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ABSTRACT

Security protocols specify the communication required to achieve security objectives, e.g.,

data-privacy. Such protocols are used in electronic media: e-commerce, e-banking, e-voting,

etc. Formal verification is used to discover protocol-design flaws.

In this thesis, we use a multiagent systems approach built on temporal-epistemic logic

to model and analyse a bounded number of concurrent sessions of authentication and

key-establishment protocols executing in a Dolev-Yao environment. We increase the ex-

pressiveness of classical, trace-based frameworks by mapping each protocol requirement into a

hierarchy of temporal-epistemic formulae.

To automate our methodology, we design and implement a tool called PD2IS. From a

high-level protocol description, PD2IS produces our protocol model and the temporal-epistemic

specifications of the protocol’s goals. This output is verified with the model checker MCMAS.

We benchmark our methodology on various protocols drawn from standard repositories.

We extend our approach to formalise protocols described by equations of cryptographic

primitives. The core of this extension is an indistinguishability relation to accommodate the

underlying protocol equations. Based on this relation, we introduce a knowledge modality and

an algorithm to model check multiagent systems against it. These techniques are applied to

verify e-voting protocols.

Furthermore, we develop our methodology towards intrusion-detection techniques. We

introduce the concept of detectability, i.e., the ability of protocol participants to detect

jointly that the protocol is being attacked. We extend our formalisms and PD2IS to support

detectability analysis. We model check several attack-prone protocols against their detectability

specifications.
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Chapter 1

Introduction

Motto: “The beginning is the most important part of the work.”

(Plato)

In this chapter we present the motivations and contributions of the thesis, as well as a summary

of its contents.

Our everyday life has become more and more reliant on sophisticated electronic devices: compli-

cated surgery robots, iris readers, biometric passports, “chip-and-pin” or even contact-less payment

cards. Human lives and their stability have come to depend on the correct functionality of automatic

devices. Thus, it is vital that the software embedded in these devices is error-free. If this is not

ensured, the users will be jeopardised and the production companies will have to face the costs

of redeploying amended versions of their software. Therefore, formal methods of verifying and

validating [176] the methodologies underlying safety-critical software products are indispensable.

Many respected institutions value and invest in the verification of security-reliant systems, for

example: Cisco Systems, Microsoft Corporation, IBM, VISA, MasterCard, RSA Security, Sun

Microsystems, etc.

In particular, numerous safety-critical software products rely on security protocols. A security

protocol is a “distributed algorithm defined by a sequence of steps precisely specifying the actions

required of two or more entities to achieve a specific security objective.” [145]. They are used in

11
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smart-cards, in electronic commerce, electronic banking, electronic voting, etc. Therefore, the formal

verification of such protocols becomes of paramount importance. The formal verification of security

protocols [149,112,41, 95,5, 182,34,144,3, 153,138,72,138,163,79,181,2, 23, 19,9, 44, 8, 175,171,102,

73,117,1,188,59,116] has contributed directly in showing that certain designs (e.g., variants [111] of

the Kerberos protocol) were flawed, e.g., their privacy requirements could be violated by malevolent

parties. Formal protocol verification inspects the existence of protocol failures. These occur when a

protocol does not meet the goals for which it was intended, in “a manner whereby an adversary

gains advantage not by breaking an underlying primitive such as an encryption algorithm directly,

but by manipulating the protocol or mechanism itself” [145]. Being able to exhibit such failures on

an early protocol design can prevent future financial losses and identity thefts. Moreover, security

protocol verification has also revealed faults in protocols that had already been deployed (e.g., in the

Secure Sockets Layer encryption protocol, used to secure communications on the Internet). This can

put an end to unnecessary exposure to fraud. Through the abstract models used, security protocol

verification has also benefited the design process, yielding clarity of requirements’ specification and

consequently contributing to new, more robust products. Examples of such beneficial impacts of

security verification can be seen in several of the ISO security standards [82, 85, 84, 83] available

today.

Moreover, the automatic formal verification of security-reliant software has extended the practice

of protocol testing, as lengthy manual proofs were replaced by seconds or milliseconds of running time

on a PC. Thus, numerous systems and large spaces can be searched for errors in an instant. One of

the successful techniques of automatic verification is model checking [51], which is today extensively

used by many leading names in the software and hardware industry: JPL, NASA, Microsoft, etc.

In particular, the model checking of security protocols [19,59,153,72] has also proven a resourceful

technique in revealing modern, subtle security flaws (e.g., in the Single Sign On implementations of

Google applications [10]).

In this thesis, we use formalisms drawn from logic and artificial intelligence to design novel,

systematic methodologies for model checking security protocols. We take the seminal view of authen-

tication logics: the security requirements of protocols revolve around certain facts being known or

unknown to the protocol participants. For instance, when Alice receives a packet containing her
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one-time banking password, does Alice know that it has been indeed issued by the bank and that it

indeed originates from the bank’s server? Or, can Alice know that indeed this password has been

recently generated in her current online banking session and that it has not been a mere replay from

a malevolent party? In this thesis, this idea is taken further: can Alice know, e.g., by inspecting

some of her different sessions, that one of her session is being hijacked?

This thesis introduces systematic multiagent system models (MAS) for several classes of

security protocols executing in malevolent environments.

Additionally, we systematically map security requirements and properties related to them

into hierarchies of temporal-epistemic formulae.

We automate the generation of our MAS-based models and the specifications to be verified.

Traditional and novel security aspects are verified by means of model checking these systems

against temporal-epistemic specifications.

Theoretical and practical aspects of our AI-inspired approach are evaluated and discussed.

As a note, in this thesis we use “AI-inspired” with referrence to non-classical logics and multiagent

systems, usually employed in the field of artificial intelligence (AI).

1.1 Motivations

In devising a knowledge-based approach to security verification, our first motivation is the

formulation of protocol requirements. For instance, a goal of the NSPK (Needham-Schroeder Public

Key) [155] protocol is formulated in the following way: “if the B-session completes, B is justified in

believing that A holds K” ( [66], page 3). Moreover, several ISO standards [82,85,84,83] of security

protocols place the knowledge of facts at the bottom of security requirements. It is precisely these

ISO standards that lead Gollman1 to found his systematisation [93] of security goals on logics of

belief: e.g., alice believes bob believes alice
kab↔ bob .

However, many formal methods approaches [44,188,175,19,73,174] to protocol verification use a

static notion of knowledge, its interpretation being often reduced to the possession of terms. In that

1For details, see Chapter 2, page 49.
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sense, most of the formalisms for protocol verification express protocol requirements as reachability

properties; the system satisfies, e.g., a key-establishment requirement if it reaches a state where a

protocol participant possesses a certain value for the key K. In very restricted cases [59], some of

the protocols’ requirements are expressed not as reachability properties, but in linear temporal logic.

By contrast, we are motivated by lines of work where protocols’ requirements are specified in

more expressive languages, closer to their original formulations. Examples of the kind are Syverson’s

approaches [185,184], rooted in logics of authentication [42,95,5, 191]. Therein, he argues that if a

concept of participants’ knowledge is to be used it needs to be a more expressive notion, one that

goes beyond the possession of messages and that actually enquires the acknowledgement of facts. To

motivate his view further, we exemplify with a requirement of the e-voting protocol in [158]. The

privacy of Alice’s vote v is maintained if any attacker considers it possible that Alice votes another

vote v′ and that any other participant could have in fact voted v. Hence, the attacker lacks the

knowledge of Alice having voted v. It is further argued [63] that certain security requirements (e.g.,

e-voting) indeed ought to be formulated in expressions other than reachability. Nevertheless, few

protocol formalisms [2, 3, 177] support theoretically sound expressions of security properties beyond

reachability. Moreover, practical verification tools rarely cater for the analysis of such advanced

properties; when they do, they are semi-decidable [47].

Along the aforementioned lines, our second motivation is a supported [42,95,5,191,185,184,63]

belief that several security requirements need to be formalised as expressive state-properties (i.e.,

properties interpreted over the entire unwound state-space) rather than as reachability, trace-

properties (i.e., properties interpreted over a trace of the system). Moreover, we are motivated to

provide sound methodologies and tools for the automatic verification of such advanced formulations

of protocol goals.

A seminal effort in protocol verification is attributed to authentication logics [41,42,95,184,5,191]

for early formalisation of protocol theories through logics of belief. The shortcomings of such

logics (e.g., BAN [41], AT [5], GNY [95], VO [191]) were their poor systematisation and, most

importantly, the lack of a well-founded semantics for the protocol theory employed. Fortunately,

research [80,55] into the computational soundness of cryptography has emerged in the more recent

years. The modellings thereby used followed an S5 semantics. This led to several well-founded
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theoretical approaches employing epistemic logic in security settings [96, 99, 168]. Therefore, our

third motivation is to revive the seminal approaches of authentication logics and take them

further; we aim at specifying security protocols and their requirements as well-founded, expressive

formulations based on epistemic logics.

Efficient tools for the automatic verification of non-classical and temporal-epistemic logics

have been developed [127, 6, 110, 89] in recent years. Furthermore, these have been used succes-

fully in the verification of a wide range of systems drawn from the distributed computing world,

including [133,130,109].

These later developments underline our fourth motivation: at least in principle, it is now

possible to develop toolkits based on temporal-epistemic formalisms and optimised for the symbolic

model checking of security protocols against properties going beyond reachability specifications.

Some interest in model checking of epistemic expressions of security requirements has been

recently shown [147,130,127]. However, these lines of work analysed specific protocols under ad-hoc

modellings and no general, systematic methodology was put forward. Moreover, the consequent

state space explosion was not studied there, thus making the approaches not viable for general,

practical deployment. Closest to our line of work is the LDYIS formalism [125] (reviewed in

Chapter 2, page 62). It puts forward a trace-based semantics for the NSPK protocol [155] using

temporal-epistemic logic on top of interpreted systems [161]. LDYIS presents a basic bounded

model checking algorithm for the verification of the model proposed. However, LDYIS does not give

directions towards the systematisation and automation of model-generation, thereby limiting its

possible impact.

The ad-hoc and pen-and-paper modellings recently used in epistemic verification of protocols and

recalled above can be tedious and error-prone. Moreover, these limit the study of aspects like the

scalability of the approaches taken. Therefore, our fifth motivation is to take incipient approaches

of model checking of epistemic security requirements further into systematic, generalisable and

automatable methodologies and toolkits. Furthemore, for distinct classes of security protocols we

aim to create bespoke, systematic methodologies with the view of optimising the results of practical

model checking.

To sum up, we are motivated in devising the theoretical and practical aspects of automatically
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obtainable, systematic multiagent system models for security protocols executing in a Dolev-Yao2

environment. We aim at verifying traditional and novel security aspects by means of model checking

these systems against systematically derived temporal-epistemic specifications.

1.2 Contributions

The main contributions of this thesis can be categorised in a fourfold way:

1. conceptual:

• We distinguish two classes of security protocols: receiver-transparent (RT) and receiver-

opaque (RO). This is with the view of optimising the systematic generation of models for

protocols and maximising the efficiency of the consequent model checking.

• We introduce the concept of detectability, i.e., whether protocol parties are jointly able

to detect protocol failures as soon as, after or whilst they occur.

2. methodological:

• We introduce a novel, systematic methodology of modelling executions of receiver-

transparent authentication and key-establishment protocols as multiagent systems.

• We introduce a novel, systematic methodology of mapping each authentication and

key-establishment goals into a taxonomy of temporal-epistemic formulae.

• Using the multiagent system model aforementioned and temporal-epistemic logic, we

introduce the first systematic methodology of specifying and verifying the detectability of

protocol failures, i.e., whether groups of agents are theoretically able to detect protocol

failures.

• We introduce the first systematic methodology of modelling the executions of equationally-

specified3 protocols as multiagent systems. This also gives the first systematic methodology

of modelling the executions of receiver-opaque protocols as MAS.

2The Dolev-Yao [71] is reviewed in Chapter 2, page 35.
3For details on equationally-specified protocols, see page 54.



1.3 Research Output 17

3. algorithmic:

• We introduce and implement algorithms for the automatic generation of multiagent

system models for executions of CAPSL4-specified (receiver-transparent and receiver-

opaque) security protocols.

• We introduce a model checking algorithm for the verification of a correct notion of

knowledge modulo cryptographic equational theories.

4. theoretical:

• We prove the correctness of our AI-inspired protocol model with respect to traditional

semantics for security protocols.

• We prove the correctness of the interpretation of the cryptographic knowledge modality,

introduced in the context of protocol expressed by equational theories.

• We prove the correctness of the model checking algorithm of the knowledge modality

introduced in the context of protocol expressed by equational theories.

By-products of these contributions will be outlined in the content of the chapters where they are

presented.

To support the above description of our motivations and contributions, Chapter 2 contains a

relevant literature review. After the complete enunciation of our results, in Chapter 8 we compare

and contrast the related literature with the work of this thesis.

1.3 Research Output

Part of the research in this thesis was presented in the following papers:

• “A Compilation Method for the Verification of Temporal-Epistemic Properties of Cryptographic

Protocols”, by I. Boureanu and M. Cohen and A. Lomuscio, at the Joint International Workshop

on Automated Reasoning for Security Protocols Analysis and Issues in the Theory of Security

(ARSPA-WITS), 2009;

4For CAPSL, refer to [151,66]. Or, for a review on CAPSL, see Chapter 2, page 54.
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• “Model Checking Temporal Epistemic Specifications for Authentication Protocols Compiled

into Interpreted Systems”, by I. Boureanu and M. Cohen and A. Lomuscio, in the Journal of

Applied Non-Clasical Logics, volume 19/4, pages 463–487, 2009;

• “Model Checking Detectability of Attacks in Multiagent Systems”, by I. Boureanu and

A. Lomuscio and M. Cohen, in the Proceedings of the 9th International Conference on

Autonomous Agents and Multi-Agent systems (AAMAS), 2010;

1.4 Summary of Contents

In Chapter 2 we present the notions that constitute the background to this thesis and relate to the

research hereby presented. In an attempt to make this thesis self-contained, we only selected those

notions which we considered not necessarily commonplace.

In Chapter 3 we present the systematic design of a multiagent system model for the execution of

receiver-transparent security protocols in a Dolev-Yao environment. It is based on the interpreted

system formalism and the security requirements are expressed in temporal-epistemic logic.

In Chapter 4 we present an algorithm to produce the interpreted systems specifications aforemen-

tioned starting from a high-level CAPSL protocol description and the instantiation of the protocol

parties involved. We then prove that the multiagent system models unwinding the specifications

thus produced preserve the validation/refutation of standard security goals (i.e., standard CAPSL

semantics validates these goals if and only the multiagent system models we produce do so too).

In Chapter 5 we present the toolkit PD2IS that, starting from a CAPSL protocol description,

produces ISPL files describing multiagent system models of the kind introduced in Chapter 3. Several

flavours of these models are presented. These differ in the level of optimisation for use with the MCMAS

model checker. The files automatically generated by PD2IS also contain the systematic taxonomies

of temporal-epistemic formulae corresponding to the protocol’s security goals. Performance studies

and other relevant metrics of the verification results are reported; comparisons between verifying

the different flavours of these models, as well as comparisons between our methodology and other

verification toolkits are presented.
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In Chapter 6 we formalise the notion of detectability, the ability of groups of agents to acquire

collective knowledge of protocol failures. This formalisation encompasses an MAS protocol model

and a systematic taxonomy of temporal-epistemic formulae to describe the notion of detectability.

We extend PD2IS to support the generation of these models and the corresponding formulae for

detectability. We report on model checking MAS models for several well-known protocols against

detectability specifications. We discuss the performance of the analysis process as well as the

significance of the results.

In Chapter 7 we introduce interrogative knowledge, an epistemic modality modulo a convergent

equational theory describing a protocol. We prove the correctness of the interpretation of this novel

knowledge modality. We advance a model checking algorithm for interrogative knowledge. We use

this novel methodology to analyse several automatically generated models for e-voting protocols

expressed under convergent equational theories against security requirements specified in logics of

time and interrogative knowledge.

The modelling and verification in Chapters 3–6 was applied to receiver-transparent protocols,

i.e., protocols where any receiver can analyse messages down to atomic parts immediately upon their

receipt. The introduction of a cryptographically adapt knowledge in Chapter 7 opens the way for a

well-founded epistemic modality even for the case where the messages cannot be always analysed

down to their atomic parts. The latter case is the case of receiver-opaque protocols. Therefore, the

systematic model advanced in Chapter 7 applies to receiver-opaque protocols.

In Appendix C we give the details of a tool, similar in nature to PD2IS, but used for the systematic

and automatic generation of IS-based models for receiver-opaque protocols. This tool is a compiler

from a CAPSL protocol description to a CIL-like specification5, to the ISPL encoding of the protocol’s

execution. Chapter 7 presents the automatic verification of receiver-opaque e-voting protocols. In

Appendix C we also discuss experiments in generating and verifying several multiagent system models

for other receiver-opaque protocols (e.g., advanced authentication protocols). Therefore, Appendix C

completes the work in previous chapters. This renders our MAS methodology systematically and

automatically applicable to both receiver-transparent and receiver-opaque protocols. A discussion

on the suitability of our MAS approach for RTP or ROP will conclude Appendix C.

5For details on CIL, see page 57.
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In Appendix A we present notions, proofs and implementation details adjacent to Chapter 3

and Chapter 5.

In Appendix B we give explanations, proofs and details additional to the content of Chapter 4.

Most importantly, in Appendix B we show that our models are aligned to those in standard,

trace-based semantics for CAPSL-described protocols by means other then the homomorphic relations

presented in Chapter 4 (e.g., by the direct use of goal-satisfaction algorithms in [188] and, separately,

by means of stuttering equivalence [37]).

In Chapter 8 we re-discuss our overall contributions, we compare them with existing related

work and we draw the conclusions of the thesis.

In this chapter we have presented the motivations of this thesis and described its main contribu-

tions. We have concluded with the summary contents of the thesis.



Chapter 2

Literature Review

Motto: “What you are is what you have been, and what you will be is what you do now.”

(The Buddha)

In order to highlight our motivations and contributions in protocol testing and AI-inspired

verification, Chapter 1 mentioned a series of formalisms, tools and methodologies. In the current

chapter, we detail their underlying notions. We focus only on those concepts which we consider not

necessarily commonplace. We start with foundations of temporal-epistemic logics and computer-aided

verification methods (e.g., model checking). We continue with notions of security protocol analysis.

Lastly, we present the use of epistemic approaches in specifying and verifying cryptography-related

aspects. After the main body of the thesis, in Chapter 8, the hereby presented related work will be

compared and contrasted with our MAS approach to protocol verification.

2.1 Temporal and Temporal-Epistemic Logics

This thesis uses temporal and temporal-epistemic logics. We assume that the reader is familiar

with the syntax and semantics of (propositional) modal logics [80,104,22,45]. Therefore, we will

only recapitulate notions which are inherent to temporal and temporal-epistemic logics. These

include the syntax and semantics of temporal-epistemic logic, temporal properties of interest in the

verification of distributed systems and model checking techniques for logics of time and knowledge.

21
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2.1.1 Syntax

Branching time logic or computational tree logic (CTL) [20] is a fragment of the logics most addressed

in this thesis.

CTL Syntax. Let PV be a set of propositional variables. Boolean formulae over PV are often

called atomic formulae. The language of CTL is defined by:

ϕ ::= p | ¬p |ϕ ∧ ϕ |EXϕ |EGϕ |E[ϕUϕ], (2.1)

where p ∈ PV .

We assume that the reader is familiar with general notions of transition systems. Thus, we report

the respective readings of the above operators. EXϕ reads as “there exists a path such that at the

next state on this path ϕ holds”; EGϕ reads as “there exists a path such that ϕ holds globally along

this path”; E[ϕUψ] reads as “there exists a path such that ϕ holds until ψ starts holding”. The

set {EX, EG, EU} exhibited in 2.1 is the minimal or the canonical set of CTL operators. The CTL

formulae generated by the grammar in 2.1 are in the so-called existential normal form (ENF ). The

dual of the existential path operator E quantifies paths universally and it is usually denoted A. Some

of the equivalences over CTL satisfaction are: EFϕ ≡ E['Uϕ]; AXϕ ≡ ¬EX¬ϕ; AGϕ ≡ ¬EF¬ϕ;

A[ϕUψ] ≡ ¬(E[¬ψU(¬ϕ ∧ ¬ψ)] ∧ EG¬ψ); AFϕ ≡ A['Uϕ] ≡ ¬EG¬ϕ. The interested reader is

referred to [105] for details.

The logic CTLK contains the temporal operators of CTL and a modal operator for knowledge,

denoted K. Equivalently, CTLK can be defined as the system obtained by the union of CTL and

the modal system S5 [122] (with K as modal operator). In a multidimensional context, CTLK can

be viewed as the union between CTL and the n-dimensional modal system S5n (roughly, S5 with n

knowledge operators, usually denoted K1, . . . , Kn). These are formally expressed in the following.

CTLK Syntax. Let PV be a set of propositional variables. The language CTLK is given by the

following grammar:

ϕ ::= p | ¬p | ϕ ∧ ϕ | EXϕ | EGϕ | E[ϕUϕ] | Kϕ, (2.2)
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where p ∈ PV , EX, EG, EU are CTL path operators and K is the knowledge operator.

We recall the axioms of the CTLK system (i.e., S5 with K denoting the the modal operator for

knowledge):

• K (p→ q)→ (Kp→ Kq) (rationality)

• Kp→ KKp (positive introspection)

• ¬Kp→ K¬Kp (negative introspection)

• Kp→ p (truthfulness)

• if ) ϕ then ) Kϕ (necessitation)

Let Form be the set of CTLK formulae generated by the grammar in 2.2. We assume the implicit

use of the uniform substitution (US ) on Form, i.e., substitution of all occurrences of a variable with

the same modal formula.

Extensions of CTLK exist [80, 148]. An example is the multidimensional system CTLK enriched

with a modality for distributed knowledge, denoted D. It carries the meaning of cumulative or

(implicitly) pooled together knowledge within the group of agents1 Gr [80, 148]. Such a group

modality is often informally assimilated to the concept of “wisdom of the crowds”. When the group

is not implicit, the distributed knowledge modality is indexed by name of the group, i.e., DGr. The

formula DGrϕ denotes that the fact ϕ is implicitly known by the group Gr. The fact ϕ is made

explicit if the agents in the group Gr collaborate actively. Such group modalities are often employed

in the process of reasoning about multiagent systems [80]. Some of the fields where the use of such

operators benefited the expressiveness of specifications are: game theory [68,103], economic theory,

puzzle solving [154,70,152].

As specification language, most chapters of this thesis use CTLK enriched with the distributed

knowledge operator. Therefore, in the following by temporal-epistemic logic we intend this language,

if not otherwise stated.
1The notion of “agents” will be formally introduced in the following. For now, informally assimilate the notion to

people.
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2.1.2 Semantics

The semantics for CTL is traditionally given by state-transition systems [50]. Also, a de facto

semantics for modal logics is given in terms of Kripke models [114]. In this line of work, we primarily

use the interpreted systems [161] formalism, an accepted semantics for temporal-epistemic logic. We

mention that the interpreted systems (IS ) formalism subsums the state-transition systems semantics

for CTL. Furthermore, the IS semantics unwinds a Kripke model for knowledge.

Interpreted Systems. The interpreted systems formalism was introduced in the context of

distributed systems [161]. It is extensively used in multiagent systems frameworks.

An interpreted system (IS) is defined upon the following elements:

• a finite set Ag of agents ; agents are often indexed 1, . . . , n;

• a finite set Li of local states for agent i;

• a finite set Acti of local actions for agent i;

• a function Pi : Li → 2Acti for the local protocol of each agent i; Pi selects actions of agent i

depending on its local state; if a ∈ Pi(l), then the action a is said to be enabled at the local

state l, for a ∈ Acti and l ∈ Li;

• a special agent Env, the Environment of the system; this agent is described similarly to the

other agents (i.e., it is associated with LEnv, ActEnv, PEnv as its local states, local actions and

local protocol function);

• a set G=L1 × L2 × . . .× Ln × LEnv of global states ;

• a function li : G→ Li that returns the local state of agent i from a given global state, for

each i ∈ Ag ∪ {Env}; an alternative notation to li(g) is gi, for g ∈ G and i ∈ Ag ∪ {Env};

• a set Act=Act1 × Act2 × . . .× Actn × ActEnv of joint actions ;

• a function Ej : Lj × Act → Lj for the local evolution of agent j, for each j ∈ Ag ∪ {Env};

given a local state of the agent j and a global action, Ej defines the resulting local state of

agent j;

• a function E : G× Act→ G for the joint evolution; for g, g
′

∈ G, a ∈ Act, it is the case that

E(g, a) = g
′

if and only if Ei(li(g), a) = li(g
′

), for all i ∈ Ag ∪ {Env};

• a set I ⊆ G of initial global states ;
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• a relation V ⊆ G× PV for a valuation relation.

An interpreted system I is then given by the tuple

I = 〈(Li, Acti, Pi, ti)i∈Ag, (LEnv, ActEnv, PEnv, tEnv), I, V 〉 .

A path in an interpreted system I is an infinite sequence of global states described by the global

evolution function: π = (g0, g1, . . .) such that E(gk, actk) = gk+1, where actk ∈ Act is a joint action

whose components are all enabled, for each k ≥ 0. For a path π = (g0, g1, . . .), we write π(k) to

denote the state gk along π. By Π(g) we denote the set of all the paths starting with g ∈ G. Paths

naturally give the set of reachable states. Naturally, it is possible to consider prefixes of paths which

are finite; these are also referred to as paths.

Let I be an interpreted system, g = (l1, . . . , ln, lE) be a global reachable state of I and ϕ,ψ be

two CTL formulas. Then, satisfactions of these formulae on the interpreted system I at a reachable

global state g is defined inductively as follows:

• (I, g) |= p iff V (g, p) = true

• (I, g) |= ¬ϕ iff it is not the case that (I, g) |= ϕ

• (I, g) |= ϕ ∧ ψ iff (I, g) |= ϕ and (I, g) |= ψ

• (I, g) |= EXϕ iff there exists π ∈ Π(g) such that(I, π(1)) |= ϕ

• (I, g) |= EGϕ iff there exists π ∈ Π(g) and it is the case that

(I, π(k)) |= ϕ, for all k ≥ 0

• (I, g) |= E(ϕUψ) iff there exists π ∈ Π(g) such that (I, π(k)) |= ψ

and (I, π(j)) |= ϕ, for some k ≥ 0 and for all j with 0 ≤ j < k.

Knowledge modalities are interpreted over an IS using equivalence relations over the states of

the IS. Such equivalence relations are often referred to as indistinguishability relations (over states).

State Indistinguishability. Two local states l, l′ ∈ Li are i-indistinguishable, written l ≈i l′, if

and only if ≈i⊆ Li × Li is an equivalence relation over Li, for i ∈ Ag ∪ {Env}. In particular, this

relation is often taken to be simply the equality relation (i.e., for some i ∈ Ag ∪ {Env}, l ∈ Li is

i-indistinguishable from l′ ∈ Li if and only if l = l′).
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Two global states g, g′ ∈ G are i-indistinguishable, written g ∼i g′, if and only if the correspondent

local states of agent i are i-indistinguishable, i.e., li(g) ≈i li(g), for i ∈ Ag ∪ {Env}. We call the

relation ∼i⊆ G×G the indistinguishability relation. Note that the indistinguishability relation can

be lifted to a group of agents Gr, ∼Gr⊆ G×G. A standard lift [80] is based on the intersection on

the relations ∼i⊆ G×G, for all i ∈ Gr, i.e., ∼Gr=
⋂

i∈Gr
∼i.

We can now resume presenting the semantics of temporal-epistemic logic on interpreted systems,

by recalling the interpretation of knowledge modalities. Let I be an interpreted system and g be a

reachable state of I. Then,

• (I, g) |= Kiϕ iff (I, g′) |= ϕ for all reachable states g′ satisfying g ∼i g′;

• (I, g) |= DGrϕ iff (I, g′) |= ϕ for all reachable states g′ satisfying g ∼Gr g′.

A system I validates a CTLK formula ϕ if the formula is satisfied at any reachable state g:

I |= ϕ iff (I, g) |= ϕ, for any reachable state g of I.

We refer to [80] for details on the interpreted system formalism.

We now recall some of the properties of interest modelled and studied in software verification.

Important Temporal Properties of State-Transition Systems.

• Reachability denotes the property that there is a computation path of the system leading to a

particular state (i.e., a state with a certain property);

• Safety denotes the property that the system does not reach a state where a certain undesirable

property holds.

• Termination or finiteness denotes the property that every computation of the system leads to a

terminal state (hence, where no transition is possible).

• Fairness is the property that on every computation path of the system a certain property is

satisfied infinitely many times.

• Reactivity denotes that a certain property eventually holds.

We will now report the CTL specifications of the properties above and their respective readings.

We mention that there are no exact standards stipulating these CTL specifications and that we

follow the lines in [16]. Reachability can be verified by using the following CTL specification: AG(x)

– x does hold at all points, on all paths. Hence, a state where ¬x is reachable on some path. In the
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same approximating sense, we show how the above properties can be directly or indirectly verified

as CTL specifications. Safety can be expressed in CTL as ¬x AW y: on any path, x does not occur

before the first occurrence of y and y might never occur. Reactivity can be expressed in CTL as

AG(x ⇒ AFy): on any path, at any point it is the case that once x occurred, y will always occur

eventually.

We now proceed to summarise some notions of computer-aided verification. In particular, we

focus on the model checking of temporal-epistemic logics.

2.1.3 Model Checking of Temporal and Temporal-epistemic Logics

Given a general2 model M for a system and a specification ϕ encoding one of the system’s properties,

the model checking [51] problem consists in establishing whether the model validates the formula,

i.e., M |= ϕ3. In this thesis we will be employing model checking of interpreted systems against

temporal-epistemic formulae.

Explicit Model Checking for CTLK. As its name says, explicit model checking [50, 51] is a

type of model checking in which states and relations between states are encoded in an explicit

manner. Explicit model checking for concurrent programs [115] against CTLK specifications is

introduced in [129]. The underlying semantics used for the models follows closely the interpreted

systems formalism. The procedure for the temporal fragment of the logic is in the style of the more

traditional model checking of state-transition systems [37].

Let M be a concurrent-program model [129] (in the style of an IS) and ϕ be a CTLK formula.

Let the notation !ϕ" denote the set {g | g ∈ G ∧ (M, g) |= ϕ}, i.e., the set of states which satisfy ϕ

in M . The explicit model checking procedure as presented in [129] decides whether the set I of

initial states is a subset of the states where ϕ is satisfied in M , i.e., I ⊆ !ϕ". For an agent i, model

checking Kiϕ follows in [129] similar lines to the standard method applied for the temporal EXϕ

operator [50,51] (i.e., constructing the closure of the set of states that satisfy ¬ϕ under the pre-image

of the =i indistinguishability relation). We assume that the reader is familiar with explicit model

2By “general” we mean that it does not need to be an interpreted system necessarily.
3In this secton, we assume that the computation of |= is feasible and, in this general setting, ignore details, such

as the set of initial/reachable states considered under |=, etc.
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checking procedures; if needed, please refer to [50,51,129].

The complexity of deciding M |= ϕ is of the order of O(|ϕ| ∗ (|G| + τ)), where |ϕ| is the size

of the formula ϕ, |G| is the number of states in the model M and τ is the number of possible

transitions in the model M .

OBDD-based Symbolic Model Checking of Temporal-Epistemic Specifications. Note

that n propositional variables correspond via the valuation relation to 2n states. This exponential

ratio gives rise to the state-explosion problem. Given the complexity of the explicit model checking

algorithm, the state-explosion problem makes its use inefficient or even impractical in real settings. In

order to alleviate the state-explosion problem, symbolic model checking [143] uses efficient encodings

of the sets of states and of the transition relation. Such encodings are referred to as symbolic

representations.

There are different classes of data structures used to attain symbolic representations of states

and transitions. One class of such data structures is called reduced ordered binary decision diagrams

(ROBDD) [38]. In brief, a (reduced) binary decision diagram (BDD) is a compact representation of a

binary tree. An ordered BDD (OBDD) is a BDD in which the boolean variables appear in the same

order along each root-to-leaf path. These representations are at the basis of OBDD-based symbolic

model checking. For a detailed review on BDDs, we refer the reader to [105].

The first step towards symbolic model checking is to express !ϕ" as OBDDs. Then, a symbolic

model checking procedure represents operations over the OBDD-encoded sets as OBDDs. It uses

the Shannon expansion [12] to model these encodings. Lastly, it simply follows the same steps as

the explicit model checking algorithm. The interested reader is referred to [143,169].

MCMAS [127] is a tool for model checking multiagent systems. MCMAS is a symbolic model-checker

for the verification of interpreted systems models against specifications given in temporal-epistemic

and coalition logics. More precisely, MCMAS supports specifications based on CTL, epistemic logic

(including operators of common [80] and distributed knowledge), alternating time logic (ATL) [7], and

deontic modalities for correctness [131]. The symbolic representations used in MCMAS are ROBDDs.

For the manipulation of BDDs, the implementation of MCMAS uses the CUDD library [179].

Interpreted systems models are described in MCMAS using ISPL (Interpreted System Programming
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Language). The ISPL language has a syntax similar to SMV [46], as the next exemplifications will

show. We proceed by giving the generic structure of an ISPL program:

1 - The agents declarations are defined by a sequence of agent-describing sections. These sections

correspond respectively to the declarations of local states, local actions, local protocol and local

evolution function. For instance, the local states are declared in terms of sets of variables, each

ranging over a domain. Such domains are either ISPL standard types (e.g., bounded integer, boolean,

etc.) or they can be defined by the user as enumeration types (e.g., {value1, . . . , valuen}). The

local evolution is described in an “if-then” style, specifying the preconditions and postconditions for

an action to take effect at a local state of an agent (i.e., 〈post conds〉 if 〈pre conds〉).

Agent <agentID>

<agent_body>

end Agent

2 - The evaluation section constitutes the ISPL specification of atomic formulae, i.e., predicates.

These predicates are used as the building-blocks of the formulae to be checked.

Evaluation

<proposition_declaration>

end Evaluation

3 - The initial states section declares a set of conditions on the variables of the agents, such that

the set of possible initial global states is specified.

InitStates

<condition_on_states>

end InitStates

4 - The declaration of groups is an optional section for explicitly specifying subsets of the set of

agents. These subsets are used to index group-modalities within formulae.

Groups

<groups_declaration>

end Groups
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5 - The formulae Section stipulates the list of specifications to be checked.

Formulae

<formulae_list>

end Formulae

Following the interpreted systems formalism, a special agent called Environment is declared in

all ISPL files.

To give a flavour of the ISPL specifications, Example 2.1.1 cites from an ISPL example-program

provided with the MCMAS distributions [127].

Example 2.1.1 (An Excerpt of the Bit-Transmition Protocol [80] modelled in ISPL)

. . .

Agent Environment

Vars:

state : {S,R,SR,none};

end Vars

Actions = {S,SR,R,none};

Protocol:

state=S : {S};

state=R : {R};

...

end Protocol

Evolution:

state=S if

(Action=S) or (Action=SR) or

(Action=R) or (Action=none);

...

end Evolution

end Agent

Agent Sender

Vars:

bit : { b0, b1};

ack : boolean;

end Vars

Actions = { sb0,sb1,nothing };

Protocol:

bit=b0 and ack=false : {sb0};

bit=b1 and ack=false : {sb1};

ack=true : {nothing};

end Protocol

Evolution:

(ack=true) if (ack=false) and

(Receiver.Action=sendack)

and (Environment.Action=SR) or

(Environment.Action=R));

end Evolution

end Agent

Agent Receiver

...

end Agent

Evaluation

recbit if ( (Receiver.state=r0) or ... );

recack if ( ( Sender.ack = true ) );

...

end Evaluation

InitStates
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( (Sender.bit=b0) or (Sender.bit=b1) ) and

( Receiver.state=empty ) and

( Sender.ack=false) and

((Environment.state=none) or

(Environment.state=SR) or

(Environment.state=S) or

(Environment.state=R));

end InitStates

Fairness

envworks;

end Fairness

Formulae

E((bit0 or bit1) U (recack));

EF(EG(recbit and !recack));...

AG(recack -> K(Sender,(K(Receiver,bit0)

or K(Receiver,bit1))));

end Formulae

We presented the simple syntax of ISPL/MCMAS 0.7. Newer versions (hence, the current MCMAS

1.0 [126]) support more advanced features (e.g., variables in the Environment declaration can be

qualified as observable to be globally accessed or, local observable to be accessed by particular agents,

etc.). We refer the interested reader to [127,126].

Other model checkers for temporal and temporal epistemic logics exist: e.g., MCK [89], Verics [110]

and MOCHA [6]. For instance, MCK [89] is a model checker mostly used with specifications in logics

of linear time and knowledge. Its underlying multiagent system semantics is somewhat different

from that of MCMAS (e.g., in the case of perfect recall [146] semantics, etc.). An example where a

comparison of performance between the two model checkers is drawn is [69].

In this section we have summarised the following notions: the syntax and semantics of temporal-

epistemic logic, temporal properties of interest in the verification of distributed systems and model

checking techniques for logics of time and knowledge. These constitute the main languages, semantics

and verification methodologies that we will use in this thesis.

2.2 Verification of Security Protocols

In this section we summarise the main notions and methodologies employed in formal verification of

security protocols. We start with a synopsis of security protocols. We continue with formalisms

employed in formal methods verification of security protocols (i.e., symbolic protocol verification). It

is generally accepted that there are three main approaches to the verification of abstract protocol

models: logic-based, trace-based and those based on process algebra. For each approach, we present

at least one well known formalism. For clarity of later sections, a distinct subsection is allocated
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to the formalisation of security requirements. The section concludes with a review of high-level

specification languages for security protocols.

2.2.1 Security Protocols — an Overview

2.2.1.1 The Basics

Security protocols are succinctly depicted in high-level protocol descriptions. Two of the common

methods to achieve this are the Alice & Bob notation [173] and UML sequence diagrams [40]. To

illustrate, Example 2.2.1 shows the well known Needham Schroeder Public Key (NSPK) protocol [155]

in the Alice & Bob notation:

Example 2.2.1 (The NSPK Protocol in the Alice & Bob Notation)

1. A → B : {A, NA}pub(B)

2. B → A : {NA, NB}pub(A)

3. A → B : {NB}pub(B)

The protocol description involves two principals : A and B. Each implies one role: the role of A

(or, the A-role) and the role of B (or, the B-role). A concrete participant (e.g., alice) playing the

role of A encrypts its name and its nonce4 NA with the public key pub(B) of a B-role participant,

and sends the resulting encryption {A, NA}pub(B) to this B-role participant. The participant playing

the role of A then waits for a message encrypted with its own public key pub(A), containing its own

nonce NA and a new nonce NB. Following this, the participant proceeds in his A-role by encrypting

the received nonce NB with the public key pub(B) and then sends this encryption back to NB’s

originator, the B-role participant. Dually to an A-role, the first action of a participant playing a

B-role is awaiting for a message encrypted with its own public key pub(B), etc.

As suggested from the above, a high-level description implicitly underlies one protocol session.

In the case of the NSPK protocol, it is a session between an A-role participant, say alice, and a

B-role participant, say bob. In other words, alice is an A-role instance and bob is a B-role instance

4“Nonce” stands for “number once used”, i.e., random, unpredictable value.
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in one concrete session. To consider multiple sessions, several instances of (at least) one role are

instantiated. Such an instantiation is often referred to as a protocol scenario. In some scenarios alice

can be the identity of several instances: e.g., two instances of the A-role and one of the B-role. For

example, in a fair-exchange protocol [13], alice can play the role of the Buyer in two of her running

sessions and that of the Auctionneer in a third, simultaneous session. The multiple role instances

and the non-determinism of their interleaving are some of the sources of the subtle protocol failures

and of the great computational difficulty in finding these failures.

In the following, we will summarise some basic notions of security requirements and protocol

attacks.

2.2.1.2 Mainstream Security Protocol Requirements

Following the lines in [145,192], we will summarise the cryptographic meaning of security protocol

requirements, also called protocol goals.

• Confidentiality or secrecy expresses the requirement of keeping certain information unavailable to

unauthorised parties. For instance, the value of the nonce NA in the NSPK scenario aforementioned

should not leak to an intruder.

• Privacy denotes the requirement that the link between a certain information and a particular

party is unknown to protocol observers. For instance, in electronic-voting protocols (e.g., [158]), the

observer should not know that alice voted v.

• Data integrity is the requirement that alteration of data or data manipulation (insertion, deletion,

and substitution) by unauthorised parties should not occur. A particular type of data integrity,

often reminded, is freshness. It broadly means that the messages transmitted in a session were

generated purposely for that session, e.g., are not replayed from older executions.

• Authentication is the requirement specifying that two or more protocol parties are mutually

identifiable. It can view entities or information itself. This requirement usually goes beyond secrecy:

e.g., the data might be known to remain secret, but two of the parties involved might desire a proof

that their identities are indeed as claimed or that information indeed originated from one party,

being aimed at the other. As such, authentication requirements are usually subdivided into two

major classes: entity authentication and data-origin authentication.
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• Non-repudiation is the requirement stipulating that entities should not be able to deny their

previous actions. Trusted third parties (TTPs) are sometimes (e.g., [21]) employed as a means to

resolve non-repudiation disputes.

If more specialised classes of security protocols are considered (e.g., contract-signing, electronic

voting protocols), then more advanced security requirements are of interest.

• Anonymity is the requirement that a certain party cannot be linked to some data or an action

that he/she has respectively transmitted or performed.

• Eligibility is the requirement that only eligible parties can engage in the protocol sessions and

only once.

• (Voting-)fairness is the requirement that the actions/data of one party cannot be influenced by

data already transmitted.

• Individual (voting-)verifiability stipulates that any voter engaged in the protocol is able to verify

that his/her vote was counted.

• Universal (voting-)verifiability requires that any voter engaged in the protocol is able to verify

that the published result is indeed the sum of the votes cast.

• Receipt-freeness demands that no voter party posseses or knows a receipt or proof of the way

he/she voted.

• Coercion-resistance requires that no voter party can be coerced to cast a certain vote.

2.2.1.3 Security Protocol Attacks

In this section we describe the notion of protocol attack and the context in which it occurs.

The communication channels that support the deployment of most protocols are considered

unsecured (unless specified otherwise). On such a channel unintended parties can reorder, alter,

delete, insert, or read the data transmitted. In contrast, an adversary is not able to alter, redirect

or read the data communicated on a secured channel. Such unintended parties are usually referred

to as attackers, adversaries or intruders. An attacker can be active or passive. A passive attacker

can only observe/read the information from an unsecured channel. In turn, an active adversary is

an adversary who may transmit, alter, or delete information on an unsecured channel. The model

for active attackers most often assumed in symbolic verification methods is the Dolev-Yao thread
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model [71]. In brief, a Dolev-Yao adversary:

• can copy every communication in the system;

• can block any message;

• can impersonate any honest participant;

• has unlimited computational power;

• can keep record of any public system event;

• cannot generate the secret data of honest participants;

• cannot break encryptions.

Also, it is to be noted that any group of Dolev-Yao intruders actively cooperating cannot cause

more attacks than a single intruder acting alone [183].

An attack can be described as a protocol execution in which the adversaries manipulate the

data and/or the participants in such a way that at least one of the protocol requirements is not

fulfilled. Verification and cryptography research has lead to differentiate certain types of attacks.

Following the lines of [145] and those of [48], we summarise the types of protocol attacks investigated

in symbolic methods of cryptography analysis.

• Known-key attack. This attack is lead by the adversary having obtained some previously used

keys and using this information to manipulate the protocol in his favour.

• Replay attack. In this attack the adversary records data from previously run sessions, manipulates

it and inserts the results in current and later sessions. As opposed to the known-key attack, this

attack is not based on the adversary necessarily knowing a leaked (long-term) key.

• Impersonation attack. In this attack the intruder engages in the communication by assuming

partially or entirely the identity of one of the legitimate protocol parties.

• Interleaving attack. This type of attack usually employs impersonation techniques in an execution

where multiple sessions are interleaved. It is sometimes referred to as a man-in-the-middle attack, as

the intruder interposes in the communication of two honest parties, by impersonating one of them.

• Type-flaw attack. In this attack the adversary inserts a corrupted message with the purpose that

the recipient would interpret part of it as what it is not, e.g., take a nonce to be a key, etc.

• Binding attack . In this attack the intruder succeeds in making his public key appear as the public

key of an honest party, e.g., alice is misled into believing that Kintruder is in fact Kbob.
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In the following, we give the example of an attack against the Woo-Lam protocol [194]. This

attack falls into several of the categories above. To begin with, Example 2.2.2 shows the Alice &

Bob notation of the Woo-Lam protocol.

Example 2.2.2 (The Woo-Lam Protocol [194] in the Alice & Bob Notation)

1. A→ B : A

2. B → A : Nb

3. A→ B : {A, B, Nb}KAS

4. B → S : {A, B, {A, B, Nb}KAS}KBS

5. S → B : {A, B, Nb}KBS

The Woo-Lam protocol is an one-way authentication protocol, based on a trusted server. A

initiates the communication by sending her identity to B. At its turn, B replies by sending back a

nonce Nb. This nonce and the entities of the parties are wrapped by A in a packet encrypted with a

shared-key between A and the server S. At step 3, A sends this packet to B. This principal cannot

decrypt the message. In turn, he uses a key that he shares with the server S to encrypt a packet

containing A and B’s identities and the cyphertext previously received from A. Then, at step 4, B

sends this lastly formed packet to the server. The server has all the due keys to decrypt the message

and sends back to B a packet containing A, B, Nb, encrypted with their shared key. Upon receipt, if

the message encrypted with KBS contains the identity of A, B’s identity and B′s original nonce Nb,

then this should reassure B that A has a key with the server and indeed forwarded the correct

nonce Nb in the packets. In other words, A authenticated herself to B (by using S as a TTP).

We now illustrate a known attack [194] on the Woo-Lam protocol:

Example 2.2.3 (An Attack on the Woo-Lam Protocol [194])

1′. IA → B : A

2′. B → IA : Nb

3′. IA → B : Nb

4′. B → IS : {A, B, Nb}KBS

5′. IS → B : {A, B, Nb}KBS
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In this attack, the intruder begins by impersonating the honest principal A, hence the notation IA.

He sends to B the identity of A. In the second step, B replies to the purported A with the freshly

generated nonce Nb. But this message is intercepted by the intruder. In the third step, the intruder

impersonates A again and replays B’s own nonce Nb. Recall that, in a normal execution, the

third-step packet {A, B, Nb}KAS is un-decryptable by B. So, B can take the nonce Nb inside the

intruder-originated packet to be in fact the bitstring for {A, B, Nb}KAS . This means that the intruder

produces a type-flaw fraud. At step 4′, B sends to the server his newly formed packet. This packet

is however intercepted by the intruder. At the final step, the intruder impersonates the server S

and replays to B the message sent at step 4′. This message passes the tests that B would normally

do at step 5, i.e., the message received by B in step 5′ has the form that B would expect and it

deludes B into thinking that he has been in a communication with A, agreeing with A upon Nb and

being certified by a TTP.

Symbolic verification of cryptographic protocols addresses the type of attacks presented in this

section (i.e., not those reliant on cryptanalysis and manipulation of cryptographic primitives). In

the following, we summarise the symbolic approach to protocol analysis.

2.2.2 Formalisms for Specification and Verification

Security Verification Communities — a Synopsis. There are two main approaches to the

verification of security protocols: computational verification methods and symbolic verification meth-

ods. Computational verification methods do not abstract much from the underlying cryptographic

mechanisms: messages are bitstrings, cryptographic primitives are functions, the malevolent parties

are non-deterministic probabilistic polynomial time Turing machines, etc. In turn, symbolic protocol

verification (also, called formal protocol verification) makes certain assumptions that abstract the

cryptographic mechanisms. For instance, a general assumption is that of perfect cryptography [71]:

an encrypted message cannot be decrypted unless the appropriate decryption key is known. The

attacker is also abstracted into the Dolev-Yao thread model. Such assumptions lead to convenient

algebraic approximations of the protocol executions.

Problems of deciding whether security protocols meet even simple requirements (e.g., secrecy or
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confidentiality) are computationally expensive [73,187,171]. In particular, in the case of symbolic

models, if no restrictions are considered, the problem of deciding secrecy is undecidable [172,187].

Undecidability is specific to models where an unbounded number of parallel protocol sessions are

considered or the number of sessions are bounded, but either infinitely many nonces or arbitrarily long

messages are allowed. Nonetheless, if some of these aspects are restricted, the problem of deciding

secrecy still remains of high complexity (e.g., deciding secrecy for the case of bounded number of

sessions with finitely many nonces and bounded message-length is DEXPTIME-complete [188]).

These results refer only to the difficulty of deciding simple security properties (e.g., secrecy) of

cryptographic protocols; meanwhile, deciding more complicated properties dwelling on advanced

protocol requirements (e.g., coercion-resistance) remains decidable only for (very) restricted cases [1]

(e.g., passive intruders and specific classes of protocols).

During the late eighties and the nineties, formalisms and tools were developed in order to analyse

security protocols by means of symbolic models. The great majority of these methods focused on

authentication protocols. A comprehensive list of lines of work in this field, in the chronological

order of their publication dates is [149, 112, 41, 95, 5, 182, 34, 144, 3, 153, 138, 72, 138, 163, 79, 181, 2,

23,19,9,44,8, 175,171,102,73,117,1,188,59,116]. There existed several logic-based approaches to

security protocol verification (especially dedicated to authentication); we recall authentication logics

like BAN [41,42], GNY [95], SVO [184] and AT [5]. BAN was one of the first methodical approaches

of protocol analysis and it became very popular at its time. However, the lack of axiomatisations

and semantics soon raised criticisms [156]. Other logics (e.g., GNY, SVO, AT, etc.) were developed

mostly as a response to BAN’s shortcomings, but none of these enjoyed a long-lasting success.

This was due to the lack of axiomatisations, to flaws discovered in the underlying methodologies

or to the lack of computer-aided tools to analyse these logic systems. The protocol verification

techniques emerging in later years clearly distinguish two mainstream directions: the trace-based

formalisms and the process algebra-based ones. Amongst the trace-based prevalent semantics we

recall those based on inductive approaches [162], rewriting logics [44, 67, 175], Horn clauses [24],

strand spaces [79]. In turn, frameworks based on process algebra made possible verification lines

like CSP/FDR [177,72], spi-calculus [3] or the newer applied pi calculus [2]. In the following, we

will summarise those aforementioned frameworks which are more closely related to this thesis.
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2.2.2.1 Authentication Logics

BAN Logic. Introduced in [41] and revised in [42], BAN is a logic of belief, designed for the

specification and analysis of authentication protocols. BAN also deals with key establishment

protocols, but it assumes that the latter form part of the class of authentication protocols. In a

nutshell, the BAN-analysis means looking at the beliefs of the honest participants after they have

executed the protocol. Firstly, the protocol is idealised (e.g., parts of messages are replaced by

formulae attaching a belief-related “meaning” to them). Secondly, assumptions about the initial

state are made explicit. A procedure of manual annotation of the protocol follows: e.g., for each

transmission rule A→ B : M , an assertion of type B received M annotates the rule. Finally, the

logic is used to derive the beliefs held by protocol principals.

We now present some of BAN’s syntax and inference rules. We use a notation closer to the

natural language, in the style of the later authentication logics [5]. In the following, X is a message

or a formula.

BAN syntax is given by assertions of the type explained below:

• A believes X — A may act as if X is true;

• A received X — A has received a message containing X, either in plaintext or in cyphertext;

• A said X — at some point in the past, A sent X in plaintext or in cryptotext and, at that point,

A believed X and A acknowledged the sending of X;

• A controls X — A has jurisdiction on X, i.e., A should be trusted with respect to X;

• fresh(X) — X has not been sent in any previous messages;

• A
k
←→ B — k will not be learned by any other parties, but A, B and (possibly) TTPs; the

BAN-reading of A
k
←→ B is k is a good key for A and B ;

• PK(A, k) — k is the public key of A;

• {X}k from A — A can recognise her own messages.

For instance, one of the inference rules of BAN is the nonce verification rule:
A believes fresh(X) A believesB said X

A believesB believes X
. In light of the above, this rule is self-explanatory.

Whilst BAN has been successful in pen-and-paper proving certain properties of protocols, many
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criticisms have been brought to it (most arising mainly from the lack of a formal semantics). For

instance, in [156], it is shown how using BAN logics one would prove that a certain protocol is safe,

when in fact one of the protocol’s keys is blatantly attack-prone. Other critiques refer to the fact

that possession of keys could not be expressed in BAN and that universal quantification is implicit in

BAN. The latter led to ambiguities of the following kind: e.g., A believesS controlsA
k
←→ B can

imply either A believes∀k (S controlsA
k
←→ B) or A believesS controls∀k (A

k
←→ B), etc.

BAN’s Successors. As a consequence of the criticisms brought to BAN, several other authenti-

cation logics emerged in the early nineties. For instance, the GNY logic [95] refined subtle details in

the BAN-idealisation of protocols. Also, the GNY logic supported the expression of key-possession,

differentiated between inherently owned, locally generated messages and received messages. Through

these amendments, GNY eliminates BAN’s flaw exposed in [156]. However, BAN’s lack of a formal

semantics is inherited by GNY as well.

In 1991, Abadi and Tuttle created an authentication logic aimed at tackling the semantic

inconsistencies discovered for BAN. This logic was called AT [5] and it exhibited a soundness proof

using an underlying modal logic approach. This was a major step towards offering a sound logical

ground to BAN-style approaches. However, the soundness proof in [5] was sketchy and its hypotheses

were later found to be too strong.

To address an expressiveness deficiency of BAN’s, the VO logic [191] was put forward. Unlike

its predecessors, VO could formalise modern public-key authentication as it is used today in SSL

and TLS protocols.

In 1994, Cervesato and Syverson created the SVO logic [182] (and, in 1996, re-affirmed [184] it).

SVO is an authentication logic that was aimed at combining the facilities of all its BAN-like

predecessors and at offering a sound semantics to the language used. While much in the style of

BAN, SVO had an S5 [122] axiomatisation and an S5-based semantics.

The lack of semantics or tools to support computer-aided verification diminished the possible

impact of these logic-based formalisms. They were replaced by other formal methods approaches to

security verification, some of which are summarised in the sequel.
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2.2.2.2 Rewriting-based Formalisms

A widely used rewriting-based formalism used in security protocol specification and verification is

called multiset rewriting [44]. Concisely, the multiset rewriting formalism consists of:

- a signature, which specifies a set of sorts (e.g., keys, nonces, etc.) together with function and

predicate symbols (each symbol having an associated, specific type over the sorts);

- a set of variables, each having an associated sort;

- terms, which are defined as usual over the signature;

- atomic formulas, which are constructs of the form P (t1, . . . , tn) ; P is a predicate symbol of type

s1 × . . .× sn and ti is a term of sort si, for any i;

- facts, which are atomic formulas P (t1, . . . , tn), where all terms ti are ground terms;

- states, which are multisets of facts;

- rules, which are constructs of the form F1, . . . , Fk → ∃x1 . . . ∃xj.G1, . . . , Gn , where F , G are atomic

formulae, x1, . . . , xj are variables; existential quantifiers in the right hand side of rules, simply called

existentials, capture the generation of new elements (e.g., short-term keys and nonces).

The multiset rewriting semantics is based on state-transition systems, where the moves from

one state to another are achieved by applying a transition/rewriting rule τ such as the one

described above, e.g. F1, . . . , Fk → ∃x1 . . . ∃xj.G1, . . . , Gn. A resulting state has σF1, . . . ,σFk

removed, σG1, . . . ,σGn added and x1, . . . , xj replaced with new symbols, where σ is a fully ground

substitution. Free variables in such transition rules are considered universally quantified.

Most of the results obtained under multiset rewriting use the formalism in its restricted form. A

restricted role is a set of constructions of the form: Ai(. . .), NRj (. . .)→ '∃ . . . Ak(. . .), NSl
(. . .), where

A1, . . . , Am is a finite list of predicates defining the role-states (i.e., states of each instantiated role),

NR1 , . . . , NRn and NS1 , . . . , NSn are finite lists of network predicates, i < k ≤ m and j < l ≤ n;

generically, NR and NS a network predicates for receive and send actions, respectively.

The execution environment for a language denoting restricted form multiset rewriting is called

MSR [181]. Therefore, the multiset rewriting formalism itself is often called MSR. The MSR

execution environment runs on top of the well known rewrite engine called Maude [52].

Multiset rewriting has been extensively used in protocol verification. Adaptations and slight
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variations of the formalism have been developed [181]. In the state-of-the-art AVISPA project [9],

the backends (i.e., the on-the-fly model checker OFMC [19], the constraint-solving based model

checker AtSe [190], the SAT-based model checker SAT-MC [58], TA4SP [25]) rely mostly on (multiset)

rewriting semantics for protocol executions. Other tools for protocol verification were also based on

rewriting semantics, e.g., CASRUL [107]. Moreover, numerous theoretical results [175,75] about

protocol verification were obtained through the use of (multiset) rewriting semantics. To sum up, a

large proportion of the trace-based semantics in protocol verification is based on (multiset) rewriting

techniques.

2.2.2.3 The Bounded Protocol Model

The formalism in [188] is called the bounded protocol model and the protocol-execution semantics

it introduces is inspired by [172]. A complete correspondence between the formalism in [188] and

multiset rewriting [74,73] is drawn in [188]. Due to the wide spread use of multiset rewriting based

semantics and the correspondence mentioned above, in following chapters we will refer to [74,73,188]

as standard, traditional and/or mainstream semantics for multi-session protocol execution. We

summarise the main characteristics of the bounded protocol model formalism. We draw the reader’s

attention to this summary, as we will often refer to the bounded protocol model throughout the

thesis, e.g., as part of a proof in Chapter 4.

• any protocol generic rule A→ B : t is decomposed into two actions :

— a send action a = A!B : (M)t;

In the above, M is the set of all nonces and short-term keys generated by A in order to obtain

the message t at the step where the action a is performed; hence, this set is also denoted M(a)

and the term t is denoted t(a), i.e., the term of action a;

— receive action B?A : t;

• a protocol is defined by a triple P = (S, C,ω), where: 1) S is a protocol signature consisting

of a finite set A of principals, an at most countable set K = K0 ∪K1 of keys and an at most

countable set N of nonces; 2) C is the set of protocol constants; 3) ω is the sequence of

actions describing P (also called the body of P);
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• a role is a sequence ω|A of actions (where A ∈ A), i.e., the sequence obtained from the body ω

of the protocol P , once all actions which are not executed by A are removed;

• a substitution is used to instantiate terms (over the signature); substitutions are homomorphi-

cally extended to actions, sequences of actions and, therefore, roles;

• a substitution σ is suitable for an action a=AxB : t [188] if: a) σ(A) is substituted to a

legitimate participant (i.e., has an outset of keys, etc.); b) σ(A) 6= σ(B); c) σ maps distinct

nonces from M(a) into distinct value-nonces, distinct short-term keys into distinct value-keys

and σ has disjoint ranges for M(a) and Sub(t(a)) \ M(a);

• an event is a tuple (u, σ, i), denoting the i-th action of the role u instantiated under the

suitable substitution σ;

• analz and synth are standard [163] rules for manipulation/derivation of terms in such symbolic

protocol modelling: i.e., analz(X) is the smallest set of terms containing the set X of terms,

closed under decomposition rules (e.g., de-pairing, decryption, etc.), whilst synth(X) is the

least set of terms containing the set X of terms, closed under composition rules (e.g., pairing,

encryptions etc.); then, X is used to denote synth(analz(X));

• a state s is an indexed set of the form s = (sA |A principal).

This formalism employs a Dolev-Yao intruder model. Furthermore, the formalism operates under

the following assumptions:

• every honest principal A is provided with some secret information SecretA ⊆ K0 ∪N , not

known to the intruder; note that SecretA does not contain long-term keys;

• the intruder is provided with a set NI ⊆ N of nonces and a set K0,I ⊆ K0 of short-term keys.

It is assumed that no element in NI ∪K0,I can be generated by honest principals.

With these assumptions, the initial states in this formalism are given by s0 = (s0A|A ∈ A),

where:

• s0A = A ∪ C ∪KA ∪ SecretA, for any honest principal A;

• s0I = A ∪ C ∪KI ∪NI ∪K0,I .

The freshness check denotes a test carried out to ensure that newly generated terms have not

appeared previously in the protocols execution. Let s, s′ be two states and let e be an event. A

computation step at the state s resulting in state s′, s[e〉s′, is described as follows:
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• if the action of e is a send action, A!B : (M)t, then the enabling conditions are:

1. t ∈ sA ∪M (if no freshness check is considered)

2. t ∈ sA ∪M and M ∩ Sub(s) = ∅ (if freshness check is considered)

and the computing rules are:

1. s′A = sA ∪M ∪ {t}, s′I = sI ∪ {t}, s′C = sC , for all C ∈ A− {A, I};

• if the action of e is a receive action, A?B : t, then the enabling conditions are:

1. t ∈ sI

and the computing rules are:

1. s′A = sA ∪ {t} and s′C = sC , for all C ∈ A− {A}

In [188], a computation or run of a protocol P is any sequence s0[e1〉s1[· · · [ek〉sk of computation

steps such that:

• si−1[ei〉si, for any 1 ≤ i ≤ k;

• {e1, . . . , ei−1} ⊇ •ei, for any 1 ≤ i ≤ k, where •ei is the set of all the events which precede ei in

its underlying role. This means that actions within a role are performed in the order prescribed

by the protocol description. For this, a precedence relation −→ is defined and its transitive

closure over the event e gives the set •e of events preceding e in its underlying role.

A term t ∈ K0 ∪ N is called secret at a state s if t ∈ analz(sA) \ analz(sI), for some honest

agent A. Secrecy is extended to runs: a run ξ = e1 · · · ek is leaky with respect to T ⊆ K0 ∪N if

there exists t ∈ T such that t is secret along some proper prefix of ξ but it is not secret along ξ.

The secrecy problem (SP) is the decision problem of a protocol having leaky runs (with respect to

atomic terms in T ).

If the set T is uniformly replaced in the above definitions with the set SecretA, then secrecy with

respect to initial secrets is obtained. The difference is that the secret term t is not any atomic term,

but an initial secret. This form of secrecy is denoted initial secrecy. The initial secrecy problem (ISP)

is the decision problem of a protocol having leaky runs (with respect to initial secrets).
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However, both SP and ISP can fall into two different categories: (I)SP with freshness check

or I(SP) without freshness check. Considering or dismissing freshness checks yields respectively

different complexity and decidability results of the (I)SP problem [188].

In order to relate this formalism with MSR, the bounded protocol model is introduced in [188].

Analysing secrecy in MSR under restricted form [73] coincides with verifying secrecy in the bounded

protocol model (see pages 702–706 in [188]). A (T, k)-bounded protocol has all its messages built

with terms drawn from T and all its messages have length at most k, where T ⊆ T0 is a finite set

and k ≥ 1. Certain parameters that usually lead to undecidability (e.g., number of instantiation,

number of events) are found to be upper-bounded in [188] for the class of bounded protocols. For

instance, the number of events of a (T, k)-bounded protocol P is of the order of O(2poly(size(P))),

where size(P) = |ω| + k log |T |.

We do not present here the algorithms or the reductions used in [188] to obtain the decidability

and complexity results for the (initial) secrecy problem. When needed, we will refer to the algorithms

used for deciding (initial) secrecy of bounded protocols in more detail.

2.2.2.4 Applied Pi Calculus

The previous subsections reviewed the trace-based semantics for protocol executions (e.g., the MSR

formalism and the bounded protocol model). In turn, in this section we summarise a formalism for

protocol verification based on process algebra.

The applied pi calculus is a language for describing concurrent processes and their interactions.

It was developed explicitly for modelling security protocols in [2] and it can handle more general

cryptographic primitives than its similar predecessors (e.g., spi-calculus [3]). We will now summarise

the main principles of the applied pi calculus formalism.

Terms on a finite signature are declared by the following grammar:

L, M,N, T, U, V ::= a, b, c, k,m, n, s, t, r, . . . — names

x, y, z, . . . — variables

g(M1, . . . ,Ml), . . . — functions

Equational theories are sets of equalities defined on terms, used to symbolise the properties
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of the cryptographic primitives underlying a protocol. For instance, the well-known properties of

symmetric and asymmetric encryption is modelled by the following equational theory:

sdec(x, senc(x, y)) = y

dec(x, enc(pk(x), y)) = y

Processes in applied pi are described by the following grammar:

P, Q, R := 0 — null process

P |Q — parallel composition

!P — replication

νx.P — name restriction

u(x).P — message input

u〈M〉.P — message output

if M = N then P else Q — conditional

An active substitution [M/x] is a substitution that replaces x with M uniformly in a process. A

process is closed when each variable is bound or defined by an active substitution. Processes are

identified up to α-renaming [17]. A context is a process with a hole. An evaluation context is a

context whose hole is not under a replication, a conditional, an input, or an output. A context C[ ]

closes process A when C[A] is closed. The interested reader is referred to [2].

An operational semantics of applied pi describing a behaviour of processes that simulates the

communication of (partly) substituted terms is presented in [2]. To exemplify, the rule of NEW-C is

given like νn.νw.P ≡ νw.νn.P and it denotes the commutativity of the “new” operator, i.e., ν. The

NEW-PAR rule stipulates that a ν operator inside a parallel composition bounds over the whole

parallel composition if its arguments are not free terms in the process under the composition, i.e.,

A|(νnB) = νn.(A|B), where n /∈ freenames(A) ∪ freevars(A). The REWRITE rule denotes that

if M and N are equal modulo the equational theory E then substituting either x by M or by N has

the same effect, i.e., {M/x} ≡ {N/x}, if M =E N . For details on the semantics, refer to [2].

To define communication further, the operational semantics of applied pi introduces the so-called
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labelled semantics. The notation A
α
→ B has the following particular instances:

• A
c(M)
−→ B means that the process A performs an input of the term M from the environment

on the channel c, and the resulting process is B;

• A
c〈u〉
−→ B means that the process A outputs the free variable or channel name u and then A

becomes (“behaves like”) B;

• A
νu.c〈u〉
−→ B means that A outputs the variable or channel name u that is restricted in A, and

becomes free in B.

The labelled semantics subsumes structural equivalence and internal reduction [2].

The specifications formalised and studied in applied pi fall into three classes: reachability prop-

erties, correspondence properties and equivalence properties. We will summarise these specifications

in the following section, when we explicitly address formalisations of security requirements.

The intruder model adopted in applied pi is usually a Dolev-Yao threat model. However, for

some protocols (e.g., e-voting), the applied pi thread-model assumes only passive adversaries.

To carry out protocol verification in applied pi, the following methodology is employed: 1) the

equations to capture the cryptographic primitives are expressed; 2) the protocol participants are

divided into honest and dishonest; 3) the honest parties are modelled as processes; 4) each intended

security property is specified as a reachability property, as a correspondence property or as an

observational equivalence property; 5) the model is then explored manually or by using ProVerif,

where possible (i.e., for reachability properties).

ProVerif [23] is a tool that can verify applied pi specifications. The tool can analyse an

unbounded number of protocol sessions, but it is therefore semi-decidable. That is, it might not

terminate, but if and when it halts it gives the correct answer to the decision problem (e.g., secrecy).

ProVerif can only analyse reachability properties. Hence, it can be used only for those properties

specified in applied pi which are reducible to a reachability formula.
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2.2.2.5 Other Formalisms and Tools

There are many other formalisms and tools for security protocol verification. In the following, we

will briefly recall some of the important ones. CSP (Communicating Sequential Processes) [174] is one

of the formalisms used in security verification and based on process algebra. CSP was extensively

used by Lowe to prove protocol insecurity [139,138,72]. Casper [138] is a software that compiles a

high-level protocol description into a CSP model of the protocol. FDR [72] is a model checker that

can verify such a CSP model. Developed in the nineties, Casper and FDR were used successfully

to analyse the so-called Lowe’s small systems (i.e., models for small-size protocol scenarios). The

underlying ideas of these methodologies followed Lowe’s intuition that if protocol failures exist, they

should be exhibited on a small-size instantiation of the protocol (i.e., on a low number of concurrent

sessions); later and further practice [138,9] suggests that this intuition is indeed correct.

Similar size systems were verified using the explicit model checker Murphi [153]. Murphi can

handle a finite number of protocol sessions against reachability properties.

At the other end, Hermes [33] is a tool that can handle an unbounded number of protocol

sessions, unbounded size of messages, unbounded number of participants, and unbounded number of

nonces. It is not based on any of the techniques mentioned so far, but on symbolic patterns ; these

approximate the infinite set of safe messages [33]. Another tool that can handle infinite state-spaces

by employing approximation and reduction techniques is Athena [180]. A more recent tool that

expands on the ideas used in Athena is Scyther [61].

2.2.3 Specification of Security Requirements

There is no standard for specifying security requirements. The variations in specifications are due in

part to the subtle differences between one protocol and another, even if they belong to the same class

(e.g., the class of authentication protocols). Along these lines, we quote Syverson and Cervesato’s

opinion as expressed in [182]: “There is not a unique definition of authentication that all secure

protocols satisfy”.

In the first part of this thesis, we are interested in secrecy and authentication requirements. In

the second part of the thesis, we focus on anonymity-originated requirements. We will now recall
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the view that the aforementioned formalisms took on security requirements and on the specification

of security requirements.

2.2.3.1 Authentication Goals

Attempts of Standardisation. The only notable attempts to formalise authentication goals are

those of Gollman [93] and, later, those of Lowe [137].

Gollman’s authentication goals [93] are expressions of different flavours of entity authentication.

They are denominated G1 to G3.

• The goal G1 stipulates that the protocol ought to establish a fresh session key, known only to the

honest parties in that session and possibly to a trusted party.

• Additionally to G1, the goal G1’ requires that the compromising of old sessions keys does not

lead to the exposure of new session keys.

• The goal G2 specifies that a key associated with a principal B has to be used in a message received

by another principal A in the protocol run, in a response to a challenge issued by A in the form of a

nonce or a timestamp.

• The goal G3 enforces that a key associated with a principal B is used during the protocol run,

in a response to a challenge issued by another principal A in the form of a nonce or a timestamp.

However, A need not receive a message where this key was used.

The goals G1 and G1’ refer only to one individual protocol session and do not consider possible

interleaving of sessions. The goal G2 is probably the one closest to entity authentication [82] (or to

what entity authentication is believed to require). The goal G3 is the weakest of the three.

Lowe’s hierarchy for authentication is based on Lowe’s observation [137] that all authentication

properties are of the form: “A protocol P guarantees property X to initiator A with respect to

another principal B if and only if whenever A completes a run of the protocol, apparently with

responder B, then a certain requirement φX holds.” In this fashion, by correlating the property X

with different requirements φX , a taxonomy of authentication goals is presented in [137]. We

summarise them from the weakest such requirement to the strongest.

• Aliveness of B as A’s communication partner is a guarantee to A that B has been active at some

point prior to the current moment of communication.
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• Weak agreement of B with A requires that A had some evidence of B being actively engaged in

the protocol (e.g., he has announced its public key). However, weak agreement does not require

that B has been running the protocol with A, or that it had been A’s communication partner.

• Non-injective agreement of B in front of A is formulated in [137] as: “B has previously been

running the protocol, apparently with A, and B was acting as the responder in his run, and both

agree on values of variables in a dataset ds”. Note that for non-injective agreement to hold it is

possible A and B have been actually engaged in different sessions (and it is only by chance that

they have come to agree on information in the dataset ds).

• Injective agreement strengthens Lowe’s non-injective agreement with the requirement that there is

an one-to-one correspondence between the runs where the sharing of data is accomplished.

In [137], Lowe’s hierarchy is best pictured by illustrating subtly different attacks, each mounted

against one requirement or another.

Most often, the attempts of standardising the specifications for authentication like the ones

summarised above had limited impact. Different formalisms have taken different views and ap-

proaches to specifying authentication properties. In the following, we summarise the specifications

for authentication as they appear in the formalisms previously recalled in this section.

Authentication Properties Formalisations. BAN’s approach to specifying authentication

goals was protocol dependent. Whilst no standardisation was in place, some BAN authentica-

tion goals seem to be more frequent than others (e.g., key-establishment). Most of these goals

related to the so-called belief in “goodness” of the keys. Some examples of BAN formulations of

goals are: A believes (A
k
←→ B), B believes (A

k
←→ B), A believesB believes (A

k
←→ B),

B believesA believes (A
k
←→ B).

The GNY, AT and SVO logics were concerned with correcting BAN’s semantic flaws. As such,

they did not increase the expressivity of BAN. Hence, to a large extent, the authentication goals

remained the same in these successors of the BAN logic.

In turn, the VO logic did enrich the language of BAN and provided some more advanced

authentication specifications. The approach to the VO specification of authentication goals distin-

guished the following formalisations [191]: ping authentication, entity authentication, secure key
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establishment, mutual understanding of shared keys, key freshness, key confirmation. For instance,

ping authentication implied a notion of aliveness of the communication partner, by specifying that

A believesB saysX. Entity authentication was specified as a stronger property: B has previously

generated a message-part Y and now B believes that A has used Y in one of her messages. This

was denoted as B believesA saysF (X, YB) ∧ fresh(YB) and it meant that A was authenticated

to B as a legitimate holder of Y . The VO specification of mutual understanding carried an implicit

nesting of beliefs: B believesA says (A
k−
←→ B). In VO, this was intended as: B believes that A

has acquired k as a communication-key between A and B (whereas B might not have k).

In the multiset rewriting formalism, the authentication goals are expressed as reachability

properties. MSR states are annotated with predicates and it is to be checked whether the execution

terminates in states with certain tags (e.g., a tag B TERMINATED A Na means that a B-role has

terminated its session with some values for A and Na).

In the bounded protocol model, secrecy is expressed in terms of existence of leaky runs.

In applied pi calculus, reachability and correspondence properties are used to analyse authen-

tication properties. The idea of correspondence properties is that, by annotating processes with

parametrised events f〈M〉, the relationships between the order of events and their parametrisa-

tion M can be studied. More formally, a correspondence property is a specification of the form

f〈M〉! g〈N〉; it stipulates that if the event f has been executed then the event g must have been

previously executed and any relationship between the event parameters must hold.

Having reviewed the formalisations of secrecy, authentication and key-establishment goals, we

proceed to survey the formalisation of other types of security goals of interest to this thesis.

2.2.3.2 Anonymity Related Goals

Anonymity-related Formalisations. In applied pi calculus, equivalence properties are used to

verify anonymity-like properties. Equivalence properties have been introduced in applied pi at a

later stage to capture those properties that cannot be specified as reachability or correspondence

formulae. Equivalence properties are based on the idea of indistinguishability between two processes.

An example of such properties is the unlinkability-like requirement between a voter and its vote in

e-voting environments. The notation A ⇓ c abbreviates that the process A can evolve to a process



2.2 Verification of Security Protocols 52

that is able to send a message on a channel c (i.e., when A → C[c〈M〉.P ] for some term M and

some evaluation context C[ ] that does not bind c). In applied pi, observational equivalence is the

largest symmetric relation R closed under extended processes with the same domain, such that

ARB implies: 1) if A ⇓ c, then B ⇓ c; 2) if A→ A′ then, for some B′, it is the case that B →∗ B′

and A′RB′ ; 3) C[A]RC[B] for all closing evaluation contexts C[ ].

Other anonymity-related formalisations are those introduced in epistemic frameworks. The first

to advance such formalisations are Halpern and O’Neill in [97]. They use a multiagent system

formalism to reason about secrecy as a property of lack of knowledge. In [97], I is an interpreted

system and τ(i, a) is used to mean that “agent i has performed action a or it will perform it in the

future”. Action a performed by agent i is minimally anonymous to agent j if I |= ¬Kjτ(i, a) (hence,

agent j cannot be sure that agent i performed the action a). Action a performed by agent i is

totally anonymous to agent j if I |= τ(i, a)→ ∧
i′∈Ag\{j}

Pjτ(i′, a) (hence, agent j considers it possible

that any agent could have done action a)5. Total anonymity can be restricted to anonymity up to a

set A ! Ag or to k-anonymity, anonymity between a group of k agents. These notions of anonymity

are used in [97] in the context of security settings, to formalise secrecy properties.

Several approaches used the formalisation in [97] to specify anonymity-related properties. The

notable ones are [90,78,142]. A taxonomy of formalisations referring to the anonymity or identifiability

of agents, actions or agents performing actions is presented in [189]. To distinguish between

each of these cases, new terminology was introduced in [189]; e.g., based on Halpern’s seminal

formalisation [97] of secrecy, [189] uses onymity to refer to knowledge of agents’ names, identity to

refer to knowledge of actions, anonymity to refer to the lack of knowledge about the agents’ names

and privacy to refer to the lack of knowledge about the actions performed. At the intersection of

such schema, [189] places role interchangeability and role non-interchangeability specifications. Like

in [97], this taxonomy classifies these anonymity-like properties into partial, total or up to some

range. The hierarchy in [189] is best summarised by an illustration given in [189] and reported here

in Figure 2.1.

In Section 2.2.3 we have reviewed the expression of security goals in various formalisms for

protocol verification. We now proceed to summarise of the high-level languages used for describing

5The formula Pjϕ stands for ¬Kj¬ϕ, for some ϕ ∈ Form and j some agent.
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security protocols.

2.2.4 Protocol Description Languages

In order to gain more expressivity than in the simple Alice&Bob notation, protocol description

languages have been developed. With them, protocols can be described more accurately (e.g., details

about the data-types to be used and the requirements intended at the design-time can be specified).

Many compilers have been built to translate such high-level languages into low-level languages

mirroring one semantics for protocol verification or another (e.g., CASPER is used to transform a

high-level language into CSP [139], HLPSL [157] is compiled to IF in [167], CAPSL is compiled to CIL

in [64], etc.). With these languages and their compilers, a move towards the software-engineering of

protocol analysis is made.

In the following, we will survey two such high level protocol specification languages.

CAPSL (Common Authentication Protocol Specification Language) is a language developed by Millen

et al., aimed at describing authentication and key-establishment protocols. The syntax of CAPSL and

some explanations on the denotations implied are presented in [64]. For the interested reader, parts

of these have been explained further in [66]. Another source for information about CAPSL is [151].

A CAPSL protocol description (usually) contains three distinct parts: a type specification

(typespec), a protocol specification (protocol) and an environment specification (environment).

Declarations of abstract datatype used in the protocol are made in the type specification section.

Commonplace datatypes (e.g., keys, nonces, etc.) are provided in a CAPSL standard package called

prelude. Thus, the typespec section is mainly devoted to introducing user-defined types and

signatures on them.

Furthermore, equations on these signatures can be defined (under the entry axiom). Equations

are equalities on terms, as we recalled within the summary of the applied pi calculus formalism (i.e.,

page 45). They stipulate the equational theory underlying the protocol. A security protocol for

which the description relies on a set of axioms formed with the underlying cryptographic primitives is

denoted as an equationally specified protocol [178,63]. We specified the equational theory underlying

the Gong protocol [94] in CAPSL. We report our specification in Example 2.2.4.
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Example 2.2.4 (The Type-Specification CAPSL Section for the Gong Protocol)

TYPESPEC GongSpec;

FUNCTIONS

k(Skey): Skey;

ha(Skey): Atom;

hb(Skey): Atom, PRIVATE;

recon(Skey,Atom,Atom): Skey;

VARIABLES

Z: Skey;

AXIOMS

recon(k(Z),hb(Z),ha(Z)) = Z;

END;

The Gong protocol uses one-way functions (denoted below hb, ha, k) and xor, but no encryptions

or decryptions. The equation used to retrieve the message encoded is given in Example 2.2.4 under

the entry AXIOMS.

The CAPSL PRELUDE also facilitates some denotations of properties and function symbols on

these datatypes. In Example 2.2.4, the function hb has the modifier PRIVATE, hence its scope is

restricted to principals that hold the key Z. Another example of a modifier to be used under the

section of AXIOMS is INVERT. A term or a function is tagged with INVERT if it is invertable; for

instance, a term {x}K is invertable in the sense that a protocol role can retrieve x if it holds the

term {x}K , plus the (inverse of the) key K. The CAPSL PRELUDE package also provides certain

simplified notations for common cryptographic primitives (e.g., in the CAPSL, {·} is used to denote

encryption).

In the CAPSL PROTOCOL specification section, further definition or specialisation of equations and

terms is possible. As expected, this section describes the protocol, from the actual communication

to its goals. In Example 2.2.5, we report the rest of our CAPSL description for the Gong protocol.

Example 2.2.5 (The Protocol CAPSL Section for the Gong Protocol)
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PROTOCOL Gong;

IMPORTS GongSpec;

VARIABLES

A, B: Client;

S: Server;

Na, Nb, Ns: Nonce;

Pa, Pb: Skey;

Kh, K: Skey;

DENOTES

Pa = ssk(S,A): S;

Pa = csk(A): A;

Pb = ssk(S,B): S;

Pb = csk(B): B;

Kh = sha({Ns,Na,B,Pa}): A,S;

ASSUMPTIONS

HOLDS A: B;

HOLDS B: S;

MESSAGES

1. A -> B: A, B, Na;

2. B -> S: A, B, Na, Nb;

3. S -> B: Ns, xor(sha({Ns,Nb,A,Pb}),Kh), sha({Kh,Pb});

K = k(Kh);

4. B -> A: Ns, hb(Kh);

K = k(Kh);

5. A -> B: ha(Kh);

GOALS

SECRET K;

PRECEDES A: B | Nb, K;

PRECEDES B: A | Na, K;
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END;

Under the section DENOTES, we defined terms. The role that holds these terms is also specified.

In Example 2.2.5, the first line under DENOTES expresses that Pa is a shared key between the A-role

and the S-role, but it is held by the S-role. Protocol goals (under the CAPSL section of GOALS) are

described by assertions, each of which corresponds to some security requirement.

The CAPSL grammar for goals allows for the usual secrecy and agreement assertions, but also

for knowledge, beliefs, proofs and assumption assertions. However, the GOALS grammar in CAPSL is

tailored to key-establishment and authentication protocols. For that reason, much as it is possible

to express some goal pertaining to knowledge, the CAPSL grammar does not allow the expression

of more advanced requirements, e.g., lack of knowledge. In other words, negations cannot appear

but as inequalities between terms. The exact CAPSL grammar for goals can be found at [151]. For

instance, in the aforementioned simple assertions the most important keywords used are SECRET and

PRECEDES. As Example 2.2.5 shows, the Gong protocol requires the secrecy of the key K, as well as

the agreement between the A-role and the B-role participants upon the data Na, Nb and K. A

temporal aspect, as in Lowe’s hierarchy of agreement, is implied by the use of PRECEDES: e.g., B

holds Nb before A does and eventually they agree on it. The assertions of knowledge and belief

(expressed through keywords like KNOWS, BELIEVES, ASSUME) are used to support BAN-like goals.

Nesting of different assertions is used in order to render requirements like chain-authentication, etc.

Most of the denotations associated to CAPSL keywords and descriptions are given in the context of

backends for CAPSL (e.g., NRL [144], MAUDE-based verification [181], etc.) and are based on a rewriting

semantics. The intermediate language for CAPSL is called CIL (CAPSL Intermediate Language) and it

is introduced in [66]. A multiset rewriting semantics is implicitly attributed to CIL [66]. A translator

for CAPSL to CIL is available at [151]. In the following, we give just a snapshot of the CIL file for

the Gong protocol which we obtained by using the translator available at [151].

Example 2.2.6 (An Excerpt of the CIL file for the Gong Protocol)

rule (

facts ( state ( roleA , 3 , terms ( A , B , Na , Ns , Pa ) ) ),

ids ( ) ,
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facts ( state ( roleA , 4 , terms ( A , B , Na , Ns , Pa , sha

( cat ( Ns , cat ( Na , cat ( B , Pa ) ) ) ) ) ) )

) ,

rule (

facts ( state ( roleA , 4 , terms ( A , B , Na , Ns , Pa , Kh )

) ) ,

ids ( ) ,

facts ( state ( roleA , 5 , terms ( A , B , Na , Ns , Pa , Kh ,

k ( Kh ) ) ) )

) ,

The snapshot of code in Example 2.2.6 shows that protocol roles in CIL are expressions of MSR

restricted-roles (as described in Section 2.2.2.2). In particular, the excerpt in Example 2.2.6

depicts how, at step 4, the role A follows the protocol description/signature and generates

sha(cat(Ns, cat(Na, cat(B, Pa)))) which is then rewritten to Kh in the next rule, etc.

HLPSL (High-Level Protocol Specification Language) [157] is a protocol description language similar

to CAPSL. HLPSL was developed in the AVISPA project [9]. It also enjoys an intermediate language,

which is called IF (Intermediate Format) and is based on a rewriting semantics. Each back-end of

AVISPA (e.g., OFMC [19], AtSe [190], SAT-MC [58], TA4SP [25]) translates an IF file into a lower-level

specification and carries out protocol verification. HLPSL provides default basic types for specifying

protocols (e.g., agent, channel, boolean, integer, text, message, public key, symmetric keys), type

constructors for user-defined datatypes, goal-specification syntax, etc. An HLPSL description is more

detailed than a CAPSL one. An HLPSL protocol description is role-oriented and it depicts a protocol

scenario (i.e., it includes role instantiation). For illustration purposes, we give below an excerpt of

NSPK described in HLSPL:

Example 2.2.7 (An Excerpt of The HLPSL Description for the NSPK Protocol)

role alice (A, B: agent,

Ka, Kb: public_key,

SND, RCV: channel (dy))
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played_by A def=

local State : nat,

Na, Nb: text

init State := 0

transition

0. State = 0 /\ RCV(start) =|>

State’:= 2 /\ Na’ := new() /\ SND({Na’.A}_Kb)

/\ secret(Na’,na,{A,B})

/\ witness(A,B,bob_alice_na,Na’)

2. State = 2 /\ RCV({Na.Nb’}_Ka) =|>

State’:= 4 /\ SND({Nb’}_Kb)

/\ request(A,B,alice_bob_nb,Nb’)

Specification languages which are not security-specialised have been sometimes succesfully

used for describing cryptographic protocols. An example of this kind is CASL (Common Algebraic

Specification Language) [14]. In these cases too, compilers to some lower level security semantics

have been employed.

In Section 2.2.4 we summarised the characteristics of several high-level languages for security

protocol description. Overall, in Section 2.2 we presented a synopsis of security protocols, a

comprehensive list of formalisms employed in formal verification of cryptographic protocols, the

formalisation of security requirements and a summary of high-level specifications of security protocols.

2.3 Epistemic Logic and Cryptography

In this section we will summarise the relations between the analysis of security protocols and

epistemic logic. These include advances in the study of cryptographic indistinguishability, notions

of computational soundness of formal cryptography analysis and the first steps towards the use of

temporal-epistemic logic in automatic verification of security protocols.
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Cryptographic Indistinguishability. We mentioned in Section 2.1 that the semantics of the

knowledge operator K relies on some equivalence relation over the local states of the agents,

called the indistinguishability relation. It is easy to see that the simple equality relation is not

always adequate for modelling cryptography (e.g., two encrypted messages of an agent cannot be

symbolically distinguished if the agent does not possess the respective decryption keys). A correct

notion of indistinguishability is important in modelling security protocols, especially in the context

of certain security requirements. As such, vote-privacy requires that every vote remains private; by

observing all runs of the voting process, the attacker cannot single out a run in which he can tell

apart the fact that alice voting a from bob voting b, even if he applied the cryptographic equations

of the protocol.

The perfect cryptography assumption6 implies that there is no cryptanalysis encoded in formal or

symbolic models of protocols (e.g, agent i does not store or compare the lengths of the messages, etc.).

In AT [5], two local states are indistinguishable if their content cannot be differentiated via the

decryptions possible at those states. This only referred to symmetric decryption. Thus, a local

state si containing only the key k and the term senc(a, k) for the symmetric encryption of the

vote a with the key k is i-distinguishable in AT from a state s′i containing only the key k and the

term senc(b, k), i.e., senc(a, k) and senc(b, k) both represent encrypted bitstrings, opaque to agent i.

In later years, the notion of AT-like indistinguishability has been further expanded to be applied

to asymmetric cryptography as well. The SVO logic (recalled in Section 2.2) was one of the

formalisms that supported indistinguishability for asymmetric encryption [184]. The latter form of

indistinguishability was modelled in [60,193] as well.

In applied pi calculus [2], reviewed in Section 2.2, the notion of indistinguishability is intuitively

modelled by the notion of static equivalence. A frame σ is an extended applied pi calculus process

built up from 0 and active substitutions of the form [M/x] by parallel composition and restriction.

The domain dom(σ) of a frame σ is the set of variables that it exports (those variables x for which

the frame contains a substitution [M/x] not under the restriction of x). Intuitively, the frame σA

corresponding to a process A accounts for the “static knowledge” exhibited by A to the environment

(i.e., a simpler notion of knowledge in which the operational semantics of the process A is abstracted).

6See [71] or page 37 for a summary of the perfect cryptography assumption.
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Two terms M and N are equal in the frame σ, (M =E N)σ, if and only if there exists n and a

substitution θ such that σ is νn.θ, θ(M) = θ(N), and n ∩ (fn(M) ∪ fn(N)) = ∅. Two frames are

statically equivalent if they have the same domains and they exhibit the same equalities of terms

modulo the underlying equational theory.

In [164] Pucella et al. propose a different kind of indistinguishability. In a nutshell, two

states g, g′ ∈ G are i-indistinguishable if the following holds: when agent i applies an algorithm Ai

to each of the states, the results respectively obtained are the same, i.e., g ∼i g′ if and only if

Ai(g) = Ai(g′). In a model extending the interpreted system formalism, a knowledge modality based

on this indistinguishability relation and called deductive algorithmic knowledge is put forward [164].

Other indistinguishability relations and consequent knowledge modalities (partly) related to

cryptographic modelling exist. Agent i is aware of φ [134] if the formula φ is within a dedicated set

of facts. In [134], agent i explicitly knows φ if i knows it in the standard sense and i is aware of φ.

Explicit modality can therefore be viewed as a simplified version of deductive algorithmic knowledge.

A procedure computing such an underlying indistinguishability relation of explicit knowledge is

implemented in the MCMAS-X [130] branch of the MCMAS model checker.

Computational Soundness of Cryptographic Formalisation. Computational soundness

results for the formalisation of cryptography in symbolic models started with the work of Abadi

and Rogaway in [4]. A symbolic verification methodology is computationally sound if it enjoys a

proof that the guarantees it offers hold in a corresponding computational approach as well (i.e., if

some security guarantee holds for abstract-term formalisations, then it also holds for the bitstring

formalisation). The work of Abadi and Rogaway only treated the case of symmetric encryption and

that of passive adversaries. Later, this was extended for asymmetric encryption and for stronger

adversary models. Recently, in [57], Comon-Lundh et al. have proven computational soundness for

observational equivalence in applied pi calculus.

Working towards the computational soundness of epistemic-based cryptographic modellings, [54]

draws the attention to the local omniscience problem [160]. This problem is inherent in any

Kripke semantics (hence, it is invariant with the indistinguishability relation). In a nutshell,

the logical omniscience problem refers to the fact that agents know all properties of their local
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states. For instance, the validity |= ({m}k contains m) implies that |= Ki({m}k contains m), for

some agent i in the system. To counteract this issue, Cohen underlines the difference between

considering the indistinguishability relation in a de dicto versus in a de re sense [54]. Let the

local states be understood de re [36]. In this case, if A receives enc(m, k) then (by S5) she

knows what she received, i.e., KAA receives enc(m, k). Now, let the local states adhere to a

de dicto interpretation. Then, the latter knowledge of A is not the case (i.e., the implication

A receives enc(m, k)→ KAA receives enc(m, k) cannot be valid for all ground terms of the form

enc(m, k)). Following these ideas, Cohen proves completeness of a BAN-like logic for cryptography

in a semantics that differentiates the interpretation de dicto from the interpretation de re (i.e., he

uses a counterpart semantics [123] framework).

Towards Temporal-Epistemic Verification of Security. A recent methodology of verifying

cryptographic protocols against temporal-epistemic formulations of security requirements is presented

in [125]. The authors use a bounded model checking framework to verify security protocols specified

as interpreted systems specialised with security-related features. The framework is called LDYIS

(Lazy Dolev-Yao Interpreted Systems).

We concisely give the syntax and the semantics of an LDYIS as per [125]. In an LDYIS, a

collection of sets is introduced to define the model:

• a finite set Ag of agents, containing a special agent ι representing the intruder;

• an ordered set N f of fresh nonces, a set N o of nonces already used, a set N = N f
⋃

N o of

nonces;

• an indexed set K = (Ki | i ∈ Ag) of keys;

• a set Ki of keys known to agent i, a set N f
i of nonces to be freshly generated by agent i.

To enrich the specification, other mathematical objects are introduced, e.g., @i denoting the

address of some agent i and idi the number of parallel sessions that agent i carries simultaneously.

A message msg of the protocol is defined by the following grammar:

i | I |n |N | k |K | {msg}k | {msg}K |msg · msg.

In order to depict the actual communication of messages, [125] introduces the concept of letter; a

letter lt is given by the tuple lt = ((@s, @r) , msg) and it denotes that a message msg is sent by
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agent s to agent r. A local state li of agent i is given by the tuple li =
(

Agi,N o
i ,N f

i ,Ki, idi, lti
)

,

where all components follow the explanations above and lti is defined such that lti ⊂ (lt, id)+. The

notation (lt, id)+ denotes the recording of the sequence of the letters that an agent has received or

sent, together with the identifier of the session in which he did so.

The LDYIS model for a security protocol Pr is the tuple MPr =(G, g0,Π,∼1,∼2, . . . ,∼n, V ),

where g0 ∈
∏n

i=1 Li is an initial global state of the system, G is the set of global states reachable

from g0, ∼i⊆ G×G is an epistemic relation for agent i with g ∼i g
′

if and only if li (g) = li
(

g
′)

,

V : G × PV → {true, false} is a valuation-function of propositional variables over states and

Π=
⋃

g∈G,Π (g) is the set of all paths starting at g which are compliant with the Lazy Dolev-Yao

conditions reported below.

In [125], the intruder follows a Dolev-Yao thread model. However, to diminish the state-space

implied by this, the lazy Dolev-Yao conditions are introduced. These follow a matched send-receive

idea: the intruder honestly or maliciously plays each step of the protocol as a sender, matched upon

the corresponding step of the receiver. Consequently, the LDYIS intruder theory is described by

the following set of rules: honest-send-i-A → B, fake-send-i-ι (A) → B7 and ι-forward. It is to

be noted that the lazy Dolev-Yao conditions in LDYIS yield a semantics different from the lazy

intruders in [18, 19], i.e., likened to the concept of laziness in functional programming.

The LDYIS formalism models a type of secure-channels (i.e., the matched send-received semantics

and the use of the sender’s address in letters does not allow spoofing [81]). In [125], the lazy Dolev-Yao

rules are depicted at the level of desired behaviour of the agents, i.e., the systematic integration with

a protocol theory is left open. The methodology is applied to a manually analysed case-study of the

NSPK protocol, i.e., the generalisation and automation of the principles employed are left open.

Other epistemic-based approaches to security protocol verification are present in [78, 90]. An

electronic voting protocol is modelled in an ad-hoc manner using dynamic epistemic logic [148]. The

indistinguishability relation used is the simple equality relation. Details about the modelling or the

performance of the analysis are scarce.

The formalisation in [90] is dedicated to several types of protocols (i.e., onion routing [92],

7In the LDYIS semantics, ι (A) designates the impersonation of agent A by the intruder.
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crowds [192]). The logic language in [90] is based on epistemic logic, whereas the temporal aspect is

embedded in the protocol theory. The semantics adopted in [90] is that of distributed programs [80].

The actual analysis of the protocol is manual, but it is not presented in detail.

In this section we summarised the relations between the analysis of security protocols and

epistemic logic, e.g., notions of cryptographic indistinguishability and computational soundness of

formal cryptography analysis, as well as the first steps towards the use of temporal-epistemic logic

in verification of security protocols.

In this chapter we have summarised aspects of temporal-epistemic logics, security protocol

verification and the use of logics of knowledge in the analysis of cryptography. All these comprise

essentially the notions that will be used in the following sections. Also, our review insisted on the

formalisms and methodologies that relate to the work in this thesis. In the last chapter, these

relations between existing state-of-the-art work and this thesis will been explored in depth.



Chapter 3

Multiagent System Models for

Receiver-Transparent Security Protocols

Motto: “All our work, our whole life is a matter of semantics...”

(Felix Frankfurter)

In this chapter we present a multiagent system formalism for multi-session executions of au-

thentication and key-establishment protocols. The presentation is oriented towards a systematic

methodology of generating ISPL multiagent system specifications from CAPSL high-level protocol

descriptions. Aspects of this formalism have been presented in [27, 26]. In later chapters we will

prove that the proposed multiagent system semantics is homomorphic with a standard semantics for

security protocols.

Section 3.1 formalises CAPSL protocol descriptions through many-sorted signatures and it uses

this formalisation to introduce the notions of receiver-transparent and receiver-opaque protocols.

Protocol execution scenarios are captured through substitutions of terms defined on the signatures.

Section 3.2 lays the foundations for the formalisation of CAPSL goals and it introduces the notions

of atomic and complex goals. Section 3.3 presents a full MAS model of multi-session executions

of CAPSL-described receiver-transparent protocols. A taxonomy of temporal-epistemic formulae is

systematically given to express each atomic and/or complex CAPSL goal in the model. The chapter

65
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concludes with an evaluation of the methodology.

3.1 A Formalisation of CAPSL-Described Security Protocols

In Section 2.2.1 we summarised notions of high-level protocol descriptions (e.g., CAPSL descriptions).

We also showed (in Section 2.2.4, Section 2.2.2.2 and Section 2.2.2.3) that many approaches formalise

such a high-level description through a protocol signature. We are going to give our formalisation of

a CAPSL protocol description also through a (many-sorted) signature. This signature is of the kind

previously summarised, used in [188,175,73]. Whilst closest to [188], the signature we introduce

models precisely a CAPSL description (i.e., not a description expressed in a generic high-level

language). The literature on CAPSL [66, 151, 64] does not provide any explicit formalisation of a

CAPSL description. We follow closely the CAPSL abstract grammar in advancing our formalisation of

the CAPSL descriptions.

Definition 3.1.1 (Protocol Signature) A protocol signature is a triple S = (A,K,N ), where

A is a finite set of principals, K is a countable set of keys and N is a countable set of nonces.

We further describe S as follows:

• A = Ho ∪ {I}, where Ho is the set of honest principals and I symbolises the intruder;

• K = K0 ∪ K1, where K0 represents a set of short-term keys and K1 a set of long-term keys.

Long-term keys are those held/shared by participants prior to engaging in the protocol runs.

Every honest principal A is associated with a set of long-term keys, denoted KA. More

precisely, long term-keys can be asymmetric encryption/decryption keys and symmetric keys,

i.e., K1 =
⋃

A∈A{(K
e
A, Kd

A)} ∪ {KAB|A ∈ A, B ∈ A}. The intruder is also associated with

such sets, given that he can engage in the protocol as an honest principal.

The set T0 = A ∪N ∪K denotes the atomic terms. On S, we define a function symbol Sort to

return the actual sort of an atomic term, i.e., one of elements in {A,N ,K}.

Over the set of atomic terms T0, the set T of (non-atomic) terms is defined inductively using

function symbols in S. We consider symbols for pairing and encryption. Other cryptographic
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primitives could be modelled in a signature for CAPSL (as following chapters will show). We allow

only encryption with atomic keys1. The notation Sub(t) denotes the set of subterms of a given

term t and it is inductively defined on the structure of t, as usual. We define more specialised classes

of subterms as follows.

The set ESub(t) = {t
′

∈ Sub(t) | (∃t
′′

∈ T )(∃K ∈ K)(t
′

= {t
′′

}K)} is the set of encrypted

subterms of t. By OSub(t) we denote the ordered multiset of atomic subterms of t, i.e., the list of

atomic terms that are subterms of t, taken in the order in which they appear.

We assume that the encryption key is the last atomic subterm of a term, i.e., encrypted messages

are always of the form {t}k, for some t ∈ T , k ∈ K. Such an assumption is reasonable, as any form of

encryption can be symbolically rewritten to follow this pattern [102]. We also introduce the notation

OSub(t)i to denote the i-th element in OSub(t) (i.e., if OSub(t) = {t1, . . . , tn} then OSub(t)i = ti,

for any i = 1, n). By last(t) we denote the last atomic subterm of t, i.e., the last to appear in OSub(t).

Then, the encryption key within some symbolic encrypted term t is denoted as OSub(t)last(t).

The length of a term t, |t|, is inductively expressed by:



















|t| = 1, for t ∈ T0;

|(t1, t2)| = |t1| + |t2| + 1, for any t1, t2 ∈ T ;

|{t}k| = |t| + 2, for any t ∈ T and k ∈ K.

We can now outline how the protocol signature above partially formalises a CAPSL description:

— atomic terms A, K, N correspond to the VARIABLES section; KA together with KAB for some

A, B ∈ A corresponds to part of the DENOTES section of a CAPSL description;

— T , Sub(T ), OSub(T ) and ESub(T ) describe the MESSAGES section of a CAPSL description.

We further formalise a CAPSL description by adding some more sorts and function symbols to

the signature S; additional terms and sets of terms will emerge. These are described as follows:

• Steps – a sort denoting the protocol steps (as per the CAPSL description);

• Rules – an additional set of terms, also called rule-terms; such a rule-term r is of the

form i.A → B : t, where i ∈ Steps, A, B ∈ Ho and t ∈ T (hence, it corresponds to a CAPSL

communication rule).

1An atomic key is an element of K. In turn, a complex key is a non-atomic term (i.e., an element from T \ T0).
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We introduce two function symbols on the set of rule-terms, step and t:

• step(r) = i, for r ∈ Rules and r=i.A→ B : t (hence, A, B ∈ Ho, t ∈ T , i ∈ Steps);

• t(r) = t, for r ∈ Rules and r=i.A→ B : t (hence, A, B ∈ Ho, t ∈ T , i ∈ Steps).

In a denotation, the function step returns the step of a rule-term (i.e., the step of a corresponding

CAPSL rule), whilst t(r) returns the message in a rule-term r (i.e., the message in a corresponding

CAPSL protocol rule).

Further, we select the subset of terms on the signature S which precisely denotes the messages

exchanged:

• Msg =
⋃

r∈Rules
{t

′

∈ T | t
′

= t(r)}.

On the set of messages we then define two more notions. We use a function symbol composites

which when applied to a message gives all its encrypted subterms; it is hence, an alias for ESub

when referring to messages precisely (and not to terms in general). The set Composites denotes

all (proper or improper) encrypted parts of the messages in the entire CAPSL protocol description.

Formally, on the signature S as considered, we define:

• for t ∈Msg, composites(t)=ESub(t);

• Composites =
⋃

t∈Msg
composites(t).

With these notions, the MESSAGES section of a CAPSL description is now fully described.

For a fixed A ∈ Ho, we formalise the role of A described by a CAPSL file as the set of rule-terms

restricted to that principal A. Alternatively, we call this an A-role (under the signature S):

• RulesA = {i.A→ B : t, j.B → A : t | B ∈ Ho, t ∈Msg, i, j ∈ Steps}.

We define other objects related to the A-role, e.g., the steps where A either sends or receives

and the messages either sent or received particularly by A:

• StepsA = {i ∈ Steps | (i.B → A : t) or (i.A→ B : t), B ∈ Ho, t ∈Msg};

• MsgA =
⋃

r∈RulesA

{t
′

∈ T |t
′

= t(r)}.

Over 2StepsA
, 2StepsA

and 2StepsA
× StepsA we respectively define the function symbols first,

last and next. We assume that, in a denotation, the sort Steps ranges over a totally ordered and

countable set. Thus, first(StepsA) returns the first step in which an A-role is engaged. In the

same way, last returns the last step of the A-role. For some j ∈ StepsA, next(StepsA, j) returns
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the step immediately following j in which the A-role will be engaged (according to the CAPSL

protocol description). In addition, sometimes we will refer to the set SentMsgA to denote all the

messages sent by the A-role (as the CAPSL description implies). Hence, SentMsgA=
⋃

r∈RulesA

{t
′

∈ T |

t
′

= t(r), r = i.A → B : t}. Similarly, the set ReceivedMsgA = MsgA \ SentMsgA denotes the

messages received by the A-role (as per the CAPSL description). So, the messages received by the

A-role is given by ReceivedMsgA=
⋃

r∈RulesA

{t
′

∈ T | t
′

= t(r), r = i.B → A : t}.

Further specialisations, which are relative to a generic A-role, are introduced below:

• for any A ∈ Ho in the signature S, AtomsA=
⋃

r∈RulesA

{t
′

∈ Sub(t
′′

) ∩ T0 | t
′′

= t(r)}
⋃

⋃

r∈RulesA

{A, B, Ke
B, KAB| r = i.A→ B : t}

⋃

{Kd
A ∈ K1};

The set AtomsA contains all atomic terms given and/or communicated to A throughout her role.

By the second and the third terms of the union, AtomsA includes the atoms that A knew before

having proceeded with her first action. These atoms correspond to the variables appearing in

the CAPSL assertions of type HOLDS A: VAR and DENOTES of a protocol description. By the

first term of the union, AtomsA contains the atoms that A receives in her role. Importantly,

note that some of these atoms might be within an encryption that A cannot decrypt, i.e.,

some atoms might be unintelligible to A. We will now formalise the proper subsets of AtomsA

suggested above.

• for any A ∈ Ho in the signature S as considered,

OwnedAtomsA=

{

t ∈ AtomsA∩Sub(t′) | (Sort(t) ∈ {N ,K0}) and ((i.A→ B : t′) ∈ RulesA) and

("j ∈ StepsA, j < i such that j.C → A : t′′ with t ∈ Sub(t′′))

}

⋃

{

Kd
A ∈ K1

}

;

Thus, a nonce or a short-term key t is in OwnedAtomsA if the CAPSL description stipulates

the following: A ought to send t as part of message t′ at step i and there is no smaller step j

where some C could have made t known to A. Hence, t is inherent to A and A is the first to

send it through the network, at some step i.

Then, most of the atoms in OwnedAtomsA correspond to variables designated under

HOLDS A: variables in the ASSUMPTION section of the CAPSL descriptions. The rest of them

are specified under the DENOTES section of the CAPSL description.
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• for any A ∈ Ho, in the signature S as considered

LearnedAtomsA={t ∈ AtomsA \ OwnedAtomsA | Sort(t) ∈ {N ,K0}};

From the meaning of OwnedAtomA, it follows that LearnedAtomsA denotes the set of nonces

and short-term keys attained by A throughout her role. Some of these atoms might not be

intelligible to A, as they might be part of composites she receives but cannot decrypt.

• for any A ∈ Ho, in the signature S as considered, for each i ∈ StepsA:

i-LearnedAtomsA=
⋃

r∈RulesA,

j=step(r),j≤i

{OSub(t′) | t′ = t(r), r = j.B → A : t} ∩ LearnedAtoms

Therefore, i-LearnedAtomsA contains all the atomic-terms, not owned by A, but sent to A

by step i of her role. Again, some of these atoms might not be intelligible to A, as they might

be part of composites she receives but cannot decrypt.

• PublicData = AtomsA \ {OwnedAtomsA ∪ LearnedAtomsA}. The public data consists of

principals (e.g., A) and long-term keys (e.g., K1).

Remark 3.1.2 For simplicity of explanations, we introduced only the cryptographic sorts A, K, N

to denote principals, keys and nonces, respectively. The signature can be naturally extended to contain

other sorts relevant to security protocols, e.g., timestamps, fields, etc. The set of terms introduced

would consequently be modified. For instance, in a more general signature, LearnedAtomsA would

be {t ∈ AtomsA \ OwnedAtomsA | Sort(t) 6∈ {A,K1}}, etc. Other primitives, except for pairing

and encryption, can also be included, e.g., hashing, digital signatures, etc. The results that we will

present in this section can be extended in the context of such additional sorts and/or terms, as

Chapter 5 will show.

To sum up, we have presented a formalisation of CAPSL descriptions through a (many-sorted)

signature S and a term-algebra on S. We will now use this to partition the class of CAPSL-described

protocols in two: receiver-transparent protocols (RTP) and receiver-opaque protocols (ROP). As

CAPSL is a language for describing authentication and key-establishment protocols, the dichotomy

between RTP and ROP refers to authentication and key-establishment. However, the notions implied

are general and could refer to any other class of protocols, e.g. e-voting, contract signing, etc.
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Definition 3.1.3 (Receiver-Transparent Protocols) Let Pr be a protocol and S be its signature

as above. The protocol Pr is called receiver-transparent (RT) if for all principals A ∈ Ho, for all

rules r ∈ RulesA of the form r = i.B → A : t, for all t′ ∈ composites(t) and t0 ∈ OSub(t′)last(t′), it

is implied that t0 ∈ i-LearnedAtomsA ∪ OwnedAtomsA.

In an RT protocol, all keys t0 of any encrypted part of a message t received by an A-role at step

i are required to be either in i-LearnedAtomsA or in OwnedAtomsA. Hence, in receiver-transparent

protocols the receivers are always able to decrypt any composite of a message down to its atomic

parts as soon as the message is received.

Note that the class of RT protocols is not equal to the class of protocols with one single level of

encryption in any message sent or received. In RT protocols, there can be many layers of encryption

in the messages transmitted, but the receivers can decrypt all involved composites of these messages.

Thus, the class of protocols with only one level of encryption is a proper subclass of the class of

RT protocols. A large number of authentication protocols fall into the class of RT protocols (see

authentication protocol libraries and repositories [48, 49, 119]). An example of an RT protocol

is the Needham Schroeder Public Key (NSPK) protocol, the description of which we recalled in

Example 2.2.1.

By contrast, receiver-opaque protocols are protocols where (at least) one receiver is unable to

decrypt fully (at least) one of the received message strictly upon its arrival. Namely, there is a

composite in a received message for which the receiver does not hold yet the decryption key. It

might be the case that the receiver is never able to decrypt that composite, i.e., not even after

the completion of the protocol. The latter is the case of several chain-authentication protocols. In

Example 3.1.4, we illustrate the RO, chain-authentication protocol due to Otway and Bull [39].

As we can see in Example 3.1.4, in the Otway-Bull authentication protocol an honest B party

cannot decrypt/analyse the message he receives from A at step 1 (i.e., it is encrypted/hashed with

the symmetric key Ka that only A posseses); nor can C decrypt/analyse the message she receives

from B at step 2, as it is encrypted/hashed with the symmetric key Kb unknown to C. We can also

see that, for instance at step 4, C cannot decrypt the last three proper composites of the message

received (i.e., {|Kbc, C, Nb|}Kb
, {|Kba, A, Nb|}Kb

, {|Kba, B, Na|}Ka). However, there are composites

of message 4 which C can decrypt/analyse, i.e., the first two proper composites, {|Kcs, S, Nc|}Kc
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and {|Kbc, B, Nc|}Kc , as each of these is encrypted/hashed with the keys known to C.

Example 3.1.4 The Otway-Bull [39] Protocol: A Receiver-Opaque Protocol

1. A→ B :HashKa
{|A, B, Na, −|}

2. B → C :HashKb
{|B, C, Nb, HashKa

{|A, B, Na, −|}|}

3. C → S :HashKc
{|C, S, Nc, HashKb

{|B, C, Nb, , HashKa
{|A, B, Na, −|}|}|}

4. S → C :{|Kcs, S, Nc|}Kc
, {|Kbc, B, Nc|}Kc

,

{|Kbc, C, Nb|}Kb
, {|Kba, A, Nb|}Kb

,

{|Kba, B, Na|}Ka

5. C → B :{|Kbc, C, Nb|}Kb
, {|Kba, A, Nb|}Kb

,

{|Kba, B, Na|}Ka

6. B → A :{|Kba, B, Na|}Ka

Formally, a receiver-opaque protocol is defined as follows.

Definition 3.1.5 (Receiver-Opaque Protocols) Let Pr be a protocol and S be its signature as

above. The protocol Pr is called receiver-opaque (RO) if there exists at least one principal A ∈ Ho,

for which there exists (at least) a rule r ∈ RulesA of the form r = i.B → A : t such that there exists

t′ ∈ composites(t) with t′′ = OSub(t′)last(t′) and t′′ 6∈ i-LearnedAtomsA ∪ OwnedAtomsA.

The above informally says the following. If for some A-role, for a step i of the A-role and t a

message sent to A at step i, there exists at least one composite of t whose encryption key t′′ is still

unknown to A at the current step i, then the protocol Pr is an RO protocol.

In the last two pages, we differentiated two distinct classes of protocols (ROP and RTP). We

outline such a distinction for optimisation purposes; as next chapters will show, we will model each

class systematically, but through bespoke MAS formalisations. In the following, we insist on how

protocol executions will be formalised in our model.

Protocol Instantiations. Recall from Chapter 2 that substitutions are used (in [171,188,44,11]

etc.) to model protocol executions; given a protocol description/signature, substitutions are viewed

as functions that map terms to values: principals to names of protocol participants, short-term key

to short-term key values, nonces to arbitrary values.
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In our formalisation, we extend substitutions to map terms of sort Step over natural numbers.

Substitutions are applied uniformly over terms and sets of terms, e.g., σ(KAB) = Kσ(A)σ(B) or

σ(Ke
A) = Ke

σ(A). At the denotational level we override the names of the function symbols, i.e., we

write OSub(x), even for the ground value x ∈ Rt and, as in the signature, we intend that it returns

the values within x in a component-wise manner.

We emphasise the following distinction between symbolic names and concrete parties engaged in

the protocol executions:

• a principal is a symbolic term of sort A;

• a participant is a substituted/ground term of sort A.

Hence, A ∈ A is a principal, whereas the name σ(A) = alice denotes a participant.

Substitutions homomorphically apply to rules, sequence of rules and, therefore, roles. So, one

substitution can uniformly map a high-level description of a protocol into a representation of one

running protocol session. Then, to give such a substitution for the entire protocol, we need then to

give a substitution that operates on all of its atomic terms.

Definition 3.1.6 (Protocol Instantiation) A protocol instantiation is a substitution that maps

each atomic term on the signature S into a value from a corresponding range.

We recall the Alice&Bob description of NSPK protocol already presented in Example 2.2.1:

1. A → B : {A, NA}pub(B)

2. B → A : {NA, NB}pub(A)

3. A → B : {NB}pub(B).

An example of a NSPK instantiation is the substitution σ1 given in Example 3.1.7. Additionally

to the terms shown in Example 3.1.7, the substitution σ1 is also uniformly applied to keys.

Example 3.1.7 (A Substitution for the NSPK Protocol)

σ1(A) = alice, σ1(B) = intruder, σ1(NA) = m, σ1(NB) = n.

Protocol instantiations can also be given role by role. For instance, instead of giving one

substitution for the entire T0, we can give several substitutions each applying to the atoms in
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one role only. Thus, σ1 in Example 3.1.7 can be separated into σ11(A-role) with σ11 applied to

A, B, NA ∈ OwnedAtomsA (extended uniformly on Ke
B, Kd

A), plus σ12(B-role) with σ12 applied to

A, B, NB ∈ OwnedAtomsB (extended uniformly on Ke
A, Kd

B). Operating such restrictions relies on

the fact that atoms in T0 can be partitioned by roles, i.e., by OwnedAtomsX , X ∈ Ho. For example,

in the above, NA belongs to the A-role and NB belongs to the B-role. In the following sections

we will formalise this procedure of partitioning a protocol instantiation into role-substitutions

(respecting certain criteria). In the following, we consider that the executions of a protocol are

rendered by a set of role-substitutions.

Let Pr be a CAPSL-described protocol and ΣPr be a set of role-substitutions for Pr. The set ΣPr

may contain more than one substitution for the same X-role, X ∈ Ho. We write σ(X-role) to

denote one arbitrary σ ∈ ΣPr that applies to X-role, X ∈ Ho. To abridge notations, sometimes we

also write σ(X-role) ∈ ΣPr if σ ∈ ΣPr that applies to X-role, X ∈ Ho.

We introduce an explicit notion of range. Formally, we assume that each sort X (e.g., A, K, N )

has a finite value-range RX . A role-substitution σ(A-role) ∈ ΣPr takes any atomic term t ∈

OwnedAtomsA of sort X to a value in RX , where A ∈ Ho. The range of a non-atomic term is

defined inductively on its structure as the Cartesian product of the ranges of its subterms taken

in the order of their appearance: for all t ∈ T \ T0, Rt = Π
t′∈OSub(t)

Rt′ . The explanations above are

formalised as follows.

Definition 3.1.8 (Range of a Term under S) The range of a term under a signature S and a

given set of substitutions is given by:











Rt = RX , t ∈ X, X ∈ {A,K,N};

Rt = Π
t′∈OSub(t)

Rt′ , t ∈ T \ T0.

Remark 3.1.9 For X ∈ {N ,K0}, we consider the range RX large enough for:

• any role-substitution in ΣPr to map different nonces/short-term keys in OwnedAtomsA into

different values (e.g., for some A ∈ Ho, for every σ(A-role) ∈ ΣPr, for t, t′ ∈ OwnedAtomsA

of sort X, t 6= t′, there exist x, y ∈ RX , x 6= y such that σ(t) = x and σ(t′) = y);

• different role-substitutions in ΣPr to map the same atom in OwnedAtomsA differently (e.g.,

for some A ∈ Ho, for some σ(A-role),σ′(A-role) ∈ ΣPr, σ 6= σ′, for t ∈ OwnedAtomsA of

sort X, there exist x, y ∈ RX , x 6= y such that σ(t) = x and σ′(t) = y);
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• atoms of the same sort X, from OwnedAtomsA and OwnedAtomsB, to be mapped distinctively

under the role-substitutions in ΣPr (e.g., for some A ∈ Ho, B ∈ Ho, A 6= B, for role-

substitutions σ(A-role), σ(B-role) ∈ ΣPr, t ∈ OwnedAtomsA, t′ ∈ OwnedAtomsB of sort X,

there exist x, y ∈ RX , x 6= y such that σ(t) = x and σ′(t′) = y);

• any role-substitution in ΣPr to map atoms in OwnedAtomsA distinctively and not in a biunivo-

cal correspondence. In other words, for A ∈ Ho, for some σ(A-role) ∈ ΣPr, t ∈ OwnedAtomsA

of sort X, if σ maps the term t to some value y ∈ RX and this is not known to an observer,

the observer should not be able to infer t ∈ OwnedAtomsA such that σ(t) = y when the

signature S, the name of the instantiated-roles as per ΣPr(A), other mappings of ΣPr over RX

and y ∈ RX are given.

We consider that the explanations in Remark 3.1.9 are sufficient for the content of this chapter.

We will formalise them further in Chapter 4 (e.g., Definition 4.1.6).

Role-substitutions and their ranges are used to map roles into agents and create the basis of our

MAS modelling for security protocol executions, as the following sections will show.

In this section we have formalised the TYPESPEC and the PROTOCOL sections of a CAPSL description

through a signature S. We proceed to formalise the GOALS section of a CAPSL description.

3.2 A Formalisation of CAPSL Security Requirements

In Section 2.2.4 we summarised the security requirements expressible in the GOALS section of a

CAPSL protocol description. In this line of work, we employ a significantly large fragment of the

CAPSL language for security goals (i.e., we only dismiss the CAPSL assertions ASSUME and PROVE).

Over this fragment of the CAPSL language for security requirements, we specialise CAPSL goals into

atomic and complex. The details of this dichotomy is presented below.

The atomic CAPSL goals or atomic CAPSL facts are defined as follows:

α ::= AGREEA, B : Var | HOLDSA : Var | PRECEDESA, B : Var | SECRET : Var,

where A and B are CAPSL declarations of type Principal (or Node) and Var is a list of CAPSL

variables (i.e., declared under the CAPSL section VARIABLES). On the signature S, A, B ∈ Ho and
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V ars ⊂ T0 is a set of atomic terms respectively corresponding to the elements in the list Var of

CAPSL variables.

Informally, AGREEA, B : Var expresses that A and B have the same values for variables in Var,

i.e., protocol participants of A-role and B-role have the same values for the atoms in V ars. The

atomic goal HOLDSA : Var states that any instantiated A-role has concrete values for variables

in Var. The atomic goal PRECEDESA, B : Var stipulates that any instantiated A-role has access to

the variables in Var prior to any participant of a B-role, and that when the protocol run has ended

these participants should agree on the data in Var. Finally, the atomic goal SECRET : Var requires

that values of the variables in Var are not in possession of any unintended party.

Complex CAPSL goals are formed with belief and knowledge assertions, upon the following

grammar:

α ::= α | KNOWSA : α | BELIEVESA : α,

where α is an atomic fact as above. Informally, the goal KNOWSA : α expresses that A acknowledges

the fact α, and the goal BELIEVESA : α states that A is justified in considering that the fact α is the

case. The CAPSL documentation does not provide a full description of the precise meaning of the

belief and knowledge assertions. However, the following examples and their respective explanations

may serve as a guideline.

Example 3.2.1 (Doxastic goal)

BELIEVESB : HOLDSA : K (3.1)

The goal stated in Example 3.2.1 is interpreted in [66], page 3, as “if the B-session completes, B

is justified in believing that A holds K. The belief assertion means that HOLDSA : K is interpreted

in the context of B’s values for A and K”.

Example 3.2.2 (Acknowledged authentication)

KNOWSA : KNOWSB : AGREEB, A : Ma (3.2)

The CAPSL goal in Example 3.2.2 is a goal required by KSL [111], a repeated authentication
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protocol. Kehne-Schönwälder-Langendörfer (KSL) is a variant of the Kerberos protocol and its ISO

standard requires the acknowledgement of the other party’s knowledge. This is specified in CAPSL

through a goal with two levels of nesting for the knowledge assertions, as in Example 3.2.2; this

expresses that if A terminates its run of the protocol, then it knows that B knows that A and B have

the same value for Ma.

The CAPSL language supports BAN logic specifications with several levels of nested knowledge

and belief assertions. Take the example of the NSPK protocol. Its BAN analysis in [43] formalises

that if the protocol parties are honest, then it attains that B believes that A believes that B believes

that the nonce Nb is secret. In CAPSL this is expressed by means of the following goal:

Example 3.2.3 (BAN goal)

BELIEVESB : BELIEVESA : BELIEVESB : SECRET : Nb

In Section 3.2, we have classified CAPSL goals as atomic, if they contain no belief or knowledge

assertions, and as complex, otherwise. The first step towards a deeper formalisation of the CAPSL

goals with respect to the signature S is to consider a logically-extended signature SL. Such a

signature SL will be obtained from S by adding goal-predicate symbols (operating on terms).

To give the exact denotation of these predicates we need a precise model of execution. We will

therefore give these formalisations in the later sections once we have introduced our MAS model for

multi-session protocol execution. As a preamble, the evaluation (i.e., semantics) of the specifications

derived from these predicates would reside in interpreting CTLK formulae over the MAS model.

Overall, in Section 3 we have formalised the TYPESPEC, the PROTOCOL and the GOALS section

of a CAPSL description through a signature S. Protocol execution scenarios have been formalised

through role-substitutions of the variables and terms on the signature. The next section will give a

MAS-based model for the actual multi-session execution of security protocols.
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3.3 ΥIS: Interpreted Systems for CAPSL-described RT Secu-

rity Protocols

In this section we present an IS-based operational semantics for the class P of receiver-transparent

(authentication and key-establishment) protocols described in CAPSL. We use ΥP
IS to denote the

resulting class of IS-based formalisations of these protocols. We use Υ Pr
IS to denote such a formalism

for a given RT protocol Pr. When either the protocol Pr or the class of protocols P is implicit, we

simply write ΥIS. We use MIS to denote the model resulted from the unwinding of the ΥIS IS-based

formalism.

We introduce some function and predicate symbols on the signature S. In the model to be given,

these are helpers in describing each agent and its local states, local actions, local evolution function,

etc. We hereby introduce these symbols by using generic prototypes and general denotations, i.e.,

not exhibiting aspects of the protocol execution semantics. In later sections, we will use specific

arguments (e.g., specific local states, protocol-biased conditions) to specialise the denotations of

these symbols within a MAS semantics for protocol executions.

3.3.1 Function Symbols on the Signature S for ΥIS

Let S be a signature for an RT protocol Pr, T0 be the set of basic terms , T be the set of terms,

Ind be a set of indices (i.e., a subset of the natural numbers) and Σ be a set of instantiations. Also,

consider the ranges of terms under S and Σ, as previously defined. Let a special range containing

the boolean values “true” and “false” be called Boolean and a special range containing the unique

value ⊥ be called R⊥.

On the above, we define the following functional symbols:

• in match with the domain T × (Ind× Ind) and the codomain Boolean

• out match with the domain 2T0×(RT0∪R⊥) × T and the codomain Boolean;

• decryptable with the domain 2T0×(RT0∪R⊥) × T and the codomain Boolean;

• set with the domain 2T0×(RT0∪R⊥) × T and the codomain 2T0×(RT0∪R⊥);
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• setMsg with the domain (( 2(Msg×Roles×RHo)×(RMsg∪R⊥) ) × Msg) and the codomain

( 2(Msg×Roles×RHo)×(RMsg∪R⊥) );

• setAt with the domain ( (2(T0×Msg×Roles×RHo)×(RT0∪R⊥) ) × T0 × Msg) and the codomain

( 2(T0×Msg×Roles×RHo)×(RT0∪R⊥) );

• recordAt with the domain ( (2T0×RT0 ) × T0 × Msg) and the codomain ( 2RT0 );

• recordPart with the domain ( (2T×RT ) × T × Msg) and the codomain ( 2RT );

• analz with the domain (2T0×RT0 × 2T×RT × Msg) and with the codomain Boolean;

• consistent with the domain T × 2T0×(RT0∪R⊥) and the codomain Boolean;

• construct with the domain T ×2T0×(RT0∪R⊥)×2T0×(RT0∪R⊥) and the codomain T × (RT ∪R⊥);

• compose with the domain T × 2T0×(RT0∪R⊥) and the codomain T × (RT ∪R⊥);

• synth with the domain T × 2T ×RT and the codomain T × (RT ∪R⊥).

Let σ ∈ Σ be an arbitrary substitution. In the following, we give the denotational interpretation

under σ, Iσ, of these function symbols.

• for any t ∈ T , any (i, j) ∈ (Ind× Ind),

in matchIσ(t, i, j) =







true, if ( OSub(t)i = OSub(t)j ) ⇒ ( OSub(σ(t))i = OSub(σ(t))j )

false, if ( OSub(t)i = OSub(t)j ) ∧ ( OSub(σ(t))i 6= OSub(σ(t))j )

Let the notation [|ϕ|] denote the usual truth-valuation of ϕ, where ϕ is a simple boolean

expression (i.e., conjunction, implication, etc.).

To shorten the description, an alternative way to give the interpretation of in match is:

in matchIσ(t, i, j) ≡ [|( OSub(t)i = OSub(t)j ) ⇒ ( OSub(σ(t))i = OSub(σ(t))j )|].

The denotation of in match(t, i, j) says that if the atomic terms at position i and j within t are the

same, then under a substitution they should be mapped onto the same values (i.e., the substituted

values are an inner-match with respect to the pattern of t).
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• for any V ⊆ T0 × (RT0 ∪R⊥), any t ∈ T ,

out matchIσ(V, t) =































true, if v = σ(t
′′

), for ∀(t
′

, v) ∈ V with v 6= ⊥,

∀t
′′

∈ Sub(t) ∩ T0 and t
′

= t
′′

false, if ∃(t
′

, v) ∈ V with v 6= ⊥, ∃t
′′

∈ Sub(t)

such that t
′

= t
′′

and v 6= σ(t
′′

)

Using the [| · |] notation,

out matchIσ(V, t) = [|(∀(t′, v) ∈ V with v 6= ⊥, t′ ∈ Sub(t) ∩ T0 )⇒ ( v = σ(t′) )|].

The denotation of out match(V, t) under some substitution σ says the following. As long as V

has entries t′ for atomic subterms t and these are mapped to something else but ⊥, then the

outer substitution σ matches V if it maps each t′ to the same value as V recorded for t′.

• for any V ⊆ T0 × (RT0 ∪R⊥), any t ∈ T ,

decryptableIσ(V, t) =



















true, if (∀t
′

∈ ESub(t), last(t
′

) = i,σ(t
′

) = x
′

) ⇒ ( OSub(x
′

)i ∈ V )

false, if (t
′′

,⊥) ∈ V for some t
′

∈ ESub(t) and t
′′

= OSub(t
′

)i.

Using the [| · |] notation,

[|(∀t
′

∈ ESub(t), last(t
′

) = i )⇒ ( (OSub(t′)i, v) ∈ V ∧ v 6= ⊥ ∧ v = OSub(σ(t
′

))i )|].

The denotation of decryptable(V, t) under some substitution σ is that σ(t) is decryptable if

the values which correspond to keys in σ(t) are all to be found in V .

• for any V ⊆ T0 × (RT0 ∪R⊥), any t ∈ T ,

setIσ(V, t) = {(t
′

,σ(t
′′

)) ∪ (V \ (t
′

,⊥)) | (t
′

,⊥) ∈ V, t
′′

∈ Sub(t) ∩ T0, t
′

= t
′′

. }

Let σ[v/t] be a substitution that uniformly maps only the atomic term t to the value v leaving

all the other terms in an underlying structure unchanged. The denotation of the set symbol can

also be given as: setIσ(V, t) = σ[n/t′](V ), for all (t′,⊥) ∈ V , t′ ∈ Sub(t) ∩ T0 and σ(t′) = n.

The denotation of set(V, t) says that “holes” in V (i.e., entries where atomic subterms of t are

assigned to ⊥) are “filled with” (i.e., set to) actual values according to what σ(t) dictates.

• for any V ⊆ (Msg ×Roles×RHo)× (RMsg ∪R⊥), any t ∈Msg,

setMsgIσ(V, t) = {(( t, A,σ(A) ),σ(t)) ∪ (V \ ((t, A,σ(A)),⊥)) | ( t, A,σ(A) ),⊥) ∈ V }.
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Let σ[v/t] be a substitution extended to non-atomic terms that uniformly maps only the

non-atomic term t to the value v leaving all the other terms in an underlying structure

unchanged. Then, for A ∈ Ho, n ∈ Rt and alice ∈ RHo, an example of applying setMsg is:

setMsgIσ(V, t) = σ[(n, A, alice)/(t, A, alice)](V ), where ((t, A, alice),⊥) ∈ V , σ(t) = n and

σ(A) = alice.

The denotation of setMsg(V, t) under a substitution σ says that “holes” in V (i.e., values ⊥)

at entry ( t, A,σ(A) ) are “filled” with the value σ(t); hence, the value for entry ( t, A,σ(A) ) is

set to σ(t).

• for any V ⊆ (T0 ×Msg ×Roles×RHo)× (RT0 ∪R⊥), for any m ∈Msg, for t
′

∈ OSub(m),

setAtIσ(V, t
′

, m)={((t
′

, m, A,σ(A)),σ(t
′

)) ∪ (V \ ((t
′

, m, A,σ(A)),⊥)) | ((t
′

, m, A,σ(A)),⊥) ∈ V }.

Let σ[v/t] be a substitution that uniformly maps only the atomic term t to the value v

leaving all the other terms in the underlying structure unchanged. Then, for A ∈ Ho,

alice ∈ RHo and n ∈ Rt, an alternative definition for the denotation of the symbol setAt is:

setAtIσ(V, t, m) = σ[(n, m, A, alice)/(t, m, A, alice)](V ), where ((t, m, A, alice),⊥) ∈ V and

m ∈Msg, t ∈ OSub(m) and σ(t) = n and σ(A) = alice.

The denotation of setAt(V, t, m) under a substitution σ is similar to the one of the previous

symbol (i.e., setMsg(V, t)). Unlike in the case of setMsg, the structure V now has “holes” also

for atoms corresponding to atomic subterms of t; these are “filled”/set in V according to σ(t).

• for any V ⊆ T0 ×RT0 , any m ∈Msg, for t
′

∈ OSub(m), recordAtIσ(V, t
′

, m) is the set-union

{(t
′

,σ(t
′

))} ∪ V .

The denotation of recordAt(V, t′, m) under σ is that atom-value pairs given by m and σ(m)

are added to V (i.e., recording the values of atoms within m into V ).

• for any V ⊆ T ×RT , any m ∈Msg, for t
′

∈ Sub(m), recordPartIσ(V, t
′

, m) is the set-union

{(t
′

,σ(t
′

))} ∪ V .

The denotation of recordPart(V, t′, m) under σ is that non-atomic subterms t′ of the substituted

term m are added to V (i.e., recording into V the values of non-atomic parts within m).



3.3 ΥIS:Interpreted Systems for RT Security Protocols 82

• for any m ∈ T ,

analzIσ(V1, V2, m) =















































































true

and recordPartIσ(V2, t
′

, m)

and recordAtIσ(V1, t0, m),

with t0 ∈ OSub(Sub(t
′

) \ ESub(t
′

)) if (( t
′

∈ ESub(m), last(t
′

) = i )

⇒ ( OSub(σ(t
′

))i ∈ V1 ))

false, if ((t
′

∈ ESub(m), last(t
′

) = i)

and ( OSub(σ(t
′

))i 6∈ V2 ))

The denotation of analz(V1, V2, m) under σ is as follows. If the values of keys for σ(t
′

) (i.e.,

OSub(σ(t
′

))i) are found in V2, then it means that the composite σ(t′) in m can be fully analysed

(i.e., decrypted); the composite t′ is recorded into V2 and the atoms found un-encrypted, “in-

plain” within σ(t′) (i.e., t0 ∈ OSub(Sub(t
′

) \ESub(t
′

))) are added to the set V1 (i.e, according

to the denotations of recordAt and recordPart, respectively).

• for any t ∈ T ,

consistentIσ[v/t]
(t, V ) =































true, if v′ 6= v′′, for all t
′

, t
′′

∈ Sub(t) ∩N , t
′

6= t
′′

such that

(t′, v′), (t′′, v′′) ∈ V and σ[v′/t′], σ[v′′/t′′],

false, if ∃t
′

, t
′′

∈ Sub(t) ∩N , t
′

6= t
′′

for which v′ = v′′

when (t′, v′), (t′′, v′′) ∈ V and σ[v′/t′],σ[v′′/t′′],

where σ[v/t] denotes a substitution that uniformly maps atomic terms in t to values.

Using the [| · |] notation, consistentIσ[v/t]
(t, V )=

[|(∀t
′

, t
′′

∈ Sub(t) ∩N , t′ 6= t′′ )⇒ ( (t′,σ(t′)), (t′′,σ(t′′)) ∈ V ∧ σ(t
′

) 6= σ(t
′′

) )|].

The denotation of consistentIσ(t, V ) stipulates that σ is a substitution which maps different

nonces in t into different values drawn from V . If consistentIσ(t, V )=true, the substitution σ

is called consistent.

• for any t ∈ T , for any V ∈ T0 × (RT0 ∪R⊥), V ′ ⊆ V ,
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constructI(t, V, V ′) =



































































(t, γ[v/t0](t)), if (∀t0 ∈ Sub(t) ∩ T0 )⇒

( (t0, v) ∈ V , v 6= ⊥ and consistentIγ (t, V ′) = true )

(t,⊥), if ( ∃t0 ∈ Sub(t) ∩ T0, (t0,⊥) ∈ V )

or

if ( ∀t0 ∈ Sub(t) ∩ T0, (t0, v0), v0 6= ⊥

⇒ consistentIγ[v0,t0]
(t, V ′) = false )

The denotation of construct(t, V, V ′) is as follows. If the map V has concrete values (i.e., not ⊥)

for all the atomic terms of t and these values uniformly constitute a consistent substitution γ

for t (i.e., consistentI
γ
(t, V ′)=true), then the pair (t, γ(t)) is returned. Otherwise, the pair

(t,⊥) is returned.

• for any t ∈ T , for any V ∈ T0 × (RT0 ∪R⊥),

composeI(t, V ) =



















(t, γ[v/t0](t)), if ( ∀t0 ∈ Sub(t) ∩ T0 ) ⇒ ( (t0, v) ∈ V )

(t,⊥), if (∃t0 ∈ Sub(t) ∩ T0) such that (t0,⊥) ∈ V

Like construct, compose denotes the composition of terms out of an existing map of atom-

values. However, the composition required in compose is less strict than in the one stipulated

by the symbol construct (i.e., the requirement of σ to be consistent is hereby dropped).

• for any t ⊆ T , for any V ⊂ (T ×RT ),

synthI(t, V ) =











































(t,σ[v/t
′

](t)), if ( ∀t
′

∈ Sub(t)) ⇒

( (t
′

, v) ∈ V or composeI(t
′

, V |T0) = (t
′

, v) )

(t,⊥), if ∃t
′

∈ Sub(t) such that (t
′

,⊥) ∈ V

and compose(t
′

, V |T0) = (t
′

,⊥)

The denotation of synth(t, V ) means that a value σ(t) for t can be constructed from the map V

if: either σ(t) is composable part by part out of atoms found in V (i.e., compose interpreted

for part t′ and V |T0 returns true) or the values for such parts t′ are already to be found in the
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map V (i.e., (t′, v) ∈ V ). Otherwise, the interpretation of the symbol returns (t,⊥) to mean

that t is not synthesisable from the map V . If synthI(t, V ) =(t, v) with v ∈ Rt, v 6= ⊥, then

we say that the [v/t] is synthesisable from V .

The interpretations Iσ and I of the symbols above will be made more intuitive in the context of

specific maps V and an actual semantics for protocol executions. This will take place in following

sections, as soon as the IS-based operational semantics of protocol executions is introduced. As a

preamble, the term-value maps within the symbols will be given by parts of the local state of agents;

the composition, setting, matching and analysis of values will be used to formalise messages being

sent and received over the network under a Dolev-Yao thread 2.

3.3.2 Agents on the Signature S for ΥIS

In this section we describe the agents in our multiagent system formalisation of security protocol

executions.

Let Pr be a receiver-transparent (authentication) protocol, D be its CAPSL description, S be

the sorted signature described in Section 3.1 underlying D and consider the set of terms, function

and predicate symbols defined on S. Let ΣPr be a set of role-substitutions for Pr, X ∈ Ho and

σ(X-role) ∈ ΣPr.

Definition 3.3.1 (Aσ-agents) For a RT protocol Pr, for any A ∈ Ho, for any σ(A-role) ∈ ΣPr,

an Aσ-agent corresponds to the homormorphic instantiation of the A-role under σ.

Thus, an Aσ-agent designates a participant σ(A) together with all the homomorphically instan-

tiated objects associated to the A-role (e.g., its atoms, its A-rules etc.). Note that two distinct

substitutions σ1(A-role),σ2(A-role) ∈ ΣPr respectively correspond to two distinct agents: Aσ1-agent

and Aσ2-agent. When σ is implicit, the notation A-agent replaces the notation Aσ-agent.

We write agσ
A to name a particular Aσ-agent, where σ ∈ ΣPr is a fixed instantiation of an

A-role, for A ∈ Ho. When the role-substitution σ is implicit, we simply write agA. The notation

σ(A-role)>→agA is a diagrammatic way to denote the mapping of protocol roles into agents.

2We have recalled the Dolev-Yao thread model in Chapter 2, page 35. The interested reader is referred to [71].
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The set Ag={ag1, . . . , agn} is the set of agents obtained as above (i.e., for each i ∈ {1, . . . , n},

there exists A ∈ Ho and σ(A-role) ∈ ΣPr such that σ(A-role) >→ agi).

To depict these A-agents, we introduce some notions as follows.

Definition 3.3.2 (A-Stores) For an RT protocol Pr, for any A ∈ Ho, an A-Store is the ordered

list of typed atoms in AtomsA (i.e., the ordered multiset of typed atomic terms in the A-role).

A unique order of this list for A can be derived, i.e., by sorting the list RulesA of rules by StepsA,

iterating the sorted list over and returning the atoms in the order that they appear in each message.

An example for the A-Store built on (the signature for) the NSPK description is A-StoreNSPK ,

A-StoreNSPK=(A : A, B : A, Kd
A : K1, Ke

B : K1, NA : N , NB : N ).

Remember that in Section 3.1 we introduced the notion of range. Below, we specialise this

notion to formalise the values for a term t that an A-agent “considers” possible.

Definition 3.3.3 (Restricted Ranges for Atomic Terms) Let agA be the agent corresponding

to the instantiation of an A-role under some arbitrary σ(A-role) ∈ ΣPr, i.e., σ(A-role) >→ agA. For

t ∈ AtomsA, we write RagA
t to denote the range of atom t for agA, as below:







RagA
t = σ(t), if t ∈ OwnedAtomsA

RagA
t = Rt, if t ∈ PublicData ∪ LearnedAtomsA

An alternative notation for RagA
t is Rσ

t , where σ(A-role) >→ agA. The reading of the notation Rσ
t is

the σ-restricted range of atom t.

The definition of RagA suggests that, in a protocol session, agσ
A will accept the values of the

nonces and short-term keys in OwnedAtomsA only if they are compliant to the role-substitution σ;

this is due to the fact that agA will have originated the values of this data in the first place,

according to S and to the substitution σ. However, agA will accept the network-originated data

(i.e., t ∈ PublicData ∪ LearnedAtomsA) irrespective of the role-substitution σ.

The set Rσ
AtomsA denotes the set of all values used to map the atoms of an A-role under a

substitution σ ∈ ΣPr. Formally, Rσ
AtomsA =

⋃

t∈AtomsA

Rσ
t .

We use the above to give the definition of a view of an Aσ-agent.
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Definition 3.3.4 (Aσ-view) Let A ∈ Ho and σ(A-role) ∈ ΣPr. A view of an Aσ-agent or, an

Aσ-view, is a relation Aσ-view ⊆ AtomsA × (Rσ
AtomsA∪R⊥), Aσ-view={(at,σ(at)), (at

′

, v′), (at
′′

, v′′) |

at ∈ OwnedAtomsA, at
′

∈ LearnedAtomsA, at
′′

∈ PublicData, v′ ∈ {Rat′ ∪R⊥}, v′′ ∈ Rat′′}.

Whenever the substitution σ is implicit, we simply write A-view instead of Aσ-view.

Note that an Aσ-view can also be seen as an instantiation of an A-store, respecting a particular

A-role substitution σ (i.e., σ maps atoms in OwnedAtomsA to precise values, learned terms at′

can be set to any value in Rat′ ∪ {⊥} and long-term keys and principals can be set to any in their

unrestricted range). For instance, agA could engage with any B-role party (i.e., B ∈ PublicData,

so (B, x) ∈ Aσ-view, for any x ∈ RA), but agA’s view is fixed as far as his own data is concerned

(i.e., ∃!z ∈ RNA , z = σ(NA) such that (NA, z) ∈ Aσ-view).

Definition 3.3.5 (Possible Aσ-views) Let A ∈ Ho, σ(A-role) ∈ ΣPr and agA denote an Aσ-agent,

i.e., σ(A-role) >→ agA. The set V iewsagA of all possible Aσ-views or the set V iewsagA of all possible

views for the agent agA is given by: V iewsagA=
⋃

v′∈{R
at

′∪R⊥},v′′∈{R
at

′′ }

{

(at,σ(at)), (at
′

, v′), (at
′′

, v′′) |

at ∈ OwnedAtomsA, at
′

∈ LearnedAtomsA, at
′′

∈ PublicData

}

.

Equivalently, V iewsagA represents all the possible instantiated A-stores respecting the application

of a particular σ, σ(A-role) >→ agA.

Definition 3.3.6 (Possible A-Agents’ Views) The set V iewsA of all possible views for A-agents

is given by: V iewsA =
⋃

σ∈ΣPr,σ(A−role)

V iewsagσ
A, where A ∈ Ho, σ(A−role) ∈ ΣPr and σ(A-role) >→ agσ

A.

The possible views of the A-agents show all the possible ways in which A-stores could be

instantiated under all the possible role-substitutions σ ∈ ΣPr, given some protocol execution model.

In other words, it shows all the possible ways in which the A-role could evolve under the set ΣPr of

role-substitutions (considering that any A-role obeys the protocol, but executes in a malevolent

environment).

We define A-view0 as a special possible view of an instantiated A-role to denote the initialisation

phase of this A-role. In an A-view0 public data could be mapped to any value in its respective
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range; allowing any value for agσ
A.view0(B) symbolises that agσ

A does not have a pre-elected B-role

partner of communication, as we do not assume authentication-of-origin [93]. All the atoms in

OwnedAtomsA will be assigned to concrete values according to substitution σ, whereas atoms in

LearnedAtomsA are mapped to ⊥.

Remark 3.3.7 In an actual implementation of the MAS model, in the initial states of agσ
A a public

datum will not be assigned to a concrete value, the atoms in OwnedAtomsA will be assigned according

to σ and the atoms in LearnedA will be assigned to some specific values denoting null-data (as the

symbol ⊥ does in the above).

Definition 3.3.8 (Aσ-view0) For an arbitrary A ∈ Ho, for σ(A-role) ∈ ΣPr, an initial view of

an Aσ-agent is a relation Aσ-view0 ⊆ AtomsA × (Rσ
AtomsA ∪R⊥), Aσ-view0= {(at,σ(at)), (at

′

,⊥) |

at ∈ OwnedAtomsA, at
′

∈ LearnedAtomsA}.

The sets of all possible initial views for an Aσ-agent and, in general, for A-agents can be given

analogously to the case of possible non-initial views, shown in Definitions 3.3.5 and 3.3.6.

Let A ∈ Ho, σ(A-role) ∈ ΣPr and σ(A-role)>→agA. To complete the description of agA, we

introduce the set StepsagA of execution steps of agent agA: StepsagA=StepsA ∪ {last(StepsA) + 1}.

3.3.2.1 Agents’ Local States

We define the local states of agents using the notions of views and steps introduced above.

Definition 3.3.9 (Possible Local States for Agents) Let A ∈ Ho, σ(A-role) ∈ ΣPr and agA

denote an Aσ-agent, i.e., σ(A-role) >→ agA. The set LagA ⊆ StepsagA × V iewsagA is the set of

possible local states of agA.

Aligned with mainstream protocol approaches, a specific behaviour of every agA agent will

be modelled in our formalisation. For instance, at each receiving step, several of agA’s atoms

in PublicData and in LearnedAtomsA will be assigned to concrete values, thus diminishing the

number of agA’s possible views. Therefore, the reachable local states of agA is, in general, a relatively

small subset of the set StepsagA × V iewsagA .
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Let i ∈ StepsagA and l ∈ LagA such that l = 〈i, view〉, where view ∈ V iewsagA is possible at

step i. We introduce the notation lagA@i to denote an arbitrary view of agA from those possible at

the protocol step i, e.g., here, lagA@i = view.

Definition 3.3.10 (Initial Local States of the Agents) Let A ∈ Ho, σ(A-role) ∈ ΣPr,

σ(A-role) >→ agA and viewagA
0 be a possible initial view of agA. The initial states of agA are given

by: 〈i, viewagA
0 〉= 〈i, ( (at,σ(at)), (at

′

,⊥) )〉, where i = first(StepsagA), at ∈ OwnedAtomsA and

at
′

∈ LearnedAtomsA.

For the NSPK protocol, one of the possible initial local states of the A-role agent agA is

i l = 〈1, ( (A, alice), (B, bob), (kA, pvkalice), (kB, pbkbob), (nA, r1), (nB,⊥) )〉. The state i l shows

one of the possibilities of agA “choosing” a communication partner, namely bob, from all B-role

participants. Assume that the value r7 ∈ RN for nB is received by agA at step 3. Therefore, a possible

local state of agA is l=〈3, ( (A, alice), (B, bob), (kA, pvkalice), (kB, pbkbob), (nA, r1), (nB, r7) )〉.

Now, we introduce the local states of the Environment agent.

3.3.2.2 Environment’s Local States

We express a Dolev-Yao intruder through the Environment agent. To model the local states of this

agent, we first introduce the following maps and sets:

• a map msg log from SentMsgA × {Aσ-agent |σ(A-role) ∈ ΣPr, A ∈ Ho} to

∪t∈SentMsgARt ∪ R⊥;

• a map atoms log from AtomsA × SentMsgA × {Aσ-agent |σ(A-role) ∈ ΣPr, A ∈ Ho} to

∪t′∈{Sub(t)∩T0|t∈SentMsgA}Rt′ ∪ R⊥.

Additionally we consider:

• a map insider vars from ∪A∈HoAtomsA to ∪t∈T0Rt;

• a relation agent names ⊆ Ho× ∪A∈Ho{σ(A)|σ ∈ ΣPr} between principals and participants;

• for V ⊆ {N ∪K0}, a map values log ⊂ (V ×Rt) from atomic terms to values;
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• for V ⊆ T , a map analz log ⊂ V ×RT from terms to values;

• a map synth log from Msg to 2RMsg ;

• variables do forge, do analz, stop analz of type boolean;

• constants 0max SubstMsg, 0max SubstComposites of type bounded integer;

• variables flag analz1, . . . , f lag analz$max SubstComposites of type boolean; (to refer to flag analzi,

i = 1, . . . , 0max SubstComposites, we sometimes simply use flag analz);

• variables already analz1, . . . , already analz$max SubstComposites of type boolean; (to refer to

already analzi, i = 1, . . . , 0max SubstComposites, we sometimes simply use already analz);

• variables count1, count2 of type bounded integer.

The map msg log denotes that the intruder will keep track of each value of each message that

an instance of an A-role (i.e., an Aσ-agent) sends, for all A ∈ Ho, for all σ(A-role) ∈ ΣPr. This is

a formalisation of the Dolev-Yao interception of all messages.

The map atoms log encodes a history of the communication (i.e., it stores the value of every

atom in each message that any agent transmits).

The structure insider vars formalises the fact that the intruder could be an insider acting as

any (honest) role in the protocol Pr (i.e., through this structure the intruder is provided with at

least one value for each atom in the protocol signature)3.

The structure agent names denotes the fact that the intruder keeps a record of all participants

in the protocol. The structure captures the possibility that, in multi-session executions, there can

be more than one instance of an A-role (i.e., for some A ∈ Ho, if σ1,σ2 ∈ ΣPr with σ1(A) = alice,

σ2(A) = alice then both (A,σ1(A)) and (A,σ2(A)) appear in agent names).

The map values log denotes the fact that the intruder will recall the values of the atomic data

that he has learned throughout his analysis.

3Under a Dolev-Yao model, one atom is enough for the intruder to generate potentially the whole message space:

e.g., nI can generate {nI}KI
, {{nI}KI

}KI
, . . ., etc. However, for sake of clarity, we model an intruder with local

variables for all atoms in the protocol (roles).
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The map analz log denotes the fact that the intruder will recall the parts of messages (i.e.,

composites) that he was able to decrypt/decompose throughout his analysis of learned data.

The map synth log denotes the fact that the intruder will recall, for each symbolic message, the

value-strings that he has synthesised throughout his execution.

The variable do forge is a control variable used in order to reduce the number of times that

the actions of Dolev-Yao compositions are executed. The variable do analz is a control variable

used in order to reduce the number of times that the actions of Dolev-Yao analyses of terms trigger.

We will later show that this reduction is done in a non-restrictive way (i.e., the intruder agent still

analyses and synthesises all the terms possibly attainable at a certain protocol stage, under a given

bounded instantiation). Variables stop analz, flag analz and already analz are auxiliary variables

also used in the encoding of the Dolev-Yao analysis.

The variable count1 acts in conjunction with variable do analz. The variable count1 records

the number of trials of decomposing terms executed by the intruder at some reached state. The

variable count1 will be increasing until it reaches the value of the constant 0max SubstComposites.

In Section 3.3.1 we introduced the analz operator. The counter count1 will be used in a simulation

of the fixpoint of the analz operator applied to a certain local state of the Environment.

The variable count2 acts in conjunction with variable do forge. The variable count2 will be

increasing until it reaches the value of the constant 0max SubstMsg. In Section 3.3.1 we introduced

the synth operator. The counter count2 will be used in the modelling of the intruder trying to

derive all [x/t] for a message t ∈Msg and a value x ∈ Rt by applying a synth operator to a certain

local state of his.

Through the definitions of msg log and atoms log we note that, unlike in the case of the honest

agents, the ranges of terms for the intruder are not restricted to particular substitutions. This

models the Dolev-Yao behaviour, in that the intruder can try to synthesise messages over the entire

permitted ranges and it does not expect to intercept or analyse any particular values.

Definition 3.3.11 (Possible Local States for the Environment) A possible local state of the

Environment lEnv is a tuple lEnv=(msg log, atoms log, insider vars, agent names, values log,

analz log, synth log, do analz, stop analz, f lag analz, already analz, , do forge, count1, count2,



3.3 ΥIS:Interpreted Systems for RT Security Protocols 91

0max SubstMsg, 0max SubstComposite), where each component is as defined above.

The set LEnv of all possible local states of the Environment is given by the union of all possible

local states lEnv as above.

Definition 3.3.12 (Initial States of the Environment) An initial state of the Environment

l0Env is given by the tuple l0Env = (msg log0, atoms log0, insider vars0, agent names0, values log0,

analz log0, synth log0), where:

• msg log0(t, agA) = ⊥, for all A ∈ Ho, for all t ∈ SentMsgA, for σ(A-role) ∈ ΣPr and

agA an Aσ-agent;

• atoms log0(t, m, agA) = ⊥, for all t ∈ Sub(m) ∩ T0, for all m ∈ SentMsgA, for all A ∈ Ho,

for σ(A-role) ∈ ΣPr and agA an Aσ-agent;

• insider vars0(t) = v, for all t ∈ OwnedAtomsA, for all A ∈ Ho, for some v ∈ Rt;

• agent names(A) =
⋃

σ(A−role)∈ΣPr

{σ(A)}, for each A ∈ Ho;

• values log0 = insider vars0;

• do forge := true, do analz := false, stop analz = true, flag analz = false, already analz =

false, count1 = 0, count2 = 0, 0max SubstComposites, 0max SubstMsg–as explained in Subsec-

tion 3.3.2.4.

Table 3.1 shows an initial state of the intruder/Environment, under the NSPK instantiation given

in Example 3.1.7. In Table 3.1, the values v1, v2, kgreg are arbitrarily chosen from their respective

ranges to denote the initial data for NA, NB and Kd
I assigned to the Dolev-Yao insider. In the style

of Remark 3.1.9, the range for the agent-names is large such that (groups of) honest agents cannot

trivially infer that greg, the name assigned to the id of the intruder, is a culprit. The use of ⊥

denotes, as before, that a concrete value for a certain symbolic term has not yet been acquired

through the communication.

3.3.2.3 Agents’ Local Actions

Recall that, in Section 3.3.2.1, we defined the range RagA
t of values that agA considers “acceptable”

for an atom t ∈ AtomsA. Furthermore, in Section 3.1, the range Rt of a non-atomic term (e.g., a
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• msg log0 := • atoms log0 := • insider vars0 :=

〈 {A, Na}Kb, ag1
A 〉 : ⊥ 〈 A, {A, Na}Kb, ag1

A 〉 : ⊥ Na : v1

〈 {A, Na}Kb, ag2
A 〉 : ⊥ 〈 Na, {A, Na}Kb, ag1

A 〉 : ⊥ Nb : v2

〈 {Na, Nb}Kb, ag1
B 〉 : ⊥ 〈 A, {A, Na}Kb, ag2

A 〉 : ⊥ Ka : kgreg

〈 {Nb}Ka, ag1
A 〉 : ⊥ 〈 Na, {A, Na}Kb, ag2

A 〉 : ⊥ Kb : kgreg

〈 {Nb}Ka, ag2
A 〉 : ⊥ 〈 Na, {Na, Nb}Kb, ag1

B 〉 : ⊥

〈 Nb, {Na, Nb}Kb, ag1
B 〉 : ⊥

〈 Nb, {Nb}Ka, ag1
A 〉 : ⊥

〈 Nb, {Nb}Ka, ag2
A 〉 : ⊥

• agent names := • values log0 := • analz log0 • synth log0

A : σ1(A), A : σ2(A) {v1, v2} ∅ ∅

B : σ3(B)

Table 3.1 An Initial State For the Intruder in an NSPK Execution

message, a composite) was introduced as Rt = Π
t′∈OSub(t)

Rt′ , for t ∈ T \ T0. Now, we lift RagA
t from

atomic terms to messages, i.e., the range of values for a message t which are “acceptable” to agA.

Definition 3.3.13 (Restricted Ranges for Non-Atomic Terms) Let A ∈ Ho, σ(A-role) ∈ ΣPr

and agA be an Aσ-agent, i.e., σ(A-role)>→agA. Let t ∈ T . The range RagA
t of the term t for agA is

the Cartesian product of the σ-restricted ranges of the ordered atoms t′ in the term t:

RagA
t = Π

t′∈OSub(t)
RagA

t′
.

Definition 3.3.13 formalises the following fact: if the ranges of atoms are σ-restricted for

an Aσ-agent, then the ranges of non-atomic terms for that Aσ-agent will be (homomorphically)

restricted under σ too. For t ∈ T and σ(A-role) ∈ ΣPr, an alternative notation for RagA
t is Rσ

t ; the

reading for Rσ
t is σ-restricted range of the term t.

Let A ∈ Ho, σ(A-role) ∈ ΣPr and agA be the Aσ-agent given by σ(A-role)>→agA. We now

proceed to introduce the actions of the agents in the model.

For each rule-term r ∈ RulesA of the form r = i.A → B : t (for some B ∈ Ho), we introduce

the following set of actions for agA: {send(t, x) | t = t(r), x ∈ RagA
t }. It expresses the fact that the
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Aσ-agent agA could potentially send any value for the message t within the σ-restricted range for t.

For the union of all rule-terms r ∈ RulesA of the form r = i.B → A : t (for some B ∈ Ho), we

introduce a single action for agA called receive.

We also add the λ action for agA denoting the “empty” action and the wait action which is used

for synchronisation purposes.

Definition 3.3.14 (Possible Local Actions for Agents) Let A ∈ Ho, σ(A-role) ∈ ΣPr and

agA denote an Aσ-agent, i.e., σ(A-role) >→ agA. The set ActagA of all possible local actions of agA

is given by:
{

⋃

t∈SentMsgA

{
⋃

x∈R
agA
t

send(t, x)}

}

∪

{

receive

}

∪

{

wait

}

∪

{

λ

}

.

Recall that Ag is the set of Aσ-agents for all A ∈ Ho, for all σ(A-role) ∈ ΣPr. The set

LAct =
⋃

ag∈Ag
ActagA denotes as the possible local actions of agents (i.e., the possible local actions of

Aσ-agents, for all A ∈ Ho, for all σ(A-role) ∈ ΣPr).

3.3.2.4 Environment’s Local Actions

Now, we proceed with the Dolev-Yao actions in the present model.

The set ∪t∈Msg{forge(t, v)|v ∈ Rt} is the set of forging actions of the Environment. For some

t ∈ Msg and v ∈ Rt arbitrary, an action of the form forge(t, v) suggests that the intruder could

potentially compose all value-strings v in Rt for message t and send them through the network.

The set ∪t∈Composites{analz(t, v)|v ∈ Rt} is the set of analysis actions of the Environment. For

some t ∈ Composites and v ∈ Rt arbitrary, an action of the form analz(t, v) suggests that the

intruder will potentially try to analyse any value-string v for any composite t. The domain unfolded

by the Dolev-Yao analysis is reasonable, since the intruder cannot anticipate what data the honest

agents possess.

The set ∪A∈Ho{intercept from(ag)|σ(A-role) >→ ag,σ(A-role) ∈ ΣPr} is the set of intercepting

actions as of the Enviroment. This means that the intruder will intercept all messages coming from

any role-instance in the protocol execution.

The set {transmit to(ag, t, x)} denotes actions of transmitting a message to agent ag, where
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A ∈ Ho, σ(A-role) >→ ag, σ(A-role) ∈ ΣPr, t ∈ ReceivedMsgA and x ∈ Rt. This set shows that

the intruder is ready to insert any value-message to any role-instance.

Action λ of the Environment denotes that the intruder could potentially have no active involve-

ment at some stage of the execution.

Definition 3.3.15 (Possible Local Actions for the Environment) The set ActEnv of all pos-

sible local actions for the Environment is given as:
{

⋃

t∈Msg
{

⋃

v∈Rt

forge(t, v)}

}

∪

{

⋃

t∈Composites
{

⋃

v∈Rt

analz(t, v)}

}

∪
{

⋃

A∈Ho

⋃

σ(A−role)∈ΣPr

{intercept from(agσ
A)}

}

∪
{

⋃

A∈Ho

⋃

σ(A−role)∈ΣPr

{
⋃

t∈ReceivedMsgA

{
⋃

x∈Rt

transmit to(agσ
A, t, x)}}

}

∪

{

λ

}

.

3.3.2.5 Joint Actions

Recall that, at page 85, we introduced the set Ag={ag1, . . . , agn} of agents in this model (i.e., for

each i ∈ {1, . . . , n}, there exist A ∈ Ho and σ(A-role) ∈ ΣPr such that σ(A-role) >→ agi).

Definition 3.3.16 (Possible Joint Actions) A possible joint action a is a tuple

a=(aag1 , . . . aagn , aEnv), where aagi∈Actagi, i = 1, n and aEnv∈ActEnv.

The set of all possible joint actions is denoted Act.

For a joint action a ∈ Act and for agi ∈ Ag, the notation aagi denotes the local action of agi within

the joint action a, selected in a component-wise manner, i.e., aagi = aagi if a = (aag1 , . . . aagn , aEnv)

and i = 1, n.

We now proceed with the definition of the local protocol for the agents. Let A ∈ Ho, σ ∈ ΣPr

and agA be an agent such that σ(A-role) >→ agA.

3.3.2.6 The Local Protocol of Honest Agents

Let l = 〈i, view〉 be an arbitrary possible local state of agA and view0 denote agA’s initial view.
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We define the local protocol of agA in the following way: PagA(l) = PagA(〈i, view〉) =


























































































for each x ∈ RagA
t

send(t, x), if i = step(r) where there exists uniquely r ∈ RulesA,

r = i.A→ B : t for some B ∈ Ho and constructI(t, view, view0) = (t, x) (∗)

{receive, wait}, if i = step(r) where there exists uniquely r ∈ RulesA,

r = i.B → A : t, for some B ∈ Ho

λ, if i = last(StepsA) + 1

Let us develop (∗) above. Recall the denotational semantics, given in Section 3.3.1, for symbol

construct. The agent agA can perform send(t, x) whenever she can compose the value-string x

for t from values in her current view. This means that agA “uses” xi for ti in her local view to

“build” a substitution for t and this substitution maps nonces which agA owns into different values.

Formally, the denotation constructI returns true if it is possible to find a substitution [x/t] out of

(ti, xi) ∈ view such that consistentI[x/t]
(t, view0), i.e., the nonces in OwnedAtomsA and assigned in

view0 to concrete values are indeed mapped distinctively under [x/t].

Let t ∈ SentMsgA and t1t2 . . . tn be a representation of t as the ordered sequence of its atomic

subterms (i.e., ti = OSub(t)i). According to the Definition 3.3.3 of R
agσ

A
t , if the term t is sent out

by agσ
A as x ∈ R

agσ
A

t , then it follows that: a). xi = OSub(x)i is σ(ti), for each ti ∈ OwnedAtomsA;

b). xi can take any value in Rti, for each ti ∈ LearnedAtomsA. The agent agA could receive any

value xi ∈ Rti for ti ∈ LearnedAtomsA. For that, agA is equipped with all possible send actions

determined by xi ranging over the entire range Rti , for ti ∈ LearnedAtomsA.

For one j ∈ {1, . . . , n}, assume that tj ∈ LearnedAtomsA and for all i = 1, n, i 6= j, assume that

ti ∈ OwnedAtomsA. Moreover, assume that σ(ti) = ai. Then, (∗) expands to:
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send(t1t2 . . . tj−1tjtj+1 . . . tn, a1a2 . . . aj−1x1
j aj+1 . . . an), if i = step(r) and (t1 = a1 and

. . . and tj−1 = aj−1 and tj = x1
j

and tj+1 = aj+1 and tn = an)

send(t1t2 . . . tj−1tjtj+1 . . . tn, a1a2 . . . aj−1x2
j aj+1 . . . an), if i = step(r) and (t1 = a1 and

. . . and tj−1 = aj−1 and tj = x2
j

and tj+1 = aj+1 and tn = an)

...

send(t1t2 . . . tj−1tjtj+1 . . . tn, a1a2 . . . aj−1x
|Rtj

|

j aj+1 . . . an), if i = step(r) and (t1 = a1 and

. . . and tj−1 = aj−1 and tj = x
|Rtj

|

j

and tj+1 = aj+1 and tn = an)

Therefore, if only one atomic subterm tj of t is bound to iterate all of the values in Rtj , then

agA is equipped with |Rtj | possible send actions at the local state 〈i, view〉 for some i such that

i.A→ B : t ∈ RulesA. It is easy to see that, in general, the problem of finding [x/t] is akin to picking

one ordered n-tuple over the generalised Cartesian product Π
i=1,...,n

RagA
ti . Further, some constraints

are to be applied to these n-tuples, i.e., for [x/t] to be a consistent substitution. So, the entire space

of Π
i=1,...,n

RagA
ti need not be unwound. However, in general the number of possibilities of forming a

value-string for t out of the possible values in a view lag@i of agA is of the order of Π
j=1,...,n

|RagA
tj |. Note

that for ti ∈ OwnedAtomsA, |RagA
tj | = 1. Whilst this is promising, the unconstrained ranges Rtj

can be large.

The possible send actions of agA shown in expression (∗) can be given in an operational way as

O( Π
j=1,...,n

|RagA
tj |) rules for sending out t = t1, . . . , tn as the value-string x, composed from the current

view. This alternative is written as follows:

{

agA.t1 = x1 ∧ agA.t2 = x2 ∧ . . . ∧ agA.tn = xn ∧ agA.i = dueStep
(rulej )

send(t1t2 . . . tn, x1x2 . . . xn)
(∗∗),

where j ∈ {1, . . . , O( Π
j=1,...,n

|RagA
tj |)}, i ∈ StepsA, r ∈ RulesA, r = i.A → B : t, xk ∈ RagA

tk ,

xk ∈ lagA@i and k ∈ {1, . . . , n}.
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In relation with (∗) above, we prove:

Lemma 3.3.17 Let A ∈ Ho, σ(A-role) ∈ ΣPr and agA ∈ Ag correspond to σ(A-role). Let

r ∈ RulesA, r = i.A → B : t (for some B ∈ Ho), l ∈ LagA with l = 〈i, view〉 and view0 be the

initial view of agA. Then, there exists v ∈ RagA
t such that constructIσ(t, view, view0) = (t, v).

Lemma 3.3.17 stipulates the following fact. Whenever an agent agA has reached the step where

the composition of t is due, the agent agA can perform the composition of t as some v ∈ RagA
t .

In other words, at least one of the actions in ∪x∈R
agA
t

{

send(t, x)|(r = i.A→ B : t) ∈ RulesA
}

of

agent agA will be enabled at state l ∈ LagA , where A ∈ Ho, σ ∈ ΣPr, σ(A-role) >→ agA, agA in state

l = 〈i, view〉, view ∈ V iewsagA and view0 ∈ V iewsagA
0 .

The proof of Lemma 3.3.17 makes uses of the definition of the global evolution function which is

given later. Therefore, it is given in Appendix A, Section A.1.

Having given the agents’ local protocol function, we proceed to give the Environment’s local

protocol function.

3.3.2.7 Environment Local Protocol

Let lEnv=(msg log, atoms log, insider vars, agent names, values log, analz log, synth log) be a lo-

cal state of the environment. We define the local protocol of the Environment in the following way:

PEnv(lEnv) = ActEnv. This symbolises that at any of the Environment’s local state any of his actions

is possible.

3.3.2.8 Agents’ Local Evolution

Let l = 〈i, view〉 be a local state of agA, view0 denote an initial view of agA and a be a joint

action. The local evolution function of agA can be given under the denotation: [|EagA|] =

if ( preconditions(l, a ) = true) then ( postconditions(l, a) ), for arbitrary l ∈ LagA and a ∈ PagA(l).

Thus, we follow this approach in defining the local evolution function EagA of agent agA.

1. for aagA = receive and aEnv = transmit to(agA, t, x), where t ∈ ReceivedMsgA and x ∈ Rt:
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Let ρ = ρ[x
′

/t
′

], where t
′

= OSub(t)i, x
′

= OSub(x)i, Ind = {1, . . . , last(OSub(t))} and

i ∈ Ind (i.e., ρ is equal to the substitution [x/t], where t is a message expected by agA).

preconditions(l, a) :







































(1). i ∈ StepsA ∩ {step(r)|r = j.B → A : t}, for some B ∈ Ho, j ∈ Steps

(2). in matchIρ(t, k, k′) = true (for denominated (k, k′) ∈ Ind× Ind)

(3). out matchIρ(view, t) = true

(4). decryptableIρ(view, t) = true

postconditions(l, a):











(5). i← next(StepsA, i)

(6). setIρ(view, t)

2. for aagA = send(t, x) and aEnv = intercept from(ag), where t ∈ SentMsgA and x ∈ RagA
t :

preconditions(l, a):











(1). i ∈ StepsA ∩ {step(r)|r = A→ B : t}, for some B ∈ Ho

(2). constructI(t, view, view0) = (t, x), for some x ∈ RagA
t

postconditions(l, a):

{

(3). i← next(StepsA, i)

3. aagA = wait: preconditions(l, a): ∅, postconditions(l, a): ∅

4. aagA = λ: preconditions(l, a): ∅, postconditions(l, a): ∅

Note that here we discuss those cases in the evolution function defined solely by the components

aagA and aEnv of a joint action a, for some A ∈ Ho. The synchronisation between agA and some

agent agB of B-role (A 6= B) will emerge from further definitions, i.e., from the definition of the

local evolution of the Environment agent.

From the definition of EagA above, observe that the acceptance of messages depends on the

preconditions within EagA . These preconditions are built using the denotations of function and

predicate symbols in Section 3.3.1. The denotation of evolution entry 1 says that agA has to be

in the step due for receiving t (hence, 1.1) and the value x sent as t has to be decryptable by agA

(hence, 1.4). According to the denotation of decryptable in Section 3.3.1, entry 1.4 requires agA

to have the keys associated with [x/t]. Furthermore, the value x sent as t has to be syntactically

correct (hence, 1.2 requires in match to hold). We recall from Section 3.3.1 that in match requires
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certain subparts of x (i.e., those at indices k and k′) to have the same values in order to obey the

pattern of t. Moreover, the value x sent as t has to be consistent with the execution carried by agA

so far (hence, 1.3 requires out match to be true under [x/t] at the current view of agA). Again,

by Section 3.3.1, out matchI demands that certain subterms ti of t are sent to agA as xi, if xi is

the value that agA has previously stored for ti in her views. The denotation implied by out match

in the local evolution EagA is a representation in our MAS approach of the matching-receive [175]

semantics adopted by all standard lines of security verification, e.g., [9, 19,188,73].

Upon the action of receiving and validation of all the above, agent agA assigns atoms in her view

to values in the newly received value-string x (hence, 1.6) and moves into her next execution step

(hence, 1.5).

The denotation of evolution entry 2 is as follows. If agent agA has reached the protocol-step in

which she is due to send t (hence, 2.1) and agA can construct the value-string x according to the

pattern of t (hence, in 2.2, agA has set a correct value for each subterm of t in her current view),

then agA sends value x for t and moves to the next execution step. Entry 2 also stipulates that

whenever agA sends a value-string x for an expected message t, the intruder/Environment intercepts

that value.

Having given the agents’ local evolution function, we proceed to give the Environment’s local

evolution function.

3.3.2.9 Environment’s Local Evolution

Let lEnv=(msg log, atoms log, insider vars, agent names, values log, analz log, synth log,

do forge, do analz, f lag analz, already analz, stop analz, count1, count2, 0max SubstComposites,

0max SubstMsg) be an arbitrary possible local state of the Environment.

The set POOL = insider vars ∪ agent names ∪ values log denotes the union of some of the

intruder’s data-sets, a selection of data from the local state lEnv. Then, the range of the set POOL

of terms under the set of substitutions is given by RPOOL=Rinsider vars∪agent names∪values log.

The constant 0max SubstMsg = Σ
t∈Msg

|Rt| denotes the number of all possible value-strings that

the Environment could compose for messages, where |Rt| is the cardinality of the (unrestricted)

range for a message t. Recall that the Environment operates on unrestricted ranges Rt0 for atomic
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terms t0 and under generalised Cartesian products Rt = Π
t0∈OSubt(t)

Rt0 over these unrestricted ranges

for non-atomic terms t. Then, under the set of substitutions considered for the protocol, we can

similarly infer the number 0max SubstComposites of all possible value-strings that the Environment

could find by analysing values for composites, i.e., 0max SubstComposites = Σ
t∈Composites

|Rt|.

Let a be a joint action, l ∈ LEnv and σ(A-role)>→agA, for some σ ∈ ΣPr, A ∈ Ho. To define the

local evolution function EEnv of the Environment, we give the description of EEnv(lEnv, a):

1. for aagA = send(t, x) and aEnv = intercept from(agA), where t ∈ SentMsgA and x ∈ RagA
t :

preconditions(lEnv, a) : none

postconditions(lEnv, a):






































(1.)setMsgIσ(msg log, t)

(2.)setAtIσ(atoms log, t)

(3.)analzI(values log, analz log, t)

(4.)(do analz := true) and (count1 := 0)

2. for t
′

∈ Composites, x
′

∈ Rt′ , aEnv = analz(t
′

, x
′

):

preconditions(lEnv, a) :










(1.)(do analz = true) and (count1 < 0maxSubstComposites)

(2.)(t
′

, x
′

) ∈ analz log

postconditions(lEnv, a):










(3.)flag analz[count1] := analzI(values log, analz log, t
′

, x
′

)

(4.)count1 := count1 + 1;

3. for t
′

∈ Composites, x
′

∈ Rt′ , aEnv = analz(t
′

, x
′

):

preconditions(lEnv, a) :










(1.)(do analz = true) and (count1 < 0maxSubstComposites)

(2.)(t
′

, x
′

) 6∈ analz log

postconditions(lEnv, a):
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(3.)flag analz[count1] := false;

(4.)count1 := count1 + 1;

4. if (count1 = 0maxSubstComposites and do analz = true and

(∀i ∈ 1, 0maxSubstComposites)(flag analz[i] = false)) then (stop analz := true);

5. if (count1 = 0maxSubstComposites and do analz = true and

(∃i ∈ 1, 0maxSubstComposites)(flag analz[i] = true and already analz[i] = false))

then (count1 := 0) and (already analz[i] := true);

6. if (count1 = 0maxSubstComposites and do analz = true and

(∀i ∈ 1, 0maxSubstComposites)(already analz[i] = true)) then (stop analz := true);

7. if (stop analz = true) then (do forge := true)

8. aEnv = forge(t, x):

preconditions(lEnv, a) :

(1).(do forge = true) and (count2 < 0maxSubstMsg)

(2).synthI(t, POOL) = (t, x), for current x ∈ Rt

postconditions(lEnv, a):

(3).synth log := synth log ∪ (t, x)

(4).count2 := count2 + 1

9. for t ∈Msg, x ∈ Rt, aEnv = forge(t, x):

preconditions(lEnv, a) :

(1).(do forge = true) and (count2 < 0maxSubstMsg)

(2).synthI(t, POOL) 6= (t, x), for current x ∈ Rt

postconditions(lEnv, a):

(3).count2 := count2 + 1

10. if (count2 = 0maxSubstMsg) then (do forge := false);
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11. aagA = receive and aEnv = transmit to(ag, t, x), where t ∈ ReceivedMsgA, x ∈ Rt,:

preconditions(lEnv, a) :

(1).(t, x) ∈ synth log or ∃ag′ ∈ Ag, ag′ 6= ag, s.that msg log(t, ag′) = x

postconditions(lEnv, a): void

We are now going to explain the local evolution EEnv of the Environment agent. Recall that we

assumed an arbitrary A ∈ Ho, σ(A-role) ∈ ΣPr, an agent agA ∈ Ag corresponding to σ(A-role),

i ∈ StepsagA a step of agA, l = 〈i, view〉 ∈ LagA and a ∈ Act a joint action. The evolution-case 1 cap-

tures the synchronisation between agA sending the value-string x for t and the intruder/Environment

intercepting it. For an intruder to intercept a message, there are no preconditions. As postcondi-

tions, the Environment recalls the action by storing data about the message and its parts (hence,

postconditions 1.1, 1.2). After the interception of [x/t], the intruder analyses the composite [x/t]

(hence, post-condition 1.3). In fact, the intruder enables an entire analysis cycle (hence, the post-

condition 1.4). This forces the evolution-case 2. The intruder tries to analyse any composites [x′/t′]

as some might have become intelligible given the new interception of [x/t]. There are entries in

this evolution-case for analysing (t′, x′), for each t′ ∈ Composite, for each x′ ∈ RComposites, i.e.,

the intruder could potentially analyse every possible value under the given protocol signature

and instantiation. However, given a protocol instantiation and the proceedings of roles, not all

such analyses would be executed at a given state. Recall the denotational semantics of symbol

analz: when the decryptions of composites in [x/t] are possible, the intruder records decrypted

non-atomic parts of [x/t] in his analz log and un-encrypted, “in-plain” atoms of [x/t] in values log.

Whilst there are still value-composites in his possesion (i.e., pre-condition 2.2 ) that could be

analysed (i.e., count1 < 0maxSubstComposites in pre-condition 2.1) the intruder tries to anal-

yse them (as per post-condition 2.3). The attempted is counted (i.e., post-condition 2.4). If a

composite is not is his possesion (pre-condition 3.2), he signals that he cannot analyse it (post-

condition 3.3) and he records his unsuccessful trial (post-condition 3.4). Following the denotation of

the symbol analz, at each entry 2.3 the knowledge-sets of analz log and values log can potentially

grow, i.e., if analz is successful for some value-composite [x′/t′] under the newly acquired data.

If there has been no successful analysis under a full analz-cycle (e.g., flag analz is constantly
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false in the pre-condition of evolution-case 4), then evolution-case 4 enforces that stop analz

is set to true. If a composite has been newly analysed in the current cycle (i.e., pre-condition

flag analz[i] = true and already analz[i] = false) in the evolution-case 5), then the fact that

composite i is now learned is recorded (i.e., post-condition already analz[i] := true in the evolution-

case 5). If all that can be analysed at this cycle has been analysed previously (i.e., already analz

is constantly true), evolution-case 6 enforces that stop analz is set to true. Otherwise, if at least

one new analysis has succeeded (i.e., preconditions of the evolution-case 5), the counter count1 is

reset and a new analz-cycle starts. Thus, evolution-cases 4–6 denote the closure of knowledge-sets

under the operator analzI, after each interception-step. The analysis cycles 2–6 can be written

procedurally as:

//initialisation of the model

stop_analz:=false;

for(i:=0;i<#maxSubstComposites;i++)

flag_analz[i]:=false;

already_analz[i]:=false;

endfor

//Dolev-Yao analysis cycles in the model

label l1:

while(!stop_analz)

count1:=0;

foreach [x’/t’]

if([x’/t’] in analz_log)

flag_analz[count_1]:=analz(values_log, analz_log,x’);

count_1++;

else if([x’/t’] not in analz_log)

flag_analz[count_1]:=false;

count_1++;

endif

endfor

noNewAnalz_counter:=0;

allAnalz_counter:=0;

for(i:=0;i<#maxSubstComposites;i++)

if (flag_analz[i]==false)

noNewAnalz_counter++;

else if (flag_analz[i]==true and already_analz[i]==false)

already_analz[i]:=true;
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continue l1;

else if(flag_analz[i]==true and already_analz[i]==true)

allAnalz_counter++;

endif

endfor

if(noNewAnalz_counter==#maxSubstComposites)

stop_analz:=true;

if(allAnalz_counter==#maxSubstComposites)

stop_analz:=true;

endif

endwhile

Appendix A contains details of this procedure and a proof the fact that closure of some local

state lEnv of the Environment under analz operations in enforced in the model (see Section A.1.II

and Lemma A.1.1).

According to the evolution-case 7, as soon as the Dolev-Yao analysis stops (i.e., stop analz = true)

the forging can begin, i.e., do forge := true. If a trial of synthesising terms at a given state is

successful (hence, evolution-case 8), the newly synthesised term is taken into account (hence, post-

condition 8.4, count2 := count2 + 1). Conversely, if the trial of synthesising terms is unsuccessful,

the trial is still counted (hence, post-condition 9.3, count2 := count2 +1). The latter is done in order

to dismiss this trial as a future synth-attempt at the current local state. When all the possibilities

are exhausted, the Environment stops trying to compose new messages (hence, the precondition

count2 = 0maxSubstMsg of evolution-case 10 forces do forge to be set to false, therefore triggering

no more evolution steps through evolution-cases 8 and/or 9). However, at a given state, not all

0maxSubstMsg forging actions would necessarily be executed.

Function synth is applied over the knowledge-set POOL. It denotes that [x/t] is composable

from atoms in values log and non-atomic terms stored in analz log (hence, the data-sets in POOL).

The previous analysis parts of the Environment’s local evolution forced analz log and values log

to be closed under analz-type actions. Thus, forge and analz actions as enforced by EEnv at a

local state lE give synthesis(closure analysis(lE.POOL)) (upon the traditional sense [163] and

with respect to a protocol description and instantiation).

The intruder will inject a message into the network if he has synthesised it (i.e., the first part

of the precondition of evolution-case 11) or he has previously intercepted it (i.e., the second part
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of the precondition of evolution-case 11). From the local evolution function EagA(l, a), recall that

the action receive does not trigger for agA unless it is synchronised with a transmit local action of

the Environment and some validation tests on the local state of agA are successful. Agent agA will

“wait” (i.e., perform the action wait) at all local states that contain a “receive-due” step until the

intruder “transmits” her a message.

Remark 3.3.18 The evolution functions presented imply a certain order over the application of joint

actions in this modelling. A joint action a1 of type a1agA
= send(t, x), a1Env = intercept from(agA)

is always followed by a series of up to k × 0maxSubstComposites joint actions a2 of type a2Env =

analz(t
′

, x′) (k a constant, k ≥ 1). This sequence of analz actions is followed by a series of

0maxSubstMsg joint actions a3 of type a3Env = synth(t
′′

, x′′). Figure 3.1 depicts these facts.
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=send(t, x)

aEnv=intercept from(agA)

k ≥ 1
a liniar sequence of max. k × 0maxSubstComposites a linear sequence of 0maxSubstMsg

Figure 3.1 The Sequence of Linearly Applied (Dolev-Yao) Actions in ΥIS

Even if 0max SubstComposites, 0max SubstMsg are of a double-exponential factor in the size

of the protocol description, the above technique of enforcing all the analz and forge actions in

the local evolution of the Environment at a certain due state yields a smaller state-space than

allowing analz and/or forge to possibly trigger at every state of the Environment. Also, many of

the possible analz and forge actions, included as above in the local evolution of the Environment at

a generic current state, will not trigger at that state for a given instantiation and its homomorphic

application over the global evolution function.
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3.3.2.10 The MAS Formalism for Pr: Υ Pr
IS

Based on the definition of the local evolution functions for the agents and for the Environment, we

can now define the moves of the interpreted system model depicted so far.

Definition 3.3.19 (The Global Evolution Function) The global evolution function is a func-

tion E : G× Act→ G such that E(g, a) = g
′

if and only if Eag(gag, a) = g
′

ag for all

ag ∈ Ag ∪ Environment, where g, g′ ∈ G and a ∈ Act.

Definition 3.3.20 (The IS-based Formalism for Pr) Let Pr be a receiver-transparent protocol

described by a CAPSL description D and a corresponding signature S. Let ΣPr be a set of role-

substitutions. Let Ag be the set of Aσ-agents, for all for A ∈ Ho, for all σ(A-role) ∈ ΣPr and Env

be the Environment agent as above. Let G be the set of global states, I ⊆ G be the set of initial

states, P = {Pi, PEnv | i ∈ Ag} be the set of protocol functions and E be the evolution function

as modelled before. Consider at least the atomic propositions PV implied by the predicate symbols

corresponding to the CAPSL goals. Let V : PV × G → {true, false} be a valuation function. The

tuple Υ Pr
IS = (G, I, P, E, V ) is the IS-based formalism for the multi-session execution of Pr, rendered

by the set of substitutions ΣPr.

When Pr is implicit, we simply write ΥIS.

We are now going to introduce the model unwound by the IS-based formalism Υ Pr
IS .

Let n ≥ 1, 1 ≤ i ≤ n, ai be a joint action and a1 . . . an be a sequence of actions such that

E(gi−1, ai) = gi, for g0 ∈ I and gi ∈ G, i = 1, n. Then, g0a1g1 . . . angn describes a computation (or

a run) implied by ΥIS. Starting from the initial states, the computations designate the reachable

states.

For Pr an RT protocol, the local-indistinguishability4 relation ≈i⊆ Li×Li in Υ Pr
IS is the equality

relation =, for any i ∈ Ag. Note that this is a reasonable choice for an indistinguishability relation,

as in the models for RT protocols the local states contain only pairs of the form “(atomic-term,

value)”, i.e., the local states contain do not contain pairs of the form “(encrypted-term, value)”.

The local-indistinguishability for the Environment agent is also assimilated to the simple equality

4See Chapter 2, page 25 for details.
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relation. This relation is lifted to an indistinguishability relation over global states ∼i⊆ G×G in a

standard way: g ∼i g′ if and only if gi ≈i g′
i, for any g, g′ ∈ G, i ∈ Ag ∪ {Env}.

Definition 3.3.21 (The MAS System Model for Pr) Let Pr be a receiver-transparent proto-

col described by a CAPSL description D and a corresponding signature S. Let ΣPr be an arbitrary

set of role-substitutions render a multi-session execution of Pr. Let Υ Pr
IS = (G, I, P, E, V ) be the IS-

based formalism for this multi-session execution of Pr, with G, I, P, E, V as before, Ag = {1, . . . , n},

G′ ⊆ G the set of reachable states implied by Υ Pr
IS and ∼i⊆ G′×G′ the indistinguishability relations

described above. Then, the tuple MPr
IS = (G′,∼1,∼2, . . . ∼n,∼Env, V ) is the MAS System Model

for the arbitrary multi-session execution of Pr.

When Pr is implicit, we simply write MIS.

To sum up, Section 3.3 has introduced ΥIS, an IS-based formalisation for multi-session execution

of RT security protocols. Also, Section 3.3 introduced MIS as the unwound model implied by this

specialised interpreted system. In a sense, the MIS model exhibits the branching of the multi-session

execution of RT security protocols. We proceed with the expression of the security requirements in

CTLK, the underlying logic language of the ΥIS model. These are interpreted the MIS model, in

the same sense that Chapter 2 recalled the usual satisfaction of CTLK on interpreted systems.

3.3.3 Security-Requirements Expressed in the Model ΥIS

Remember that in Section 3.2 we formalised and specialised CAPSL goals into atomic and complex.

Having now introduced the ΥIS model, we continue that formalisation.

For atomic CAPSL assertions we add corresponding predicate symbols to the signature S. We thus

produce a logically-extended signature SL. For the atomic CAPSL assertions AGREE and HOLDS we

add the predicate symbol Agree and the predicate symbol Holds, respectively. The predicate Agree

operates on Ho×Ho×2T0 with the codomain Boolean, whereas Holds operates on Ho×2T0 with the

codomain Boolean. More precisely, if AGREE A,B: Var is a CAPSL assertion, then Agree(A, B, V ars)

is a predicate in SL, where the set V ars ⊆ T0 of atomic terms on S corresponds pointwise to the

list Var specified in the CAPSL assertion. Similarly, if HOLDS A : Var is a CAPSL assertion, then
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Holds(A, V ars) is a predicate in SL, where the set V ars ⊆ OwnedAtomsA of atomic terms on S

corresponds point-wisely to the list Var in CAPSL.

Let S be the signature for a protocol Pr, A, B ∈ Ho and σ1,σ2 ∈ ΣPr such that

σ1(A-role)
ΥIS>→ agσ1

A and σ2(B-role)
ΥIS>→ agσ2

B . Using the [| · |] notation, the denotational interpreta-

tion I under substitutions σ1 and σ2 for the predicate symbols introduced is given as follows:







AgreeIσ1,σ2 (A, B, V ars) ≡ [|(∀t ∈ V ars)(agσ1
A .view(t) = agσ2

B .view(t))|] (1)

HoldsIσ1 (A, V ars) ≡ [|(∀t ∈ V ars)(agσ1
A .view(t) = σ1(t))| (2)

The meaning of (1) is that, at some point in the ΥIS computation, the same values should

respectively be found in the views of agσ1
A and agσ2

B under the entries for atoms t ∈ V ars. If this

is so, then AgreeIσ1,σ2 (A, B, V ars) evaluates to true, otherwise AgreeIσ1,σ2 (A, B, V ars) evaluates

to false. By the ΥIS initialisation phase, for k ∈ OwnedAtomsA ∩ V ars, it is the case that

agσ1
A .view0(k) = σ1(k) and agσ2

B .view0(k) = ⊥, whereas for k′ ∈ OwnedAtomsB ∩ V ars, it is the

case that agσ2
B .view0(k′) = σ2(k′) and agσ1

A .view0(k′) = ⊥. Then, under a Dolev-Yao environment,

it is of interest to evaluate the tests agA.view(k) = agB.view(k) and agA.view(k′) = agB.view(k′)

at some non-initial stage in the protocol execution.

The meaning of (2) is that of querying if (indeed) agσ1
A holds a certain value for her own atoms t.

Recall the initialisation phase in ΥIS, i.e., every atom t in OwnedAtomsA is set to the persistent value

of σ(t) in the initial view of agσ
A agent. Then, since V ars ⊆ OwnedAtomsA, [|HoldsIσ1 (A, V ars)|]

is trivially evaluated true. However, the denotation [|HoldsIσ1 (A, V ars)|] contributes to less trivial

meanings when used inside more involved formulae rendering security requirements.

In relation to CAPSL assertions and CAPSL goals, we add some helper predicates and nota-

tions. Predicate end operates over Ag and endIσ1 (agA) = [|agσ1
A .step = last(StepsA) + 1|]; hence,

endIσ1 (agA) denotes that the A-role corresponding to agent agσ1
A has ended. Similarly, start(agA)

denotes that some agent A-role agent is in its first execution step. Formally, startIσ1 (agA) =

[|agσ1
A .step = first(StepsA)|]. The notation agσ1

A .id denotes the name of the participant spawning

agσ1
A , i.e., it is an abbreviation for agσ1

A .view(A). The notation agσ1
A .PartnerB denotes the identity

of some B-role agent acting as a communication partner of agent agσ1
A ; the notation agσ1

A .PartnerB
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is an abbreviation for agσ1
A .view(B).

We are now going to show how we express CAPSL goals as specifications over ΥIS. Let Pr be a

protocol, G be its set of CAPSL atomic and complex goals and S be the signature for the protocol Pr.

Let A, B ∈ Ho and σ1,σ2 ∈ ΣPr such that σ1(A-role)
ΥIS>→ agA and σ2(B-role)

ΥIS>→ agB. To express

CAPSL goals as specifications in ΥIS, we give a relation ρIS ⊆ G × 2Form, where Form is the set of

well-founded CTLK formulae. The relation ρIS is called the expression-relation in ΥIS.

We introduce a relation of this kind for three reasons: 1) in order to systematise and generalise

the expression of goals, as the rest of the section will show; 2) in order to construct some of the

proofs presented in Chapter 4; 3) in order to clarify the procedure of automatic generation of such

expressions presented in Chapter 5. We will define the relation progressively (i.e., not in one step).

Expression of Atomic CAPSL goals in ΥIS. The ΥIS expression of the CAPSL atomic goal

g=AGREE A, B : VAR is partially given as follows.

The expression ρIS(AGREE A, B : VAR) contains






























∧

i∈∪agA

AG(end(i)→
∨

j∈∪agB

(i.PartnerB = j.id)) (A1)

∧

i∈∪agA

AG(end(i)→
∨

j∈∪agB

(i.PartnerB = j.id ∧ Agree(i, j, V ars))) (A2)

∧

i∈∪agA

AG(end(i)→
∨

j∈∪agB

(i.PartnerB = j.id ∧ j.PartnerA = i.id ∧ Agree(i, j, V ars))) (A3)

The goal g=AGREE A, B : VAR is in relation ρIS with the set of formulae implied by schemata

(A1), (A2) and (A3); i.e., in ΥIS, the goal g can be expressed as any of the elements of this set.

In the above, “
∧

i∈∪agA

” denotes universal quantification over agents instantiating an A-role. In that

sense, “
∧

i∈∪agA

” could be dropped and, instead, we could implicitly assume universal quantification over

i ∈ ∪
σ(A−role)∈ΣPr

agσ
A. Furthermore, instead of using “

∨

j∈∪agB

”, we can make ρIS(AGREE A,B : VAR)

more precise, by arbitrarily fixing i ∈ ∪
σ(A−role)∈ΣPr

agσ
A and making j range over ∪

σ(B−role)∈ΣPr

agσ
B as

in the following.

For each j ∈ ∪
σ(B−role)∈ΣPr

agσ
B, the expression ρIS(AGREE A, B : VAR) contains



















AG(end(i)→ (i.PartnerB = j.id)) (A1j)

AG(end(i)→ (i.PartnerB = j.id ∧ Agree(i, j, V ars))) (A2j)

AG(end(i)→ (i.PartnerB = j.id ∧ j.PartnerA = i.id ∧ Agree(i, j, V ars))) (A3j).
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For each agent i, the goal g=AGREE A, B : VAR is in relation ρIS with the set of formulae

implied by (A1j), (A2j) and (A3j), for j ranging over B-agents as above. In order words, the goal g

can be expressed in ΥIS as any of the elements of the set implied by schemata (A1j), (A2j) and

(A3j), where i, j are as above.

The expression-relation ρIS(g) for g=AGREE A, B : VAR is only given by (A1)–(A3) and

(A1j)–(A3j), as above.

We now explain the formulae implied above. Schema (A2) says that for every A-role agent i

there exists a B-role agent j such that whenever agent i finishes her role, she “thinks” of agent j

as her communication partner and the agents agree on the values of atoms in V ars. The formal

interpretation in Υ Pr
IS of (A2) is that, for every σ1(A-role) ∈ ΣPr,σ1(A-role)

ΥIS>→ i, it is needed that

the model MIS validates the formula

AG(end(i)→
∨

σ2(B·role),j:=ag
σ2
B

(i.PartnerB = j.id ∧ AgreeIσ1,σ2 (i, j, V ars))).

In turn, the interpretation of (A2j) is that, for an arbitrarily fixed σ1(A-role) ∈ ΣPr,σ1(A-role)
ΥIS>→ i,

it is needed that the model MIS validates the formula

AG(end(i)→ (i.PartnerB = j.id ∧ AgreeIσ1,σ2 (i, j, V ars))),

for some σ2(B-role) ∈ ΣPr,σ2(B-role)
ΥIS>→ j. Hence, there exists σ2(B-role) ∈ ΣPr such that j ∈ Ag

is given by σ2(B-role)
ΥIS>→ j and the formula implied by (A2j) is validated in Υ Pr

IS . Similar interpre-

tations and readings are attributed to (A1), (A1j), (A3) and (A3j).

In the following we will exemplify more with (A1)–(A3) rather than with (A1j)–(A3j), for

some j ∈ ∪
σ(B−role)∈ΣPr

agσ
B. Nevertheless, the discussions we make are also applicable to (A1j)–(A3j).

The expressions (A1) to (A3) are in correspondence with Lowe’s hierarchy of agreement, which

we presented in Section 2.2.3.1 of Chapter 2. In that sense, (A1) requires that some B-agent with the

identity i.PartnerB (e.g., bob) is present on every execution where the A-agent is present. Hence,

it requires Lowe’s aliveness of participant i.PartnerB. In turn, (A2) corresponds to Lowe’s non-

injective agreement, whereas (A3) relates to Lowe’s injective agreement (e.g., the agents quantified

are mutual partners in the communication implied).
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In the ρIS expression of the PRECEDES goals, we include a stronger temporal aspect in the specifi-

cation. We express a PRECEDES assertion as a reactivity formula5. This makes the correspondence to

Lowe’s agreement even tighter (i.e., whenever an agent of the A-role has started a communication,

eventually it is the case that an agreement with a B-role agent takes place). We give the ΥIS

specifications for PRECEDES goals.

The expression ρIS(PRECEDES A, B : VAR) contains


























∧

i∈∪agA

AG(start(i)→ AF
∨

j∈∪agB

(i.PartnerB = j.id)) (P1)

∧

i∈∪agA

AG(start(i)→ AF
∨

j∈∪agB

(i.PartnerB = j.id ∧ (end(i)→ Agree(i, j, V ars)))) (P2)

∧

i∈∪agA

AG(start(i)→ AF
∨

j∈∪agB

(i.PartnerB = j.id ∧ j.PartnerA = i.id ∧ (end(i)→ Agree(i, j, V ars)))) (P3)

To complete the definition of ρIS(PRECEDES A , B : VAR), schemata (P1j)–(P3j) respectively

analogous to (A1j)–(A3j) are also considered.

The correspondence of (P1)–(P3) with Lowe’s hierarchy for agreement is analogous with the

previous case of (A1)–(A3).

We now give the ΥIS specifications for SECRET goals in CAPSL.

ρIS(SECRET VAR, HOLDS A: VAR) =














∧

i∈∪agA

AG(Environment.POOL.var 6= agA.var) (S1)

∧

i∈∪agA

AG(¬KEnv(Holds(A, var))) (S2),

where A ∈ Ho, VAR is a CAPSL variable stipulated in a HOLDS A:Var assertion and it corresponds

in the signature S to var ∈ OwnedAtomsA. An attack on specification (S1) reduces itself to a

CTL reachability property: there exists a path, there exists a point on the path where the intruder

learns the value σ1(var), where σ1(A-role) ∈ ΣPr and σ1(A-role) >→ agA. In turn, specification

(S2) hinges over a much stronger property than (S1): it is never the case that the intruder can

definitely link agσ1
A with the possession of the pair (var,σ1(var)).

Expression of Complex CAPSL goals in ΥIS. Let S be the signature and SL be the logically

extended signature for a protocol Pr. Let σ1,σ2 ∈ ΣPr such that σ1(A-role)
ΥIS>→ agσ1

A and

σ2(B-role)
ΥIS>→ agσ2

B , where A, B ∈ Ho.

5For “reactivity formula”, see page 26.
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All the formulae in the taxonomies for agreement are of the form AG(end(i)→ subformula(i)),

for every i ∈ ∪
σ(A−role)∈ΣPr

agσ
A. In other words, in each formula there is a property regarding agent

i ∈ ∪
σ(A−role)∈ΣPr

agσ
A to be evaluated at the end of i’s instantiated role. We use ρi

IS to denote this

property relative to agent i, subformula(i), within a given specification in the expression ρIS of a

goal. We call it the expression-relation ρIS relative to agent i (i.e., we arbitrarily fix one agent i of

role A and refer to the part of the expression ρIS that varies with i). The same observations can

be made about the taxonomy of expressions for the goal PRECEDES (i.e., where end(i) is replaced

with start(i)).

Let g= KNOWS A : α be a complex CAPSL goal such that α is an atomic CAPSL fact. Recall from

Section 3.2 that g=KNOWS A : α states that the A-agent acknowledges that the fact α is the case.

Let ρIS(α) be the expression-relation of its inner atomic CAPSL goal α as given before. Then, in

the following, we lift ρIS given for atomic goals to complex goals.

The expression of g as a CTLK formula under ΥIS is:

ρIS(KNOWS A : α) =
∧

i∈∪agA

AG(end(i)→ Kiρ
i
IS(α)),

where ρi
IS(α) is one expression of α relative to agent i (i.e., one expression relative to agent i from

all those possible for the atomic goal α, chosen at the specifier’s preference).

To illustrate ρi
IS(α) we consider only some branches of ρ for AGREE and PRECEDES goals, e.g.,

(A2) and (P2), respectively. For instance, for the above α being AGREE A, B : VAR, assume that

from all formulations in ρIS(AGREE A, B :VAR) we select the expression in (A2). This gives the

following expansion of the goal’s expression.

Example 3.3.22 (An Expression of α = AGREE A, B : VAR Relative to Agent i of A-role)

ρi
IS(α) = ρi

IS(AGREE A, B : VAR)=
∨

j∈∪agB

(i.PartnerB = j.id ∧ Agree(i, j, V ars))

Example 3.3.22 triggers the following expression of the complex goal g.

Example 3.3.23 (Expression of KNOWS A : AGREE A, B : VAR under (A2) for ρIS(α))

ρ(KNOWS A : α) = ρ(KNOWS A : AGREE A, B : VAR)=
∧

i∈∪agA

AG(end(i)→ Kiρi
IS(α)) =

∧

i∈∪agA

AG(end(i)→ Ki(
∨

j∈∪agB

(i.PartnerB = j.id∧Agree(i, j, V ars))))
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We will now exemplify how to lift ρIS to complex goals using ρi
IS for the branches of ρIS chosen

above. The method is systematic and it is transferable to other formulations of ρIS in Υ Pr
IS (apart

from (A2) and (P2), which we selected for illustration purposes).

We first lift expressions ρi
IS relative to an agent i to express goals that contain CAPSL assertion

of KNOWS or BELIEVES:

ρi
IS(KNOWS A:α) =

∨

j∈∪agA

(i.PartnerA = j.id ∧Kjρ
j
IS(α)).

Thus, ρi
IS(KNOWS A : α) states that there is some A-agent j, representing the partner of the pre-

viously quantified agent i and this agent j knows ρj
IS(α).

We give similar expression-relations ρIS for doxastic CAPSL goals:

ρIS(BELIEVES A : α) =
∧

i∈∪agA

AG(end(i)→ Ki ρi
IS(α))

ρi
IS(BELIEVES A : α) =

∨

j∈∪agA

(i.PartnerA = j.id ∧Kj ρ
j
IS(α))

We give some examples of full expression of CTLK formula starting from CAPSL goals.

Example 3.3.24 (Atomic goal) According to the inductive definition and the appointed selection

of relative ρIS above, the NSPK CAPSL goal AGREE A, B : B,Na translates into:

∧

i∈∪agA

AG(end(i)→
∨

j∈∪agB

(i.PartnerB = j.id ∧ i.Na = j.Na))

stating that whenever an A-agent i has completed the protocol, participant i.PartnerB is represented

by some B-agent j who agrees with i on the variable Na.

Example 3.3.25 (Complex goal) Consider the goal BELIEVES B: AGREE B,A: K, the goal of

KSL protocol. Applying ρIS on this goal yields:

∧

i∈∪agB

AG(end(i)→ Ki ρ
i
IS(AGREE A,B : K))

In turn, ρi
IS(AGREE A,B : K) is rewritten as:

∨

j∈∪agA

(i.PartnerA = j.id ∧ i.K = j.K)
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Thus, the goal fully translates to:

∧

i∈∪agB

AG(end(i)→ Ki

∨

j∈∪agA

(i.PartnerA = j.id ∧ i.K = j.K))

stating that whenever a B-agent i, e.g., representing a participant bob, has completed five protocol

steps, agent i knows that the participant i.PartnerA, e.g., alice, is represented by some A-agent j

which agrees with i on the variable K.

Example 3.3.26 (Acknowledged authentication) The acknowledged authentication goal in Ex-

ample 3.2.2, KNOWSA: KNOWSB:AGREEB,A — :Ma, translates into:

∧

i∈∪agA

AG(end(i)→ Ki ρ
i
IS(KNOWS B: AGREE B, A: Ma))

where ρi
IS(KNOWS B: HOLDS A: Ma) in turn expands to:

∨

j∈∪agB

(i.PartnerB = j.id ∧Kj

∨

k∈∪agA

(j.PartnerA = k.id ∧ Agree(k, j, Ma)))

Thus, the CTLK translation of goal states that whenever an A-agent i terminates its protocol run,

she knows that participant i.PartnerB is represented by some B-agent j who knows that participant

j.PartnerA is represented by some A-agent k who agrees with agent j on Ma.

In the above, aligned with much of the security literature, we focused on the properties of

individual agents representing protocol participants (alice, bob, etc.). This is useful as agents are

the actual parties in the protocol runs. However, it is also of interest to attempt to analyse the

epistemic properties of the participants themselves. The epistemic setting employed here makes this

particularly straightforward. Assume that, as far as protocol information is concerned, participants

have at their disposal all and only the information acquired by the agents representing them. Then,

the participant’s knowledge is the combined information of all agents representing her. The relevant

epistemic notion here is the one of distributed knowledge of the group of agents representing a certain

participant (see Chapter 2).

If we map the principal used in the epistemic concepts in CAPSL goals, e.g., A to an actual
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participant, e.g., alice of role A, we obtain an alternative for ρIS(KNOWS A : α):

ρIS(KNOWS A : α) :=
∧

i∈∪agA

AG(end(i)→ Ki.id ρ
i
IS(α))

ρi
IS(KNOWS A : α) :=

∨

j∈∪agA

(i.PartnerA = j.id ∧Kj.id ρ
j
IS(α))

where Ki.id (respectively Kj.id) is an epistemic modality referring to participant i.id (j.id respec-

tively). Since all information available to the participant i.id, e.g., alice, is information coming

from the various agents representing i.id, i.e. information from all sessions that alice partici-

pates in, we interpret Ki.idϕ as DGrϕ where Gr is the set of all agents representing i.id, i.e., the

set Gr =
⋃

σ(A−role)∈ΣPr

{agσ
A |A ∈ Ho, agσ

A.view(A) = agσ
A.id = σ(A) equals alice} or, even, the

set Gr =
⋃

A∈Ho

⋃

σ(A−role)∈ΣPr

{agσ
A | agσ

A.view(A) = agσ
A.id = σ(A)}.

Example 3.3.27 Returning to Example 3.3.25, the alternative mapping ρIS translates the CAPSL

goal (3.1) into:

∧

i∈∪agB

AG(end(i)→ Ki.id

∨

j∈∪agA

(i.PartnerA = j.id ∧ i.K = j.K))

stating that whenever a B-agent i has completed three protocol steps, participant i.id knows that

participant i.PartnerA is represented by some A-agent j which agrees with i on the variable K.

In this section we have presented a systematic methodology of expressing security goals for

a protocol Pr as CTLK formulae in Υ Pr
IS . Our expression of the CAPSL goals relates to standard

interpretations (i.e., reachability specification of secrecy, Lowe’s hierarchy of agreement), but it also

presents a means to the first fully-automatable way of verifying temporal-epistemic formulations of

BAN goals against a sound semantics. Thus, we advance the first systematic approach of mapping

authentication and key-establishment goals into the language of CTLK.

Evaluation of the ΥIS Formalism

In the ΥIS formalism, we followed our first motivation, presented in Chapter 1, page 13 and we

formulated security requirements in a systematic way that essentially pertains to knowledge of facts,

i.e., not to the mere possession of terms.
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The introduction of the IS formalism and the advances of model checking interpreted systems,

provided us with a well-founded starting point for our ΥIS formalisation. Thus, we followed our

third motivation, presented in Chapter 1, page 15 and we put forward a model for security protocol

executions that is inspired by the seminal work of the BAN-like logics, whilst supported by a

sound semantics. Unlike some of the most advanced authentication logics, e.g., the AT logic [5],

our formalisation is not protocol dependent and it is in fact fully automatable. We have presented

expressions of security protocol requirements that pursue the VO logic [191] in its expressivity6 and,

additionally, offer the possibility to formulate security goals in ways similar to the well-established

Lowe hierarchy [137] for authentication. In doing so, we also enriched the expressivity of VO,

where the nesting of beliefs was only implicit. We are able to express acknowledged, mutual or

chain authentication in a systematic way, using an explicit nesting of knowledge operators (e.g.,

Example 3.3.26). Our refined and systematic description of the local states of the agents rules

out the ambiguities present in approaches based on authentication logics7 (e.g., possession of keys,

quantification, etc.).

As our fifth motivation states, we follow some of steps of the LDYIS model [125] in building a

protocol verification framework based on temporal-epistemic logics. However, in ΥIS we relax the

LDYIS conditions upon receiving and sending messages and we adopt a more standard matching-

receive [175] semantics. This allows us to go beyond the facilities provided by LDYIS and encode

general untrusted channels and therefore capture more attacks (i.e., not exclude impersonation and

binding attacks8). At a higher level, ΥIS generalises the LDYIS model in that it advances a full

denotational semantics for the behaviour of agents (i.e., Section 3.3.1). Theoretically, this allows

for the verification of any authentication and key-establishment protocol in a uniform way and for

a full automation of the methodology. Chapter 5 will detail this precisely.

With ΥIS and the MIS model, we introduce a novel, systematic methodology of formalising the

Dolev-Yao execution of CAPSL-described protocol in a MAS setting. In doing so, we follow our

second motivation, presented in Chapter 1, page 14; we attributed a more expressive semantics to

6See Chapter 2, page 51.
7See Chapter 2, page 40.
8See Chapter 2, page 35 and/or [145,192].
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CAPSL-described protocols, which are usually denoted under a trace-based formalisation. This im-

plies that whilst we are able to verify reachability properties corresponding to certain security goals

(e.g., secrecy), we are also able to go beyond and verify inherent epistemic properties corresponding

to those and to other security goals. Section 3.3 of this chapter showed this precisely.

Nevertheless, the fact that we start from a CAPSL description and we attribute it an IS semantics

requires some proofs of preservation of the properties enjoyed by the traditional, trace-based CAPSL

semantics. These will be given in Chapter 4.

The main limitation of the ΥIS model is that it deals only with receiver-transparent protocols.

Hence, the state of agents contain only values for atomic terms. This is advantageous for automatic

verification in that it requires simple indistinguishability relations and it is a state-encoding which

should not exacerbate the state-explosion problem. The later chapters show that this intuition is

indeed correct.

We recall that the class of RT protocols does not equal the class of protocols with one level of

encryption in the messages. The former is a super-class of the latter. As aforementioned, numerous

authentication and key-establishment protocols fall into the class of RT protocols. Thus, the ΥIS

methodology is well suited for the formalisation of authentication and key-establishment protocols.

Nevertheless, we will also investigate other classes of protocols modelled as MAS. In that sense,

Chapter 7 (and Appendix C) will present systematisations and automations in generating and ver-

ifying MAS models for receiver-opaque protocols.

In this chapter we have given the first systematic multiagent system model for multi-session ex-

ecutions of CAPSL-described receiver-transparent protocols. The core of the semantics is given in

terms of interpreted systems. We have also systematically mapped security CAPSL goals into a

taxonomy of CTLK formulae to be interpreted on the model. In the next chapters we will show:

1) the correctness of this methodology in relation to standard semantics of security protocols; 2) an

optimised implementation of this methodology, leading to the first automatic verification of security

protocols against temporal-epistemic specifications of requirements; 3) extensions to this approach.



Chapter 4

On the Correctness of the ΥIS Formalism

for Receiver-Transparent Protocols

Motto: “All perception of truth is the detection of an analogy.”

(Henry Thoreau)

In this chapter we present the algorithm tr that, given a standard model for a receiver-

transparent protocol Pr, outputs the Υ Pr
IS formalisation presented in Chapter 3. The expressions

of the security goals in the two models are also correlated. We further prove the following: if

a standard model for a receiver-transparent protocol Pr validates/refutes the specification of an

atomic goal, then the unwound model of Υ Pr
IS also validates/refutes corresponding specifications of

that atomic goal.

Section 4.1 starts by outlining the most sensitive distinctions between ΥIS and the standard

semantics for CAPSL used in [188]. Driven by these distinctions, we introduce several notions that

help relate the two models. Section 4.2 uses these notions as the building blocks for an algorithm,

called tr, that takes a standard model for a CAPSL-described protocol Pr and outputs the Υ Pr
IS

formalisation of Pr. Section 4.2 also correlates the respective expressions of security goals in the

two formalisms. Recall from Chapter 3 that MPr
IS is used to denote the S5n-based model unwound

by Υ Pr
IS . Section 4.3 defines several relations between the states in the MCAPSL model and states in
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the MIS model, unwound by the output of algorithm tr. In Section 4.4 we use these relations to show

that there is a homomorphism1 between the traditional model for CAPSL-described protocols and

MIS. Then, we use this to prove the preservation of satisfaction/refutation of formulae respectively

corresponding to certain goals in the two models. Figure 4.1 illustrates the structure of this chapter.
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1For the definition of a homomorphism, please refer to Appendix B, Definition B.1.1.
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4.1 From MCAPSL Standard Semantics for RTP to ΥIS Inter-

preted Systems

In Section 2.2.2.3 we summarised the bounded protocol model [188] and recalled the full corre-

spondence [188] between this model and the implicit, multiset rewriting semantics [73] for CAPSL-

described protocols. Therefore, the bounded protocol model is an inherent semantics for CAPSL and

we further refer to it as MP
CAPSL, where P is the class of receiver-transparent (authentication and

key-establishment) protocols.

We will give an algorithm for obtaining the Υ Pr
IS formalisation from an MPr

CAPSL model, where Pr

is an RT protocol. For that, we first outline the most sensitive points in the differences between the

two formalisms. In drawing a relationship between ΥIS and MCAPSL, the main sensitive issues are:

1. multi-session protocol executions are rendered in MCAPSL by a set of protocol instantiations

(i.e., substitutions over the entire T0), whilst multi-session protocol executions are rendered

in ΥIS by a set of role-substitutions (i.e., substitutions over subsets T0 referring to particular

roles);

2. the aspect of freshness (check) as in MCAPSL does not appear explicitly in ΥIS (i.e., ΥIS is a

fully ground (i.e., not symbolic, or without uninstantiated variables) model. This is because

in ΥIS, there is no explicit on-the-fly generation;

3. suitable substitutions in MCAPSL have no explicit correspondent in ΥIS.

In the following, we will show how to minimise them systematically in order to bring the models

closer. At a high level, to lessen these differences we need to do the following:

a) transform instantiations of terms in MCAPSL in “appropriate” role-substitutions in ΥIS;

b) for these newly constructed role-substitutions to operate in a way which is in keeping with the

MCAPSL semantics, build bespoke ranges for terms in the fully ground ΥIS model.

The rest of this section formalises the points a) and b) above.

Definition 4.1.1 (Generated Atoms in MCAPSL) Let Pr be a receiver-transparent protocol and
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let A ∈ Ho. The set GeneratedA=
⋃

a=(A!B:(M)t)∈ω|A

M(a) denotes the set of all atoms generated in

MPr
CAPSL by the A-role.

Remark 4.1.2 The set OwnedAtomsA in ΥIS relates to atoms in MCAPSL as follows:

OwnedAtomsA = SecretA ∪GeneratedA.

Issue 2 and issue 3 signalled above arise from the following facts: a) in ΥIS, GeneratedA is

embedded in OwnedAtomsA, as Remark 4.1.2 underlines; b) the atoms in GeneratedA are assigned

to concrete values in the initial views/initial states of ΥIS. To mitigate issue 2 and issue 3, we need

to constrain the space of possible initial views in ΥIS in such a way that honest fresh generation and

suitable substitutions from MCAPSL are enforced onto ΥIS. To achieve this, we need to constrain the

way role-substitutions in ΥIS map terms over ranges. In Definitions 4.1.3–4.1.5 we formalise this,

step by step. Definition 4.1.6 eventually introduces the concept of initial Ho+-freshness enforcing

substitutions. These describe the type of role-substitutions in ΥIS suitably constrained such that

the differences between ΥIS and MCAPSL, as signalled by issues 1–3, are diminished.

Let A ∈ Ho be an arbitrary principal and X ∈ {N ,K0} be a sort. Then, let AtomsA|X denote

those atoms of the A-role which are of sort X. This extends naturally to subsets of AtomsA, e.g.,

OwnedAtomsA, LearnedAtomsA, etc.

Definition 4.1.3 (Initial Inter-Role Ho-Freshness Enforcing Substitutions) Let Pr be an

RT protocol and ΣPr be a set of role-substitutions in Υ Pr
IS . The set ΣPr is called initial inter-role

Ho-freshness enforcing with respect to some sort X if for all A, B ∈ Ho, A 6= B, for all

σ(A-role),σ
′

(B-role) ∈ ΣPr, for all t ∈ OwnedAtomsA|X , t′ ∈ OwnedAtomsB|X , it is implied that

σ(t) 6= σ
′

(t′).

Definition 4.1.3 expresses that a set ΣPr of role-substitutions is initial inter-role Ho-freshness

enforcing with respect to some sort X if every two atoms of sort X, each within a distinct role, are

respectively mapped into two different values under ΣPr.

Recall that in ΥIS the intruder can be an insider of any role, i.e., OwnedAtomsI=
⋃

A∈Ho
OwnedAtomsA

(see Section 3.3.2.2, page 91). Therefore, Definition 4.1.4 will extend the previously introduced con-

cept of initial inter-role Ho-freshness enforcing with respect to some sort X to refer to the insider also.
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Definition 4.1.4 (Initial Inter-Role Ho+-Freshness Enforcing Substitutions) Let Pr be an

RT protocol and ΣPr be a set of role-substitutions in Υ Pr
IS (ΣPr containing a substitution for the in-

truder agent I). The set ΣPr is called initial inter-role Ho+-freshness enforcing with respect to

some sort X if for all A ∈ Ho, for all B ∈ Ho∪ I, A 6= B, for all σ(A-role),σ
′

(B-role) ∈ ΣPr, for

all t ∈ OwnedAtomsA|X , t′ ∈ OwnedAtomsB|X , it is implied that σ(t) 6= σ
′

(t′).

Definition 4.1.4 enforces the atoms of the insider are mapped distinctively from the atoms of

other roles.

Definitions 4.1.3 and 4.1.4 referred themselves to constraints in instantiating atoms belonging

to different roles. The next definition is concerned with restraining the ways of instantiating atoms

belonging to the same role.

Definition 4.1.5 (Initial Intra-Role Ho-Freshness Enforcing Substitutions) Let Pr be an

RT protocol and ΣPr be a set of role-substitutions in Υ Pr
IS (ΣPr containing a substitution for the

intruder agent I). The set ΣPr is called initial intra-role Ho-freshness enforcing with respect to some

sort X if for all A ∈ Ho, for all σ1(A-role),σ2(A-role) ∈ ΣPr, σ1 6= σ2, for all t ∈ OwnedAtomsA|X ,

it is implied that σ1(t) 6= σ2(t).

Definition 4.1.5 expresses that a set ΣPr of role-substitutions is initial intra-role Ho-freshness

enforcing if an atom of some sort X belonging to the same A-role is mapped differently under

different A-role substitutions in ΣPr, for any A ∈ Ho.

The following concept of initial Ho+-freshness enforcing substitutions subsumes all the con-

straints underlined by Definitions 4.1.3–4.1.5.

Definition 4.1.6 (Initial Ho+-Freshness Enforcing Substitutions) Let Pr be an RT proto-

col and ΣPr be a set of role-substitutions in Υ Pr
IS (ΣPr containing a substitution for the intruder

agent I). The set ΣPr is called initial Ho+-freshness enforcing with respect to some sort X if ΣPr

is initial intra-role Ho-freshness enforcing with respect to the sort X and initial inter-role Ho+-

freshness enforcing with respect to the sort X.

To sum up, through Definitions 4.1.3–4.1.6, we introduced step by step the concept of initial

Ho+-freshness enforcing substitutions. If we use them to create the fully ground model ΥIS, then
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we diminish the differences concerning freshness between ΥIS and MCAPSL. However, working with

initial Ho+-freshness enforcing substitutions in ΥIS will have an impact on the ranges for terms

in ΥIS. In a nutshell, the ranges for terms need to be large enough to allow the ΥIS role-substitutions

to operate as initial Ho+-freshness enforcing. We will now formalise which ranges are to be used

in ΥIS if we aim to consider initial Ho+-freshness enforcing role-substitutions in ΥIS, i.e., if we are

to reduce the differences concerning freshness between ΥIS and MCAPSL.

Minimal Ranges under Initial Ho+-Freshness Enforcing Role-Substitutions in ΥIS. Let

min RX denote a range for the sort X which is large enough for initial Ho+-freshness enforcing

substitutions with respect to some sort X to operate on. We give a (unoptimised) procedure to

determine such a range min RX for ΥIS.

Procedure 4.1.3 – Build min RX, X sort
Input : — a set ΣPr of role-substitutions
Output: — the range min RX for sort X which is large enough for ΣPr to be initial Ho+-freshness enforcing

0. S1 := 0, S2 := 0;S3 := 0;
1. for each A ∈ Ho
2. for each σ(A-role) ∈ ΣPr

3. for each t ∈ OwnedAtomsA|X
4. S2 := 0
5. for each B ∈ Ho, B 6= A
6. for each σ′(B-role) ∈ ΣPr

7. for each t
′
∈ OwnedAtomsB |X

8. S3 := 0
9. for each t

′′
∈ OwnedAtomsInsider|X

10. S3.add new(1);
11. endfor;
12. S3.add new(1);
13. S2.add(|S3|);
14. endfor
15. S2.add new(1);
16. endfor
17. endfor
18. S1.add new(|S2|);
19. S1.add new(1);
20. endfor
21. endfor
22. endfor
23. min RX := S1

24. return min RX

In the for loop at lines 9–11, for each of the intruder’s atoms of sort X we add one new element

to a set S3 of values (i.e., operation S3.add new(1)). At line 12, we add another value to the resulting
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set S3. This is done in order to increase the number of possibilities in which a substitution could

map atoms over the elements of S3, i.e., in order to obfuscate if a value for an atom is indeed

drawn from S3. Such an obfuscation is enforced also when constructing the value-sets S2 and S1

(i.e., line 15 and line 19). For each B-role substitution σ
′

, for each atom of sort X belonging to

an agσ′

B agent, |S3| new elements are added to the set S2 (i.e., in the for loop starting at line 7,

inner operation S2.add new(|S3|) at line 13). For each A-role substitution σ, for each atom of sort

X of an agσ
A agent, |S2| new elements are added to S1 (i.e., in the for loop starting at line 3, inner

operation S1.add new(|S2|) at line 18). Since we count one element for each atom in the inner

for loop (i.e., line 10), ΣPr can act as intra-role freshness enforcing with respect to the sort X.

Furthermore, by the result of the outer for loop, atoms of sort X belonging to different roles and

to the intruder can be mapped under ΣPr to distinct values over the set S1. This means that ΣPr

can act as an inter-role Ho+-freshness enforcing with respect to the sort X over S1. So, by lines

23 and 24, the range min RX is large enough for ΣPr to operate as initial Ho+-freshness enforcing

with respect to the sort X. Smaller min RX can be obtained, e.g., by dismissing the operations

add new(1) when building the sets S2 and S1. This can be done without losing the obfuscation

explained, but we maintained the operations for clarity.

We call min RX obtained as above the minimum range for the sort X in Υ Pr
IS such that initial

Ho+-freshness enforcing substitutions with respect to X can operate.

Recall that Remark 3.1.9 expressed informally the constraints applied to the relation between

the set ΣPr of substitutions and the range RX for a sort X in the ΥIS model. We note here that

the set ΣPr of role-substitutions being initial Ho+-freshness enforcing with respect to some sort X

and ΣPr operating over min RX formalise the original desiderata, expressed in Remark 3.1.9.

From Procedure 4.1.3, it follows that the size of the range min RX is:

card(ΣPr(A-role)) ×

{

card(OwnedAtomsA|X) × Π
B ,=A

card(ΣPr(B-role)) ×
[

card(OwnedAtomsB|X) ×

(

card(OwnedAtomsI|X) + 1

)

+ 1

]

+ 1

}

(1),

where A ∈ Ho, B ∈ Ho, card is an abbreviation for cardinality and ΣPr(A-role), ΣPr(B-role)

respectively denote the set of A-role substitutions and B-role substitutions within ΣPr. We use

min size(RX) to denote the size of the range min RX as above.
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Summing up, we can simulate fresh generation of terms in ΥIS and thus bring our MAS model

closer to the traditional trace-based semantics for protocol executions. In order to achieve that,

in ΥIS we will consider initial Ho+-freshness enforcing substitutions with respect to a sort X.

Consequently, min RX will be the range for a sort X used in ΥIS under these circumstances.

From Protocol Instantiations in MCAPSL to Initial Ho+-Freshness Enforcing Substitu-

tions in ΥIS.

In this subsection we will see an actual method of obtaining the initial Ho+-freshness enforcing sub-

stitutions in the ΥIS model, by starting from the MCAPSL model. The procedures used to achieve

this will later be employed in an algorithm that takes the MCAPSL and produces the ΥIS formalism

corresponding to it.

Let Pr ∈ P be an RT protocol and EvPr be the set of all (T, k)-events possible in MPr
CAPSL.

Recall that, in the MPr
CAPSL model, the cardinality of EvPr is bounded by an exponential factor in

the size of the protocol Pr (for details, refer to [188], page 694 or see Chapter 2, page 42). We give

a systematic method which, given EvPr, produces the corresponding set of initial Ho+-freshness

enforcing substitutions of roles for Υ Pr
IS . The sub-routines of this method are as follows.

(1) /**@returns EvPr|ω|A*/
–for any A ∈ Ho

–select all events (ω|A,σ, j) from EvPr

The output of procedure (1) is the set of all the events pertaining to the A-role, for each A ∈ Ho.

Procedure (1) is possible simply by confronting EvPr with RulesA. Whilst unordered, the set returned

by (1) is equal to:



















(ω|A,σ1, 1), . . . , (ω|A,σ1, n), where ω|A=a1 . . . an and a1, . . . , an are actions
...

(ω|A,σp, 1), . . . , (ω|A,σp, n), where ω|A =a1 . . . an and a1, . . . , an are actions

Let ΣEvPr |ω|A be the set {σ1, . . .σp} of A-role substitutions occurring in the events EvPr of
MCAPSL. From the output of (1), by inspecting it in relation with StepsA and considering the
precedence of events in MCAPSL, we can reconstruct the set ΣEvPr |ω|A of substitutions applied in
EvPr|ω|A :

(1
′
) /**@returns ΣEvP r |ω|A*/

–from EvPr|ω|A select {σ1, . . .σp}.



4.1 From MCAPSL Standard Semantics for RTP to ΥIS Interpreted Systems 126

Among the substitutions in ΣEvPr |ω|A some (might) map A to the insider. In MCAPSL this is
stipulated simply by σj(A) = I in some action act( (ω|A,σj, l) ), for 1 ≤ l ≤ p. Therefore, by
iterating again through EvPr|ω|A , we can construct the set ΣLeg

EvPr |ω|A of substitutions that map

the principal A to a honest participant and the set ΣILeg
EvPr |ω|A of substitutions that map A to the

intruder/insider.

(1
′′
) /**@returns ΣLeg

EvP r |ω|A and ΣILeg
EvP r |ω|A*/

/* partitions and re-indexes ΣEvP r |ω|A in ΣLeg
EvP r |ω|A = {σ1, . . .σk} -substitutions that map A into legal names

and ΣILeg
EvP r |ω|A = {σk+1, . . .σp} –substitutions that map A into “illegal” names/the intruder */

–for each e = (ω|A,σ, j) ∈ EvPr|ω|A

–if σ(A) = I then ΣILeg
EvP r |ω|A := ΣILeg

EvP r |ω|A ∪ σ;

–else ΣLeg
EvP r |ω|A := ΣLeg

EvP r |ω|A ∪ σ;
–endfor

Remark 4.1.7 We can simply assume that the sets ΣLeg
EvPr |ω|A and ΣILeg

EvPr |ω|A of substitutions of

the A-role are given (i.e., algorithm A1 in [188], page 695, outputs a maximal leaky/non-leaky

run of MCAPSL; it can also give the set of A-role substitutions used in constructing this run). For

clarity of intuition, we opted for using the procedures above to sketch the extraction of the set of

substitutions of the A-role from a set EvPr of events in MPr
CAPSL.

Because we extracted the set of substitutions for the A-role in MPr
CAPSL from the entire event-space

in MPr
CAPSL, some of these substitutions might be applied only to a proper subset of the atoms in the

role of A (i.e., an extracted substitution could potentially encode an incomplete session executed

by the A-role). In order to initialise a MAS model corresponding to ΥIS, we need to consider the

application of role-substitutions over the entire OwnedAtomsA. Also, the substitutions extracted

could map some of atoms in LearnedAtomsA into values. In order to initialise a MAS model corre-

sponding to ΥIS, we need to consider the application of role-substitutions that do not map atoms in

LearnedAtomsA to concrete values (but, instead, they map atoms in LearnedAtomsA to ⊥). The

procedures below restrict each substitution in σ ∈ ΣEvPr |ω|A to not operate on LearnedAtomsA.

Also, when a substitution σ did not map t ∈ OwnedAtomsA into a value throughout the events EvPr

of MCAPSL, the following procedures extend σ to map atom t ∈ OwnedAtomsA into a random value

over the correct range.

(2) /**@restrict ΣLeg
EvP |ω|A to OwnedAtomsA */

–for each σj ∈ ΣLeg
EvP |ω|A = {σ1, . . . ,σk}



4.1 From MCAPSL Standard Semantics for RTP to ΥIS Interpreted Systems 127

for t ∈ OwnedAtomsA

if [v/t] ∈ σ
σ+

j [v/t];
registerA(v, sort(t));

σ+
j [⊥/t

′
], for t′ ∈ LearnedAtomsA

–endfor
–endfor

(2
′
) /**@restrict ΣILeg

EvP |ω|A to OwnedAtomsA */

–for each σj ∈ ΣILeg
EvP |ω|A = {σk+1, . . . ,σp}

σ+
j [σj(t)/t,⊥/t

′
], for t ∈ OwnedAtomsA, t′ ∈ LearnedAtomsA

v′ := new(unregistered∪A∈Ho,sort(t))();
registerA(v′, sort(t));

–endfor

(2
′′
) /**@extend ΣLeg

EvP |ω|A to all of OwnedAtomsA */

–for each σj ∈ ΣLeg
EvP |ω|A = {σ1, . . . ,σk}

–for t ∈ OwnedAtomsA

if [v/t] 6∈ σ
v′ := new(unregistered∪A∈Ho,sort(t))();
registerA(v′, sort(t));
σ+

j [v′/t]
–endfor

–endfor

If we compute the union of ΣILeg
EvP |ω|A for all A ∈ Ho, we will obtain the substitution to be

applied in ΥIS to the intruder as an insider.

Let σ be a role-substitution applied uniformly to an A-role in an arbitrary run of MCAPSL,

extracted from EvPr as above. Let σ+ be obtained through procedures (2), (2′) and (2′′). By

“registering” v as a possible value for the term t of sort X (i.e., registerA(v, sort(t))), the con-

struction of σ+ also contributes to creating min RX (as per procedure 4.1). The call to v′ :=

new(unregistered∪A∈Ho,sort(t)) in procedure (2′′) denotes that if no value was defined for t through σ

(i.e., σ was a partial role-substitution), a yet unused value v′ is added to min RX and [v′/t] is added

to σ+. In (2′) a new value is added to min RX for each value that the intruder has used in the

events EvPr.

Then, through procedures (1), (1
′

), (1
′′

), (2), (2
′

), (2
′′

) we create initial Ho+-freshness enforcing

substitutions in ΥIS starting from the set of events/substitutions in MCAPSL. Through procedures

(2), (2′), (2′′) emulating procedure 4.1, these initial Ho+-freshness enforcing substitutions also give

min RX for sort X in S. For each A ∈ Ho, these initial Ho+-freshness enforcing substitutions
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leave atoms t in LearnedAtomsA unmapped (i.e., they iterate freely over Rt). This implies that any

results of compatibility over substitutions, states and events/actions between MCAPSL and ΥIS will

be true up to renaming of values for atoms in LearnedAtomsA over their respective ranges, for each

A ∈ Ho. Given the construction of σ+ out of σ, the initial Ho+-freshness enforcing substitutions

obtained for ΥIS preserve the inherent properties of suitable substitutions in MCAPSL.

By introducing the notion of extending substitutions, Definition 4.1.8 will now summarise the

entire concept of obtaining such “appropriate” role-substitutions in ΥIS from the instantiations used

in MCAPSL.

Definition 4.1.8 (Extended Substitutions in ΥIS) For A ∈ Ho, let σ be a role-substitution

applied uniformly to an A-role in an arbitrary run of MCAPSL. The substitution σ+ obtained

from σ via the procedures (1), (1′), (1′′) (2), (2′), (2
′′

) is the substitution extending σ in ΥIS.

We write σ+ ∼= σ.

To conclude, in Definitions 4.1.3–4.1.6 we have expressed how role-substitutions in ΥIS should

be constrained such that they are closer to the instantiations used in MCAPSL. In Procedure 4.1

we showed which ranges for terms are to be considered in ΥIS under these circumstances. Through

procedures (1), (1′), (1′′) (2), (2′), (2
′′

) we gave an algorithmic method to obtain these constrained

ΥIS role-substitutions starting from the MCAPSL model. Thus, it is possible to simulate honest

fresh generation of terms and preserve properties of suitable substitutions as per MCAPSL into ΥIS,

i.e., to bring our ΥIS formalisation closer to the MCAPSL model.

4.2 MCAPSL to ΥIS: A Translation Schema

In this section we will formally correlate MCAPSL, i.e., the standard trace-based model for authen-

tication protocols, with ΥIS, our MAS-based formalism for RT authentication protocols.

4.2.1 MCAPSL to ΥIS: A Model-Translation Algorithm

In this subsection we give a translation algorithm tr that takes a trace-based model MPr
CAPSL and

produces Υ Pr
IS , our IS-based formalism for protocol executions, where Pr is an RT protocol. In
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doing so, we will use the procedures previously given in Section 4.1. The output of the algorithm

is given in an ISPL2-like syntax.

We begin by briefly explaining the ideas behind the algorithm tr. Given the set EvPr of events

in MPr
CAPSL, the algorithm tr starts by creating all the initial Ho+-freshness enforcing substitutions

and the corresponding ranges for terms in Υ Pr
IS . Then, it lays the foundations of Υ Pr

IS by drawing

all the fine distinctions between terms as per Chapter 3 (e.g., OwnedAtomsA, LearnedAtomsA, for

an A-role). It uses these to construct the local states and initial local states of each agent agσ+

A ,

where σ is a substitution in EvPr and σ ∼= σ+. Then, for each event in EvPr, it creates the

corresponding ground actions in ΥIS (i.e., actions were each parameter/variable is instantiated to a

concrete value). Local protocol functions and local evolution functions, as well as the Environment

agent are added accordingly and following their original description in Chapter 3. Full explanations

of the algorithm tr are given immediately after the presentation of its pseudocode.

Algorithm tr

–let S be a sorted signature, X a sort

–let Pr be an RTP, formalised as Pr = (S, C,ω) and let MPr
CAPSL be its CAPSL-model

Input: –EvPr the set of all (T, k)-events possible in MPr
CAPSL

Output: – the IS-based formalism Υ Pr
IS (under role-substitutions extending those in MPr

CAPSL)

Body:
1). /** @returns:
the due data–structures, e.g., for each A ∈ Ho, AtomsA, GeneratedA, OwnedAtomsA, LearnedAtomsA,
PublicAtoms, A-store, etc. */

extendSignatureToΥIS(Pr);
2). /** @returns:
the initial-Ho+ freshness enforcing substitutions, freshness-permissive ranges for each atomic term t ∈ T0 (e.g.,

for each X sort, returns RX , for each t ∈ AtomsA, for each σ ∈ ΣLeg
Pr |

ω|A
, returns Rσ+

t ), ordered n-tuples for

send actions (e.g., for each m ∈ SentMsgA, returns generalised Cartesian product Rσ+

m ) */

Σ+
Pr :=createExtendedSubstitutions(Pr, EvPr); //proc. (1)–(2′′)

(σ,σ+) ∈ SubstMap ⊆ (ΣPr,Σ
+
Pr)

createRanges(Pr,Σ+
Pr); //procedure for building min RX

3).
for each A ∈ Ho

for each σ ∈ ΣLeg
Pr |

ω|A

/** @returns:

2See Chapter 2, page 28, for details on ISPL (Interpreted Systems Programming Language).
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mapAg(agA, 〈σ+, A〉), mapSubst(A, map().put(〈σ+, A〉)), agRole(A, vector〈Agent〉)
*/
agA :=denominate(σ, A);
Ag := Ag ∪ {agA};

endfor
endfor
4).
find σ ∈ ΣP , σ for I

Env :=denominate(σ, I);
Ag := Ag ∪ {Env};

endfind
5). /* initial views*/
for each A ∈ Ho

for each σ ∈ ΣLeg
Pr |

ω|A

ag := mapSubst.get(A).get(σ+)
createInitialViews(ag, views0)

views0 := views0 ∪ {view0
ag}

//accurately, views0.put(ag, view0
ag);

endfor
endfor
6)./*local actions of agents of role A, any A ∈ Ho*/
for each A ∈ Ho

for each σ ∈ ΣLeg
Pr |

ω|A

ag := mapSubst.get(A).get(σ+)
L actag.create(); //or accurately, Act.put(ag, vector());
for each (a ∈ ω|A)

if (a = A!B : (M)t, B ∈ Ho)
//Rag

t calculated at step 2)., in createRanges(Pr,Σ=
Pr)

for all x ∈ Rag
t (6.1)

act := create(send, t, x);
L actag := L actag ∪ {act};
//accurately, Act.get(ag).add(act);

endfor
endif
else if (a = A?B : t, B ∈ Ho)

if (act(“receive′′) 6∈ L actagA)
act := create(receive);
L actag := L actag ∪ {act};
//accurately, Act.get(ag).add(act);
continue;

endif
endif

endfor
act1 := create(wait); act2 := create(empty);
L actag := L actag ∪ {act1, act2};
//accurately, Act.get(ag).add(act1); Act.get(ag).add(act1)
endfor

endfor
7)./*local actions of agent Environment, hence the intruder*/
/* sending to honest agents*/
for each A ∈ Ho
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for each σ ∈ ΣLeg
Pr |

ω|A

ag := mapSubst.get(A).get(σ+)
for each (a ∈ ω|A)

if (a = A?B : t, B ∈ Ho)
for x ∈ Rt (7.1)

act :=create(transmit, ag, t, x);
L actEnv := L actEnv ∪ {act};
//accurately, Act.get(Env).add(act);

endfor
endif

endfor
endfor

endfor
/* possibly analysing any composite*/
for each t ∈ Composites

for x ∈ Rt

act :=create(analz, t, x);
L actEnv := L actEnv ∪ {act};
//accurately, Act.get(Env).add(act);

endfor
endfor
/* possibly forging any message*/
for each t ∈Msg

for x ∈ Rt

act :=create(forge, t, x);
L actEnv := L actEnv ∪ {act};
//accurately, Act.get(Env).add(act);

endfor
endfor
/* possibly intercepting from any agent*/
for each ag ∈ Ag \ Env

act := create(intercept from, ag);
L actEnv := L actEnv ∪ {act};
//accurately, Act.get(Env).add(act);

endfor
/* the empty action*/
act :=create(empty);
L actEnv := L actEnv ∪ {act};
//accurately, Act.get(Env).add(act);
8). /*local protocol of an agent of role A, any A ∈ Ho*/
for each A ∈ Ho

for each σ ∈ ΣLeg
Pr |

ω|A

ag := mapSubst.get(A).get(σ+)
Pag := Pag.create();
for each (a ∈ ω|A)

find r ∈ Rules r ∼> a;
n := step(r); (8.0) //hence, event (ω|A,σ, n) in MCAPSL

if (a = A!B : (M)t, B ∈ Ho)
t1 . . . tn := OSub(t);
for x ∈ Rag

t

act := L actag.get(send(t, x)); (8.1)
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x1 . . . xn := OSub(x); (8.2)
Pag := Pag.add([step = n ∧ t1 = x1 ∧ . . . ∧ tn = xn] : act) (8.3);

endfor
endif
else if (a = A?B : t, B ∈ Ho)

act1 := L actag.get(receive) (8.4);
act2 := L actag.get(wait) (8.5);
Pag := Pag.add([step = n] : act1) (8.6);
Pag := Pag.add([step = n] : act2) (8.7);

endif
endfor
act := L actag.get(“empty′′) (8.8);
Pag := Pag.add([step = last(StepsA) + 1] : act) (8.9);

endfor
endfor
9). /*local protocol of the Environment agent*/
Pag := Pag.create([λ] : L actEnv);
10). /*local evolution of an agent of role A, any A ∈ Ho*/
for each A ∈ Ho

for each σ ∈ ΣLeg
Pr |

ω|A

ag := mapSubst.get(A).get(σ+)
Eag := Eag.create()
for each (a ∈ ω|A)

find r ∈ Rules r ∼> a;
n:=step(r); //hence, event (ω|A,σ, n) in MCAPSL

if (a = A!B : (M)t, B ∈ Ho)
t1 . . . tn := OSub(t);
for x ∈ Rag

t

x1 . . . xn := OSub(x) (10.0);
act1 := L actag.get(send(t, x)) (10.1);
act2 := L actEnv.get(intercept from(ag)) (10.2);
preconds := list();
preconds := preconds.add((ag.Action = act1)) (10.3);
preconds := preconds.add((Env.Action = act2)) (10.4);
preconds := preconds.add((ag.step = n)) (10.5);
preconds := preconds.add((t1 = x1 ∧ . . . ∧ tn = xn)) (10.6);
postconds := list();
postconds := postconds.add((ag.step = next(StepsA, n))) (10.7);
Eag := Eag.add(“if 〈preconds〉 then 〈postconds〉 ”);

endfor
endif
else if (a = A?B : t, B ∈ Ho)

t1 . . . tn := OSub(t);
/* for set */
// I ! {1, . . . n}
TI := (LearnedAtomsA \ n–LearnedAtomsA) ∩OSub(t); (10.8)
/* for out match and decryptable */
TJ := n–LearnedAtomsA ∩OSub(t); //J ! {1, . . . n} (10.9)
/* for in match */
D :: list〈Pairs〉.create(); D := duplicates(OSub(t)); (10.10)
for x ∈ Rt
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x1 . . . xn := OSub(x);
act1 := L actag.get(receive);
act2 := L actEnv.get(transmit(ag, t, x));
preconds := list();
preconds := preconds.add((ag.Action = act1)) (10.11);
preconds := preconds.add((Env.Action = act2)) (10.12);
preconds := preconds.add((ag.step = n)) (10.13);
for each tk ∈ TJ

preconds := preconds.add((tk = xk)) (10.14);
endfor
for each (k, k′) ∈ D

preconds := preconds.add((xk = x′
k)) (10.15);

endfor
postconds := list();
for each tk ∈ TI

postconds := postconds.add((tk := xk)) (10.16);
endfor
postconds := postconds.add((ag.step = next(StepsA, n))) (10.17);
Eag := Eag.add(“if 〈preconds〉 then 〈postconds〉”);

endfor
endif

endfor
endfor

endfor
/*local evolution of the Environment agent */
EEnv := EEnv.create();
11). // the intruder intercepting messages
for each A ∈ Ho

for each σ ∈ ΣLeg
Pr |

ω|A

ag := mapSubst.get(A).get(σ+)
for each (a ∈ ω|A)

if (a = A!B : (M)t, B ∈ Ho)
t1 . . . tn := OSub(t);
for x ∈ Rag

t

x1 . . . xn := OSub(x);
act1 := L actag.get(send(t, x));
act2 := L actEnv.get(intercept from(ag));
preconds := list();
preconds := preconds.add((ag.Action = act1));
preconds := preconds.add((Env.Action = act2));
postconds := list();
p1:=“Env.msg log := Env.msg log ∪ {t, ag, x}” (11.1);
postconds := postconds.add(p1) (11.2);
for k = 1, n;

p2:=“Env.at log := Env.at log ∪ {tk, t, ag, xk}” (11.3);
postconds := postconds.add(p2) (11.4);

endfor;
p3:=“Env.analz log := Env.analz log ∪ {t, x}” (11.5);
postconds := postconds.add(p3) (11.6);
p4:=“do analz := true;” (11.7);
postconds := postconds.add(p4) (11.8);
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Eag := Eag.add(“if 〈preconds〉 then 〈postconds〉 ”);
endfor;

endfor;
endfor;

12). //analysis and something new analysed
for each t′ ∈ Composites

for each x′ ∈ Rt

i := last(t′);
//decryptable composite
p1:=“((t′i, x

′
i) ∈ values log) = true ∧ (do analz = true);” (12.1)

preconditions.add(p1); (12.2)
//t

′′
encrypted within t

′

for t
′′
∈ ESub(t

′
) (f1)

//t
′′

not “seen” before by the Intr.
p2:=“(t

′′
, x

′′
) 6∈ analz log” (12.3)

preconditions.add(p2); (12.4)
//sth. new emerged from analysing t

′

p3:=“flag analz[count1] := true;” (12.5)
postconditions.add(p3); (12.6)
//add the “novelty” to be later analysed
p4:=“analz log := analz log ∪ (t

′′
, x

′′
);” (12.7)

postconditions.add(p4) (12.8)
Eag := Eag.add(“if 〈preconds〉 then 〈postconditions〉”)
// t

′′′
is an atom in plain in t

′

for t
′′′
∈ (OSub(t

′
) \ OSub(t

′′
)) (f2)

//t
′′′

not “seen” so far
p2 :=“ (t

′′′
, x

′′′
) 6∈ values log” (12.3′)

preconditions.add(p2); (12.4′)
//something new emerged
p3:=“flag analz[count1] := true;” (12.5′)
postconditions.add(p3); (12.6; )
//add the “novelty”
p4:=“values log := values log ∪ (t

′′′
, x

′′′
);” (12.7′)

postconditions.add(p4) (12.8′)
endfor

endfor
//count the composite t

′
as analysed

p5:=“count1 + +;” (12.9)
postconditions.add(p5) (12.10)

endfor
endfor

13). //analysis and nothing new emerging (anymore)
for each t′ ∈ Composites

for each x′ ∈ Rt

i := last(t′);
//t′ decryptable
p1:=“((t′i, x

′
i) ∈ values log) = true ∧ (do analz = true);” (13.1)

preconditions.add(p1); (13.2)
//t

′′
encrypted with t′

for t
′′
∈ ESub(t

′
)

//t
′′′

plain atom in t
′
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for t
′′′
∈ OSub(t

′
) \ OSub(t

′′
)

//nothing new emerges
p2:=“((t

′′
, x

′′
) ∈ analz log ∧ (t

′′′
, x

′′′
) ∈ values log)” (13.3)

preconditions.add(p2);
p3:=“flag analz[count1] := false;” (13.4)
postconditions.add(p3);
endfor

endfor
//count the attempt of analysis
p5:=“count1 + +;” (13.5)
postconditions.add(p5);
Eag := Eag.add(“if 〈preconds〉 then 〈postconditions〉”)

endfor
endfor

14). //analysis not possible
for each t′ ∈ Composites

for each x′ ∈ Rt

i = last(t′);
//t′ not decryptable

p1:=“((t′i, x
′
i) 6∈ values log) = true ∧ (do analz = true);” (14.1)

preconditions.add(p1); (14.2)
//record the impossibility to analyse t′

p3:=“flag analz[count1] := false;” (14.3)
postconditions.add(p3);
// count the attempt to analyse t′

p5:=“count1 + +;” (14.4)
postconditions.add(p5);
Eag := Eag.add(“if 〈preconds〉 then 〈postconditions〉”)
endfor

endfor
endfor

15). //analz-closure not acquired yet
p1:=“(count1 = 'maxSubstComposites∧
(flag analz[0] = true ∨ . . . ∨ flag analz['maxSubstComposites] = true); )”
preconditions.add(p1);
p2:=“(count1 := 0);”
postconditions.add(p2);
Eag := Eag.add(“if 〈preconds〉 then 〈postconditions〉”)

16). //analz–closure acquired
p1:=“(count1 = 'maxSubstComposites∧
(flag analz[0] = false ∧ . . . ∧ flag analz['maxSubstComposites] = false); )”
preconditions.add(p1);
p2:=“(stop analz := true);”
postconditions.add(p2);
Eag := Eag.add(“if 〈preconds〉 then 〈postconditions〉”)

17). //start applying synth over the analysis
p1:=“stop analz = true;”
preconditions.add(p1);
p2:=“do analz := false; do forge := true;”
postconditions.add(p2);
Eag := Eag.add(“if 〈preconds〉 then 〈postconds〉”);
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18). //synthesis
for t ∈Msg

//{t1 . . . tn} := Sub(t);
for x ∈ Rt (18.1)

x1 . . . xn := Sub(x);
//succesful “forge”
act := L actEnv.get(forge(t, x));
preconds := list();
p1:=“(do forge = true) ∧ (count2 < 'maxSubstMsg);” (18.2)
preconds.add(p1);
preconds.add(Env.Action = act);
preconds.add((x1 ∈ Env.POOL ∧ . . . ∧ xn ∈ Env.POOL)); (18.3)
postconds := list();
p:=“synth log := synth log ∪ {(t, x)}” (18.4);
p

′
:=“count2 + +” (18.5);

postconds.add(p), postconds.add(p
′
)

Eag := Eag.add(“if 〈preconds〉 then 〈postconds〉 ”);
//unsuccesful “forge”
act := L actEnv.get(forge(t, x));
preconds := list();
p1:=“(do forge = true) ∧ (count2 < 'maxSubstMsg)” (18.2′)
preconds.add(p1);
preconds.add(Env.Action = act);
preconds.add((x1 6∈ Env.POOL ∨ . . . ∨ xn 6∈ Env.POOL)); (18.3′)
postconds := list();
p

′
:= “count2 + +”, postconds.add(p

′
) (18.5′);

Eag := Eag.add(“if 〈preconds〉 then 〈postconds〉”);
endfor

endfor
19). //synth closure

preconds := list();
p1:=“(count2 = 'maxSubstMsg)” (19.1)
preconds.add(p1);
postconds := list();
p2:=“(do forge := false)” (19.2)
postconds.add(p2);
Eag := Eag.add(“if 〈preconds〉 then 〈postconds〉”);

endif
else if a = A?B : t
//t1 . . . tn := OSub(t);

for x ∈ Rt

x1 . . . xn := OSub(x);
act1 := L actEnv.get(transmit(ag, t, x));
act2 := L actag.get(receive);
preconds := list();
preconds.add(Env.Action = act1);
preconds.add(ag.Action = act2);
preconds.add((∗, t, x) ∈ Env.msg log ∨ (t, x) ∈ Env.synth log));
postconds := list();
Eag := Eag.add(“if 〈preconds〉 then 〈postconds〉′′);

endfor endif
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Comments were inserted in the description of the algorithm tr to ease the understanding. Also,

the design of algorithm tr makes it transparent that the output of tr respects the semantics in

Chapter 3. Nonetheless, in the following, we briefly explain the algorithm tr.

Explanations on the Algorithm tr. Entry 1 of the algorithm adds designated symbols to the

signature of MCAPSL in order to form the signature S of ΥIS; sets of terms on S, upon Chapter 3, are

also constructed at this step. Following procedures (1)–(2′′) shown in Section 4.1, entry 2 uniformly

extends the set ΣPr of role-substitutions encountered in EvPr
MCAPSL

to the set Σ+
Pr of initial Ho+-

freshness enforcing role-substitutions. A map SubstMap is built: for each σ a role-substitution

in MCAPSL, the corresponding σ+ is made available (i.e., σ ∼= σ+). As in procedures (1)–(2′′),

the algorithm tr constructs ranges which are large enough for the set Σ+
Pr of initial Ho+-freshness

enforcing role-substitutions to operate on. For (non-atomic) terms t, the ranges Rσ+

t restricted

under the newly built role-substitutions are also created (i.e., as per Definition 3.3.13, for t ∈ T ,

the range Rσ+

t is the generalised Cartesian product of the restricted ranges of its atoms). Entries 3, 4

and 5 denominate agents and create the initial states, according to the set Σ+
Pr of role-substitutions.

For each possible event underpinning an A-role under instantiation σ in MCAPSL, entry 6 cre-

ates a corresponding local action of agσ+

A in ΥIS. Additionally, as per Chapter 3, actions empty

and wait are added to the set of possible local actions of ΥIS. Entry 7 creates the local ac-

tions of the Environment agent with respect to the given set of substitutions Σ+
Pr (e.g., as per

Chapter 3, analz(t′, x′) for each t′ ∈ Composites, x′ ∈ Rt′ ; forge(t, x), for each t ∈ Msg, x ∈ Rt;

intercept from(ag), for each σ+(A-role) >→ ag, σ ∼= σ+, for each σ ∈ ΣPr extracted from EvPr
MCAPSL

,

for each A ∈ Ho). Entries 8 and 9 create the local protocol of each agσ+

A and of the Environment.

For instance, if in MCAPSL an A-role under σ sends t at step n, the corresponding local action is

made possible at a local state l@n of agσ+

A if constructI(t, lagσ+
A

@n, view0
agσ+

A

) (i.e., lines (8.0)–(8.3)).

As per Chapter 3, entry 9 makes any of the actions of the Environment possible at any of its local

states.

For all A ∈ Ho, for all σ in MCAPSL, the A-role instantiated under σ in MCAPSL and σ+ ∼= σ,

entry 10 outputs the evolution function of corresponding agents agσ+

A in ΥIS. The output for

send events is constructed similarly to the case of the local protocol (i.e., lines (10.5) and (10.6)).



4.2 MCAPSL to ΥIS: A Translation Schema 138

Entries (10.1)–(10.4) additionally enforce, as per Chapter 3, that the action send(t, x) of agent agσ+

A

triggers only in synchronisation with the action intercept from(agσ+

A ) on the Environment’s side.

Algorithm tr also adds the evolution post-condition for consequently incrementing the value of the

step-variable of agσ+

A (i.e., line (10.7)).

We explain the cases for receiving a message t. By (10.9), the set TJ is the set of elements

that appear in t and that agσ+

A has already seen in her execution, i.e., as per Chapter 3, TJ is

the set n-LearnedAtomsA, for the current step n. By (10.8), the atoms in the set TI are atoms

appearing in t and not learned by agσ+

A previous to the current step n. Then, the precondition

in (10.14) expresses “if ( (out match(lagσ+
A

@n, t) = true) ∧ (decryptable(lagσ+
A

@n, t) = true) )”,

aligned with Chapter 3. The ΥIS semantics for the local evolution function described in Chapter 3

is enforced in the output of algorithm tr: the agent accepts the messages if the tests on decryption

and matching succeed. If so, the output in line (10.17) makes her local step be incremented and

the output in line (10.16) shows the assignment of the atoms in TI to the values received (i.e., line

(10.16) implements setI(lagσ+
A

@n, t) presented in Chapter 3).

The synchronisation ag.send(t, x) and Env.intercept from(ag) is the output of tr in entry 11.

It further enforces that the Environment records tuples message-sender-value (i.e., (11.1) – (11.2),

(11.3) –(11.4)), to store the message [x/t] (i.e., (11.5)) and to trigger the analysis (i.e., variable

do analz is set to true in (11.5)).

The output achieved through lines 12–16 depicts the closure of an arbitrary, reached local state

of the Environment under analysis operations. Entry 12 depicts the cases where new terms emerge

through Dolev-Yao analysis. To illustrate, assume that composite t
′

= {{t1, t2}k2 , t3}k1 is under

analysis. Then, t
′′

= {t1, t2}k2 (i.e., an encrypted part within t
′

) is an iterator of the for loop

annotated (f1). In turn, t
′′′

= t3 (i.e., an un-encrypted, “in-plain” atom within {t1, t2}k2 , t3) is

an iterator of the for loop annotated (f2). If t
′′

has not been “seen” already (i.e., (12.3)), then

the current iteration is a successful analysis trial (i.e., (12.5)). Also, if t
′′′

is newly acquired via

the current decryption, then the analysis trial counts as successful (i.e., (12.5′)). The value for

composite t
′′

is added to the analz log (i.e., (12.7)), whereas the value for atom t
′′′

is added to the

value log. Synonymously, the denotation of analzI(values log, analz log, t′) is expressed through

this part of tr’s output. Entries (13.3) and (13.4) output the evolution lines for the cases where the
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analysis is unsuccessful, i.e., no new terms emerge. Entry 14 produces the case where the analysis

fails due to the lack of decryption keys for t
′

. Entries 15 and 16 generate the test whether the

actual closure under analysis has been produced. If the closure is attained (i.e., condition p1 in

entry 16 denoting that in a full set of analz-type iteration no new data has been produced), then

the analysis is ceased (i.e., stop analz := true). Otherwise (i.e., condition p1 in entry 15 denoting

that at least one new term has been produced in the last round of analysis), a new analz cycle starts

(i.e., all the evolutions lines generated by 14–16 will be triggered again). We show in Appendix A,

Section A.1.II that indeed repetitive applications of analzI as considered in ΥIS and produced

by algorithm tr reach a fixpoint, as described in the above. In this algorithm for optimisation

purposes the variables already analz (used in Chapter 3) have been dismissed from the local state

of the Environment; their functionalities have been embedded however in the entries 13–16 by using

explicit ISPL-like syntax.

According to entry 17, if the analysis cycle is stopped (hence, stop analz is set to true) then

the synthesis actions are enabled (i.e., post-condition p2 in entry 17, where do synth is set to true).

When an analysis cycle finishes, analz log and values log give part of the object POOL in the

local state of the Environment, as described in Chapter 3. Entry 18 in the algorithm tr produces

the part of the Environment’s evolution responsible for synthI(t, POOL).

For each receive-event of a step n in the σ-instantiated A-role in MCAPSL, the agent agσ+

A in ΥIS,

at step n, receives [x/t] from the intruder (i.e., entry 19). For the intruder to transmit [x/t] it is

either that he has simply intercepted it or he has forged it (i.e., [x/t] ∈ synth log).

For a procedure to be an algorithm, D. Knuth identifies in [113] that it needs to be finite,

definite, effective and with some output. Then, following the meaning of these characterisations

in [113], we conclude that the procedure tr is indeed an algorithm, as it is:

• finite (given the finiteness of number of roles, role-instantiations, events);

• definite (given that each part has been defined/explained in the previous sections);

• effective (given that all steps are finite);

• with some output (given that the output can be clearly observed to be a model Υ Pr
IS upon the

descriptions in Chapter 3).
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By inspection of the algorithm tr, we conclude that its worst-case complexity is in fact the worst-

case complexity of generating the evolution function. In this generation, the entire range of a

message t is iterated over, within an outer loop over all possible instantiations for an arbitrary

A-role. Hence, both these loops have a complexity order which is exponential in the size of the

protocol, i.e., O(22poly(size(Pr))
). The construction of initial Ho+-freshness enforcing role-substitutions

in ΥIS, given at the beginning of the algorithm tr, is also exponential in the size of the protocol.

Thus, the worst-case complexity of the algorithm tr is that of a double-exponential factor in the

size of the protocol Pr.

4.2.2 A Correspondence Between Goal-Specification in MCAPSL and ΥIS

In Section 4.2.1 we have presented an algorithm that given MPr
CAPSL produces the interpreted

system Υ Pr
IS . To complete this high-level correlation between the two models, in this section we

relate the expressions of security goals in each of the two formalisms.

To begin with, we reiterate that the meaning of CAPSL goals is presented only informally in [64,

65, 73]. Therefore, we will now explicitly relate the CAPSL goals with their formulation in MCAPSL

by giving an expression-relation ρCAPSL, similar to the relation ρIS in Chapter 3. This add-on to the

MCAPSL model is purely notational and we introduce it for two reasons: 1) clarity of the relations

established between the expression of goals in ΥIS and in MCAPSL, respectively; 2) conciseness of

proofs to follow in this chapter.

Specifications of CAPSL goals in MCAPSL. Let G be the set of CAPSL goals and let the set

G ′ ! G designate the atomic CAPSL goals. The expression-relation ρCAPSL is defined on G ′ in the

following.

Definition 4.2.1 (Initial Secrecy in MCAPSL) Let D be a CAPSL description for an RT protocol

Pr with HOLDS: A t and the atomic goal g = SECRET t amongst the CAPSL assertions. Let s0 ∈ S0,

s ∈ S and ξ be an arbitrary run in MPr
CAPSL such that s0[ξ〉s. The formulation of the goal g in

MPr
CAPSL is given by ρCAPSL(g) = t ∈ analz(sA) \ analz(sI), for t ∈ SecretA, A ∈ Ho (where t, A

are terms on the signature S respectively corresponding to the CAPSL variables t and A present in

the assertions of the description D).
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Definition 4.2.1 expresses that if assertions HOLDS: A t and SECRET t both appear in the CAPSL

protocol description, then the MCAPSL formulation of one security requirement of the protocol is

initial secrecy, i.e., t ∈ analz(sA) \ analz(sI), for t ∈ SecretA and A ∈ Ho.

Definition 4.2.2 (Secrecy in MCAPSL) Let D be a CAPSL description for an RT protocol Pr with

the atomic goal g = SECRET t and with no CAPSL assertion of type HOLDS: A t. Let s0 ∈ S0, s ∈ S

and ξ be an arbitrary run in MPr
CAPSL such that s0[ξ〉s. The formulation of the goal g in MPr

CAPSL is

given by ρCAPSL(g) = t ∈ analz(sA) \ analz(sI), for t ∈ T0, A ∈ Ho (where t, A are terms on the

signature S respectively corresponding to the CAPSL variables t and A present in the assertions of

the description D).

Definition 4.2.2 expresses that if assertion SECRET t appears in the CAPSL protocol description,

whereas the assertion HOLDS: A t does not appear in the same description, then the MCAPSL

formulation of one security requirement of the protocol is secrecy, i.e., t ∈ analz(sA) \ analz(sI),

for t ∈ T0 and A ∈ Ho.

In [188] there is no explicit expression for agreement. However, in MSR and [188], the notion

of agreement is subsumed to expressions of reachability, similar to those of secrecy. We explicitly

lift the expression-relation ρCAPSL that we introduced above, to support agreement formulations

as informally denoted in MSR. Again, we operate this purely notational add-on to MCAPSL only

for ease of relating the MCAPSL model with the ΥIS model.

Definition 4.2.3 (Agreement on Initials in MCAPSL) Let D be a CAPSL description for an

RT protocol Pr with the CAPSL assertion HOLDS A:t and the atomic goal g=PRECEDES A,B:t

or g=AGREE A,B:t. Let s0 ∈ S0, s ∈ S, ξ be a maximal run with respect to A in MPr
CAPSL such

that s0[ξ〉s (i.e., A has ended her role at s). The formulation of the goal g in MPr
CAPSL is given by

ρCAPSL(g) = t ∈ analz(sA)∩analz(sB)\analz(sI), for t ∈ SecretA, for A, B ∈ Ho (where t, A, B

are terms on the signature S respectively corresponding to the CAPSL variables t, A and B present

in the assertions of the description D).

Definition 4.2.4 (Agreement in MCAPSL) Let D be a CAPSL description for an RT protocol Pr

with the atomic goal g = PRECEDES A,B:t or g = AGREE A,B:t and with no CAPSL assertion of
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type HOLDS A:t. Let s0 ∈ S0, s ∈ S, ξ be a maximal run with respect to A in MPr
CAPSL such that

s0[ξ〉s (i.e., A has ended her role at s). The formulation of the goal g in MPr
CAPSL is given by

ρCAPSL(g) = t ∈ analz(sA) ∩ analz(sB) \ analz(sI), for t ∈ T0, for A, B ∈ Ho (where t, A, B are

terms on the signature S respectively corresponding to the CAPSL variables t, A and B present in

the assertions of the description D).

4.2.2.1 Security Specifications in MCAPSL versus ΥIS

We can now correlate the expression of CAPSL goals in MCAPSL and the expressions of CAPSL goals

in ΥIS, i.e., relate ρCAPSL and ρIS. Such an association can only refer to atomic CAPSL goals

(hence, the domain of ρCAPSL). Furthermore, it can only regard specifications of initial secrecy and

agreement on initials (hence, in ΥIS the generation of atoms is encompassed into a fully instantiated

initial setup). Such a correspondence between the formulations of goals in the two models is needed

in order to express more easily the preservation of goal satisfaction/refutation from one model to

another.

Definition 4.2.5 (Correspondence on Initial Secrecy) Let D be a CAPSL description for an

RT protocol Pr with the atomic goal g = SECRET t and the CAPSL assertion HOLDS: A t. Let

ρCAPSL(g) and ρIS(g) give the formulations of g in MPr
CAPSL and Υ Pr

IS respectively. We say that

ρCAPSL(g) and ρIS(g) are in correspondence and we write ρCAPSL(g) A ρIS(g).

Definition 4.2.6 (Correspondence on Agreement on Initials) Let D be a CAPSL description

for an RT protocol Pr with the CAPSL assertion HOLDS A:t and the atomic goal g = AGREE A,B:t.

Let ρCAPSL(g) and ρIS(g) give the formulations of g in MPr
CAPSL and Υ Pr

IS respectively. We say that

ρCAPSL(g) and ρIS(g) are in correspondence and we write ρCAPSL(g) A ρIS(g).

Definitions 4.2.5 and 4.2.6 simply express that formulations of initial secrecy and agreement on

initial in the two models are correlated, i.e., their satisfaction/refutation in the two models is to be

investigated.

For an atomic goal g such that ρCAPSL(g) A ρIS(g), we are going to show the following: when al-

gorithm tr is used to build Υ Pr
IS from MPr

CAPSL, the traditional semantics MPr
CAPSL validates ρCAPSL(g)

if and only if the unwinding of Υ Pr
IS validates (all the formulations of) ρIS(g).
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In Section 4.2.1 we have given the tr algorithm that produces the Υ Pr
IS formalisation starting from

an MPr
CAPSL model of a RT protocol Pr. Together with the A-relation between the expression of

security goals in the two models, Section 4.2 gives a translation schema from the MCAPSL formalism

to the ΥIS formalism.

4.3 MCAPSL Model and MIS Model: Related by the Trans-

lation Schema

Figure 4.2 relates all the formalisms and models that have been previously discussed in this chapter.

In a nutshell, algorithm tr translated the trace-based model MPr
CAPSL of the execution of a RT
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Figure 4.2 The High Level Relationships between MCAPSL and MIS

protocol Pr into an interpreted system Υ Pr
IS . In this section we are going to present the relations

induced by the algorithm tr between the MPr
CAPSL model given at its input and the MPr

IS model, i.e.,

the unwinding of the Υ Pr
IS formalisation given at tr’s output. Most importantly, certain relations

will be drawn between the states in the two models. In the next sections, we are going to prove that
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these tr-induced relations between states are such that they describe a homomorphism between the

MCAPSL model and its tr–correspondent, the unwound MIS model. This will help us prove the

preservation of validation/refutation of A-related formulations of goals between the two models.

4.3.1 Preamble

In this subsection we present the intuitions behind the relations that we are going to define in

Section 4.3.2. We then briefly explain the flow of lemmas and adjacent steps that lead to the proof

in Section 4.4 of homomorphism3 between the MCAPSL and the MIS model.

The Intuitions behind Relations Induced by tr between MCAPSL and MIS.

Intuition 1. The first intuition behind these relations comes precisely from the nature of the

transition structures of MCAPSL and MIS.

On the one hand, the transitions in the unwound system of MCAPSL are based on send and receive

events in MCAPSL. In MCAPSL, the actions of the intruder (e.g., analysis, synthesis, interception) are

embedded in the semantics attributed to the application of such send and receive events. Moreover,

the closure of the set X of terms within an arbitrarily given state under Dolev-Yao analysis and

synthesis operations is instantaneous (i.e., it is “silent” and takes immediate effect).

On the other hand, the transitions in the underlying structure of MIS are based on joint actions

where the Dolev-Yao intercepting, analysing and/or synthesising is not “silent”. Moreover, as

Chapter 3 and Appendix A explain, the closure under Dolev-Yao analysing and/or synthesising

under the bounded-size instantiations in MIS is enforced over a series of joint actions.

Figure 4.3 shows two fragments of computations from MCAPSL and MIS, respectively. These

describe the differences between the underlying transition structures, as explained above.

In light of the above, we need to select those relations between the states of MCAPSL and

the states of MIS that counterweigh the silent closure under Dolev-Yao analysis and synthesis in

MCAPSL and the effectively applied actions in MIS leading to the same closure.

Intuition 2. We are interested in finding a certain homomorphism between the MCAPSL and the

MIS model, i.e., a transformation that will preserve the satisfaction/refutation of the A-related for-

3For the definition of a homomorphism, please refer to Appendix B, Definition B.1.1.
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X=closure(synth(analz(X)))X
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Figure 4.3 Closure under Dolev-Yao Synthesis and Analysis in MCAPSL and in MIS

mulations of CAPSL goals in the two models. Therefore, the formulation of these goals is also a factor

in the way we relate the states of the models. Goals in MCAPSL essentially stipulate the intruder be-

ing able to analyse secret atomic terms, i.e., ρCAPSL(SECRET t, HOLDS A:t)=t ∈ analz(sA) \ analz(sI),

for s being a final MCAPSL state, A ∈ Ho and t ∈ SecretA. In the following, we summarise the idea

behind a relation between states in MCAPSL and MIS that takes into account the analysis-based

formulation of security goals.

The p̃-relation between states, driven by the Dolev-Yao analysis.

In principle, if the intruder is able/unable to analyse the same terms at a state s in MCAPSL as he

is able/unable to analyse at a state g in MIS, then we will say that the states are in the p̃-relation,

i.e., s p̃ g.

Additionally, note that the MCAPSL states are usually composed of non-atomic terms, whereas

the MIS states always comprise only atomic terms, i.e., sA ⊆ T and gagA ⊆ T0×RT0 . Therefore, it

is reasonable to use analysis operators in constructing a relation like p̃ ⊆ SMCAPSL ×GMIS .

The relation p̃ ⊆ SMCAPSL × GMIS is essentially driven by the Dolev-Yao analysis of atomic

terms. However, in order for the intruder to analyse an atom, he may have to synthesise several

non-atomic terms. Then, another aspect to be considered when relating states between the two

models is the semantics of Dolev-Yao analysis and synthesis. We summarise this in the following.

The p̃′-relation between states, driven by the Dolev-Yao synthesis.

In principle, if the intruder is able/unable to synthesise the same terms at a state s in MCAPSL

as he is able/unable to synthesise at a state g in MIS, then we will say that the states are in the
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p̃′-relation, i.e., s p̃′ g.

In this chapter, the p̃′-relation will be given less prominence than the p̃-relation. The p̃′-relation

will only be used in showing that the p̃-relation is preserved throughout (fragments of) computations

of the two models.

Intuition 3. Between the events in MCAPSL and the joint actions in MIS, we introduce two

relations called ṽ and ṽ′. These will be secondary and mainly used in order to show more easily

how the relations between states evolve along corresponding computations in the two models.

Using the main relations above and other helping notions, we will then be able to show that the

relation p̃ ⊆ SMCAPSL × GMIS induces a homomorphism between the two models. This homomor-

phism will be then be exploited to prove the preservation of satisfaction/refutation of formulations

of atomic goals between the two models.

A Brief Guidance Towards the Proof of Homomorphism between MCAPSL and MIS.

The steps that we are going to take are as follows.

1. We will show that the initial states in MCAPSL and those induced by the algorithm tr in MIS

are in the p̃-relation (Definition 4.3.1, Definition 4.3.2 and Remark 4.3.3).

2. We will prove that MCAPSL send events and specific fragments of MIS computations preserve

the p̃-relation between states (Lemma 4.3.8). To achieve these, in Definitions 4.3.6 and 4.3.7

we formalise the concept of linear series Dolev-Yao analysis actions in MIS.

3. In Definitions 4.3.10 and 4.3.11, we formalise the concept of (linear) intercept-analysis-synthesis

series of actions in MIS. Then, we prove that send events in MCAPSL and maximal series of

intercept-analysis-synthesis in MIS still preserve the p̃-relation between states (Lemma 4.3.16).

4. We prove that receive events in MCAPSL and receive actions in MIS preserve the p̃′-relation

and the p̃-relation, i.e., preserve the (un-)ability of the intruder to analyse and/or synthesise

terms in the two systems (Lemma 4.3.21).

Eventually, in Theorem 4.4.9 we use the aforementioned lemmas to prove that the p̃-relation

induces a homomorphism between the two systems. Figure 4.4 expresses in a schematic way our
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roadmap to proving the existence of this homomorphism, as explained above.

THE END:

between MCAPSL and MIS

relation p̃ is proven to be a homomorphism

Definition 4.3.7
Definition 4.3.10
Definition 4.3.11

Definitions 4.3.6

%
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'
(

%
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(
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a) – present between the initial states:

THE BEGINING:

relation p̃ ⊆ S ×G is introduced in Definition 4.3.2

Remark 4.3.3
Definition 4.3.1

problem:

the relation p̃ needs to be:

b) – preserved under application of:

send events and send actions + analysis full cycles + synthesis full cycles (Lemma 4.3.16)
receive events and receive actions (Lemma 4.3.21)

c) adjacent, helper-relations between:

d) adjacent proof that p̃
is actually preserved over full MCAPSL and MIS computations, respectively (Theorem B.3.1)

send events and send actions (Definition 4.3.5)
receive events and receive actions (Definition 4.3.20)

send events and send actions + analysis full cycles (Lemma 4.3.8)

1. p̃ – a homomorphism

2. p̃ – a homomorphism (or an epimorphism, under some constraints)

and relating these fixpoints back to MCAPSL: (Lemma 4.3.8 and Lemma 4.3.16)

enforcing the application of analysis and synthesis actions in MIS until fixpoint by

make the UN-silent analysis and synthesis in MIS controllable by

solution:

from MIS back to MCAPSL : UN-silent analysis and synthesis in MIS

p̃ needs to “operate” correctly over transitions

Figure 4.4 The Roadmap towards the Proof of Homomorphism between Models

4.3.2 Selected Relations Induced By the Algorithm tr

Let Pr be an RT protocol, MPr
CAPSL be its bounded protocol model, Σ be the set of role-instantiations

given by the set EvPr of all (T, k)-events in MPr
CAPSL, Υ Pr

IS be the MAS-based system resulting

from applying the algorithm tr to MPr
CAPSL and the set Σ+ = {σ+ |σ ∈ Σ and σ+ ∼= σ} of role-

substitutions be as constructed by algorithm tr. Let MPr
IS be the unwound model corresponding to

the interpreted system Υ Pr
IS .

The algorithm tr induces a relation between the initial states in the two unwound models. We

reinstate this relation in Definition 4.3.1. The left-hand side of the Definition 4.3.1 shows the initial
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states in the MCAPSL model, given at the input of the algorithm tr. The right-hand side of the

Definition 4.3.1 shows the corresponding initial states in the MIS model, produced by the output

of the algorithm tr.

Definition 4.3.1 (Relation p̃0 between Initial States in MCAPSL and in MIS) The relation

p̃0 ⊆ S0×G0 between initial states in MPr
CAPSL and initial states in MPr

IS is induced by algorithm tr

as following:

MCAPSL, ΣPr, A = Ho ∪ I ΥIS , Σ+
Pr, Ag =

⋃

A∈Ho

⋃

σ∈ΣP r

{agA |σ+(A) >→ agA, σ+ ∼= σ} =

= {ag1, ag2, . . . , agn} and the Env agent

s0 = (s0A
|A ∈ A)

s0A
= A ∪ C ∪KA ∪ SecretA, A ∈ Ho

s0I
= A ∪ C ∪KI ∪ {nI, kI}

σ(A-role), A ∈ Ho, agi, 1 ≤ i ≤ n, σ+(A-role)>→ΥIS
agi, where:

σ arbitrary with σ(A) 6= I σ+ ∼= σ,

agi.id = σ(A) = σ+(A) in lagi
@first(StepsA),

and ∀B ∈ Ho, B 6= A, agi.PartnerB = σ+(B) in lagi
@first(StepsA),

for all t ∈ AtomsA, ∃t variable, agi.t :: Rt,

for all t ∈ OwnedAtomsA, agi.t = σ+(t) in lagi
@first(StepsA),

for all t ∈ LearnedAtomsA, agi.t = σ+(t) in lagi
@first(StepsA),

Σ1 := {σ1 |σ1(A) = I, A ∈ Ho}

σ2 with σ2(nI),σ2(kI) Σ+ = Σ+
1 ∪ σ+

2

∀t ∈ T0, ∃t variable in Env, Env.t :: Rt

∀t ∈ T0 Env.t = σ+
2 (t) in lEnv@0, where σ+ ∈ Σ+

other data (e.g., t ∈Msg, t′ ∈ Composites, etc.) unfixed in lEnv@0

For s0 ∈ S0, g0 ∈ G0, if (s0, g0) ∈ p̃0, we write s0 p̃0 g0 and say that the state s0 and the state g0

are in the p̃0 -relation.

We do not explain Definition 4.3.1 further as it simply reiterates how algorithm tr operates on

initial states (i.e., this was already explained in Section 4.2).

Several intuitions behind how to choose relations between states were presented in pages 144–146.

Now, Definition 4.3.2 formalises a relation which follows all the aforementioned intuitions.
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Definition 4.3.2 (Relation p̃ between States in MCAPSL and in MIS) Let MPr
CAPSL and Υ Pr

IS

be the models in algorithm tr as above, and let MPr
IS be the unwinding of Υ Pr

IS . Let ξ be an arbitrary

(T, k)-run in MPr
CAPSL and α be a computation in MPr

IS . Let s ∈ S be a non-initial state of ξ and

g ∈ G be a non-initial state of α. State s ∈ S is in the relation p̃ ⊆ S ×G with g ∈ G, s p̃ g, if:

for A ∈ Ho, σ(A-role) ∈ Σ with σ(A) 6= I, σ+ ∈ Σ+, σ+ ∼= σ, σ+(A-role) >→ΥIS ag,

for Gen ⊂ GeneratedA, for t ∈ AtomsA arbitrary:

(1). [σ(t)/t] ∈ analz(σ(sA ∪Gen)) ⇒ [Σ+(t)/t] ∈ gag

for σ1 ∈ Σ|I, σ
+
1 ∈ Σ+,σ+

1
∼= σ, σ+

2 ⊃ σ+
1 , with σ+

2 (I)>→ΥISEnv:

(2). ∀t ∈ T0, Σ(t) 6∈ analz(σ1(sI)) ⇒ Σ+(t) 6∈ gEnv.values log

for σ1 ∈ Σ|I, σ
+
1 ∈ Σ+,σ+

1
∼= σ, σ+

2 ⊃ σ+
1 , with σ+

2 (I)>→ΥISEnv:

(3). ∀t ∈ T0, Σ(t) ∈ analz(σ1(sI)) ⇒ Σ+(t) ∈ gEnv.values log
For s ∈ S and g ∈ G, if s p̃ g we sometimes say that the state s is in the p̃-relation with the

state g.

In (1), the notation [Σ+(t)/t] ∈ gag means that [v/t] ∈ gag, for v ∈ Rag
t (i.e., for t 6∈

OwnedAtomsA, any value in Rt under Σ+ is possible in the non-initial state gag). In (2), Σ+(t) ∈ S

(i.e., S a set) means that σi(t) ∈ S, for some σi ∈ Σ+. Then, Definition 4.3.2 expresses that two

states s and g are in p̃-relation if: a) in MPr
IS , an agent agA of role A under σ+ “sees” at state g

the same atomic terms as the principal A under σ can generate and analyse at state s in MPr
CAPSL;

b) the intruder “has” an atomic t at g in MPr
IS if and only if it can deduce it at s in MPr

CAPSL (up

to some renaming over Rt or to the extension of ΣPr to Σ+
Pr).

Recall the preconditions required in MCAPSL for a principal to send a term: i.e., A!B : (M)t

under σ can be applied at a state s if t ∈ sA ∪M , where sA ∪M = synth(analz(sA ∪M)) and

M ⊆ GeneratedA is the set of terms generated by A to compose t. Hence, in Definition 4.3.2 we

consider [x/t] ∈ analz(σ(sA ∪Gen)), with Gen ⊆ GeneratedA. In other words, to the set of terms

that principal A can analyse at s, we add those that she could potentially generate at s. This will

not hinder the proofs to follow, due to the following reasons: a) in MIS all terms in GeneratedA
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are included in the initial states and are fully instantiated; b) the assignment of values to variables

in local states is persistent in MIS.

Remark 4.3.3 Note that the initial states are in a p̃-relation. So, the p̃0-relation on initial states

induced by algorithm tr is also a p̃-relation, i.e., p̃0 ! p.

Definitions 4.3.4 and 4.3.5 will now introduce some relations over send events in MCAPSL and

actions in MIS. These relations are a wrapper to the p̃-relation between states. In that sense, they

ease the presentation of Lemma 4.3.8; this lemma will show that send events and certain, enforced

sequences of actions preserve the p̃-relation between states.

Definition 4.3.4 (Relation ũ between Send Events and Local Send Actions) Let MPr
CAPSL

and Υ Pr
IS be the models in algorithm tr, as above. For A ∈ Ho, σ(A-role) ∈ Σ, σ(A) 6= I,

i ∈ StepsA, B ∈ Ho, B 6= A, t ∈ T , let e = (ω|A,σ, i) be a send event in MPr
CAPSL with

act(e) = A!B : (M)t. Let e be enabled at a state s ∈ S. Let a = send(t, x) be an action of

agent agA, where σ+(A-role)>→ΥISagA, σ+ ∈ Σ+, σ+ ∼= σ and x ∈ RagA
t . The send event e is in the

relation ũ ⊆ EvPr×LAct with the local action a ∈ ActagA, e ũ a, if: there exists g ∈ GMIS such that

constructIσ
+

(t, gagA@i, view0
agA

) = (t, x) or, equivalently, such that gagA .step = i and a ∈ PagA(gagA),

where view0
agA

is the initial view of agA.

For e ∈ EvPr and a ∈ LAct, if e ũ a we say that the event e is in the ũ-relation with the local

action a.

Definition 4.3.4 formalises the sending actions that algorithm tr creates in ΥIS starting from send

events in MCAPSL. Hence, Definition 4.3.4 expresses that a send event of form A!B : (M)t under

σ is in the ũ-relation with a local action send(t, x) of agA if the following hold: a) principal A of

MCAPSL is mapped in ΥIS to the agent agA under the extension σ+ of substitution σ; b) in MCAPSL

the value σ(t) is sent out, whereas in ΥIS the value x is sent for t equals σ+(t); c) the event and

the local action are possible in MCAPSL and ΥIS, respectively. In other words, Definition 4.3.4

simply expresses that the event and the local action are possible in both systems, are in the scope

of corresponding parties in the two models and the terms involved are identical up to renaming of

term-values, i.e., up to σ ∼= σ+.
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In Definition 4.3.5 we lift the ũ-relation to the operational level (i.e., from ΥIS to MIS). At the

same time, we take it beyond what is immediately implied by algorithm tr.

Definition 4.3.5 (Relation ṽ between Send Events and Joint Actions) Let MPr
CAPSL and Υ Pr

IS

be the models in algorithm tr, as above and let MPr
IS be the unwinding of Υ Pr

IS . For A ∈ Ho, σ(A-

role) ∈ Σ, σ(A) 6= I, i ∈ StepsA, B ∈ Ho, B 6= A, t ∈ T , let e = (ω|A,σ, i) be a send event in

MPr
CAPSL with act(e) = A!B : (M)t. Let e be enabled at a state s ∈ S. Let a1 = send(t, x), a1 ∈

ActagA, where σ+(A-role) >→ΥIS agA, σ+ ∼= σ and x ∈ RagA
t . Let a ∈ Act be a joint action in Υ Pr

IS

such that aagA = a1 and aEnv = intercept from(agA). The event e is in the relation ṽ ⊆ EvPr×Act

with the joint action a, e ṽ a, if:







e ũ a1, with g ∈ G and a1 ∈ PagA(gagA) (1)

( s[e〉s
′

and s p̃ g ) implies E(g, a) = g
′

, where g′ ∈ G and s′ ∈ S (2)

For e ∈ EvPr and a ∈ Act, if e ṽ a we say that the event e is in ṽ-relation with the global action a.

Definition 4.3.5 expresses the following. A send event e of an A-role under σ in MPr
CAPSL is in

the ṽ-relation with a joint action of MPr
CAPSL in which an agA agent of the A-role under σ+ does

the mapping send, if the event/action are respectively triggered at states which are in p̃-relation.

In other words, not only are the event and the action possible at points of the systems which are

“similar” from the point of view of the intruder (as per relation ũ), but they are effectively applied

at states that are equivalent with respect to the possession of values for atomic terms.

Recall that in MIS each joint action which is applied at a state g ∈ G and contains an

intercept from(ag) is necessarily followed by a linear series of joint actions with the Environment

component being analz(t, x), for ag ∈ Ag, for some t ∈ Composites and x ∈ Rt. Definitions 4.3.6

and 4.3.7 will now formalise the latter. This will be useful in Lemma 4.3.8 to prove that send events

in MCAPSL and certain sequences of joint actions in MIS are such that they preserve the p̃-relation

between states.

Definition 4.3.6 (The analz-Sequences of Dolev-Yao Actions in MIS) Let Υ Pr
IS be the

IS-based model for an RT protocol Pr obtained via algorithm tr from MPr
CAPSL. Let MPr

IS be the

unwinding of Υ Pr
IS . Let A ∈ Ho, σ(A-role) ∈ ΣPr, σ+ ∼= σ and σ+(A-role) >→ΥIS agA. Let t ∈Msg,

x ∈ Rt, g, g1 ∈ G and let a be a joint action such that aagA=send(t, x), aEnv=intercept from(agA)

and E(g, a) = g1. Let k ≥ 1 be a constant, 1 ≤ n ≤ k × 0max SubstComposite, 1 ≤ i ≤ n,
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gi ∈ G, t′ ∈ Composites and x′ ∈ Rt′. Then, let a1 . . . an be a sequence of joint actions with

aiEnv = analz(t′, x′) and E(gi, ai) = gi+1. We call a1 . . . an a g1-analzI sequence of Dolev-Yao

actions or an analz-sequence a1 . . . an of Dolev-Yao actions enabled after a.

Definition 4.3.6 expresses the denotation of (analzI)n(g1Env) (i.e., starting the application of

analzMIS at g1Env and repeating it n times). But, from Chapter 3 and Appendix A, also recall that

such a Dolev-Yao analysis series is linear and it ends when the closure of a state under Dolev-Yao

analysis is attained. Therefore, Definition 4.3.7 will formalise this precisely.

Definition 4.3.7 (Complete analz-Sequences of Dolev-Yao actions in MIS) Let Pr be an

RTP and Υ Pr
IS be obtained from MPr

CAPSL via algorithm tr. Let MPr
IS be the unwinding of Υ Pr

IS . Let

g0 ∈ G0, g1 ∈ G and α be some possible computation in MPr
IS such that g0αg1. Let n ≥ 1 and

a1 . . . an be a g1-analzI sequence of Dolev-Yao actions in MPr
IS . If a1 . . . an generates the closure of

analzI at g1, then the sequence βAnalz = a1 . . . an in MPr
IS is called a g1-analz complete sequence of

Dolev-Yao actions.

Definition 4.3.7 introduces a particular type of g1-analzI sequence of Dolev-Yao actions, namely

those that generate the closure of analzI at g1, for some g1 ∈ G. Let g2 ∈ G such that g2=analzIn
(g1Env).

In terms of the semantics in Chapter 3, Definition 4.3.7 expresses the following. The sequence a1 . . . an

of actions is a g1-analz complete sequence of Dolev-Yao actions if, for all t ∈ Composites, for all

values x ∈ Rt, it is the case that analzI(analzIn
(g2Env .analz log, g2Env .values log, t, x)=false.

We reiterate that, in Lemma A.1.1, we prove that such a maximum number n (for the closure

of analzI to be acquired at g1 as above) always exists.

We previously suggested that the p̃-relation between states is preserved under the respective

application of send events and sending joint actions followed by full cycle of Dolev-Yao analysis.

In Appendix B, we informally explain the ideas behind the proof of Lemma 4.3.8 which formalises

this fact. In the following, we give and prove this lemma formally.

Lemma 4.3.8 Let Pr be an RT protocol, MPr
CAPSL be its bounded protocol model and Υ Pr

IS be ob-

tained from MPr
CAPSL via algorithm tr. Let MPr

IS be the unwinding of Υ Pr
IS . For σ(A-role) ∈ ΣPr,

σ(A) 6= I, t ∈ T , let e = (ω|A,σ, i) with act(e) = A!B : (M)t and let s, s′ ∈ S such that s[e〉s
′

. Let
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σ+(A-role) >→ΥIS agA, σ+ ∼= σ, g, g
′

∈ G and ga′g
′

be the application of a joint action a′ ∈ Act

at g in MPr
IS such that e ṽ a′. Let g

′′

∈ G and βAnalz=a1 . . . an be a g
′

-analz complete sequence of

Dolev-Yao actions in MPr
IS with g

′

βAnalzg
′′

. Then, s
′

p̃ g
′′

.

Proof In the hypotheses of this lemma s p̃ g and the send event e and the local action a′

agA are

identical up to σ ∼= σ+, for s,∈ S, g ∈ G, e ∈ EvPr and a′ ∈ Act. The event e is applied at s

and the action a′ is applied at g. Formally, in the hypotheses, it is the case that e ṽ a′ , s[e〉s′,

E(g, a′) = g
′

. Then, a linear, complete sequence βAnalz of Dolev-Yao analysis actions is applied

at g′, producing g′′. In these circumstances, we need to prove that s′ p̃ g
′′

.

Recall that the definition of the p̃-relation has three parts denoted (1), (2) and (3).

For (1), we have to prove that if [σ(t′)/t′] ∈ analz(σ(s′A ∪Gen)), then [Σ+(t′)/t′] ∈ g′′
agA

), for all

terms t′ ∈ AtomsA, for some Gen ⊂ GeneratedA arbitrarily fixed.

Let us then assume that for all t′ ∈ AtomsA, for some Gen ⊂ GeneratedA arbitrarily fixed, it

is the case that [σ(t′)/t′] ∈ analz(σ(s′A ∪Gen)). (hyp)

Since act(e) is A!B : (M)t and given the semantics of MCAPSL, the state s′ ∈ S described in

the hypotheses of this lemma is: s′A=sA ∪M ∪ {t}. (i)

Given the semantics of MCAPSL (i.e., M ⊆ (T0∩Sub(t))) and given (i), it follows that analz(s′A) =

analz(sA ∪M) (ii)

By (hyp) and (ii), it is the case that [σ(t′)/t′] ∈ analz(σ(sA ∪ Gen)). And, in the given hy-

potheses, e ṽ a′ and E(g, a′). So, by definition of the relation ṽ, it follows that s p̃ g. Then, by

point (1) in the definition of the p-relation, it follows for all t′ ∈ AtomsA, [Σ+(t′)/t′] ∈ gagA . (iii)

Following the extension of substitutions in MCAPSL to role-substitutions in MIS (i.e., all atoms

in AtomsA are set to values by σ+), it is the case that for any M ⊆ GeneratedA, for any m ∈ M

as above, [σ+(m)/m] ∈ gagA . (iv)

Given the semantics of MIS (i.e., no updates take place to gagA during the βAnalz sequence), the

states g′ and g′′ in the hypotheses are such that g′′
agA

=g′
agA

=gagA [next(StepA, i)/step] (v),

where i ∈ StepsA is the step of the event e and gagA [next(StepA, i)/step] denotes that the value of

variable step in gagA is updated to next(StepA, i).

From (hyp), (v) and (iii), it follows that if [σ(t′)/t′] ∈ analz(σ(s′A∪Gen)), then [Σ+(t′)/t′] ∈ g′′
agA

,
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for all t′ ∈ AtomsA, Gen ⊆ GeneratedA.

So, part (1) of s′ being in the p̃-relation with g′′ follows.

To prove part (2) of the definition of the p̃-relation, we need to show that if Σ(t) 6∈ analz(σ1(s′I)),

then Σ+(t) 6∈ g′′
Env.values log, for every t ∈ T0. Assume that Σ(t0) 6∈ analz(σ1(s′I)), for an arbitrary

t0 ∈ T0 and σ1 applied to the state of I in MCAPSL. (hyp2)

Consider the semantics of MCAPSL and the fact that, in the hypotheses given, the event e is

such that act(e) = A!B : (M)t. Then, it is the case that s′I=sI ∪ {t}. So, (hyp2) becomes:

for t0 ∈ T0, Σ(t0) 6∈ analz(σ1(sI) ∪ Σ(t)). (vi)

Since s p̃ g, then for an arbitrary t0 ∈ T0 with case that Σ(t0) 6∈ analz(σ1(sI) ∪ Σ(t)) in (vi), it

is the case that Σ+(t0) 6∈ gEnv.values log. (vii)

Given the semantics of MIS, for g, g
′

, g
′′

in the given hypotheses it is the case that g′
Env.analz log =

gEnv.analz log ∪ (t,Σ+(t)) and (analzI)n(g
′

Env) = g
′′

Env, (analzI)(g
′′

Env) = g
′′

Env. (viii)

By the definition of analz in MCAPSL and MIS (i.e., both following the standard semantics

in [163]), (vii), (viii), it follows that Σ+(t0) 6∈ g
′′

Env.values log, for t0 ∈ T0 arbitrarily chosen

above. In other words, if analzMCAPSL does not produce t0 out of sI ∪ {t}, nor does the closure of

gEnv.analz log ∪ (t,Σ+(t)) under analzMIS contain t0, when s p̃ g. (This is so because analzMCAPSL

and the closure under analzMIS both follow the same standard semantics [163] and they are applied

at states that are identical with respect to the analysis of atomic terms).

Hence, part (2) of s′ being in the p̃-relation with g
′′

is also proven.

Part (3) of s′ being in the p̃-relation with g
′′

is proven similarly to the way we proved part (2)

above.

Lemma 4.3.8 ensures the following: if a send event/sending joint action are respectively applied

at two states in the p̃-relation and afterwards, at the resulting state in MIS, an analz-complete

sequence of Dolev-Yao actions takes effect, then the final respective states are in the p̃-relation.

This is schematically described by Figure 4.5.

Definitions 4.3.6 and 4.3.7 formalised the complete analz sequence of Dolev-Yao actions. To

follow, Definition 4.3.10 and 4.3.11 will formalise the series of forge actions and their closure upon

a state of the Environment in MIS.
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Figure 4.5 Proven Preservation of the p̃-relation along Fragments of Computations

Remark 4.3.9 We reiterate that there are no actions of type analz applied during the sequence of

forging actions. This will be formalised in Definition 4.3.10 and 4.3.11 respectively.

Upon the ΥIS synchronisation, the local states of the honest agents are not updated when a

local action of the Environment of type forge triggers. Thus, in the following, we abstract away

the honest components of the joint actions where the Environment is forging messages. The same

abstraction was in place for analz-sequences of Dolev-Yao actions.

Recall that in MIS an intercept Dolev-Yao action is followed by a complete analz sequence

of Dolev-Yao actions and any (such) complete analz sequence of Dolev-Yao actions is followed,

at its turn, by a finite sequence of joint actions ai of form aiEnv = forge(t′, x′), where 0 ≤ i ≤

0maxSubstMsg (see Section 3.3.2.9 and Figure 3.1). The Definition 4.3.10 and 4.3.11 formalise

this precisely.

Definition 4.3.10 (Intercept-analz-forge Series of Dolev-Yao Actions in ΥIS) Let Pr be an

RT protocol and Υ Pr
IS be obtained by algorithm tr. Let MPr

IS be the unwinding of Υ Pr
IS . Let a0 be a joint
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action of the form a0agA
= send(t, x) and a0Env = intercept from(agA). Let g, g′ ∈ G such that

E(g, a0) = g′. Let βAnalz be a g′-analz complete sequence of Dolev-Yao actions and g1 ∈ G such that

g′βAnalzg1. Let 1 ≤ n ≤ 0maxSubstMsg, 1 ≤ i ≤ n, gi ∈ G, t′ ∈ Composites and x′ ∈ Rt′ such that

a1, . . ., an is the finite series of joint actions with E(g1, a1)=g2, E(g2, a2) = g3, . . . , E(gn, an)=gn+1,

where each ai is of the form aiEnv = forge(t′, x′). The sequence a0βAnalza1 . . . an is called an

intercept-analz-forge sequence of Dolev-Yao actions applied at g. We write ga0g′βAnalzg1a1g2 . . . angn+1

or simply, ga0βAnalza1 . . . angn+1.

The sequence βAnalza1 . . . an is called an analz-forge sequence of Dolev-Yao actions applied at g′,

i.e., when the intercepting action a0 is disregarded. We write g′βAnalzg1a1g2 . . . angn+1 or, simply,

gβAnalza1 . . . angn=1.

Definition 4.3.10 formalises that in MIS a send-intercept action is followed by a complete series

of Dolev-Yao analysis actions and a sequence of Dolev-Yao synthesis actions. As we explained in

Chapter 3, this sequence of Dolev-Yao synthesis actions is linear. Also, it will end when there are no

more messages that the intruder can synthesise at a reached state. Definition 4.3.11 will stipulate

the latter.

Definition 4.3.11 (Complete Intercept-Analz-Forge Series of Dolev-Yao actions in ΥIS)

Let Pr be an RT protocol and Υ Pr
IS be obtained by algorithm tr. Let MPr

IS be the unwinding of Υ Pr
IS .

Let g, g′ ∈ G and a0 be a joint action of form a0agA
= send(t, x), a0Env = intercept from(agA) such

that E(g, a0) = g′. Let βAnalz be a g′-analz complete sequence of Dolev-Yao actions and g1 ∈ G

such that g′βAnalzg1. Let 1 ≤ n ≤ 0maxSubstMsg, 1 ≤ i ≤ n, gi ∈ G, t′ ∈ Composites and

x′ ∈ Rt′ such that the sequence a0βAnalza1 . . . an is an intercept-analz-forge sequence of Dolev-Yao

actions at g and E(g1, a1) = g2, E(g2, a2) = g3, . . . , E(gn, an) = gn+1. If n = 0maxSubstMsg, the

sequence γForge = a0βAnalza1 . . . a$maxSubstMsg is called a complete intercept-analz-forge sequence of

Dolev-Yao actions applied at g. We write ga0g′βAnalzg1γForgegn+1 or simply, ga0βAnalzγForgegn+1.

If n = 0maxSubstMsg, the sequence βAnalza1 . . . a$maxSubstMsg is called a complete analz-forge

sequence of Dolev-Yao actions applied at g′. We write g′βAnalzg1γForgegn+1 or simply, g′βAnalzγForgegn+1.

Definition 4.3.11 expresses that a complete intercept-analz-forge series of Dolev-Yao actions is a

special case of an intercept-analz-forge sequence of Dolev-Yao actions, where the forging sequence is
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maximal with respect to what the intruder can synthesise at that protocol stage. Definitions 4.3.10

and 4.3.11 introduce analz-forge sequences as sequences of the kind above in which the first joint

action, where the intercepting is performed, is not included.

To sum up, Definitions 4.3.2–4.3.7, Definitions 4.3.10 and 4.3.11 and Lemma 4.3.8 have formally

specified the intuitions behind the p̃-relation presented at page 144.

We will now correlate send events in MCAPSL also with the Dolev-Yao synthesis actions in MIS.

Definition 4.3.12 will formalise that send event in MCAPSL be precisely assimilated to a complete

intercept-analz-forge sequence in ΥIS.

Let the set Act+ denote sequences of joint actions in MIS, i.e., if g1, . . . , gn+1 ∈ G, a1, . . . , an ∈ Act

such that E(g1, a1) = g2, E(g2, a2) = g3, . . . , E(gn, an) = gn+1, then the sequence a1 . . . an is an ele-

ment of the set Act+.

Definition 4.3.12 (The Relation ṽ+ between Send Events and Series of Actions)

Let MPr
CAPSL and Υ Pr

IS be the models in algorithm tr, as above. Let MPr
IS be the unwinding of Υ Pr

IS .

For A ∈ Ho, σ(A-role) ∈ Σ, σ(A) 6= I, i ∈ StepsA, B ∈ Ho, B 6= A, t ∈ T , let e = (ω|A,σ, i) be a

send event in MPr
CAPSL with act(e) = A!B : (M)t. Let e be enabled at a state s ∈ S. Let a0 ∈ Act be

a joint action in Υ Pr
IS such that a0agA

= send(t, x) and a0Env = intercept from(agA), where σ+(A-

role) >→ΥIS agA, σ+ ∼= σ and x ∈ RagA
t . Let βAnalz be an analz complete sequence of Dolev-Yao

actions and βAnalz enabled after a0. Let 1 ≤ n ≤ 0maxSubstMsg and a0βAnalza1 . . . an be an

intercept-analz-forge series of Dolev-Yao actions. The event e is in the relation ṽ+ ⊆ EvPr ×Act+

with the intercept-analz-forge series of Dolev-Yao actions a0βAnalza1 . . . an, e ṽ+ (a0βAnalza1 . . . an)

if:







e ṽ a0 with g ∈ GMIS , a0agA
∈ PagA(gagA) (1)

(s[e〉s1) implies (E(g, a0) = g
′

and ga0g′βAnalza1 . . . angn+1), (2)

with s1 ∈ S, g, g,′ gn+1 ∈ G, a0βAnalza1 . . . an an intercept-analz- forge series of Dolev-Yao actions,

βAnalz the analz complete sequence enabled after a0 and a1 . . . an a (maximal) forge sequence.

Let e ∈ EvPr be a send event and a0βAnalza1 . . . an ∈ Act+ be an intercept-analz-forge sequence

of Dolev-Yao actions. If e ṽ+ a0βAnalza1 . . . an, then we say that the event e is in ṽ+-relation with

the sequence a0βAnalza1 . . . an.

Definition 4.3.12 expresses that a send event e in MCAPSL is in ṽ+-relation with an intercept-

analz-forge series of Dolev-Yao actions if it is in ṽ-relation with the comprised send-intercept joint
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action. From Definition 4.3.12, it follows that a send event e in MCAPSL can also be in ṽ+-relation

with a complete intercept-analz-forge series of Dolev-Yao actions a0βAnalza1 . . . a$maxSubstMsg.

In Remark 4.3.9 and in the intuitions at pages 144–146, we have mentioned that in MIS no

Dolev-Yao analysis happens during forging actions. This will now be formalised through Defini-

tion 4.3.13 and Remark 4.3.14.

Definition 4.3.13 (Relation =analz over States in MIS) Let g, g
′

∈ G. We say that the state

g is in the relation =analz⊆ G×G with the state g
′

, g =analz g
′

, if:






for t ∈ AtomsA, [x/t0] ∈ gagA ⇔ [x/t0] ∈ g
′

agA
(1)

for t ∈ T0, [x/t] ∈ gEnv.values log ⇔ [x/t0] ∈ g
′

Env.values log (2)

The relation =analz⊆ G × G over the global states in MIS is symmetric, reflexive, transitive,

hence it is an equivalence relation. For g ∈ G, the notation [g]analz denotes the equivalence class of

the state g induced by the relation =analz. The Remark 4.3.14 motivates the introduction of this

relation, i.e., to express that along forge-based fragments of MIS computations, states stay the

same from the point of view of Dolev-Yao analysis.

Remark 4.3.14 Let 1 ≤ n ≤ 0maxSubstMsg, g, g′, gn+1 ∈ G and ga0g′βAnalzg1a1 . . . angn+1 be a

computation-fragment in MIS such that a0βAnalza1 . . . an is a (complete) intercept-analz-forge series

of Dolev-Yao actions, with βAnalz a g
′

-analz complete sequence of Dolev-Yao actions. Then, from

Remark 4.3.9 (that no Dolev-Yao analysis or updates of honest agents’ local states happen during

the forge sequence), it follows that [g1]analz ⊇ {g1, g2, . . . , gn+1}.

We have formalised that along forge-based fragments of MIS computations states stay the same

from the point of view of Dolev-Yao analysis. Therefore, we can lift the p̃-relation from a relation

between states in the two models to a relation between states in MCAPSL and sets of states in MIS.

Definition 4.3.15 will express this precisely. In this fashion, Definition 4.3.15 will formalise the first

intuition behind the the p̃-relation (see page 144) and the ideas expressed in Figure 4.3.

Definition 4.3.15 (Relation p̃+ over SCAPSL and 2GIS) For s ∈ S, g ∈ G and [g]analz, we say

that the state s is in the relation p̃+ ⊆ S × 2G with the set [g]analz of states, s p̃+ [g]analz, if s p̃ g.
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According to Definition 4.3.15, an MCAPSL state s in the relation p̃+ with a class of equivalence

modulo =analz if it in the p̃-relation with a representative of the class.

Now, assume that s ∈ S is in the p̃-relation with some state g ∈ GMIS and that at g a series of

Dolev-Yao forging starts, yielding the states g′
1, . . . , g

′
m. Then, by Definition 4.3.15, it is the case

that s p̃+ {g′
1, . . . , g

′
m}. The following lemma proves this.

Lemma 4.3.16 Let Pr be an RT protocol in MPr
CAPSL and Υ Pr

IS be obtained from MPr
CAPSL via

algorithm tr. Let MPr
IS be the unwinding of Υ Pr

IS . In MPr
CAPSL, let σ(A-role) ∈ Σ, σ(A) 6= I, s, s′ ∈ S

and e = (ω|A,σ, i) be a send event with act(e) = A!B : (M)t and s[e〉s
′

. Let σ+(A-role)>→ΥISagA

and σ+ ∼= σ, g, g′, g′′ ∈ G, 1 ≤ n ≤ 0maxSubstMsg and ga′βAnalzg′a1 . . . ang′′ be the application of

a (complete) intercept-analz-forge series of Dolev-Yao actions with βAnalz a complete analz sequence

such that e ṽ+ a′βAnalza1 . . . an. Then, s
′

p̃ g′′ and, in general, s p̃+ [g′]analz.

Proof The proof follows trivially from the proof of Lemma 4.3.8, Remark 4.3.9 and Remark 4.3.14.

To sum up, by all definitions and lemmas given so far, we have shown that the p̃-relation between

SMCAPSL and GMIS follows the original intuition in pages 144–146. More precisely, we have shown

that this relation is induced by the algorithm tr between the respective initial states of MCAPSL

and MIS and that it is preserved under the application of send events in MCAPSL and respectively

send-intercept, full Dolev-Yao analysis and full Dolev-Yao synthesis in MIS. Through Figure 4.6

we summarise all the aforementioned results referring to the p̃-relation and, at the same time, we

also complete the picture we were giving originally in Figure 4.3. As a side note, it should be clear

that relations ṽ+, =analz and even p̃+ are helper notions to presenting the results in a structured,

formal way.

In light of the above, it remains to investigate how the send events/send actions affect a relation

between states in the two models which concern the ability of the intruder to synthesise terms. The

next definitions and lemmas will view precisely this.

Definition 4.3.17 (Relation p̃′ between States in MCAPSL and MIS) For Pr a bounded pro-

tocol, let MPr
CAPSL and Υ Pr

IS be the models in algorithm tr, as above. Let MPr
IS be the unwinding of
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Figure 4.6 Proven Preservations of p̃ ⊆ SMCAPSL ×GMIS in MCAPSL and MIS

the Υ Pr
IS . Let ξ be an arbitrary (T, k)-run in MPr

CAPSL and α be a computation in MPr
IS . Let s ∈ S be

a non-initial state of ξ and g ∈ G be a non-initial state of α. We say the state s is in the relation

p̃′ ⊆ S ×G with the state g, s p̃′ g, if:

for σ1 ∈ Σ|I, σ
+
1 ∈ Σ+,σ+

1
∼= σ, σ+

2 ⊃ σ+
1 , with σ+

2 (I)>→ΥISEnv:

(1). ∀t ∈ T , Σ(t) ∈ σ1(sI) ⇒ Σ+(t) ∈ gEnv.synth log

for σ1 ∈ Σ|I, σ
+
1 ∈ Σ+,σ+

1
∼= σ, σ+

2 ⊃ σ+
1 , with σ+

2 (I)>→ΥISEnv:

(2). ∀t ∈ T , Σ(t) 6∈ σ1(sI) ⇒ Σ+(t) 6∈ gEnv.synth log
For s ∈ S, g ∈ G, if s p̃′ g we

say that the state s is in the p̃′-relation with the state g.

In Definition 4.3.17, the state s ∈ S being in the p̃′-relation with the state g ∈ G, s p̃′ g,

expresses the following: if the intruder is able/unable to synthesise t as some value-string x at

state s in MCAPSL, then the intruder is able/unable to synthesise t as some value-string x′ at

state g in MIS; moreover, x = Σ(t) and x′ = Σ+(t) imply that the values x and x′ are identical up

to some permutation of elements in RT0 and in the initial state setup of ΥIS.

Also note that the initial states are in p̃′-relation, i.e., p̃0 ⊆ p̃′.

In the following, Lemma 4.3.18 completes the previous results and it shows that the send events
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and intercept-analz-forge series applied respectively in the two models preserve the p̃′-relation as

well.

Lemma 4.3.18 For Pr a bounded protocol, let MPr
CAPSL and Υ Pr

IS be the models in algorithm tr, as

above. Let MPr
IS be the unwinding of the Υ Pr

IS . Let s ∈ S along a run of MCAPSL and g ∈ G along

a computation of MIS such that s p̃′ g. Let A ∈ Ho and σ(A-role) ∈ Σ be a substitution for the

A-role. Let B ∈ Ho, t ∈ T , s′ ∈ S and e = (ω|A,σ, i) be a a send event with act(e) = A!B : (M)t

such that s[e〉s
′

. Let σ+ ∼= σ and σ+(A − role) >→ΥIS agA. Let g′ ∈ G and a0βAnalzγForge be a

complete intercept-analz-forge series of Dolev-Yao actions enabled at g such that ga0βAnalzγForgeg
′

such that eṽ+βAnalzγForge.

Then, s
′

p̃′g
′

.

Proof Let S be a set of terms. The proof follows is a similar way to the proof of Lemma 4.3.8,

where instead we focus on synthesis.

In a nutshell, it is entailed from the facts that sp̃′g and (synthI)$maxSubstMsg(S)=synthMCAPSL(S).

By Lemma 4.3.18, we show that the send events and the intercept-analz-forge series applied

respectively in the two models preserve the (in-)ability of the intruder to synthesise the same terms

at an MCAPSL state as at an MIS state.

Lemma 4.3.16 and Lemma 4.3.18 imply that send events in MCAPSL and complete intercept-

analz-forge series of Dolev-Yao actions in MIS preserve the p̃ and the p̃′ relation between states in

the two models, i.e., preserve the state-relations viewing both Dolev-Yao analysis and Dolev-Yao

synthesis. At a higher level, the important message of Lemmas 4.3.16 and 4.3.18 is that the abilities

of analysis and synthesis of the intruder are kept identical (up to renaming of values) over the

application of send events in MCAPSL and corresponding sequences of actions in MIS, respectively.

These results are illustrated in Figure 4.7.

Having studied the effect of send events and send actions onto the desired relations between

states, we now lay the foundations for the relation between receive-events and receive action in the

two respective models.
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Figure 4.7 Proven Preservations of p̃ and p̃′ between MCAPSL and MIS

Definition 4.3.19 (Relation ũ′ between Receive Events and Receive Local Actions) Let

Pr be an RT protocol and MPr
CAPSL be its bounded protocol model. Let A ∈ Ho, B ∈ Ho,

t ∈ T , σ(A-role) ∈ Σ, σ(A) 6= I, i ∈ StepsA, e = (ω,σ, i) be an event in MPr
CAPSL such that

act(e) = A?B : t and let e be enabled at some state s ∈ S in MPr
CAPSL. Let Υ Pr

IS be obtained via

algorithm tr from MPr
CAPSL. Let σ+ ∈ Σ+, σ+ ∼= σ, σ+(A-role) >→ΥIS agA and a = receive be in

ActagA in Υ Pr
IS . The receive-event e is in the relation ũ′ ⊆ EvPr × LAct with the local action a,

e ũ′ a, if: there exists g ∈ GMIS such that gagA .step = i and a ∈ PagA(gagA).

For e ∈ EvPr and a ∈ LAct, if e ũ′ a we say that the event e is in the ũ′-relation with the local

action a.

Definition 4.3.19 simply reiterates the way receive actions in Υ Pr
IS are created by algorithm tr

from receive events in MPr
CAPSL. It simply states that if a principal A under instantiation σ can

receive a term t in MCAPSL, then agent agA under σ+ can receive the term t in ΥIS, too. Hence,

the event/action are identical up to some renaming of values (i.e., up to σ+ ∼= σ).

In the following definition, we will lift the ũ′-relation to the operational level, i.e, from ΥIS to MIS.

Definition 4.3.20 (Relation ṽ′ between Receive Events and Joint Actions) Let Pr be an

RT protocol and MPr
CAPSL be its bounded protocol model. Let A ∈ Ho, B ∈ Ho, t ∈ T , σ(A-role) ∈ Σ,
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σ(A) 6= I, i ∈ StepsA, e = (ω,σ, i) be an event in MPr
CAPSL such that act(e) = A?B : t and let e be

enabled at some state s ∈ S in MPr
CAPSL. Let Υ Pr

IS be obtained via algorithm tr from MPr
CAPSL.Let

MPr
IS be the unwinding of the Υ Pr

IS .Let σ+ ∈ Σ+, σ+ ∼= σ, σ+(A-role) >→ΥIS agA and a1 = receive be

in ActagA in Υ Pr
IS . Let a ∈ Act be a joint action such that aagA = a1 and aEnv = transmit(agA, t, x),

x ∈ Rt. We say action e is in the relation ṽ′ ⊆ EvPr × Act with the joint action a, e ṽ′ a, if:






e ũ′ a1 with a1 ∈ PagA(gagA), g ∈ G (1)

((s[e〉s
′

) and (s p̃ g) and (s p̃′ g)) ⇒ EagA(gagA , a) = g
′

agA
(2)

For e ∈ EvPr and a ∈ Act, if e ṽ′ a we say that the event e is in the ṽ′-relation with the joint

action a.

Definition 4.3.20 takes the ũ′-relation to the operational level. A receive event and a joint action

are in the ṽ′-relation if not only are they identical up to renaming, but they are effectively applied

at states which are in the p̃-relation and the p̃′-relation. The notions introduced by Definition 4.3.20

are used to express more easily the evolution of the relations between states over computations,

i.e., avoid verbose proofs.

The following lemma proves that the receive events in MCAPSL and receive actions in MIS

indeed preserve the p̃-relation and the p̃′-relation between states. In Appendix B we give the

informal explanations of this proof. Below, we present the lemma formally.

Lemma 4.3.21 Let Pr be an RT protocol and MPr
CAPSL be its bounded protocol model.

Let Υ Pr
IS be obtained from MPr

CAPSL via algorithm tr. Let MPr
IS be the unwinding of the Υ Pr

IS . Let

σ(A-role) ∈ Σ, σ(A) 6= I, s, s′ ∈ S, e = (ω|A,σ, i) be a receive event in MPr
CAPSL such that

act(e) = A?B : (M)t and s[e〉s
′

. Let t ∈ Msg, x ∈ Rt, σ+ ∈ Σ+, σ+ ∼= σ, σ+(A-role) >→ΥIS agA,

g, g′ ∈ G and gag
′

be the application of a joint action a in MPr
IS such that e ṽ′ a, where aagA = receive

and aEnv = transmit(agA, t, x). Then, s
′

p̃ g
′

and s
′

p̃′ g
′

.

Proof Recall that to prove s
′

p̃ g
′

, we need to prove that parts (1)–(3) in the definition of the

p̃-relation hold for s′ and g′ (i.e., Definition 4.3.2).

Let s0[ξ〉s[e〉s′, where ξ is an arbitrary run in MCAPSL, s0 ∈ S0 and act(e) = A?B : (M)t as

in the hypothesis. If s[e〉s′, then by the definition of enabling of events in MPr
CAPSL, ξ ⊇• e. This
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triggers that t0 is substituted by σ(t0), i.e., [σ(t0)/t0], for all t0 ∈ OSub(t) ∩ OwnedAtomsA ∩

OSub(analz(sA)). In other words, since the event e is under a substitution σ suitable for e, then all

atomic terms of t previously transmitted along the run ξ have been substituted by σ in MPr
CAPSL (∗).

Given the way algorithm tr constructs ΥIS from MPr
CAPSL, i.e., from the events along the runs of

MPr
CAPSL with σ+ ∼= σ, and given that s p̃ g, then (∗) implies that out matchIσ

+

(t, x, gagA@i) returns

true. Hence, g does get updated under σ+ to g
′

in MPr
IS when s moves at s′ under σ in MPr

CAPSL,

for σ+ ∼= σ.

Now, recall that the state update in MCAPSL dictates s
′

A = sA ∪ {t} and the state update in

ΥIS dictates setIσ
+

(t, gagA@i) (∗∗).

For part (1) of s
′

p̃ g
′

to hold, we need that: [σ(t0)/t0] ∈ analz(σ(s
′

A∪Gen))⇒ [Σ+(t0)/t0] ∈ g
′

agA
,

for t0 ∈ AtomsA arbitrary.

Then, let t0 ∈ AtomsA arbitrary such that [σ(t0)/t0] ∈ analz(σ(s
′

A ∪Gen)), for Gen ⊆ GeneratedA.

This is equivalent to saying that [σ(t0)/t0] ∈ analz(σ(sA ∪ {t} ∪ Gen)), for Gen ⊆ GeneratedA.

Since s p̃ g, the only interesting case to discuss is when t0 is analysable due to the recent receival

of t (i.e., t0 ∈ i-LearnedAtomsA). So, consider the set Gen′ of a minimal generation such that

[σ(t0)/t0] ∈ analz(σ(sA ∪ {t} ∪ Gen
′

)) \ analz(σ(sA ∪ Gen
′

)) (∗ ∗ ∗). As we deal here with RTP

and t0 ∈ i-LearnedAtomsA then t0 ∈ OSub(t) (i.e., all messages upon receival are analysable down

to atomic parts and we are under (∗ ∗ ∗)). But this implies that t0 has been set at g
′

agA
through

setIσ
+

(t, gagA@i). Hence, [Σ(t0)/t0] ∈ g′
agA

. Thus, we have part (1) of s
′

p̃ g
′

.

The part (2) of s
′

p̃ g
′

holds trivially as the intruder does not gain new data through this

event/joint action nor does it perform any action of type analz or synth. For the same reason, it is

trivial that s
′

p̃′ g
′

.

Lemma 4.3.21 completes the picture of the previous results and shows that receive events/actions

preserve the “good” relations between states in the two models as well.

All in all, in Section 4.2.1 we have given an algorithm called tr that produces Υ Pr
IS from MPr

CAPSL.

The unwinding of the model produced has the initial states in the p̃-relation with the initial states

of MPr
CAPSL. In this section we have shown that the events in MCAPSL and actions or sequences

of actions in MIS are such that they preserve the p̃-relation between states in the two models.
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This entails that the ability of the intruder to analyse and synthesise terms is preserved along

corresponding fragments of computations in the two models. Figure 4.8 summarises these results.

This will be useful when we have to choose states that have homomorphic properties, in order to

prove that the p̃-relation induces a homomorphism between the two models.
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Figure 4.8 Preserved Relations Between States in Computations of MCAPSL and MIS

In Appendix B we use the relations and lemmas given so far to prove by induction that that

the p̃-relation is preserved all along respective computations of MCAPSL and MIS. The relations

between events and actions are thereby used as well, to avoid verbose proofs.

4.4 A Homomorphism from MCAPSL to MIS

We will show that the p̃-relation, induced by the algorithm tr, defines a homomorphism between

the models involved. Then, we will use this to prove that MCAPSL validates ρCAPSL(r) if and only

if the model MIS validates f , for all f ∈ ρIS(r), for ρCAPSL(r) A ρIS(r) and r an atomic CAPSL

goal of initial secrecy or agreement on initials.

We begin by introducing the transition systems underlying the two models.

Definition 4.4.1 (Transition Systems for MCAPSL) Let Pr be an RT protocol and MPr
CAPSL be

its MCAPSL model under a set of role-substitutions ΣPr. The tuple TSPr
CAPSL = (S,EvPr, ∪

e∈EvPr

e
→)

denotes the transition system underlined by MPr
CAPSL. In TSPr

CAPSL, S is the set of states under ΣPr,
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EvPr is the set of all the labels of all (T, k)-bounded events, i.e., each label e unambiguously denotes

the event e ∈ EvPr and ∪
e∈EvPr

e
→ is a set of binary relations on S such that s, s′ ∈ S, s

e
→ s′ if

s[e〉s′ as per MPr
CAPSL.

To define the transition system for MIS, we first distinguish certain types of joint actions in the

MIS model. In more detail, we will first outline those actions that operate towards creating the

closure under synthI and analzI.

Definition 4.4.2 (τ1-actions in MIS) A joint action a is a τ1-action if E(g, a) = g′ implies that

analzI
[x′/t′ ]

(gEnv.analz log, gEnv.values log, t′) = true, for t′ ∈ Composites, x′ ∈ Rt′

(i.e., (t′, x′) 6∈ gEnv.analz log).

By Definition 4.4.2, a joint action a in MIS is a τ1-action if aEnv contains a component of type

analz which effectively analyses [x′/t′] from g, leading to g
′

. In other words, the closure of g under

analzI has not yet occurred if a τ1 action is being applied.

Definition 4.4.3 (τ2-actions in MIS) A joint action a is a τ2 -action if E(g, a) = g′ implies that

synthI(gEnv, t, x) = true, for t ∈Msg, x ∈ Rt and (i.e., (t, x) 6∈ gEnv.synth log ).

By Definition 4.4.3, a joint action of MIS is a τ2-action if aEnv contains a component of type

forge which effectively synthesise [x/t] at g, leading to g
′

. In other words, the closure of g under

synthI has not yet occurred if a τ1 action is being applied.

Let Actτ ! Act be the subset of all τi-actions of MIS, for i ∈ {1, 2}. Let the set Act
′

= Act\Actτ

denotes the actions which are not τi-actions of MIS, for i ∈ {1, 2}. For any i ∈ {1, 2}, τi-actions

are generically referred to as τ -actions.

Having formally differentiated the τ -actions from other actions, we can now define the transition

systems for MIS.

Definition 4.4.4 (Transition Systems for MIS) Let Pr be an RT protocol, MPr
CAPSL be its bounded

protocol model under a set of role-substitutions ΣPr and Υ Pr
IS be obtained via algorithm tr from

MPr
CAPSL. Let MPr

IS be the unwound model implied by the interpreted system Υ Pr
IS . The tuple
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TSPr
IS = (G, Act, ∪

a∈Act′

a
→∪

τ
→, V ) denotes the transition system underlined by MPr

IS , where G is

the set of global states as given by Σ+
Pr, Act

′

is the set of all the labels of all joint actions except

Actτ , all τ -actions in MPr
IS are labelled τ , ∪

a∈Act′

a
→ ∪

τ
→ is a set of binary relations on G, for

g, g′ ∈ G, x ∈ Act, g
x
→ g′ if E(g, x) = g′ in Υ Pr

IS and V is the set of atomic propositions originally

present in Υ Pr
IS .

In Definitions 4.4.5 and 4.4.6 we are going to revisit the definition of the two models. This

revisiting will ease the handling of the transition relation particularly in the case of MIS (i.e., given

that in MIS, we encounter analysis and synthesis series of Dolev-Yao actions of variable length).

Definition 4.4.5 (Revisited MCAPSL Model) Let Pr be an RT protocol and MPr
CAPSL be its

bounded protocol model, as before. Then, MPr
CAPSL can be expressed as the tuple MPr

CAPSL =

(S,EvPr, {Re}), with {Re} =
e
→ as per the definition of TSCAPSL.

Definition 4.4.5 essentially states that the transition relation Re in MCAPSL is simply a compu-

tational step in the model.

We will now use the notion of τ -actions to outline the analz-forge sequences of the MIS model,

introduced in Section 4.3. Therefore, let (
τ
→)∗ denote any number of τ -actions.

We use (
τ
→)∗ and the transition systems TSIS to revisit the MIS model (originally given in Defini-

tion 3.3.21).

Definition 4.4.6 (Revisited MIS Model) Let Pr be an RT protocol, MPr
CAPSL be its bounded

protocol model and Υ Pr
IS be obtained via algorithm tr from MPr

CAPSL, as before. Let MPr
IS be the

unwound model implied by the interpreted system Υ Pr
IS . Then, the MPr

IS can be expressed as the tuple

MPr
IS = (G, Act, {Ra}, V ), with {Ra} ⊆ (

τ
→)∗

a
→ (

τ
→)∗ and V the set of atomic propositions in Υ Pr

IS .

By Definition 4.4.6, several τ -actions can be conceptually collapsed into one relational step

between the states of MIS.

Now, let (
τ
→)n denote either a complete analz-forge series (i.e., intercepting followed by a com-

plete analz sequence and a complete forge sequence) or no τ -actions.
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Definition 4.4.7 (Stuttering MIS Model) Let Pr be an RT protocol, MPr
CAPSL be its bounded

protocol model and Υ Pr
IS be obtained via algorithm tr from MPr

CAPSL, as before. Let MPr
IS be the

unwound model implied by the interpreted system Υ Pr
IS . The stuttering MIS model is expressed by

the tuple M
Pr
IS =(G′, Act, {Ra}, V ), with G′ ! G, {Ra} ⊆ (

τ
→)n a

→ (
τ
→)n ⊆ G′ × G′ and V the set

of atomic propositions in Υ Pr
IS .

In Definition 4.4.7 we embedded explicit computational steps in MIS into a transition relation

that takes into account the complete intercept-analz-forge series in MIS. The M
Pr
IS model is more

compact than the MPr
IS model; the M

Pr
IS model collapses a complete intercept-analz-forge series into

one computational step.

Note that Ra ⊆ Ra. The relation Ra in MIS allows for any number of analysis and/or synthesis

actions, whereas the relation Ra refers to the special case where a complete sequence of these is

applied.

From here onwards, we will refer to the models MCAPSL, MIS, M IS as introduced in Defini-

tions 4.4.5–4.4.7, respectively.

We will now prove that the relation p̃ ⊆ SMIS×GMIS induces a homomorphism between MCAPSL

and MIS and an epimorphism between MCAPSL and M IS. To achieve that, we begin by Lemma 4.4.8

which shows that any state in S is p̃-related to some state in G.

Lemma 4.4.8 Let Pr be an RT protocol, MPr
CAPSL be its bounded protocol model and Υ Pr

IS be ob-

tained via algorithm tr from MPr
CAPSL, as before. Let MPr

IS be the unwound model of the interpreted

system Υ Pr
IS .The relation p̃ ⊆ SMPr

CAPSL
×GMPr

IS
is total.

Proof The above means that ∀s ∈ S, ∃g ∈ G such that s p̃ g.

If s is an arbitrary initial state resulted from the instantiations in EvPr, i.e., s = s0, s0 ∈ S0,

then algorithm tr creates g0 is such that s0p̃0g0. And, as per Section 4.3, p̃0 ⊆ p.

By Theorem B.3.1, every state s along a run in MCAPSL is in p̃-relation with some state g along

a computation in MIS.

Then the lemma is proven.

In the next theorem we prove that the relation p̃ ⊆ S × G defines a homomorphism between

the MPr
CASPL and the MPr

IS models and and an epimorphism between MCAPSL and M IS.
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Theorem 4.4.9 Let Pr be an RT protocol, MPr
CAPSL be its bounded protocol model and Υ Pr

IS be

obtained via algorithm tr from MPr
CAPSL, as before. Let MPr

IS be the unwound model of the interpreted

system Υ Pr
IS .

The relation p̃ ⊆ SMPr
CAPSL

× GMPr
IS

induces a homomorphism between the model MPr
CAPSL and

the model MPr
IS .

The relation p̃ ⊆ SMPr
CAPSL

× GMPr
IS

induces an epimorphism (i.e., surjective homomorphism)

between the model MPr
CAPSL and the stuttering model M

Pr
IS .

Proof To prove the theorem, we need to show the following:

1. for s1, s2 ∈ S with s1Res2 there exist g1, g2 ∈ G such that (s1 p̃ g1 and s2 p̃ g2 and g1Rag2);

2. for all g ∈ G′
M

Pr
IS

, there exists s ∈ S such that s p̃ g.

We start by proving Point 1 above.

Assume s1, s2 ∈ S arbitrary and s1Res2, hence there exists e ∈ EvPr such that s1[e〉s2.

• If s1 ∈ S0, then by the construction in tr, there exists g1 ∈ G0 such that s1 p̃0 g1 and, by

p̃0 ⊂ p, it follows that s1 p̃ g1.

Recall the working hypothesis, i.e., s1Res2. So, there is an event e applied at s1 to produce

s1[e〉s2. Assume that this event e is a send event in MCAPSL under some instantiation σ, i.e.,

act(e) = A!B : (M)t for some A, B ∈ Ho, t ∈ T , M ⊂ GeneratedA. Take a ∈ ActMIS such that

e ṽ a (such an action a exists, by the construction in algorithm tr and as Lemma 3.3.17 has shown).

Recall that, in MIS, a linear series of full analysis and a full synthesis are enforced (by tr) after

the application of a. Then, let βanalzγforge be a complete intercept-analz-forge sequence such that

g1aβanalzγforgeg. By the definition of the Ra relation, g1Rag. And, by Lemma 4.3.16, s2 p̃ g. (∗)

We are looking for a state g2 such that g1Rag2 and s2pg2. Choose this state g2 to be g in (∗).

So, we have found g1, g2 ∈ G such that s1 p̃ g1 and s2 p̃ g2 and g1Rag2, for s1, s2 ∈ S and

s1 ∈ S0. (")

• If s1 ∈ S \ S0, then it means that there exists ξ a MPr
CAPSL run constructed as in algorithm

A1 [188] and s0[ξ〉s1, for some s0 ∈ S0.
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By the construction in algorithm tr, there exists g0 ∈ G such that s0 p̃0 g0. Then, by Theo-

rem B.3.1 there exists α a computation in MPr
IS , there exists g ∈ G such that g0αg1 and s1 p̃ g,

s1 p̃′ g. (∗∗)

We are looking for a state g1 ∈ G such that s1 p̃ g1. Choose this state g1 to be g in (∗∗).

So, we have found g1 as desired. It remains to find a state g2 ∈ G that complies with the

demands. For s1Res2 in the working hypothesis, assume first that it is a send event which was

applied at s1 to produce s1[e〉s2. The argument for choosing g2 as desired is analogous with the

case s1 ∈ S0 above.

For s1Res2 in the working hypothesis, assume now that the event e applied at s1 to produce

s1[e〉s2 is a receive event. Then, by the construction of algorithm tr, there exists a ∈ ActMIS such

that e ũ′ aagA (i.e., aagA is identical to e up to renaming of values and it is possible in ΥIS at g). Let

g′ ∈ G such that g1ag′. Given that e ũ′ aagA , s[e〉, g1ag′ and s p̃ g, by Lemma 4.3.21, it follows that

s2 p̃ g′ (∗ ∗ ∗).

We are looking for a state g2 such that g1Rag2 and s2 p̃ g2. Choose g′ in (∗ ∗ ∗) to be this state g2.

So, we have found g1, g2 ∈ G such that s1 p̃ g1 and s2 p̃ g2 and g1Rag2, for s1, s2 ∈ S \ S0. ("")

With (") and (""), we have proven Point 1 in this theorem, i.e., we have proven that the

relation p̃ ⊆ SCAPSL ×GIS induces a homomorphism between the models MPr
CAPSL and MPr

IS .

We proceed to prove Point 2, i.e., that this homomorphism is in fact an epimorphism between

MPr
CAPSL and the stuttering model M

Pr
IS .

Let g ∈ G′.

For g ∈ G0, by the construction of algorithm tr, there exists s0 ∈ S0 such that s0 p̃0 g0. Moreover,

p̃0 ⊆ p̃. Hence, there exists s ∈ S, s = s0 such that s p̃ g. (∗)

Let us now deal with the case where g is a non-initial state in MIS, i.e., g ∈ G′ \ G0.

Let s0 ∈ S0. The algorithm tr will construct g0 ∈ G0 such that s0 p̃ g0. (1)

Let α be some arbitrary computation in MIS such that g0αg. Let the arbitrarily obtained g ∈ G

be the non-initial state in MIS under consideration.

Let g1, . . . , gn be the states along α such that g0Ra g1, giRagi+1 and gn−1Rag, with i=1, n− 2.

Recall that Ra = (
τ
→)n a

→ (
τ
→)n, where (

τ
→)n means either no τ -actions or a complete intercept-

analz-forge sequence of them.
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Consider the computation fragment giRagi+1 in the aforementioned α.

If a is a sending action, then let η be an complete intercept-analz-forge sequence. By construction

of algorithm tr, there exists e1 ∈ EvPr such that e1 ũ a. (2)

If a is a receiving action, then by construction of algorithm tr there exists e2 ∈ EvPr such that

e2 ũ′ a. (3)

Starting with g0Rag1 and continuing with all giRagi+1 along α, “replace” η with e1 in (2) and

the receiving a with e2 in (3). Start the application of the so-obtained events at s0 in (1) and apply

them in order (i.e., these events will be enabled at the resulting MCAPSL states, due to the way

algorithm tr obtained MIS actions out of MCAPSL events). Like this, we obtain a run ξ in MCAPSL.

Let s ∈ S such that s0[ξ〉s. By Section 4.3, e1 ṽ+ η and e2 ṽ′ a, for each e1, e2, a, η as above. Then,

since we start with s0 p̃ g0, the lemmas in Section 4.3 guarantee that s p̃ g.

So, for an arbitrary g ∈ G′ \ G0 we can always “reverse engineer” the reasoning behind the

algorithm tr, taking into consideration the complete intercept-analz-forge series in M IS. These will

lead us to finding s ∈ S such that s p̃ g. (∗∗)

By (∗) and (∗∗), we prove Point 2 above.

By proving Point 1 above, we have shown that p̃ ⊆ SMCAPSL ×GMIS induces a homomorphism

from MPr
CAPSL to MPr

IS . Then, by proving Point 2 above we have shown that this homomorphism is

actually an epimorphism from MPr
CAPSL to M

Pr
IS .

Theorem 4.4.10 Let Pr be an RT protocol, MPr
CAPSL be its bounded protocol model, Υ Pr

IS be the

output of algorithm tr given MPr
CAPSL. Let MPr

IS be the unwinding of the interpreted system Υ Pr
IS .

Let r be an atomic CAPSL goal such that ρCAPSL(r) A ρIS(r).

The model MPr
CAPSL validates ρCAPSL(r) if and only if MPr

IS validates all formulations of ρIS(r).

Proof The statement we need to prove can be formally rewritten as:

for all r ∈ G such that ρCAPSL(r) A ρIS(r),

MPr
CAPSL validates ρCAPSL(r) if and only if MPr

IS |= f , for all f ∈ ρIS(r).

Let r be expressed by “SECRET t”, “Holds A:t”, for A and t arbitrary in the given context.

Synonymously, let r be an initial secrecy goal.
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“⇒:” Assume that MPr
CAPSL validates ρCAPSL(r); we need to prove that MPr

IS |= f , for all

f ∈ ρIS(r).

The fact that MPr
CAPSL validates ρCAPSL(r) is synonymous to saying that any run of MPr

CAPSL is

non-leaky [188]. Hence, for s0 ∈ S0,s ∈ S, for any arbitrary run ξ in MPr
CAPSL with s0[ξ〉s, it is the

case that t ∈ analz(sA) \ analz(sI). (hyp)

Let us assume by reductio ad absurdum that there exists f ∈ ρIS(r) such that MPr
IS 6|= f . (sup)

Recall that the formulations of ρIS(r) are:

• (S1)= AG(gEnv.values log.t 6= gagA .t), for any agA corresponding to the arbitrary principal A

in the CAPSL-formulation of the goal r (through algorithm tr, σ+(A-role) >→ΥIS agA, σ+ ∼= σ);

• (S2)=AG(¬KEnv(HoldsIσ
+

(A, t))), for σ+ ∼= σ, σ for A-role, A being the principal in the

CAPSL-formulation of the goal r.

Following (sup), let us assume first that (S1) is refuted in MPr
IS . Given the formulation of (S1),

it follows that there exists a path π = π1 . . . πn in MPr
IS such that there exists i, i ∈ 1, n such that

πi = g and gEnv.values log.t = gagA .t. (i)

Since complete intercept-analz-forge series of actions are enforced in MIS and given the persis-

tence of the value-setting in MIS, without loss of generality, we can take the state g in (i) to be a

final state of a complete intercept-analz-forge sequence in MIS (i.e., g ∈ G′
MIS

).

Since the relation p̃ is an epimorphism between MCAPSL and M IS, it follows that there exists

s ∈ S such that s p̃ g. From (i) and the definition of the p̃-relation, it follows that there exists

s ∈ S such that t ∈ analz(sI). Given how the algorithm tr has created g ∈ G and actions in MPr
IS ,

there exists a run containing s in MPr
CAPSL. Since t ∈ analz(sI), this run is leaky. Hence, this

contradicts the working hypothesis (hyp). Hence, the supposition of (S1) being refuted in MPr
IS

cannot hold. (ii)

Following (sup), let us assume now that (S2) is refuted in MPr
IS . Given the formulation of (S2),

it follows that there exists a path π = π1 . . . πn in MPr
IS such that there exists i, i ∈ 1, n such that

πi = g and there exists g′ ∈ G, g′ ∼Env g such that HoldsIσ
+

(A, t) is true at gEnv. This would be

the case if atoms log contained (t, m, agA), for some m ∈ Msg. By the semantics of analzI, this

implies that there exists g′′ ∈ G with g′Rag′′ and g′Rag′′ such that g′′.values log.t = agA.t. (iii)
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Since p̃ is an epimorphism between MCAPSL and M IS, for g′′ in (iii) there exists a state s ∈ S

such that s p̃ g′′. By (iii) and the definition of the p̃-relation, then t ∈ analz(sI). Hence, there exists

a run containing s in MPr
CAPSL. Since t ∈ analz(sI), this run is leaky. Hence, this contradicts the

working hypothesis (hyp). Hence, the supposition of (S2) being refuted in MPr
IS cannot hold. (iv)

Therefore, by (ii) and (iv), we proved the direct implication of this theorem.

“⇐:” Assume that MPr
CAPSL refutes ρCAPSL(r); we need to prove that there exists f ∈ ρIS(r)

such that MPr
IS 6|= f .

The fact that MPr
CAPSL refutes ρCAPSL(r) means that there exists a run of MPr

CAPSL which is

leaky [188]. Hence, for s0 ∈ S0, s ∈ S, there exists ξ in MPr
CAPSL with s0[ξ〉s such that t ∈

analz(sI). (hyp2)

For convenience, let us assume the non-trivial case of ξ = ξ′e, for ξ′ a run and e ∈ EvPr an

event. The trivial case when ξ is a single event is treated in the same way. Further, let s1 ∈ S such

that s0[ξ〉s1[e〉s.

So, s1Res. And as p̃ is a homomorphism between the two models involved, it follows that there

exist g1 and g2 such that s1 p̃ g1 and s p̃ g2 and g1Rag2. (v)

From (v), (hyp2), s p̃ g2 and the definition of the p̃-relation, it follows that g2Env .values log.t =

agA.t, for agA such that σ+(A-role) >→ΥIS agA, σ+ ∼= σ. (vi)

From (v) and (vi), it follows that there is a path π in MPr
IS such that g2 is on π. From (vi)

and the semantics of CTLK on MIS, it follows that MPr
IS 6|= f , where f ∈ ρIS(r) and f is the (S1)

formulation of the CAPSL goal r.

Therefore, by the above and (hyp2), we proved the inverse implication of this theorem.

Another possibility for ρCAPSL(r) A ρIS(r) is that of r being a goal of agreement on initials.

This proof is similar to the one above.

By Theorem 4.4.9 and Theorem 4.4.10 the aim of this chapter is attained. The latter shows that

our MAS formalism is aligned in the satisfaction of traditional goals with a standard semantics for

security protocols.

Another proof of preservation of satisfaction/refutation of A-related formulations of atomic

goals between the MPr
CAPSL and its MPr

IS image through algorithm tr is given in Appendix B. That
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proof is not based on homomorphisms between the underlying structures, but it inductively shows

that the p̃ relation is preserved all along respective computations in the two models. Then, if algo-

rithm A1 [188] is used in MCAPSL to decide the satisfaction/refutation of an MCAPSL formulation

of a goal, the output of algorithm A1 holds for the A-related ΥIS formulation of the goal also.

Figure 4.9 outlines the important facts and results obtained about ΥIS, our MAS-based model

for security protocol verification.
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Figure 4.9 The Model MIS and Traditional Semantics for Security Protocols
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In Appendix B we use a relation slightly weaker than the p̃-relation to prove that the MPr
CAPSL

model and the MPr
IS model are actually stuttering4 equivalent [37]. This leads to an alternative way

to showing the if MPr
CAPSL validates/refutes secrecy and/or agreement requirements of protocol Pr

so does the tr-image model MPr
IS .

Re-evaluation of the MIS Model

In Chapter 3, page 115, we evaluated the potential of our MAS model MIS. In light of the results

hereby presented, we reassess some of that evaluation and discuss the significance of this chapter.

In this chapter, by Theorem 4.4.10, we have proven that MPr
CAPSL validates secrecy and agree-

ment requirements of protocol Pr if and only if the unwound, tr-correspondent model MPr
IS does so

too. This ensures that the model we proposed in Chapter 3 is aligned with the mainstream semantics

for security protocols with respect to the analysis of atomic CAPSL goals. This was possible partially

due to Theorem 4.4.9 that showed the existence of an homomorphism between MCAPSL and MIS.

As an alternative, using the lemmas of this chapter, Theorem B.3.2 proves by structural in-

duction on an arbitrary computation of MCAPSL that if MPr
CAPSL validates/refutes secrecy and

agreement requirements of protocol Pr so does the tr-correspondent model MPr
IS . Also, in Theo-

rem B.4.3, the systems are proven to be stuttering equivalent. Figure 4.9 depicts these facts.

Given the guarantees of well-foundedness in our approach with respect to traditional CAPSL

semantics, the next chapters will describe implementations of automatically generating the ΥIS

formalisation from a CAPSL protocol description. Further, this will enable us to show the practical

use of our MAS formalism in analysing security protocols in traditional ways but also in novel

settings driven by its temporal-epistemic foundations.

This chapter and Chapter 3 together also show that MIS is more expressive that MCAPSL, i.e.,

there many formulations of security requirements in ΥIS which are novel and have no correspondence

in the standard trace-semantics for protocol executions. In fact, some formulations of the CAPSL

goals, e.g., the unlinkability property expressed in the (S2) formulation of secrecy, can be rather

likened to observational equivalence5 properties used in security verification formalisms based on

4For a summary on stuttering equivalence, see Appendix B, page B.1.2.
5See Chapter 1, page 52.
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process algebra. Whilst process algebra approaches to cryptography verification do not inherently

refer to CAPSL-described protocol and are mostly used to verify classes of protocols other than

authentication protocols, the relations between such formalisms and our MAS approach would still

appeal to investigation. In fact, a proof of correspondence between certain epistemic formulation

of security goals in our ΥIS model and formulations based on observational equivalence in applied

pi models is the subject of future line of work.

To sum up, some of the temporal-epistemic formulae expressing security requirements are vali-

dated in our MAS formalisation whenever their corresponding formulations are validated in trace-

based semantics for CAPSL-described protocols (and vice-versa). These facts offer well-founded

grounds to Chapter 5, where we present a toolkit for the automatic generation of ΥIS MAS models

from high-level CAPSL protocol descriptions.

Nevertheless, some of our temporal-epistemic formulae expressing security requirements seem

to be more likened to applied pi [2] approaches (see Chapter 2 for notions on applied pi). These

facts will be further discussed in Chapter 7.

Moreover, there are some ΥIS formulations of security requirements which are completely novel

and essentially epistemic, e.g., those involving group knowledge operators in Example 3.3.26. Chap-

ter 6 will take such novel epistemic expressions of security properties further and show the new

insight they bring into security verification and theoretical intrusion detection.



Chapter 5

PD2IS — An Attack-Finding Toolkit for

Receiver-Transparent Protocols and

Receiver-Transparent Reducible

Protocols

Motto: “The value of an idea lies in the using of it.”

(Thomas Edison)

In this chapter we model check multiagent system models for multi-session execution of au-

thentication and key-establishment protocols against temporal-epistemic specifications of their re-

quirements. The models and the specifications are formalised as per Chapter 3, i.e., ΥIS and ρIS

respectively. Their expression is given in ISPL and it is verified with the MCMAS model checker.

To achieve the above, we design and employ a model-generation toolkit called PD2IS. Its input is

a CAPSL description for a receiver-transparent, authentication and key-establishment protocol Pr

together with a user-defined protocol instantiation. The output of PD2IS consists of ISPL files de-

scribing the multiagent system model Υ Pr
IS (as per Chapter 3) and/or other related models. In the

resulting ISPL files, PD2IS also generates all the temporal-epistemic formulae included in the ρIS

expressions of the CAPSL goals of protocol Pr. We use PD2IS to generate MAS models for the multi-
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session execution of several security protocols drawn from well-established repositories [49,119]. As

PD2IS is linked to the model checker MCMAS, verification of the models is consequently performed.

We report and discuss the verification results. The implementation of PD2IS follows the algorithm

tr in Chapter 4; hence, the legitimacy of our tool is ensured by the proofs in Chapter 4. Part of the

material in this chapter was presented in [27,26].

Section 5.1 introduces the notion of receiver-transparent reducible protocols. These are receiver-

opaque protocols which can be easily converted into receiver-transparent protocols. Section 5.1

presents the procedures involved in this conversion and the implications they raise. In Chapter 3, the

ΥIS formalism was introduced to model only receiver-transparent protocols. By introducing receiver-

transparent reducible protocols, Section 5.1 extends the applicability of the ΥIS protocol-model

to include also the class of receiver-opaque protocols reducible to receiver-transparent protocols.

Section 5.2 presents a series of optimisations on the ΥIS protocol-models. These optimisations

increase the efficiency of the practical verification of such ΥIS protocol-models. Therefore, we draw

a taxonomy of increasingly efficient MAS protocol-models based on the original ΥIS semantics.

Following the ideas in algorithm tr in Chapter 4, we developed the PD2IS (Protocol Descriptions to

Interpreted Systems) tool; it generates the aforementioned taxonomy of models as ISPL programs.

Correctness guarantees for using PD2IS to verify MAS models for CAPSL-described security protocols

are founded on the theoretical results presented in Chapter 4. Section 5.3 exposes the architectural

and implementation details of PD2IS. Section 5.4 evaluates the performance of PD2IS and MCMAS.

The criteria considered in the evaluation are:

• the efficiency of PD2IS in generating different optimised/(un-)optimised ΥIS protocol-models;

• the significance of the results obtained by PD2IS and MCMAS, as an attack-finding and as

a protocol verification toolkit; other performance parameters (e.g., state-space of unwound

models, verification time, etc.) are also discussed here.

• the way in which PD2IS and MCMAS compare to other state-of-the-art tools in the field.

For ease of presentation, Table 5.1 provides a terminology-box containing all the distinct optimi-

sations and/or classes of ΥIS models that we use with PD2IS and that we discuss in this chapter.
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Concept Notation Explanation

(loose) scenario Sc a partial protocol instantiation in which principals are

mapped to participant/names (e.g., A → alice, A → alice2,

B → bob, B → greg);

fixed scenario i, i ∈ {1, . . . n} a partial protocol instantiation in which principals are

mapped to participant/names; additionally, all communica-

tion partners are assigned (e.g., (A, alice)“talks to” (B, bob),

(A, alice2) “talks to” (B, greg), (B, bob) “talks to” (A, alice2),

etc.)

model for a loose

scenario

ΥIS the IS-based model presented in Chapter 3

un-constrained

model for a fixed

scenario i

un-constrained

ΥISfixed(i)

the IS-based model presented in Chapter 3 where the initial

states are set so that they reflect the communication setting

in the a fixed scenario i

constrained

model for a fixed

scenario i

constrained

ΥISfixed(i)

the IS-based model presented in Chapter 3 where the initial

states are set so that they reflect the communication setting

in the a fixed scenario i and where the ranges of terms are

restricted according to the possibilities allowed by the fixed

communication setting in the scenario i

Table 5.1 PD2IS-driven Terminology Box

5.1 Receiver-Transparent Reducible Protocols

In Chapter 3 we defined the classes of receiver-transparent and receiver-opaque protocols. We

introduced these notions driven by a need to systematise classes of protocols for which we can

create bespoke, efficient models for IS-based verification. In this sense, the ΥIS was introduced as

a protocol-model for receiver-transparent protocols, i.e., protocols where the purported receivers
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can “peel off” all levels of encryption down to the atomic parts of the messages received (see

Definition 3.1.3). However, in certain cases the ΥIS protocol-model can also be applied to receiver-

opaque protocols, i.e., protocols where the purported receivers might be unable to decrypt a message

down to its atomic parts (see Definition 3.1.5). This will become clear by the notions exposed in

the current section.

This section introduces the notion of receiver-transparent reducible protocols. These are receiver-

opaque protocols which can be easily converted into receiver-transparent protocols. Thus, the ΥIS

protocol-model can be applied not only to RTP but also to ROP that are RT-reducible. The tool

presented in Section 5.3 generates ISPL versions of the ΥIS protocol-model for both RTP and ROP

that are RT-reducible.

On the CAPSL descriptions of certain receiver-opaque protocols we can operate some syntactic

modifications in order to transform the protocols into receiver-transparent protocols. Moreover,

such modifications have negligible impact on the MAS denotations of the protocol executions, as

the following will show.

To illustrate, first consider an excerpt of the description of the KSL [111] protocol:

Example 5.1.1 (An Excerpt of the Description of the KSL Protocol)

1. A -> B : Na, A

2. B -> S : Na, A, Nb, B

3. S -> B : {Nb, A, Kab}Kbs, {Na, B, Kab}Kas

4. B -> A : {Na, B, Kab}Kas, {Tb, A, Kab}Kbb, Nc, {Na}Kab

5. A -> B : {Nc}Kab

KSL is a receiver-opaque protocol: in rule 3, S sends to B the composite {Na, B,Kab}Kas that

B cannot decrypt. However, by inspection of the protocol description, note that rules 3 and 4 can

be rewritten as in Example 5.1.2.

Example 5.1.2 (A Modification to the Description of the KSL Protocol)

3. S -> B : {Nb, A, Kab}Kbs

3’. S -> A : {Na, B, Kab}Kas

4’. B -> A : {Tb, A, Kab}Kbb, Nc, {Na}Kab
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Through the transformation in Example 5.1.2, S sends {Na, B, Kab}Kas directly to A, therefore

B does not receive opaque composites from S any longer. Also, in the amended step 4′, B does not

need to send {Na, B,Kab}Kas to A, as S already did send {Na, B, Kab}Kas to A in step 3′.

If the transformation in Example 5.1.2 is applied to the set of rules 1–5, then the new rules

describe a protocol which is receiver-transparent. Hence, the original protocol is reducible to a

receiver-transparent protocol, in the sense formalised below.

We now proceed to refine our original clusters of receiver-transparent and receiver-opaque. Def-

inition 5.1.3 formalises the notion of opaque protocols reducible to a receiver-transparent protocol.

Definition 5.1.3 (RT Reducible Protocol) A receiver-opaque protocol Pr is reducible to a

receiver-transparent protocol (RT reducible) if for any A ∈ Ho, for all rules r ∈ RulesA of the

form r = i.B → A : t1, t2, where i > first(StepsA), B ∈ Ho and there exists t′2 ∈ composites(t2)

and t
′′

2 = OSub(t′2)last(t′2) such that t
′′

2 6∈ i-LearnedAtomsA ∪OwnedAtomsA, it is the case that:

1. there exists C ∈ Ho such that t
′′

2 ∈ i-LearnedAtomsC ∪OwnedAtomsC and

2. there exists the rule r′ = j.A→ C : X, t2, for some j ∈ Steps, j > i and X ⊆ T .

To obtain the RT protocol correspondent to the RO protocol Pr, the rules

r = i.B → A : t1, t2 (5.1)

r′ = j.A→ C : X, t2 (5.2)

are rewritten to set of rules

rnew = i.B → A : t1 (5.3)

rinterm = i′.B → C : t2 (5.4)

r′new = j.A→ C : X (5.5)

Definition 5.1.3 expresses the following. The RO protocol Pr is RT reducible if for any prin-

cipal A that receives a pair (t1, t2) at step i such that A cannot analyse composite t2 down to its

atoms, there exists a principal C that will later receive t2 from A and, moreover, C is able to analyse

t2 down to its atomic parts even at the current step i. Then, the sender B can send t2 directly to
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C (i.e., rinterm) and, at the later stage, A sends to C all of the originally intended terms, except

the composite t2 (i.e., X).

Note that, in Definition 5.1.3, the replacement of rules denoted r, r′ with their counterparts

rnew, rinterm, r′new is carried out for all opaquely received messages of the kind described. Therefore,

by the definition of RT protocols, the obtained protocol is indeed an RT protocol. For chain-

authentication protocols (e.g., the Otway-Bull protocol [39], shown in Example 3.1.4), the technique

can be applied sequentially, until an RT protocol is obtained.

In an execution of the RT protocol obtained from Pr via the transformations in Definition 5.1.3,

a C-agent possesses at step j the same atomic terms as it would possess at step j in an execution

of the original RO protocol Pr. If a B-agent is able to construct the term (t1, t2) at step i, by

persistence of values for already set atoms, the B-agent is able to compose t1 at step i and t2 at the

later, newly inserted step i′. For an A-agent, the actual setting of atomic terms does not change

(i.e., in the execution of the original protocol, the agent would only set concrete values for atoms

in the composite t1, and this is also the case in the modified protocol). A similar discussion can

be made with respect to the Dolev-Yao agent. His synthesis and analysis triggered by the term t2

are delayed by one step (i.e., from i to i′). All the rest of the protocol semantics stays unchanged.

Hence, the only amendments to be made refer to steps.

Note that since the A-role was not able to analyse the composite t2 down to its atomic parts,

the intruder could have inserted a type-flawed term at step i. By the modifications explained, the

A-role participant is no longer purported to receive t2 at step i. In this sense, such reductions can

lead to eluding some type-flaw attacks1. Nevertheless, given the discussions above, the intruder

could still insert that type-flawed term at step i′. The attack mounted in this fashion would however

have a different trace. Furthermore, the intruder can manipulate the newly introduced step i′ to

mount an attack where he impersonates B, in a way that was not possible in the original RO

protocol Pr. With PD2IS, we verify ROP which are reducible to RTP. In the light of the above, if

an attack is found on an RO protocol Pr by verification of the RT correspondent protocol of Pr,

a trace-inspection of the attack counterexample shown could be used to place the results in the

context of the original RO protocol Pr.

1See Chapter 2, page 35.
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We do not apply similar techniques to cases where the opaque term t2 is within a nested

encryption (e.g., B → A : {t1, t2}kA). A protocol with this kind of term-nesting is the Woo-Lam

protocol (shown in Example 2.2.2). In such cases, it would be hard to evaluate the preservation of

the original denotation of the protocol-executions after reducing it to an RT protocol. The class of

such receiver-opaque protocols which do not reduce to receiver-transparent protocols by the method

exposed in Definition 5.1.3 are discussed in Chapter 7 and in Appendix C.

In this section we have presented a systematic way to modify the descriptions of certain RO

protocols to render RT protocols. These modifications will allow us to verify ROP using our ΥIS

model for RTP. However, these amendments of CAPSL descriptions imply certain changes in the

meaning of the protocols’ execution. In that sense, we only apply RT-reduction to RO protocols

where these implied changes appear negligible. In Chapter 7 we will verify ROP by using bespoke

models for RO protocols. Our practice of verifying ROP both in this fashion and with such bespoke

models for ROP has indeed shown attack-trace modifications in the case of RT-reduced models. In

the same time, the verification parameters (e.g., size of state-space, verification time) exhibited by

a Υ Pr
IS model for a RT-reducible protocol Pr were shown to be much smaller that those exposed by

a model for the un-modified ROP Pr. Chapter 7 and Appendix C detail this issue. In that sense,

it is motivating to verify ROP which are RT-reducible protocols using the ΥIS model for RTP. All

things considered, the tool presented in the following sections deals with RT protocols and with

RO protocols which are RT reducible.

5.2 Optimised ΥIS Models for Protocols Scenarios

This section presents the optimisations we bring to the ΥIS model in order to maximise the model

checking performance. Advantages and disadvantages to these techniques will be discussed. The

tool presented in the following section generates IS-based models following all these optimisations.
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5.2.1 Fixed Protocol Scenarios

In this section we introduce the notion of fixed protocol scenario, e.g., a protocol instantiation that

explicitly designates the communication partners. This section also gives the initial motivation that

fixing protocol scenarios is a path to follow in order to optimise ΥIS for practical model checking

purposes.

In Chapter 2 we summarised that there are two dichotomous approaches to formal-methods ver-

ification of security protocols. One assumes a bounded number of protocol-sessions under analysis,

whereas the other assumes an unbounded such number. The first assumption is the most prevalent,

as a bounded number of protocol-sessions usually entails the decidability of several security-related

problems [188, 175]. Unfortunately, computation traces present in an unbounded protocol model

might be eluded in the corresponding protocol model for a bounded number of protocol sessions.

However, practice has proven [138, 178] that protocol attacks are usually exhibited on models for

few concurrent sessions. An example of such practice is the successful use of Lowe’s small sys-

tems [138] (recalled in Chapter 2, page 48). In Chapter 2, page 33, we explained the notion of

protocol scenario: a number of protocol sessions described by the participant-names instantiating

the principals, i.e., (A : alice1), (A : alice2), (B : bob1), (B : bob2), etc. Approaches assuming

a bounded number of protocol-sessions [138, 9, 19, 163, 181, 53] often fix the communication part-

ners implied by a scenario. Let Sc be the aforementioned scenario: (A : alice1), (A : alice2),

(B : bob1), (B : bob2), etc. Stating that, e.g., (A : alice1) “talks to” (B : bob1), (B : bob1) “talks

to” (A : alice2), (A : alice2) “talks to” (B : bob2), etc., denotes fixing the communication partners

in the scenario Sc. By a fixed protocol scenario we mean a fixed communication setting of this kind.

By contrast, a loose scenario or, simply, a scenario denotes an instantiation of the principals with

participant-names where the communication partners are not fixed.

We will now give an intuition into why models for loose scenarios can prove to be computationally

expensive when model checked. In Chapter 3, the Υ Pr
IS model formalises the execution for a loose

scenario for Pr, where Pr is a CAPSL described RT protocol. In this model the number of role-

instantiations considered is bounded, but it is usually exponential in the size of the protocol.

Consequently, the Υ Pr
IS formalism uses very large ranges for the terms (see Chapter 4, page 123, for
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min size(RX) for a sort X). Since Υ Pr
IS describes a loose scenario, the initial states are not fixed

with respect to some pre-established communication setting (e.g., in the possible initial states of

any A-agent agσ
A, the variable agσ

A.PartnerB ranges over the entire set RHo∪I). Therefore, the size

of the initial-state space in Υ Pr
IS can be very large (even for a small size protocol). It follows that

model checking the Υ Pr
IS system, given in Chapter 3, can often be infeasible in practice.

We will now suggest the main reason for which models for fixed scenarios perform better than

models for loose scenarios in the practice of model checking. Let i denote a fixed scenario for a

protocol Pr and Υ Pr
ISfixed(i) denote the MAS model for its corresponding execution. An Υ Pr

ISfixed(i)

model has the same semantics as Υ Pr
IS , except for the fact that the initial states of Υ Pr

ISfixed(i) will

be fixed according to the initial communication setting in the scenario i. Therefore, the number of

possible initial states in Υ Pr
ISfixed(i) is exponentially smaller than the number of possible initial states

of Υ Pr
IS (i.e., the decrease is by a factor of C2

|Ag|). It follows that the total number of reachable states

of Υ Pr
ISfixed(i) is much smaller than that of Υ Pr

IS . Consequently, model checking a Υ Pr
ISfixed(i) model

for a fixed scenario i of Pr is more efficient than model checking a large Υ Pr
IS model. Nevertheless,

there are certain trade-offs implied by model checking a Υ Pr
ISfixed(i) model for a fixed scenario i of

Pr instead of model checking the Υ Pr
IS model; these will be presented in Section 5.2.3.

To optimise the model checking security protocol with MCMAS, we often use models for fixed

scenarios. The tool presented in the following sections generates models for both fixed and loose

scenarios. However, there is a number N of fixed scenarios of Pr which would describe all the

communication patterns implied by a loose scenario of Pr (i.e., N > 1). Therefore, a reasonable

counterpart of the analysis of a Υ Pr
IS model for a loose scenario would be to verify all Υ Pr

ISfixed(i)

models for a fixed scenario i of Pr, for all i ∈ {1, . . . , N}. Thus, in the following, Section 5.2.2

will investigate how to enumerate such N fixed scenarios needed to counterbalance the possible

communication patterns implied by a loose scenario. The tool presented in the following sections

implements the techniques to be presented in Section 5.2.2.

5.2.2 Enumerating the Fixed Scenarios for a Protocol Pr

We begin with estimating the number of all possible fixed scenarios spawned by our method of

instantiating protocols. Let A ∈ Ho be an arbitrarily fixed principal in the signature/description
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of Pr. Assume that RHo∪I = {name1, . . . , namek} is the range for the names to be given to

the principals of Pr and to the intruder, under a set of role-substitutions ΣPr. A participant

representing A would have |Ho| − 1 communication partners (i.e., we assume the habitual case

where any role is engaged with all the other roles). Then, there are |RHo∪I||Ho|−1 possibilities to

designate the communication partners of the A-role participant. Since a participant of the A-role

could have any name in RHo∪I and since A was drawn arbitrarily from Ho, it follows that there

are p = |RHo∪I|× |Ho|× |RHo∪I||Ho|−1 communication settings to be chosen in this way. We draw

these from the entire space of RHo∪I and |RHo∪I|=k. Therefore, there are C p
k fixed scenarios to

be considered in this fashion (starting from a CAPSL description of Pr and a set of substitutions

mapping the principals over RHo∪I).

In the set of C p
k fixed scenarios, we have included some that are equivalent up to the renaming

of the communication partners, i.e., they are symmetric. For instance, if in a fixed scenario Sc we

uniformly interchange namei ∈ RHo∪I with namej ∈ RHo∪I, then the scenario obtained is equivalent

up to this renaming to the original scenario Sc. Observe that such an interchange corresponds to a

transposition in the group of permutations over the set RHo∪I. For the set of fixed scenarios that

are equivalent up to a transposition or a product of transpositions over RHo∪I, we need to count

just one scenario (i.e., a representative of the class). If we do so, we need to re-evaluate how many

fixed scenarios for Pr there are to be considered.

In general, a group G acts on a set X by applying an internal operation to its elements. For

example, the permutation group G1 = {(abcd), (bacd), (abdc), (badc)} operates on the elements a

and b over the set {a, b} and on the elements c and d over the set {c, d}. Formally, a group can

operate on any particular element x over a fixed set. This set is called the orbit of the element. In

this context, we recall the Cauchy-Frobenius lemma which gives a method of counting orbits in an

arbitrary group G. Let G be a finite group that acts on a set X. For each g ∈ G, let Xg denote the

set of elements in X that are fixed by g. Then, the Cauchy-Frobenius lemma gives the following

formula for finding the number of orbits, denoted |X/G|, as: |X/G| = 1
|G| Σ

g∈G
|Xg|.

To consider only the set of symmetry-free fixed scenarios, we are then looking for the number of

orbits in the group of transpositions over the set RHo∪I. There are C |RHo∪I|
2 elements of this group,

hence |G|=C |RHo∪I|
2 = Ck

2 . If one such transposition is fixed then the total of p = |RHo∪I|× |Ho|×
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|RHo∪I||Ho|−1 possibilities of choosing the names of the communication partners drops, by a factor

of Ck
2 , from p to p′. Then, the number of resulting scenarios is Cp′

k/2
. By Cauchy-Frobenius lemma

applied to the group of transpositions over the set RHo∪I, it follows that N =
Σ

gtransposition
αk·C

p′

k/2

Ck
2

,

αk = 0 if k is odd and αk = 1 if k is even.

If we allow for symmetry, the number N of fixed scenarios can very big indeed. For a protocol

with two roles, e.g., |Ho| = 2, and considering only two names for the participants, e.g., k = 2, there

are N=Cp
k=C3·2·33

2 =66 fixed scenarios. Out of these N scenarios, some are symmetric. Instead if

we select only the symmetry-free set of fixed scenarios, we only need to consider 36 fixed scenarios.

However, if we raise the range of names to k = 3 and keep |Ho| = 2, then the number of fixed,

non-symmetric scenarios reaches the order of 3 · 104.

In the first case of N = Cp
k scenarios, we also counted scenarios in which, e.g., alice as an A-role

“talks to” alice as a B-role, for A 6= B (i.e., alice “talks to” herself). To capture certain attacks,

we will not dismiss this kind of communication setting.

The above shows how many fixed scenarios are needed to cover the space of scenarios over

RHo∪I. In the rest of the section, we discuss the case of fixed scenarios covering other ranges for

the participant-names.

Note that part of the space for the fixed scenarios can be pruned by explicitly giving ΣPr. For

instance, if ag1.id is already fixed to σ(A), for some σ ∈ ΣPr, then the number p drops by a factor

of |RHo∪I|. Another way to reduce number of the fixed scenarios is to enforce the fact that each

particular role is mapped into a different range (e.g., for any X, Y ∈ Ho, X 6= Y , RX 6= RY ).

These respective ranges need not necessarily be disjoint, but each should restrict the domain over

which some principal A ranges (i.e., it is to be enforced that |RA| < |RHo∪I|). Such a restriction

is reasonable: e.g., the servers of a Swiss bank will have IP ranges different from those of their

American clients.

Enumerating all symmetry-free fixed scenarios means generating all symmetry-free combinations

over Rrole1× . . .×Rrolen (irrespective of whether Rrolei is RHo∪I or a more restricted range). Given

the set Rrolei for each i = 1, n, a trivial way to achieve the above is to generate the generalised

Cartesian product Rrole1× . . .×Rrolen and then eliminate the ordered n-tuples that are symmetric.
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In the tool presented in the following section, we implement all the aforementioned methods of

generating fixed scenarios. The procedures to generate all ordered n-tuples and all symmetry-free

ordered n-tuples are presented in Appendix A, Section A.2.

Other reduction techniques for protocol models, looking at the symmetry of the actual protocol

data, have been recently advanced [56]. We differentiate ourselves from those in that we hereby

discuss how protocol scenarios impact the size of the protocol models and we do not make an

in-depth enquiry into the symmetry of the protocol.

A more generic method (un-tailored for a specific protocol model) for calculating the number

of possible protocol scenarios is presented in [62].

The previous section has explained why fixed scenarios are preferable to loose scenarios when

modelling protocol for practical verification. In this section we have investigated how many fixed

scenarios spawn a protocol instantiation. We have evaluated how many of these are symmetry-free,

i.e., worth analysing in practice. At a high-level, we have presented the methods of enumerat-

ing/generating all such scenarios. The tool we use for model-generation, PD2IS, implements these

methods. Section 5.3 will detail this. In the following section, we proceed to explain the following:

1) how to modify the ΥIS model for loose scenarios to encode fixed protocol scenarios; 2) how

to constrain these models in order to increase the performance of model checking these models; 3)

which are the trade-offs implied by the aforementioned, practice-driven constraints.

5.2.3 Constrained ΥIS Models for Fixed Scenarios

In this section we show means of increasing the efficiency of the verification process by applying

further constraints to the ΥIS models for fixed scenarios. The resulting trade-offs are also reported.

The tool we developed to generate of protocol-models produced all flavours of models constrained

in the fashion presented in this section.

Let Υ Pr
ISfixed(i) be an Υ Pr

IS model for a fixed scenarios i of a given protocol Pr, for i ∈ {1, . . . , N}.

As before, let Υ Pr
ISfixed(i) be identical to Υ Pr

IS except for the fixing of the communication partners

in the initial states of Υ Pr
ISfixed(i) according to the scenario i. We will refer to such models as un-

constrained ΥIS for fixed protocol scenarios. Then, the parallel composition of verifying all Υ Pr
ISfixed(i),
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i.e., for all i ∈ {1, . . . , N}, will cover the same state-space of the original, general Υ Pr
IS . However,

some generality is lost. For instance, some formulae given by the expression ρIS(p) will be trivially

validated in Υ Pr
ISfixed(i) (e.g., the formulation for aliveness of bob if we fix j.PartnerB = bob in the

initial states of agent j). Furthermore, by using models for fixed scenarios, the results of verifying

Υ Pr
ISfixed(i) against the distributed knowledge of all agents with the same identity will not usually

imply the same results holding on Υ Pr
IS (i.e., in some formulae in Section 3.3.3, page 115, DGr is

used inside formulations of goals, where Gr is the group of all agents ag with the same ag.id).

Verifying Υ Pr
ISfixed(i) is more efficient than verifying Υ Pr

IS . However, we already exemplified some of

the compromises in sequentially verifying all Υ Pr
ISfixed(i). If we are ready to accept such trade-offs, we

can optimise our models further. As we will show in the following, these optimisations will improve

the performance of the model checking and will still find protocol attacks. These optimisations

imply more constraints on the models for fixed scenarios and bring us closer to analysing MAS

homologues of Lowe’s small systems. For instance, consider each Υ Pr
ISfixed(i) to be an Υ Pr

IS model, not

only its initial states fixed, but obtained under a smaller instantiation. More precisely, if in the

scenario i, a series of participants are not part of the communication, all of their role-substitutions

can be dismissed. Then, the ranges of atomic-terms, the ranges of messages, the set of possible

actions, etc., become smaller. Hence, the reachable state space of Υ Pr
ISfixed(i) becomes smaller. We

will expose further optimisations along these lines. For illustration purposes, let ΥNSPK
IS denote the

ΥIS model for NSPK. In ΥNSPK
IS , agA.NB ranges over RN (i.e., since NB ∈ LearnedAtomsA, agA

could accept any value-nonce for NB from any B-role player). Now, let i be a fixed scenario for an

execution of the NSPK protocol that stipulates an A-role participant alice “talking to” a B-role

participant bob. Then, in the initial states of ΥNSPK
ISfixed(i)

, the assignment agA.PartnerB := bob is

declared, where agB.id = bob for some agB. Therefore, in ΥNSPK
ISfixed(i)

we can restrict the range of

agA.NB from RN to {agB.NB} ∪ σI(N ). This is reasonable, as in the fixed communication setting

above, agA can only receives values for NB from agB or possibly from the intruder. Given a fixed

scenario, its ΥIS model restricted in this way is denoted as the constrained ΥIS model.

Let ϕ be a generic CTLK formula expressed through ρIS in Υ Pr
IS . It is possible that the formula ϕ

does not make sense in the constrained Υ Pr
ISfixed(i) model for some fixed scenario i (i.e., due to the

pruning of the state-space of Υ Pr
IS , it can be that ϕ is not well-founded with respect to the smaller
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set of variables and their respective ranges employed in Υ Pr
ISfixed(i)). If ϕ is well-founded in Υ Pr

ISfixed(i),

then the aforementioned trade-offs in verifying ϕ are applicable in this case too. The next section

will show a partial remedy to this issue.

We have suggested how verifying different flavours of Υ Pr
ISfixed(i) can be more efficient than ver-

ifying Υ Pr
IS . However, the number N of fixed scenarios is exponential in the size of the protocol

Pr. Then, verifying all N models Υ Pr
ISfixed(i), for all i = 1, N , remains expensive. To diminish the

number of systems to verify, we can sequentially verify models corresponding to increasingly larger

scenarios until an attack is found. For instance, we start with a set of constrained models, each

corresponding to a fixed, non-symmetric scenario over a set of participant-names of size l. If no

attack is found on any of the models for scenarios of size l, we then verify each constrained model

corresponding to a fixed non-symmetric scenarios over a set of names of size l + 1, etc. We start

with a size l that is large enough to ensure that initially the agents do not know the communication

schema (see Chapter 4, page 124). In general, if |Ho| = 2 then the size of the range RHo∪I should

be at least 4 (i.e., one name for each honest principal, one name for the intruder and one name

for obfuscating the initial setup, such that some agA does not trivially know the identity of the

intruder).

For invariant properties2 expressed in CTLK, we can try to optimise the protocol analysis with-

out trading off on the verification of knowledge properties as above. This alternative method is to

verify the large Υ Pr
IS models for a loose scenario of Pr by using a distributed version of MCMAS [108].

This branch of MCMAS will parallelise the model Υ Pr
IS by using criteria other than the spawning of

sub-models for all fixed scenarios. Then, it will concurrently verify each such parallel share. In

later sections, we will report on using this method to analyse Υ Pr
IS models for loose scenarios of Pr.

To conclude, in this section we have presented means of optimising the ΥIS model in order to

maximise the model checking performance. The ΥIS formalism introduced in Chapter 3 mirrored a

model for loose protocol scenarios (i.e., protocols where principals are instantiated to a potentially

exponential number of participants). In turn, this section has advanced un-constrained models for

fixed scenarios and constrained models for fixed scenarios. Figure 5.1 synthesises the discussions

above, i.e., going from general to specific in modelling security protocols executions in a MAS set-

2An invariant property expressed in CTLK has the modality AG at the root of the parse tree.
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Figure 5.1 General and Optimised ΥIS Models Generated by PD2IS

ting. Our model-generation tool, PD2IS, produces all these flavours of protocol-models, i.e., the ΥIS

formalisation for loose protocol scenarios, plus all the implied constrained and un-constrained mod-

els for fixed protocol scenarios. With MCMAS, we verify all the corresponding ISPL files or a part of

them until an attack is found. Amongst other performance evaluations, the next sections will com-

pare the results of generating/analysing the most specific with the results of generating/analysing

the most general of these models.

5.3 Automatic Compilation of Protocol Scenarios into In-

terpreted Systems

In this section we detail on the toolkit PD2IS (Protocol Descriptions to Interpreted Systems) which

we developed to generate MAS models upon the semantics described in Chapter 3 and MAS models

optimised as discussed in Section 5.2. In brief, our toolkit generates the ΥIS model for a loose

scenario of some protocol Pr, the constrained and unconstrained Υ Pr
ISfixed(i) models for all fixed

scenarios i of protocol Pr. The protocol Pr is a receiver-transparent or a receiver-transparent

reducible protocol, given in CAPSL. PD2IS produces the aforementioned IS-based models as ISPL

programs. The section proceeds as follows: 1) some high level details about the characteristics of
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PD2IS are given; 2) details of the architecture and implementation of PD2IS are provided. The

following section evaluates the methodology of verifying protocols with PD2IS and MCMAS.

The input to PD2IS is a file designating a CAPSL protocol description together with some addi-

tional parameters. These parameters describe either a loose protocol scenario or a fixed protocol

scenario. Let us consider first the case where the input describes a loose protocol scenario. Then,

the input contains the principal instantiations (e.g., participant-names for instantiating the princi-

pals are given) and some bounds on the size of the scenario to be considered (e.g., the maximum

number of A-agents, etc.). In this case, PD2IS can generate the ISPL file for a generic Υ Pr
IS as per

Chapter 3 (i.e., calculating all minimal ranges, etc.). Alternatively, PD2IS can generate all possible

constrained and un-constrained Υ Pr
ISfixed

models for the fixed scenarios spawning the loose scenario.

Let us consider now the case where the input describes a fixed scenario (i.e., not only a principal-

instantiation, but also a fixed, initial communication setting). Then, PD2IS will then generate the

constrained and the un-constrained Υ Pr
ISfixed

models for the fixed scenarios.

PD2IS systematically generates the set of propositions and formulae corresponding to the ρIS

expressions of the CAPSL goals. PD2IS automatically inserts these temporal-epistemic formulae in

the ISPL file for the model under generation. MCMAS is called for each ISPL file produced by PD2IS.

MCMAS returns the calls either by certifying that the specifications are satisfied or by returning

detailed counterexamples. These are used by PD2IS to report details of the attack found on the

protocol (i.e., the failure of one or more of formulae corresponding to the goals). We proceed with

details about the architecture and implementation of PD2IS.

5.3.1 PD2IS: Architecture

From an architectural point of view PD2IS comprises six modules: formalisation, parser,

unmarshaller, data-setup, producer and utils. The architecture of PD2IS is shown in Fig-

ure 5.2; it follows the Model-View-Controller (MVC) design pattern [88] as sketched below:

1. processedInput ← Formalisation(userInput)

2. resultsDataAccess ← Parser(processedInput);



5.3 Automatic Compilation of Protocol Scenarios into Interpreted Systems 193

3. Unmarshaller.unmarshall(resultsDataAccess);

4. resultsFromBusinessLogic ← DataSetup.setup(...);

5. isplOutput ← Producer(resultsFromBusinessLogic)

The module formalisation is composed of two sub-modules: the description sub-module

and the scenario-generator sub-module. The description sub-module consists of a collection

of XML schemas (i.e, XSD files) that encode the protocol signature and the term algebra as given

in Chapter 3 (i.e., variables and their ranges, typed and untyped messages, principals, and goals

for any generic RT protocol). The input is given through an XML file designating the CAPSL de-

scription to be parsed and describing a scenario. In Section 5.3.2 we give an example of the XML

schema for an atomic term of a signature/description and an example of such an XML input file.

The routines in the scenario-generator sub-module scan part of the description file and input

parameters and generate the data structures for (all) the (fixed) scenarios and the formulae to be

checked. The parser module scans the CAPSL description and, using information provided by the

scenario-generator, it populates more detailed data structures. At the same time, it outputs

(i.e., marshals) XML files compliant with the schemas provided for any protocol signature. These XML

files describe at a lower level the previously generated scenarios and the specifications to be gen-

erated/verified. More precisely, abstract, succinct representations of instantiated roles, messages,

atoms etc., are given through these XML files. They draw the relation between a protocol scenario

and a protocol-execution model. An example of such an XML file is provided in Section 5.3.2. The

modules above, from the point of view of the MVC pattern, are comprised in the controller part

of the application.

The unmarshaller module then converts (i.e., unmarshals) the XML files generated by the parser

module into JAVA objects and populates the data structures describing the semantics to be adopted.

Finally, the data-setup module processes all these data structures in order to produce the full IS

semantics described in Chapter 3. Thus, it is the data-setup module that implements most of

the systematisation behind the translation from a standard protocol model into our multiagent

system formalism (i.e., the algorithm tr in Chapter 4). As far as the MVC pattern is concerned,

the unmarshaller and the data-setup modules constitute the model part of the application.
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Figure 5.2 The MVC Architecture of PD2IS
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Then, the producer module simply outputs the resulting structures into the ISPL format (i.e.,

it is the view part of the MVC design).

The utils module contains classes which are helpers to the implementation of the other mod-

ules.

By using the MVC pattern in the architecture of PD2IS, we created an expandable and reusable

platform. For instance, we use an intermediate format to describe the semantics of the models

under generation, i.e., the XML files generated. By implementing different data-setup and producer

modules we can reuse the information in these XML files to compile into different protocol semantics

and different low-level languages (other than our MAS-based semantics and ISPL, respectively).

Conversely, by replacing the parser module and keeping the rest in place, we can get a method

of compiling IS models into ISPL starting from security protocols expressed in other high-level

languages but CAPSL (e.g., HLSPL). The architecture of PD2IS is decoupled not only in an MVC style,

but also such that it mirrors the methodology of generating ΥIS model as described in Chapter 3

and Chapter 4 (i.e., algorithm tr).

5.3.2 PD2IS: Implementation Details

PD2IS is coded in JAVA 5 and it is available open-source at [28]. We now present the implemen-

tation details behind each module of PD2IS.

The description sub-module contains XML schemas (i.e., XSD files) underlying a signature

similar to the one presented in Chapter 3. In PD2IS, we are dealing with a larger signature than

the signature S used in Chapter 3 and Chapter 4. In that respect, the set S of sorts used in

PD2IS is extended to contain timestamp, field, generalised timestamp, session-key, etc. The set of

cryptographic primitives supported for compilation with PD2IS is also larger than the one presented

in Chapter 3 and Chapter 4. In the excerpt of an XSD schema given in Figure 5.3, we can observe this

extension of the signature S within the PD2IS toolkit (see the XSD-element called BasicType). We

note that an atomic term is nevertheless described within PD2IS exactly as in Chapter 3. Hence, an

atomic term is characterised by a type (e.g., sort), a name (e.g., the symbolic term) and a possible

range. In PD2IS, each atomic term is also associated with an identifier (i.e., in the excerpt from
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Figure 5.3 An Excerpt of the XSD Schema for Atomic Terms
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Atom.xsd given in Figure 5.3, note the field called id).

Figure 5.4 An Example of User-Input to PD2IS

We now explain the input given to PD2IS; Figure 5.4 gives an example of a input file (describing a

fixed scenario for the NSPK protocol). It indicates the CAPSL protocol description to be parsed (see

the elements folder and descriptionFile in the XML file in Figure 5.4). Through the elements called

instance, the user gives a scenario, but not a fixed one (i.e., up to some bound, the user provides
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participant-names for each role). Optionally, the user can associate a number with each instance

(in Figure 5.4, see the attribute id); this identifier is used mainly in specifying a fixed scenario, if

necessary. If the XML element intruderHonest is present in the input file, then the Dolev-Yao insider

is named according to the XML attribute alias of this element. To avoid trivial knowledge of, e.g.,

the intruder’s identity, the range of the honest participants will be larger than the one provided

by the user. The entry called intruderPower states how many values for a nonce/short-term key

are to be assigned to the Dolev-Yao insider in the model. As mentioned before, the intruder does

not get more power if he is assigned more than one nonce-value; this is because one nonce nI can

generate {nI}KI
, {{nI}KI

}KI
, . . ., etc. However, attacks of shorter traces are possible if more data

is provided to the intruder from the initial setup. The XML input file can terminate here. In this

case, PD2IS can generate: 1) the ISPL file for the Υ Pr
IS model corresponding to the loose scenario

depicted so far and 2) the ISPL files for constrained and un-constrained models Υ Pr
ISfixed

for the

fixed scenarios that can be unwound for this input (e.g., for the input in Figure 5.4, PD2IS will

consider all scenarios of size 2 over a corresponding range of names and all scenarios of size 3 under

the corresponding range of names). If the input file ends here, then the user will be prompted to

direct PD2IS to generate the models either according to option 1 or according to option 2 above.

If the input file does continue, then it means that the user is providing a fixed scenario as input

(i.e., under the element called initialCommunication, the user gives the communication partners

of the instances already stipulated). Then, PD2IS will generate the ISPL files for constrained and

un-constrained models for the fixed scenario given as input.

We proceed with details of the implementation of PD2IS modules other than the description

module. The parser module scans the CAPSL description indicated in the input file. Figure 5.5 gives

one example of an XML file generated by the parser module and compliant to the schema Atom.xsd

presented in Figure 5.3. It exemplifies a small part of the results produced by PD2IS when parsing

the description for the KSL [111] protocol description. Figure 5.5 shows that, in the KSL protocol,

there is an atom Kab that is a session-key and that appears in composite {Nb, A, Kab}Kbs of

message number 3. Through the XML attribute called propRole, the file Atom.xsd states that Kab

is an atom owned by the S-role (i.e., Kab ∈ OwnedAtomsS). Within the implementation, Kab

will be identified as atom 10 (i.e., according to element id). The session-key Kab will range in the
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Figure 5.5 An XML File for an Atomic Term in the KSL Protocol

model to-be-generated over the set {atom0, . . . , atom7} (hence, the XML element called values).

Whilst working with an extended cryptographic signature, PD2IS does not assume full-typing

(as in Chapter 3). Instead it implements tagging schemes similar to those in [102], where certain

different sorts and/or composites can bear the same type-tag (e.g., nonces and short-term keys).

Thus, the parser module maps nonces and short-term keys over the same ranges. This is due

to the necessity of capturing type-flaw attacks (e.g., the intruder might insert into a fraudulent

message a value that he learned from a nonce, as if it were a short-term key). In the data-setup

module the semantics of synth (as per Section 3.3.1) is generalised to support this extension.

As part of the signature extension, the toolkit supports atoms of sort timestamp. Such variables

are mapped over bounded-integers. In order to support timestamps, in the data-setup module we

implement a MAS semantics which extends the one in Chapter 3. In brief, an extra variable named

clock ranging over bounded-integers is added to the local state of each agent whose role views the

manipulation of timestamps. These variables are incremented synchronously for all agents at each

joint action which is not of type analz or synth. The semantics of matching (i.e., out match) is

extended as follows: a timestamp is acceptable if it is no “older” than x-units of times in comparison

with the value of the variable clock. The threshold x for accepting timestamps varies with the size of

the protocol and the size of the scenarios. For MCMAS-wise optimisation, we also model timestamps

and clocks ranging over an enumeration type (i.e., we use {number1, number2, . . . , numberN},

for N a fixed integer) instead of the built-in bounded integer type. Firstly, in such a modelling of

timestamps, the underlying BDDs are smaller. Secondly, it enables us to use generalised timestamps

in our framework; we model a generalised timestamp as a variable ranging over the Cartesian
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product of the ranges for nonces and the enumeration-range for timestamps. Making the agent-

names and their respective public keys range over the same set of values is another optimisation

that we implemented in PD2IS (i.e., to reduce the state-space triggered by the PD2IS-produced

models).

In the evolution function of an agent agA, it is often the case of comparing agA.t = Environment.t

(e.g., for the implementation of out match where agA is checking that what she received is in ac-

cordance with something she previously held). Also, the denotations of predicate symbols usually

contain comparisons of the kind agA.t = agB.t. Note however that the ranges for Environment.t,

agA.t and/or agB.t can be different (especially when dealing with constrained models for fixed pro-

tocol scenarios). We have therefore extended MCMAS to support comparison between terms that do

not have the same range, but one is ranging over a subset of the codomain of the other. In doing so,

we have tackled some of the inconveniences in using constrained models for fixed protocol scenarios.

In the case of generating generic models Υ Pr
IS for loose scenarios and/or un-constrained model

for fixed scenarios, the procedures in the data-setup module that generate ranges for composites

and messages can be expensive. Given the specific ranges for atomic-terms, these procedures

generate (as explained in Section 5.2.2) either all the ordered n-tuples (i.e., the generalised Cartesian

products) or only the symmetry-free ordered n-tuples. For a medium size protocol (e.g., 5 rules)

and a loose scenario of size greater than 6, practice showed that it is possible that the JAVA Virtual

Machine exceeds its memory limits. For generic models for large size loose scenarios/protocols, we

have consequently implemented the writing to disk of the ordered n-tuples generated (i.e., in order

to store the generalised Cartesian product, the data-setup module does write some data to disk

instead of the original case where it uses it all to populate JAVA objects). At ISPL generation time,

we retrieve the data from the disk. This method lengthens the model-generation time. Though

implemented we rarely faced the need to use this intricate generation method. This is because

attacks are usually found by verifying models for loose scenarios and/or un-constrained model for

fixed scenarios of small sizes (e.g., scenarios implying 3-4 agents). For the most intricate protocols

tested, the generation of these models is a matter of maximum 3 minutes.

The bottleneck of generating all the possible-message space in the case of generic models Υ Pr
IS

for loose scenarios and/or un-constrained model for fixed scenarios is therefore another argument
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to use constrained models for fixed fixed scenarios. In the case of the latter, the generation does

not require writing to disk and it is a matter of few seconds.

We will now present aspects of the implementation of the generation of formulae. This line

follows in itself the MVC design pattern too. The parser module processes CAPSL goals into

assertion objects. The hierarchy of assertions is implemented through interfaces and classes in the

utils module. Assertions follow the grammar of the atomic and complex CAPSL goals. Thus,

assertions can be simple and/or of different levels of nesting. They are also split in atomic and

epistemic. The most general assertion class (called Assertion) is characterised by a type, a subject

role, an object role and a data array (e.g., PRECEDES A:B | na yields an assertion of type precedes,

with A as the subject role, B as the object role and the data array filled with the atom na).

Given the instantiations, the data-setup module processes assertions per role into predicates per

agents. For one assertion, there could be several predicates admissible in the translation. This is

aligned with the hierarchy for formulae corresponding to expression-relation ρIS in Chapter 3 . To

these sets of predicates, we add others which correspond to Gollman’s goals (see [93] or Chapter 2,

page 49). We systematically separate formulae into CTL and CTLK reachability, reactivity and

safety (see Chapter 2, page 26). The producer module will finally translate these into CTLK

formulae expressed in the ISPL syntax.

We supply some excerpts from the ISPL programs generated by the producer model in PD2IS

from an NSPK protocol scenario. The first code-sample is a very simplified and commented version

of the code generated for an A-agent. It can be seen that agents’ local variables encode stores ; the

agents’ actions and local protocols contain instantiated send and receive actions; the agents’ local

evolutions are described by appropriate matching preconditions and setting postconditions.

Example 5.3.1 Simplified ISPL code for an A-agent

Agent ag_A -- Encodes an NSPK instance (alice, A-role)

Vars: --Encodes <stores>

-- The Id of the agent ag_A is stored in A:

A: {alice};

--The communication partner B is fixed:

B: {bob1, bob2, greg1, greg2}

Na, Nb: {r1,r2,...};

Step: {0,1,2,3};

end Vars
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Protocol: --Encodes <A-role>

--Step 0:

Na=X and Step=0: {send_enc_alice_X_pubkey_bob1, send_enc_alice_X_pubkey_bob2, .... };

--A rule as above for each X in the nonce range {r1,r2,...}

--Step 1:

Step=1: {receive};

--Step 2:

Na=X and Nb=Y and Step=2: {send_enc_X_Y_pubkey_bob1, send_enc_X_Y_pubkey_bob1, .. };

--A rule as above for all X,Y in the nonce range {r1,r2,...}

--Step 3:

Step=3: {empty};

end Protocol

Evolution:

--Step 0 and step 2:

Step=Step+1

if

Action=send_X and Env.Action=intercept_X;

--A rule as above for each message X

--Step 1:

Step=Step+1 and

Nb=Y --<SET> assigns nonce Y to X

if

Action=receive_enc_Na_Nb_pubkey_alice and

Env.Action=transmit_enc_X_Y_pubkey_alice and

Na=X; --<OUT_MATCH> checks the consistency of Na

--A rule as above for all X,Y in the nonce range {r1,r2,...}

--Step 3

-- No update to local state

end Evolution

The local variables of the Environment cited below denote the list POOL described in Chapter 3.

The Environment’s protocol section and evolution section encode an optimisation of the Dolev-

Yao deductions described in Chapter 3 (e.g., restricted protocol function upon the knowledge-set,

analysis carried out only with the view of composing messages due at the next step, etc.). Below

we give a simplified version of an ISPL code snippet for the Environment agent in a model for an

NSPK scenario.

Example 5.3.2 A simplified fragment for the Environment agent in ISPL
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Vars:

knows_X:boolean; -- Represents whether nonce X is in the knowledge set

--A line as above for each X in the nonce range {r1,r2,...}

...

end Vars

Protocol:

--Transmit actions enabled when nonce X is in the knowledge-set:

knows_X: {transmit_enc_alice_X_pubkey_bob1, transmit_enc_alice_X_pubkey_bob2, ...};

--A rule as above for each X in the nonce range {r1,r2,...}

...

end Protocol

Evolution:

--DY decomposition upon intercept of enc_A_Na_pubkey_B:

knows_X = true

if

Action=intercept_enc_alice_X_pubkey_greg1 and

ag_A.Action=send_enc_alice_X_pubkey_greg1

--A rule as above for each X in the nonce range {r1, r2, ...}

--and for each A-agent ag_A

...

end Evolution

The actual ISPL files produced by PD2IS are less intuitive than the ones presented above as they

are heavily optimised to reduce the state-space of the generated model. For instance, a lot of the

communication process is simplified by the use of ISPL local observable and observable variables.

This makes it possible for some of the ISPL code corresponding to the evolution function of the

Dolev-Yao agent to be placed within the honest agents’ evolution lines, triggering the direct setting

of variables in the respective agents.

A snippet of the formulae generated in ISPL for an NSPK scenario is shown in Figure 5.6.

To sum up, in Sections 5.3.1 and 5.3.2 we have presented the architectural and the implementa-

tion details of the PD2IS toolkit. In summary, the PD2IS toolkit takes CAPSL protocol description,

processes it into IS formalisations based on the ΥIS formalism and produces (several) corresponding

optimised ISPL files ready to be verified by MCMAS.

5.4 PD2IS-based Protocol Verification

In this section we evaluate our MAS-based methodology to verify security protocols. In other

words, this section presents and discusses the experiments of automatic protocol-model generation



5.4 PD2IS-based Protocol Verification 204

Figure 5.6 An Excerpt of the CTLK Formulae for a Fixed NSPK Scenario
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and temporal-epistemic model checking carried out with the PD2IS toolkit and the MCMAS model

checker, respectively.

To begin with, we recall that PD2IS and MCMAS can be used to generate and verify: 1) the

Υ Pr
IS model for a loose protocol scenario (i.e., a principal-instantiation of exponential dimensions

in the size of the protocol) the protocol Pr; 2) the Υ Pr
ISfixed(i)

model for a fixed scenario i of the

protocol Pr. In the first case, given the generality of the problem approached, PD2IS and MCMAS

are to be considered a protocol analysis methodology. In the second, given the model-abstractions

operated within Υ Pr
ISfixed(i)

, PD2IS and MCMAS are to be considered an attack-finding methodology.

Amongst other aspects, in this section we are going to evaluate these both facets incorporated in

PD2IS and MCMAS.

We explain the structure of this section, with respect to evaluating our methodology.

• Section 5.4.1 evaluates the significance of the results obtained by PD2IS and MCMAS when

used as an attack-finding methodology. We draw several well known authentication and key-

establishment protocols from customary repositories [49, 119]. Models for numerous fixed

scenarios of each protocol are automatically generated and checked against automatically

produced temporal-epistemic formulation of their respective goals. Well-established settings

and novel settings (e.g., leaked keys) are explored in the verification process. We report

and discuss both the attacks found and the parameters (e.g., state-space of unwound models,

verification time, etc.) of the verification lead. To emphasise our AI-inspired methodology, the

last part of Section 5.4.1 evaluates separately the results concerning the satisfaction/refutation

of essentially epistemic goals.

• Section 5.4.2 evaluates the performance of PD2IS and MCMAS when used as a general pro-

tocol verification methodology. In that sense, models for large, loose protocol scenarios are

generated and verified. At the same time, Section 5.4.2 draws a comparison between the

performance of PD2IS and MCMAS in generating/verifying these models for loose scenarios and

the models for fixed scenarios (discussed previously, in Section 5.4.1).

• Section 5.4.3 compares the performance in attack-finding for security protocols of PD2IS and

MCMAS versus other state-of-the-art tools in the field.
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5.4.1 PD2IS: Attack-finding Evaluation

In our framework, an attack on a protocol Pr is a trace of Υ Pr
IS or Υ Pr

ISfixed(i)
exhibiting the failure

of a CTLK formula included in the expression ρIS of a security goal of the protocol Pr, where i is

some fixed scenario of Pr. In practice, an attack on Pr is found if MCMAS outputs a counterexample

trace exhibiting a CTLK formula, one of the ρIS-expressions of a security goal of the protocol Pr

failing.

To evaluate the PD2IS tool in a systematic way, we ran tests on protocol descriptions from the

CAPSL-version of the Clark-Jacob’s library [49] and the SPORE library [119]. In addition to the

atomic CAPSL goals considered traditionally, we added a number of complex CAPSL goals to each

CAPSL input file. Specifically, we included complex authentication goals with up to two levels of

nesting of knowledge operators (as per Example 3.2.1 and Example 3.2.2). Table 5.2 reports on the

experimental results of verifying several PD2IS-generated constrained models for fixed scenarios of

the protocols in the libraries mentioned above.

The first column in the table specifies the protocol being checked; KSL1 and KSL2 stand for

variants of the Kerberos protocol described in [111] and [136] respectively; these are RO proto-

cols which are RT reducible, whereas the others are RT protocols. The second column indicates

whether we assume that keys can be leaked (“learned”) to the intruder. This is in order to capture

known-key attacks (as reviewed in Chapter 2, page 35). The third column reports the number of

atomic CAPSL goals for which MCMAS found an attack. The fourth gives the average verification time

that MCMAS took to verify a single ISPL file (i.e., one single, constrained model for a fixed scenario)

while searching for possible attacks. Differently from other approaches, in our approach we system-

atically generate the ISPL files corresponding to each fixed protocol scenario possible under some

given principal-name instantiation. In this case, the table reports the results obtained through

the verification of constrained models for fixed scenarios with up to 3 agents per protocol role,

generated with PD2IS. Each of these files were passed to MCMAS, one by one, until either an attack

on an atomic goal was found or all the generated files had been checked. The last column reports

the total time used by PD2IS and MCMAS while performing these checks sequentially. Note that in

principle the various ISPL files could be checked in parallel thereby reducing the total verification
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Protocol Learned Keys Attacks Avg. time (secs) Total time (secs)

ISO1PUCCF
off none 1 23

on 1 1 3

ISO2PUCCF
off none 2 42

on 2 2 6

ISOSK1PU
off none 2 46

on 1 1 2

ISOSK2PU
off none 3 63

on 2 2 8

ISOSK3PM
off none 4 80

on 4 3 13

AndrewRPC - 2 4 60

NSPK - 1 1 19

WideMouthFrog - 1 7 56

KSL1 - 1 7 55

KSL2 - 1 12 183

Table 5.2 Attack-finding with PD2IS
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time.

By inspecting row 7 of Table 5.2, we observe that MCMAS verified 19 PD2IS-generated models each

corresponding to a NPSK fixed scenario until the Lowe attack [135] was exhibited. The average

time of verifying these models was just over one second. Therefore, we conclude that PD2IS and

MCMAS can be used as an attack-finding toolkit with fast response times. In practice, most protocol

verification tools do not run averaged tests of these kind. In turn, scenarios prone to attack are

modelled and verified individually. In that context, the model corresponding precisely to the fixed

scenario for Lowe attack [135] is instantaneously generated by PD2IS and it is verified by MCMAS in

just under one second (we used tstime to measure the performance). Comparably promising times

are shown also in the case of the more complicated, RT-reducible protocols like KSL [111] (see the

last two rows of Table 5.2).

Table 5.2 does not report the size of the unwound models (e.g., state-space, number of BDD

variables used by MCMAS). This is because in the case of attack-finding on models for fixed scenarios

these were found unproblematic. Along the same lines, the PD2IS generation of these models

is instantaneous. In turn, models for unfixed scenarios are larger and therefore exhibit a greater

complexity in generation and/or verification. Section 5.4.2 will detail these models and the statistics

relating them to PD2IS and MCMAS.

As Table 5.2 shows, several attacks were found using PD2IS and MCMAS. A large number of

the counterexamples thus exhibited symbolised replay, impersonation and interleaving attacks, all

of which were known to exist for the protocols considered (for the Andrew Secure RPC, NSPK,

KSL, Wide Mouth Frog, Woo-Lam protocols). MCMAS also reported the shortest path depicting

these attacks. This intuitively certifies the methodology and its implementation. In Figure 5.7, we

present the minimal representation of the famous Lowe attack [135] on NSPK, as it is found with

PD2IS and MCMAS. On the timed-model, for KSL, we have captured the attack on the freshness of

timestamps, originally found in [136], by pen-and-paper methods. For the ISO protocols analysed,

testing the setting of leaked long-term keys is innovative (i.e., not usually explored by other attack-

finding methodologies). In this setting, we have therefore found some new binding3 attacks. This

confirms the difference that we originally underlined, at a theoretical level, between our modelling

3See Chapter 2, page 35.
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and the LDYIS [125] (see Chapter 1, page 292).

Irrespective of the attractive verification results for atomic goals, as previously remarked, our

methodology focuses on verifying specifications containing knowledge operators. To illustrate this

point, Table 5.3 presents the results for two NSPK scenarios checked against the epistemic CAPSL

goals in Example 3.2.1 and Example 3.2.2. As reported in the table, the epistemic CAPSL goals

both hold unless the scenario includes a “corrupt insider”, i.e., unless the intruder initially knows

the private key of some principal whom other principals trust. This follows, of course, our intu-

ition. The two epistemic CAPSL goals considered are automatically compiled into temporal-epistemic

specifications as described in Example 3.3.25 and Example 3.3.26 respectively.

Also note that adding further levels of nesting of knowledge modalities may falsify an initially

true CAPSL goal. For example, the experiments confirm that in the case of the ISO1PUCCF protocol

while the first-level epistemic goal from Table 5.3 holds, the second-level goal from Table 5.3 fails.

Insider KnowsB : holdsA : Na KnowsA : KnowsB : holdsA : Na

No
True True

Yes
False False

Table 5.3 Checking Epistemic Goals for NSPK models

5.4.2 Model Evaluation: Υ Pr
IS vs. Υ Pr

ISfixed

In the previous section we have evaluated the PD2IS toolkit with respect to generating and verifying

models for fixed protocol scenarios. In this section the emphasis is placed on generating/verifying

models for loose protocol scenarios. We will also summarise the performance difference between

verifying models for loose protocol scenarios (i.e., Υ Pr
IS ) and verifying constrained models for fixed

protocol scenarios (i.e., Υ Pr
ISfixed(i), for i being some fixed protocol scenario). We now proceed to

setting the details for the aforementioned comparison.

On the one hand, we consider models for fixed protocol scenarios (i.e., like previously, in Sec-

tion 5.4.1). We only consider constrained models (i.e., where not only the initial setup is fixed
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Figure 5.7 Lowe’s Attack [135] on NSPK found with PD2IS and MCMAS
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according to the scenario, but the ranges of terms are heavily restricted). In the case of protocols

where we are looking for a particular attack that does not require the intruder to generate data

(e.g., the Lowe attack [135] on NSPK), we construct the constrained ΥIS models assigning no atoms

in the initial state setup to the Dolev-Yao intruder (i.e., in the XML input file, as exemplified in

Figure 5.4, we make the value of the element intruderPower equal 0). This reduces further the

state-space of constrained models.

On the other hand, we consider generic Υ Pr
IS models for loose scenarios. In particular, we consider

a generic model ΥNSPK
IS for NSPK, instantiating three agents and the intruder. No range-related

restrictions or initial setup constraints are applied to this ΥNSPK
IS . In terms of generating the

model, PD2IS requires approximately 6 seconds. The ΥNSPK
IS is still reasonably small in comparison

to models that we usually generate/modify (e.g., 6000 ISPL lines). Therefore, PD2IS performs well

in generating all this model employing just the stack (i.e., without writing model-related data to

disk).

We now report on large models for loose scenarios that still raise no difficulty for PD2IS to

generate using just the stack (i.e., using no intermediate serialisation to disk of data-objects). For

comparison purposes, we will hereby refer to those protocols for which the models for fixed scenarios

have already been discussed in Section 5.4.1. In Table 5.4 we give a guideline regarding the size of

the generic IS programs for the loose scenarios generated/verified with PD2IS of these protocols. In

row 4 of Table 5.4, we can see that the largest of these interpreted systems is generated by PD2IS

in less than two minutes (i.e., including the actual writing to disk of the corresponding ISPL file).

Protocol Size of Scenario Size of Generic IS Model/ ISPL file

(number of ISPL lines generated)

ISO1PUCCF 2 instances + active intruder 18,105

ISO2PUCCF 2 instances + active intruder 18,105

ARSPC 3 instances + active intruder 36,234

KSL 2 instances + active intruder 299,269

Table 5.4 Size of Generic IS Models for Loose Scenarios

We conclude that, for models for loose scenarios, PD2IS generates large size ISPL programs
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(i.e., 3×105 number of ISPL lines) with no exceptional difficulty (i.e., in less than two minutes and

having a maximum of 2GB of memory available).

To complete the picture, we will now refer to the parameters yielded by the verification of

systems for loose scenarios. In Table 5.5 we show the difference in the statistics produced when

analysing a generic model for a loose scenario of NSPK and verifying the constrained model for a

fixing of that scenario of NSPK. In more detail, the third column of the table refers to a generic

model for a loose scenario of NSPK where: alice instantiates B, alice also instantiates A, B is

substituted to bob and the intruder is represented by greg. The second column of the table reports

on the verification of a constrained model for the fixing of the aforementioned scenarios, such that

intruder “speaks to” alice as B, the intruder “speaks to” bob as B and bob as B “speaks to” alice

as A.

Characteristics of the Unwound Model Fixed Scenario Loose Scenario

Reachable State Space 39 1.38254e+10

MCMAS Reported Time for Verification 1s 104s

Number of BDD Variables Used by MCMAS 9501536 57808032

Number of Formulae Verified 10 63

Table 5.5 Verifying Fixed vs. Loose Scenarios for NSPK with 3 Honest Participants

In Table 5.5, column 3, we observe that a ΥNSPK
IS for a loose NSPK scenario unwinds an actual

model with more than 1010 reachable states. In constrast, in the second column, we observe that

a constrained model for a fixed NSPK scenario mirroring the Lowe attack [135] unwinds a model

with just 39 reachable states. The third row of Table 5.5 shows the number of BDD4 variables

used by MCMAS to store and verify the unwound models. A considerable difference is recorded in

this case as well, between the model for the loose scenarios and the same size constrained model

for a fixed scenario. As we have anticipated in Section 5.3, some of the formulae automatically

generated in the generic model ΥNSPK
IS for a loose NSPK (i.e., 63 as per the fourth line of Table 5.5)

are not well-founded in the constrained model for a fixed NSPK scenario. Hence, only 10 formulae

4See Chapter 2 for details on BDDs.
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between the two models can be effectively compared. This outlines the two-folded usage of PD2IS:

an attack-finding tool (i.e., when testing few formulae on a constrained model for a fixed, well-

determined scenario) and a protocol verification methodology (i.e., when analysing more formulae

for generic large models).

To evaluate our techniques further, we used the distributed version of MCMAS [108]. In MCMAS [108]

the parallelisation is performed by criteria other than spawning the fixed scenarios of a loose sce-

nario. So, this method of verifying Υ Pr
IS is an alternative to using models for fixed protocol scenarios.

The CUDD calls to re-ordering BDD variables exit with an exception for some of our large models

(i.e., for bigger loose scenarios for NSPK, or for loose scenarios of other protocols). Nonetheless,

we were able to verify several of our models. In particular, we used MCMAS [108] to verify the model

ΥNSPK
IS for a loose scenario for NSPK against a CTLK formula due to capture Lowe’s attack. We

concluded that using distribution through MCMAS [108] does not outperform the security-tailored

method of enumerating models for fixed scenarios (i.e., the results presented in Section 5.4.1).

5.4.3 Performance Evaluation: PD2IS vs. Other Tools

In this section we report a comparison between the performance of our PD2IS-based methodology

and other state-of-the-art tools in protocol analysis.

The recorded verification times for constrained models for fixed protocol scenarios are not too

dissimilar to those produced by currently leading toolkits (run on comparable software and hardware

configurations). Moreover, verification results in the literature are most often reported only for one

fixed scenario for each given protocol. By contrast, we tested a set of such scenarios and we report

the average verification measures yielded by these sequential tests.

We draw a comparison between the performances of PD2IS in tandem with MCMAS and those of

other state-of-the-art tools when verifying fixed scenarios of NSPK. Some of the data used in this

comparison was drawn from [62]. We report in Figure 5.8. OFMC [19] and Sat-MC [58] (mentioned

in Figure 5.8) are tools also based on bounded-number-of-session model checking and they are two

of the back-ends in the state-of-the-art AVISPA [9] platform. OFMC [19] is a symbolic (i.e., not

ground), on-the-fly model checker. Therefore, it usually outperforms our results when analysing
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Figure 5.8 Performance Comparison: PD2IS and MCMAS vs. other tools

larger protocols and/or large scenarios. The last two tools appearing in the comparison, Scyther [61]

and ProVerif [23], deal with an unbounded number of protocol session. Their underlying techniques

are different and, as we can notice, the time does not vary much with the number of sessions to

be verified. However, we recall from Chapter 2 that in the case of certain protocols, their analysis

might not ever halt.

We believe the promising results in verifying constrained models for fixed protocol scenarios

are due to a combination of factors. These include the implementation of the Dolev-Yao analy-

sis/synthesis optimised for ISPL syntax, the underlying efficiency of MCMAS, the efficient translation

optimised for immediate decoding of messages by the receiver in the RT protocols, and the gen-

eration of ISPL code in which variable types and ranges were optimised for MCMAS. Further, recall

that the initial state space and the ranges were constructed to minimise the resulting state space.

Lastly, as we said in Section 5.3.2, while we do not employ full-typing, we assume some of the

tagging schemes in [102], which –in the implementation– limit the size of the Dolev-Yao inference



5.4 PD2IS-based Protocol Verification 215

system.

The machine used in the implementation of PD2IS and in the evaluation of the model checking

experiments is a dual-core PC with 3 GiB of RAM which has an Intel(R) Core(TM)2 Duo CPU at

2.26GHz; it runs a 64-bit Open Suse 10.3 operating system, with a 2.6.31.5 kernel. The MCMAS used

in the experiments is the 0.8.3 branch, where some data range-driven modifications were operated

(as we have explained in page 200). MCMAS 0.8.3 is linked against the 2.4.2-exp CUDD release.

Section 5.4 has evaluated the following aspects in our AI-inspired methodology of verifying

security protocols:

1. in Section 5.4.1, the performance of PD2IS as an attack-finding methodology (using con-

strained models for fixed scenarios of for RT and RT-reducible protocols) ;

2. in Section 5.4.1, the testing of those formulations of security goals which are aligned with

traditional approaches, as well as the testing of novel, essentially epistemic formulations of

security goals;

3. in Section 5.4.2, the performance in generating different flavours of the ΥIS specification in

ISPL and of analysing the consequent MIS unwound models (i.e., generic vs. (un)-constrained

models for loose and fixed scenarios, respectively);

4. in Section 5.4.2, the performance of PD2IS as general protocol verification methodology (using

generic ΥIS specifications for loose scenarios of for RT and RT-reducible protocols);

5. in Section 5.4.3, the comparison in performance between PD2IS and MCMAS and other state-

of-the-art tools in protocol verification.

To conclude, the MAS models for loose scenarios can be viewed as a means to a general protocol

verification technique. Models for fixed scenarios are approximations of the generic MAS models for

loose scenarios. Much of the security community analyses such models for fixed scenarios (including

the state-of-the-art AVISPA toolkit [9]). To generalise and systematise the approach, we generate

all possible fixed scenarios up to some bound and sequentially verify them until an attack is found

or the set is exhausted. Employing fixed scenarios nevertheless describes a more specific protocol
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analysis technique: an attack-finding methodology. As an attack-finding toolkit, our PD2IS soft-

ware does perform comparably to other state-of-the-art tools in the field.

In this chapter we showed a fully automatic methodology to verify a large class of the authen-

tication and key-establishment protocols (i.e., the RT and RO which are RT reducible protocols).

This methodology is AI-inspired and it is based on the systematic modelling of RT protocols as

MAS models presented in Chapter 3. The correctness guarantees for using our toolkit to verify

MAS models for CAPSL-described security protocols are founded on the theoretical results presented

in Chapter 4. We have presented PD2IS, a tool that compiles fixed and loose scenarios for such pro-

tocols into IS-based, MAS models of their executions. PD2IS also translates the protocols’ security

goals into a taxonomy of temporal-epistemic specifications. Given the characteristics of the models

generated, the PD2IS toolkit can be used as both a general protocol verification methodology and an

attack-finding methodology. The toolkit starts from a CAPSL protocol description and produces (a

series of) ISPL files; these are MAS models of the execution scenarios for the protocol given as input.

The model checker MCMAS is called for verification. Therefore, PD2IS can be viewed as an imple-

mentation of the methodology advanced in Chapter 3, through using the algorithms and guarantees

offered by Chapter 4. With it, we have presented what is the first fully automatic and systematic

methodology of analysis of MAS models for authentication and key-establishment protocols against

temporal-epistemic specifications of their security requirements. The models formalised in Chap-

ter 3 and automatically generated in Chapter 5 are not designed to support epistemic modalities

other than those mentioned, e.g., no particular attention is given to “everyone knows” or “common

knowledge” modalities [80]. For the models to soundly support such modalities, additional care

may need to be taken in the initialisation process, i.e., the generating of protocol scenarios. We add

that such modalities are not of interest for the security requirements that we analyse (hence, they

are not part of the specification languages we use). However, if there is interest in certain protocols

such as contract signing, where such modalities could come into place, then a bespoke evaluation

of the scenario generation procedure is advisable.

In later chapters we will present extensions of the PD2IS toolkit to cope with more classes of

CTLK formulae (i.e., formulae that express properties other than standard security requirements) as
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well as other tools, similar in nature, but aimed at handling other classes of protocols (particularly,

e-voting protocols and, more generally, RO protocols non-reducible to RT protocols).



Chapter 6

Detectability of Security Protocols

Failures

Motto: “No man is wise enough by himself.”

(Plautus)

If a security requirement is violated in one of the protocol sessions, then this exhibits a protocol

failure. In this chapter we use the MIS protocol model to introduce the notion of detectability of

properties related to protocol failures, i.e., groups of agents acknowledging facts related to protocol

failures. We introduce a taxonomy of detectability specifications expressed in temporal-epistemic

logic. We illustrate the practical relevance of detectability in a case study applied to a variant

of the Kerberos protocol. We show an extension of the PD2IS toolkit to cater for model-checking

automatically generated MAS models for security protocols against specifications of detectability.

We report the experiments carried out on several well known protocols. Part of the material in this

chapter was presented in [32].

6.1 Protocol Failures in MIS

In Chapter 2, page 33, the security requirements of protocols were informally presented. Then,

in Chapter 3, Section 3.3.3., we introduced the formalisation of these requirements in the MIS

218
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model. In this section we are going to refine this formalisation of security requirements. We are

going to distinguish between those requirements that are explicitly stipulated in a CAPSL description

and those underlying requirements that follow implicitly from the description. This fine-grained

distinction will lead to differentiating between completed protocol attacks and protocol failures

leading to an attack.

Security requirements are most often formalised as simple invariants (e.g., state predicates).

In the following, consider the MIS model for multi-session protocol executions, as introduced in

Chapter 3. To ground the discussion, let us assume that each security requirement of interest

appears as an atomic proposition p ∈ PV in the MIS protocol model. We emphasise however

that the detectability specifications introduced in the next section equally apply to more complex,

temporal-epistemic expressions of security requirements for privacy, receipt-freeness, etc.

Example 6.1.1 (Authentication Requirement) A standard formulation for an authentication

requirement is: whenever an agent i has performed (at least) N execution steps, there exists a

different agent j that agrees with agent i on the values of variables in a selected set Ξ. We denote

this as:

auth@N(i,Ξ) = i.Step ≥ N →
∨

j∈Ag\{i}

Agree(i, j,Ξ),

where j ranges over agents different from i and Agree(i, j,Ξ) abbreviates
∧

X∈Ξ
(i.X = j.X), as intro-

duced in Section 3.3.3. We implicitly assume that Ξ includes variables for the intended communica-

tion partners. For example, in a model for NSPK, auth@3(i, {NA}) abbreviates auth@3(i, {A, B, NA}).

The notation auth@3(i, {NA}) denotes that once all three execution steps of agent i have been com-

pleted, agent i and its alleged communication partner j possess the same value for the nonce NA.

Recall from Section 5.4.1 that an attack against a security requirement p is an execution trace

of MIS that refutes p. We say that an attack on p has occurred whenever p fails in the above sense.

Example 6.1.2 (Attack on Authentication) An attack on the authentication requirement

auth@N(i,Ξ) has occurred if there is an execution modelled in MIS where agent i has completed N
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steps and there is no other agent j that agrees with i on the variables Ξ:

i.Step ≥ N ∧ ¬
∨

j∈Ag\{i}

agree(i, j,Ξ)

Intended Goals and Pre-goals. For each protocol a set of security requirements is explicitly

specified at design time (and they appear in the CAPSL description of the protocol). These stipulate

the intended goals of the protocol. In this sense, an attack on any of these is an attack on the

protocol. Typically, the intended goals of a protocol concern the final state of agents in some

execution, e.g., the requirement auth@3(i, {NA, NB}) in a model for NSPK. This is indeed the view

that we have taken towards the analysis of goals (i.e., finding of attacks) in all previous chapters.

However, intended goals are achieved gradually throughout a protocol execution. If an intended

goal holds at a final step of an agent in an execution, it is expected that meaningful parts of that

goal held at some intermediate steps of the agent, i.e., previously in that execution. We use pre-goals

to denote (implicit) requirements that express parts of intended goals considered at intermediate

execution steps. We illustrate below a possible method of deriving the pre-goals given the protocol

description (and the intended goals).

Example 6.1.3 (Derivation of Pre-goals) Assume that the set of intended goals includes the

authentication requirement auth@N(i,Ξ). We derive a pre-goal auth@N ′(i,Ξ′) for each N ′ ≤ N

and each subset Ξ′ ⊆ Ξ of variables which ought to be set in the local states of agent i at step N ′.

According to the formalisations in Chapter 3 and Chapter 4, the set Ξ′ in Example 6.1.3 is

given by N ′-LearnedAtomsA ∩OwnedAtomsA, i.e., Ξ′=N ′-LearnedAtomsA ∩OwnedAtomsA. So,

obtaining this set is a simple manipulation of the data-structures used in algorithm tr, Chapter 4. In

fact, the PD2IS toolkit processes these sets to obtain the ΥIS formalisation and the CTLK formulae

for protocol requirements. For example, assume that auth@3(i, {NA, NB}) is the intended goal of

NSPK. Then auth@2(i, {NA}) is a pre-goal for the protocol derived as above, e.g., NA ∈ {NA, NB}

is a protocol variable to be “learned”/set at step 2 in the role of A. The pre-goal auth@2(i, {NA})

denotes the following: once the second step of agent i has been completed, the agent is expected

to share the nonce NA with its intended communication partner.
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We will assume that if a pre-goal fails it is impossible that the protocol will eventually complete

successfully. In more detail, for a protocol with a set Γ of intended goals and one pre-goal p we

assume that:

AG (¬ p→ AG (end→ ¬Γ)) (6.1)

where the predicate end expresses that the agents have completed all their protocol steps and the

formula ¬Γ denotes that at least one requirement in Γ fails. In light of property (6.1) it seems

reasonable to consider also refutations of pre-goals as protocol failures.

In this section we have refined our original formalisation of security requirements, in the sense

that we have distinguished between intended goals and pre-goals. In a nutshell, intended goals are

those requirements which refer to the end of a protocol execution and are usually stipulated by the

specifier. In turn, pre-goals are logical consequences of the intended goals and are supposed to hold

at intermediate points in a protocol execution.

6.2 Detectability of Protocol Failures in MIS

In mainstream verification of security protocols the analysis ends once an attack on an intended

goal has been uncovered and the protocol is dismissed as faulty. In practice though, the protocol

may be kept deployed even after attacks have been found. For instance, IPSec, WEP, GSM, DNS

and SSH1 or even Kerberos have all been shown to be susceptible to attacks, but are still widely

used. Often, the cost of updating the deployed system might outweigh the risk of attacks [186] (e.g.,

especially when part of the protocol is deployed in hardware such as smart cards, mobile phone

chips, etc.).

Once a deployed security protocol is found to be open to attacks a new question arises: are

attacks detectable? Of course, attacks on agent i are by their very nature undetectable by agent i

alone. However, attacks may leave a group Gr of agents with sufficient collective information to

infer that an attack has taken place. In the following, we discuss the relevant groups Gr, candidates

for collectively detecting an attack.
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Detectability-Relevant Groups of Agents. Depending on a particular protocol scenario, the

following groups of agents distinguish themselves in their ability to detect an attack:

• the group of agents that represent the same participant and instantiate the same protocol-role,

e.g., (some of) the simultaneous client-sessions of alice in an SSH execution;

• the group of agents that represent the same participant, e.g., (some of) the sessions of alice,

either as sender or as receiver, in an NSPK execution;

• the group of agents that instantiate the same protocol-role, e.g., (some of) the server’s sessions

in a Kerberos execution;

• the group of agents that represent different participants, e.g., in an e-commerce protocol

execution, (some of) the sessions of alice together with (some of) the sessions of bob;

• the group of agents that instantiate different protocol-roles, e.g., in an e-banking protocol

execution, (some of) the sessions of the server together with (some of) the sessions of the

client.

Some of the groups above more than others seem the natural candidates to be considered as

sets of agents which share information in order to detect an attack. A first compelling candidate

is the group Gr of agents that represent the same participant. This group models the concurrent

protocol sessions run by the same user on the same machine. But, one might wish to consider only

the subgroup of Gr where agents represent the same participant and play the same protocol role.

The group may model a software client that collects information from its different sessions (e.g, a

user running two client sessions of the SSH protocol, each in a different terminal). In fact, one may

even look at a group of agents that represent different participants (e.g., alice and bob are users in

the same local network and share information easily). The last kind of group is most relevant from

the point of view of a protocol attacker. The attacker would ideally be interested in a guarantee

that he will remain undetected no matter what information is subsequently exchanged between any

honest participants. Indeed, attacks that are in principle detectable by a certain group can lead to

retaliations undesired by the attacker. As argued in [91], this fact can act as deterrence.
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In this section we use temporal-epistemic logic to formalise subtle differences in the ability of

a group Gr to detect attacks and other protocol failures. Are attacks eventually detectable on all

possible future paths, just on some paths or on none? Are attacks detectable without the intruder

knowing this? Can attack-related failures be immediately detected and can attacks therefore be

detected prior to their actual completion? In future sections the meaning of these specifications

will be explicitly denoted in the MIS modelling and their corresponding formulae will be checked

against such modellings.

Attack Detectability

We consider attack detectability specifications of the form:

AG (β → ! β) (6.2)

where the modality ! is generated by the grammar:

! ::= DGr | AF DGr | EF DGr | ¬!.

In the schema (6.2), Gr denotes a (detectability-relevant) group of agents and the condition β

expresses that a state “undesirable” to the group Gr has been reached. In the most basic case,

β ::= ¬p. Then, condition β states that there has been an attack on an intended security goal p.

In the following, we will also consider more complex conditions β.

We say that condition β is instantly detectable by the group Gr if whenever β holds the group

Gr knows this:

AG (β → DGr β) (6.3)

We say that condition β is eventually detectable by the group Gr if whenever β holds the group

Gr will eventually know this:1

AG (β → AF DGr β) (6.4)

1It is a customary assumption in the Dolev-Yao model that the intruder is able to block messages. However, this

is not reasonable for all protocols, e.g., wireless protocols. Thus, we sometimes restrict the path quantifiers to paths

that are fair in the sense that agents complete all their protocol steps.
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We say that condition β is possibly detectable by the group Gr if whenever β holds it is possible

that the group Gr will eventually know this:

AG (β → EF DGr β) (6.5)

We say that β is instantly undetectable by the group Gr if whenever β holds the group Gr does

not know this:

AG (β → ¬DGr β) (6.6)

We say that β is possibly undetectable by the group Gr if whenever β holds it is possible that

the group Gr will never know this:

AG (β → ¬AF DGr β) (6.7)

We say that β is forever undetectable by the group Gr if whenever β holds the group Gr will

never know this:

AG (β → ¬EF DGr β) (6.8)

Specifications (6.3)–(6.8) exhaust the modalities ! up to logical equivalence. As Figure 6.1

shows, the logical-strength decreases in specifications (6.3) to (6.5) while it increases in (6.6) to

(6.8). Moreover, for detectability specifications (6.3)–(6.5) the logical-strength decreases with larger

groups Gr. On the other hand, for (un)detectability specifications (6.6)–(6.8) the logical-strength

decreases with smaller groups Gr.

Simple Attack-Detectability. The most basic conditions β are of type β ::= ¬Γ. This

denotes that some security requirement p from a selected set Γ of requirements fails. In specifi-

cations, we identify the set Γ with the conjunction of the requirements included in the set, i.e.,

if Γ = {p1, . . . , pn} then, in specifications, Γ:=p1 ∧ . . . ∧ pn. The detectability schema (6.2) then

becomes:

AG (¬Γ→ !¬Γ) (6.9)

stating that attacks on the security requirements Γ are instantly/eventually/possibly detectable or

instantly/possibly/forever undetectable by the group Gr.
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Figure 6.1 Attack Detectability Schemata

The selected set Γ of requirements might include only the intended security goals of the protocol

under analysis. However, it may be of interest to include also pre-goals in Γ. If we indeed include

such a pre-goal in Γ, the failure of an instance of the schema (6.9) signals that the intruder is

mounting an attack and the protocol will not complete successfully.

Culprit Detectability. Some attacks on security protocols (e.g., see Chapter 2, page 35 for

impersonation attacks) require that the intruder is an insider. This means that the intruder knows a

valid outset the private keys and/or signatures. If some honest agents can detect the identity of this

corrupt participant then possible retaliation actions can be more precisely targeted, strengthening

the deterrence.

To give this kind of detectability, we consider a state “undesirable” to the group Gr to be a

state where condition β ::= ¬Γ ∧ corrupt(v) holds. The atomic proposition corrupt(v) holds if

the intruder started the current run knowing the private key associated to some identity v. More

precisely, when generating the MIS models, the user-input always has the intruderHonest enabled

(refer to Chapter 5, page 198). For ease of presentation, we assume that there is at most one

corrupt participant in any run of an MIS system on which corrupt(v) is evaluated. Furthermore,

as previously described in MIS, assume that the name of the corrupt participant is randomised in
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each run. In this way the corrupt identity is initially unknown to honest agents.

By uniformly replacing the generic condition β with the specific (¬Γ∧corrupt(v)), schema (6.2)

gives the sub-schema for culprit detectability, i.e., schema (6.2) gives instances of (6.3)–(6.8) in

which the condition β ::= ¬Γ ∧ corrupt(v) states that a certain participant identity v is corrupt.

In particular, the condition (¬Γ ∧ corrupt(v)) is possibly detectable if:

AG (¬Γ ∧ corrupt(v)→ EF DGr (¬Γ ∧ corrupt(v))) (6.10)

i.e., whenever requirements Γ are attacked and v is corrupt it is possible for group Gr to know this

eventually.

Nested Attack-Detectability. It seems reasonable to assume that, for β ::= ¬Γ, possible

culprit detectability (6.10) or even the weaker possible attack-detectability (6.5) achieve an adequate

deterrence in many possible scenarios. Nevertheless, let us make the additional assumption that

the intruder is theoretically able to know if and when he has been detected. This could influence

future actions of the intruder. For instance, the attacker could prepare for possible retaliations.

Or, if the attacker is assured that he will always know when he is detected, then he may be more

willing to mount attacks.

Thus, we consider instances of schema (6.2) where the states of interest are those in which an

attack is detectable, i.e., those states defined by the following β:

β ::= !¬Γ | !(¬Γ ∧ corrupt(v)),

where the attack-modality ! includes no negations. Intuitively, β defines states that are “undesir-

able” from the point of view of an attacker. To illustrate, consider the states given by β ::= DGr¬Γ.

These are states where an attack on requirements Γ is detectable by a group Gr of “honest” agents,

i.e., states “undesirable” to the intruder. At its turn, condition β is instantly detectable by another

group Gr′ of “hostile” agents if:

AG (DGr¬Γ→ DGr′ DGr ¬Γ). (6.11)

In (6.11), whenever the “honest” group Gr knows that there is an attack on requirements Γ,

the “hostile” group Gr′ knows that the “honest” group Gr knows this. Another more complex
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instance of schema (6.2) refers to states given by β ::= AF DGr¬Γ. At these states, an attack

on requirements Γ is eventually detectable by the group Gr of honest agents, i.e., these states are

“undesirable” to the intruder. Then, condition β is instantly detectable by another group Gr′ of

“hostile” agents if:

AG (AF DGr¬Γ→ DGr′ AF DGr ¬Γ). (6.12)

In (6.12), whenever it is the case that the “honest” group Gr will eventually know that there is an

attack on requirements Γ, the “hostile” group Gr′ knows that the “honest” group Gr knows this.

In the above, we specified the “hostile” group Gr′ being able to detect states that are “unde-

sirable” to the members of the group. However, it is of interest to consider whether the “hostile”

group Gr′ can also detect states that are “desirable” from its perspective. For instance, consider

the states in which attacks are undetectable by the “honest” group Gr. To this end, we assume

conditions β comprising an attack-modality ! with an odd number of negations. For example,

consider the states given by the condition β ::= (¬(EF DGr) )¬Γ. These are states “desirable” to

the intruder as in these states an attack on requirements Γ is forever undetectable by the group Gr

of “honest” agents. Then, this condition β is eventually detectable by the group Gr′ of “hostile”

agents if:

AG (¬(EF DGr)¬Γ→ AF DGr′ ¬(EF DGr) ¬Γ). (6.13)

In (6.13), whenever it is the case that the “honest” group Gr will never know that there is an attack

on requirements Γ, the “hostile” group Gr′ eventually knows that the “honest” group Gr will never

know this.

Attack-launch Detectability

It might be the case that neither attacks on intended goals Γ nor attacks on pre-goals Γ′ are

detectable and not even possibly detectable. Nevertheless, attacks on the intended goals Γ might

be observable in a weaker sense: an attack on the intended goals Γ cannot be mounted without the

group Gr at least learning in the meanwhile that some pre-goal in Γ
′

fails.



6.3 Case Study: the KSL Protocol 228

We say that attacks on pre-goals Γ
′

signal attacks on intended goals Γ to the group Gr if re-

quirements Γ hold at least until the group Gr knows that requirements Γ
′

fail:

A (Γ W DGr¬Γ′) (6.14)

Note that attack-launch detectability (6.14) does not reduce to an attack detectability specifica-

tion (6.2). In particular, the formulae implied by (6.14) may hold even if attacks on the pre-goals Γ
′

are not possibly detectable by the group Gr as per (6.5).

Attacks on the pre-goals Γ′ signaling attacks on the intended goals Γ can be beneficial for

protocol design/synthesis. More precisely, the flawed protocol can be “patched” with the epistemic

test DGr¬Γ′. For instance, one such amended protocol is that where the agents in the group

Gr abort as soon as DGr¬Γ′ is realised. Several attack-prone protocols have been “patched” in

similar ways [136] by pen-and-paper inspection of flaws. However, in those cases, the tests for

comparing values across participants were non-epistemic and un-systematised. Manually finding

the appropriate non-epistemic tests can be non-trivial. By contrast, the relevant set Γ
′

of pre-

goals can be derived automatically with little cost from the protocol description, as illustrated in

Section 6.1. As next sections will show, these can then be manipulated to generate the epistemic

test automatically.

In this section we have used temporal-epistemic logic to formalise subtle differences in the ability

of a group Gr to detect attacks and other protocol failures. Taxonomies of attack detectability and

attack-launch detectability have thus been introduced. In the next section, the relevance of these

will be shown on a variant of the Kerberos protocol.

6.3 Case Study: the KSL Protocol

In this section we illustrate a case study on detectability of assaults against KSL [111], a variant of

the Kerberos protocol. The next sections report on employing an extension of PD2IS for automatic

analysis of detectability specifications. Some of the results presented in this section were provided

by the automatic methodology aforementioned.

The KSL protocol was designed with two distinct levels. The first level is a key-establishment
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level. We present this level in Example 6.3.1. In this level, two parties A and B use a server S to

establish a session key KAB and a ticket {T,A, KAB}KBB .

Example 6.3.1 (The First Level of the KSL Protocol)

1’. A -> B : Na, A

2’. B -> S : Na, A, Nb, B

3’. S -> B : {Nb, A, Kab}Kbs, {Na, B, Kab}Kas

4’. B -> A : {Na, B, Kab}Kas, {Tb, A, Kab}Kbb, Nc, {Na}Kab

5’. A -> B : {Nc}Kab

We refer to [111] for details. The key and ticket are employed in the second level in order to

mutually authenticate A and B in three steps. This second level is a repeated-authentication level,

i.e., it can be run several times, until the ticket expires. Example 6.3.2 shows the second level of

the KSL protocol.

Example 6.3.2 (The Second Level of the KSL Protocol)

1. A -> B : Ma, {Tb,A,Kab}Kbb

2. B -> A : {Ma}Kab, Mb

3. A -> B : {Mb}Kab

As Example 6.3.2 shows, in step 1, participant A sends to B a challenge-nonce Ma and the

ticket {Tb, A,Kab}Kbb established during KSL’s first level. This ticket contains a timestamp Tb,

the identity A and the session key Kab which was also established during the first level of KSL.

All these are encrypted with Kbb, a key known only to B. If the timestamp Tb inside the ticket

received by B has not yet expired, then B responds in step 2 by encrypting the nonce Ma using

the pre-established session key Kab. B also sends along a challenge-nonce Mb of his own. Then,

in step 3, A returns Mb encrypted with the session key Kab.

The purpose of the second level in KSL is to ensure that when an agent playing the role of B

completes all its steps, it shares the nonces Ma and Mb with its intended communication partner.

Therefore, we consider the intended authentication goal auth@3(ag, {Ma, Mb}) for each agent ag

playing the B-role in the second-level.
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The Hwang Attack. The following attack [106] on the repeated authentication level is due to

Hwang:

i.1. I(A) -> B : Ma, {Tb,A,Kab}Kbb

i.2. B -> I(A): {Ma}Kab, Mb

ii.1. I(A) -> B : Mb, {Tb,A,Kab}Kbb

ii.2. B -> I(A) : {Mb}Kab, Mb’

i.3. I(A) -> B : {Mb}Kab

This attack assumes a first-level session completed between participants alice and bob, playing

an A-role and a B-role respectively. On these grounds, the intruder impersonates alice and initiates

a second-level session i with bob. The intruder has previously intercepted a B-role ticket in the

preceding first-level communication and, in step i.1, sends this ticket together with a nonce Ma

to bob. In step i.2, bob responds according to his honest B-role by sending the nonce Ma encrypted

with the session key Kab and the challenge-nonce Mb to his purported A-role partner. Instead of

completing this session, the intruder impersonates alice again and initiates yet another second-level

session ii with bob. In this second session ii, the intruder will actually use bob as an oracle to encrypt

his own challenge-nonce Mb from the initial i session. The intruder finally inserts the oracled

encryption {Mb}Kab back into session i as if it were coming from alice, thus completing bob’s first

second-level session in step i.3.

Informally, bob is fooled into believing that in session i he is sharing the values of Ma and

Mb with alice, while in fact he has been constantly interacting with the intruder impersonating

alice. Formally, KSL’s authentication goal auth@3(ag, {Ma, Mb}) fails for bob’s agent ag engaged

in session i.

Following the formalism presented in Chapter 3, we consider an MIS model I to formalise

concurrent sessions of KSL (comprising at least the scenario needed for mounting the Hwang attack

above). We discuss detectability of KSL’s failures on the model I.

Attack-Launch Detectability. On the MIS model I, we can show that participant bob can

detect preparations for the attack prior to its actual completion. More precisely, attacks on the

pre-goal of authentication upon Ma at step 1 signals to bob the existence of attacks on the intended
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goal of authentication upon Ma and Mb at step 3. Formally, the intended authentication goal

holds at least until bob’s agents collectively have sufficient information to infer that in one session,

one of these agents received a replayed nonce instead of an expectedly fresh value for Ma. In other

words, the corresponding attack-launch detectability formula that holds on the IS model I is:

A (auth@3({Ma, Mb}) W Dbob ¬ auth@1({Ma})) (6.15)

where Dbob is the distributed knowledge modality DGr for the group Gr of agents representing bob

and playing the B-role in the second level, the notation auth@3({Ma, Mb}) abbreviates the set

{auth@3(ag, {Ma, Mb}) | ag ∈ Gr} of intended goals, and auth@1({Ma}) is like auth@3({Ma, Mb})

except that it refers to pre-goals.

To explain, the group Gr of bob’s agents playing a B-role can theoretically compare the value

of the nonces Mb in each group-member with the value of Ma in each other group-member;

there has been an attack on auth@1({Ma}) if two values collide. In particular, the epistemic

test Dbob ¬ auth@1({Ma}) can be reduced to the non-epistemic test:

∃ ag, ag′ ∈ G | ag.Mb = ag′.Ma

which in turn translates (6.15) into a purely temporal property. However, such a reduction (e.g,

translating Dbob ¬ auth@1({Ma}) into a non-epistemic test) is specific to this particular protocol

and may be non-trivial to determine. By contrast, attack-launch specifications like (6.15) can be

generated automatically as explained in Section 6.2 and later shown in Section 6.5.

Eventual Attack-Detectability. Despite the attack-launch detectability in specification (6.15),

attacks on the intended goals auth@3({Ma, Mb}) are not instantly detectable by bob in the sense

of specification (6.3). In the MIS model I, the attack-trace i.1–i.3 for the Hwang attack above is

indistinguishable to bob from an execution trace in which the intruder does not impersonate alice.

This counterexample trace of system I is shown below:

Example 6.3.3 (Counterexample E1)

Trace of the MIS model I, counterexample for DGr¬auth@3({Ma, Mb}))

i’.1 A -> B: Ma, {Tb,A,Kab}Kbb
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i’.2 B -> A: Mb, {Ma}Kab

ii’.1 I(A) -> B: Mb, {Tb,A,Kab}Kbb

ii’.2 B -> I(A): Mb’, {Mb}Kab

i’.3 A -> B: {Mb}Kab

We briefly explain the above execution exhibited in the model I. As in the Hwang attack, the

nonce Mb of bob’s agent from the first session i′ is replayed to the agent representing bob in another

session ii′. The trace is therefore indistinguishable to bob from the Hwang attack. Note that, in

session i′ of the counterexample-execution, participant bob actually authenticates himself correctly

upon values Ma and Mb with alice.

Nonetheless, we can show that attacks on the intended goals auth@3({Ma, Mb}) are eventually

detectable by bob. In other words, the following eventual attack detectability formula holds on the

IS model I:

AG (¬ auth@3({Ma, Mb})→ AF Dbob¬ auth@3({Ma, Mb})),

where the AF -modality quantifies only over execution paths that are fair in the sense that each

agent eventually completes all its steps.

We briefly explain the eventual detectability by bob in the above. Assume that bob’s agent which

was used as an oracle in session ii of the Hwang attack has completed his execution. By comparing

the nonce received in this session with the nonce generated in the first session i by another agent of

his, participant bob can infer that the nonce received did not originate from his purported partner

alice. In other words, bob’s agent collectively know that he has completed session ii without agreeing

with alice, i.e., bob knows that the intended authentication goal has been attacked.

The Lowe Attack. The discussion above assumed that a KSL participant does not engage in

the second level prior to completing all the steps of the first level. However, KSL has also been

interpreted [136] as a protocol that allows a participant playing the B-role to engage in a second-

level session as soon as a ticket has been established, hence before actually completing the final

challenge-response step of the protocol’s first-level. We refer to [136,111] for details.
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As shown by Lowe, this opens up for more attacks onto KSL. For instance, alice can be made

to generate a B-role ticket {Ta, bob,Kab}Kbb and bob can also be made to generate another B-role

ticket {Tb, alice,Kab}Kbb. The irregularity in this is that both these tickets are based simultane-

ously on the same session key Kab. Thus, the tickets can be used by the intruder to mount a more

intricate impersonation attack on the second level:

i.1. I(A) -> B : {Tb,A,Kab}Kbb, Ma

i.2. B -> I(A) : Mb, {Ma}Kab

ii.1. I(B) -> A : {Ta,B,Kab}Kaa, Mb

ii.2. A -> I(B) : Ma’, {Mb}Kab

i.3. I(A) -> B : {Mb}Kab

The attack begins like the Hwang attack above: the intruder impersonates alice to enter the

second-level session i with bob. However, in order to encrypt the challenge-nonce Mb with the

session-key Kab the intruder does not use another agent representing bob as oracle like in Hwang

attack. Instead, based on the fact that the same key Kab is part of two distinct tickets, in step

ii.1 the intruder engages an agent representing alice and playing the B-role. The intruder finally

completes session i with bob in step i.3 by forwarding nonce Mb as previously encrypted by alice

in ii.2. We refer to [106,119] for details.

Like in the Hwang attack, the agent representing bob in session i is fooled into believing that he

is sharing the values Ma and Mb with alice.

We consider now an MIS model I formalising KSL multi-session executions upon the relaxed

interpretation in [136] described above, i.e., it is possible to initiate second-level KSL runs prior to

the full completion of all first level KSL sessions.

Instant Attack-Detectability. On the MIS model I, we can show that the Lowe attack

is instantly detectable by a subgroup of agents representing participants bob and alice together.

More precisely, the group Gr of all second-level agents can instantly detect attacks on the intended

authentication goals. In other words, the following detectability formula holds on the MIS model I:

AG (¬auth@3({Ma, Mb})→ DGr ¬auth@3({Ma, Mb}))
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We explain the specification above. By comparing values between group members, the group

can deduce whether any of the group-members is fooled into completing the second-level without

agreeing with another agent in the group.

Possible Attack-Undetectability. On the MIS model I, we can show that the Lowe attack

is possibly undetectable by participant bob alone. More precisely, attacks on the intended goals

auth@3({Ma, Mb}) for bob’s agents are possibly undetectable by the common effort of all bob’s

agents. In other words, the following (un)detectability formula holds on the IS model I:

AG (¬auth@3({Ma, Mb})→ ¬AFDbob ¬auth@3({Ma, Mb})).

Under the MAS model I, if the intruder follows the strategy of the Lowe attack2 the resulting trace

is indistinguishable to the group of bob’s agents from a trace in which there is no attack on the

intended authentication goal. Unlike during the Hwang attack, in the Lowe attack the challenge-

nonce Mb of one of bob’s agents is replayed to an agent representing alice rather than back to one

of bob’s agents. Thus, there is no way for bob to observe this replay even at later stages.

However it is not the case that attacks on the intended goals auth@3({Ma, Mb}) are forever

undetectable by bob in the sense of (6.8). Since the Hwang attack is possible also under this

modelling of the relaxed interpretation of KSL, there exists a path where bob’s undetection is

eventually refuted.

Nested Detectability. On the MIS model I, we can show that even though attacks on the

intended goals are not always undetectable by bob, whenever they are undetectable the intruder

knows that this is the case. In other words, the following (nested) detectability formula holds on

the IS model I:

AG (¬Dbob ¬auth@3({Ma, Mb})→ DI ¬Dbob ¬auth@3({Ma, Mb}),

stating that the states given by ¬Dbob ¬auth@3({Ma, Mb}), “desirable” from the intruder’s point

of view are instantly detectable in the sessions of the intruder (i.e., DI . . . in the formula above) .

In this section we have illustrated a case study on detectability of assaults against KSL [111], a

variant of the Kerberos protocol. The next section will show an extension of PD2IS for automatic

analysis of detectability specifications.

2Under a temporal-epistemic framework, this can be specified using fairness constraints.
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6.4 PD2IS Extended: A Toolkit for Detectability-Analysis

In Chapter 5 we presented PD2IS (Protocol Descriptions to Interpreted Systems), an open-source

compiler from CAPSL (Common Authentication Protocol Specification Language) protocol descrip-

tions into ISPL (Interpreted System Programming Language), the input language of the model

checker MCMAS [127]. In this section we report on the extension of PD2IS to generate the models

and the formulae to support the methodology for detectability. Given a CAPSL description of a

protocol Pr together with an instantiation of the protocol Pr, the extended PD2IS generates the

pre-goals, auxiliary predicates and all the possible detectability formulae upon schema (6.2) and

schema (6.14), for all relevant groups Gr under the given instantiation.

Firstly, we extend the data-setup module to generate the set of all the detectability-relevant

groups mentioned in Section 6.2. Groups are indexed by name of participants and by role. This

is possible simply by manipulating the data structures generated by the modules called previously

to data-setup. In this extension, predicate, assertion and formula objects are indexed by

groups (i.e., not only by agents). For example, in a model for NSPK, the aliveness of the B-role

participant bob is “of interest” not only to one A-role agent, but also to the group of 2 agents of an

A-role, to the group of 3 agents of an A-role, to the group of all agents of an A-role, to the group

of all agents representing alice, etc.

Secondly, predicates that are related to the detectability schemata (i.e., culprit(v) for all v ∈ RI)

are now generated by the data-setup model. Importantly, predicates to denote all pre-goals of the

stipulated goals are also added. In doing so, we follow the guidelines presented in Section 6.1. Also,

each pre-goal predicate is indexed by its originating goal. Intuitive names are given to all these

predicates to ease the generation and the reading of the final detectability formulae. Pre-goals are

also categorised by the groups for which they are meaningful (e.g., in KSL, auth@1({Ma}) should

not be indexed by agents of the S-role).

The extended producer module makes use of the fact (presented in Chapter 5) that we designed

a hierarchy of Assertion and Formulae classes. For instance, for each group we select all CTLK

injective agreement formulae that refer to the index of that group (i.e., the index of the group is the

subject of the role Assertion object; see Chapter 5, page 201). Then, for each group we select all
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CTLK non-injective agreement formulae3 that refer to the index of that group, etc. In this fashion,

the extended PD2IS generates a systematically structured list of detectability formulae. To give

but a sense of the number of formulae generated, for the fixed scenario with 3 honest agents on

the NSPK protocol we generate 160 detectability formulae. In Example 6.4.1, we illustrate a small

excerpt of this set of formulae.

Example 6.4.1 (Detectability Formulae Generated with PD2IS — Excerpt)

--Formula * number 1 * instant detectb. by roleA *
AG (
!(AG(!(terminationOfinstance1 and honestInterlocutorOfinstance1_into_instance2) #
or free_agree_instance2_instance1)) or
DK(roleA,!(AG(!(terminationOfinstance1 and honestInterlocutorOfinstance1_into_instance2)
or free_agree_instance2_instance1))));
...

--Formula * number 26 * always-eventually detectb. by alice *
AG (!(AG(!(terminationOfinstance1 and honestInterlocutorOfinstance1_into_instance2)
or free_agree_instance2_instance1)) or
AF DK(alice,!(AG(!(terminationOfinstance1 and
honestInterlocutorOfinstance1_into_instance2) or free_agree_instance2_instance1))));
...

--Formula * number 36 * forever undetectb. by G2Members_2 *
AG (!(AG(!(terminationOfinstance1 and honestInterlocutorOfinstance1_into_instance2)
or free_agree_instance2_instance1))
or !(EF DK(G2Members_2,!(AG(!(terminationOfinstance1 and
honestInterlocutorOfinstance1_into_instance2) or free_agree_instance2_instance1)))));
...

--*ATTACK-LAUNCH DETECTABILITY*

--Formula * number 49 * injection as attack--launch detectb. by roleA *
AG(!(terminationOfinstance1 and honestInterlocutorOfinstance1_into_instance2)
or free_agree_instance2_instance1) or
A((!(terminationOfinstance1 and honestInterlocutorOfinstance1_into_instance2)
or free_agree_instance2_instance1)

U
(DK(roleA, (EF! intermAgreementOnSomeValuesOfRoleA and ! purpotedReceiverForRoleA))));
...

--*CULPRIT DETECTABILITY*

--Formula * number 65 * culprit instant detectb. by roleA *
AG(AG(!(terminationOfinstance1 and honestInterlocutorOfinstance1_into_instance2)
or free_agree_instance2_instance1) or DK(roleA,(! (AG(!(terminationOfinstance1

3For our CTLK expressions of non-injective agreement, see page 50 and page 201.
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and honestInterlocutorOfinstance1_into_instance2) or
free_agree_instance2_instance1)) and (culpritBgreg))));
...

--Formula * number 160 * culprit forever undetectb. by G2Members_0 *
AG(AG(!(terminationOfinstance1 and honestInterlocutorOfinstance1_into_instance2)
or free_agree_instance2_instance1) or !(EF DK(G2Members_0,(!
(AG(!(terminationOfinstance1 and honestInterlocutorOfinstance1_into_instance2)
or free_agree_instance2_instance1)) and (culpritBgreg)))));

In the case of detectability analysis, we generate un-constrained MIS models for incrementally

larger fixed scenarios. To ease the interpretation of the large result-space, we extend the testing

procedures with a BASH script that classifies the counterexamples by groups (e.g., A-role, bob, etc.)

and by type of detectability (e.g., eventual, instant, etc.). This is possible by automatically parsing

the output of MCMAS in comparison with the ISPL file given at input; in the latter, the extended

PD2IS producer module inserts before each formula a comment that explicates it (as the excerpt

above shows). Then, if MCMAS reports that a certain formula fails, our script can automatically

provide details on the failure, using the information in the ISPL comment in front of the formula.

For instance, corresponding to formula 160 in the ISPL excerpt above, the script will report that

detectability of culprits is forever undetectable by the group Gr formed with 2 of alice’s agents.

The script is available with PD2IS [28].

To sum up, this section has explained some of the details behind an extension of PD2IS for

automatic analysis of detectability specifications.

6.5 Experiments on Model Checking Detectability

In this section we report on automatically analysing detectability in a variety of protocols, using

the extension of PD2IS presented in the previous section. The results presented generalise the ones

discussed for KSL in the preceding section.

We selected a set of well known authentication and key establishment protocols from the SPORE

repository [119]. Given a CAPSL protocol description we used PD2IS extended detectability-wise

to generate a corresponding ISPL file for each loose scenario with four or fewer sessions; each

generated ISPL file was then passed to MCMAS for verification. For each protocol we selected the
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models that exhibited attacks, and analysed the output of MCMAS for what concerns satisfiability of

the detectability specifications. Some of these results are summarised in Table 6.1.

Det Undet Launch Culprit

Scenario Groups

NSPK a F possible F possible

a1 → I b1 F forever F F

a1 ← b1 a1, b eventual possible T eventual

a2 → b1 a, b eventual possible T eventual

WMF a F forever N/A N/A

a1 → S1 b F forever N/A N/A

S1 → b1 a, b eventual instant N/A N/A

I → b1 S, b eventual possible T eventual

A. S-RPC a instant F F N/A

a1 → b1 a2 F possible N/A N/A

a2 → b2 b F forever F N/A

a2, b2 instant F T N/A

KSL a F forever F N/A

a1 1
→ b1 a1 F forever F N/A

a1 1
→ S b F possible T N/A

a1 2
← b1 a1, b eventual instant T N/A

a1 2
← b2 a2, b F possible T N/A

a2 2
→ b3 a, b eventual F T N/A

Table 6.1 Attack and Attack-Launch Detectability Results.

In Table 6.1, the first column denotes the fixed scenario considered (see below); the second

column denotes the detectability group Gr considered; the third column reports on whether attacks

were found to be detectable instantly, eventually, possibly, or never detectable (“F”) by the group Gr

considered; the fourth column reports on whether attacks were found to be undetectable instantly,

possibly, or forever detectable; the fifth column states the satisfaction of detectability of attacks on
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pre-goals where it applies; the last column reports the results for satisfaction of culprit detectability

formulae. “N/A” signifies that the corresponding detectability specification does not apply for the

corresponding protocol or the corresponding group.

In more detail, in the first column the notation a1 → I indicates that the NSPK scenario

considered includes an agent a1 representing participant alice in session 1 communicating with

a corrupt insider I. Analogously, a2 → b2 indicates that the scenario also includes an agent a2

representing participant alice in session 2 communicating with an agent representing bob. The

notation
i
→ in the KSL scenario denotes a communication direction within level i of the protocol.4

The letter S in the WMF scenario represents the server identity. The letters a and b in the second

column denote the groups of all agents representing alice and bob respectively.

Table 6.1 does not report the verification time of the toolkit. These are aligned with the

attack-finding verification times reported in Chapter 5. As an example, checking 218 detectability

specifications against an un-constrained model (cf. Chapter 5) for NSPK with 4 agents in a fixed

communication setting enabling the Lowe attack [135] took approximately 27 seconds on an Intel

Core 2 Duo clocked at 2.26GHz with 2.9 GB of memory, running Linux kernel 2.6.27.7. The

corresponding number of reachable global states was in the region of 103.

While the discussions above were grounded on authentication and key-establishment protocols

(directed by the use of our model MIS and toolkit PD2IS), the methodology of detecting protocol

failures easily transfers to IS models for other classes of protocols (e.g., group protocols, contract-

signing protocols, e-voting protocols, etc.).

In [91], a proof-of-concept framework was designed for the actual collaboration of protocol par-

ticipants to mount retaliations against the intruder. The application thereby presented is the NSPK

protocol, which is manually extended with a rule for the retaliation step. The data proposed for

the retaliation-driven communication is defined ad-hoc by the specifier. The thread model is that

of a general attacker, i.e., any participant can engage in the added-on retaliation rule against the

standard, Lowe attack [135] on NSPK. In [91], LTL [165] is used to encode a notion of attack trace

extended towards retaliations. No aspects of the participants’ knowledge is employed to achieve

4The table reports only on the classical interpretation of level interleaving in KSL (which does not allow for the

Lowe attack).
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the retaliation, communication being enforced onto specific participants upon manually designated

data. We distinguish ourselves from this line in that we use a knowledge-centred, CTLK-based

framework to investigate a systematic and automatic way to model and verify groups of honest

agents theoretically detecting attacks and protocol failures in standard Dolev-Yao thread model.

In our methodology, the aspects of detection on the intruder side are also explored.

In this chapter we have shown an extension to our multiagent systems and temporal-epistemic

approach to protocol analysis. We introduce the concept of detectability, i.e., the theoretical ability

of protocol participants to detect that a protocol attack has been or is being mounted. As a result,

we advanced a novel, fully automatic methodology which analyses different flavours of detectability

in a MAS setting, i.e., whether different groups of agents have the joint ability to detect protocol

failures. This research line is a case in point that the AI-inspired verification techniques can provide

new ways and insights into security protocol analysis and towards intruder detection systems [140].

Moreover, its results can be used further in protocol implementation, protocol patching, protocol

synthesis and protocol design.



Chapter 7

MAS Models for Equationally Specified

Security Protocols

Motto: “It is the theory that decides what can be observed.”

(Albert Einstein)

The descriptions of equationally specified protocols rely on a set of primitives that obey certain

axioms; such protocols were recalled at page 54. These are usually receiver-opaque protocols that

are not reducible to receiver-transparent protocols. Thus, the ΥIS formalism introduced in Chapter 3

cannot be readily used to model the execution of protocols specified under equational theories.

In this chapter we introduce a new multiagent system formalism designed to model com-

munication protocols specified under convergent equational theories. We formulate a notion of

quotient-knowledge representing knowledge modulo the underlying equational theory. We extend

the model to formalise agents theoretically “interrogating” the equational theory to rewrite terms,

thereby supporting the interpretation of interrogative knowledge, a weaker form of knowledge. We

show that interrogative knowledge coincides with quotient-knowledge in communication protocols

modelled appropriately. We present an on-the-fly algorithm for model checking interrogative knowl-

edge. An extension of MCMAS is used to verify equationally-specified electronic voting protocols

against e-voting requirements expressed in logics of time and interrogative knowledge. Aspects of

this material are presented in [30].
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Section 7.1 presents the necessary background on equational theories and fixes the notations.

Section 7.2 introduces ΥE
IS, an interpreted system formalism for protocols described by an equa-

tional theory E. Unlike the formalisms in previous chapters, the ΥE
IS formalism is designed for

modelling receiver-opaque protocols. In the unwound model ME
IS, the indistinguishability relation

between states is denoted ∼E and is given by the equality of terms in the quotient term-algebra

modulo E. In Section 7.2, we also introduce the quotient-knowledge modality QK to be interpreted

in ME
IS over ∼E.

Section 7.3 introduces the generic formalism of interrogative interpreted systems to model exe-

cutions of equationally specified protocols. In this formalisation, every agent is enriched with a set

of interrogations, i.e., predicates related to the equational theory. In the unwound model, we define

an interrogative indistinguishability relation denoted ∼Intr and given by the uniformity of the in-

terrogations of an agent (i.e., two indistinguishable states are not differentiated by the values of the

interrogations at those respective states). Section 7.3 also introduces the interrogative knowledge

modality denoted IK and interpreted over ∼Intr. We will compare and contrast the interrogative

knowledge operator IK with other, related knowledge modalities in [164,134].

Under a convergent equational theory, we prove that if an agent “interrogates” about all the

normal terms then his interrogative knowledge coincides with his quotient-knowledge. Section 7.3.3

formalises this fact within the notion of interrogative equational interpreted system Υ IE
IS .

Consider interpreted systems that generalise the Υ IE
IS formalism in that they do not necessarily

encode security protocols, but their specifications contain interrogations for agents. In Section 7.4

we introduce a model checking algorithm of such generic interpreted systems against the interrog-

ative knowledge modality.

Section 7.5 shows how to model the FOO’92 [87] e-voting protocol as interrogative equational

interpreted systems Υ IE
IS . The requirements of the protocol are specified in the newly introduced

languages of time and quotient knowledge. Furthermore, we use the implementation of the method-

ology presented in Section 7.4 to verify different modellings of the the FOO’92 e-voting protocol.

We report and discuss the results.

At the end of each section, we relate the material introduced to existing work in the field of

protocol analysis and/or logic-driven verification.
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7.1 Protocols Specified by Equational Theories

7.1.1 Preliminaries

Equational theories were reviewed in Chapter 2, page 45 and page 54. In this chapter we will

use algebraic signatures (see Chapter 2 and/or Chapter 3) to formalise equational theories. The

denotation of an equational theory is given by a universal algebra. In this preliminary section we

fix the notations related to equational theories and used in this chapter.

Let S be a non-empty set of sorts. Let Σ = {Σ(ω,s)|ω ∈ S∗, s ∈ S}1 be an S-sorted signature,

σ ∈ Σ(ω,s) be a function symbol of type [ω, s], X be an S-sorted set of variables, TΣ,X be the S-sorted

set of terms over X and Σ, and TΣ be the set of ground terms. If σ ∈ Σ(ω,s) is a symbol of type [ω, s],

n ≥ 1, 1 ≤ i ≤ n, ti ∈ TΣ,X are terms of sort si ∈ S, and ω = (s1, . . . , sn), then σ(t1, . . . , tn) ∈ TΣ,X

is a term of sort s, i.e., σ(t1, . . . , tn) ∈ TΣ,X,s. The notation t = t′ denotes a Σ-equation of sort S,

i.e., a pair (t, t′) of terms of sort s. An equational theory is a tuple (Σ, E) where Σ is a signature

and E is a set of Σ-equations. The S-sorted Σ-algebra A = (A,ΣA) is the semantics of equational

theories [124]. The set A is an indexed set of values, i.e., A = (As | s ∈ S) For each sort in s,

the set As is the called the support-set for s. The set ΣA is a set of functions fA from Aω to As,

corresponding to function symbols f in Σ, f ∈ Σ(ω,s), ω ∈ S∗, s ∈ S. The term algebra and the

ground-term algebra implied by Σ and A are denoted TΣ,X and TΣ, respectively. The indexed set

δ = (δs | s ∈ S) of maps is an assignment of X into the algebra A; δ[x/a] is the assignment obtained

from δ when δs(x) is replaced by the value a, for x ∈ Xs, a ∈ As, s ∈ S. Let ∆ be the set of

assignments of variables in X into A and let each assignment δ ∈ ∆ be homomorphically extended

to non-atomic terms. An equational theory E is convergent if the algebra of its semantics can be

mechanised into a rewriting system →E which is convergent (i.e., confluent and terminating [15]).

Hence, for all terms t ∈ TΣ,X there exists uniquely a term t′ ∈ TΣ,Y such that Y ⊆ X and t→∗
E t′.

The term t′ ∈ TΣ,Y as above is called the normal form of t and this is denoted as t↓E . For more

information on equational theories and/or algebras, we refer the interested reader to [77,76,124].

1S∗ stands for the free monoid generated by S.
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7.1.2 Communication Protocols

In Chapter 2, page 54, the notion of equationally specified protocols was summarised. We recall

that the protocols for which the descriptions rely on a set of axioms formed with the underlying

primitives are denoted equationally specified protocols. In this section we detail how protocols can

be specified by equational theories.

Example 7.1.1 illustrates an equational theory (Σ1, E1) which simulates some of Peano’s axioms.

Example 7.1.1 (A Simple Equational Theory (Σ1, E1))

Signature Σ1: The set E1 of Σ1-Equations :

Sorts: S = {nat, bool}; Variables: Xnat = {x, y};

Function Symbols: ((¬true) = false);

Σλ,bool = {true, false}; ((¬false) = true);

Σ[bool,bool] = {¬}; (≤(0, x) = true);

Σ[λ,nat] = {0}; (≤(succ(x), 0) = false);

Σ[nat,nat] = {succ}; (≤(succ(x), succ(y)) =≤(x, y));

Σ[(nat,nat),bool] = {≤};

Σ[ω,s] = ∅, otherwise (i.e., for other ω ∈ S∗, s ∈ S) ;

For illustration purposes, we designed a simple communication protocol described by the equa-

tional theory (Σ1, E1). Example 7.1.2 gives the Alice & Bob notation of this protocol.

Example 7.1.2 (A Simple Communication Protocol Pr1)

1. A→ B : n

2. B→ A : m

3. A→ B : ≤(n, m)

The communication protocol Pr1 in Example 7.1.2 describes two roles: the initiator role, i.e.,

the A-role, and the receiver role, i.e., the B-role. The initiator role starts by sending the term n

to its communication partner. The receiver replies with some (possibly related) term m. Based on
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the data previously transmitted, the initiator proceeds by sending a final acknowledgement in the

form of ≤(n, m), where ≤ is the function symbol specified by the equational theory underlying the

protocol description and given in Example 7.1.1. The goal of protocol Pr1 is the authentication

between participants of A-role and B-role upon the data n and m.

Let signature Σ1 used in Example 7.1.2 be extended (at least) with a sort role (e.g., for Pr1,

variables of sort role are given by Xrole = {A, B}). As in Chapter 3, assignments give a sce-

nario for a multi-threaded execution of communication protocols. For instance, the assignment

δ[n/3, m/2, A/alice, B/bob] for Pr1 unwinds the execution of one session of protocol Pr1. This

session is illustrated in Example 7.1.3.

Example 7.1.3 (A Session of the Communication Protocol Pr1)

1. alice→ bob : 3

2. bob → alice : 2

3. alice→ bob : .F.

Formally, let the denotation of an equational theory (Σ, E) be a Σ-algebra A, together with

a countable set ∆ of assignments in A. These underlie a multi-session execution of a protocol

specified by the theory (Σ, E).

In the following sections we will use the equational theory (Σ1, E1) in Example 7.1.1, the proto-

col Pr1 in Example 7.1.2 and the scenario/assignment δ in Example 7.1.3 for different illustration

purposes.

The protocol in Example 7.1.2 is a communication protocol specified by an equational theory.

However, no mechanisms are implied in Example 7.1.2 to enhance the reliability of the protocol Pr1

in malevolent environments. In turn, security protocols are communication protocols where some

enhanced security is provided by certain cryptographic mechanisms. At the abstract level, this sim-

ply means that the underlying equational theory of security protocols is formed with cryptographic

primitives. Furthermore, the protocol specification language CAPSL supports the expression of se-

curity protocols through equational theories. This is achieved mainly by specifying the TYPESPEC

section of a CAPSL description, i.e., in the TYPESPEC section of the CAPSL description, AXIOMS can
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be stipulated in order to encode equations. In fact, in Chapter 2, page 54 we recalled this precisely.

Namely, in Example 2.2.4 we specified the equational theory underlying the Gong authentication

protocol, i.e., we formulated the TYPESPEC section of the CAPSL description for the Gong protocol.

Then, in Example 2.2.5 we showed how the equational theory is used in the actual description of

the protocol. In Example 2.2.5, we gave the actual PROTOCOL section of the CAPSL description for

the Gong protocol and, in doing so, we used details from its TYPESPEC section.

In the next sections we will mostly refer to security protocols specified by equational theories.

These are security protocols where the underlying cryptographic primitives are more intricate than

encryption/decryption (i.e., they are not included in the CAPSL prelude2 package and the specifier

needs to formalise these primitives as explicit AXIOMS in the TYPESPEC section of the corresponding

CAPSL description). Security protocols specified by equational theories are usually receiver-opaque

protocols which are not reducible to receiver-transparent protocols. In more detail, in such pro-

tocols it is of interest that the participants “take into consideration” even composites that they

cannot fully decrypt or analyse down to atomic parts. Also, two messages or terms of the protocol

might be syntactically different, yet equal modulo the underlying equational theory. Therefore, the

equality indistinguishability relation between states used in Chapter 3 and Chapter 5 is too coarse

to interpret a correct notion of knowledge modulo equational theories. Hence, the ΥIS formalism

introduced in Chapter 3 and used in Chapters 4, 5, 6 is generally not suited to modelling security

protocols specified by equational theories. Thus, in the next sections we introduce a MAS model

appropriate for modelling such security protocols.

7.2 Multiagent Systems Model for Equationally Specified

Protocols

In this section we present an interpreted system formalisation denoted ΥE
IS. It encodes executions

of security protocols specified by a convergent equational theory (Σ, E). Like the MIS model,

introduced in Chapter 3, this formalisation also follows the MAS approach. Therefore, we will

2For details on the CAPSL prelude, refer to Chapter 2, page 54.
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re-use some of notions introduced in Chapter 3.

Definition 7.2.1 (Denotational Algebra of an Equational Theory) Let (Σ, E) be a conver-

gent equational theory. The Σ-algebra A that, together with a finite set ∆ of assignments of vari-

ables X in A, forms the denotation of the theory (Σ, E) is called the denotational algebra of the

equational theory (Σ, E).

For each t ∈ TΣ,X , assume that the corresponding finite sequence t→E∗ t↓E mechanising TΣ,X

is provided (e.g., by a rewriting engine [52] or a tool based on multiset rewriting [181]).

In the denotational algebra A for the theory (Σ1, E1), we take the support-set Anat to be the

set N of natural numbers, the support-set Arole to be given by strings and the support-set Abool to

equal the set {.T., .F.}.

Let Pr be a protocol specified by a convergent equational theory (Σ, E). Let TΣ ,X |Pr be the

set of terms restricted to the PROTOCOL section of Pr’s specification/description (i.e., TΣ ,X |Pr does

not include terms or variables which were used to describe the equational theory (Σ, E) in the first

place). For instance, for the protocol Pr1 in Example 7.1.2, the set TΣ1,X |Pr1 does not include

variables x or y which described (Σ1, E1) and TΣ1,X |Pr1 = {A, B, n, m,≤(n, m)}. When Pr is

implicit, we simply write TΣ,X to denote the set TΣ,X |Pr.

As in Chapter 3, the set of variables and the set of terms are partitioned by roles. Variables

are either bound to a role R, BR, or free in a role R, FR. In the case of protocol Pr1, the atom n

is bound to the role of A (n ∈ BA), while the variable m is free to role A (m ∈ FA). For a role R,

this naturally extends to terms: a term t is free in a role R if at least one of its variables is free

in that role and a term t is bound to a role R if all its variables are bound to that role. Namely,






t ∈ FR, if t ∈ TΣ,X′ and X ′ ∩ FR 6= ∅

t ∈ BR, otherwise.

We consider an S-sorted set (⊥s | s ∈ S) of constant function symbols. When the sort s is

implicit, we simply write ⊥ instead of ⊥s.

This is extended to non-atomic terms in the following way. Let n ≥ 1 and {s1, . . . , sn} be a set

of sorts. Let i be arbitrarily fixed where 1 ≤ i ≤ n and let any j with 1 ≤ j ≤ n be such that j 6= i.

Any tuple (a1, . . . ,⊥si , . . . , an) with aj ∈ Asj is denoted ⊥ω, where [ω, s] ∈ S∗×S is a type for some
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function symbol σ ∈ Σω,s and ω = (s1, . . . , sn). In other words, for each ω ∈ S∗, ω = (s1, . . . , sn),

all constant function symbols over ω where at least one component is ⊥ are denoted ⊥ω.

With the above, we can now extend the denotational algebra of an equational theory so that it

operates also over ⊥. The following definition formalises this fact.

Definition 7.2.2 (Extension of a Denotational Algebra) Let (Σ, E) be a convergent equa-

tional theory. The algebra A⊥ is the extension of the denotational algebra A where: As⊥ is As∪{⊥s},

for all sorts s ∈ S and any operation in A operates on ⊥, returning ⊥.

Formally, for every function symbol f ∈ Σω,s of type [ω, s] ∈ S∗×S and every corresponding function fA

operating, in A, from Aω to As, the extended function fA⊥ operates in A⊥ from Aω ∪⊥ω to As⊥ as:






fA⊥(v) = fA(v), if v ∈ Aω, where ω ∈ S∗;

fA⊥(v) = ⊥s, if v = (v1, . . . , vn) and vi = ⊥si , for some i ∈ {1, . . . , n} ω = (s1, . . . , sn) ∈ S∗, s ∈ S.

Definition 7.2.2 expresses that an extension of a denotational algebra A acts exactly like the

original algebra A when operating over concrete values and it returns ⊥ whenever it operates over ⊥.

Using the above, we now formalise initial role instantiations.

Definition 7.2.3 (Initial Instantiation of Roles) Let δ ∈ ∆ be an assignment. The initial

R-role instantiation δ|R is the projection of the assignment δ on a role R, extended to A⊥:

δ|R = ({t >→ δ(t), t′ >→ ⊥s | t ∈ (BA)s, t′ ∈ (FA)s} | s ∈ S).

Definition 7.2.3 expresses that an initial role instantiation maps terms of type s ∈ S which are

bound to the R-role onto As and maps terms free in the R-role to ⊥. Unlike in Chapter 3, assign-

ments are implicitly extended to non-atomic terms, as Section 7.1.1 stated and as Definition 7.2.3

formalised above.

On the protocol scenario in Example 7.1.3, this leads to the following initial role instantiations:

δ|A[n/3, m/⊥, A/alice, B/bob,≤(n, m)/⊥],

δ|B[n/⊥, m/2, A/alice, B/bob,≤(n, m)/⊥].

As in Chapter 3, initial role instantiations denote a multiagent system initialisation scenario.

For each role R, we map each initial instantiation δ|R of the R-role into an agent agδ
R. This gives

the set Ag = ∪
δ∈∆

∪
R∈Xrole

{agδ
R} of agents.
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Remark 7.2.4 Note that the extended denotational algebra and the initial instantiations operate

over non-atomic terms. This is contrary to the denotations used in the ΥIS formalism in Chapter 3

where instantiations were applied to atomic terms only.

Therefore, in the formalism to be described, the local states of the agents will contain non-atomic

terms as well. In a nutshell, this is the first major step towards modelling receiver-opaque protocols,

i.e., agents might not decompose a term down to its atoms.

In the following, let the agent agδ
R correspond to an arbitrary R-role under the assignment δ

and, in particular, let agδ
A correspond to the A-role in the Pr1 protocol under the assignment δ in

Example 7.1.3. We are now going to present the formal description of the agent agδ
R.

Definition 7.2.5 (Range of a Term for an Agent) Let Pr be a protocol specified by a con- ver-

gent equational theory. The range RangeR(t) of a term t ∈ TΣ,X |Pr for an agδ
R agent is as follows:

RangeR(t)=























































As if t ∈ (BR)s ∩Xs (1)

As⊥ if t ∈ (FR)s ∩Xs (2)

(As1 × . . .× Asn) ∪ As if t ∈ (BR)s, t = σ(t1, . . . , tn),

σ ∈ Σ(s1,...,sn),s, ti ∈ TΣ,X,si , i∈{1, . . . , n} (3)

(As1 × . . .× Asn) ∪ As⊥ if t ∈ (FR)s, t = σ(t1, . . . , tn),

σ ∈ Σ(s1,...,sn),s, ti ∈ TΣ,X,si , i∈{1, . . . , n} (4)

Case (1) of Definition 7.2.5 expresses that the range of a variable t of sort s is the support-set As of

algebra A if t is a variable bound to the role R. According to case (2), a variable t of sort s ranges

over As ∪ {⊥s} if t is a free variable in the role R. Let σ ∈ Σω,s be a function symbol such that

ω = (s1, . . . , sn), where n ≥ 1, si ∈ S, 1 ≤ i ≤ n. Let ti be a term of sort si where 1 ≤ i ≤ n and

t = σ(t1, . . . , tn) be a term of sort s. Case (3) expresses that any term t like above which is bound

to the role of R ranges over the union between As and the generalised Cartesian product of the

ranges dictated by the structure of ω ∈ S∗ like above. For a non-atomic term t like above which is

instead free in the role R, the value ⊥s is added to the range defined by case (3) as above. This is

sufficient since any term t in TΣ,X |Pr will eventually be rewritten under the convergent equational

theory (Σ, E) to some normal term of some sort s.
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To clarify Definition 7.2.5, we will show its meaning using the protocol Pr1. Let us take the

example of term ≤(m, n) which is free in the role of A in protocol Pr1. The term ≤(m, n) is free in

the role of A and it is a term of sort Bool. Then, the initial A-role instantiation will assign ≤(m, n)

to ⊥{.T.,.F.}. But, as the execution proceeds, a participant of the A-role will set the free variable m

to a concrete value, and then the participant will “rewrite” the term ≤(m, n) to consequent concrete

values (e.g., in the scenario in Example 7.1.3, ≤(m, n) will become ≤(3, 2), ≤(2, 1), ≤(1, 0) and,

finally, .F.). Hence, according to case (4) of Definition 7.2.5, the term ≤(m, n) of the A-role in

protocol Pr1 ranges over (Anat × Anat) ∪ Abool⊥ = (N× N) ∪ {.T., .F.}⊥.

Now, Definition 7.2.6 will formalise all the possible ways that terms can be mapped into values

with the formalisation of an agent.

Definition 7.2.6 (Store of an Agent) Let Pr be a protocol specified by a convergent equational

theory. A store for an agent agδ
R is a relation between terms and their respective ranges for agδ

R,

denoted store=(t :: RangeR(t) | t ∈ TΣ ,X |Pr).

Hence, a store unwinds all the acceptable valuations of terms over some established domains.

The store of agδ
A in a model for Pr1 is as follows:

storeagδ
A

= (A ::String, B ::String, n ::N, m ::N⊥,≤(n, m) :: (N× N) ∪ {.T., .F.}⊥).

Remark 7.2.7 Note that unlike in Chapter 3, the ranges for terms are not restricted to a particular

role. This is because the present formalisation aims at modelling receiver-opaque protocols. Hence,

it is reasonable to model agents that accept any value for an opaque term.

In the following, we capture an actual instantiation of a store. For that, we introduce the notion

of view.

Definition 7.2.8 (Views of an Agent) An initial view for an agent agδ
R is a concrete initial R-role

instantiation δ.

A non-initial view for agδ
R is a concrete assignment δ[y/v], for some y ∈ (FR)s, v ∈ As (i.e., v 6= ⊥s).

A possible non-initial view for agδ
A in a model for Pr1 is:

viewagδ
A

= (A >→ alice, B >→ bob, n >→ 3, m >→ 2,≤(n, m) >→ ⊥).
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The non-initial view viewagδ
A

shows that agδ
A has received the value 2 for the free term m and

updated the value for m in her view from ⊥ to 2. However, agδ
A has not yet “calculated” the value

of ≤(n, m) under the new view, i.e., ≤(n, m) is still ⊥ in viewagδ
A
. In the following, we will formalise

the hereby mentioned updates.

The set Adj of adjacent terms is given by terms which are unrelated to the equational theory E.

These terms are however induced by the protocol specification (i.e., they represent clock variables,

flag variables, etc.). For each role R, we extend RangeR and initial R-role instantiations to operate

also over Adj.

Definition 7.2.9 (Local States of Agents.) An (initial) local state is an (initial) view together

with some adjacent terms and their assigned values.

Concrete ranges and initial values to be added to the local states of each R-role are given by

a precise protocol specification. An example of this will be shown in Section 7.5, through the

modelling of the FOO’92 e-voting protocol.

Let step be a variable added to the Pr1 specification. In this fashion, in a model for the

protocol Pr1, let step ∈ Adj be an adjacent, atomic term of sort nat, let RangeR(step) = N and

step >→ 1 in an initial setup (where R ∈ {A, B}). An initial state i l and local state l of agent agδ
A

in a model for Pr1 are then as shown in the following.

Example 7.2.10 (A Possible (Initial) State of agδ
A in a model for Pr1)

initial state i l = (step >→ 1, A >→ alice, B >→ bob, n >→ 3, m >→ ⊥N,≤(n, m) >→ ⊥{.T.,.F.});

non-initial state l = (step >→ 5, A >→ alice, B >→ bob, n >→ 3, m >→ 2,≤(n, m) >→ .F.).

The set Lagδ
R

of possible local states of agδ
R follows from the above.

Let Pr be a protocol specified by a convergent equational theory (Σ, E). Given l ∈ Lagδ
R
, we

use the following notations:

• l .view to denote the inner view of l;

• l .t to denote an inner term t ∈ TΣ,X |Pr of l;

• l |t=x to denote the fact that l.t=x, where t ∈ TΣ,X |Pr, x∈RangeR(t);
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• l |δ to denote when l|t=x and δ[t/x], for all t ∈ dom(δ), for x∈RangeR(t);

• l [t/y ] to denote the fact that l.t being set to y, for t ∈ TΣ,X |Pr for some y∈RangeR(t).

In the following, we further describe the agents in this formalisation. Let i denote agδ
R and i′

denote agδ′
R′ , the maps of an initiator role R and receiver role R′, respectively. Let l ∈ Lagδ

R
, t ∈ TΣ,X

and x ∈ RangeR(t).

Definition 7.2.11 (Local Actions of Agents)

The set LActi={send(t, x, i′), receive(t, x), rewrite, empty} is the set of possible local actions of

agent i, where t, x, i′ are as above.

Definition 7.2.12 (Local Protocol of Agents) The local protocol Pi of agent i is defined as

follows:

Pi(l|step=nr1, l.t=x, l.R′=i′.R′)= {send(t, x, i′)},

Pi(l|step=nr2)= {receive(t, x)},

Pi(l|step=nr3)= {rewrite},

where t, x, i′, l are as above, step ∈ Adj, nrj ∈ RangeR(step) and j ∈ {1, 2, 3}.

Similarly to the ΥIS formalisation given in Chapter 3, the parameters of the actions are restricted

to proper subsets of TΣ,X when a particular protocol is given. For instance, the action receive is

defined only over terms to be received by a R-role, i.e., ReceivedMsgR, and nrj is made concrete

by a precise protocol description/specification, i.e., nrj ∈ StepsR.

The Environment Agent. We consider an environment agent Env that “records” all the com-

munication. Thus, the Env agent will “record” any term t of any value x coming from any agent i

and aimed at any other agent i′. Therefore, the local states of the Env agent are given by sets of

tuples of the form (t :: ∪
R∈role

RangeR(t) :: Ag :: Ag | t ∈ TΣ,X). This gives the set LEnv of possible

local states of the Environment agent.

The environment has one possible action denoted listen and enabled at any local state. Hence,

the set LActEnv = {listen} is the set of possible local action of the Env agent.
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Unlike in the ΥIS formalisation, the Env agent does not model a Dolev-Yao intruder. In Sec-

tion 7.5, we manipulate this agent to render a passive attacker model (see Section 2.2.1.3, page 34

for the notion of passive attacker).

Global States. As usual, a global state g is a tuple (l1, . . . , ln, lEnv), where i ∈ Ag, li ∈ LActi

and lEnv ∈ LEnv. The set G of global states is the set of all possible states g as above.

Joint Actions. As usual, a joint action a is a tuple (a1, . . . , an, aEnv), where i ∈ Ag, ai ∈ Acti

and aEnv ∈ ActEnv. The set Act of joint actions is the set of all possible joint actions a as above.

Agents’ Local Evolution Function. Let i denote the agδ
R agent, i′ denote the agδ′

R′ agent as

above, let l ∈ Li be a local state of agent i and a ∈ Act be a joint action.

The local evolution function Ei of agent i is defined as:






















































l[step/nr+1] if l|t=x,step=nr,R′=i′.R′ , for ai = send(t, x, i′), aEnv = listen,

a′
i = receive(t, x)

l[step/nr+1, t/x] if l|tj=xj ,step=nr,R′=i′.R′ , for ai = receive(t, x), aEnv = listen,

a′
i = send(t, x, i), tj ∈ Sub(t)

l[step/nr+1, t/t′] if l|step=nr+1, for ai = rewrite, aEnv = listen,

a′
i = empty, t ∈ TΣ,X , t′ = t↓E

We give the denotation of the local evolution function Ei presented above. The preconditions

of enabling a state-update upon receiving are similar to those in the ΥIS formalisation presented in

Chapter 3. These are summarised as follows:

• the local actions receive of agent i are synchronised with the local actions send of agent i′

and with the local action listen of the Env agent;

• agent i is in the step nr where he awaits the receiving of the message t;

• the purported sender is the agent of the R′-role3 (i.e., i.R′ = i′.R′ );

3If certain anonymising procedures [92] are used in the design of the protocol, then this condition is dropped.
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• the values xj of certain subterms tj in the received term t are consistent with agent i’s view,

i.e., l|tj=xj ; this is a simplified expression in Ei of the denotation of symbol out match in

Chapter 3.

The meaning of the state-updates is mainly as in Chapter 3. For instance, the denotation of

the second line is as follows. If the pre-conditions are satisfied (i.e., l ∈ Li is such that indeed

l|tj=xj ,step=nr,R′=i′.R′), then the local state l is updated, i.e., l[step/nr+1, t/x]. This update implies

that the value nr of the step variable is incremented and the newly received term t is set to x.

In the state-updates of this formalism, the denotation of set as per Chapter 3 (i.e., decomposing

[t/x] down to atomic terms) is not encompassed. Its meaning is embedded in the entry of the

local evolution for the local action rewrite. Therefore, the local evolution function forces a rewrite

action at a state newly updated upon receiving.

We illustrate on the local evolution function for action rewrite in the model for Pr1. Assume

that agδ
A has performed the action receive(m, 2) at a local state l|step=1. Recall that the protocol Pr1

is defined by the convergent equational theory (Σ1, E1). The rewriting underlined by the equational

theory (Σ1, E1) for n = 3 (as per the assignment δ|A extracted from Example 7.1.3) and m = 2 (as

per the action receive(m, 2)) is:

≤
(

3, 2
)

−→≤
(

succ(2), succ(1)
)

−→≤
(

2, 1
)

−→≤
(

succ(1), succ(0)
)

−→≤
(

1, 0
)

−→ .F. (7.1)

Recall that, by the evolution function Ei, for l|step=1 ∈ Lagδ
A

and action aagδ
A

= receive(t, x), it

is the case that E(l, a)=l[step/2,≤(n, m)/(3,2)]. Then, the the evolution function Ei emulates the

rewriting presented in (7.1). The implied local state update is shown in Example 7.2.13.

Example 7.2.13 (A State-Update Driven by the Rewriting in (Σ1, E1))

At l|step=2,≤(n,m)=(3,2) ∈ Lagδ
A

and aagδ
A

= rewrite, the equational theory (Σ1, E1) implies the following

sequence of updates: l[step/3,≤(n, m)/(2,1)], l[step/4,≤(n, m)/(1,0)] and l[step/5,≤(n, m)/.F.].

For particular classes of protocols (where the intermediate rewriting updates are not of interest), we

optimise the local evolution function by compressing it into one update step, i.e., the sequence of

updates triggered at the local state l|step=2,≤(n,m)=(3,2) and shown in Example 7.2.13 is collapsed into
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l[step/3,≤(n, m)/.F.]. The summary of the local evolution function Ei aforementioned formalises

this optimisation.

Definition 7.2.14 (The Global Evolution Function)

The global evolution function t : G×Act→ G is such that t(g, a) = g′ if acti ∈ Pi(gi), Ei(gi, a) = g′
i,

for all i ∈ Ag ∪ {Env}, for g, g′ ∈ G and a ∈ Act.

A path is an infinite sequence of global states described by the global evolution function. A

finite sub-sequence of a path is also called a path. Paths naturally give the set of reachable states.

Definition 7.2.15 (Equational Interpreted System for Pr) Let Pr be a protocol specified by

a convergent equational theory (Σ, E). An equational interpreted system for Pr (ΥE
IS) is a tuple

I = (G, Act, P, t, I0, V ), where I0 ⊂ G is a set of initial global states, P = (Pi | i ∈ Ag ∪ {Env}),

and V : G×PV → {true, false} is a valuation function for the propositions PV of a logic language

of the system.

For Definitions 7.2.16–7.2.20, let Pr be a protocol specified by a convergent equational theory

(Σ, E), I be an equational interpreted system model for Pr and i be an arbitrary agent in I.

Definition 7.2.16 (Local Satisfaction of Equational Equalities of Terms) The local state

l ∈ Li satisfies t =E t′, written l|=(t =E t′), if l|t=t′, for t→E∗ t′ with t′ = t↓E , t ∈ TΣ,X |Pr

(i.e., t /∈ Adj).

Let t =E t′ be an arbitrary equality of terms modulo E. Definition 7.2.16 expresses that a local

state l of agent i satisfies this equality of terms modulo E if, under the interpreted system ΥE
IS, the

term t has been rewritten to the normal term t′ and this is recorded in local state l of agent i.

Definition 7.2.17 (Local Equational Indistinguishability) Two local states l ∈ Li and l′ ∈ Li

are i-indistinguishable modulo E, written l ≈E
i l′, when l|=(t =E t′) if and only if l′|=(t =E t′), for

all t ∈ TΣ,X |Pr, i.e., t /∈ Adj.
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Definition 7.2.17 expresses that two local states of agent i are indistinguishable modulo E if

they satisfy the same equalities of terms modulo E.

Note that local satisfaction of equalities of terms modulo E is defined only with respect to

normal terms. For instance, in our running example on the ΥE1
IS for the protocol Pr1, writing

l|=(≤(m, n) =E1≤(2, 1)) is not well-founded since ≤(2, 1) 6=≤(m, n)↓E∗
1
. This is in line with [4], i.e.,

different ciphertexts assigned to the same symbolic term t are not distinguishable if the value for

the decryption key is not held. Let i be agδ
A in the ΥE1

IS for the protocol Pr1 and its local states

l1|step=2,≤(n,m)=(3,2), l2|step=3,≤(n,m)=(2,1) and l3|step=4,≤(n,m)=(1,0) be as in Example 7.2.13. The only

equality of terms to be satisfied in ΥE1
IS at the local states Li is ≤(m, n) = E1 .F. No state in the

set {l1, l2, l3} satisfies it. Therefore, l1|step=2,≤(n,m)=(3,2) ≈
E1
i l2|step=3,≤(n,m)=(2,1) ≈

E1
i l3|step=4,≤(n,m)=(1,0).

Nevertheless, because the rewriting converges in the model for Pr1, there exists a local state

l ∈ Li such that l|=(≤ (m, n) =E1 .F.). Namely, as per Example 7.2.13, this state is l|step/5,≤(n,m)/.F.
.

We lift local indistinguishability to global indistinguishability as usual.

Definition 7.2.18 (Global Equational Indistinguishability) Two reachable global states

g, g′ ∈ G are i-indistinguishable modulo E, written g ∼E
i g′, if gi ≈E

i g′
i. The relation ∼E

i ⊆ G×G

is the quotient-indistinguishability relation.

To refer to an indistinguishability relation aligned with standard approaches in interpreted

systems models, we give Definitions 7.2.19 and 7.2.20.

Definition 7.2.19 (Local-State Equality) Two local states l ∈ Li and l′ ∈ Li are i-equal, writ-

ten l =i l′ if l = l′.

Definition 7.2.20 (Global-State Equality) Two reachable global states g, g′ ∈ G are i-equal,

written g =i g′, if gi =i g′
i. The relation =i⊆ G×G is the equality relation.

Definition 7.2.21 (Equational Multiagent System Model for Pr) Let Pr be a protocol spec-

ified by a convergent equational theory (Σ, E), I be an equational interpreted system for Pr. The

unwound multiagent system model implied by I is called the equational multiagent system model

for Pr (ME
IS) and it is given by the tuple (G,∼E

i , =i, V ), where G is the set of reachable states
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implied by I, V is the set of atomic proposition in I and, for all i ∈ Ag ∪ {Env}, ∼E
i , =i are the

aforementioned indistinguishability relations.

In the following, we sometimes overload the notation I to denote both the equational interpreted

system for Pr and the equational multiagent system model for Pr (i.e., the IS-based specification

and the unwound model). However, the context will always disambiguate the notation I.

7.2.1 Logical Language

In this section we give a logical language interpreted on ME
IS models.

Let Pr be a protocol specified by a convergent equational theory (Σ, E), I be its equational

multiagent system model ME
IS, p ∈ PV and i ∈ Ag ∪ {Env}. The language L is defined by the

following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | QKiϕ | AXϕ | AGϕ | A(ϕUϕ).

We denote the operator K by the knowledge modality and the operator QK by the quotient-

knowledge modality. Furthermore, Kiϕ reads “agent i knows the fact ϕ” and QKiϕ reads “agent i

knows the fact ϕ modulo E”.

The semantics for CTL on equational multiagent system models is as on unwound interpreted

system (see [80] or Chapter 2, page 25). In the following we give the interpretation of knowledge

modalities on equational multiagent system model. Let Pr be a protocol specified by an equational

theory (Σ, E), I be its equational multiagent system model, ϕ ∈ L, i ∈ Ag ∪ {Env} and g ∈ G.

Then,

(I, g)|=Kiϕ if (for all g′ ∈ G)(g =i g′ implies (I, g′)|=ϕ)

(I, g)|=QKiϕ if (for all g′ ∈ G)(g ∼E
i g′ implies (I, g′)|=ϕ).

The formula ϕ ∈ L is valid on I if ϕ ∈ L is satisfied at all states of the (unwound) equational

multiagent system model I.
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Evaluation of the ME
IS Model

In this section we have introduced ΥE
IS as an interpreted system-based formalisation of the multi-session

execution of a protocol specified under convergent equational theory (Σ, E). The multiagent system

model unwinding ΥE
IS was denoted ME

IS.

Recall that the formalisations in Chapter 3 encoded receiver-transparent protocols, where the

equality relation was an adequate state-indistinguishability relation. This is not the case for

receiver-opaque protocols (e.g., different opaque terms might have the same meaning). There-

fore, the formalisations in the previous section generalise those in Chapter 3. Firstly, the quotient

indistinguishability relation is introduced to accommodate the distinction of states based on the

underlying equational theory of the protocol. Other extensions to the formalism in Chapter 3 are

present in the modelling of the local states, the local evolution function, etc. In this fashion, the

ΥE
IS and ME

IS formalisms have been presented as a bespoke methodology for the modelling of a class

of receiver-opaque protocols.

Nevertheless, many of the receiver-transparent protocols used in practice are described using

convergent equational theories. In that sense, receiver-transparent protocols can also be modelled

using ΥE
IS. Pursuing the latter specification to model an RTP would be less efficient than using the

RT-tailored approach in Chapter 3 (i.e., the larger size of the states, the larger size of the ranges for

terms, the increased number of transitions implied by the evolution function in ΥE
IS than in ΥIS).

The following sections and Appendix C will show extensions of the RO-oriented formalisations

in this section. The automation to generate the ΥE
IS specifications and techniques to verify them

will also be discussed.

7.3 Interrogative Multiagent Systems Model for Equation-

ally Specified Protocols

Firstly, this section introduces interrogative interpreted systems (Υ I
IS); this is a class of interpreted

systems that augments the specification of agents with local predicates called interrogations (Sec-

tion 7.3.1). A new knowledge modality is defined and interpreted on the unwinding of the Υ I
IS
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system (Section 7.3.2). Denoted IK, this knowledge modality is shown to coincide with the quo-

tient knowledge modality, if particular interrogations are imposed (Section 7.3.3). The usefulness of

the latter lies in the fact that interrogative interpreted systems are better suited for automatic ver-

ification than equational interpreted systems. In fact, a model checking algorithm of interrogative

interpreted systems against the IK modality is proposed.

7.3.1 Interrogation Sets

In Definition 7.3.4 of this subsection we formalise agents’ interrogations. To achieve this we use the

notions of logical signatures, logically extended signature, logical terms and predicates. We proceed

to explain these notions.

An S-sorted logical signature contains logic symbols of type [ω], for ω ∈ S∗. A logical signature

is somewhat similar to a signature. Informally, a (standard) signature specifies symbols related

to algebraic operators, e.g., decrypt, whereas a logical signature specifies symbols related to logic

facts, e.g., isDecrypted. The terms constructed with such logic symbols, e.g., isDecrypted(t1, t2),

will be interpreted as logic predicates, e.g. isDecrypted(t1/{3}100001 , t2/100001), over {true, false}, as

the next will show.

Definition 7.3.1 (Logically Extended Signatures) A logically extended signature is given by

a tuple (Σ,ΣL), where Σ is an S-sorted signature and ΣL is an S-sorted logical signature.

Let I be an equational interpreted system for a (Σ, E)-specified protocol Pr, ∆ be the set of

assignments in the algebra A⊥, δ be an initial role instantiation and i be the agent agδ
R. The tuple

(Σ,ΣL, E) is the logically extended equational theory corresponding to the equational theory (Σ, E).

A logically extended equational theory (Σ,ΣL, E) describes a communication protocol Pr in more

detail, e.g., ΣL can capture certain protocol properties, like pre-goals4.

The set TΣ ,ΣL,X of logical terms is defined on logically extended signatures (Σ,ΣL) in the same

way the set TΣ,X of terms is defined on the signature Σ.

4 We recall that notion of pre-goals is introduced in Chapter 6, page 230.
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The denotation of logically extended signatures is given through a logical extension of the

algebra A⊥. In the logical extension of the algebra A⊥, the interpretation i pA⊥(δ) of a logi-

cal term p ∈ TΣ,ΣL,X under assignments δ ∈ ∆ is a predicate pA⊥ evaluated over {true, false}.

When A⊥ is implicit, we simply write i p(δ) instead of i pA⊥(δ).

We exemplify with a logical signature for the Pr1 protocol.

Example 7.3.2 (Σ1L – a Logical Signature for Protocol Pr1)

Let Σ1L be a logical signature containing two logical symbols:

• “smaller” of type [nat, nat];

• “diffOne” of type [nat, nat].

The meanings of the predicates corresponding to the symbols in Example 7.3.2 follow the intu-

ition: i diffOne(n, m)(δ) is true if “the absolute difference between δ(n) and δ(m) is 1”, etc.

Definition 7.3.3 (Logical Terms of Agents) Let j be an arbitrary agent in an IS formalisation.

A fixed set Inj ⊆ TΣ,ΣL,X denotes the set of logical terms of agent j.

Definition 7.3.3 equips IS agents with sets of logical terms. This can be seen as an extension of

agents’ stores.

Definition 7.3.4 (Local Interrogations for Agents) Let j be an arbitrary agent in an IS for-

malisation. The set Intrj = {i p(δ) | p ∈ Inj} of predicates contains the local interrogations for

agent j. The Intrj sets are denoted as local interrogation-sets, for j ∈ Ag.

The Ag-indexed set Intr = (Intrj | j ∈ Ag) is the interrogation-set.

Definition 7.3.4 augments the IS specification of agents with sets of predicates, i.e., interroga-

tions. In parallel with ΥIS, these sets can be seen as an extension of agents’ views.

In Example 7.3.2 we illustrate the notions of logical terms and local interrogations of agents.

Example 7.3.5 (Possible Interrogations For Agent agδ
A in Pr1)

Two possible sets of logical terms of agent i = agδ
A in the model Pr1 are:
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• In1i = {smaller(n, m)};

• In2i = {diffOne(n, m)}.

The sets In1i and In2i respectively trigger two possible local interrogation-sets of agent i = agδ
A

in the model Pr1:

• Intr1i=i smaller(n, m)(δ);

• Intr2i=i diffOne(n, m)(δ).

We will now show how the interrogation-sets can be used to describe an indistinguishability

relation. Such a relation is similar to the one used for explicit knowledge and implemented in

MCMAS-X [134,170,130].

Definition 7.3.6 (Local Interrogative Indistinguishability) Let j be an arbitrary agent in an

IS formalisation. Two local states l, l′ ∈ Lj are indistinguishable modulo Intrj, written l ≈Intrj l′,

if i p(δ) = i p(δ′) for all p ∈ Inj, where l|δ, l′|δ′ and δ, δ′ ∈ ∆.

Definition 7.3.6 expresses that two local states l and l′ of agent j are indistinguishable through

interrogations if local state l evaluates all the interrogations of agent j in the same way as local

state l′, i.e., if predicate p is evaluated to true at l if and only if it is evaluated to true at l′, and

predicate p is evaluated to false at l if and only if it is evaluated to false at l′, for all p ∈ Inj.

We further clarify the meaning implied by Definition 7.3.6 by an example.

Example 7.3.7 (Interrogative Indistinguishability in a Model for the protocol Pr1)

Let i be the agent agδ
A in a model for the protocol Pr1, lagA|δ[n/9,m/8] and l′agA

|δ[n/9,m/5]. Hence,

the local states l and l′ are the same except for the value of m. Let Intr1i and Intr2i be the

interrogation-sets in Example 7.3.5. Note that

• i smaller(n, m)(δ[n/9, m/8])=false and i smaller(n, m)(δ[n/9, m/5])=false;

• i diffOne(n, m)(δ[n/9, m/8])=true and i diffOne(n, m)(δ[n/9, m/5])=false.

Therefore, l ≈Intr1i l′ holds, but l ≈Intr2i l′ does not hold, i.e., l 6≈Intr2i l′.

We lift local interrogative indistinguishability to global states in a standard way.
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Definition 7.3.8 (Global Interrogative Indistinguishability) Let j be an arbitrary agent in

an IS formalisation. Two global states g, g′ ∈ G are indistinguishable modulo Intrj, written

g ∼Intrj g′, if gj ≈Intrj g′
j. The relation ∼Intrj⊆ G×G is the interrogative indistinguishability.

Recall that ΥE
IS is the IS formalisation of the execution for protocol Pr specified by the equational

theory (Σ, E). The following definition augments this formalisation to support local interrogations.

Definition 7.3.9 (Interrogative Equational Interpreted System) Let Pr be a protocol spec-

ified by (Σ,ΣL, E) and I be the equational interpreted system ΥE
IS for Pr. An interrogative equa-

tional interpreted system is the tuple I ′=(I, Intr), where Intr is the indexed set (Intrj | j ∈

Ag ∪ {Env}) of interrogations for each agent j.

Definition 7.3.9 expresses that an interrogative equational interpreted system I ′=(I, Intr) is an

extension of the equational interpreted system I with an interrogation-set Intr.

The following definition describes the unwinding of an interrogative equational interpreted sys-

tem.

Definition 7.3.10 (Interrogative Equational Multiagent System Model) Let Pr be a pro-

tocol specified by (Σ,ΣL, E) and I be the equational interpreted system ΥE
IS for Pr. An interrogative

equational multiagent system model is the tuple (G,∼E
j , =j,∼Intrj , V ), where G is the set of reach-

able states implied by I, V is the set of atomic propositions in I and ∼E
j , =j, ∼Intrj are the

indistinguishability relations previously described, for all agents j.

7.3.2 Logical Language

We introduce the language L′ as an extension of L in Section 7.2.1. To L, we add the modality IKi,

for i ∈ Ag ∪ Env. The reading of IKiϕ is “agent i interrogatively knows the fact ϕ”. The

denomination we use for the operator IK is the interrogative knowledge modality.

Let I ′ = (I, Intr) be an interrogative equational multiagent system model. The language L is

interpreted as on the underlying equational multiagent system I, i.e, the model without interroga-

tions. Let g ∈ G be an arbitrary reachable state in the model I ′. The interpretation of interrogative
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knowledge modality on the model I ′ is as follows:

(I ′, g)|=IKiϕ if (for all g′ ∈ G)(g ∼Intri g′ implies (I ′, g′)|=ϕ)

7.3.3 Interrogation Sets of Convergent Equational Theories

In this section we will explicitly link the interrogations of agents and the IK modality to the conver-

gence of the underlying equational theory. In particular, we consider a special kind of interrogations

related to the normal terms of the equational rewriting. These will describe a specific class of in-

terrogative equational MAS models where the interrogative knowledge modality IK coincides with

the quotient-knowledge modality QK. The latter is useful in terms of model checking procedures.

Let Pr be a protocol specified by a convergent equational theory (Σ, E), I be the equational

interpreted system for Pr and j denote the agδ
R agent as above. Let ΣL be a logical signature

containing the (special) logical symbols pred ∈ ΣL of type ω, for all ω ∈ S∗. Let t be an arbitrary

term of type ω, i.e., t∈TΣ,X .

Definition 7.3.11 (Predicates for Terms) A logical term pred(t) ∈ TΣ,ΣL,X is a logical term

for t ∈ TΣ,X . The interpretation i predE(t)(δ) of a predicate for t in E is always true, i.e.,

i predE(t)(δ) = true, for all δ∈∆.

Definition 7.3.11 suggests that a predicate for a term t ∈ TΣ,X expresses a general truth about

this term t, i.e., i predE(t) is true under all assignments δ for t, δ(t) 6= ⊥. In some models it is

reasonable to assume that certain properties are constantly true or constantly false [101]. We

will see that in our model such properties refer to normal terms. Indeed, in Definition 7.3.12, we

consider predicates only for the normal terms on the underlying signature. These purposely selected

predicates will constitute the interrogation-sets of agents.

Let j denote the agent agδ
R, for δ ∈ ∆.

Definition 7.3.12 (Local Interrogations of Convergent Theories)

InE
j = ∪

t∈TΣ,X

{pred(t′) | t′ = t↓E} is the set of logical terms for the convergent theory E of agent j.

IntrE
j = {i predE(t)(δ) | pr(t)∈InE

j } is the set of local interrogations of the convergent theory E

for agent j.
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Definition 7.3.12 expresses that local interrogations for convergent theories are particular inter-

rogations; in more detail, they simulate the agents recording the normal terms of the equational

rewriting.

Definition 7.3.13 (Interrogative Equational Interpreted System for Convergent Theories)

Let Pr be a protocol specified by (Σ,ΣL, E) with E convergent, I be the equational interpreted sys-

tem ΥE
IS for Pr and let j denote the agent agδ

R, for δ ∈ ∆. Let IntrE
j be the local interrogations for

the convergent theory E of agent j and IntrE be the indexed set (IntrE
j | j ∈ Ag). An interrogative

equational interpreted system Υ IE
IS for the convergent theory E is given by the tuple I ′=(I, IntrE).

Definition 7.3.13 expresses that the system Υ IE
IS extends an equational interpreted system I with

an interrogation-set IntrE for the theory E. In other words, Υ IE
IS is a special kind of interrogative

equational interpreted system where the interrogations are as in Definition 7.3.12, i.e., where agents

“track” normal terms.

Definition 7.3.14 (Interrogative MAS Model for Convergent Theories) Let Pr be a pro-

tocol specified by (Σ,ΣL, E) with E convergent and I be the interrogative equational interpreted

system for the convergent theory E. The interrogative multiagent system model M IE
IS for the con-

vergent theory E is given by the tuple (G,∼E
j , =j,∼Intrj , V ), where G is the set of reachable states

implied by I, V is the set of atomic propositions in I and, for all agents j denoting agδ
R in I,

∼E
j , =j, ∼Intrj are the indistinguishability relations aforementioned.

Definition 7.3.14 introduces the unwound interrogative IS models which are bespoke for a con-

vergent theory E. In that sense, their underlying interrogative indistinguishability relation concerns

only the normal terms of the equational theory E. Moreover, as per Definition 7.3.12, the interro-

gations involved always evaluate to true.

Nevertheless, the MAS models in Definition 7.3.14 are a special case of the interrogative MAS

models in Definition 7.3.10. Therefore, any M IE
IS model can interpret all knowledge modalities

presented in this section (i.e., QK, IK, K). The way we designed the interrogation-sets in the M IE
IS

models entails that the IK modality coincides with QK in the M IE
IS models, as the following shows.
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Theorem 7.3.15 Let Pr be a protocol specified by a convergent equational theory (Σ, E) and I be

an M IE
IS model for E. Then, I|=QKjϕ if and only if I|=IKjϕ, for any j ∈ Ag, any ϕ ∈ L′.

Proof

Let j ∈ Ag be an arbitrary agent with α its arbitrary initial R-role instantiation in I, i.e., j = agα
R.

Let ϕ ∈ L′ be an arbitrary formula.

I|=QKjϕ
df|= L
⇔ (for all g′ ∈ G)(g ∼E

j g′ implies (I, g′)|=ϕ)
df.∼E

⇔ (for all g′ ∈ G)(gj ≈E g′
j implies (I, g′)|=ϕ)

df.≈E

⇔ (for all g′ ∈ G)(for all t ∈ TΣ,X)((gj |=(t= Et′) iff g′
j |=(t= Et′)) implies (I, g′)|=ϕ)

df.|= eq
⇔ (for all g′ ∈ G)(for all t ∈ TΣ,X , t′ = t↓E)((gj|t=t′ iff g′

j|t=t′) implies (I, g′)|=ϕ) (1)

Without loss of generality, let

gj|δ, g′
j|δ′ (2)

denote the local states in (1), where δ, δ′ are arbitrary assignments extending α, i.e., the initial

R-role instantiation of agent j.

Note that in I the following holds:

InE
j =

⋃

t∈TΣ,X

{pred(t↓E)}, IntrE
j =

⋃

t∈TΣ,X

{i pred(t↓E)(δ) = true} (3)

From (2), (3) and the definition of ≈Intrj , it follows that in (1) the following holds:

gj ≈
IntrE

j g′
j (4).

From (1), (4), it follows that:

(1) ⇔ (for all g′ ∈ G)(gj ≈
IntrE

j g′
j implies (I, g′)|=ϕ)

df.∼Intrj

⇔ (for all g′ ∈ G)(g ∼Intrj g′ implies (I, g′)|=ϕ)
df|= L′

⇔ (I, g)|=IKjϕ
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Evaluation of the Models in Section 7.3

The interrogative equational interpreted system extends the IS formalisms with interrogations (i.e.,

predicates) for agents. Similar approaches are present in [134] where the IS is enriched with aware-

ness predicates. For instance, in [134], agent i would be aware of φ if the formula φ is within his

facts (i.e., similar to φ being an interrogation in Υ IE
IS ). In [134], agent i explicitly knows φ if i

knows it in the standard sense and i is aware of φ. Therefore, it is easy to see that the knowledge

modalities presented in [134] (i.e., the explicit knowledge and the awareness modality) are inter-

preted differently than the IK modality in our interrogative equational interpreted system models.

The closest resemblance to our formalisation is that between the interrogative indistinguishability

relation and the indistinguishability relation used in MCMAS-X [170] to interpret explicit knowledge.

Our interrogative equational interpreted systems are in the style of the observational systems

in [164]. The observational systems in [164] encode notions of security, i.e., secrecy, building on the

work of [97]. Nevertheless, the observational systems in [164] are less concrete then the interrogative

equational interpreted systems hereby presented (e.g., the observations of agents do not systemati-

cally refer to the underlying equational theory of the protocol, but they are arbitrarily chosen sets

of facts). To model whether an agent can make a particular observation in a local state, in [164]

every agent is supplied with an algorithm that takes an observation and a local state as input and

computes whether the agent is capable of making that particular observation in that particular

state. The algorithms are based on a set of pre-established deduction rules. Our model loosens

that, maintaining agents’ interrogations at a higher-level, i.e., no actual deductions or actions are

required on the agents’ side. We also tailor the model for convergent equational theories. In that

sense, an agent is able to interrogate all normal terms and only those (i.e., these interrogations

relate to Pucella et al ’s observations). In our interrogative equational IS, the values of terms in the

agent’s local state evolve with the equational rewriting embedded in the local evolution functions

(i.e., this can be considered as partially encoding Pucella et al ’s local algorithms).

Other epistemic contexts have also employed predicates that can be likened to our notion of

interrogations to interpret a notion of knowledge. Recently, Halpern has used predicates (i.e.,

“observations” or “experiments”) in formalising amongst others notions of probabilistic knowledge
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in MAS [100] and revision of belief [86]. The modalities thereby explored do not significantly relate

to the IK modality other than by the inherent use of agents’ predicates.

The well-established notion of observation or observation function on a point (r,m) of an in-

terpreted environment [146] captures a notion similar to a standard local state in the interpreted

systems formalism that we use [169]. In that sense, our interrogations differentiate themselves from

Meyden et al ’s notion of observation on the system’s points.

In this chapter we focus on verification aspects, i.e., model checking. We do not report either on

the logical properties of the modalities hereby introduced (i.e., QK and IK) or the relations formally

established amongst them or with the standard knowledge modality K. These investigations form

part of our on-going work.

7.4 Model Checking Knowledge in Interrogative Multia-

gent Systems Models

In this section we present a model checking algorithm for verifying interrogative knowledge. The

methodology allows for the specification and verification of standard interpreted systems equipped

with local interrogation-sets, i.e., not only for Υ IE
IS .

Algorithm 1 is presented on page 268. It outlines our approach to calculating the set !!ik

j ϕ" of

states that satisfy the formula IKjϕ.

Lines 11 and 13 construct in φg the conjunction of those interrogations which are evaluated at

the current state g (i.e., state g in Algorithm 1). Therefore, for a state g not satisfying ϕ, a cycle

between Line 9 and Line 18 updates the set Y to contain the set of states indistinguishable from g

from the point of view of j’s interrogations.

The set Y is updated at each step to contain !φg"={g′ ∈ G | g′ ∼Intrj g} for the current g, drawn

from X, i.e., g |= ¬ϕ. In order to obtain {g ∈ G | (∃g′ ∈ G)(g′ ∼Intrj g) ∧ (g |= ¬ϕ)} in Y , it is

safe to remove !φg" from the iterated set X; i.e., Line 20 does not alter the result computed in Y .

Line 20 is an optimisation step to avoid the re-computation of conjunctions identical to φg. Thus,

we reduce the number of iterations in Lines 5–21.
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Algorithm 1 Set Satik(ϕ : Formula, j : Agent) of States

1: // X starts as the set of states that refute ϕ

2: X ← !¬ϕ"

3: // Y starts as the set of states that refute ϕ

4: Y ← X

5: while X 6= ∅ do

6: // while there are still states that refute ϕ and have not yet been accounted for (see

Lines 17–20), process one such state
7: g ← X.pop()

// for current g, which refutes ϕ by Lines 2, we will use φg to encode the states that

are indistinguishable from g through the interrogations of agent j; φg is a formula

given by the interrogations of agent j and it starts by being true
8: φg ← .T.

9: for intr ∈ Intrj do

10: if g ∈ !intr" then

11: φg ← φg ∧ intr

12: else

13: φg ← φg ∧ ¬intr

14: end if

15: // φg is the conjunction of interrogations of agent j that apply to the state g

16: end for

17: // Y started as !¬ϕ" and it is constructed as the closure of !¬ϕ" under ∼Intrj , i.e., its

step-by-step union with the set !φg" of states that satisfy φg

18: Y ← Y ∪ !φg"

19: // X is refined; optimisation step that does not alter Y

20: X.remove(!φg")

21: end while

22: // ¬Y means G \ Y =G \ {g ∈ G | (∃g′ ∈ G)(g ∼Intrj g′) ∧ (g′ |= ¬ϕ)}

23: return ¬Y
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In this fashion, between Line 5 and Line 21 the algorithm calculates Y as the set !♦ik

j " of states

satisfying the dual of interrogative knowledge for the given agent j with respect to the fact ϕ (i.e.,

satisfying ¬IKj¬ϕ). As such, at Line 21 the set Y contains all of the states which refute ϕ and

are related under interrogative indistinguishability with at least one other state (Y ≡ !♦ik

j (¬ϕ)").

Finally, at Line 23, the algorithm calculates ¬Y as the set difference between the set of global states

G and Y this set. A formal proof of these facts follows.

The algorithm takes an on-the-fly approach to determining the states related under interrogative

indistinguishability. The näıve approach to verifying interrogative knowledge would be to pre-

process the interrogative indistinguishability relation for each agent. The disadvantage of this

technique is that it would require the construction of a BDD relation based on every permutation

of clauses for the interrogation-set of each individual agent. This would clearly not be an appropriate

solution, as it would exacerbate the state-space explosion problem.

Proposition 7.4.1 Algorithm 1 calculates the set of states !!ik

j ϕ".

Proof In the computation of the while loop (Lines 5–21), consider an arbitrary global state g ∈ X;

by the initial construction of X and the modifications applied to X in Algorithm 1, it follows that

g ∈ G and g # ϕ.

The for (Lines 9–16) iterates over all the interrogations intr ∈ Intrj of the agent j at state g.

The inner if-else statement (Lines 10–14) is exhaustive with respect to the test g ∈ !intr". It

follows that the inner loop computes the formula φg, as follows:

φg = (
∧

g!intrk,
intrk∈Intrj

intrk ∧
∧

g!intrl,
intrl∈Intrj

¬intrl)

The relation ∼Intrj⊆ G×G (Def. 7.3.8) is overridden here to !φg", while preserving the original

semantics. As such, g ∼Intrj g′ iff g′ ∈ !φg" (1).

At Line 23, when there are no more states to be processed (i.e., X = ∅), the set Y (modified

through Line 18) will have converged as follows:

Y =
⋃

g∈X

!φg"
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Lines 2 to 21 keep Y invariant with respect to !¬ϕ", i.e., !¬ϕ" ⊆ Y between Lines 4 to 21. As

aforementioned, Line 20 is an optimisation step to avoid the re-computation of identical φg and,

thus, it reduces the number of iterations in Lines 5–21. Line 20 does not alter Y (i.e., it eliminates

from X states that have already been accounted for in the construction of Y and it does not change

the nature of X including !¬ϕ").

Therefore, the value of Y at Line 23 is as follows:

Y =
⋃

g∈X
{g′ ∈ G | g′ ∈ !φg" ∧ g′ $ ¬ϕ}

=
⋃

g∈X
{g′ ∈ G | g′ ∼Intrj g ∧ g′ $ ¬ϕ} (from 1)

= {g ∈ G | ∃(g′ ∈ G)(g ∼Intrj g′ ∧ g′ $ ¬ϕ)} (2)

= !♦ik

j ¬ϕ" (from def. of ikj, Sec. 7.3.2)

Finally, at Line 23, the algorithm returns ¬Y , i.e., G \ Y . By (2), and dual-modality interpre-

tation (¬♦¬ϕ ≡ !ϕ), the set of states returned is indeed !!ik

j ϕ".

Remark 7.4.2 In actual modelling and implementations, we consider a sub-language of the lan-

guage L′ where the nesting of modalities IK and QK is not used.

An implementation of Algorithm 1 was made in an experimental branch of the model checker

MCMAS. We refer to this branch as MCMAS-I5 and it is made available at [31].

Succinct Evaluation of Sections 7.2, 7.3 and 7.4

In the last three sections we have progressively introduced the ME
IS and M IE

IS models. These

models are similar in the MAS nature to the MIS model in Chapter 3. However, several significant

differences arise from the fact that the ME
IS and M IE

IS models are purposely designed to model

protocols specified by convergent equational theories. We recall a few of these differences. Firstly,

the local states of ME
IS and M IE

IS agents contain terms and not only atomic terms as in MIS.

Secondly, in ME
IS and M IE

IS , the Environment is a simple observer and, therefore, it encodes a

5Andrew V. Jones implemented Algorithm 1 in the MCMAS-I branch of MCMAS.
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weaker thread-model than in MIS. Thirdly, the evolution functions of “honest” agents in ME
IS

and M IE
IS are more complicated than those in the MIS formalism in Chapter 3. Fourthly, the ME

IS

and M IE
IS models also simulate the convergent rewriting underlying the equational theories. Lastly,

unlike the MIS formalism, the ME
IS and M IE

IS systems can model receiver-opaque protocols which

are not reducible to receiver-transparent protocols. In fact, all the models in Sections 7.2 and 7.3

are tailored to model ROP rather than RTP (i.e., see the evolution function, the local states of

the agents, the abilities of the intruder, etc.). We recall that the need for such models arose from

the fact that the simple equality relation used as state-indistinguishability in MIS is too coarse for

the modelling of ROP protocols. For instance, in the Pr1 protocol, the terms ≤ (2, 5) and ≤ (3.5)

are unequal but are equal modulo the equation theory E1. Therefore, we introduced the quotient

indistinguishability relation and the ME
IS and M IE

IS models to cater for the formalisation of a class

of ROP.

In ME
IS we introduced the quotient-knowledge modality to express knowledge modulo the equa-

tional theory. We introduced the notion of interrogative knowledge (i.e., a knowledge modality

based on local “interrogations” of agents). In particular, interrogative knowledge is attained in

M IE
IS by inspection of the normal terms of the underlying rewriting system. Under these circum-

stances, we have shown that the interrogative knowledge and the quotient knowledge modalities

coincide in M IE
IS . We have also advanced a model checking algorithm for testing these models

against interrogative knowledge.

At page 266 we have evaluated these models by comparison with existing approaches in the

related literature.

In the following sections, we are going to exemplify the usage of this methodology on the

automatic verification of electronic voting.
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7.5 Verifying Multiagent System Models for E-Voting Pro-

tocols

In this section we apply the methodologies of Sections 7.2, 7.3 and 7.4 to verify e-voting protocol

models against temporal-epistemic specifications of their requirements.

7.5.1 E-Voting Protocols

E-voting protocols are cryptographic protocols used in electoral systems. Some of the requirements

of e-voting (e.g., receipt-freeness, coercion-resistance) are rather involved and often more compli-

cated than the usual trace-based properties (e.g., secrecy) traditionally demanded by the simpler

authentication and key-establishment protocols. In order to enhance the security of electronic

elections, the design of e-voting protocols relies heavily on equational cryptographic theories.

The e-voting requirements aforementioned can be formulated as properties of time and knowl-

edge modulo these equational theories. Recall from Chapter 2, page 33 that vote-privacy requires

that, at no point during the voting process or at its completion, is an observer able to know the

votes or link them to their voters. Similarly, receipt-freeness requires that, at no point during

the voting process or at its completion, is an intruder able to link a voter to his vote even if

aided by certain voting material facilitated by this voter. The expressions above are specialisa-

tions of anonymity and role-interchangeability properties; the latter found effective epistemic-based

formulations in [189, 97]. We will build upon these formulations in [189, 97] and specify e-voting

requirements in logics of time and quotient-knowledge.

For the reasons summarised above, we use the methodologies presented in Sections 7.2, 7.3, 7.4

to formalise and automatically analyse the FOO’92 [87] e-voting protocol.

We begin by presenting the FOO’92 protocol. In our description, we use a language close to

natural language in order to describe the underlying cryptographic mechanisms.

Example 7.5.1 (A Description of the FOO’92 Protocol)

• Phase1:

Voter:
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1.1. v = commit(x, r)

1.2. blinded v = blind(x, b)

1.3. signedByV oter blinded v = sign(blinded v, V )

1.4. V → A : signedByV oter blinded v

Admin:

1.5. checksign(signedByV oter blinded v) = checksign(sign(blinded v, V ))

1.6. signedByAdmin blinded v = sign(blinded v, admin)

1.7. A→ V : signedByAdmin blinded v

Voter:

1.8. signedByAdmin v = unblind(signedByAdmin blinded v, b) = sign(v, admin)

• Phase2:

Voter:

2.1. V → C : signedByAdmin v //on an anonymous channel

Collector:

2.2. checksign(signedByAdmin v) = checksigned(sign(v, admin))

2.3. (l, v, signedByAdmin v)

• Phase3:

Collector:

3.1. C →: (li, vi, signedByAdmin vi)

Voter:

3.2. V → C : l, r

Collector:

3.3. checkcommit(v, r) = checkcommit(commit(x, r), r)

3.4. C →: x

FOO’92 starts with a voter deciding upon a vote x and creating its bit-commitment v, i.e.,

step 1.1 in Example 7.5.1. Then, the voter blinds the bit-commitment, digitally signs it and

sends the cipher-text signedByV oter blinded v to a vote administrator, i.e., steps 1.2–1.4. If the

verification of the legitimacy of the voter and of his digital signature succeeds (i.e., step 1.5), then
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the administrator signs the data. In step 1.7, the administrator sends signedByAdmin blinded v

back to the voter. Once the data is unblinded, e.g., unblind(signedByAdmin v, b), the voter uses

an anonymous channel [92] to send the result, e.g., signedByAdmin v, to a vote-collector, i.e.,

step 2.1. If the checks of signatures succeed and once the voting is finished, the collector publishes

all the data he has acquired, i.e., steps 2.2, 2.3 and 3.1. The voter is able to identify his commitment

and will send back to the collector the entry l associated with his identity and his random number r

originally used in the commitment, i.e., step 3.2. Thus, the collector is able to extract the vote x at

entry l and publish it, i.e., steps 3.3 and 3.4. A fundamental requirement of FOO’92 is vote-privacy.

7.5.2 Υ IE
IS Formalisations for E-Voting Protocols.

E-Voting Protocol Specification. In Chapters 3, 4 and 5 we used CAPSL as the high-level

description language for authentication and key-establishment protocols. In this chapter, we use

CAPSL to specify e-voting protocols given by equational theories.

In Example 7.5.2, we give our specification of the FOO’92 protocol in CAPSL, which maintains

the intuitive denominations that we employed in Example 7.5.1.

Example 7.5.2 (A CAPSL Description of the FOO’92 Protocol)

TYPESPEC VoteFoo;
FUNCTIONS
blind(Field,Nonce): Field;
comm(Nonce,Nonce): Field;
open(Field,Nonce): Field;
sign(Field,PKUser): Field;
unblind(Field,Nonce):Field;
checksign(Field,Pkey):Field;
VARIABLES
m: Field;
p,n:Nonce;
X: PKUser;
AXIOMS
open (comm(p,n), n) = p;
checksign(sign (m, X), pk(X)) = m;
unblind(blind(m,n),n) = m;
unblind(sign(blind(m,n),X),n) = sign(m,X);
END;
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PROTOCOL FOO;

VARIABLES
V,A:PKUser;
C: Node;
l:Atom,FRESH;
v,r,b:Nonce,FRESH;
vote:Field;
comm_v_r,blind_comm_v_r_b:Field;
signedBy_blind_comm_v_r_b_V:Field;
signedBy_comm_v_r_A:Field;
ska:Skey;
skv:Skey;
pkv:Pkey;pka:Pkey;
UNCHECKEDsignedBy_blind_comm_v_r_b_V:Field;
signedBy_blind_comm_v_r_b_A:Field;
UNCHECKEDsignedBy_comm_v_r_A: Field;
CHECKEDcomm_v_r:Field;
DENOTES
comm_v_r = comm(v,r): V;
blind_comm_v_r_b = blind(comm_v_r,b): V;
signedBy_blind_comm_v_r_b_V=sign(blind_comm_v_r_b,V):V;
pkv=pk(V):V;
ASSUMPTIONS
HOLDS V: A,C,v,r,b;
HOLDS A: V,pkv;
HOLDS C: A,V;
MESSAGES
1.V -> A: V,signedBy_blind_comm_v_r_b_V % UNCHECKEDsignedBy_blind_comm_v_r_b_V;

blind_comm_v_r_b=checksign(UNCHECKEDsignedBy_blind_comm_v_r_b_V,pkv);

2. A -> V: sign(blind_comm_v_r_b,A) % signedBy_blind_comm_v_r_b_A;
signedBy_comm_v_r_A=unblind(signedBy_blind_comm_v_r_b_A,b);

3. V -> C: signedBy_comm_v_r_A % UNCHECKEDsignedBy_comm_v_r_A;
CHECKEDcomm_v_r=checksign(UNCHECKEDsignedBy_comm_v_r_A,pk(A));

4. C -> V : l, CHECKEDcomm_v_r;

5. V -> C: l,r;
vote=open(CHECKEDcomm_v_r,r);
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6. C -> V: vote;

GOALS
SECRET v;
END;

The equational theory is given in the TYPESPEC section of the CAPSL description. The FUNCTIONS

subsection introduces the function symbols to be used, whereas the subsection AXIOMS specifies the

equations. For instance, open(comm(p,n),n)=p symbolises that a bit-commitment can be opened

if the receiving agent possesses the random number n used to compose the commitment in the

first place. In the DENOTES section we defined terms over the signature and the equational theory

introduced in section TYPESPEC. For instance, comm v r stands for the bit-commitment of the vote

v under the random number r, i.e., comm v r=comm(v,r). The qualifier “:V” in comm v r:V, shows

that the bit-commitment pertains to a voter-role.

In the PROTOCOL section of the CAPSL description, we used the CAPSL operator “%” [65] to denote

that a certain term is opaque and it would eventually be rewritten under the equational theory.

Then, we specified the operation to be applied in order to perform this rewriting. To exemplify, in

step 2, V receives sign(blind comm v r b,A), the blinded vote-commitment signed by the admin-

istrator. He stores this as an un-deciphered message (hence, % signedBy blind comm v r b A). To

retrieve more meaning for the newly received data, V needs to unblind the message, i.e., rewrite

signedBy blind comm v r b A to signedBy comm v r A by applying an AXIOM stipulated in the

TYPESEC section, e.g., signedBy comm v r A =unblind(signedBy blind comm v r b A,b).

We extended an existing translator [65] from CAPSL to CIL (CAPSL Intermediate Language) [65] to

output the rewriting rules for each protocol-role not in pure CIL, but in a format which suits better

an IS-based semantics. We input the resulting file into a bespoke translator that we designed.

This translator is similar in its nature to the PD2IS toolkit, presented in Chapter 5. However,

the translator used in this chapter is only aimed at dealing with the FOO’92 protocol. Initially,

the input is processed into an agent-oriented description of each symbolic protocol role. Next,

with a set of role-instantiations, the program produces the agents and the ground Υ IE
IS operational

semantics. Finally, it outputs the corresponding ISPL files extended with local interrogations as per

Section 7.3.3. The programs encoded in these ISPL files are specialisations of the Υ IE
IS formalism
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and are explained in detail in the following. The e-voting specifications in the language L′ are also

added in this last step.

The CAPSL equational specification for the protocols verified, their respective CIL-like files and

ISPL files are available at [31].

Υ IE
IS Formalisations for E-Voting in ISPL. Distinct electoral systems stipulate different e-voting

requirements. For instance, some electoral systems may demand a minimum number of voters which

can collectively verify the output of the voting procedures. More strongly, other systems may require

that every voter is individually able to carry out this verification. Some voting systems demand

for receipt-free mechanisms and for guarantees that some particular voting material is unguessable.

Other e-voting systems may even demand resistance to coercing agents, etc.

To capture some of these differences in electoral systems, we design three classes of IS-based for-

malisations, M1, M2 and M3 as specialisations of Υ IE
IS . While the design of the classes is ad-hoc and

property-driven, it is natural and aligned with e-voting modellings made in the applied-pi formal-

ism [63]. Furthermore, the translator aforementioned processes a CAPSL protocol description given

at input and automatically generates ISPL programs corresponding to formalisations M1–M3.

I. The first formalisation (M1) specialises Υ IE
IS as summarised below.

1. A minimum of two agents representing the voter-role (i.e., V –role) are considered.

2. The set Adj of terms is enlarged with several flag-variables, e.g., to represent amongst others

the end of the different voting phases and the publication of results (see Example 7.5.1).

3. The ranges of terms used are large enough to ensure initial unlinkability between any agent

and its data.

4. In any initialisation scenario the communication partners are set to ⊥ (this is to simulate the

anonymous channels assumed in the FOO’92 protocol), cryptographically unguessable data

(e.g., the blinding factor used in the blind-commitment) are set by randomisation, the fresh

data (e.g., the actual vote x) are initially assigned to ⊥. Then, the voter-agent will arbitrarily

“choose” one concrete value for x.
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5. A passive intruder agent called Attacker and abbreviated at is introduced. This agent has one

action denoted Eavesdrop and enabled at all states. We use the Environment agent in M IE
IS

and the mechanism of local observable variables [127] to model the Attacker agent efficiently

in ISPL.

On the M1 formalisation above we can specify vote-privacy.

Vote Privacy.

Assume an M1 formalism as above where:

• i ∈ Ag \ {at} is arbitrarily fixed,

• i′ ∈ Ag \ {i, at},

• l ∈ Lj, j ∈ {i, i′},

• l.store ⊇ (vote : RangeV (vote)),

• v ∈ RangeV (vote) is arbitrarily fixed,

• v′, x ∈ RangeV (vote).

We introduce the propositions votes(j, x) and votes(j) which evaluate to true when

lj|vote=x,endOfPhase1=true and lj|endOfPhase1=true, respectively. They respectively mean that at the end

of phase 1 the agent j has chosen to vote x and that the end of phase 1 has simply been reached

by agent j, i.e., he has voted some unspecified value.

Let ufair1= ∧
i′ ,=i

AF (votes(i)∧ votes(i′)) and ufair2= ∨
i′ ,=i

AF (votes(i, v)∧¬votes(i′, v)) be uncon-

ditional fairness constraints [16] on the corresponding M IE
IS model. We consider only those paths

where these fairness constraints hold infinitely often. The constraints respectively denote that on

any voting session eventually both agent i and agent i′ vote and that there is no protocol session

where the voting is unanimous.

We give two specifications for the notion of vote-privacy: vote privacy (VP) and voter-vote

unlinkability (VVU). We use the notation Pjϕ to mean ¬QKj¬ϕ, for any agent j.
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AG(votes(i, v)→AG
∧

v′ ,=v

Pat(votes(i, v′))) (V P )

AG(votes(i, v)→
∧

i′ ,=i

∧

v′ ,=v

[votes(i′, v′)→ AGPat(votes(i, v′) ∧ votes(i′, v))]) (V V U)

VP stipulates that the Attacker will never know what a voter has voted, i.e., on all paths, at

any point if agent i has voted v it is implied that on no path at no point will the intruder be sure

that it was i who voted v. This formulation follows the specifications of anonymity in [97] and their

extensions in [189]. According to the latter, it stipulates privacy up to RangeV (vote) \ {v}.

Along similar lines, VVU stipulates that the Attacker will always consider it possible that

agents i and i′ have cast mutually swapped votes. The formula in VVU follows the specification of

total role-interchangeability [189], built of the work of Halpern and O’Neill to formalise secrecy [97].

From the point of view of the attacker, it is always possible that i and i′ change their roles with

respect to casting the votes v and v′, respectively.

Note that the design of the M1 class of IS does not cater for intricate scenarios, e.g., corrupt

voter, administrator or collector agents, active coercers, etc. In that sense, we designed the class M1

of Υ IE
IS formalisation such that we had sufficient resources to specify and verify correctly vote-privacy

as in VP and VVU. Along these lines, we attempted to design M1 by systematically introducing

as few specialisations to Υ IE
IS as possible.

II. The second class of IS-based formalisms (M2) specialises M1 as summarised below.

1. An additional agent called ir is introduced to emulate a voter-role with additional capabilities

of providing receipts (i.e., details about the voting process) to the attacker. In ISPL this is

produced in an optimised way: the ir agent and the Attacker agent both observe certain

variables of the Environment agent. Additionally, in any initialisation scenario, the ir agent

and the Attacker agent share the atomic values that will be used to form the receipts.

2. Several steps are systematically added in the local evolution of the Attacker agent in order

to model the analysis of receipts.
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In the M2 formalisation above we can additionally specify receipt-freeness.

Receipt-freeness (RF).

Assume an M2 formalism specialising an M1 where:

• ir ∈ Ag \ {at} is arbitrarily fixed such that i 6= ir,

• vr ∈ RangeV (vote) is arbitrarily fixed,

• v ∈ RangeV (vote) \ {vr},

• v′ ∈ RangeV (vote).

Let ufair2 as above be a fairness constraint on this model. Consider another fairness constraint

on this model to be ∧
i′ /∈{ir,i}

(AF (votes(i) ∧ votes(ir) ∧ votes(i′))). The latter fairness constraint

corresponds to ufair1 in the unwound model of M1, but it additionally considers the newly adjoined

agent ir. The fairness constraints are self-explanatory. We consider only those paths where these

fairness constraints hold infinitely often.

RF stipulates that, whenever agent i counterbalances the vote of the receipt-providing agent

ir, the Attacker is not able to link any of the voters to their respective votes at any point. Like

VVU, RF follows a total role-interchangeability specification [189]. This specification has a larger

domain of three pivot-agents and their respective votes (i.e., even if the receipt-providing agent is

included, the attacker still considers it possible for the agents to have swapped roles).

for v ∈ RangeV (vote) \ {vr},

AG(votes(ir, vr) ∧ votes(i, v)→
∧

i′ /∈{i,ir}

∧

v′

[votes(i′, v′)→ AGPat(votes(i, vr) ∧ votes(i′, v) ∧ votes(ir, v′))]) (RF)

Note that any M2 model subsumes an M1 model. Therefore, vote-privacy can be specified and

verified on M2 models also. The design of M2 does not additionally capture intricate corruption

e.g., active Dolev-Yao attackers [71] manipulating the receipts. We designed the class M2 of models

in order to be able to specify and verify e-voting requirements beyond vote-privacy, e.g., receipt-

freeness as in RF. Along these lines, we attempted to design M2 by systematically introducing as

few specialisations to M1 as possible (e.g., the receipt-providing agent ir and an adapted Attacker).

III. The final formalisation (M3) specialises M2 in that an agent called ic is added. This agent
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is based on the receipt-providing ir agent in M2. However, its corrupt behaviour is exacerbated:

the ic agent exchanges more data with the Attacker agent, possibly even ic’s vote, i.e., the Attacker

agent coerces the ic agent to vote in a certain way.

On the M3 formalisation above we can additionally specify coercion-resistance.

Coercion-resistance (CR).

CR is the correspondent of RF in M2 in a specialised M3 model. Like VVU and RF, CR

follows a total role-interchangeability specification [189]. This specification is stronger than RF in

that even if the corrupt agent is included, the attacker still considers it possible for the agents to

have swapped roles.

for v ∈ RangeV (vote) \ {vc},

AG(votes(ic, vc) ∧ votes(i, v)→
∧

i′ /∈{i,ic}

∧

v′

[votes(i′, v′)→ AGPat(votes(i, vc) ∧ votes(i′, v) ∧ votes(ic, v′))]) (CR)

Note that an M3 model is an M2 model. Therefore, vote-privacy and receipt-freeness can be

specified and verified on M3 model also. The design of M3 does not additionally capture intricate

corruption, e.g., active Dolev-Yao attackers pursing the coercion. By contrast, the M3 models only

enhance the Attacker in M2 models such that it communicates with the coercible agent ic. We

designed the class M3 of models in order to be able to specify and verify e-voting requirements

beyond vote-privacy and receipt-freeness, e.g., coercion-resistance as in CR. Along these lines, we

attempted to design M3 by systematically introducing as few specialisations to M2 as possible

(e.g., the additional coercible-agent and an adapted Attacker).

7.5.3 Experiments

In this section we present our verification results on the FOO’92 protocol models analysed and

relate them to existing work.

The machine used for the following evaluation was based on an Intel Core 2 Duo processor

clocked at 3.00 GHz, with a 6144 KiB cache. The machine ran 32-bit Fedora Core 12, kernel
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2.6.32.10.

We automatically generated the M1, M2 and M3 formalisations of FOO’92 in ISPL. For that,

we used the JAVA program aforementioned (which embeds our modified translator for CAPSL to

CIL). The ISPL files are in the region of 8000 lines of code. The generation takes approximately 15

seconds. Therefore, in the following, we only report and discuss the results of the actual verification.

We recall that MCMAS-I is the branch of MCMAS containing an implementation of our model

checking algorithm for the IK modality. We use MCMAS-I to verify the ISPL programs for the

FOO’92 protocol. MCMAS-I was linked against CUDD release 2.4.2.

In Table 7.1, the leftmost column shows the class of model considered. The results presented

reflect the average of two MCMAS-I verification runs of each model considered. The Memory column

shows the average memory usage in each run. The Time column gives the CPU time of the MCMAS-I

processes. Both time and memory usage were measured using tstime. The States column reports

the number of reachable states in each class of model verified with MCMAS-I.

Table 7.1 Averaged Multiple Experiments on FOO’92 Models for E-Voting

Model Formula Memory (KiB) Time (s) States

M1 VP/VVU 176032 66441 6.69 · 1011

M2 (Weaker) RF 175496 66168 6.69 · 1011

M3 VP/VVU 181926 70401 6.69 · 1011

7.5.3.1 Discussion of Results

The Formula column reports the strongest e-voting specification that was found to hold on the

model. We found vote privacy (VP and VVU) to hold on all three classes of models considered.

Receipt-freeness (RF) was found to be refuted on M2 and M3 models, i.e., a path was found where

eventually the intruder is able to link the receipt-providing agent and its vote. However, deeper

studies showed that a logically weaker form of RF holds on M2 and M3 models:

for v ∈ RangeV (vote) \ {vr}
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AG(votes(ir, vr) ∧ votes(i, v)→
∧

i′ /∈{i,ir}

∧

v′

[votes(i′, v′)→ AFPat(votes(i, vr) ∧ votes(i′, v) ∧ votes(ir, v′))]) (weaker RF ) .

This finding expresses that on M2 and M3 models there exists no path where, at all points,

is the intruder able to link ir to his vote. We have also found that slight modifications of the

Attacker capabilities lead to different verification results on RF and CR. This is aligned with the

statements [159] of one the protocol designers. On M3 models for the FOO’92 protocol, we found

that there exists a path where eventually the coercion, as modelled, brings voter-vote linkability.

A full Dolev-Yao model was not encoded mainly because e-voting protocols assume anonymising

procedures and advanced cryptographic primitives, hence a full Dolev-Yao is considered unrealis-

tic. Moreover, in our MAS setting with a bounded number of sessions, the intricacy of the e-voting

models showed that even relatively small increases the capabilities passive intruder affect the per-

formance considerably. In the general setting of an unbounded number of protocol sessions, it is

yet unknown if e-voting properties (i.e., properties which are not trace-based) are decidable under

a full Dolev-Yao model for protocols specified under equational theories.

We refer the reader to our ISPL files [31] to find the complete set of verified models and speci-

fications which specialised RF and CR.

As aforementioned, our VP, RF, CR specifications are expressions of state-based properties

inspired by anonymity formulations in [189, 97], recalled at page 2.2.3.2. This differs from the

applied-pi approach in [63], where vote-privacy, receipt-freeness and coercion-resistance are given

as process equivalences. Their models are said to be expressible in ProVerif [23], but verification

with ProVerif6 can be carried out only when the specifications reduce to trace-based properties.

While an infinite number of symbolic protocol sessions is approached in [63], we verify a bounded

number of ground protocol sessions. This theoretically means that more attacks against e-voting

properties could be found in [63]. Nevertheless, the satisfactions or refutations of e-voting specifica-

tions as reported in Table 7.1 for FOO’92 protocols are aligned with the pen-and-paper analyses [63]

of the same protocol. The thread-model in [63] is also that of a passive attacker, which in points is

weaker that our thread-model.
6For a debrief on ProVerif, see Chapter 2, page 47.
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In contrast with our automatic approach, the analysis in [63] is mainly based on manual proofs

and, while details are not given, it is said to be partially supported by the tool ProVerif. However,

for certain models in [63], ProVerif might not terminate. Verification times are not mentioned

in [63] for the case where they used ProVerif. Therefore, we cannot compare our methodology with

the one in [63] with respect to the verification times or the size of the unwound models obtained

respectively.

In [63], the techniques do not refer specifically to protocols that are described by convergent

theories, but to e-voting protocols. In that sense, in [63] the equations and models are created in

an ad-hoc manner, but pen-and-paper, satisfaction proofs are presented not only for the FOO’92

protocols, but also for the Okamoto [159] and Lee [121] protocols. We have also verified several

models of the Okamoto e-voting protocol [159], applying our methodology. The CAPSL, CIL and

ISPL files corresponding to these protocols are to be found in [31], along with the files for the

FOO’92 protocol hereby discussed. Details about the verification of the models for the Okamoto

protocol are given in Appendix C.

Building on the theoretical results that observational equivalence in applied pi calculus is de-

cidable under convergent equational theories and passive intruders [1], a tool for handling more

properties than ProVerif (i.e., not only reachability) has recently emerged [47]. The tool supports

the specification and verification of a subset of the class of convergent equational theories. A deduc-

tion system is hard-coded and implemented for different e-voting primitives (e.g., bit-commitment).

In that sense, the approach is less general than ours. Like ProVerif, it is semi-decidable (i.e., it

might not terminate, but when it terminates it terminates with the correct answer). Unlike in our

case, [47] can handle an unbounded number of protocol sessions, similarly to ProVerif. In [47],

the emphasis is put on designing the e-voting primitives in a theory of applied pi calculus and

practical results are not mentioned. Therefore, with respect to the verification times or the size

of the unwound models, we cannot draw a compelling comparison between our approach and the

methodologies based on applied pi calculus. In theory, the protocols that could be verified in [47]

are the same as in [63]. Whilst in [47], the terminology “knowledge” is used, it does not refer to

standard, Kripke semantics but to evaluation of predicates in the context of applied pi processes.

Therefore, we compare to [47] in a similar way that we compare to [63], with the exception that –like
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us– [47] also falls into the category of automatic verification of e-voting protocols. Whilst both the

aforementioned applied pi approaches are purposely designed for e-voting verification, the method-

ology we introduced in this chapter can be applied to generic systems modelled as interrogative

interpreted systems or interrogative equational interpreted systems.

Conclusions on the MAS Approach to Equationally Speci-

fied Protocols

In this chapter we have presented a methodology of modelling multi-session executions of advanced

security protocols as multiagent systems. Whilst the formalism is similar in its MAS nature to the

MIS model introduced in Chapter 3, its essentially novel features are the following:

• the systematic modelling of executions of protocols specified under convergent equational

theory as specialised interpreted systems;

• the modelling of executions of a class of receiver-opaque protocols that are not reducible to

receiver-transparent protocols as specialised interpreted systems;

• the introduction of a knowledge modality appropriate in the context of convergent equational

theory describing security protocols and of related, more general knowledge modalities;

• the systematic modelling of executions of e-voting protocols as specialised interpreted systems

and their verification against suitable temporal-epistemic formulations of their requirements.

By introducing a knowledge modality evaluated modulo an equational theory, the framework

opens up a well-founded way of specifying and verifying all receiver-opaque protocols. Two opaque

terms are told apart if they are distinguishable modulo the underlying cryptographic operators. The

modelling (e.g., of the agents’ states containing non-atomic terms, of the local evolution function,

etc.) employed in this chapter caters for the general modelling of RO protocols as interpreted

systems.

In this chapter, unlike in some of the previous ones, we focused rather on the verification

methodology than on the generation of models. In that sense, we presented only the application of
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M IE
IS to verify an e-voting RO protocol. Its models have been automatically generated by a bespoke

translator. Aspects related to the modalities introduced (i.e., axiomatisation, relations between

them) are the subject of current and future work.

Evaluations of each model and formalisation in this chapter were presented at the end of the

sections where they were introduced (i.e., page 258, page 266 and page 270). A comparison between

our verification methodology and relevant formalisms based on applied pi calculus were discussed

in the previous section. Our IS-based models and the algebraic ones in [63] follow similar intuitions.

However, the underlying formalisations are completely distinct. Our interrogative knowledge modal-

ity can be likened to observational equivalence in applied-pi. In formalising our specifications, we

follow the footsteps of [189]. Therefore, our expressions of e-voting requirements are based on logics

of time and knowledge. By contrast, in [63] the e-voting requirements are formulated as process

equivalences. Most importantly, our methodology is more general than those in applied pi; we

hereby apply the techniques to e-voting, whilst interrogative IS and its modalities facilitate more

generic encodings.

In [78] an e-voting protocol is formalised in an ad-hoc manner using dynamic epistemic logic.

The protocol is analysed, but performance details are not presented. Apart from the use of non-

classical logics, our methodology does not compare with [78].

We exploited our modified translator from CAPSL to CIL-like hereby presented to create a fully-

fledged, automatic tool similar to PD2IS in Chapter 5. It deals with the systematic and automatic

generation of Υ IE
IS models for any ROP (i.e., from CAPSL to CIL-like to ISPL). Therefore, we extended

the approach hereby presented to a systematic methodology for analysing ROP. It is aimed at

modelling authentication receiver-opaque protocols (under more powerful adversary models) and

at verifying them against suitable quotient-knowledge modalities. See Appendix C for a discussion.



Chapter 8

Conclusions

Motto: “In my end is my beginning.”

(T. S. Elliot)

In this chapter we assess the achievements of this thesis and draw a comparison with related

work. We conclude with possible future directions.

Section 8.1 summarises the main contributions of each chapter. Then, Section 8.2 evaluates

these in the context of the related work presented in Chapter 2. In light of this analysis, Section 8.3

underlines the main overall achievements of the thesis. Section 8.4 finalises with possible future

directions and further developments of this line of work.

8.1 Summary of Chapters’ Achievements

Chapter 1 stated the motivations of this thesis, anticipating its main contributions. An in-depth

summary of related work and, in general, the relevant background of this thesis were presented in

Chapter 2.

With Chapter 3 we introduced ΥIS, a novel and systematic modelling based on temporal-

epistemic logic for a large class of security protocols and for their respective security goals (i.e., for

287
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receiver-transparent1 protocols). Thus, the current line of research reinstates the original ISO ex-

pressions [82,85,84,83] of authentication requirements through well-founded formulations in logics

of time and knowledge. Whilst Chapter 3 follows the non-classical logics ideas in the seminal work

of BAN-like formalisms [42,95,5,191,184], it advances well-founded and automatable methodologies

for protocol verification based on logics of time and knowledge.

In Chapter 4 we gave a guarantee of correctness of our MIS MAS-based model with respect

to classical, trace-based approaches [74, 188] for the verification of a bounded number of receiver-

transparent protocol sessions. Naturally, this guarantee can only apply to security requirements

which can be expressed in both approaches (i.e., initial secrecy and agreement on initials). If tradi-

tional CAPSL models validate/refute a standard secrecy CAPSL goal then our unwound MIS model

also validates/refutes the corresponding formulation(s) of the goal. Nevertheless, our approach

supports the systematic specification of many more security requirements.

In Chapter 5 we presented PD2IS, the first fully automatic toolkit to generate and verify MAS-

based models for security protocols against temporal-epistemic specifications of their requirements.

We used PD2IS to verify several authentication and key-establishment protocols drawn from known

repositories [48, 119]. We reported and discussed the results. Conventional searches for attacks

against standard security goals were presented and analysed. Moreover, to increase the relevance of

the study, new approaches to the analysis were investigated (e.g., the organised search of attacks,

following a set of protocol scenarios). We also compared the performance of PD2IS with that of other

state-of-the-art tools in the field of protocol analysis. We discovered that these performances are

aligned in the case of finding well-known attacks, whereas in the case of general, protocol analysis

some unbounded-protocol verification tools [61, 180] outperform our methods. Nevertheless, we

report on exploring novel settings, inherent to our temporal-epistemic setting.

In Chapter 6 our AI-inspired setting permitted us to take protocol verification further, into

automatic reasoning about protocol attacks. To do so, we introduced and formalised the notion of

detectability, i.e., groups of agents being theoretically able to detect a protocol attack and/or early

signs of the attack. We extended PD2IS to support the generation of models and formulae for the

analysis of detectability of protocol failures. The latter allowed for the verification of several well

1See Definition 3.1.3.
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known, attack-prone protocols with respect to the (un-)detectability of the failures to which they

are exposed.

In the past, manual inspection of protocol executions for inter-session errors was attempted [136].

The tests applied were simplistic (e.g., based on comparisons of values) and trace-based. The

CTLK-based detectability tests that we obtain automatically have a larger purpose (i.e., active

attack detection by groups of agents) and are not trivially reducible to simpler, trace-based error-

finding tests.

Chapter 7 presented ΥOE
IS , a systematic model for receiver-opaque2 protocols. We also designed

the model checking methodology to verify these models. In particular, our formalisation referred to

protocols expressed under convergent equational theories. For the modelling and verification of these

protocols, new knowledge modalities were introduced. The latter allowed us to give theoretically

compelling answers to questions like: “Can Alice confirm the identity of her communication partner,

though she only sees his digital signature?”, “Can the intruder tell apart the respective votes of

Alice and Bob, though he cannot understand all encrypted parts?”, etc. The main application of

Chapter 7 resided in automatically verifying e-voting protocols specified by convergent equational

theories. We discussed the results and positioned them within the community of e-voting protocol

verification (e.g., [63]).

Appendix A gives additional details on Chapter 3 and Chapter 5 (i.e., on the formalism and

tools for receiver-transparent protocols).

Appendix B gives additional details on Chapter 4 (i.e., on the proof that our MAS model is

aligned with traditional, trace-based semantics of security protocols).

Appendix C generalises the ideas in Chapter 7, presents an automatic tool to generate and

verify MAS models for receiver-opaque protocols and reports the results of the analysis of several

such models against the CTLK-based specifications of their requirements.

2See Definition 3.1.5.
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8.2 Comparison with Related Work

In this section we draw a comparison between our line of work and existing state-of-the-art in

the related fields of research. At the end of each chapter or large section, relevant aspects of

related work were compared and constrasted with the material presented therein. This section

is a systematisation and an extension of those presentations. The motivations and contributions

of this thesis give the main criteria to be considered in this comparison. These criteria are as

follows: 1) the protocol model employed; 2) the specification of security requirements; 3) the

verification methodology used; 4) the intruder model applied; 5) the approach of encoding the

underlying cryptographic aspects.

8.2.1 Protocol Model

A Comparison with Authentication Logics. In the nineties, authentication protocols were

specified and analysed using several, purpose designed logic languages [41,42,95,5,191] (the BAN,

GNY, AT and VO authentication logics, respectively). The main criticisms [156] brought to these

formalisms resided on the lack of axiomatisations and well-founded semantics. Nevertheless, Syver-

son’s late authentication logic (e.g., SVO [184]) was equipped with a multidimensional S5 semantics.

Its downfall remained the manual, error-prone analysis of the protocols, i.e., the lack of verification

tools to support it.

As in the SVO [184] authentication logic, the protocol models we propose follow an underly-

ing multidimensional S5 semantics. To benefit from the recent advancement of model checking

temporal-epistemic specifications [127, 110, 89], our language is based on temporal-epistemic logic.

This differentiates us from authentication logics, which employed belief operators in their protocol

models. Our choice of logic language and semantics relieves us from the manual analysis of the

protocols, specific to BAN-like logics3. More precisely, our approach allows us to use the model

checker MCMAS [127] for the automatic verification of our temporal-epistemic specifications of proto-

col models. Henceforth, the BAN annotation and idealisation is replaced in our case by the PD2IS

tool that automatically generates the protocol models from high-level protocol descriptions.

3For a summary BAN protocol verification, see Chapter 2, page 39.
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In BAN-like logics, the protocol theory was embedded in the logic language4. For instance,

A
k
←→ B denoted that the key k will not be learned by any parties, other than A and B. These kind

of specifications lead to protocol-dependency and expressivity problems [156] in BAN-like formali-

sations of protocols (e.g., quantification ambiguities, impossibility to formulate key-possesion, etc).

To avoid this type of issues, our framework does not embed the protocol theory into the logic lan-

guage. Instead, starting from a high-level protocol description, we design a denotational and an

operational semantics applicable systematically to entire classes of protocols (e.g., RTP and ROP).

In trying to resolve several of BAN’s expressivity problems, the later GNY authentication

logic [95] differentiated between inherently owned, locally generated messages and/or received mes-

sages. We pursue GNY’s approach in this direction and, in the model in Chapter 3, we separate

terms into semantically distinct categories: OwnedAtomsA, LearnedAtomsA, Composites, MsgA,

etc. Moreover, our model further refines such distinctions into a denotational semantics for protocol

executions (as Chapter 3, Section 3.3.1 has shown).

A Comparison with Epistemic-based Approaches to Security Protocol Modelling.

There are few notable approaches to cryptographic protocol verification which are based on epistemic

logic [78,125,90]. We will now compare and contrast each of these three frameworks with our security

protocol specification formalism.

Our protocol model is based on a multiagent system (MAS) semantics for temporal-epistemic

logic. In that sense, it differs from [78] where dynamic epistemic logic is employed. The methodology

in [78] is applied to one e-voting protocol only. By contrast, we systematically approach several

classes of security protocols in an unitary fashion. Moreover, the modelling of protocols in [78]

is ad-hoc, whereas our approach is systematic and automatable (as Chapter 3 and Chapter 5 has

shown). A further comparison cannot be drawn as in [78] the details about the e-voting modelling

or about the performance of the analysis are scarce.

Our formalism follows the steps of the LDYIS [125] model. This framework proposed a temporal-

epistemic language and an interpreted system [161] formalisation of the NSPK [155] protocol.

LDYIS advanced a matched send-receive semantics for encoding the protocol communication. This

implied that the modelling assumed trusted communication channels [145]. Therefore, certain

4For a summary on the BAN language, see Chapter 2, page 39
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protocol attacks (e.g., binding attacks [145,192]) cannot be captured under the LDYIS formalism.

To verify the LDYIS specifications, a bounded model checking algorithm was presented in [125].

The impact of LDYIS was limited given the ad-hoc protocol model and the lack of a systematisation

for their methodology. For an extended summary of LDYIS, please refer to Chapter 2, page 62.

Like LDYIS, we also use the interpreted system formalism in our MAS approach to protocol

modelling. However, in our ΥIS formalisation the modelling of agents’ local states is different from

the one in LDYIS. More precisely, unlike in LDYIS, ΥIS agents do not “store” letters or addresses.

Most importantly, ΥIS agents “recall” atoms, whereas the LDYIS agents “store” messages. These

imply that the size of ΥIS states is considerably smaller than the size of LDYIS states. Unlike in

our ΥIS formalism, the aspects of term-ranges which also impacts heavily the size of the models

is not explored in LDYIS. We believe that these discrepancies lie in the respective natures of the

approaches: the ΥIS formalism is designed for automatic verification with symbolic model checkers,

whereas LDYIS is a theoretical platform, suited for bounded model checking. As such, in our ΥIS

model in Chapter 3, we model local states more judiciously than in LDYIS, in a fashion aimed at

an applied verification with MCMAS.

The indistinguishability relation we use in the Υ IE
IS formalisation to model equationally-specified

protocols is not the equality relation as in LDYIS. As such, additional to LDYIS, we introduce the

new modality of interrogative knowledge to enquire the acknowledgements of facts in light of the

cryptographic operations in the protocol. This allows us to model and analyse systematically the

class of receiver-opaque protocols, which cannot be readily encoded in LDYIS. Similar comparisons

about the indistinguishability relations and the class of protocols covered can be drawn between

our approach and the epistemic-based framework in [78].

Our protocol model relaxes the matched send-receive conditions in the LDYIS models and

adopts the more standard matching receive [175] conditions. This can be anticipated even from the

state modelling, as the ΥIS states do not contain equivalents of the LDYIS addresses or the LDYIS

letters. All in all, our receive semantics implies that the ΥIS framework models a more general

setting than the one encompassed in LDYIS (i.e., we model untrusted communication [145], as

opposed to the trusted channels assumed in LDYIS). It follows that, unlike in LDYIS, binding

protocol attacks can theoretically be found using our methodology. In fact, practice has proven
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that indeed our methodology does capture binding attacks (see Chapter 5, page 209). Also, our

model approaches a more general protocol theory than the one in LDYIS, introducing a denotational

protocol semantics (see Chapter 3). In this way, we apply our methodology systematically to several

classes of protocols. Moreover, unlike the case of LDYIS, we analyse the satisfaction of formulae

specifying security requirements comprised in a methodical and automatically generated taxonomy.

The verification methodology we employ is symbolic model checking [143]. The LDYIS advanced

a bounded model checking procedure for the NSPK model, but no implementation and actual

experimentation with it was presented.

As aforementioned, another epistemic-based formalism for cryptographic protocol analysis is

presented in [90]. The formalisation in [90] is protocol dependent and restricted to several types of

protocols (i.e., onion routing [92], crowds [192]). By contrast, our approach is applicable in an uni-

tary fashion to different classes of protocols (e.g., authentication, key-establishment). Nevertheless,

modelling similarities between our work and [90] are more prevalent in the case where we apply

our formalisations to more specific investigations (e.g., e-voting, in Chapter 7). The logic language

in [90] is based on epistemic logic, whereas the temporal aspect is embedded in the protocol theory.

The latter differentiates it from our line of work where the specification language most used is

CTLK. However, the semantics adopted in [90] is that of distributed programs [80], which can be

assimilated to our interpreted system-based semantics. The practical verification aspects in [90]

are scarcely addressed, thus impairing a possible comparison with our verification methods.

A Comparison with Traditional Approaches to Security Protocol Modelling.

In the following we refer to those formalisms of security protocol modelling that have become

the de facto approaches to protocol analysis over the last two decades (i.e., all but the more recent

formalisations [63] driven by applied pi calculus [2]). None of these formalism is based on epistemic

logics.

Approaches of formal protocol verification assume either a bounded or an unbounded number

of protocol sessions. The latter assumption yields undecidability issues [172] and semi-decidable

tools [23,180,33,61]. The former assumption can be employed [67,187] to develop decidable methods

for protocol analysis. However, it truncates the space of searching for attacks, i.e., a bounded

number of sessions might not exhibit all possible attacks on a protocol.
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Like [73, 188, 138, 72, 163, 59] and several formalisms [19, 58] in the state-of-the-art AVISPA

tool [9], we take the approach of modelling and verifying a bounded number of concurrent protocol

sessions.

Also, our protocol modelling is fully ground (i.e., without variables), unlike some of the recent

symbolic or on-the-fly approaches [190,19] to bounded protocol verification. The main implications

of taking a fully ground approach to verifying a bounded number of protocol sessions are most

prominent in the evaluations of the tools we use (i.e., the performance metrics and/or the attacks

found). In a nutshell, the increase in number of protocol sessions modelled worsens the performance

of any fully ground approach at a faster rate than that of a symbolic or on-the-fly approach. This has

been discussed in detail in Section 8.2.3, where we compare our tools with other protocol analysis

software. In our case, a fully ground modelling of the protocols was imposed by the verification

tools at hand (i.e., the MCMAS model checker for temporal-epistemic logics).

After the decline of authentication logic, rewriting mechanisms [44, 67, 175] became the main

focus of protocol verification. From early attempts [153] to the backends of the successful state-

of-the-art AVISPA project [9] (e.g, the on-the-fly model checker OFMC [19], the constraint-solving

based model checker AtSe [190], the SAT-based model checker SAT-MC [58], TA4SP [25]), protocol

verification tools rely mostly on (multiset) rewriting semantics for protocol execution. These tools

use multiset rewriting protocol roles in restricted form5 which can be likened to simplified form of

ΥIS agents controlled by the local evolution functions. Nevertheless, differences are apparent (e.g.,

a multiset rewriting role contains atomic propositions evaluated over a trace, whereas a state of an

ΥIS agent contains term-value pairs evaluated in an unwound model).

Formalisms [73] based on multiset rewriting (MSR) also provided many of the theoretical

decidability and complexity results about analysing security protocols. Other trace-based for-

malisms [172, 188] have drawn full correspondences with MSR approaches. If generated under

a specific set of substitutions6 (i.e., via algorithm tr), the protocol model we use is homomor-

phic with the bounded protocol model [188] and thus, with the multiset rewriting [44] formalism

(see Chapter 4). This entails that respective formulations of standard trace-based properties are

5For restricted form protocol role in multiset rewriting, see page 41.
6These specific substitutions are extending those in MCAPSL; see Chapter 4, page 128.
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equally validated/refuted in our model and in the traditional models for authentication protocols

(see Chapter 4).

Well-established protocol verification approaches other than rewriting-based are founded on:

inductive proofs [162, 163], Horn clauses [24], strand spaces [79] and process algebra [139, 138, 72].

Such protocol modellings are generally dissimilar to our temporal-epistemic approach to security

analysis. Nevertheless, a correspondence between strand spaces and general MAS modellings has

been drawn in [98].

A Comparison with Upcoming Approaches to Security Protocol Modelling.

Emerging from the more traditional algebraic approaches (e.g., CSP [174]), certain algebraic

calculi are the upcoming formalisms for certain areas of protocol verification (e.g., analysis of

modern cryptographic primitives). Such calculi are the spi-calculus [3] or, the more recent, applied

pi calculus [2]. Whilst these are not extensively applied to authentication and key-establishment

protocols, they have succesfully modelled and verified [63] more advanced protocols (e.g., e-voting

protocols).

In Chapter 7 we propose a multiagent system model for (e-voting) protocols specified by con-

vergent equational theories. The models for e-voting protocols are similar in principle to the work

in [63]. In fact, the quotient indistinguishability relation7 that we introduce in Chapter 7, page 256,

can be assimilated to static-equivalence8 in applied pi calculus. Furthermore, our novel quotient

knowledge modality, introduced in Chapter 7 can be likened to the observational equivalence9 used

in [63].

However, the applied pi approach to protocol modelling views an unbounded number of protocol

sessions, whereas our formalism assumes a bounded number of such sessions. The implications by

this fact were generally discussed above and specifically discussed in Chapter 5, Section 5.4.3 and

Chapter 7, page 283, in the context of the ProVerif tool versus our tools.

Moreover, essential specification differences lie in the fact that [63] presents an applied pi calculus

methodology, whilst we take an approach based on multiagent systems. The operational semantics

7For details on indistinguishability relations, see Chapter 2, page 25.
8For details on static equivalence, see Chapter 2, page 61.
9For details on observational equivalence, see Chapter 2, page 52.
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in applied pi10 is fully based on the idea of communicating processes. The applied pi operational

semantics is tailored on equational theories and it is much more specific than the IS semantics we

adopt (i.e., the set of actions a process can perform is coarsely defined by a general, applied pi

operational semantics, recalled in Chapter 2). Nevertheless, these aspects make it more protocol-

oriented than the IS formalism used in our ΥIS modelling. As a consequence, models in applied pi

can look more compact than our ΥIS formalism, partially due to its symbolic nature and suitability

for cryptographic modelling. A comparison in terms of requirement specifications follows.

8.2.2 Security Requirement Specifications

In this subsection we will relate our means of specifying security protocol requirements to other

approaches in the field.

Lowe’s hierarchy [137] is a list of increasingly stronger expressions of authentication require-

ments. These were introduced using natural language [137]. This hierarchy has been later formalised

algebraically in [138, 72] and in linear temporal logic in [59]. Another attempt of formalising au-

thentication requirements is that of Gollman [93]. He started from the ISO standards of these

requirements and expressed them by means of authentication logics, using belief operators. For

details on such formalisations of security goals, please refer to Section 2.2.3.1.

In our approach, security requirements and properties related to them are expressed as temporal-

epistemic formulae. Firstly, for each standard authentication and key-establishment goal we give a

taxonomy of temporal-epistemic formulae that relates to the Lowe’s hierarchy for authentication.

Secondly, we introduce a taxonomy of temporal-epistemic formulae as possible specifications for

each BAN-like goal [41] (e.g., comprising doxastic or epistemic assertions). We propose novel

specifications based on the distributed knowledge modality [80]. Furthermore, we map security

goals pertaining to knowledge into formulae akin to Gollman’s formalisations.

In doing so, we come close to the specifications in authentication logics [42, 95, 191, 184]. In

particular, we cover the expressivity of the VO logic [191]. The implicit nesting of beliefs in

VO, recalled at page 51, is made explicit in our systematic translation of complex, epistemic and

10For the operational semantics of applied pi, see [2] or, for a summary, refer to page 46.
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doxastic CAPSL goals (see Section 3.3.3 and, e.g., Example 3.3.26). In this fashion, mutual agree-

ment [111] is naturally expressed in our formalism by a nesting of two knowledge operators. New

aspects of epistemic-based specifications are explored in our methodology. Most prominently, we

use the distributed knowledge operator to express both CAPSL goals (e.g., see Chapter 3, page 115)

and novel, detectability specifications (in Chapter 6). Moreover, the PD2IS toolkit support the

automatic translation of these, as Chapter 5 explained and Figure 5.6 briefly illustrated. Also,

the systematic manner in which we produce the taxonomy of specifications detaches us from the

protocol-dependency and inherent ambiguities (e.g., implicit universal quantification, impossibility

to express possesion of keys, etc.) present in authentication logics.

At the same time, the aforementioned taxonomies of temporal-epistemic formulae show that

our specification language for authentication and key-establishment requirements is more expres-

sive than the reachability specifications used in the rewriting-based formalism [73, 188]. Also, the

language we employ is richer than the rewriting-based ones used in the state-of-the-art AVISPA [9]

project.

In Chapter 7 we express e-voting requirements in a way which is in keeping with the taxonomy11

of anonymity-like properties in [189]. This taxonomy refers to Halpern’s expressions of secrecy [97]

and to a series of information-hiding and anonymity specifications built on top of them. These were

recalled at page 52. We use the core of the role interchangeability [189] specification to express

VVU, RF and CR and the privacy up to Ag \ {Attacker} [97] to express VP. Whist we maintain

the epistemic aspects as introduced in [189, 97], we add a temporal aspect in keeping with the

natural-language expression of e-voting goals (see page 34) and the intuition behind applied pi

specifications of voting requirements.

The anonymity-based expressions in Chapter 7 can be partially related to observational equiv-

alence12 in applied-pi.

It is less clear how our formulations of security requirements relate to expressions of protocol

goals based on algebraic equivalences, which were used in algebraic approaches [72,138] other than

applied pi. In [138], the formulations of security goals had, apart from the algebraic aspect, a trace-

11This is presented in Chapter 2, page 52.
12This is recalled in Chapter 2, page 52.
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based formulation; this is correlated to the FDR model checker used in tandem with CASPER [138].

These formulations convey an implicit linear time aspect and embed implicit expressions of past

actions, e.g., when alice finished her session, alice and bob will have agreed on data ds. In that

sense, our specification language based on computational time logic with future-based operators is

different from such algebraic specifications with embedded linear time, past aspects. Whilst it is

known that a fragment of CTL with pure past operators (PCTL) can be translated into CTL pure

future operators [120], the translation yields exponentially larger, non-intuitive formulae. Moreover,

it would imply a perfect recall semantics (rooted in the anchored view of satisfaction [141]) that is

not supported by MCMAS and that would exacerbate the size of our protocol models. We therefore rely

on a systematic, intuitive mapping of Lowe’s hierarchy for agreement onto our CTLK specifications

(see Chapter 3, Section 3.3.3).

8.2.3 Methodology and Tools for Security Protocol Verification

We devise a toolkit called PD2IS, which produces one or several interpreted system specifications

of a protocol’s execution starting from a protocol high-level description given in CAPSL (Common

Authentication Protocol Specification Language) [64, 66, 151]. Each interpreted system specifica-

tion is described by PD2IS in the specification language of ISPL (Interpreted System Programming

Language). ISPL is the input language of the MCMAS model checker [127]. Our PD2IS toolkit is

linked to MCMAS. The latter is called for the sequential verification of all ISPL files produced by

PD2IS. Hence, the verification of our protocol models is fully automated.

Using translators from a high-level language to a low-level one is common in protocol verifi-

cation [9, 139, 64, 151]. For instance, the backends of the state-of-the-art AVISPA toolkit [9] use

translators from HLSPL [157] to IF [167]. In particular, translators from CAPSL to low-level lan-

guages have been employed as connectors to several protocol verification tools and formalisms (e.g.,

to NRL [35], to Athena [150], to a Prolog-based verification tool for strand spaces [151]). Our

PD2IS toolkit is therefore aligned with such connectors. However, the ISPL programs that PD2IS

produces are purposely optimised for the use with the MCMAS model checker.

Driven by the nature of verification tools for temporal-epistemic logic, we employ a fully ground
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(i.e., with no un-instantiated variables) verification of a bounded number of sessions of a security

protocol. This is the case of other tools for protocol analysis [138, 144]. By standard verification

parameters (e.g., time to find an attack, the largest state-space that we can explore), our method-

ology outperforms these other tools [138,144] handling a bounded number of protocol sessions in a

fully ground model.

Naturally, the performance of analysing fully ground protocol models worsens as the number

of protocol sessions considered increases (hence, the size of the state-space implied). Therefore,

approaches [190,58] that verify a bounded number of protocol sessions modelled symbolically (i.e.,

with un-instantiated variables) perform better than our fully ground approach when large models

are tested. When average-size models (e.g., up to 5 concurrent sessions) are verified, the respective

performances of our methodology and that of symbolic, bounded protocol verification [190,58] are

similar. For details, please refer to Chapter 5.

State-of-the-art, on-the-fly methodologies for verifying a bounded number of protocol sessions

recently emerged [19] (i.e., methodologies using symbolic models constrained at verification-time).

These should theoretically outperform both our approach and traditional, symbolic approaches.

Nevertheless, practice [166,138] has confirmed Lowe’s intuition [178] that attacks are normally ex-

hibited/found on small numbers of protocol sessions. On such “small systems” [178] the differences

in performance between our framework and on-the-fly approaches to verifying a bounded number

of protocol sessions are negligible. We consider that this is mainly due to our MCMAS-wise optimisa-

tion for the ground, ISPL protocol models that PD2IS generates. Nevertheless, the OFMC on-the-fly

model checker [19] obtains better verification times than PD2IS and MCMAS, in the rare case when

larger systems need to be verified. For details, please refer to Chapter 5.

The fact that we verify fully ground models (i.e., without variables) raises a particular interest

on the size of specifications and of the unwound models. Indeed, some of the ISPL files for the ΥIS

specifications generated by PD2IS are long (e.g., the FOO’92 [87] protocol analysed in Chapter 7

is described in over 8000 ISPL lines). The unwound model is of the order of 1011 states. Whilst

the specifications for symbolic verification are shorter, the search-space explored by other bounded

protocol verification methods is similar (i.e., double exponential in the size of the original speci-

fication [188]). Automatic symbolic verification methods do not generate a low-level specification
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as detailed as the ISPL files we use (i.e., their intermediate formats (IF [167]) are still symbolic).

As such, the time/CPU spent by PD2IS to generate our ISPL, fully ground specifications can be

related to similar metrics in other state-of-the-art tools (e.g., back-end of AVISPA [9]).

We apply our verification toolkit to protocols drawn from well-established repositories [48,119].

In finding known attacks (e.g., [136]) against what we call receiver-transparent13 protocols, our

MAS methodology performs comparably to existing state-of-the-art tools [9]. For details on these

aspects, see Section 5.4.3. Nevertheless, our more expressive specification language allows us to

analyse new settings and find novel attacks residing on the knowledge of the protocol participants.

For details, see Chapter 5, Table 5.2 and the corresponding discussions.

There are numerous notable protocol-analysis frameworks [149, 34, 144, 138, 138, 163, 79, 181,

44, 73, 188, 59, 116] which, like ours, verify a bounded number of protocol sessions. Theoretically,

assuming an unbounded number of protocol sessions can lead to finding more attacks which can-

not be exhibited by the more constrained assumptions of a bounded number of protocol sessions.

Nevertheless, methods of analysing an unbounded number of protocol sessions [33, 23, 61, 180] are

only semi-decidable (i.e., they might not terminate, but if they terminate they provide the correct

answer).

Therefore, it remains to compare the actual performance between bounded and unbounded

protocol verification methods when the latter terminates. As Chapter 5 has shown, verification

times are almost constant when using unbounded protocol verification irrespective of the number

of sessions considered. Therefore, our methodology as well as all other bounded-number-of-sessions

approaches to protocol verification are outperformed by [33,23,61,180] if a large number of sessions

is considered (e.g., usually over 5 concurrent sessions). Fortunately, as suggested by [166,178,138],

attacks are usually exhibited on a small number of sessions (e.g., 2–5 concurrent sessions). In

these cases, our methodology is comparable with approaches considering an unbounded number of

protocol sessions. For details on these aspects, see Section 5.4.3.

Other comparison criteria to be discussed are the use of model checking and of temporal logic

in our verification methods. Recently, approaches of model checking of security protocols based on

linear temporal logic have emerged [59, 10]. The differences between our methodology and these

13For details, see Definition 3.1.3.
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approaches with respect to the specification aspect is clear (i.e., CTLK versus LTL). Apart from the

aforementioned aspects (i.e., bounded versus unbounded, symbolic versus ground), the comparison

in performance lies mainly in the usual distinctions between LTL and CTL model checking [16]. In

particular, we are not aware of any methodology other than the one hereby presented to employ

logics of time and knowledge in a systematic model for automatic verification of security protocols,

based on symbolic model checking.

Protocol verification methods based on model checking approaches, other than those already

discussed, use refinement [72] to establish properties of models expressed in CSP [174]. Described

briefly at page 48, FDR is a model checker used by Lowe to verify security protocol CSP models gen-

erated with CASPER [138]. The underlying theoretical aspects of a CSP-refinement checker like FDR

are essentially different to the OBDD-based, symbolic model checker MCMAS that we use. Recently,

contract signing protocols have been verified with the probabilistic model checker PRISM [118].

Again, the underlying mechanisms in the modelling and the verification thereby used (i.e., Markov

chains) are essentially different from the methodology presented in this thesis.

8.2.4 Detection of Security Protocol Failures

In [91] a proof-of-concept framework where protocol participants have the ability to conduct active

retaliations against the intruder is presented. Hence, the model in [91] is not a Dolev-Yao attacker14

model, but a general-attacker thread model where all agents are potentially able to become attack-

ers. The design views the actual collaboration of protocol participants to mount retaliations against

the intruder. A single application is thereby presented. It is based on the NSPK protocol, which is

manually extended with a rule for the retaliation step. The data proposed for the retaliation-driven

communication is defined ad-hoc by the specifier. In [91], LTL [165] is used to encode the notion of

a notion of attack trace extended towards retaliations. No aspects of the participants’ knowledge is

employed to achieve the retaliation, communication being enforced onto specific participants upon

manually designated data.

In Chapter 6 we defined the notion of detectability, i.e., if and when groups of agents are

14For “Dolev-Yao” attacker, see [71] or Chapter 2, page 35.
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theoretically able to detect protocol failures in an MAS protocol model. We thereby presented

a systematic methodology of specifying and verifying detectability specifications in any security

protocol. We carried out experiments on several automatically generated models for authentication

and key establishment protocols. Unlike [91], our formalism refers to a detection at a theoretical

level (i.e., agents do not collaborate actively or share actual information to detect an attack).

Furthermore, unlike [91], our protocol model is a multiagent system model where knowledge is not

static (i.e., it does not restrict itself to possesion of terms), but follows a Kripke semantics. The

model is not trace-based, but built on top of an S5n, temporal-epistemic semantics. Henceforth,

our model maintains the traditional Dolev-Yao thread model and the aspects of detection on the

intruder side are also explored. To sum up, we distinguish ourselves from this line in that we use

a knowledge-centred, CTLK-based framework to investigate a systematic and automatic way to

model and verify groups of honest agents theoretically detecting attacks and protocol failures in

standard Dolev-Yao thread model.

In the nineties, Lowe attempted methods of manual inspection of protocol executions for inter-

session errors [136]. The tests thereby applied were simplistic (e.g., based on comparisons of values)

and trace-based. In turn, our detectability schema is expressed using CTLK and the specifications

do not trivially reduce to simpler, trace-based error-finding tests. Also, our schemata is auto-

matically obtained (i.e., it is not obvious to see its relations with some manual inspection of the

protocol). Like [136], our specifications also refers to protocol attacks. Nevertheless, they addition-

ally refer to more general protocol failures (i.e., we introduce the notion of pre-attack and study

its detectability). Moreover, our methodology has a larger purpose (i.e., agents actively detecting

the attack mounted on a protocol).

The detectability methodology takes our approach to verification further into possible intrusion-

detection (IDS) [140] techniques. The latter are aimed at actual attack detection. In turn, our

formalism refers to the theoretical possibility to detect an attack in real-time. While IDS uses offline

training and add-on machinery (e.g., honey pots, filters, firewalls), we rely solely on the protocol

participants and the runtime of the protocol. We estimate that the computational overhead of a

detectability implementation in an every-day system would be greater than using offline IDS (i.e.,

the size of the unwound model and the communication links needed between groups of agents).
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However, such an implementation would eliminate the false-positive and false-negative yielded by

machine learning techniques, normally used in offline IDS.

8.2.5 Knowledge Modulo Cryptographic Equational Theories

In Chapter 7 we presented a methodology of verifying protocols specified under convergent [124]

equational theories. This approach has been compared and contrasted with existing, related work

at page 258, page 266 and page 270. From the point of view of the knowledge modalities thereby

introduce, we reiterate some of these comparisons.

We introduced a notion of knowledge modulo the convergent equational theory. In the models

in Chapter 7, the specification of agents is enriched with a set of predicates. These are used to

approximated the knowledge modulo the convergent equational theory by another modality called

interrogative knowledge.

The general idea of enriching the specification of agents with a set of predicates is akin to certain,

seminal approaches. As such, the mechanisms and interpretations of this interrogative knowledge

are in the style of Pucella’s deductive algorithmic15 knowledge [164]. Nevertheless, differences are

apparent, e.g., no actual deductions or actions are required on the agents’ side in our models.

Then, we tailor the formalisation for convergent equational theories. In that sense, an agent is

able to “interrogate” all normal terms and only those (i.e., these interrogations relate to Pucella’s

observations [164]). In our interrogative equational IS, the values of terms in the agent’s local state

evolve with the equational rewriting embedded in the local evolution functions (i.e., this can be

considered as partially encoding Pucella’s local algorithms). For a more detailed comparison on the

matter, refer to the evaluation presented at page 266.

Agents’ observations (i.e., predicates interpreted at local states) have recently been used also in

probabilistic knowledge in MAS [100] and revision of belief [86]. The modalities thereby entailed

are different from the interrogative knowledge modality introduced in Chapter 7.

The underlying indistinguishability relation modulo the equational theory that we model in

Chapter 7 is similar to the notion of static equivalence16 in applied pi calculus [2]. Furthermore,

15This is summarised in Chapter 2, page 61.
16This is recalled in Chapter 2, page 61.
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our novel quotient knowledge modality, introduced in Chapter 7 can be likened to the observational

equivalence17 used in [63].

The IS-based protocol models presented in Chapter 7 simulate the rewriting entailed by the

equational theory. In that sense, these MAS models come closer to the MSR model [73] than the

model introduced in Chapter 3.

To create the aforementioned models, we implement another compiler from CAPSL to ISPL. In

order to embed the equational rewriting in the IS model, our tool uses the rewriting simulations

present in CIL (CAPSL Intermediate Language). In fact, we exploited a version of the CAPSL to CIL

translator [151] (summarised in Chapter 2, page 57) which we modified to fit our purposes, i.e., to

render some of the IS semantics.

We devise an algorithm of model checking for our interrogative knowledge modality. The

implementation of this model checking algorithm follows some of the ideas previously used in

MCMAS-X [130] (recalled in Chapter 2, page 61). Nevertheless, it takes an on-the-fly approach to the

model checking procedure.

With respect to the main criteria above, we compared and contrasted the contributions of this

thesis with relevant existing work in the fields of protocol analysis and AI-inspired verification.

Moreover, in our multiagent system approach to cryptography analysis we fall into the category of

methodologies used for protocol verification via AI-inspired techniques, together with [128,130,109,

132,125]. The (dis)similarities in comparison with [125] have been discussed. With the other lines

( [128, 130, 109, 132]) we do not substantially compare otherwise but in the AI-inspired techniques

and/or logic languages used.

8.3 Overall Contributions

This work reinstates the seminal ideas of authentication logics to use non-classical logics to model

and verify security protocols. Moreover, through well-foundedness, systematisation and automa-

tion, it succeeds in the points where the early BAN-like logics failed (e.g., a compelling semantics,

protocol-independent language, un-ambiguous formalisations). As preempted in Chapter 1, Sec-

17For details on observational equivalence, see Chapter 2, page 52.
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tion 1.2, the main contributions of this thesis are:

1. defining the class of receiver-transparent and the class of receiver-opaque protocols and pur-

posely optimising the modelling and verification of each class in the context of temporal-

epistemic logic and MAS model checking;

2. well-founded MAS models for security protocol executions;

3. a well-founded notion of cryptographic knowledge to be used in our approach;

4. model checking methodologies for this novel cryptographic knowledge modality;

5. tools for the automatic generation of several flavours of all the MAS models formally in-

troduced; these cater for the automatic generation of temporal-epistemic formulae for each

requirement of the underlying protocols;

6. defining the notion of detectability (i.e., groups of agents being theoretically able to detect a

protocol attack and/or early signs of the attack) and further studying its applicability in a

systematic, automatic way using our MAS setting.

In a nutshell, the above contributions enabled us to:

• model check MAS models for security protocols (e.g., authentication, key-establishment, e-

voting protocols) against both standard and novel, temporal-epistemic expressions of their

security requirements;

• find attacks in novel settings driven by the epistemic framework;

• exploit the MAS setting to investigate security protocols beyond attack-finding into active

attack detection by the parties involved.

8.4 Future Work

In this section we present possible directions of future work related to this thesis.



8.4 Future Work 306

To the best of our knowledge, in parallel to the investigations reported in this thesis, researchers

at the Polish Academy of Sciences have been studying aspects of bounded model checking of

temporal-epistemic properties of security protocols. A comparison between this thesis and their

approach is envisaged, given the intersection points in the underlying logic formalisations. Moreover,

a performance comparison between our symbolic model checking methodology and their bounded

model checking is of interest.

In Chapter 4 we presented a proof that relates our methodology to standard, trace-based se-

mantics used in the verification of authentication and key-establishment protocols. However, for

e-voting, receiver-opaque protocols our formalism comes closer to process algebra approaches (i.e.,

cryptographic indistinguishability corresponds to applied pi static equivalence, etc.). The actual

formal study of the relations between applied pi modellings and our logic-based Υ IE
IS formalisation

remains an open research topic.

For certain approaches to symbolic protocol verification [2] computational soundness proofs

have been advanced. This implied showing that the guarantees offered by a symbolic verification

formalism hold for computational verification models as well (see page 61). Along these lines, it is

of interest to investigate the computational soundness of our temporal-epistemic based approach

to protocol verification. Similar to these, we are currently investigating the properties enjoyed by

the knowledge modalities introduced in Chapter 7 and the axiomatisation of the logics presented

therein.

An immediate line of work is to use our detectability framework to automate the synthesis of

attack-free security protocols.

At the same time, we are investigating methods of systematic MAS modelling for classes of

protocols that are not encompassed by this thesis (e.g., contract signing protocols).

We conclude that this thesis has offered AI-inspired automatic methodologies for protocol ver-

ification. It investigated classical lines of protocol testing (e.g., attack-finding) and novel aspects

into security protocol analysis (e.g., our MAS-driven detectability techniques).
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P. Héam, O. Kouchnarenkoand, J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusi-

nowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The AVISPA Tool for the

Automated Validation of Internet Security Protocols and Applications. In K. Etessami and

S. Rajamani, editors, Proceedings of the 17th International Conference on Computer Aided

Verification (CAV’05), volume 3576 of Lecture Notes of Computer Science, pages 281–285,

Edinburgh, UK, 2005. Springer Berlin/Heidelberg.

[10] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. Tobarra. Formal Analysis of
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Computer Science, volume 125, pages 91–108. Elsevier Science Publishers, 2005.

[12] B. Arnold. Logic and Boolean algebra. Prentice-Hall, New York, 1962.

[13] N. Asokan, V. Shoup, and M. Waidner. Asynchronous Protocols for Optimistic Fair Exchange.

In Proceedings of the 1998 IEEE Symposium on Research in Security and Privacy (IEEE-

S&P’98), pages 86–99, California, US, 1998. IEEE Computer Society Press.



BIBLIOGRAPHY 309

[14] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. Mosses, D. Sannella, and A. Tar-

lecki. CASL: the Common Algebraic Specification Language. Theoretical Computer Science,

286(2):153–196, 2002.

[15] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, New

York, 1998.

[16] C. Baier and J. Katoen. Principles of Model Checking. The MIT Press, 2008.

[17] H. Barendregt. The Lambda Calculus – its Syntax and Semantics, volume 103 of Studies in

Logic and the Foundations of Mathematics. North-Holland, 1984.

[18] D. Basin. Lazy Infinite-State Analysis of Security Protocols. In R. Baumgart, editor, Proceed-

ings of the International Exhibition and Congress on Secure Networking (CQRE’99), pages

30–42, Düsseldorf, Germany, 1999. Springer-Verlag London.
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[37] M. Browne, E. Clarke, and O. Grümberg. Characterizing Finite Kripke Structures in Propo-

sitional Temporal Logic. Theoretical Computer Science, 59(1-2):115–131, 1988.

[38] E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions

Computing, 35(8):677–691, 1986.

[39] J. Bull and D. Otway. A Nested Mutual Authentication Protocol. Operating Systems Review,

33(4):42–47, 1999.

[40] R. Burkhardt. UML: Unified Modeling Language. Addison-Wesley, 1997.

[41] M. Burrows, M. Abadi, and R. Needham. Authentication: A practical study in belief and

action. In V. Moshe and M. Kaufman, editors, Proceedings of the 2nd Conference on The-

oretical Aspects of Reasoning about Knowledge (TARK’88), pages 325–342, California, US,

1988. ACM New York.



BIBLIOGRAPHY 312

[42] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM Transactions on

Computer Systems, 8(1):18–36, 1990.

[43] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. Technical report,

DEC–SRC, http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-39.html, 1990.

[44] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. A Meta-Notation for Protocol

Analysis. In P. Syverson, editor, Proceedings of the 12th IEEE Computer Security Foundations

Workshop (CSFW’99), pages 55–69, Mordano, Italy, 1999. IEEE Computer Society Press.

[45] B. Chellas. Modal logic: An Introduction. Cambridge University Press, 1980.

[46] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,

and A. Tacchella. NuSMV2: An Open-Source Tool for Symbolic Model Checking. In

E. Brinksma and K. Larsen, editors, Proceedings of the 14th International Conference on

Computer Aided Verification (CAV’02), volume 2404 of Lecture Notes in Computer Science,

pages 359–364, Copenhagen, Denmark, 2002. Springer Heidelberg/Berlin.
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Appendix A

Details on Proofs and Implementations

In this appendix we provide details of some lemmas and proofs in Chapter 3.

We also detail certain aspects of the implementation of the PD2IS tool presented in Chapter 5.

A.1 Additional Proofs for Chapter 3

In this section we give various proofs and details of statements made in Chapter 3.

I. Proof of Lemma 3.3.17 in Chapter 3

We reiterate the Lemma 3.3.17 in Chapter 3:

Let A ∈ Ho, σ(A-role) ∈ ΣPr and agA ∈ Ag correspond to σ(A-role). Let r ∈ RulesA, r =

i.A → B : t (for some B ∈ Ho), l ∈ LagA with l = 〈i, view〉 and view0 be the initial view of agA.

Then, there exists v ∈ RagA
t such that constructIσ(t, view, view0) = (t, v).

Proof Assume by reductio ad absurdum that constructIσ(t, view, view0) = (t,⊥). Then, by the

denotation of symbol construct (given in Section 3.3.1, page 79), it follows that:

1. there exists t0 ∈ Sub(t) ∩ T0 such that (t0,⊥) ∈ view

or

2. σ[v/t0], but consistentI[v/t0]
(t, view0) = false.

329
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Let us consider first the case 1. Since (t0,⊥) ∈ view and, in the hypothesis, r = i.A → B : t,

then it follows that t0 6∈ OwnedAtomsA and, further that t0 ∈ i-LearnedAtomsA. But since

l = (i, view), by the local evolution function EagA it follows that there exist j ∈ StepsA, j < i,

l′ = (j, view′) ∈ LagA where setI(view′, t′) assigns t0 ∈ Sub(t′) ∩ T0 to some value v′ 6= ⊥. If this is

not the case then, by the local evolution function EagA , the step j would not have been incremented.

Hence, agA would not be in step i. (1)

Let us consider first the case 2. If consistentIσ(t, view0) = false, it means that there exists

t′, t′′ ∈ N ∪ K0 such that σ(t′) = σ(t′′). Since consistent refers itself only to view0, then it follows

t′, t′′ ∈ OwnedAtomsA. But by the initial setup of agA (see Remark 3.1.9) these would be assigned

to different values. So, this case is refuted. (2)

So, by (1) and (2) above the lemma follows.

II. On the Dolev-Yao Analysis and Synthesis in MIS

Let us first give once more the procedural expression1 of the analysis cycles 2–5 in the local

evolution function of the Environment agent. In comparison to the original version in See Chapter 3,

page 103, we add some explanatory comments to the procedure.

//initialisation of the model

stop_analz:=false;

for(i:=0;i<#maxSubstComposites;i++)

flag_analz[i]:=false;

already_analz[i]:=false;

endfor

//Dolev-Yao analysis cycles in the model

label l1:

while(!stop_analz)

count1:=0;

foreach [x’/t’]

// [x’/t’] is in the possesion of the intruder

if([x’/t’] in analz\_log)

flag_analz[count_1]:=analz(values_log, analz_log,x’);

count_1++;

1See Chapter 3, page 103.
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// [x’/t’] is NOT in the possesion of the intruder

else if([x’/t’] not in analz\_log)

flag_analz[count_1]:=false;

count_1++;

endif

endfor

noNewAnalz_counter:=0;

allAnalz_counter:=0;

for(i:=0;i<#maxSubstComposites;i++)

// composite i has not been succesfully analysed

if (flag_analz[i]==false)

noNewAnalz_counter++;

// composite i has been succesfully analysed and for the first time

else if (flag_analz[i]==true and already_analz[i]==false)

already_analz[i]:=true;

// a new analysis cycle is triggered

continue l1;

// composite i has been succesfully analysed in previous analz cycles too

else if(flag_analz[i]==true and already_analz[i]==true)

//potential for all composite to have been analysed

allAnalz_counter++;

endif

endfor

// no new composite was analysed

if(noNewAnalz_counter==#maxSubstComposites)

stop_analz:=true;

// all composites can be analysed succesfully

if(allAnalz_counter==#maxSubstComposites)

stop_analz:=true;

endif

endwhile

Lemma A.1.1 The analysis actions triggered at a local state l ∈ LEnv in the evolution function

EEnv of the Environment agent simulate the closure of l ∈ LEnv under analysis with respect to the

denotations given. I.e., a fixed-point of (analz(. . . analz(lEnv, . . .)), . . .), . . .) is reached.
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Proof Let us suppose by reductio ad absurdum that a fixed point is not reached at local state

lEnv, upon applying a series of analz actions.

Then, by the procedural expression above, it follows that neither the condition

noNewAnalz counter==#maxSubstComposites nor the condition

allAnalz counter==#maxSubstComposites is ever satisfied.

Let us consider the case of noNewAnalz counter==#maxSubstComposites never being satis-

fied. (∗)

From (∗) it follows that there is always a value for i such that flag analz[i] == true.

By the denotation analzI, it follows that there is always a composite t′ whose value x′ can be

analysed at some reached analz log and values log. But for this to be true, it means that at the

previous while cycle the analysis of some composite [x/t] enriched values log with [k/v] such that

last(t′) = k and last(x′) = v′. Then, by the procedure the index of the composite [x/t] will be

marked in already analz.

As the above should hold infinitely often (hence, we are working under the hypothesis of

noNewAnalz counter==#maxSubstComposites never being satisfied), then either there are an

infinite number of composite-values [x′/t′] as above or all composites are eventually marked in

already analz. The first case cannot occur, as the number of ranges for a composite and the num-

ber of composites are both finite. If the second situation is the case, then the condition

allAnalz counter==#maxSubstComposites is eventually satisfied. This contradicts our original

reduction ad absurdum assumption.

Note the the if branches and the for loops involved are exhaustive with respect to the conditions

they imply.

The other case (i.e., allAnalz counter==#maxSubstComposites never being satisfied) is treated

analogously.

Therefore, the while loop stops and either all [x′/t′] have been succesfully analysed at a state

lEnv or no [x′/t′] can be further analysed at a state lEnv.

From the above it follows that there always exists a natural constant k ≥ 1 and there exists

a natural number n such that 1 ≤ n ≤ k × #max SubstComposites such that analz actions are
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applied n times at some state lEnv until the closure of the Dolev-Yao analysis under this bounded

model is reached.

A.2 Additional Details for Chapter 5

In this section we give various details on the implementation of the PD2IS toolkit, presented in

Chapter 5

Generating the Generalised Cartesian Product. In Chapter 5 we detail the implementation

of the PD2IS toolkit. It homomorphically instantiates a fully ground IS-based model ΥIS starting

from a symbolic CAPSL description of a protocol. In doing so, it needs to compute the corresponding

ranges of messages and composites starting from the ranges of the comprising atomic terms. It also

needs to express all possible, valid combinations in certain expressions within the evolutions and

protocol functions of the IS-based model (e.g., expression (∗) in PagA , as per Chapter 3, page 95).

Consider n sequences R1, R2, . . ., Rn, each corresponding to an atomic range (n ≥ 2). The

Cartesian product R1 × . . .× Rn is the sequence of all possible n-tuples where the first element is

from R1, the second element is from R2, etc. In the following, we will explain the implementation

of how to obtain the aforementioned Cartesian product R1× . . .×Rn. The actual coding of PD2IS

was done using the Java 5.0 programming language. The details presented hereby are not written

in the pure Java, but in a more imperative-like syntax, easier to understand and to explain.

Let us first explain the intuition behind the procedure of generating the Cartesian product

R1 × . . . × Rn. To begin with, consider the simple case of only two ranges, e.g., two sequences

R1 = {a, b} and R2 = {x, y, z}. Let an iterator go through the first range and a nested iterator

go through the second range. If we concatenate the value of the first to the value of the second,

we will obtain {(a, x), (a, y), (a, z), (b, x), (b, y), (b, z)}. Hence, we will obtain the ordered 2-tuples

giving indeed the Cartesian product of R1 ×R2. The code below implements this intuition.

List R_1, R_2;

List result = new List ();

for first in R_1
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for second in R_2

result=result.add (concat(first, second));

return result;

So, by the code above, in the list result will have the Cartesian product of R1×R2. Of course, the

procedure can be generalised to R1 and R2 being sequences of any length. In fact, if we consider a

third range R3, the Cartesian product of R1×R2×R3 can be obtained using the same procedure. To

exemplify, let R3 = {m, n}. From before, result is {(a, x), (a, y), (a, z), (b, x), (b, y), (b, z)}. Then, by

applying the procedure above, R1×R2×R3 equals result×R3; hence, it is {(a, x,m), (a, x, n), (a, y,m),

(a, y, n), (a, z, m), (a, z, n), (b, x,m), (b, x, n), (b, y,m), (b, y, n), (b, z, m), (b, z, n)}. In more detail, we

compute first R1 × R2 into the variable result, then result is attributed to R1 and R3 is assigned

to R2 and we re-apply the previous procedure.

The following procedure shows this generalisation precisely, i.e., the way to compute the product

R1 ×R2 × . . .×Rn, for Ri a range of values, i ∈ {1, . . . n} and n ≥ 2.

Iterable<Iterable<T>> genCartesianProduct;

Iterable<Iterable<T>> result = new List<Iterable<T>();

foreach(var tuple in genCartesianProduct) {

var seq2 = tuple;

for seq1 in result

for item in seq2

seq1 = seq1.concat(item);

result = result. add(seq1);

}

return result;

The above is presented in a way which is intuitively close to the concept of lists in functional

programming languages. Equally, it is close to a notion of accumulator (e.g., in the Microsoft .Net

platform). We create the generalised Cartesian product in the following way: 1) we begin with

an empty accumulator; 2) at each step, the new accumulator is obtained by adding the current
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item in the ultimate accumulator to the penultimate accumulator. At every step of the way, the

accumulator will be the Cartesian product of all the sequences processed so far.

We now discuss some aspects related the above, in the context of our PD2IS toolkit. The

first aspect is the need to use methods of producing the Cartesian product like above in many

different contexts, under possibly distinct requirements. For instance, we need to calculate both

the σ-restricted ranges for all Aσ-agent and the unrestricted ranges for the Environment. Also, we

need to expand the ground expressions of the evolution functions and protocol functions differently

within different instances, etc. The second aspect is the possible need to produce ordered pairs,

i.e., the range of {Na, A} is given by RN ×RA and not by RA×RN . The third aspect is the need

to eliminate the symmetry from some of the ranges generated as above. The fourth aspect is the

need to constrain these ranges to produce certain protocol-models (see Chapter 5).

For all of the above reasons, we actually implement a hierarchy of GeneralisedPermutations

classes and interfaces. These classes facilitate also the indexing of variables, i.e., the range R1

corresponds to the variable Na, the range R2 corresponds to the variable A, etc. Furthermore,

indexing ranges with other than by variables is facilitated through these classes. All these classes

implement the generic methodology presented above for the calculation of the Cartesian product

to construct non-atomic ranges. However, each extend the behaviour to cope with one or several of

the aspects aforementioned. The indexing is used as legend to enforce certain constraints, eliminate

symmetry, etc. For instance, a constraint can be that all sequences where the value of index 1 is

equal with the value at index 3 should be dismissed from the end result. A symmetry elimination

can be formulated like: all two sequences where the first contains value x at index 1 and value y

at index 3 and the second contains value y at index 1 and value x at index 3 should be eliminated

from the end result. The classes are open-source, coded in Java 5 and are available with PD2IS

at [28].



Appendix B

An Extension to Chapter 4

In this appendix we provide details of some lemmas and proofs in Chapter 4.

In relation to Chapter 4, we also present an additional proof (Theorem B.3.1) concerning the cor-

rectness of the ΥIS formalisation with respect to a standard semantics for CAPSL-described protocols.

Alternative proofs (Theorem B.3.2 and Theorem B.4.3) that MIS and MCAPSL are aligned in the

validation/refutation of traditional CAPSL goals are also presented.

B.1 Introductory Notions

In this section we present some background notions used in the lemmas and proofs in Chapter 4

and in this appendix. Mainly, we recall the concept of homomorphism [124] and the concept of

stuttering equivalence [37].

We first recall the definition of a homomorphism [124]. We will recall the general notion of

homomorphism between universal algebras (see Chapter 7 for a review on these algebraic notions).

The definition of homomorphism on universal algebras can be transferred to other mathematical

objects (e.g., groups, transition systems, etc). In the case of transition systems, the operations are

given by the transition relations.

Definition B.1.1 (Homomorphism) Let S be a set of sort and Σ be a S-sorted signature. Let

336
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A = (A,ΣA),B = (B,ΣB) be two Σ-algebras. Let an indexed function h : A → B, i.e., h =

(hs|s ∈ S), hs : As → Bs, for any s ∈ S. The function h is a homomorphism between A and B if

(∀(ω, s) ∈ S∗×S |ω = (s1, . . . , sn))(∀σ ∈ Σω,s)(∀a1 ∈ As1) . . . (∀an ∈ Asn), it is the case that

hs(σA(a1, . . . , an)) = σB(hs1(a1), . . . , hsn(an)).

We now recall the definition in [37] for the notion of stuttering equivalent.

Definition B.1.2 (Stuttering Equivalence) Given two structures M and M ′ with the same set

of atomic propositions, a sequence of equivalence relations E0, E1, . . . on S×S ′ is defined as follows:

1. s E0 s′ if and only if V (s) = V (s′).

2. s En+i s′ if and only if

A. for every path π in M that starts in s, there is a path π′ in M ′ such that it starts in s′, a

partition B1, B2, . . . of π and a partition B′
1, B

′
2, . . . of π′ such that for all j = 1, n, Bj and B′

j

are both non-empty and finite, and every state in Bj is En-related to every state in B′
j, and

B. for every path π′ in M ′ that starts in s′ there is a path π in M starting in s and satisfies

the same condition as in A.

If such a sequence of relations is identified between the structures M and M ′, then the structures

are called stuttering equivalent.

B.2 Helpers for Certain Lemmas in Section 4.3

Informal Explanations on the proof of Lemma 4.3.8.

Recall Lemma 4.3.8:

Let Pr be an RT protocol, MPr
CAPSL be its bounded protocol model and Υ Pr

IS be obtained from

MPr
CAPSL via algorithm tr. Let MPr

IS be the unwinding of Υ Pr
IS . For σ(A-role) ∈ ΣPr, σ(A) 6= I,

t ∈ T , let e = (ω|A,σ, i) with act(e) = A!B : (M)t and let s, s′ ∈ S such that s[e〉s
′

. Let σ+(A-

role) >→ΥIS agA, σ+ ∼= σ, g, g
′

∈ G and ga′g
′

be the application of a joint action a′ ∈ Act at g in

MPr
IS such that e ṽ a′ . Let g

′′

∈ G and βAnalz=a1 . . . an be a g
′

-analz complete sequence of Dolev-Yao

actions in MPr
IS with g

′

βAnalzg
′′

. Then, s
′

p̃ g
′′

.
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We are going to explain the ideas behind the proof of this lemma. To prove that s
′

p̃ g
′′

we need

to tackle the three parts in the definition of the p̃-relation.

Informally, the first part expresses that principal A can analyse at s′ the same atomic terms as

agA has at g
′′

(up to the renaming of values, i.e., σ+ ∼= σ). To begin with, states s and g were in

the p̃-relation already, i.e., A could analyse at s the same atomic terms and agA had at g.

In MCAPSL, the state s′ has expanded with respect to state s only by the set M of atomic terms

needed to generate t (i.e., act(e) = A!B : (M)t).

In MIS, all terms in GeneratedA (hence, those in M ⊆ GeneratedA included) have been embedded

into the state s0A under σ+ (i.e., the elements of M in ΥIS are respectively equivalent up to renam-

ing to the elements of M in MCAPSL).

The state g′
agA

does not change with respect to atomic terms in comparison to g, but it already

contains σ+(M) by persistence of values in GeneratedA, assigned in the initial setup of ΥIS.

The state g′′
agA

is the same as g′
agA

, as only the intruder is active during the sequence βAnalz of actions.

Therefore, principal A can indeed analyse at s′ the same atomic terms as agA has at g
′

or g
′′

(up

to the renaming of some values). So, part (1) of state s being in the p̃-relation with g
′′

is ensured.

Informally, part (2) of s′ being in the p̃-relation with g′′ means that if the intruder is not able

to analyse an atomic term t0 at s′ in MCAPSL, nor is he able to do so at state g′′ in MIS.

In MIS, at g
′′

the closure of g′ under analzI occurs. Under the set Σ+ of substitutions, at g′′ the

intruder has analysed all possible atomic terms given the current stage of the execution.

In MCAPSL, the closure under analz is instantaneous at s′.

In MCAPSL, at the state s′ the intruder knows t, which he did not at s.

In MIS, at state g′ the intruder acquires t, which he did not at g.

By the fact that s p̃ g, the intruder analysed at s what he analysed at g.

Hence, with respect to the Dolev-Yao analysis, s′ and g′ were the identical up to the renaming

of values. Closure under Dolev-Yao analysis happened at both, in the respective models. Most

importantly, (the closure under) analysis operations follows the same, traditional semantics [163]

in both models.

By all of the above, it follows that if the intruder is not able to analyse an atomic term t0 at s′ in

MCAPSL, nor is he able to do so at state g′′ in MIS.
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Proving part (3) of s′ being in the p̃-relation with g′′ follows an identical reasoning to the one

behind part (2), presented above.

In Section 4.3 we formulate and prove all these formally.

Informal Explanations on the proof of Lemma 4.3.21.

Recall Lemma 4.3.21: Let Pr be an RT protocol and MPr
CAPSL be its bounded protocol model.

Let Υ Pr
IS be obtained from MPr

CAPSL via algorithm tr. Let MPr
IS be the unwinding of the Υ Pr

IS .

Let σ(A-role) ∈ Σ, σ(A) 6= I, s, s′ ∈ S, e = (ω|A,σ, i) be a receive event in MPr
CAPSL such that

act(e) = A?B : (M)t and s[e〉s
′

. Let t ∈ Msg, x ∈ Rt, σ+ ∈ Σ+, σ+ ∼= σ, σ+(A-role) >→ΥIS agA,

g, g′ ∈ G and gag
′

be the application of a joint action a in MPr
IS such that e ṽ′ a, where aagA = receive

and aEnv = transmit(agA, t, x). Then, s
′

p̃ g
′

and s
′

p̃′ g
′

.

The informal explanations behind its proof are given in the following.

In MCAPSL, the state s′A “grows” with t in comparison with s (i.e., act(e) = A?B : t).

In ΥIS, if out matchI returns true at g, then g is updated to g′ according to the denotation of setI.

To begin with, s and g were in the p̃-relation. Because of that, it will easily follow that out matchI

returns true at g.

On the intruder’s part of the states there is no update, in any of the models. So, the only concern

comes from the part of the states allocated to principal A and agent agA, respectively. In that

respect, agent A should have in MIS at state g′ the same atomic terms as the principal A would be

able to analyse in MCAPSL at the state s′.

Given the above, the only thing that could prevent this from holding would be if setI applied at g

had a different meaning that the simple s′ = s ∪ {t} with respect to what atomic terms are to be

analysable in s′A or contained in g′
agA

. However, as we apply MIS and MCAPSL only to the class P of

receiver-transparent protocols, the latter is not the case (i.e., t would be such that principal A will

be able to analyse all the atomic subterms in MCAPSL, as the denotation of setI dictates in ΥIS).

As we already mentioned, there no updates to the intruder’s share of the states, so the rest of the

proof (i.e., regarding Dolev-Yao analysis and synthesis) follows trivially.

In Section 4.3 we formulate and prove all these formally.
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B.3 Deciding Secrecy in MIS Using Traditional Trace-Based

Methods

In Section 4.2.1 we gave an algorithm called tr that produces Υ Pr
IS from MPr

CAPSL. We recall that

MPr
IS is the unwinding of the interpreted system Υ Pr

IS . In Section 4.3 we proved that the events

and actions in MPr
CAPSL and MPr

IS are such that they preserve “good” relations between the certain

stages in the corresponding computations. This section comes to complete the series of lemmas in

Section 4.3. In that sense, this section will show that the p̃-relation (see Definition 4.3.2) and the

p̃′-relation are preserved all along the respective computations of the two models. We hereby show

that the algorithm A1, used in [188] to decide initial secrecy in MCAPSL, can at the same time

decide secrecy in MIS.

Such a proof is not required to prove the existence of a homomorphism between the two models.

However, it could be used in the proof of homomorphism and it is a natural continuation of all the

lemmas in Section 4.3. We therefore give it here, in this Appendix.

We recall the algorithm A.1 in [188] for deciding initial secrecy.

Algorithm A.1, deciding initial secrecy in MCAPSL, [188], page 695.
let E

′
be the set of all (T, k)-events;

ξ := λ; s := s0;
repeat
E := E

′
;

E
′
:= ∅ ;//events that could not be applied

bool := 0;
while E 6= ∅ do

begin
choose e ∈ E;
E := E \ {e};
if (s, ξ)[e > (s

′
, ξe) then

begin
s := s

′
; ξ := ξe; bool := 1;

end
else E

′
:= E

′
∪ {e};

end
until bool = 0;
if (

⋃

Ai∈Ho

SecretA) ∩ analz(sI) 6= ∅

then “leaky” else “non-leaky”

In the next theorem, we are going to show that any run ξ constructed by algorithm A1 in
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MCAPSL corresponds to a run α in MIS such that all along the runs states are consistently in the

p̃ and p̃′ relation. This will enable us to show that the A-corresponded goals are satisfied/refuted

in both models, without using any homomorphic properties of the models.

Theorem B.3.1 Let Pr be an RT protocol, MPr
CAPSL be its bounded protocol model and Υ Pr

IS be the

output of algorithm tr given MPr
CAPSL. Let MPr

IS be the unwinding of the interpreted system Υ Pr
IS .

Let ξ be a (maximal) run in MPr
CAPSL, as reported by the algorithm A.1 in [188]. For each event e

in ξ, associate the action(s) in MPr
IS that algorithm tr would produce. Let α be the resulting sequence

of actions in MPr
IS . Then, α describes a computation in MPr

IS . Moreover, the resulting states along ξ

and α are in the p̃-relation and in the p̃′-relation.

Proof By structural induction on the run ξ in the hypothesis.

Base-case: Assume the initialisation in A.1: s = s0, ξ = ∅.

By the construction in the algorithm tr, ∃ g0 ∈ G0, s0 p̃0 g0
Remark 4.3.3

=⇒ s0 p̃′ g0.

The first event e = (ω|A,σ, 1) chosen in the first cycle of the while loop in A.1 must be a send

event with act(e) = A!B : (M)t under some substitution σ, where A, B ∈ Ho, t ∈ Msg, M ⊆

GeneratedA. Then tr dictates a joint action a, under σ+ for the A-role, such that: 1). e ũ a;

2). s0[e〉s
′

in MCAPSL, it is the case that g0ag
′

in MIS.

In this context, α = a is a computation in MIS. So, ξ = e is the current run in MCAPSL as per

A.1 and α = a is the computation in MIS.

Then, by tr, automatically in MIS we have g
′

βAnalzγForgeg
′′

.

Therefore, the current run in MCAPSL is ξ = e and the correspondent current computation in

MIS is α = aβAnalzγForge

By the fact that s0 p̃ g0, eũa, Lemma 4.3.16, Lemma 4.3.18 and Lemma 4.3.8, it follows that

s
′

p̃g
′′

and s
′

p̃′g
′′

. Therefore, the base-case is proven. (For simplicity, in the above we assumed

σ(A) 6= I; the case where σ(A) = I is handled similarly).

Inductive step: assume any s ∈ S, g ∈ G, s along ξ and g along α (i.e., s0[ξ〉s and g0αg) such

that sp̃g and sp̃′g. (∗)

Now, assume the algorithm A.1 chooses at the next while cycle an event e
′

under σ
′

.
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Then, the algorithm tr dictates a joint action a
′

under σ
′+

for the underlying role. The event

e
′

and the joint action a
′

will be either in relation ũ or in relation ũ′ (depending on whether they

are send or receive events, respectively).

If it a send event, then tr would also enforce an complete intercept-analz-forge sequence. But,

given (∗) and Lemma 4.3.16 and Lemma 4.3.18, Lemma 4.3.8, it follows that the resulting states

will be in relations p̃ and p̃′.

If it is a receive event, then by Lemma 4.3.21 it follows that the resulting states will be in

relations p̃ and p̃′.

Then, by lemmas above, the resulting states will always be in relations p̃ and p̃′. Therefore, the

inductive step is proven too.

From Theorem B.3.1 it follows that algorithm A1 from [188] (in tandem with algorithm tr in

this thesis) can construct not only runs of MCAPSL, but also runs of MIS. Moreover, the states

along these computations are proven to be systematically in the p̃ and p̃′ relation. Theorem B.3.2

will use that to show that A1 can do even more: if it decides secrecy in MCAPSL on such runs, it

decides it for MIS as well. In other words, Theorem B.3.2 uses Theorem B.3.1 to prove preservation

of satisfaction/refutation of A-corresponded goals.

Theorem B.3.2 Let Pr be an RT protocol, MPr
CAPSL be its bounded protocol model and Υ Pr

IS be

the output of algorithm tr. Let MPr
IS be the unwinding of the interpreted system Υ Pr

IS . Let r be an

atomic CAPSL goal of Pr such that ρCAPSL(r) A ρIS(r). If MPr
CAPSL validates ρCAPSL(r), then MPr

IS

validates f , for all f ∈ ρIS(r). If MPr
CAPSL refutes ρCAPSL(r), then there exists f ∈ ρIS(r) such that

MPr
IS refutes f .

Proof Given the definition of relation A (i.e., Definition 4.2.5), let D be a CAPSL description for

an RT protocol Pr, with the CAPSL goal r = SECRET t and with a CAPSL assertion of type

HOLDS: A t.

For MCAPSL to refute ρCAPSL(r), then there is an arbitrary run ξ in MCAPSL found leaky (by

algorithm A1 [188]). Assume that s0[ξ〉s, where s0, s ∈ S. This means that σ(t) ∈ analz(σ1(sI)),

for some σ(A-role) ∈ Σ and σ1 ∈ Σ|I. (I)
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But by Theorem B.3.1, there exists a computation α in MIS, g0αg and s p̃ g. By part (3) of

the definition of p̃ ⊆ S × G and (I), it is the case that Σ+(t) ∈ gEnv.values log. So, there exists

σ+(A-role) ∈ Σ+, σ+(A-role) >→ agA and gEnv.POOL.t = agA.t (∗).

So, by (∗) and by the semantics of MIS, there exist a path where eventually g ∈ G with

gEnv.POOL.t = agA.t is reached. (∗∗)

Now recall the expression (S1) for ρIS(r):
∧

i∈∪agA

AG(Environment.POOL.var 6= agA.var) (refer

to Chapter 3, page 111, for details).

By (∗∗) and the semantics of MIS, it follows that MIS refutes (S1). (II).

From (I) and (II), it follows that if MPr
CAPSL refutes ρCAPSL(r), then there exists a formulation

of ρIS(r), namely (S1), which is refuted by MPr
IS .

For MCAPSL to validate ρCAPSL(r), then there is no run in MCAPSL found leaky (by algorithm

A1 [188]). Let ξ be an arbitrary maximal run such that ξ is constructed by algorithm A1 [188] and

s0[ξ〉s. Since ξ is not leaky, σ(t) 6∈ analz(σ1(sI)), for any σ(A-role) ∈ Σ and σ1 ∈ Σ|I. (III)

But by Theorem B.3.1, there exists a computation α in MIS, g0αg and s p̃ g. By part (2)

of the definition of p̃ ⊆ S × G and (I), it is the case that Σ+(t) 6∈ gEnv.values log. So, for all

σ+(A-role) ∈ Σ+, σ+(A-role) >→ agA and gEnv.POOL.t 6= agA.t.

So for any run possibly constructable in MIS, its maximal state g is such that gEnv.POOL.t 6=

agA.t. Given the persistence of value-setting in MIS, it follows that any run possibly constructable

in MIS, it is such that any of its state g has the property gEnv.POOL.t 6= agA.t. (∗ ∗ ∗)

Again, recall the expression (S1) for ρIS(r) (refer to Chapter 3, page 111). So, by (∗ ∗ ∗) and

by the semantics of MIS, MIS validates (S1). (IV).

Now recall the expression (S2) for ρIS(r):
∧

i∈∪agA

AG(¬KEnv(Holds(A, var))) (refer to Chapter 3,

page 111).

Remember that we are considering an arbitrary computation α in MIS. For MIS to validate

also (S2) it is needed that g |= ¬KEnv(Holds(A, t)), for all g ∈ G along such arbitrary α.

For this to hold in MIS, it should be that there exists g′ ∈ G, g ∼Env g′, g′ 6|= Holds(A, t). (iv)

Recall that at the maximal state g of α, it is the case that gEnv.POOL.t 6= agA.t (i.e., (∗ ∗ ∗)).

Hence, HoldsI(A, t) is false at such gEnv. And trivially g ∼Env g. So, (iv) holds indeed.
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Hence, if no run is leaky in MCAPSL, then MIS validates (S2) too (V).

From (III), (IV), (V), it follows that if MPr
CAPSL validates ρCAPSL(r), then MPr

IS validates all

formulations of ρIS(r).

The case for r an agreement goal is similar, the reasoning being about two roles at a time (e.g.,

A, B ∈ Ho) and ξ a maximal run with respect to one of them (e.g., the A-role).

Theorem B.3.2 shows the preservation of satisfaction/refutation of the A-corresponded goals in

the MCAPSL and MIS models. This guarantees that our MIS semantics is aligned with standard

trace-based semantics. This alignment only refers to atomic goals. Also, the proof certify that the

algorithm tr of obtaining ΥIS out of MCAPSL is correct.

In Section 4.2.1 we have given an algorithm called tr that produces MPr
IS from MPr

CAPSL. Then,

using the relations and lemmas given in Section 4.3, we have hereby shown that this production

enforces the alignment of validation/refutation of A-correspondent CAPSL goals in the two models.

Our proofs above are based on structural induction on the tr-corresponded computations in the

two models and the relations established between points on these computations. In Section 4.4, we

show the alignment of validation/refutation of A-correspondent CAPSL goals in the two models by

means of algebraic structures and homomorphic relations.

B.4 Stuttering Equivalence between MCAPSL and MIS

In this section we are going to show that there is more than a homomorphism/epimorphism between

MCAPSL and MIS; we will show that the two models are actually stuttering equivalent [37].

The relation p̃ is close to the one underlining this stuttering equivalence between the two models.

The relation p̃ is too fine to be the stuttering equivalence relation. However, if we dismiss the

third point in the definition of the p̃-relations then we obtain a relation which indeed underlines a

stuttering equivalence between the two models.

Let us call this relation st. We begin by restating this relation.

Definition B.4.1 (Relation st between States in MCAPSL and in MIS) Let MPr
CAPSL and Υ Pr

IS

be the models in algorithm tr, as above and let MPr
IS be the unwinding of Υ Pr

IS . Let ξ be an arbitrary
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(T, k)-run in MPr
CAPSL and α be a computation in MPr

IS . Let s ∈ S be a non-initial state of ξ and

g ∈ G be a non-initial state of α. State s ∈ S is in the relation st ⊆ S ×G with g ∈ G, s st g, if:

for A ∈ Ho, σ(A-role) ∈ Σ with σ(A) 6= I, σ+ ∈ Σ+, σ+ ∼= σ, σ+(A-role) >→ΥIS ag,

for Gen ⊂ GeneratedA, for t ∈ AtomsA arbitrary:

(1). [σ(t)/t] ∈ analz(σ(sA ∪Gen)) ⇒ [Σ+(t)/t] ∈ gag

for σ1 ∈ Σ|I, σ
+
1 ∈ Σ+,σ+

1
∼= σ, σ+

2 ⊃ σ+
1 , with σ+

2 (I)>→ΥISEnv:

(2). ∀t ∈ T0, Σ(t) 6∈ analz(σ1(sI)) ⇒ Σ+(t) 6∈ gEnv.values log

Two states s ∈ S and g ∈ G are in the st-relation if honest agents has the same terms at g as

they analyse at s and the intruder lacks the same terms at g as it lacks at s.

We note that this relation shaped by the formulation of goals only: i.e., t is secret at s if

t ∈ analz(sA) \ analz(sI).

Remark B.4.2 The formulation of initial secrecy and agreement on initials in the two models (i.e.,

g goal such that ρCAPSL(g) A ρIS(g)) are invariant with respect to the relation st.

Also, note that the initial states in the two models are in the st-relation. I.e., the algorithm tr

produces the states of MIS in such a relation with those of MCAPSL.

In Section B.1 we recalled the definition of stuttering equivalence originally given in [37].

Theorem B.4.3 Let MPr
CAPSL and Υ Pr

IS be the models in algorithm tr, as above and let MPr
IS be the

unwinding of Υ Pr
IS . Then, the relation st induces a stuttering equivalence between the MPr

CAPSL and

the MPr
IS model.

Proof (Sketch)

Part 1 of the proof follows from the fact that in MCAPSL there are no actual atomic propositions.

We now prove part 2 of the definition.

Consider a fragment of computation in MCAPSL where a send event has been applied. Then,

the correspondence with MIS is illustrated below.



B.4 Stuttering Equivalence between MCAPSL and MIS 346

X=closure(synth(analz(X)))X

12 3412 34

12 3412 34 12 34 12 3412 34 12 3412 34 12 34

#

# # ###
g1 g2 g3 gn−1

gn gm

s s′

e=(A, σ, i), act(e)=A!B : (M)t

aagA
=send(t, x)

aEnv=intercept from(ag)

X X=closure(synth(analz(X)))

aEnv=analz(t′, x′)aEnv=analz(t′, x′) aEnv=synth(t′′, x′′) aEnv=synth(t′′, x′′)

Figure B.1 Fragments of Computation in MCAPSL and in MIS

For such a fragment, assume that s st g1. This is a reasonable assumption since states along all

MCAPSL and MIS are in the p̃-relation (i.e., Theorem B.3.1) and, by the way algorithm tr works,

if s p̃g then it is implied that s st g. (∗)

Then, for such a fragment, take B1 = {s}, B2 = {s′} and B′
1 = {g1}, B2 = {g2, . . . , gn, gn+1, . . . , gm}.

For all the equivalence relations E0, . . . , En+1 in the definition of stuttering equivalence, we

considered only the st-relation.

Given (∗), for part A we have to prove that s′ st g2, s′ st g3, . . ., s′ st gn, s′ st gn+1, . . ., s′ st gm.

All the points in the definition of st follows for all these states in the same way it did when we were

proving the preservation of the p̃-relation (See Lemma 4.3.8 and Lemma 4.3.16).

We make a side note. Since the closure of analysis in MIS has not yet occurred at g2, . . . , gn,

it is the third point in the definition of p̃-relation that would have not followed for states (s′, g2),

. . ., (s′, gn). But, this third point was dropped in the definition of the st-relation precisely for this

reason.

So, part A of point 2 follows follows.

Part B of point 2 follows as part A above and by the construction in algorithm tr (i.e., all states

and actions in MIS as in Figure B.1 are constructed for events and runs in MCAPSL).

A similar reasoning can be made about receiving events in MCAPSL. As paths alternate in this

way only (see Section 4.3), it follows that the models are stuttering equivalent with respect to the

relation st).

From Theorem B.4.3, Remark B.4.2 and the well-established theory of stuttering equivalence [37]
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it follows that the A-related goals are indeed validated/refuted in the MCAPSL model if and only if

they are in the MIS model.

With Theorem B.3.2 and Theorem B.4.3 we have shown, by other means than those in Chapter 4,

that our MIS model is aligned with standard, trace-based models for CAPSL-described protocols (as

far as traditional goal-specifications go).



Appendix C

Automatic Generation and Verification

of Models for Receiver-Opaque Protocols

In this appendix we present mainly an extension of the methodology used in Chapter 7 to model

and verify receiver-opaque protocols. We present a tool that automatically generates ISPL programs

encoding the Υ IE
IS formalisations of CAPSL-described receiver-opaque protocols. We discuss the re-

sults of verifying these models against specifications of their security goals in logics of time and

interrogative knowledge.

C.1 Introduction

In Chapter 7 we presented an IS-based formalism for encoding protocols specified by convergent

equational theories. These protocols are receiver-opaque1(RO).

For sake of clarity, the main, practical application of Chapter 7 focused on e-voting protocols

only. Following existing theoretical results applicable to e-voting [1], we thereby restrained the in-

truder model to a passive Dolev-Yao attacker. However, in our bounded-size instantiation approach,

we can experiment on stronger threat-models (i.e., towards an active Dolev-Yao intruder). We can

1For details, see Definition 3.1.5.
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also extend the technique to be applied to other classes of protocols (e.g., advanced authentication

protocols). This appendix will expand on these matters.

Another characteristic of Chapter 7 is that it focused on the theoretical model and it did not

detail on the implementation of a tool for the automatic generation of the models. Also, it only

discussed the experiments yielded by automatically generating and verifying the FOO’92 [87]

e-voting protocol.

In this appendix we will present extensions of the ideas in Chapter 7, thus diminishing its

aforementioned limitations. We will also describe a tool that automatically generates models for

ROP, described in CAPSL via equational theories, which are more general than those in Chapter 7.

Stronger thread-models than the ones in Chapter 7 will be comprised in the generated models.

In the last part of the appendix, we will evaluate the results of using this methodology to verify

several ROP.

C.2 Protocol Model

To a large extent, the protocol model employed in this appendix to encode ROP is the one already

described in Chapter 7. Therefore, we do not re-insist here on the model per se. In turn, we

underline the modifications to be operated in order to make the Υ IE
IS formalisation applicable to the

entire class of ROP protocols (i.e., not only to those protocols expressed by convergent cryptographic

equational theories).

The model in Chapter 7 can be extended to work for an equational theory that is not necessarily

convergent, but only terminating2. To do so, we need to consider predicates for terms3 not only

for normal terms as in Chapter 7, but for all the terms in the local states of an agent. In the

above fashion, the interrogative knowledge will mean a cryptographically correct “inspection” of all

the terms in the agents’ possesion. By “correct”, we intend that the evaluation of the predicates

for terms will be accordance with the interpretation in the denotational algebra of the underlying

equational theory. The evaluation of the predicates would naturally evolve at the reachable states,

2For details, see page 243 for details.
3For details, see Definition 7.3.11.
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as the terms in the local states get re-assigned by the evolution function. This adjustment maintains

the result in Theorem 7.3.15 (i.e., it maintains the approximation of quotient knowledge through

interrogative knowledge). Theorem 7.3.15 was based on the unique homomorphism between a term

algebra and its quotient algebra modulo the equational theory. Once we encode interrogations for

all the terms of any agent, we will be resorting simply to the identity homomorphism in the term

algebra of the theory (Σ, E).

The obvious trade-off in enlarging the interrogation-sets4 is the size of the models (i.e., encoding

interrogations not only for normal terms, but for all the terms yields an increase in the size of the

interrogation-sets and therefore in the size of the Υ IE
IS models).

Note that all protocols used in practice are described by a terminating equational theory. Hence,

the Υ IE
IS formalism modified as above has the benefit of allowing us to model any protocol in an IS

formalisation, using a correct cryptographic indistinguishability relation.

C.3 Model-Generation Tool

Our desideratum is to start from a CAPSL description of an equationally specified protocol and

automatically generate the Υ IE
IS models (amended as above). In order to encode the equational

rewriting, we employ the intermediate format of CAPSL, the CIL language. For details on CIL, see

page 57.

C.3.1 A CAPSL to CIL-like Translator

As we mentioned in Chapter 7, we have modified the CAPSL to CIL translator [65] into a translator

from CAPSL to a CIL-like language. This CIL-like language has a syntax that we have designed such

that it brings the CAPSL-intermediate format closer to an IS semantics. In engineering the CIL-like

language, we did not modify the semantics of CIL (i.e., our CIL-like language still describes the

equational rewriting involved in each protocol role). We only reformatted the final aspect of a CIL

file. This final output is much closer to the ISPL language5.

4For details, see Definition 7.3.4.
5For details on ISPL, see page 28.
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In the CIL-like format, the rewriting within each protocol-role is encoded in a way which is

in keeping with the grammar for an agent’s evolution function in ISPL (i.e., 〈postconditions〉 if

〈preconditions〉). We have modified amongst others the name of the actions, their parameters, to

suit the Υ IE
IS formalisation, rather than the original, MSR-based format of CIL.

In Chapter 2, page 54, we presented several details on the RO protocol due to Gong [94]. It

is an authentication protocol, but its underlying cryptographic primitives are based on one-way

hash functions rather than on simple encryption/decryptions. Hence, the original ΥIS formalisation

in Chapter 3 and the PD2IS toolkit are not suited to model and verify this protocol (i.e., the

indistinguishability relation thereby used is too coarse). In the following, we present an excerpt

of the Gong protocol, compiled in this CIL-like intermediate format by means of our modified

translator.

Example C.3.1 (CIL-like Format for the Gong Protocol [94])

rule ( facts ( state ( roleB , 3 , terms ( B , S , Nb , Na , A , Kh , Ns ) ) )

if facts ( state ( roleB , 2 , terms ( B , S , Nb , Na , A ) ),

forwardmsg __ from __ UNK __ to __ B ___ terms (

Ns , xor ( sha ( cat ( Ns , cat ( Nb , cat ( A , csk ( B ) ) ) ) ),

Kh ) , sha ( cat ( Kh , csk ( B ) ) ) ) ) and ids ( ) )

This CIL-like excerpt in Example C.3.1 shows that we added a special forward action to the

CIL syntax. It symbolises that the intruder overhears all the communication and, in this case,

transmits to the B-role participant the 2-nd step message (i.e., roleB, 2 . . .).

In our translator, we process the messages and explicate their format as the ordered list of

their inner parts. To do so, we process the equational theory in the CAPSL description of protocol

(i.e., the TYPESPEC section of the CAPSL description). In the case of the Gong protocol, when the

B-role participant “expects” a second step message, it ought to receive the nonce Ns, the result

of xor(sha(cat(Ns, cat(Nb, cat(A, csk(B))))), Kh) and the hash-value sha(cat(Kh, csk(B))). By

applying the equation annotating step 2 of the protocol (see Example 2.2.5), the B-role participant

updates its state to the third step tuple where he “possesses” Kh and Ns.
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We used the standard CAPSL to CIL translator [65] and also compiled the Gong protocol in the

original CIL syntax. Excerpts of that file were given in Example 2.2.6. The interested reader can

compare the above CIL-like excerpt with the original CIL output, by revisiting Example 2.2.6.

C.3.2 The PD2I-IS Toolkit

The PD2I-IS (Protocol Description to Interrogative Interpreted Systems) toolkit is a similar soft-

ware to PD2IS, but it applies to protocols which are essentially receiver-opaque (i.e., not reducible6

to receiver-transparent protocols). PD2I-IS starts from a CAPSL protocol description, containing

a TYPESPEC section specifying a terminating equational theory, and it produces the Υ IE
IS formalisa-

tion in ISPL. Unlike PD2IS, it encompasses the aforementioned translator to obtain an intermediate

CIL-like file. It then processes this CIL-like file into an ISPL representation of the Υ IE
IS formalisation.

It now becomes clear that the alteration of CIL for its use as an intermediary between CAPSL and

ISPL has viewed the ease in processing the rewriting aspects of the protocol into a final ISPL file

denoting the multi-session execution of an equationally specified protocol.

The architecture of PD2I-IS is similar to that of PD2IS (see Chapter 5). However, the state of

agents are generated not according to the ΥIS formalisation, but following the more intricate Υ IE
IS

formalisation (i.e., local states comprise terms and not only atomic terms). The local evolution

functions of honest agents are a fully ground instantiation of the CIL-like format described before.

This instantiation is in accordance to the input supplied by the user (i.e., a fixed scenario or a

loose scenario7 in a XML file as in PD2IS). As PD2IS, PD2I-IS can generate both constrained and

un-constrained models for fixed and loose scenarios (see Section 5.2, for details).

The Υ IE
IS formalisations generated by PD2I-IS can comprise an active Dolev-Yao intruder en-

coded in the Environment agent or, like in Chapter 7, only a passive intruder. In the former case,

we implement the generation of an active Dolev-Yao intruder that applies the equational theory.

Its states and actions are as in Chapter 3 and their generation as in PD2IS. The novel aspects are

in the protocol and evolution functions. The Dolev-Yao analysis and synthesis implemented adhere

to the underlying equational theory (i.e., not simply to decryption and encryption). In PD2I-IS,

6For details, see Section 5.1.
7For details, see page 192 and/or Figure 5.4.
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messages and composites are tagged with the equations that apply to them (i.e., upon the CAPSL

protocol description) and the active intruder’s analysis and synthesis is accordingly restricted by

these tags.

In PD2I-IS, we generate interrogation-sets, i.e., local predicates for each term in the equational

theory. If the underlying theory is convergent, we restrict the interrogation-sets generated to contain

predicates for the normal terms only (as per Chapter 7).

The authentication goals are translated into formulae following the same systematisation as in

Chapter 3. Other goals (e.g., e-voting requirements) are not essentially supported by the CAPSL

grammar. However, we implement the systematisation presented in Chapter 7 for vote-privacy,

receipt-freeness and coercion-resistance.

PD2I-IS is linked to the MCMAS-I8 model checker [31] that supports the ISPL specification and

the verification of interrogative knowledge operators. Therefore, the Υ IE
IS formalisations generated

with PD2I-IS are automatically verified by MCMAS-I. Details on the possible counterexample found

(i.e., protocol attacks) are returned by PD2I-IS.

PD2I-IS is coded in Java and in Maude. It is currently in a beta-version. This version is available

at [29].

C.4 Evaluation of the Methodology

In this section we first evaluate the use of the PD2I-IS toolkit. Then, we discuss the results of

using the MCMAS-I model checker [31] to verify models for ROP generated with PD2I-IS against

specifications of their security goals in logics of time and interrogative knowledge.

C.4.1 On the Model-Generation with PD2I-IS

The Υ IE
IS formalisations are in general larger than the ΥIS formalisation. One reason is the additional

interrogation-sets. This is due in part to the additional predicates for terms. However, some of the

composites implied by the equational theory (e.g., xor(sha(cat(Ns, cat(Nb, cat(A, csk(B))))), Kh)

8For details, see Chapter 7, page 269.
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in the Gong protocol, featured in Example C.3.1) are of considerable length themselves. Hence, the

possible range for these terms is usually large. In ROP, few atoms are owned9 by agents and most

composites are opaque. Therefore, the restricted ranges10 for terms in each agent do not contribute

considerably to diminish the range of a message. Moreover, the value-space for actions is even larger

than the range of the composites (e.g., consider the action forwardmsg from UNK to B terms(Ns,

xor(sha(cat(Ns, cat(Nb, cat(A, csk(B))))), Kh), sha(cat(Kh, csk(B)))))). Therefore, the local states,

the local evolution functions are also larger in the Υ IE
IS formalisation than in the ΥIS formalisation.

The above justifies the reasons behind our very distinct, separate designs in the handling of RT

and RO protocols, respectively.

All of the above also imply that the generation time for Υ IE
IS formalisations is sometimes even

impractical and, generally, much larger than that of simpler ΥIS formalisations.

In the context of the above, we often resort to intermediate writing to disk11 when we generate

the Υ IE
IS formalisations using PD2I-IS. We have successfully generated ISPL code for several con-

strained Υ IE
IS formalisations of sessions comprising up to three agents and the Dolev-Yao intruder

for the Gong authentication protocol [94], the KSL repeated-authentication protocol [111] and the

Okamato e-voting protocol [159]. Nevertheless, the generation of some of these constrained models

takes up to 10 minutes.

The automatic generation of fully ground IS representations of multi-session executions for ROP

is resource-consuming. Nevertheless, this generation is systematic and fully automatic. Therefore,

we consider that it is preferable to other formalisms [2, 63] that tackle the modelling of ROP in

a pen-and-paper, ad-hoc manner. Also, PD2I-IS provides a means to automatic verification of

cryptographic knowledge in a well-founded semantics for epistemic modellings.

C.4.2 On Attack-Finding with PD2I-IS

In this subsection we are going to report on the finding of attack on ROP modelled automatically

with PD2I-IS.
9For details, see Chapter 3, page 69.

10For details, see Definition 3.3.13.
11For details, see page 200.
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The machine used for the following evaluation was based on an Intel Core 2 Duo processor

clocked at 3.00 GHz, with a 6144 KiB cache. The machine ran 32-bit Fedora Core 12, kernel

2.6.32.10.

PD2I-IS provides a systematic method for model checking MAS models for ROP protocols.

Some of these protocols (e.g., KSL) have been already verified by the reduction of their description

to RTP. Others are essentially receiver-opaque (i.e., cannot be easily reduced to a RTP) and their

MAS models have been analysed using the PD2I-IS only. For the first category, we can compare

and contrast the performance of verifying them as ROP or as RTP. For the latter category, we will

simply evaluate the verification result in a standalone manner.

The KSL Protocol [111] under PD2I-IS. For the KSL protocol, we were able to find the same

attack reported in Chapter 5, page 207 and those discussed in Chapter 6. Whilst in Chapter 5 we

reduced the KSL protocol to an RTP, here we automatically generated its ROP execution models

with PD2I-IS.

The time reported in Chapter 5 to find its attacks was of 17 seconds, whereas the maximum

time needed with PD2I-IS was 3 days. The state-space of the unwound model was in the order

of 106.

We conclude that whilst some trade-offs12 are to be considered, the generation and verification of

MAS models for RTP where possible is a more promising line than that of producing and analysing

MAS models for ROP.

The Okamoto Protocol [159] under PD2I-IS. The Okamoto protocol [159] is an e-voting

protocol similar to the FOO’92 protocol presented in Chapter 7. Its underlying equational theory

is not convergent, but it is terminating.

We generated similar models to M1–M3 classes of e-voting Υ IE
IS formalisations13, where the

intruder was an insider (i.e., not an active Dolev-Yao attacker). Practice has shown that an active

Dolev-Yao attacker makes the analysis of the generated ISPL files impractical (i.e., the files cannot

12For details, see page 182.
13For details, see Chapter 7, page 277
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be parsed by the MCMAS-I-parser into unwound models). With PD2I-IS, we generated the VP, VVU

RF, CR formulations of e-voting goals in ISPL using the interrogative knowledge modality. MCMAS-I

was called for the verification of the models against these formulae. We found that vote-privacy

and receipt-freeness were satisfied, whereas coercion-resistance can be violated. Table C.1 reports

this and also the metrics involved in the verification with MCMAS-I (i.e., state-space of unwound

models, verification time, etc.)

Table C.1 Verifying Okamoto Models Generated with PD2OIS

Model Formula Memory (KiB) Time (s) States

M1 VP/VVU (holds) 196032 ∼ 7× 105 ∼ 1012

M2 RF (holds) 195452 ∼ 7× 105 ∼1012

M3 CR (fails) 196922 ∼ 7× 105 ∼1012

To sum up, PD2I-IS enabled us to generate models for e-voting, ROP in a systematic and auto-

matic way. With MCMAS-I and its underlying methodology we were able to verify security require-

ments essentially pertaining to knowledge (e.g., coercion-resistance, receipt-freeness) in a sound,

well-founded epistemic-based semantics. We believe that our fully-fledged approach is preferable

to the partially systematic formalisation of [63] in modelling and verifying e-voting. However, the

verification times yielded by our methods remain large (mainly due to the fully ground methodology

embraced).

The Gong Protocol [94] under PD2I-IS. We were able to generate the Υ IE
IS formalisations for

the Gong protocol, encompassing an active Dolev-Yao model. Moreover, MCMAS-I is able to build

the corresponding unwound M IE
IS model. Unfortunately, the verification of the M IE

IS models for the

Gong protocol with MCMAS-I has been halted after 3 weeks of MCMAS-I running, by a CUDD [179]

library14 internal error. We were unable to resolve this error.

In light of the above, comparisons with other state-of-the-art tools handling such protocols is

not possible. However, we are not aware of tools that would not treat such advanced protocols in a

14For details, see page 28.
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bespoke way (i.e., but rather treat their modelling in a systematic and uniform manner, as in the

approach hereby presented).

C.5 Conclusions

In this appendix we have systematised and implemented a methodology to analyse receiver-opaque

protocols. This is based on an approach previously presented in Chapter 7. In this appendix we

present a tool called PD2I-IS. For receiver-opaque protocols described in CAPSL under terminat-

ing equational theories, PD2I-IS automatically generates IS-based formalisations in ISPL. These

formalisations are denoted Υ IE
IS and have been systematically described in Chapter 7 and in the

present appendix.

The receiver-opaque protocols hereby analysed are more complicated than those used in Chap-

ters 3–6 in that the underlying cryptography is much more intricate than simple decryption/encryption.

With this appendix, we have now demonstrated that we can apply our MAS-based methodology

for modelling and verifying a very large class of security protocols. Essentially, our methodology

can be applied to all traditional cryptographic protocols. The un-handled remainder consists of

less conventional protocols, like those used in contract-signing and auctioning.

Whilst the methodology for generating and verifying MAS models for ROP protocol is well-

founded, systematic and automatic, it is clearly outperformed by the approach we took on RTP.

Nevertheless, in the formalisms and tools [9, 63] that handle such advanced ROP usually resort to

bespoke, ad-hoc modellings. In that sense, with PD2I-IS and the hereby presented approach, we

have shown that we were able to develop a concept, uniform platform to handle the verification of

intricate cryptographic protocol in a systematic and automatic way.


