstraction-based tech-
niques by Bolignano [6, 7] (this is by no means a compre-
hensive list).
There are several sources of undecidability. First, the pro-
tocol itself can simulate one step of computation for a uni-
versal computation model (e.g., a Turing machine): each
state of the machine is an agent who, upon reception of
a configuration, sends the next configuration to the appro-
priate state. The attacker only has to bridge two successive
sessions forwarding the last message of one session to the
appropriate principal as the first message of the next ses-
sion. That is why decision methods have to either impose
a bound on the number of instances as in [4], or restrict ma-
nipulation of the messages (e.g., impose a “single reference
to previous messages” restriction [14]).

The second source of undecidability is the ability to gen-
erate nonces, which may be used, roughly, to simulate ar-
bitrarily many memory locations and therefore encode ma-
chines with unbounded memory [17]. Again, if the number
of protocol instances is bounded in advance, this cannot oc-
cur. In fact, it is sufficient to bound the total number of
nonces which are generated in any trace.
Even if it is assumed that there is a bounded number of
instances, it is not yet easy to design a decision algorithm
since, according to the Dolev-Yao model, the attacker still
has an unbounded number of possible choices at any point.
In particular, the number of messages that can be created by
the attacker is unbounded. An additional restriction bound-
ing the attacker’s memory allows development of finite-state
decision techniques.

5. Finite-state analysis

Bounding the number of instances and the number of times
each cryptographic operation can be applied by the attacker
yields finite-state analysis, which terminates. In this case
the protocol can be described by a finite state machine and
reachability properties such as secrecy and authentication
can be expressed formally, e.g., in some temporal logic.
This enables the use of finite-state model checking tools
such as FDR [29, 48], Murϕ [37], and Brutus [13].
Lowe [31] gave a syntactic characterization of a class of
protocols such that, for every insecure protocol in the class,
there is an attack using a bounded number of sessions and
a bounded number of applications of cryptographic prim-
itives (therefore, there is a bound on the number of at-
tacker operations and on the size of terms that the attacker
may have to construct). For this class, both the attacker’s
memory and the number of sessions can be bounded with-
out sacrificing completeness. This enables application of
model checking. Moreover, the bounds are quite small in
practice.
This result can be seen as a decidability result for the class
of protocols which satisfy the assumptions in Lowe’s pa-
per [31]. Many of these assumptions are among prudent
engineering practices for security protocols proposed by
Abadi and Needham [3], but it is not realistic to assume
that they are satisfied by a particular cryptographic proto-
col. Following are some of the requirements defining the
class:

� The intended recipient of a message should be able
to decompose the message into atomic pieces. This
means, for example, that he cannot use part of the
message as a black box to be included in the reply,
as done, e.g., in Kerberos [25].

� Every message must contain (under encryption) the
name of the supposed sender.

� Message fields must contain enough redundancy so
that it is always possible to determine the type of
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the field. Type confusion between keys, names,
nonces, etc. should not be possible.

� There are no temporary secrets. The protocol should
be secure under the assumption that everything which
is sent in the clear is part of the attacker’s initial
knowledge.

Among Lowe’s requirements is also the restriction of pro-
tocols to atomic encryption keys which are either nonces,
or basic constants. It should not be possible to build new
keys out of existing ones. This assumption, however, is
too restrictive for the modeling of “real-world” key ex-
change protocols such as SSL 3.0 [52] where it is typical
for the parties to compute symmetric keys as functions of
the shared secret material. In fact, reachability is decid-
able even in the presence of constructed keys assuming the
number of protocol instances is bounded (see Section 6.3).

Stoller [53] demonstrated a more general class C of pro-
tocols for which it is possible to derive, from the protocol
specification, a theoretical upper bound on the number of
cryptographic function applications that have to be made
by the attacker. Stoller also gives a decision algorithm for
membership in C . The algorithm is complicated due to the
lack of syntactic characterization of the protocol class.

6. Decision results for infinite-state
analysis

The protocol analysis techniques surveyed in this section
assume that there is a bounded number of protocol ses-
sions, but attacker computations are unbounded. In partic-
ular, there are no limits on the depth of terms that can be
constructed by the attacker. In all of the techniques, the
subject of the analysis is an idealized Dolev-Yao model of
the honest protocol participants running in parallel with an
attacker who controls the public communication channels.
This models execution of the protocol in a hostile environ-
ment (we will thus use terms “attacker” and “environment”
interchangeably). Therefore, every input to the honest pro-
cesses from the environment can be viewed as constructed
by the attacker.
Typically, specifications of protocol participant’s roles con-
tain variables. Variables represent data that the participant
does not possess prior to starting the protocol and receives
from the environment as part of the protocol. For example,
after initiating a key exchange with Bob, Alice may receive
a term encrypted with her public key. Since Alice does not
know the value of the term before receiving it, it will be
denoted by a variable in the specification of Alice’s role in
the protocol.
For instance, in the Needham-Schroeder example from Sec-
tion 2.5, Bob (i.e., any agent playing the role of Bob), upon
reception of message fX;Yg!KB

will send back fNB;Xg!KY
.

Here X;Y are variables since, from Bob’s viewpoint, they
originated from the environment and their values are not
known to Bob apriori. X ranges over arbitrary data and Y

ranges over principal names (under the assumption that the
agents are able to distinguish principal names from other
data). In such a formulation, X could be, for instance,
a name or a key or a nonce. Some formalisms assume that
each piece of data comes annotated with its type, prevent-
ing type confusion attacks [12]. In any case, Bob cannot
check that X has been generated by the agent whose name
is Y.

6.1. Symbolic protocol models

All of the analysis techniques considered in this section
have two main components:

Symbolic reduction. The basic idea behind symbolic re-
duction is to avoid instantiating variables in the protocol
specification unless necessary. This is done by defining
a symbolic state transition relation which gives rise to the
(finite) symbolic state space of the honest protocol partici-
pants. Each symbolic state summarizes an infinite number
of concrete states that can be obtained by instantiating vari-
ables in the symbolic state specification. Protocol correct-
ness conditions are represented by constraints. A typical
constraint is the requirement that every input term received
by the honest participants from the environment must be
derivable from the environment’s initial knowledge com-
bined with the terms sent by the participants on public
channels up to that point.

Knowledge analysis. Each technique defines a deduction
system for determining whether a particular term can be
derived from a given set of terms. Obviously, the deduc-
tion system depends on the chosen attacker model. In the
Dolev-Yao model, even though the set of terms that can be
constructed by the attacker from a given finite initial knowl-
edge is infinite, it is possible to effectively compute a finite
tree automaton which accepts this set of terms. This is also
true if the initial knowledge of the attacker is a regular set
of terms [4, 20, 38]. We will use notation F (T) for the
infinite set of terms that can be derived by the attacker from
a particular set T of ground terms.
The protocol analysis problem is then reduced to deciding
whether the attacker can instantiate a protocol trace that
violates one of the protocol correctness conditions, i.e., if
there exists an instantiation of variables computable by the
attacker that satisfies the constraints implied by the faulty
trace.

6.2. Constructed versus atomic keys

In the simplest Dolev-Yao-style model for symmetric en-
cryption, it is assumed that all symmetric keys are atomic –
either constants, or variables that can be instantiated
only to constants. This simplifies knowledge analysis,
since the set of terms F (T) that can be derived by the
Dolev-Yao attacker from a given term set T is equal to
synth(analz(T)) where synth and analz are Paulson’s
synthesis and analysis closures of term sets. Roughly,
analz(T) is the set of all terms that can be obtained by
breaking up and decrypting terms in T , and synth(T) is all
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terms that can be obtained by combining, encrypting, and
hashing terms in T. With atomic keys, analysis of a term
is linear in the depth of the term’s structure.
To analyze “real-world” protocols, it is often necessary to
extend the model with constructed symmetric keys. In
a typical key exchange scenario, two parties exchange a se-
cret, then each derives the shared symmetric key by hashing
parts of the shared secret together with nonces and other
data. An example of this is master key computation in the
SSL 3.0 handshake protocol [52].

6.3. Symbolic decision techniques

In this section, we describe several symbolic decision tech-
niques for security protocols and the assumptions they make
about protocols. Unless stated otherwise, all of the methods
assume a bounded number of protocol instances but impose
no bounds on the attacker’s knowledge set F . All results
described below hold for the scenarios in which a principal
is involved in several parallel sessions. Though only [20]
explicitly considers an infinite initial knowledge of the at-
tacker, most of the results described below also apply in
this case.

Huima. The origin of symbolic protocol analysis can be
traced to the seminal work of Dolev and Yao [18] which
applied to a very restricted class of protocols. Huima’s pa-
per [24] was the first to present a decision technique for
secrecy in cryptographic protocols without a bound on at-
tacker operations. The class of protocols considered in [24]
is very general. Protocols are defined using an ad-hoc pro-
cess algebra formalism, somewhat similar to untyped spi-
calculus. Both symmetric and public-key encryption are
supported, and constructed keys are allowed.
A standard term rewrite system is defined, representing
the attacker’s ability to manipulate terms by splitting, de-
crypting with a known key, encrypting, etc. User-defined
symbols are given “semantics” by instantiating one of the
pre-defined relation templates. For example, after declar-
ing symbols e and d, the user can declare Psymenc(e;d),
meaning that for any terms t1 and t2, d(t1;e(t1; t2)) ! t2.
While the templates support explicit decryption operators
(and, therefore, a limited equational theory associated with
the term algebra), there is no support for commutative and
associative operators. See also [38].
For each protocol participant, its local state is defined as
hp;Y;ci where p is the process representing the correspond-
ing protocol role, Y is a partial variable instantiation func-
tion from variable names to terms, and c is a counter used
to keep track of fresh values. A symbolic state of the en-
tire protocol is defined as a triple hL ;M ;C i where L
is a function from participant names to their local states,
M is the set of terms known to the environment (attacker),
and C is a list of constraints that must be satisfiable in order
for the state to be reachable. Each constraint has one of the
following forms: Eq(t; t 0), Ineq(t; t 0), or InClos(t;M) where
terms t; t 0 and term set M may involve variable names. An
InClosconstraint represents the requirement that ground in-
stances of term t must be derivable, using the rewrite sys-

tem, from the ground instances of terms in M. Such a con-
straint is satisfiable iff there exists a substitution σ such
that σ t 2 F (σM). (We write σ t for the term t in which
all variables are replaced according to σ .)

Symbolic reduction is handled by defining a transition rela-
tion for symbolic global states that generates a finite sym-
bolic state space with associated constraints (e.g., if a par-
ticipant receives term x, then InClos(x;M) is added to the
constraint list, because the state can only be reached if the
environment is capable of generating x). Protocol correct-
ness conditions are also formulated as constraints (e.g., se-
crecy of term t can be expressed as :InClos(t;M)), and the
two constraint lists are merged. Finally, each terminal sym-
bolic state is transformed in a certain way in order to decide
whether there exists a instantiation of variables that satis-
fies all constraints simultaneously. Note that deciding the
existence of an instantiation that satisfies an InClos(t;M)
constraint requires deciding the knowledge analysis prob-
lem as explained in Section 6.1.

The paper contains no details of the algorithm used to de-
cide the constraint satisfaction problem apart from the list
of high-level properties that are supposed to guarantee ter-
mination, and the claim that the method is sound and com-
plete.

Amadio-Lugiez-Vanackère. Amadio et al. [4, 5] use
a untyped process algebra formalism similar to the spi-
calculus [2] for specifying protocols. Only symmetric-key
encryption with atomic keys is considered. Variables in
key positions are handled by brute-force enumeration of all
possible substitutions. The decision algorithm is proved
NP-hard.

In this approach, symbolic reduction is combined with
knowledge analysis. A symbolic state of the protocol is
a triple (P;T;E) where P is the state of the process repre-
senting the honest participants, T is the finite set of terms
representing the attacker’s knowledge, and E is an ordered
list of constraints x1 : T1; : : : ;xn : Tn such that T1 � : : :� TN.
Each xi : Ti constraint corresponds to a point in the protocol
execution where the accumulated knowledge of the environ-
ment consists of terms in set Ti . The values of xi are the
terms which are sent to the honest protocol participants in
a trace.

Such constraints are equivalent to Huima’s InClos(xi ;Ti)
constraints and are satisfiable iff there exists a substitu-
tion σ such that σxi 2 synth(analz(σTi)), i.e., if, after
σ instantiates all free variables, xi is derivable from Ti
using operations available to the Dolev-Yao attacker (see
Section 3.1). It is worth noting that the characterization of
F (σTi) as synth(analz(σTi)) is only valid if decryption
keys are atomic. For each symbolic reduction step, the al-
gorithm checks if the substitution required for the step is
compatible with previous substitutions. The algorithm thus
decides whether there exists a single substitution that solves
all xi : Ti constraints simultaneously.

As in Huima’s approach, to account for the conditional it
is necessary to accumulate a separate set of equality con-
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straints as symbolic reduction progresses. Equality con-
straints are solved by a separate set of rules.

Boreale. Boreale [8] also formalizes abstract models of
protocols in a variant of spi-calculus, considering only
symmetric-key encryption. Only variables or atomic terms
may appear in key positions. The original paper [8] only
deals with authentication properties, but the general method
can also be used to analyze any reachability property, in-
cluding secrecy. There is a publicly available analysis tool
(STAP), which also handles constructed keys.
The knowledge analysis problem for ground terms is de-
cided using a standard Dolev-Yao deduction system. Proto-
col execution by honest participants is modeled by a sym-
bolic transition relation that allows messages to contain free
variables. As in other methods, exhaustive enumeration of
all symbolic traces produces a finite symbolic state space
of the protocol.
Protocol analysis is then equivalent to deciding, for each
symbolic trace, if it can be solved, i.e., if there exists an
instantiation of variables in messages such that in the re-
sulting concrete trace every ground term sent by the envi-
ronment is derivable from the environment’s knowledge at
that point using the deduction system. This is the same as
deciding the satisfiability of Huima’s InClosconstraints for
a particular symbolic trace.
The paper gives a refinement decision procedure that works
by gradually instantiating variables in the symbolic trace
until a solved form is obtained in which every sent term
is derivable by the environment. The key idea is that any
symbolic term can be decomposed into a finite number of
irreducible components by splitting pairs and decrypting if
the correct key is known to the environment. Therefore,
for each message sent by the environment, it is possible
to (i) split the sent term into its irreducible components,
(ii) split all symbolic terms known to the environment at
that point into their components. Since both sets are finite,
the symbolic knowledge analysis problem can be decided
by checking that the component set of the term is included,
modulo unification, in the component set known to the en-
vironment.
The refinement process is non-deterministic and may lead
to several different solved forms for the same symbolic
trace. Completeness is proved by demonstrating that ev-
ery solution of the symbolic trace is a solution of at least
one of the solved forms produced by the algorithm.

Fiore-Abadi. Fiore and Abadi [19] are similar to Ama-
dio et al. and Boreale in that they use a variant of untyped
spi-calculus with symmetric-key encryption and decryption
and a free term algebra. The analysis method supports con-
structed keys, but completeness is proved only for atomic
keys.
The method creates a symbolic computation graph of the
honest protocol processes. Paths in the graph represent all
possible execution traces of the protocol, and some of them
may violate the desired security properties. To determine
if there exists a concrete execution trace of the protocol

corresponding to the violating path, the paper gives an al-
gorithm for deciding the existence of realisers for all sym-
bolic inputs (i.e., message sends) to the process from the
environment. A realiser is a substitution for variables such
that every resulting ground input term can be derived by the
environment from the terms it already knows at that point.
Once again, this is equivalent to deciding the satisfiability
of all InClos(ti ;Mi) constraints, or finding a substitution σ
such that σ ti 2 F (σMi) for all terms ti sent by the envi-
ronment at a point where it knows Mi .

Rusinowitch-Turuani. Rusinowitch and Turuani [49] ex-
tend the work by Amadio et al. [4] in two directions. First,
their model supports public keys as well as constructed
symmetric keys. Second, they show that the symbolic
knowledge analysis problem is NP-complete for the Dolev-
Yao attacker as long as the number of sessions is bounded.
The main result of the paper is a polynomial bound on
the number of attacker operations that may be needed in
order to construct the substitution that realizes the attack.
If t 2 F (M), i.e., if the term that must be sent by the
environment can be derived from the term set representing
the environment’s knowledge, then there exists a normal
derivation of t from M that has a polynomial size. This is
similar in spirit to Lowe’s “small system” result [31], but
with significantly fewer restrictions on the protocol.
The polynomial bound on normal derivations is then used
to construct an NP-complete procedure for deciding the pro-
tocol insecurity problem. The procedure works by guessing
a ground substitution σ for all variables such that the size
of the σx term has a polynomial upper bound, then guess-
ing a polynomial sequence of attacker operations l1; : : : ; lN,
and finally checking that σ t 2 lN(: : : l1(σM)). Such a pro-
cedure is obviously impractical for real protocol analysis,
but in addition to establishing complexity of the problem,
the existence of polynomial normal attacks supports the
empirical observation that all Dolev-Yao attacks on cryp-
tographic protocols that have been discovered so far are
relatively simple.

Comon-Cortier-Mitchell. Comon et al. [14] consider the
Dolev-Yao protocol model with support for public keys and
constructed symmetric keys. There are two main assump-
tions. The first one slightly relaxes the finite-sessions re-
quirement by assuming that only a bounded amount of fresh
data is generated in all sessions. This means that either
there is a finite number of sessions, or else the protocol
does not contain any nonce generation steps. This restric-
tion alone is not sufficient for decidability; it is still possible
to build a protocol simulating one transition step of a uni-
versal computation model. The second restriction states,
roughly, that an agent can copy only one piece of any mes-
sage he receives into any message he sends. This rules out,
for instance, simulation of two-stack machines.
The decision technique is based on a reduction to set
constraints (e.g. [15]), which in turn are reduced to an
automata-theoretic question. The resulting algorithm runs
in doubly exponential time.
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Millen-Shmatikov. Millen and Shmatikov [35] present
a decision technique for reachability properties based on
constraint solving. Each honest protocol participant is spec-
ified as a semi-bundle in the strand space model [54].
A semi-bundle is a strand (i.e., a protocol role) parame-
terized with variables. The Prolog implementation auto-
matically generates all possible interleavings of the semi-
bundles.
Using parameterized strands to represent symbolic traces
of the protocol achieves a clean separation between the
symbolic reduction problem and the knowledge analysis
problem. As in other approaches, deciding the latter is
equivalent to solving a system of constraints of the form
ti : Ti , where ti is a term, possibly containing variables,
sent by the attacker to the honest processes, and Ti is the
set of terms available to the attacker. These constraints are
equivalent to Huima’s InClosconstraints, and are satisfiable
if 9σ such that 8i σ ti 2F (σTi), i.e., every term needed to
the stage an attack can be generated by the attacker.
The resulting constraint system is solved by applying a set
of constraint reduction rules. The constraint solving proce-
dure is terminating, sound, and complete even in the pres-
ence of constructed keys. Unlike the Rusinowitch-Turuani
procedure [49], the algorithm is useful in practice and can
be applied to the analysis of real protocols.

7. Conclusion

Protocol analysis is a model checking problem [32]: given
a model (the protocol) and a property, we want to decide
whether the model satisfies the property. As we have seen,
however, the model is an infinite state system, and classi-
cal model checking techniques can only be used to verify
an approximate model. Nevertheless, as with infinite-state
model checking techniques, symbolic representation of in-
finite sets of states (e.g., using constraints) and reasoning
about such representations may yield interesting decision
results, some of which have been sketched above.
There are still a number of open questions, and more gen-
erally, several open areas of research. Let us mention two
of them as a conclusion:

� We considered only two particular security proper-
ties: secrecy and authentication. While the described
techniques may work for other trace properties, there
are several security goals which are not trace proper-
ties (for instance, anonymity and fairness). There is
currently no specification language (such as tempo-
ral logic for reactive systems), which is rich enough
to express all desired security properties. Design of
decision algorithms for such properties is an open
problem.

� We assumed that terms and messages are generated
by a free algebra. As mentioned above, this is an
approximation since most cryptographic primitives
satisfy some algebraic properties. Which properties

can be supported by the model while preserving de-
cidability is an open question.
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