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Paper Is it possible to decide whether
a cryptographic protocol is secure or not?
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Abstract — We consider the so called “cryptographic proto-
cols” whose aim is to ensure some security properties when
communication channels are not reliable. Such protocols usu-
ally rely on cryptographic primitives. Even if it is assumed
that the cryptographic primitives are perfect, the security
goals may not be achieved: the protocol itself may have weak-
nesses which can be exploited by an attacker. We survey recent
work on decision techniques for the cryptographic protocol
analysis.

Keywords — cryptographic protocols, decision procedures,
logic, security.

1. Introduction

Security questions are not new. They become increasingly
important, however, with the development of the Inter-
net. For example, the classical access control problem,
which has been studied in the context of operating systems
(e.g. [23, 26]), becomes more complex in a distributed en-
vironment where communication channels are not reliable.

How is it possible to secure communications on insecure
channels? As we will see, (perfect) cryptographic primi-
tives are a useful tool but security of the primitives does
not guarantee security of the protocols. Several protocols
had been thought to be secure : : : until a simple attack was
found (see [12] for a survey). Therefore, the question of
whether a protocol indeed achieves its security goals be-
comes crucial.
Until recently, most of the research in protocol analysis was
devoted to finding attacks on known protocols, but very few
works addressed proof techniques for protocol correctness.
This was partly due to the absence of adequate formal mod-
els for distributed communications in a hostile environment.
In the past 5 years or so, there were proposed several for-
mal models for security protocols (a rough description of
the models can be found in Section 2). This opened the
way for the use of formal methods and formal analysis of
protocols. In this survey, we address the problem of effec-
tiveness of such methods. What can we expect? For what
class of protocols are there decision algorithms for security
questions?
After explaining the communication and protocol models
in Section 2, we discuss the attacker model in Section 3.
We then survey the techniques: general techniques (which
do not necessarily yield decision algorithms) in Section 4,
finite state analysis (which is mainly useful for finding at-
tacks, but does not yield correctness proofs) in Section 5,
and, finally, decision results are surveyed in the core of the
paper, Section 6.

2. Abstract protocol modeling

In the presence of insecure communication channels, an
attacker may be able to observe network traffic and/or in-
tercept messages, modify them in transit, and construct fake
messages. In this context, securing communication relies
on a set of basic functions that we will refer to as cryp-
tographic primitives. For example, an encryption primitive
can be used to encode messages prior to transmission on
an insecure channel in such a way that the original mes-
sage content (cleartext) can only be retrieved by recipi-
ents who possess the “right” decryption key. A number
of cryptographic primitives have been designed to achieve
information security goals such as secrecy, integrity, au-
thentication, etc.

The analysis techniques discussed in this survey assume
perfect cryptography. This means that cryptographic prim-
itives are considered as black boxes satisfying certain prop-
erties, as described in Section 2.1 below. This assumption
by itself does not ensure security of the protocols. Even
if all cryptographic primitives used by the protocol are
perfectly secure, the protocol itself may have weaknesses
which can be exploited by an attacker, as described, e.g.,
in the Clark and Jacob survey [12]. Typically, an attacker
can observe and/or participate in some of the protocol ses-
sions and use the knowledge obtained from these sessions
when acting as a participant in subsequent sessions, per-
haps impersonating some of the agents. We will give ex-
amples of this below. This paper considers the following
problem: is it possible to decide, assuming perfect cryp-
tography, whether a given protocol is secure or not?

We must, of course, be more precise about what is a pro-
tocol and what is meant by “secure.” Informally, a pro-
tocol is a conversation between two or more agents (also
called principals) that aims to guarantee certain security
properties even if a malicious party has access to the com-
munication channel. A more formal definition is given in
Section 2.3. In Section 2.4, we describe common secu-
rity properties such as secrecy and authentication, and give
some examples.

2.1. Cryptographic primitives

In this section, we discuss abstract modeling of crypto-
graphic primitives such as encryption and one-way func-
tions. Other primitives such as digital signatures can be
modeled in a similar way.
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Symmetric encryption. Suppose that Alice and Bob share
a secret value K, which is not known to anybody else. The
problem of establishing such a shared secret is beyond the
scope of this survey – there are many protocols for achiev-
ing this, going back to the Diffie-Hellman key exchange
protocol [16]. If Alice wants to communicate privately
with Bob, she encrypts her messages with the secret K,
producing a (symmetrically encrypted) ciphertext, which
we will write as fmg$K . As part of the perfect encryption
assumption, we assume that the attacker cannot learn any-
thing about m from fmg$K unless he knows K. In particular,
an attacker cannot learn anything by comparing ciphertexts.

Moreover, the attacker cannot construct fmg$K unless he
holds K and m. The attacker may be able, however, to
obtain fmg$K from messages sent by other participants and
replay it without learning m. Note that, in theory, the at-
tacker can build all possible keys given a particular key
length, and try to decrypt the message with every possible
key. The perfect encryption assumption is an idealization
of the fact that the attacker has only a very low probability
of obtaining the cleartext of an encrypted message within
a reasonable time.

Public-key encryption. The symmetric encryption scheme
is not practical in many situations since every pair of prin-
cipals willing to communicate must share a secret. This is
the motivation for public-key encryption schemes, of which
RSA [46] is the best known. In a public-key encryption
scheme, every principal has its own key pair, consisting of
a public key K (used for encrypting messages), and a pri-
vate key K�1 (used for decryption). Everybody is allowed
to learn the public key K, but the private key is known to its
owner only. Therefore, any principal can encrypt messages
with K, producing ciphertext fmg!K , but only the principal
who knows K�1 can decrypt fmg!K to retrieve m. The per-
fect encryption assumption in this case states that, again, it
is impossible to learn m from fmg!K without knowing K�1.

One-way functions. Suppose an agent wants to send a long
file and be sure that the file is not altered during commu-
nication. This can be achieved by sending a digest of the
file in a secure way (e.g., digitally signed by the sender).
The recipient can then check the integrity of the received
message by computing its digest and comparing it with the
sender’s digest. For this purpose, many protocols make
use of one-way functions, also called digest functions or
hash functions. The most widely used hash functions are
MD5 [45] and SHA-1 [39]. It is assumed that one-way
functions cannot be inverted in the sense that it is com-
putationally infeasible to compute m given h(m), or find
m0 such that h(m0) = h(m).

Nonces. To prevent an attacker from recording messages
transmitted as part of one protocol session and replaying
them in another session, messages often include nonces.
A nonce is a value used no more than once for the same
purpose [21]. We assume that a nonce is a randomly gen-
erated value that satisfies the following properties:

Fresh. If two nonces are generated by different principals
or at different times, then they are different.

Unpredictable. An agent or the attacker cannot guess the
value of a nonce generated by another agent (although it
may able to learn it by analyzing protocol messages).

Many protocols only require freshness, in which case
nonces can be replaced by time stamps, which we will not
consider here.
The decision techniques surveyed in this paper assume,
unless explicitly stated otherwise, that neither encryp-
tion, nor one-way functions satisfy any algebraic proper-
ties. If viewed as term constructors, cryptographic opera-
tors form a free term algebra. This assumption does not
hold for many functions used in cryptographic applications.
For example, xor is self-canceling (xor(x;xor(x;y)) = y),
and basic RSA satisfies sigpk(A)(fmg!pk(A)) = m where
sigpk(A)

(x) is agent A’s public-key signature of x. There
is a wide class of encryption schemes and hash functions,
however, for which the free algebra assumption is realistic.

To summarize our view of cryptography, we consider cryp-
tographic functions as abstract black boxes satisfying cer-
tain properties. In our model, there is no notion of prob-
ability or partial data – the attacker either does not know
a value, or knows all bits with 100% certainty. Cryptanal-
ysis attacks that rely on probabilistic properties of crypto-
graphic functions are beyond the scope of the methods con-
sidered in this survey. In Section 3.3, we briefly mention
recent work on more realistic formal models of cryptogra-
phy.

2.2. Term algebra

In our abstract model, protocol messages are terms con-
structed out of:

� Plaintext messages m.

� Nonces.

� Pairing of two messages hM1;M2i (or, more gener-
ally, tupling).

� One-way, unary functions applied to messages h(M).

� Encrypted messages constructed from plaintext M
and key k. In general, for symmetric encryption we
can view k as an arbitrary term, which provides sup-
port, e.g., for symmetric session keys, i.e., keys which
are generated as part of each instance of the protocol.
We will distinguish between public-key and symmet-
ric encryption by using two distinct notations fMg!k
and fMg$k , respectively. Terms are constructed in
the same way in both cases, the only difference is
decryption: to decrypt fMg$k , it is necessary to
know k, whereas to decrypt fMg!k , it is necessary
to know k�1.
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2.3. Protocol specification

A protocol is a process parametrized by a (fixed and fi-
nite) set of agents who act as participants. Their names
are given as distinct variables (A;B; : : : ). Protocol speci-
fication consists of a finite sequence of rules of the form
A! B : M where message M is syntactically constructed
as described in Section 2.2. The intended (informal) mean-
ing is that A sends to B message M on a public, insecure
channel. The names which are used in the ith rule of the
protocol refer to the names used in previous steps of the
protocol, often in a somewhat ambiguous way, which has to
be made precise in the formal models. An instance of the
protocol, also called a session is the image of the protocol
by a substitution assigning concrete values to all variables.

2.4. Security properties

While there are many properties that a security protocol
may aim to guarantee, in this survey we will be concerned
mainly with secrecy and authentication.

Secrecy. There are many definitions of secrecy, and the
relationship between them is not clear [1]. For the purposes
of this survey we will say that a protocol preserves secrecy
of a datum d is the attacker cannot learn the value of d by
interacting with the protocol within the framework of the
conventional Dolev-Yao model as described in Section 3.
The goal of protocol analysis is then to determine if there
exists a protocol trace in which the attacker learns the value
of d. It is worth observing that this notion of secrecy
is not adequate for, e.g., electronic voting, where possible
values of the vote are known in advance and the goal of the
protocol is to preserve the confidentiality of the association
between a voter and his/her chosen value.

Authentication. There are also many definitions of authen-
tication (see, e.g., [30]). In a nutshell, an event e authen-
ticates agent A if e can occur only if a previous message
originated from A. The purpose of authentication is to en-
sure another agent B that he is indeed talking with A.
Both secrecy and authentication are trace properties, i.e.,
their violations can be found by looking at a single execu-
tion trace of the protocol. If the protocol process running
in parallel with the attacker process is viewed as a state
transition system, the protocol analysis problem for trace
properties can be stated as a reachability problem, i.e., the
problem of determining if the state in which the property
is violated is reachable from the protocol’s initial state.

There exist security protocols designed to achieve other
properties such as fairness, anonymity, non-repudiation, no
denial of service, among others, but they are beyond the
scope of this survey.

2.5. Example

The following protocol is perhaps the most (in)famous one
in the literature on formal analysis of security protocols. It’s
the (simplified) version of the Needham-Schroeder public-
key mutual authentication protocol [40]:

1: A! B : fA;NAg
!

KB

2: B! A : fNA;NBg
!

KA

3: A! B : fNBg
!

KB

In the first message agent A (Alice) sends to agent B (Bob)
her name together with a nonce NA, encrypting the pair
with Bob’s public key KB. Bob replies by sending back
nonce NA, together with his own nonce NB, encrypting the
pair with Alice’s public key KA. Finally, Alice sends back
Bob’s nonce encrypted with KB.

The goal of the protocol is mutual authentication. After
completing the protocol, Alice and Bob should be confi-
dent that they are talking to each other. More formally,
Alice, upon receiving the second message, should be con-
fident that this message was indeed sent by Bob (since only
Bob could decrypt Alice’s first message and learn the value
of NA). Bob, upon receiving the third message, should be
confident that it was Alice who sent message fA;NAg

!

KB
in

the first step, since nobody but Alice could decrypt Bob’s
message and learn the value of NB. A related goal of the
protocol is to preserve the secrecy of nonces NA and NB.

Gavin Lowe [29] discovered that the protocol fails to
achieve secrecy and authentication due to the following
(by now very well-known) attack:

1:1: A! I : fA;NAg
!

KI
The attacker, acting as a legitimate participant in
the protocol, is contacted by Alice.

1:2: I ! B : fA;NAg
!

KB
The attacker starts a new session of the protocol
with Bob, pretending to be Alice.

2:2: B! (A) : fNA;NBg
!

KA
Bob replies to message 1.2 according to the pro-
tocol specification (Bob thinks that message 1.2
came from Alice). Message 2.2 is intercepted by
the attacker.

2:1: I ! A : fNA;NBg
!

KA
The attacker replies to message 1.1 using the in-
tercepted message 2.2. At this point Alice, who
only observed messages 1.1 and 2.1, believes that
NB has been generated by I .

3:1: A! I : fNBg
!

KI
Alice replies to I ’s message 2.1 according to the
protocol specification.

3:2: I ! B : fNBg
!

KB
The attacker, again impersonating Alice, sends the
expected answer to message 2.2.

The authentication goals fail as follows:

� Upon reception of message 2.1, Alice should be con-
fident that the message has been constructed by I ,
which is not the case.
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� Upon reception of message 3.2, Bob should be con-
fident that A sent the message fA;NAg

!

KB
, which is

not the case.

In other words, Bob thinks he is talking with Alice, while
he is talking with the attacker.
The secrecy goal fails as follows: NB should be a secret
shared by Alice and Bob only, while message 3.1 allows
the attacker to learn it.

3. Attacker model

It is typically assumed that the set of principals consists of
two disjoint sets: the honest principals and the attackers.
The attackers may include dishonest protocol participants.
For most protocols, it is sufficient to analyze the security
of the protocol against a single attacker that combines the
knowledge and abilities of all dishonest principals.
The honest participants are assumed to follow the rules
of the protocol as defined in the protocol specification in
a mechanistic way. What they do when they receive a mes-
sage which does not match their expectation is left unspeci-
fied. It is assumed that they do not keep track of previously
completed sessions and, more generally, that they do not
play an active role in detecting or tracing possible attacks.

3.1. Dolev-Yao model

A common attacker model used in formal analysis of se-
curity protocols is the so called Dolev-Yao model, inspired
by [18]. Following the convention, we used the term Dolev-
Yao somewhat loosely. Some of the attacker models de-
scribed below are in fact richer than the original Dolev-Yao
model.
We assume that the attacker can eavesdrop on, remove,
and arbitrarily schedule messages sent on public communi-
cation channels. It can also create new messages from the
pieces of messages it already observed and insert them into
the channels. The attacker can split unencrypted messages
into pieces and decrypt encrypted terms if it knows the cor-
rect decryption key. It is assumed that messages contain
enough redundancy so that the recipient can always deter-
mine if decryption was successful (e.g., when the attacker
decrypts an encrypted nonce fNg$K with a key K0, he can
always tell whether K = K0). In the Dolev-Yao model, the
attacker has the choice to intercept any message transmitted
on a public communication channel and possibly replace it
with a message constructed from his a priori knowledge and
parts of the messages previously sent by any participant in
this or other session of the protocol.
The steps taken by honest participants following the pro-
tocol specification and (non-deterministic) actions of the
attacker give rise to an abstract model of the protocol as
a state transition system (e.g., [34]). The general approach
taken in formal analysis of security protocols is to ana-
lyze all feasible traces of the state transition system and
determine for each trace whether all of the desired security

properties are preserved. This task is complicated by the
following considerations:

� There can be arbitrarily many sessions (also known
as instances) of the protocol which can be interleaved
in an arbitrary way.

� One agent can participate in arbitrarily many ses-
sions at the same time. The memory of each agent
is, therefore, unbounded (as has been mentioned, an
agent’s memory is limited to uncompleted sessions).

� The attacker can generate an unbounded number of
messages.

� Nonces have limited scope: honest principals forget
nonces as soon as the corresponding instance of the
protocol has completed.

Among the formal models for protocol traces, the most
widely used are CSP [22, 29, 47, 48, 50], higher-
order logic [41], multiset rewriting [10, 11], and strand
spaces [54]. For information about the relation between
different models, see [11].

3.2. Spi-calculus

In the spi-calculus [2] the behaviour of honest protocol
participants is formalized as a process in a special-purpose
process calculus (basically, an extension of π-calculus [36]
with cryptographic operations). This process can be repli-
cated any number of times to model several instances of
the protocol running concurrently. The attacker can ob-
serve and participate in any communication in any possible
way. The model, however, also relies on the perfect cryp-
tography assumption.
Protocol security can then be expressed as observational
equivalence of two systems. In the first system, an arbitrary
process A (which models the public network controlled by
the attacker) is run concurrently with the process modeling
the actual protocol. In the second system, A is run concur-
rently with a process modeling an idealized specification of
the protocol which is secure by design. If the two systems
are observationally equivalent in the process-calculus sense
(taking into account cryptographic operations, e.g., fNg!K
and fN0g!K may not be distinguishable by the attacker who
does not know K), then the protocol is secure.
For example, secrecy can be modeled by considering an
attacker A that outputs a message on a designated channel
when it learns the secret. When run concurrently with the
ideal version of the protocol, A cannot possibly learn the
secret and thus never outputs on the channel. If A cannot
learn the secret from the actual protocol, it will not be
able to output on the channel when run concurrently with
the protocol, and the two systems will be observationally
equivalent, i.e.

P[secret] j A�obsP[any] j A:
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In addition to the notions of security supported by the
Dolev-Yao model, spi-calculus can be used to analyze im-
plicit flows since the attacker may perform comparisons
between observed messages and produce output depending
on the comparison results. For instance, the processes may
test encrypted (unknown) values for equality and perform
actions depending on the result of the test.

3.3. Probabilistic models

Recently, attempts have been made to develop analysis tech-
niques for more realistic formal models of cryptography
that go beyond the Dolev-Yao abstraction described in Sec-
tion 3.1. The goal is to replace “black-box” abstractions of
cryptographic primitives with probabilistic models. These
models include probabilistic polynomial-time process cal-
culus [27, 28] and more traditional (in the cryptographic
sense) simulatability-based models [9, 42–44]. No tools
have been developed so far for the mechanized analysis of
realistic formal security models.

4. General techniques

In general, there is no algorithm which takes a crypto-
graphic protocol as input and always outputs either “yes,
the protocol is secure”, or “the protocol is insecure and here
is an attack.” Both secrecy and authentication are undecid-
able in the Dolev-Yao model, and so are probably all the
interesting properties one might want to check [4, 14, 17].
We give more details on the sources of undecidability be-
low.
Despite this limitation, there exist semi-decision techniques
which can be automated in various ways. First, observe
that it is possible to design an algorithm which will always
find an attack (by the Dolev-Yao attacker) in finite time if
an attack exists and may not terminate if the protocol is
correct. This can be done by simply enumerating all traces
of the protocol’s state transition system. Then, in each state,
it can be decided if secrecy has been violated, as explained
in Section 6.1.
Other semi-decision techniques and tools include, but are
not limited to, Paulson’s inductive method [41], NRL Proto-
col Analyzer [33], Athena [51], and abstraction-based tech-
niques by Bolignano [6, 7] (this is by no means a compre-
hensive list).
There are several sources of undecidability. First, the pro-
tocol itself can simulate one step of computation for a uni-
versal computation model (e.g., a Turing machine): each
state of the machine is an agent who, upon reception of
a configuration, sends the next configuration to the appro-
priate state. The attacker only has to bridge two successive
sessions forwarding the last message of one session to the
appropriate principal as the first message of the next ses-
sion. That is why decision methods have to either impose
a bound on the number of instances as in [4], or restrict ma-
nipulation of the messages (e.g., impose a “single reference
to previous messages” restriction [14]).

The second source of undecidability is the ability to gen-
erate nonces, which may be used, roughly, to simulate ar-
bitrarily many memory locations and therefore encode ma-
chines with unbounded memory [17]. Again, if the number
of protocol instances is bounded in advance, this cannot oc-
cur. In fact, it is sufficient to bound the total number of
nonces which are generated in any trace.
Even if it is assumed that there is a bounded number of
instances, it is not yet easy to design a decision algorithm
since, according to the Dolev-Yao model, the attacker still
has an unbounded number of possible choices at any point.
In particular, the number of messages that can be created by
the attacker is unbounded. An additional restriction bound-
ing the attacker’s memory allows development of finite-state
decision techniques.

5. Finite-state analysis

Bounding the number of instances and the number of times
each cryptographic operation can be applied by the attacker
yields finite-state analysis, which terminates. In this case
the protocol can be described by a finite state machine and
reachability properties such as secrecy and authentication
can be expressed formally, e.g., in some temporal logic.
This enables the use of finite-state model checking tools
such as FDR [29, 48], Murϕ [37], and Brutus [13].
Lowe [31] gave a syntactic characterization of a class of
protocols such that, for every insecure protocol in the class,
there is an attack using a bounded number of sessions and
a bounded number of applications of cryptographic prim-
itives (therefore, there is a bound on the number of at-
tacker operations and on the size of terms that the attacker
may have to construct). For this class, both the attacker’s
memory and the number of sessions can be bounded with-
out sacrificing completeness. This enables application of
model checking. Moreover, the bounds are quite small in
practice.
This result can be seen as a decidability result for the class
of protocols which satisfy the assumptions in Lowe’s pa-
per [31]. Many of these assumptions are among prudent
engineering practices for security protocols proposed by
Abadi and Needham [3], but it is not realistic to assume
that they are satisfied by a particular cryptographic proto-
col. Following are some of the requirements defining the
class:

� The intended recipient of a message should be able
to decompose the message into atomic pieces. This
means, for example, that he cannot use part of the
message as a black box to be included in the reply,
as done, e.g., in Kerberos [25].

� Every message must contain (under encryption) the
name of the supposed sender.

� Message fields must contain enough redundancy so
that it is always possible to determine the type of
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the field. Type confusion between keys, names,
nonces, etc. should not be possible.

� There are no temporary secrets. The protocol should
be secure under the assumption that everything which
is sent in the clear is part of the attacker’s initial
knowledge.

Among Lowe’s requirements is also the restriction of pro-
tocols to atomic encryption keys which are either nonces,
or basic constants. It should not be possible to build new
keys out of existing ones. This assumption, however, is
too restrictive for the modeling of “real-world” key ex-
change protocols such as SSL 3.0 [52] where it is typical
for the parties to compute symmetric keys as functions of
the shared secret material. In fact, reachability is decid-
able even in the presence of constructed keys assuming the
number of protocol instances is bounded (see Section 6.3).

Stoller [53] demonstrated a more general class C of pro-
tocols for which it is possible to derive, from the protocol
specification, a theoretical upper bound on the number of
cryptographic function applications that have to be made
by the attacker. Stoller also gives a decision algorithm for
membership in C . The algorithm is complicated due to the
lack of syntactic characterization of the protocol class.

6. Decision results for infinite-state
analysis

The protocol analysis techniques surveyed in this section
assume that there is a bounded number of protocol ses-
sions, but attacker computations are unbounded. In partic-
ular, there are no limits on the depth of terms that can be
constructed by the attacker. In all of the techniques, the
subject of the analysis is an idealized Dolev-Yao model of
the honest protocol participants running in parallel with an
attacker who controls the public communication channels.
This models execution of the protocol in a hostile environ-
ment (we will thus use terms “attacker” and “environment”
interchangeably). Therefore, every input to the honest pro-
cesses from the environment can be viewed as constructed
by the attacker.
Typically, specifications of protocol participant’s roles con-
tain variables. Variables represent data that the participant
does not possess prior to starting the protocol and receives
from the environment as part of the protocol. For example,
after initiating a key exchange with Bob, Alice may receive
a term encrypted with her public key. Since Alice does not
know the value of the term before receiving it, it will be
denoted by a variable in the specification of Alice’s role in
the protocol.
For instance, in the Needham-Schroeder example from Sec-
tion 2.5, Bob (i.e., any agent playing the role of Bob), upon
reception of message fX;Yg!KB

will send back fNB;Xg!KY
.

Here X;Y are variables since, from Bob’s viewpoint, they
originated from the environment and their values are not
known to Bob apriori. X ranges over arbitrary data and Y

ranges over principal names (under the assumption that the
agents are able to distinguish principal names from other
data). In such a formulation, X could be, for instance,
a name or a key or a nonce. Some formalisms assume that
each piece of data comes annotated with its type, prevent-
ing type confusion attacks [12]. In any case, Bob cannot
check that X has been generated by the agent whose name
is Y.

6.1. Symbolic protocol models

All of the analysis techniques considered in this section
have two main components:

Symbolic reduction. The basic idea behind symbolic re-
duction is to avoid instantiating variables in the protocol
specification unless necessary. This is done by defining
a symbolic state transition relation which gives rise to the
(finite) symbolic state space of the honest protocol partici-
pants. Each symbolic state summarizes an infinite number
of concrete states that can be obtained by instantiating vari-
ables in the symbolic state specification. Protocol correct-
ness conditions are represented by constraints. A typical
constraint is the requirement that every input term received
by the honest participants from the environment must be
derivable from the environment’s initial knowledge com-
bined with the terms sent by the participants on public
channels up to that point.

Knowledge analysis. Each technique defines a deduction
system for determining whether a particular term can be
derived from a given set of terms. Obviously, the deduc-
tion system depends on the chosen attacker model. In the
Dolev-Yao model, even though the set of terms that can be
constructed by the attacker from a given finite initial knowl-
edge is infinite, it is possible to effectively compute a finite
tree automaton which accepts this set of terms. This is also
true if the initial knowledge of the attacker is a regular set
of terms [4, 20, 38]. We will use notation F (T) for the
infinite set of terms that can be derived by the attacker from
a particular set T of ground terms.
The protocol analysis problem is then reduced to deciding
whether the attacker can instantiate a protocol trace that
violates one of the protocol correctness conditions, i.e., if
there exists an instantiation of variables computable by the
attacker that satisfies the constraints implied by the faulty
trace.

6.2. Constructed versus atomic keys

In the simplest Dolev-Yao-style model for symmetric en-
cryption, it is assumed that all symmetric keys are atomic –
either constants, or variables that can be instantiated
only to constants. This simplifies knowledge analysis,
since the set of terms F (T) that can be derived by the
Dolev-Yao attacker from a given term set T is equal to
synth(analz(T)) where synth and analz are Paulson’s
synthesis and analysis closures of term sets. Roughly,
analz(T) is the set of all terms that can be obtained by
breaking up and decrypting terms in T , and synth(T) is all
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terms that can be obtained by combining, encrypting, and
hashing terms in T. With atomic keys, analysis of a term
is linear in the depth of the term’s structure.
To analyze “real-world” protocols, it is often necessary to
extend the model with constructed symmetric keys. In
a typical key exchange scenario, two parties exchange a se-
cret, then each derives the shared symmetric key by hashing
parts of the shared secret together with nonces and other
data. An example of this is master key computation in the
SSL 3.0 handshake protocol [52].

6.3. Symbolic decision techniques

In this section, we describe several symbolic decision tech-
niques for security protocols and the assumptions they make
about protocols. Unless stated otherwise, all of the methods
assume a bounded number of protocol instances but impose
no bounds on the attacker’s knowledge set F . All results
described below hold for the scenarios in which a principal
is involved in several parallel sessions. Though only [20]
explicitly considers an infinite initial knowledge of the at-
tacker, most of the results described below also apply in
this case.

Huima. The origin of symbolic protocol analysis can be
traced to the seminal work of Dolev and Yao [18] which
applied to a very restricted class of protocols. Huima’s pa-
per [24] was the first to present a decision technique for
secrecy in cryptographic protocols without a bound on at-
tacker operations. The class of protocols considered in [24]
is very general. Protocols are defined using an ad-hoc pro-
cess algebra formalism, somewhat similar to untyped spi-
calculus. Both symmetric and public-key encryption are
supported, and constructed keys are allowed.
A standard term rewrite system is defined, representing
the attacker’s ability to manipulate terms by splitting, de-
crypting with a known key, encrypting, etc. User-defined
symbols are given “semantics” by instantiating one of the
pre-defined relation templates. For example, after declar-
ing symbols e and d, the user can declare Psymenc(e;d),
meaning that for any terms t1 and t2, d(t1;e(t1; t2)) ! t2.
While the templates support explicit decryption operators
(and, therefore, a limited equational theory associated with
the term algebra), there is no support for commutative and
associative operators. See also [38].
For each protocol participant, its local state is defined as
hp;Y;ci where p is the process representing the correspond-
ing protocol role, Y is a partial variable instantiation func-
tion from variable names to terms, and c is a counter used
to keep track of fresh values. A symbolic state of the en-
tire protocol is defined as a triple hL ;M ;C i where L
is a function from participant names to their local states,
M is the set of terms known to the environment (attacker),
and C is a list of constraints that must be satisfiable in order
for the state to be reachable. Each constraint has one of the
following forms: Eq(t; t 0), Ineq(t; t 0), or InClos(t;M) where
terms t; t 0 and term set M may involve variable names. An
InClosconstraint represents the requirement that ground in-
stances of term t must be derivable, using the rewrite sys-

tem, from the ground instances of terms in M. Such a con-
straint is satisfiable iff there exists a substitution σ such
that σ t 2 F (σM). (We write σ t for the term t in which
all variables are replaced according to σ .)

Symbolic reduction is handled by defining a transition rela-
tion for symbolic global states that generates a finite sym-
bolic state space with associated constraints (e.g., if a par-
ticipant receives term x, then InClos(x;M) is added to the
constraint list, because the state can only be reached if the
environment is capable of generating x). Protocol correct-
ness conditions are also formulated as constraints (e.g., se-
crecy of term t can be expressed as :InClos(t;M)), and the
two constraint lists are merged. Finally, each terminal sym-
bolic state is transformed in a certain way in order to decide
whether there exists a instantiation of variables that satis-
fies all constraints simultaneously. Note that deciding the
existence of an instantiation that satisfies an InClos(t;M)
constraint requires deciding the knowledge analysis prob-
lem as explained in Section 6.1.

The paper contains no details of the algorithm used to de-
cide the constraint satisfaction problem apart from the list
of high-level properties that are supposed to guarantee ter-
mination, and the claim that the method is sound and com-
plete.

Amadio-Lugiez-Vanackère. Amadio et al. [4, 5] use
a untyped process algebra formalism similar to the spi-
calculus [2] for specifying protocols. Only symmetric-key
encryption with atomic keys is considered. Variables in
key positions are handled by brute-force enumeration of all
possible substitutions. The decision algorithm is proved
NP-hard.

In this approach, symbolic reduction is combined with
knowledge analysis. A symbolic state of the protocol is
a triple (P;T;E) where P is the state of the process repre-
senting the honest participants, T is the finite set of terms
representing the attacker’s knowledge, and E is an ordered
list of constraints x1 : T1; : : : ;xn : Tn such that T1 � : : :� TN.
Each xi : Ti constraint corresponds to a point in the protocol
execution where the accumulated knowledge of the environ-
ment consists of terms in set Ti . The values of xi are the
terms which are sent to the honest protocol participants in
a trace.

Such constraints are equivalent to Huima’s InClos(xi ;Ti)
constraints and are satisfiable iff there exists a substitu-
tion σ such that σxi 2 synth(analz(σTi)), i.e., if, after
σ instantiates all free variables, xi is derivable from Ti
using operations available to the Dolev-Yao attacker (see
Section 3.1). It is worth noting that the characterization of
F (σTi) as synth(analz(σTi)) is only valid if decryption
keys are atomic. For each symbolic reduction step, the al-
gorithm checks if the substitution required for the step is
compatible with previous substitutions. The algorithm thus
decides whether there exists a single substitution that solves
all xi : Ti constraints simultaneously.

As in Huima’s approach, to account for the conditional it
is necessary to accumulate a separate set of equality con-
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straints as symbolic reduction progresses. Equality con-
straints are solved by a separate set of rules.

Boreale. Boreale [8] also formalizes abstract models of
protocols in a variant of spi-calculus, considering only
symmetric-key encryption. Only variables or atomic terms
may appear in key positions. The original paper [8] only
deals with authentication properties, but the general method
can also be used to analyze any reachability property, in-
cluding secrecy. There is a publicly available analysis tool
(STAP), which also handles constructed keys.
The knowledge analysis problem for ground terms is de-
cided using a standard Dolev-Yao deduction system. Proto-
col execution by honest participants is modeled by a sym-
bolic transition relation that allows messages to contain free
variables. As in other methods, exhaustive enumeration of
all symbolic traces produces a finite symbolic state space
of the protocol.
Protocol analysis is then equivalent to deciding, for each
symbolic trace, if it can be solved, i.e., if there exists an
instantiation of variables in messages such that in the re-
sulting concrete trace every ground term sent by the envi-
ronment is derivable from the environment’s knowledge at
that point using the deduction system. This is the same as
deciding the satisfiability of Huima’s InClosconstraints for
a particular symbolic trace.
The paper gives a refinement decision procedure that works
by gradually instantiating variables in the symbolic trace
until a solved form is obtained in which every sent term
is derivable by the environment. The key idea is that any
symbolic term can be decomposed into a finite number of
irreducible components by splitting pairs and decrypting if
the correct key is known to the environment. Therefore,
for each message sent by the environment, it is possible
to (i) split the sent term into its irreducible components,
(ii) split all symbolic terms known to the environment at
that point into their components. Since both sets are finite,
the symbolic knowledge analysis problem can be decided
by checking that the component set of the term is included,
modulo unification, in the component set known to the en-
vironment.
The refinement process is non-deterministic and may lead
to several different solved forms for the same symbolic
trace. Completeness is proved by demonstrating that ev-
ery solution of the symbolic trace is a solution of at least
one of the solved forms produced by the algorithm.

Fiore-Abadi. Fiore and Abadi [19] are similar to Ama-
dio et al. and Boreale in that they use a variant of untyped
spi-calculus with symmetric-key encryption and decryption
and a free term algebra. The analysis method supports con-
structed keys, but completeness is proved only for atomic
keys.
The method creates a symbolic computation graph of the
honest protocol processes. Paths in the graph represent all
possible execution traces of the protocol, and some of them
may violate the desired security properties. To determine
if there exists a concrete execution trace of the protocol

corresponding to the violating path, the paper gives an al-
gorithm for deciding the existence of realisers for all sym-
bolic inputs (i.e., message sends) to the process from the
environment. A realiser is a substitution for variables such
that every resulting ground input term can be derived by the
environment from the terms it already knows at that point.
Once again, this is equivalent to deciding the satisfiability
of all InClos(ti ;Mi) constraints, or finding a substitution σ
such that σ ti 2 F (σMi) for all terms ti sent by the envi-
ronment at a point where it knows Mi .

Rusinowitch-Turuani. Rusinowitch and Turuani [49] ex-
tend the work by Amadio et al. [4] in two directions. First,
their model supports public keys as well as constructed
symmetric keys. Second, they show that the symbolic
knowledge analysis problem is NP-complete for the Dolev-
Yao attacker as long as the number of sessions is bounded.
The main result of the paper is a polynomial bound on
the number of attacker operations that may be needed in
order to construct the substitution that realizes the attack.
If t 2 F (M), i.e., if the term that must be sent by the
environment can be derived from the term set representing
the environment’s knowledge, then there exists a normal
derivation of t from M that has a polynomial size. This is
similar in spirit to Lowe’s “small system” result [31], but
with significantly fewer restrictions on the protocol.
The polynomial bound on normal derivations is then used
to construct an NP-complete procedure for deciding the pro-
tocol insecurity problem. The procedure works by guessing
a ground substitution σ for all variables such that the size
of the σx term has a polynomial upper bound, then guess-
ing a polynomial sequence of attacker operations l1; : : : ; lN,
and finally checking that σ t 2 lN(: : : l1(σM)). Such a pro-
cedure is obviously impractical for real protocol analysis,
but in addition to establishing complexity of the problem,
the existence of polynomial normal attacks supports the
empirical observation that all Dolev-Yao attacks on cryp-
tographic protocols that have been discovered so far are
relatively simple.

Comon-Cortier-Mitchell. Comon et al. [14] consider the
Dolev-Yao protocol model with support for public keys and
constructed symmetric keys. There are two main assump-
tions. The first one slightly relaxes the finite-sessions re-
quirement by assuming that only a bounded amount of fresh
data is generated in all sessions. This means that either
there is a finite number of sessions, or else the protocol
does not contain any nonce generation steps. This restric-
tion alone is not sufficient for decidability; it is still possible
to build a protocol simulating one transition step of a uni-
versal computation model. The second restriction states,
roughly, that an agent can copy only one piece of any mes-
sage he receives into any message he sends. This rules out,
for instance, simulation of two-stack machines.
The decision technique is based on a reduction to set
constraints (e.g. [15]), which in turn are reduced to an
automata-theoretic question. The resulting algorithm runs
in doubly exponential time.
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Millen-Shmatikov. Millen and Shmatikov [35] present
a decision technique for reachability properties based on
constraint solving. Each honest protocol participant is spec-
ified as a semi-bundle in the strand space model [54].
A semi-bundle is a strand (i.e., a protocol role) parame-
terized with variables. The Prolog implementation auto-
matically generates all possible interleavings of the semi-
bundles.
Using parameterized strands to represent symbolic traces
of the protocol achieves a clean separation between the
symbolic reduction problem and the knowledge analysis
problem. As in other approaches, deciding the latter is
equivalent to solving a system of constraints of the form
ti : Ti , where ti is a term, possibly containing variables,
sent by the attacker to the honest processes, and Ti is the
set of terms available to the attacker. These constraints are
equivalent to Huima’s InClosconstraints, and are satisfiable
if 9σ such that 8i σ ti 2F (σTi), i.e., every term needed to
the stage an attack can be generated by the attacker.
The resulting constraint system is solved by applying a set
of constraint reduction rules. The constraint solving proce-
dure is terminating, sound, and complete even in the pres-
ence of constructed keys. Unlike the Rusinowitch-Turuani
procedure [49], the algorithm is useful in practice and can
be applied to the analysis of real protocols.

7. Conclusion

Protocol analysis is a model checking problem [32]: given
a model (the protocol) and a property, we want to decide
whether the model satisfies the property. As we have seen,
however, the model is an infinite state system, and classi-
cal model checking techniques can only be used to verify
an approximate model. Nevertheless, as with infinite-state
model checking techniques, symbolic representation of in-
finite sets of states (e.g., using constraints) and reasoning
about such representations may yield interesting decision
results, some of which have been sketched above.
There are still a number of open questions, and more gen-
erally, several open areas of research. Let us mention two
of them as a conclusion:

� We considered only two particular security proper-
ties: secrecy and authentication. While the described
techniques may work for other trace properties, there
are several security goals which are not trace proper-
ties (for instance, anonymity and fairness). There is
currently no specification language (such as tempo-
ral logic for reactive systems), which is rich enough
to express all desired security properties. Design of
decision algorithms for such properties is an open
problem.

� We assumed that terms and messages are generated
by a free algebra. As mentioned above, this is an
approximation since most cryptographic primitives
satisfy some algebraic properties. Which properties

can be supported by the model while preserving de-
cidability is an open question.
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Paper CAPSL and MuCAPSL
Jonathan K. Millen and Grit Denker

Abstract — Secure communication generally begins with
a connection establishment phase in which messages are ex-
changed by client and server protocol software to generate,
share, and use secret data or keys. This message exchange
is referred to as an authentication or key distribution crypto-
graphic protocol. CAPSL is a formal language for specifying
cryptographic protocols. It is also useful for addressing the
correctness of the protocols on an abstract level, rather than
the strength of the underlying cryptographic algorithms. We
outline the design principles of CAPSL and its integrated spec-
ification and analysis environment. Protocols for secure group
management are essential in applications that are concerned
with confidential authenticated communication among coali-
tion members, authenticated group decisions, or the secure
administration of group membership and access control. We
will also discuss our progress on designing a new extension of
CAPSL for multicast protocols, called MuCAPSL.

Keywords — CAPSL, MuCAPSL, cryptographic protocol spec-
ification, cryptographic protocol analysis, secure group commu-
nication, multicast.

1. Introduction

In computer networks, cryptography is used to protect pri-
vate messages and to authenticate the source and content
of messages. The range of applications of cryptographic
techniques is enormous, including banking, electronic com-
merce, protection of personal and medical data, trade se-
crets, and government and military uses. Cryptography
supports secure access to World-Wide-Web servers, virtual
private networks, and other services over the Internet.
Secure communication generally begins with a connection
establishment phase in which messages are exchanged by
client and server protocol software to generate, share, and
use secret data or keys. This message exchange is referred
to as an authentication or key distribution protocol. A few
such protocols have been put forward by standards bodies,
and others are in common use, such as SSL for secur-
ing web page accesses, but new protocols are continually
being designed. The perpetual need to design new proto-
cols is due to new technology – cryptographic algorithms,
computer hardware, network architectures – and new appli-
cations, with special goals such as digital cash, voting or
contract signing.
The principal topic of this paper is the design of a formal
language, CAPSL, for specifying cryptographic protocols,
and how this language plays a role in the analysis of their
correctness. CAPSL is useful for addressing the correct-
ness of the protocols on an abstract level, rather than the
strength of the underlying cryptographic algorithms. We
will also discuss our progress on designing a new exten-
sion of CAPSL for multicast protocols, called MuCAPSL.

1.1. Protocol vulnerabilities

Protocols can be analyzed under the assumption of ideal
encryption: that is, ciphertext can be decrypted only with
the help of the proper key, and ciphertext for a chosen plain-
text cannot be generated without the help of the proper key.
These assumptions distinguish formal models, with which
we are concerned, from computational models, which apply
probabilistic and computational complexity reasoning, and
from cryptanalysis. We assume that the reader is aware of
the distinction between public-key encryption, in which an
encrypting key is publicized and the corresponding decryp-
tion key is kept private, and symmetric-key encryption, for
which the two parties share a common secret key.
Cryptographic protocols are designed to defend against
hackers or other adversaries who may have the ability to in-
tercept and modify messages on the network. The attacker
may also have a legitimate user identity on the network,
or (almost the same thing) may have compromised the se-
cret key of some legitimate user in order to masquerade as
that user. Protocol designers also consider attacks in which
some secret keys that have been in long-term use, or which
were used in the past, may have become compromised due
to cryptanalysis, and the protocol should be designed so
that such compromised keys cannot be re-introduced or
used to compromise new keys. This concept of a worst-
case, powerful attacker originated in a paper by Dolev and
Yao [15]. Attacks perpetrated by a Dolev-Yao attacker are
called active, message-modification, or sometimes man-in-
the-middle attacks.
Here is a well-known example of an authentication proto-
col, showing how such protocols are expressed in textbooks
and papers. We will also show how this protocol is vulner-
able to a Dolev-Yao attacker:

A! B : fA;NagPB
B! A : fNa;NbgPA
A! B : fNbgPB

This particular protocol is supposed to establish a session
between principals A and B in such a way that each prin-
cipal authenticates the identity of the other principal, and
they share two session-specific secrets Na and Nb. This
protocol was proposed by Needham and Schroeder in [27].
What is shown here is actually not the entire protocol, but
just the handshake that comes after an earlier part in which
the necessary public keys are exchanged. We will refer to
this protocol as “NSPK.”
The bracketed term fA;NagPB represents the encryption of
the concatenation of A and Na using the public key of B. It
is assumed here that A has previously obtained B’s public
key and that only B has the corresponding secret key, and
vice versa for B. The message fields Na and Nb are nonces,
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meaning that they are fresh, in the sense that they have not
been used before by the principal that originates them. If
they are large enough and randomly generated, they could
be used as keys to encrypt subsequent messages.
The security claim of this protocol is that A has given Na

directly only to B, because only B could have decrypted
the message in which Na was introduced. Similarly for B
and Nb. The protocol also provides entity authentication,
i.e., evidence that the other principal is currently actively
participating in the protocol, because it includes acknowl-
edgments from B and A containing the nonces they re-
ceived.
This abstract message-list style of protocol presentation
is often called an “Alice-and-Bob” specification, from the
conventional names given to the parties represented by A
and B.
There is an active attack on the Needham-Schroeder pro-
tocol, found by Lowe [19]. Lowe’s attack is illustrated in
Fig. 1.

Fig. 1. Lowe’s attack.

In this figure, the center column represents the intruder
playing two roles. One role is as himself, principal X,
responding to A in the left-hand session of the protocol.
The intruder is also masquerading as A in the right-hand
session of the protocol, indicated with (A) in parentheses.
There is a security breach in the right-hand session, because
B ends up believing he has been talking to A, and that Nb
is shared only with A.

1.2. Formal methods

The existence of active attacks led to the development of
methods to detect them. Several approaches have been
developed, such as specially designed goal-directed state
search tools [21, 22] to find attacks, applications of general-

purpose specification and verification tools [5, 18, 30] to
perform inductive proofs of correctness, specially designed
logics of belief [2, 16] to prove authentication properties,
and applications of model-checking tools [9, 19, 33], also
to search for attacks. These are some of the earliest or
most influential papers, and by now the literature is quite
extensive.
These tools and their successors have been effective, but it
is difficult for analysts other than their developers to apply
them. One reason for this difficulty is that the protocols
must be respecified for each technique, and it is not easy
to transform the published description of the protocol into
the required formal system.
Some tool developers began work on translators or com-
pilers that would perform the transformation automatically.
The input to any such translator still requires a formally de-
fined language, but it can be made similar to Alice-and-Bob
specifications. This is the CAPSL approach. The origins
of CAPSL were at the 1996 Isaac Newton Institute Pro-
gramme on Computer Security, Cryptology, and Coding
Theory at Cambridge University.
This approach was also taken by ISL, supporting an ap-
plication of HOL to an extension of the GNY logic [6];
Casper [20], for the application of FDR using a CSP
model-checking approach; and Carlsen’s “Standard Nota-
tion” [7], which was translated to per-process CKT5 spec-
ifications [4].

1.3. The CAPSL approach

The CAPSL language and supporting tools are still under
development. This document discusses the design concepts
of the language, including the strategy by which CAPSL
can be adapted for use by various protocol analysis tools.
The basis of this strategy is the use of an intermediate
language, CIL, that is close to the state-transition repre-
sentation used by almost all of these tools. CIL serves
two purposes: to help define the semantics of CAPSL, and
to act as an interface through which protocols specified in
CAPSL can be analyzed using a variety of tools.
CAPSL is parsed and translated to CIL, and there are dif-
ferent translators, called connectors, from CIL to whatever
form is required for each tool. The translator from CAPSL
to CIL can deal with the universal aspects of input language
processing, such as parsing, type checking, and unraveling
a message-list protocol description into the underlying sep-
arate processes. Connectors deal with the semantics and
requirements of individual tools. This overall plan is sum-
marized in diagram shown on Fig. 2.

Fig. 2. CAPSL translation.
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An overview of the CAPSL and CIL environment was given
in [11]. The reference report specifying CAPSL is [13], and
there is also a web site with CAPSL information [25].

2. CAPSL overview

The acronym “CAPSL” stands for “Common Authentica-
tion Protocol Specification Language.” A CAPSL specifi-
cation is made up of three kinds of modules: TYPESPEC,
PROTOCOL, and ENVIRONMENT specifications, usually
in that order. Typespecs declare cryptographic operators,
hash functions, and other operations axiomatically as ab-
stract data types. Specifications for the most popular op-
erators, representing the abstract features of cryptosystems
like DES, RSA, and Diffie-Hellman, are included in a stan-
dard “prelude” file of typespecs supplied with the CAPSL
environment.
Environment specifications are optional; they are used
to set up particular network scenarios for the benefit of
search tools. We will not discuss environment specifications
here.
The core of a protocol specification is a message section
containing an Alice-and-Bob specification of the proto-
col.
An important part of the protocol specification is a state-
ment of its security objectives. There is a GOALS sec-
tion for this purpose, which may include secrecy and au-
thentication statements. Initial assumptions are also speci-
fied formally and placed in a section prior to the message
list.
Here is a protocol specification for NSPK:

PROTOCOL NSPK;
VARIABLES

A,B: PKUser;
Na,Nb: Nonce, CRYPTO;

ASSUMPTIONS
HOLDS A: B;

MESSAGES
1. A -> B: {A,Na}pk(B);
2. B -> A: {Na,Nb}pk(A);
3. A -> B: {Nb}pk(B);

GOALS
SECRET Na
SECRET Nb;
PRECEDES A: B | Na;
PRECEDES B: A | Nb;

END;

Note that declarations may contain property keywords, such
as CRYPTO, having some semantic significance. CRYPTO
for the variables Na and Nb means that their values are
not guessable (by an attacker). This is significant during
analysis, for the attacker model. A variable of type Nonce is
assumed by default to have the property FRESH, meaning
that values chosen for it have not been used before by the
same principal. A nonce is not necessarily CRYPTO, since
sequence numbers, i.e., numbers that are increased by one,
are FRESH and guessable.

The HOLDS declaration states that the process executing
on behalf of A has been initialized with the principal B cho-
sen as the responder. If the HOLDS assumption is omitted,
the CAPSL translator will complain that the sender of the
first message does not know the receiver address. By con-
vention, principals always hold themselves.

2.1. Key lookup

Note that the public keys PA and PB in NSPK have been re-
placed by function calls pk(A) and pk(B). While A could
have been initialized with PB, B needs a table lookup, rep-
resented by pk(A), to find PA, since B does not know in
advance who will request a connection.
Declaration of key lookup functions is one of the main
uses of the abstract type specifications in CAPSL. Such
functions are defined for different subtypes of Principal.
They embody the kind of long-term key memory a certain
kind of principal is assumed to have.
The function pk is defined on principals of type PKUser,
assumed to have such a table. Principals of type PKUser
also have a function sk to look up their own corresponding
private key. Thus, there is a typespec as follows:

TYPESPEC PPK;
TYPES PKUser: Principal;
FUNCTIONS

sk(PKUser): Pkey, PRIVATE;
pk(PKUser): Pkey;

VARIABLES
X: Field;
P: PKUser;

AXIOMS
{{X}sk(P)}pk(P) = X;
{{X}pk(P)}sk(P) = X;
INVERT {X}pk(P): X | sk(P);
INVERT {X}sk(P): X | pk(P);

END;

The typespec name, in this case PPK, is distinct from
the name of the type or types declared in it. Typespec
names are used in IMPORTS statements, when necessary.
Presently the CAPSL translator does not import typespecs
by name; it simply accepts whatever typespecs are provided
in its input stream, in order, and requires that a symbol be
declared before it is used. Declarations are global, includ-
ing those of dummy variables used in axioms.
Functions in type specifications are public by default, mean-
ing that both honest principals and the attacker may com-
pute them. However, some functions, like sk, deliver long-
term secrets such as private keys. These are declared using
the keyword “PRIVATE”. The first argument of such func-
tions identifies the principal privileged to hold the function
value.
There are two kinds of axioms: equational axioms and
INVERT axioms. Equational axioms specify the declared
functions for the use of theorem provers or term rewriting
systems, and also for the use of human readers of the speci-
fication, to determine whether the declared abstractions are
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suitable as a model for the “real” functions in the protocol.
The INVERT axioms are used by the CAPSL translator to
determine implementability of a protocol, which will be
discussed later.
There are other typespecs in the prelude for principals hold-
ing long-term shared symmetric keys, and still others can
be added by CAPSL users as needed.

2.2. Goals

Presently two kinds of security goals are supported: SE-
CRET and PRECEDES. A goal SECRET K; means that
protocol variable K should not be obtainable by the at-
tacker (unless the attacker is acting overtly as one of the
legitimate principals in a particular protocol session).
A goal PRECEDES A: B | K, N; means that when a prin-
cipal B reaches the final state of a protocol session, there
must be some session of principal A (not necessarily in its
final state) that agrees with B on the values of A;B;K and
N (or any other variables listed after the j, if any). This
security goal is meant to represent a fairly general kind of
authentication, and it corresponds roughly to formalizations
of authentication used by Schneider [34] and Lowe [20].

2.3. Concatenation

A sequence of fields may be concatenated into a single
longer field, usually for the purpose of having them en-
crypted together. Curly brackets f , g and square brackets
[ , ] denote different kinds of concatenation, which are rep-
resented by different functions, cat and con respectively.
cat is associative and con is not.
Both cat and con are binary. Longer concatenations are
parsed under the assumption that right association is in-
tended. Thus, [a;b;c] is parsed as [a; [b;c]].
Associativity of concatenation matters when we try to de-
compose a concatenation. In particular, the first component
of a cat term is extracted by first, and that of a con term
by head. It is easy to characterize head with the axiom
head(con(X,Y)) = X. But first(cat(X;Y)) could be
either X or first(X), depending on whether or not X is
itself a cat term.
To deal with this question we differentiate between atomic
fields, which form the subtype Atom of Field, and those
fields that are expressible as a concatenation of smaller
fields. The first component of a cat concatenation is the
first atomic component. Most types are subtypes of Atom.
Another feature of associative concatenation is that a mes-
sage A -> B: {C,D}K can be received by B only if either
(1) C is held by B or (2) C is atomic. If C is neither held
or atomic, B cannot parse the concatenation from left to
right – it won’t know where C stops and D begins.

2.4. Other language features

CAPSL has additional syntax to make it more expressive,
more concise, and to help resolve ambiguity.

Variables can be introduced to precompute expressions.
Suppose, for example, a certain symmetric key K is com-
puted as a hash of other variable values. We can write an
equation that looks like an assignment statement:

K = sha(fNa,A,Kabg);

This equation can be placed in the MESSAGES section be-
fore a message containing the first use of K. Alternatively,
it can be placed in a prior DENOTES section, like a dec-
laration, and it will automatically be used when needed.
(This is done with a preprocessing step in the CAPSL trans-
lator.) If K is computed in two different ways by different
principals (this might happen, for example, when comput-
ing a Diffie-Hellman shared key), each DENOTES equation
can be labelled by the principal allowed to use it, e.g.,

K = sha(fNa,A,Kabg):A;

Another useful feature is the % syntax introduced by Lowe
in Casper [20]. A message might be computed with an
expression by the sender, but handled by the receiver as
a black box. The sender of a term X%Y views it as X but
the receiver sees it as Y. Consider the statements:

A -> B: {X}pk(C)%Y;
B -> C: Y%{X}pk(C);

While A and C understand the message as an encryption,
B merely forwards it.
Message sections may also invoke a subprotocol (specified
separately as a protocol) using an INCLUDE statement, and
make tests using equations to either abort the protocol on
a failed test or to choose between IF-THEN branches.
It is one of the characteristics of CAPSL as a specifica-
tion language that protocol variables receive a value only
once, and are not changed after they have been initialized
or computed or received. This means that an equation like
K = sk(B); can be unambiguously identified as either an
assignment statement (if K is not defined but B is), a test
(if K and B are both defined), or a mistake.

3. The intermediate language CIL

The CAPSL intermediate language (CIL) is designed to
make the translation to tool-specific representations as easy
as possible. Fortunately, the protocol specifications re-
quired for most protocol analysis tools have considerable
structural similarity. They generally specify a protocol
with state-transition rules for communicating processes.
CIL uses multiset term rewriting rules that permit state
changes to be presented concisely, and in a way that closely
matches the requirements of analysis tools. This approach
was influenced by an analysis example using Maude, by
Denker, Meseguer, and Talcott, presented at a LICS ’98
workshop [14], and by Mitchell’s multiset rewriting (MSR)
formulation, presented at a Computer Aided Verification
workshop in 1998, and also later, in more detail, in [8].
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3.1. The MSR model

In the MSR model, the current global state of a network is
a multiset containing “facts” representing the current state
of some processes engaging in the protocol, and some mes-
sages in transit. The network is a multiset simply because
it is possible that many copies of the same process state or
message might be present simultaneously due to multiple
concurrent protocol sessions.
An MSR rule for a state transition in which A handles the
exchange

B -> A: {K}pk(A);
A -> B: {A,Na}K;

might have the abstract form:

Ai(A;B);M(fKgpk(A))�!

(9Na)Ai+1(A;B;K;Na);M(fA;NagK) :

Here, “A” is being used both to name a role in the protocol,
with states Ai , and as a dummy variable in the rule. The ar-
guments of a state fact are the variables (identified by their
positions rather than their names) held by the process. The
first argument is always the principal running the process.
Message facts are of the form M( ). The parameter of the
message fact holds the content of the message.
In this rule, A in state i decrypts the received message (on
the left), adds K to its memory list for the next state i+1,
generates a nonce Na, and replies with fAgK . The message
facts in this rule show only the content of a message, not
its source and destination “header.” By convention, facts
appearing on the left but not on the right are removed from
the multiset when the rule is executed.
The existential quantifier in the MSR rule has more than its
ordinary logical meaning: it asserts that any value chosen
for the variable is a fresh value. This is like a skolemiza-
tion step when a new constant is chosen to instantiate an
existentially quantified variable for proof purposes.
Note that two CAPSL messages have been used to pro-
duce a single MSR rule. We could have written two MSR
rules for A, one to receive the first message and one to
send the second, but then the two rules can be combined.
The CAPSL translator actually does this; it processes one
message at a time, producing receive-only and send-only
rules, and then combines compatible pairs in an optimiza-
tion step [12].

3.2. CIL vs. MSR

CIL is a variant of MSR. CIL represents state facts in the
form

state(roleA,i,terms(A,B))

and messages in the form

msg(B,A,ped(pk(A),K)).

Syntactically, these are simply function-term presentations
of an abstract syntax tree. Lower-case symbols are node
labels, usually function names, and upper-case symbols

are variables. Note that the functional representation of
fKgpk(A) is ped(pk(A),K), and that the CIL version of
a message does include the source and destination princi-
pals.
For the sake of readability, we will continue to use the MSR
rather than the CIL form of rules for subsequent explana-
tions.
Another difference between MSR and CIL is that the CIL
output of the CAPSL translator includes additional infor-
mation that is potentially useful for analysis tools, such as
a symbol table containing the type signatures of all variable
and function names.

3.3. Goals

Presently, goal declarations are translated more or less lit-
erally from the CAPSL form to the CIL form, for later
use by tool connectors. It is possible to do more, because
goals that are security invariants can be converted to MSR
and CIL rules that recognize insecure states of the mul-
tiset and trigger a “violation” fact. This approach is not
difficult to apply manually in a protocol-specific way, but
it is is not so easy to set up a general goal translation ap-
proach that works for all protocols, even when we restrict
the goals to the SECRET and PRECEDES goals in CAPSL.
We are investigating general ways to translate goals for fu-
ture implementation in the translator. In particular, we have
found that secrecy goals can be represented with the help
of “spell” facts and additional rules as described in [26].

3.4. Implementability

Suppose that a protocol has the messages

A -> B: fXgpk(A);
B -> A: X;

The transition rule for B could be generated mindlessly as:

B0(B);M(fXgpk(A))�! B1(B;X);M(X) :

One problem with this rule is that B is actually incapable
of decrypting the received message to obtain X. That is,
the protocol is unimplementable.
The CAPSL translator checks whether a protocol is im-
plementable. In doing so, it deduces what the receiver of
a message must do to accept the message, and it also deter-
mines whether the sender of a message has the necessary
data to construct the message.
Recall that in the MSR notation, a state fact Ai(y) has a se-
quence y of terms embodying the memory of the process.
In particular, y1 is the principal for which the process is
run. Most of the terms in y are associated implicitly with
protocol variables.
A term t is computable from y by A if

1) t 2 y (sometimes it is convenient to treat y as a set),
or

2) t = f (x) is a functional term whose arguments are
computable from y by A;
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and in the second case we check that if f is private, then
x1 = A.
Thus, sk(B) is computable by B from fBg but not by A 6= B.
A message M(t) can be sent from a state Ai(y) if t is
computable by y1 from y plus any nonces generated in the
state transition rule. If z is the sequence of those nonces,
the next state is Ai+1(y;z).
Receivability is more complicated. When a message is
encrypted, the receiver must also be able to decrypt it.
This is where the INVERT axioms for encryption and other
operations come in.
Consider a current state Ai(y) and let y1 = A. A message
term m is receivable if m is a variable, or m is computable
by A, or m= f (x) and for each xj , either xj is computable
by A or

1) INVERT f (x) : xj j w and

2) w is computable by A, and

3) xj is receivable.

In each instance of the last case, xj is learned by A, and
if the sequence of all learned terms is z, the next state is
Ai+1(y;z):
The definition above does not allow a message to be
receivable if some message fields must be learned be-
fore decrypting other fields. For example, the message
A -> B: K, fXgK; would not be receivable if K was not
already held by B. We can handle this message by rewrit-
ing it as a pair of messages, with content K and fXgK
respectively. In fact, this is unnecessary because CAPSL
uses a modified receivability algorithm that acts as though
such a rewriting had been done. Our algorithm does not
presently allow for fields to be sent in reverse order, e.g.,
A -> B: fXgK,K;.

3.5. Connectors

Connectors translate from CIL to some input representa-
tion needed by a protocol analysis tool. Connectors have
been written for PVS (SRI’s verification environment, used
for inductive protocol verification [28, 32], Maude [10],
Athena [24], and the NRL Protocol Analyzer. The con-
nectors we have written have been in Java, and make use
of common connector support classes for parsing CIL and
maintaining an internal tree-structured data representation.

4. Secure multicast

Protocols for secure group management are essential in
applications that are concerned with confidential authenti-
cated communication among coalition members, authenti-
cated group decisions, or the secure administration of group
membership and access control. A variety of new proto-
cols and frameworks have been designed to create multicast
groups on a network and support secure group communi-
cation (e.g., GDOI [3], GSAKMP [17]. Some existing key

exchange protocols for secure communication have been
extended to the group setting (e.g., Group Diffie-Hellman
GDH [35] and its authenticated form A-GDH [1].
There have been only a few results on the formal analysis of
group management protocols (e.g., Pereira and Quisquater
analyzed A-GDH [31] and Meadows discovered security
flaws in early versions of GDOI [23]. The analysis of
group management protocols poses new challenges for for-
mal analysis techniques. New language features and models
are necessary to appropriately capture the concepts of such
protocols. Moreover, analysis techniques and tools have to
be revised and extended.
Multicast CAPSL (MuCAPSL) is an extension of CAPSL
affecting all aspects of the environment, from the language
and underlying model to analysis techniques and tools.
MuCAPSL and its supporting tools are in an early stage
of development.

4.1. New MuCAPSL language features

MuCAPSL permits the specification of protocols for se-
cure multicast. The language includes features such as
a high-level organization of protocols into suites, a sep-
aration of roles for each agent within a protocol, group
attributes to capture modifiable persistent state information
of group members, and variable-length data structures such
as arrays and sequences that are being used as fields in mes-
sages or state variables of agents.
In a group setting an agent usually engages in a variety
of protocols: to initially set up the group, to distribute
new group keys, and to add or delete members. Protocols
that conceptually belong together are placed in a protocol
suite. Within a protocol suite several protocols, typespecs,
or environments can be specified. All declarations on the
top level of a protocol suite apply to all protocols within
the suite. We also refer to the protocols within a suite as
tasks. A typical suite has the form:

SUITE MyGroupMgmt;

TYPESPEC MyGroup;
TYPE MyGroupAgent: GroupMember;
...
END;

PROTOCOL KeyDist;
...
END KeyDist;

PROTOCOL AddMember;
...
End AddMember;

...

END MyGroupMgmt;

In the typespec MyGroup we define the type MyGroup-
Agent for group members of our example. This type is
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a subtype of the more general type GroupMember for spec-
ifying members of groups.
In a CAPSL typespec we can define principal subtypes and
associate immutable or long-term data with a principal by
declaring functions. Transient data of principals, associ-
ated with a session, is specified via protocol variables. In
MuCAPSL, group members store mutable, persistent data
in so-called attributes. Attributes are shared by different
sessions of protocols in a suite and persist between pro-
tocol sessions. They are specified in typespecs of group
members. There are two functions associated with a group
member that jointly serve as a unique identifier: owner
of type Principal to identify the associated principal (e.g.,
“Alice”), and gid of type Group to identify the associated
group (e.g., “Manager” or “Employee”). This way, a princi-
pal can be member of several groups. We introduce a new
type GroupMember as the default type for group members
in the following specification:

TYPESPEC GROUPMEMBER;
TYPE GroupMember;
FUNCTIONS

owner(GroupMember): Principal;
gid(GroupMember): Group;

END;

Note that we also introduced a type Group to capture group
identities. In a user-defined group member typespec, the
ranges of the functions may be overwritten to subtypes of
Principal and Group, respectively.
We will illustrate the use of type specifications for group
members using the following simple group attribute struc-
ture. Assume a group consisting of N members M1; :::MN
pairwise sharing long-term symmetric keys. We take ad-
vantage of the existing typespec for mutual symmetric key
nodes (MSKN) in the CAPSL prelude. It defines a subtype
Node of Principal and a function msk(Node;Node) with
range Skey. Within a group, members are identified by
position number (a natural number), which is a changeable
attribute due to members leaving the group or new members
joining. At any given time, the leader is the member with
position 1. Each member stores a short-term group key Kg,
addresses of all group members Mbs (defined as an array
type, a new parameterized type in the MuCAPSL prelude),
and current group size N. Here is the full typespec:

TYPESPEC MyGroup;
TYPE MyGroupAgent: GroupMember;
FUNCTIONS owner(MyGroupAgent): Node;
ATTRIBUTES(MyGroupAgent);

Pos: Nat;
Kg: Skey, CRYPTO;
Mbs: Array[Principal];
N: Nat;

END;

Attributes are associated with a group member. The type
of group member is specified after the ATTRIBUTES key-
word, and should be one of the types (if there are more than

one) declared in the typespec. Attributes are like protocol
variables because their values may change during execution
of protocols, but they are different because a group mem-
ber state always has values for all of the attributes, though
initially, some of them may have an explicit “undefined”
value.
We illustrate role-based task specifications of multicast pro-
tocols with the help of the key distribution protocol. The
leader of the group initiates the key distribution protocol
whenever a member has been added to or deleted from
the group. We distinguish two main roles in the key dis-
tribution: the role of the leader M1 and the role of other
members of the group Mi .
Figure 3 roughly illustrates the message flow of the agent
in role M1. M1 broadcasts the new group key to the en-
tire group (illustrated in Fig. 3 by the square around the
role Mi . A unicast message to a member in role Mi would
be depicted by leaving the square out). The member uses
a sequence field (denoted by < ::: >) that includes N�1
copies of the new group key, each encrypted with one of
the shared keys. The other group members acknowledge
the receipt of the group key by each sending a message
that contains their position and a nonce encrypted with the
group key. The leader collects all responses. We do not
specify a specific role from which the leader receives the
responses (the lower arrow is not connected to a sending
role). This is done intentionally since the leader is not able
to reliably check from the addresses who was sending the
message since those addresses are easy to fake. The iter-
ation is indicated by a square that contains the condition
i 2 2::N expressing that M1 receives messages of the form
i;fNcigKg until it has collected one for each i (possibly out
of order).

Fig. 3. Key distribution protocol – role M1.

The separation of roles is also reflected in the protocol
specifications. The following shows part of the key distri-
bution protocol, with two roles. The group member playing
a role is referred to by the variable implicitly declared in
the ROLE statement. The associated principal and group
could be derived from this variable via the functions owner
and gid:

PROTOCOL KeyDist;

ROLE M1: MyGroupAgent;
VARIABLES i: Nat, FREE;
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Nc: Array[Nonce];
ASSUMPTIONS Pos=1;

owner(M1)=Mbs(1);
MESSAGES

New Kg;
-> : <{Kg}msk(Mbs(1),Mbs(i))|i=2..N>;
FOR i IN 2..N DO

<- : i, {Nc(i)}Kg;
OD;

END;

ROLE Mi: MyGroupAgent;
ASSUMPTIONS Pos > 1;
MESSAGES ...
END;

END KeyDist;

Note that the above protocol specification does not refer
to the specific senders or receivers of multicast messages.
The sender is implicitly the principal playing the role, and
the receiver of a multicast message is implicitly the whole
group. Recipients of unicast messages can be specified.
The scope of protocol variables that are defined with the
attribute FREE is the statement in which the variable is
bound to a range of values. For instance, in the statement

FOR i IN 2..N DO
<- : i, {Nc(i)}Kg;

OD;

the scope of i is the FOR-loop. Agents do not store the
values of free variables in their protocol state or member
state.
Attributes of the principal playing the role, such as Kg,
can be modified within the protocol. For notational conve-
nience, we refer to attributes in the short form Kg instead of
the more comprehensive form Kg(M1), since we know that
the attributes are associated with M1. Note that we need
a “New” operator to generate new nonce values. Constructs
to express loops or other iterative behavior are necessary to
deal with dynamically changing group membership or the
need to combine responses from a multicast.
Language features that have not been presented in the cur-
rent example but have been identified as necessary in the
design of MuCAPSL include a syntactical distinction for as-
signment and tests of group attributes, new built-in crypto-
graphic operators such as a group version of Diffie-Hellman
encryption, secret sharing, and threshold encryption.

4.2. New MuCIL features

Hand in hand with the extension of the language goes the
extension of the underlying semantic model CIL. In MuCIL
new “customized” facts for group member states, protocol
states, and multicast messages are introduced. All facts
are boolean predicates defined in a functional way that as-
sert either the presence of a group member in the network
(member(:::)) or the existence of an agent in a specific state

of a protocol (state(:::)) or the presence of a multicast mes-
sage in the network (mmsg(:::)).
The group member state fact looks as follows:

member(owner,gid,terms(attributes))

The first parameter refers to the principal that is the member
of the group (owner), the second parameter identifies the
group (gid). The third parameter is the list of attributes that
is specified for the particular group agent. For the above de-
fined group member type MyGroupAgent, the group mem-
ber state fact is

member(M,G,terms(Pos,Kg,Mbs,N));

with variables of the following types: M : Principal, G :
Group, Pos: Nat, Kg : Skey, Mbs: Array(Principal), and
N : Nat.
The protocol state fact of CIL is also extended by a refer-
ence to the group identity. Moreover, since there may be
several protocols in a suite, the role identifier is composed
of the role variable name and the protocol identifier. Thus,
a state fact for the group member in role M1 of the key
distribution protocol looks as follows:

state(M1,G,roleM1KeyDist,i,terms(...));

with a variable M1 : Principal.
The multicast message fact mmsg(m) is simplified compared
to CIL since the only parameter it holds is the message con-
tent. This is motivated by the fact that sender and receiver
addresses in messages do not make a difference from the
viewpoint of security analysis since an active attacker can
always change addresses. Nevertheless, it may be useful
to have this information for purposes such as generating
prototypes and the like.
A typical (conditional) rewrite rule in MuCIL contains
a member state fact, a protocol state fact and a multicast
message fact on both sides. While MSR rules are normally
interpreted to delete the left-side facts from the multiset,
for MuCIL our convention is to retain message facts im-
plicitly (without repeating them on the right) since they are
usually multicast. This is not a real difference, because the
attacker can duplicate messages anyway.
The first action and the multicast message of role M1 in the
key distribution protocol are represented by the following
MuCIL statement:

member(M1,G,terms(1, ,Mbs,N)),

state(M1,G,roleM1KeyDist,0,terms()) �!

(9 Kg) member(M1,G,terms(1,Kg,Mbs,N)),

state(M1,G,roleM1KeyDist,1,terms());

mmsg(map(lambda(X,ped(msk(Mbs(1),X),Kg)),

proj(Mbs,2,N)))

We do not have a full MSR-style version of MuCIL, but
in the above rule we have used some symbols like �! for
readability that would not appear in the pure functional
form of MuCIL. The underscore in the member fact refers
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to a possibly undefined variable, and the actual MuCIL
would put in a new variable identifier of an extended type
that permits the undefined value.
The rule states that the position of the agent needs to
be 1, and the group size and the array variable Mbs that
holds the other member’s addresses need to be defined.
The higher-order map and lambda constructs are typical
functional language constructs as found, for example, in
ML [29]. lambda(x;u) denotes the function mapping x to
u, and map( f ; l) returns the list of all elements f (x), where
x ranges over the elements of l . The projection operator
proj and the lambda operator, in conjunction with the map
operator, allows us to define an array whose elements are
Kg encrypted with each member of the sequence of shared
keys.
An instance of a multiset of facts is depicted in Fig. 4.

Fig. 4. A multiset of facts.

4.3. Analysing multicast protocols – preliminary results

We have some preliminary experimentation results in us-
ing the Maude model checker for the group Diffie-Hellman
protocol (GDH) [35], an extension of the Diffie-Hellman
key agreement scheme to an arbitrary group size. The au-
thors of that paper suggest three different protocols that are
each optimized with respect to certain protocol complexity
such as number of rounds, number of messages, sizes of
messages, etc. We analyzed the key distribution protocol
GDH.2 as an example since it incorporates unicast mes-
sages addressed to a particular agent as well as multicast
messages addressed to the group.
The group key in GDH.2 is computed from contributions
of each group member. For this purpose, each agent has
a nonce Ni . The group key is the exponentiation base a
raised to the product of all nonces Πi=1::nNi of group mem-
bers. The exponentiation base is known to every agent,
whereas the individual nonces are secret to the particular

group members. In a message exchange, agents communi-
cate partial key values, that keep their secret and still allow
other group members to compute a shared group key.
Agents that engage in a GDH protocol are identified by
a natural number i. They also keep the current group size n.
In GDH.2 we distinguish three roles: M1;Mi ;Mn. M1 is the
role of the group member who initiates the key distribution.
This group member is characterized by the identification
number 1. The agent in role Mn is the “last” member of
the group, the one whose identification number equals the
group size. All other members are agents in role Mi .
Figure 5 illustrates the communication between group
members for a group of size 4. The agent in role M1
sends out an array consisting of the exponentiation base a
and aN1 to its neighbor M2 (an agent in role Mi ). Every
agent in role Mi receives such an array, multiplies each ar-
ray element with its own nonce as well as copies the last
array element of the received message in its outgoing mes-
sage. This way, the length of arrays sent between group
members always equals the identification number of the re-
ceiving agent. This “upflow” phase of GDH.2 consists of
unicast messages. Finally, the last group member receives
an array of length n from which it computes the group
key by raising the last array element to the power of Nn.
Moreover, Mn replies in a multicast to the group with an
array of partial key values (“downflow” phase) that include
its nonce Nn. The other group member can compute the
group key from this multicast message by raising the ap-
propriate array element to the power of their nonce.

Fig. 5. Overview: group Diffie-Hellman key distribution.

The intent of this protocol is that all group members share
a group key. We specified GDH.2 using MuCAPSL and
manually translated MuCAPSL into MuCIL. The MuCIL
representation was the basis for an analysis using the Maude
model checker. In order to deal with MuCIL representa-
tions we added arrays, lambda-expressions and undefined
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values support to the Maude model checker [10, 14]. The
Maude model checker has a strategy for state space explo-
ration that computes all possible runs of the protocol for
a given initial state. Since most protocols have an infinite
state space, Maude’s search strategy has a user-definable
parameter to limit the state space investigated. The strat-
egy searches for states that violate any of the defined goals.
In the case of GDH.2 we declared the following goal of
the protocol: all group members agree on the group key
after they have finished a run of the key distribution pro-
tocol.

We implemented a limited attacker that has the capacity of
misdelivery but does not reconstruct messages. In particu-
lar, it is possible that messages are delayed, not delivered or
delivered several times. We found a state where the leader
got the wrong group key. The attack can be generalized to
all group members. This is due to ambiguity in the format
of GDH.2 messages. The attack is illustrated in Fig. 6 (for
a three-member group).

Fig. 6. An attack for GDH.2.

GDH.2 as proposed in [35] does not specify whether group
members check the content of messages they receive. In
fact, in a correct protocol run, a group member cannot de-
cide from its local memory whether a received message
has the right content. In the attack the message that mem-
ber M1 sent out in the upflow, will be delivered to M1 in
the downflow. Assuming that the agents do not check the
content of the message, M1 computes the group key aN1 .
The other members receive and send messages as specified
in GDH.2 and therefore compute the group key aN1N2N3 .
Group member M1 has not only been tricked into accept-
ing a wrong group key, but also it uses a group key that is
known to the attacker. We would like to stress that GDH.2
was not designed to defeat an active attacker.

5. Conclusion

CAPSL, CIL and the translation between them are designed
to address important goals in cryptographic protocol spec-
ification for analysis purposes. With a common specifica-
tion language, it becomes possible to harness the combined
power of many tools for protocol analysis in a practical
way. The components of the CAPSL environment include
transportable software for translation of CAPSL to CIL,
and connectors to adapt CIL to the input languages of var-
ious analysis tools. This software is still under develop-
ment.
With CAPSL, one can express protocols in the simplest
accepted message-list form. Type specifications in CAPSL
and their use for introducing new operators and subtypes
bring an expanding class of protocols within reach. CAPSL
clarifies what used to be the most awkward aspect of ab-
stract protocol specification, the distinction between short-
term session data and the long-term data associated with
persistent entities. This was done by applying the general
type specification mechanism, together with the novel con-
cepts of private functions and invertibility axioms. In the
MSR model, session data is held in state memory.
We have begun to broaden the applicability of CAPSL fur-
ther with the extension to MuCAPSL for multicast pro-
tocols. Protocols that conceptually belong together are
grouped into protocol suites. Separation of roles within
a protocol was introduced to deal with the concurrent asyn-
chronous operation of protocol processes due to multi-
cast transmission and responses. Message handling within
groups is supported by new language constructs for itera-
tion and variable-length data structures.
MuCAPSL is built upon the concepts of CAPSL for type
specifications. We added attributes for mutable persistent
data. Sequence and array type specifications come along
with the new computational operators. On the semantic
level, MuCIL has group-member state memory to hold mu-
table persistent group state attributes. Another extension in
MuCIL is the role identifier that uniquely identifies the task
and protocol.
The intermediate languages CIL and MuCIL were cho-
sen with an eye toward a clear analysis-level modeling
semantics and a universal pattern-matching transition rule
style that lends itself both to model checking and induc-
tive proof techniques. We have developed techniques for
inductive protocol proof using PVS and model checking
using Maude. In our experiments, we have confirmed that
CIL output is a good match for the specification needs of
these tools. We are currently investigating security goals
for multicast protocols, and we are also developing analysis
techniques and tools for MuCAPSL.
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Paper Process calculi
and the verification of security protocols

Michele Boreale and Daniele Gorla

Abstract — Recently there has been much interest towards
using formal methods in the analysis of security protocols.
Some recent approaches take advantage of concepts and tech-
niques from the field of process calculi. Process calculi can
be given a formal yet simple semantics, which permits rigor-
ous definitions of such concepts as “attacker”, “secrecy” and
“authentication”. This feature has led to the development of
solid reasoning methods and verification techniques, a few of
which we outline in this paper.

Keywords — cryptographic protocols, Dolev-Yao model, obser-
vational equivalence, process calculi, spi calculus.

1. Introduction

Security protocols have become an essential ingredient of
communication infrastructures. When executed in a hostile
environment, these protocols may be subject to a number
of attacks, that can compromise the security of the data be-
ing exchanged over a network. An attacker might typically
learn a piece of information which is supposed to remain
secret, or it might fool an agent into accepting a compro-
mised key as authentic. Proving a protocol resistant to such
attacks is notoriously a difficult task. In the last decade,
formal methods have been successfully used to analyse se-
curity protocols, sometimes uncovering flaws in protocols
that were thought to be correct.
The BAN logic [12] was one of the first, partially success-
ful attempts at using formal methods in the field of security.
Later on, finite-state model checking has been extensively
used (see e.g. [21, 26]). Some recent developments of
formal methods stem from concepts well established in the
field of process calculi. In particular, Abadi and Gordon
have proposed the spi-calculus [3] by elaborating on Milner,
Parrow and Walker’s π-calculus [24], a process language
based on synchronous message passing. The spi-calculus
extends the π-calculus with cryptographic primitives, thus
allowing the description of security protocols as systems
of concurrent processes that can exchange encrypted data.
The main advantage of this approach is that process calculi
can be given formal yet simple semantics that permit rig-
orous definitions of such notions as “attacker”, “secrecy”
and “authentication”. Another distinguishing feature of the
π-calculus is its reliance on the powerful scoping constructs
of the π-calculus to get a clean formalization, at a linguistic
level, of such concepts as “nonce”, and “newly generated
key”. In a sense, the spi-calculus improves both the BAN
logic, which provides formal reasoning rules but not an
operational model, and finite-state methods, which provide

a precise operational model but not a convenient basis for
formal reasoning. These features have led to the develop-
ment of solid reasoning techniques and verification methods
(e.g. [4, 5, 7, 8, 10]), a few of which we will survey in this
paper.
In Section 2 we give a brief overview of the spi-calculus,
mainly concentrating on syntax and informal explanation
of its operators. Section 3 is devoted to presenting a sim-
plified version of the Kerberos protocol [20], which will
serve as a running example. While this small protocol is
well suited for illustrating the key ideas of the approaches
presented here, the reader should be warned that proofs for
more sophisticated, in particular multi-session, protocols
require a higher degree of ingenuity (see [3, 10]). In Sec-
tions 4 and 5 two formal semantics of the spi-calculus are
outlined: the first is based on observational equivalences,
the second is centered around the idea of trace analysis.
Based on these semantics, rigorous reasoning principles
and verification methods are described. Section 6 compares
the presented approaches, while Section 7 contains a few
concluding remarks and comparison with related work.

2. An outline of the spi-calculus

In this section, we intend to give an informal account of the
spi-calculus, by concentrating on syntax and intuitive ex-
planation. The reader is referred to [3, 10] for full technical
details.
There are several versions of the spi-calculus. In the rest
of this paper, we will consider a variant supporting shared-
key cryptography only. This limited language is sufficient
to illustrate the key ideas of the approach, while avoiding
many technicalities.
Syntax. The syntax of the language is summarized in
Table 1. A countable set N of names a;b: : : ;h;k; : : : ;
x;y;z: : : is assumed. Names can be used as variables, com-
munication channels, primitive data or keys: we do not
distinguish between these four kinds of objects (notation-
ally, we prefer letters h;k; : : : when we want to stress the
use of a name as a key). Messages are built via pairing
and shared-key encryption. In particular, fMgk represents
the ciphertext obtained by encrypting M under key k, using
a shared-key encryption system. An informal explanation
of the process operators might be the following:

� 0 is the process that does nothing;

� τ:P does one internal computation step (we do not
care precisely what), and then proceeds like P;

28



Process calculi and the verification of security protocols

� a(x):P waits for a message on channel a and then
binds it to variable x within P;

� ahMi:P sends message M on channel a and then be-
haves like P;

� [M =N]P behaves like P if the M equals N, otherwise
it is stuck;

� case M of fygk in P attempts decryption of M us-
ing k as a key: if the decryption succeeds, i.e. if
M = fM0gk for some M0, then M0 is bound to vari-
able y within P, otherwise the whole process is stuck;

� pair M of hx;yi in P attempts splitting M; if this is
possible, i.e. if M is a pair hM0;N0i, the two compo-
nents M0 and N0 are bound, respectively, to variables
x and y within P, otherwise the whole process is
stuck;

� (vb)P creates a new name b which is only known
to P;

� P+Q can behave either as P or Q: the choice may
be triggered either by the environment or by internal
computations of P or Q;

� PjQ is the parallel execution of P and Q;

� !P can be thought of as unboundedly many copies of
P running in parallel, i.e. as PjPjPj � � � .

Table 1
Syntax of the calculus

a;b: : : ;h;k; : : : ;x;y;z: : : namesN

M; N ::= a j hM; Ni j fMgk messagesM

P; Q ::= processesP
0 (null)
j τ:P (internal action)
j a(x):P (input pre f ix)
j ahMi:P (out put pre f ix)
j [M = N]P (match)
j case M of fygk in P (decryption)
j pair M of hx;yi in P (splitting)
j (vb)P (restriction)
j P+Q (choice)
j PjQ (parallel)
j ! P (replication)

For the sake of simplicity, we are not considering integer
data values present in [3], nor the general form of boolean
guard used in [10]. In the definition of this language there
are a few implicit assumptions on the underlying shared-key
encryption system. We try to make them explicit below:

1) a plaintext M encrypted under a key k can only be
decrypted using k; if the attacker does not know k,
he/she cannot guess or forge this key (perfect encryp-
tion);

2) the only way to produce a ciphertext that looks like
fMgk is to encrypt M under k;

3) there is enough redundancy in the structure of mes-
sages to tell whether a given ciphertext is correctly
decrypted with a given key.

The first assumption implies that we can say nothing
about attacks that exploit probabilistic or statistical anal-
ysis, which may arise in practice, as showed in [28]. In
fact, we are concentrating on high-level, logical properties
of protocols. The second assumption is an abstraction of
the small probability, for real cryptosystems, that different
hplaintext, keyi pairs collide onto the same ciphertext. The
third assumption is in practice implemented by attaching
a cryptographic checksum to every plaintext before encryp-
tion.
We fix now a few notational shorthands that will be used
in the remainder of the paper:

� a(x): � � � is a binder for x; case � of fygk in � � � is
a binder for y; pair � of hx; yi in � � � is a binder
for x and y and restriction (ν b) � � � is a binder for b.
We shall also say that x, y and b are bound names.
Bound names can be renamed to fresh names without
affecting the meaning of a process term. We shall
always assume that bound names are distinct from
each other and from the names that are not bound.

� Names that are not bound are free. We use the nota-
tion P(x) to emphasize that name x may occur free
(i.e. not in the scope of any binder for x) in P and, for
any message M, write P(M) to abbreviate P[M=x] i.e.
P with each free occurrence of x replaced by of M.
The set of free names of a process P will be written
as f n(P).

� [M = N;M0 = N0] stands for two consecu-
tive matchings [M = N][M0 = N0]. Simi-
larly, we shall use the shorthands (νa;b)P
for (νa)(νb)P and pair M of hx;y;zi in P for
pair M of hx; li in pair l of hy;zi in P. The tilde
symbol e� will be used to denote vectors of objects.

A small example illustrates the use of the calculus for de-
scribing cryptographic protocols.

Example. Consider the simple protocol where two princi-
pals A and B share a private key k. A wants to send B
a datum d encrypted under k, through a public channel c.
B accepts any message encrypted with k that is sent along c:

A! B : fdgk on channelc:

This informal notation can be translated into the spi-
calculus process P defined as follows:
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A def
= chfdgki :0

B def
= c(x) : case x of fygk in F(y)

P def
= (νk)(AjB):

A stops after outputing fdgk on c. B picks up any message
from c and then tries to decrypt it using k. If decryption
succeeds, the result is bound to variable y within F(y).
The latter is some expression describing the subsequent
behaviour of B, depending on the result of the decryption, y.
The whole protocol P is the parallel composition AjB, with
the restriction (νk) indicating that the key k is only known
to A and B.
On restricted names. The restriction operator plays a cru-
cial role in the spi-calculus. (νk)P makes the name k pri-
vate to P. This resembles declarations of local variables
in structured programming languages. There is one cru-
cial difference, however: in spi-calculus, a restricted name
can be exported outside its original scope, while remain-
ing distinct from every name of the recipient. As such,
the restriction operator is ideal for modelling those “fresh
unguessable quantities” (like random numbers) that are an
important ingredient of many cryptographic protocols. The
following equation, for instance, explains the creation of
a nonce n and its transmission from one principal to an-
other, along a private channel c:

(νc)
��

(νn) chni :A
�
j c(x) :B(x)

�
= τ :(νc; n)

�
AjB(n)

�
:

The symbol = above can be given a precise meaning
in terms of observational semantics, as we shall see in
Section 4. Informally, this equation says that the con-
sumption of complementary input and output prefixes�
c(x) : andchni :

�
gives rise to an internal communication

(represented by the τ: prefix) in which n is communicated.
This also causes the scope of the restriction (νn) to be ex-
tended so as to include B. The scope extension is capture-
avoiding, in the sense that n is automatically renamed if it
happens to clash with some name in B. This phenomenon
is called scope extrusion of name n.
A slightly more complicated equation holds when c is
a public, rather than private, channel. In this case, the
equation also explains the possible interaction of the two
principals with the external environment along c.

3. The BAN Kerberos protocol

We shall illustrate the techniques presented in later sections
on the version of the Kerberos protocol considered by Bur-
rows, Abadi and Needham in [12]. This section is devoted
to an informal presentation of this protocol.
Consider a system where two agents A (the initiator) and
B (the responder) share two long-term secret keys, kAS and
kBS respectively, with a server S. The protocol is designed
to set up a new secret session key kAB between A and B.
Informally, the protocol can be described as follows:

A�! S : A;B
S�! A :

�
T;kAB;B;fT;kAB;AgkBS

	
kAS

A�! B : fT;kAB;AgkBS
;fA;nAgkAB

B�! A : fnAgkAB
:

In the first message, A starts the protocol by simply com-
municating to S his intention to establish a new connection
with B. In the second message, Sgenerates a fresh key kAB
and inserts it into an appropriate certificate, which is sent
to A. The certificate uses a timestamp T , meant to assure A
and B about the freshness of the message: this is to counter
attacks based on replays of old messages. In the third mes-
sage, A extracts B’s part of the certificate

�
f� � �gkBS

�
and

forwards it to B, together with some challenge information
containing a new nonce nA. The fourth message is B’s re-
sponse to A’s challenge: the presence of nA is meant to
assure A he is really talking to B.
In the next two sections, relying on two different techniques,
we shall verify one session configuration of this protocol,
under the hypothesis that an old session key k

old
between A

and B has been compromised. We shall not consider the
multi-session case, which requires a more complex analysis.
For the sake of simplicity, we shall also suppose that the
protocol is always initiated by A and that the responder is
always B.

4. Observational equivalences

Following [3], a powerful way of expressing authentica-
tion properties of a security protocol P is to require that
P is equivalent to a process Q that, by definition, exhibits
the desired behaviour (e.g., Q never accepts non-authentic
messages). Secrecy as well can be expressed via this no-
tion of equivalence. For example, let P(d) be a process in
which a secret datum d is exchanged, properly encrypted,
along a public channel. A way of asserting that P(d) keeps
d secret is requiring that P(d) be equivalent to P(d0), for
every other d0. An appropriate notion of equivalence is
here may-testing [3, 9, 14]. Its intuition is precisely that no
external observer (which in the present setting can be read
as “attacker”) can notice any difference when, e.g., running
in parallel with P(d0) or P(d). Formally, we define an ob-
server as a process that is possibly capable of a distinct
“success” action ω ; the latter is used to signal that the ob-
served process has passed observer’s test. If one interprets
“passing a test” as “revealing a piece of information”, then
processes that may pass the same tests may potentially re-
veal the same information to external observers: as such,
they should be considered equivalent from a security point
of view. This also accounts for implicit information flow,
by which an observer might extract useful information from
the overall behaviour of a system.

In the definition below, R
ω

=) means that R can execute
zero or more internal computation steps, followed by an
ω–action.
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Definition 1 (may-testing). Two spi-calculus processes P
and Q are may-testing equivalent, written P ' Q, if for
every observer O, PjO

ω
=) iff Q jO

ω
=) .

A similar intuition is supported by other contextual equiv-
alences, like barbed equivalence [25]. While rigorous
and intuitive, the definitions of these equivalences suffer
from universal quantification over contexts (attackers), that
makes equivalence checking very hard. It is then important
to devise proof techniques that avoid such quantification.
Results in this direction are well-known for traditional pro-
cess calculi. For example, both in CCS [14] and in the
π-calculus [9], may-testing is easily proven to coincide with
trace equivalence, which requires that two equivalent pro-
cesses generate the same sequences of actions (I/O events).
Similarly, barbed equivalence is proved to coincide with
early bisimulation. The latter requires that each action of
one process be “simulated” by the other, and that the target
processes be still bisimilar. In this section we outline a way
of obtaining similar results in the case of the spi-calculus;
full details can be found in [10]. We then discuss a few
resulting reasoning rules and apply them to the Kerberos
protocol.

4.1. A labelled transition system for the spi-calculus

In non cryptographic calculi (like the π-calculus) processes
and observers share the same knowledge of names. This
means, in essence, that the external environment may en-
able any action that a process is willing to take. This is
not true anymore when moving to the spi-calculus. In fact,
consider the process P that sends a fresh name b encrypted
with a fresh key k and then executes P0. This is written
(ν b;k)chfbgki:P

0. When an observer receives fbgk, it does
not acquire automatically the knowledge of b, because k is
still secret. Thus, if P0 is willing to input something at b

(say P0 def
= b(x):P00), the environment cannot satisfy P0’s ex-

pectations. For this reason, execution traces à la π-calculus
fail to capture the interactive behaviour of processes.
This discrepancy leads us to make the concept of environ-
ment explicit, as a record of the knowledge of names and
keys that an external observer has acquired about a cer-
tain process. More precisely, we model an environment as
a mapping σ from a set of variables to a set of messages.
Intuitively, an environment is a set of locations named by
distinct variables, where an observer (usually an attacker)
will store information known. We want now to describe
how the environment is modified by the actions performed
by the process and how actions that the process can perform
are constrained by the environment. To this purpose, we in-
troduce an environment-sensitive labelled transition system
(written e.s.–lts in the sequel), whose states are configura-
tions σ .P, where σ is the current environment and P is
a process. Transitions between configurations represent in-
teractions between σ and P, and take the form

σ .P
µ

j��!
δ

σ 0 .P0 ;

where µ is the action of process P and δ is the comple-
mentary environmental action. More precisely, µ can be of
three forms: an internal action – τ – an input – aM – or an
output – (νeb)ahMi. The latter makes explicit the private
names eb that are being extruded. Accordingly, the envi-
ronmental action δ is a “no-action”, an output or an input.
Therefore, three kinds of transitions may arise:

1. The process performs an output and the environ-
ment an input. As a consequence, the environment’s
knowledge gets updated. For instance:

σ .P
(νeb)ahMi

j������!
z(x)

σ [M=x].P0 ;

where σ [M=x] is the update of σ with the new entry
[M=x], for a fresh variable x. Here, eb is the set of pri-
vate names the process extrudes. For the transition
to take place, channel a must belong to the knowl-
edge of σ , which in this case amounts to saying that
σ(z) = a.

2. The process performs an input and the environment
an output. Notice that messages from the environ-
ments cannot be arbitrary, but must be built via en-
cryption, decryption, pairing and projection, from the
messages recorded in σ , plus some fresh names the
environment can create. Thus, a transition might be:

σ .P
aM

j������!
(νeb)zhζ i

σ [eb=eb].P0:

Here, eb is the set of new names the environment has
just created and added to its knowledge, while ζ is
an expression describing how M has been built out
of σ and eb. This expression uses the variables in the
domain of σ . For example, if σ = [c=x1;

k=x2; : : : ]
and M = fcgk, then ζ might be fx1gx2

, indicating
that message M results from encrypting the x1–entry
using the x2–entry as a key. Again, a must belong to
the knowledge of σ , thus σ(z) = a.

3. The process performs an internal move and the envi-
ronment does nothing:

σ .P
τ

j��!
�

σ .P0:

Having introduced the e.s.-lts, we can define a new equiv-
alence on top of it. The equivalence should only re-
late configurations that exhibit equivalent environments.
Informally, two environments are equivalent if there is
no way of telling them apart by performing elementary op-
erations (like projection, decryption, comparison and so on)

on their entries. For instance, σ def
= [a=x;b=y;fagk=z] and σ 0 def

=
[a=x;b=y;fbgk=z] are equivalent, while σ [k=w] and σ 0[k=w]
are not, because k enables decryption of the z-entry, and
then comparing the obtained cleartext with the first two
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entries yields different results. A formalization of these
concepts can be found in [10]; for our purposes, this in-
formal explanation suffices. The taken point of view is
that two equivalent configurations should exhibit the same
environmental actions, no matter what the process actions
are. These consideration lead to the definition below. We
write j=) for the reflexive and transitive closure of

τ
j��!

�

(i.e., a sequence of zero or more
τ

j��!
�

transitions) and,

inductively, s
j==)

u
for j=)

µ
j��!

δ

s0

j==)
u0 when s= µ � s0 and

u= δ �u0. With this notation we have:

Definition 2 (e.s. trace equivalence). Let σ1 and σ2 be
equivalent environments. Given two processes P and Q, we
write ( σ1 ; σ2 ) ` P'tr Q if whenever σ1.P

s
j==)

u
σ 0

1.P0

then there are s0, σ 0
2 and Q0 such that σ2 .Q

s0

j==)
u

σ 0
2 .Q0

and σ 0
1 is equivalent to σ 0

2 , and symmetrically for σ2.Q.

This definition highlights a major difference between the
π-calculus and the spi-calculus. In the π-calculus “exact”
correspondence is required between actions of two equiva-
lent processes P and Q, in the sense that if P is capable of an
α-action, then Q must be capable of α too. On the contrary,
the presence of cryptography in the spi-calculus allows for
a “looser” correspondence. In fact, encrypting two different
messages with a secret key makes the two messages indis-
tinguishable for any external observer. Hence, for example,

the processes P
def
= (ν k)chfagki:0 and Q

def
= (ν k)chfbgki:0

are equivalent, even though they do not perform the same
(process) actions.
Trace equivalence avoids quantification over contexts and
only requires considering transitions of the e.s.-lts. Thus,
when compared to the contextual definition of may testing,
trace equivalence make reasoning on processes much easier.
The following theorem ensures that 'tr is a sound and
complete characterization of may-testing equivalence ' .
We denote by εV the environment that acts as the identity
on the set of names V.

Theorem 1. Let P and Q be spi-processes, and let
V = fn(P;Q). It holds that ( εV ; εV ) `P'tr Q iff P ' Q.

A similar result holds for barbed equivalence and an
environment-sensitive version of bisimulation.

4.2. Sound reasoning principles

Trace equivalence can be used to justify some rules for
syntax-driven reasoning, which are at the core of a sound
and complete proof system for the spi-calculus [11]. The
rules we are going to list are valid for both bisimulation
and trace equivalence. Thus, in what follows, we shall
generically write ( σ1 ; σ2 ) ` P = Q to mean that the
configurations σ1 . P and σ2 . Q are equivalent, without
specifying the actual equivalence.

Structural laws. Table 2 lists a few fundamental equa-
tions, mostly inherited from the π-calculus [23], that are
valid for any “reasonable” process equivalence. Most
of them have to do with “static” structure of processes.
Usually, the last three equations are not included in struc-

Table 2
Structural equivalence

P + 0� P P+ Q�Q + P
P + (Q + R)� (P + Q) + R

Pj0� P PjQ�Q jP
Pj (Q jR)� (P jQ) jR

Pj ! P� ! P

(ν b)0� 0
(ν a)(ν b)P� (ν b)(ν a)P
((ν a)P) jQ� (ν a)(P jQ) if a 62 fn(Q)

[M = M]P� P (ν n)[n= M]P� 0 if M 6= n

casefNgkof fygk inP� P[N=y]

pair hM1;M2i of hx;yi in P� P[M1=x;M2=y]

tural equivalence; we have included them here because they
are natural in a cryptographic setting. The least equivalence
relation over process terms that contains these equations is
denoted by � and called structural equivalence. One can
easily prove the following rule sound:

P�Q

( σ ; σ ) ` P= Q
.

In our example of Section 4.3 we shall make extensive use
of two laws derived from structural equivalence. The first
one is the so called extrusion law:

(EXTR)
k 62 fn(Q)

( σ ; σ ) ` ((ν k)P) jQ= (ν k)(P jQ)
:

It states that, if a restricted name k of P does not occur in
a process Q running in parallel with P, then the scope of
the restriction can be extended so as to include Q.

The second law we shall use is actually a pair of laws (that
we shall globally refer to as (MATCH)) can be derived
from the structural laws for the matching predicate [M =N].
In what follows, we call context a process C[ � ; : : : ; � ]
with n “holes” that can be filled with n terms, thus yielding
a proper process:
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(MATCH)

( σ ; σ ) ` C[ P + [M = M]Q ] = C[ P + Q ]

M is not a name bound by (ν n)C[ � ]

( σ ; σ ) ` (ν n)C[ P + [n= M]Q ] = (ν n)C[ P ]
:

Transitivity. We shall also widely use the obvious transi-
tivity rule:

(TRANS)

( σ1 ; σ2 ) ` P= Q ^ ( σ2 ; σ3 ) `Q= R

( σ1 ; σ3 ) ` P= R
:

Parallel composition. The spi-representation of a security
protocol is usually built up by putting in parallel a few sim-
ple spi-processes, corresponding to the principals involved
in the protocol. A desirable property of each process cal-
culus is that equivalence proofs can be done composition-
ally, i.e. by proving equivalences between subprocesses
and then combining together such partial results to get the
wanted claim. Unluckily, observational equivalences on the
of spi-calculus are not closed under some operators, notably
parallel composition. In particular, a naive law like

( σ1 ; σ2 ) ` P= Q ^ ( σ1 ; σ2 ) ` R= S

( σ1 ; σ2 ) ` PjR= Q jS

is not valid. This is due to the interplay between cryp-
tography and private names. As we have already shown
at the beginning of Subsection 4.1, a private name k can
be extruded and hence become free, without this implying
that k is learnt by any observer. As a consequence, we are
sometimes confronted with equivalences like: ( σ1 ; σ2 ) `
chfagki:P1 = chfbgki:P2 where both σ1 and σ2 know a, b
and c, but neither knows k. In general, this kind of equa-
tions are not preserved by parallel composition. For in-

stance, when putting R
def
= chki:0 in parallel to both sides

of the previous relation, the equivalence breaks down. The
reason is that R may provide an observer with the key k
to open fagk and fbgk, thus enabling a distinction between
these two messages. Similar problems arise from the out-
put prefix (see [11] for a general discussion about problems
arising with compositional techniques in the spi-calculus).
Fortunately, a more restrictive formulation does hold. Let
us denote by Rσ the result of replacing each name x oc-
curring free in R by σ(x). Then we have:

(PAR)
( σ1 ; σ2 ) ` P= Q

( σ1 ; σ2 ) ` PjRσ1 = Q jRσ2

if fn(R)� dom(σ1) = dom(σ2) :

The side condition reduces the set of processes that can be
composed with P and Q, by requiring that the composed
processes are consistent with the knowledge available to σ1

and σ2. In spite of this limitation, the rule allows for non
trivial forms of compositional reasoning, as shown in [11].

case elimination. A common situation for an agent in-
volved in a protocol is waiting for a message and then
trying to decrypt it using a key k. This is written as

P
def
= p(x):casexof fygk inP0. Now, suppose that, in some

configuration, P comes equipped with an environment

σ def
= σ 0[fbgk=w], such that neither k nor f�gk appears in σ 0.

Before P evolves, the only message of the form f�gk that σ
can produce is fbgk. In other words the only message P can
receive and then properly decrypt using k is fbgk. Thus the
behaviour of P in σ is equivalent to p(x): [x= fbgk]Q[b=y].
The rule below generalizes this reasoning. We use the
notation ∑n

i=1Pi to denote the process P1 + : : :+Pn (this
notation is well-defined since the non-deterministic choice
is associative).

(CASE)

( σ ; σ ) ` (νeh;k) ( C[ fM1gk; : : : ;fMngk ] j

D[ casexof fygk in Q ] ) =

(νeh;k) ( C[ fM1gk; : : : ;fMngk ] j

D[ ∑n
i=1[x= fMigk] Q[Mi=y] ])

If k does not occur in contexts C[ �; : : : ; � ] and D[ � ]
and 8 i = 1; : : : ;n C does not bind names in Mi .

4.3. The Kerberos example

Specification. For the sake of readability, we will use in the
sequel a few obvious notational shorthands. For example
a(hy;zi):P stands for a(x):pair x of hy;zi in P, a(fMgk):P
stands for a(x):casexof fygk in [y=M]P, and a(fM;Ngk):P
stands for a(x):casexof fygk in pair y of hz; ti in [z =
M; t = N]P.
Table 3 gives a high level specification of the protocol using
these abbreviations, while Table 4 gives its translation into
the syntax of Table 1. All bound names in K are assumed to
be distinct from one another and from the free names. Sub-
scripts should help reminding the expected value of each
input variable. For instance, the expected value for xcertB is
B’s certificate, i.e. fT;kAB;AgkBS

. Names A and B present
in K refer the identity of the principals involved; names inA
and reB are symbolic names that refer the processes associ-
ated to A and B respectively (i.e. the principal named A is
the initiator of the protocol, while the principal named B is
the responder). We decided to keep these names different
in order to better distinguish between the principals and the
code implementing them.
When starting the protocol execution, all the principals im-
plicitly synchronize on the current time T (clockhTi). This
is an approximation of what happens, as the spi-calculus
does not provide explicit timing constructs implementing
secure clock synchronization (a difficult task which may
require complex interactions). Note that reB checks the
presence of the timestamp T in the first received message
and rejects any message not containing T.
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Table 3
The Kerberos protocol in spi-calculus

inA
def
= cAShA;Bi: cAS(fT;xkAB

;B;xcertB
gkAS

):cABhxcertB
;fA;nAgxkAB

i:cAB(fnAgxkAB
):commitAhi:0

reB
def
= cAB(fT;ykAB

;AgkBS
;fA;ynA

gykAB
):cABhfynA

gykAB
i: commitBhi:0

S
def
= cAS(A;B):cAShfT;kAB;B;fT;kAB;AgkBS

gkAS
i:0

L
def
= losthfT

old
;k

old
;AgkBS

;k
old
i:0

C
def
= clockhTi:0

K
def
= (ν kAS;kBS)( L j (ν T)( C j ((ν nA)inA) j reBj ((ν kAB)S) ) )

Table 4
Full details of inA, reB and S for the Kerberos protocol

inA
def
= cAShA;Bi:cAS(x1):casex1of fx

0
1gkAS

in pair x01 of hxT ;xkAB
;xB;xcertB

i in

[xT = T;xB = B] cABhxcertB
;fA;nAgxkAB

i:cAB(x2): [x2 = fnAgxkAB
]commitAhi:0

reB
def
= cAB(y):pair y of hy1;y2i in casey1of fy

0
1gkBS

in pair y01 of hyT ;ykAB
;yAi in

[yT = T;yA = A] casey2of fy
0
2gykAB

in pair y02 of hy0A;y
0
nA
i in

[y0A = A]cABhfy
0
nA
gykAB
i:commitBhi:0

S
def
= cAS(z):pair z of hzA;zBi in [zA = A;zB = B]cAShfT;kAB;B;fT;kAB;AgkBS

gkAS
i:0

Outputs at channels commitA and commitB are used to signal
that inA and reB have completed successfully the protocol.
For readability, we have omitted the messages carried by
these two actions, which are irrelevant here. The lost-
output action accounts for the accidental loss of an old
session key k

old
and of the corresponding certificate for B,

fT
old

;k
old

;AgkBS
.

Intuitively, everything works well because the long term
keys kAS and kBS remain secret. Of course, if an intruder
could forge e.g. kBS, it would be possible for him to cre-
ate a new certificate (with the current timestamp but with
a non-authentic key) and it would be impossible for B to
detect the event. Note that the system is not specified so
as to guarantee that a commit will eventually be reached:
we are only interested in checking that no “wrong” commit
will ever happen.

Verification. We will consider authentication of the session
key: “B and A only accept the key kAB generated by S”.
Formally, we want to prove that

( εI ; εI ) ` K = Kaut,

where εI denotes the environment that acts like

the identity on the set of names I
def
= fn(K;Kaut) =

fclock; lost; cAS; cBS; cAB; commitA; commitB; A;
B; T

old
; k

old
g and Kaut, defined below, formalises the de-

sired protocol’s behaviour. inAaut and reBaut can commit
only upon receipt of the expected kAB generated by S; in

fact, note that Kaut is obtained from K’s definition by adding
the matchings [xkAB

= kAB] and [ykAB
= kAB] in inA and reB

respectively, upon reception of their certificates.

inAaut
def
= cAShA;Bi:cAS(fT;kAB;B;xcertB

gkAS
):

cABhxcertB
;fA;nAgkAB

i:cAB(fnAgkAB
):

commitAhi:0

reBaut
def
= cAB(fT;kAB;AgkBS

;fA;ynA
gkAB

):

cABhfynA
gkAB
i:commitBhi:0

Kaut
def
= (ν kAS;kBS;kAB)(

L j (ν T)( C j ((ν nA)inAaut) j

reBaut jS ) )

We will prove the desired equality by applying the laws of
Section 4.2. The proof consists of three steps:

(i) By (EXTR), ( εI ; εI ) ` K =
(ν kAS; kBS; kAB; nA; T)(L jC j inA jSj reB).
By (CASE) applied to case x1 of : : : in inA, then
by structural equivalence (axiom for pair splitting)
and finally by (TRANS), we obtain ( εI ; εI ) ` K =
(ν kAS; kBS; kAB; nA; T)(L jC j inA0 jSj reB), where

inA0 def
= cAShA;Bi:cAS(x1):

[x1 = fT;kAB;B;fT;kAB;AgkBS
gkAS

]

cABhfT;kAB;AgkBS
i:fA;nAgkAB

cAB(x2): [x2 = fnAgkAB
] commitAhi:0 :
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(By (MATCH), we have deleted the tautolog-
ical matchings [T = T;B = B]). We now
apply (CASE) to case y1 of : : : in reB
and similarly we obtain ( εI ; εI ) ` K =
(ν kAS; kBS; kAB; nA; T)(L jC j inA0 jSj reB1)

where

reB1
def
=

cAB(y):pair y of hy1;y2i in (
[y1 = fT;kAB;AgkBS

;T = T;A= A]

casey2of fy
0
2gkAB

in pair y02 of hy0A;y
0
nA
i in

[y0A = A] cABhfy
0
nA
gkAB
i:commitBhi:0 +

[y1 = fTold;kold;AgkBS
;T

old
= T;A= A]

casey2of fy
0
2gk

old

in pair y02 of hy0A;y
0
nA
i in

[y0A = A] cABhfy
0
nA
gk

old

i:commitBhi:0 )

By (MATCH), we can delete the tautological match-
ings [T =T;A=A] from the first summand and delete
the second summand (the latter is stuck because of
the failure of the matching between T and T

old
).

Hence, by (TRANS), we have

(εI ;εI ) ` K = (νkAS;kBS;kAB;nA;T)

(L jCj inA0 j reB0) (1)

where

reB0 def
= cAB(y):pair y of hy1;y2i in

[y1 = fT;kAB;AgkBS
]

casey2of fy
0
2gkAB

in

pair y02 of hy0A;y
0
nA
i in [y0A = A]

cABhfy
0
nA
gkAB
i:commitBhi:0:

(ii) Similarly, ( εI ; εI ) ` Kaut =
(ν kAS; kBS; kAB; nA; T)(L jC j inA0 jSj reBaut).
Then, applying (CASE) to case y1 of : : :
in reBaut, we obtain ( εI ; εI ) ` Kaut =
(ν kAS; kBS; kAB; nA; T)(L jC j inA0 jSj reB0

aut)

where

reB0
aut

def
=

cAB(y):pair y of hy1;y2i in (
[y1 = fT;kAB;AgkBS

;T = T;A= A]

[kAB = kAB] casey2of fy
0
2gkAB

in

pair y02 of hy0A;y
0
nA
i in [y0A = A]

cABhfy
0
nA
gkAB
i:commitBhi:0 +

[y1 = fTold;kold;AgkBS
;T

old
= T;A= A]

[k
old

= kAB] casey2of fy
0
2gk

old

in

pair y02 of hy0A;y
0
nA
i in [y0A = A]

cABhfy
0
nA
gk

old

i:commitBhi:0 )

Again by (MATCH), we can delete the tautological
matchings from the first summand and delete the sec-
ond one, obtaining

(εI ;εI ) ` Kaut = (νkAS;kBS;kAB;nA;T)

(L jCj inA0 jSj reB0) (2)

(iii) The right hand sides of (1) and (2) are the same.
Hence by (TRANS), we obtain the desired ( εI ; εI )`
K = Kaut.

Finally, notice that without the matching [yT = T] in reB’s
definition, the equivalence would be broken. In particular,
upon receipt of fT

old
;k

old
;AgkBS

, reB would perform a final

commitB, which reBaut cannot do. In essence, removing
the check [yT = T] would recreate the well-known attack
against the Needham-Schroeder protocol with symmetric
encryption (see e.g. [12]).

5. Trace analysis

We outline here a verification method that departs from
the concept of observational equivalence discussed in the
previous section. The method is based on analysing the
execution traces of a single process representing the proto-
col. Recall that a trace is a sequence of I/O events (actions)
executable by a given spi-calculus process. Roughly, a sen-
sible way of expressing authentication of A towards B, in
our version of Kerberos, is requiring that, in every trace
generated by K, B’s final input action is preceded by an
A’s output of the same message, i.e. B will only accept
messages originating from A (similarly for authentication
in the other direction).
Trace-based formalizations of authentication and secrecy
are generally less demanding than equivalence-based for-
mulations, but more amenable to automatic checking. We
will say more on pros and cons of the two approaches in
Section 6.
A crucial aspect of the trace analysis method is a notion of
symbolic execution [7] that avoids having to explicitly con-
sider the infinitely many traces generated by the protocol.
This form of state-explosion is related to the interaction of
each participant with the external environment. Symbolic
execution has been implemented as part of a prototype ver-
ification tool named STA (Symbolic Trace Analyzer) im-
plemented in ML [8].
In the rest of the section we will first outline the model
underlying trace analysis, then touch upon the method of
symbolic execution and finally re-consider the Kerberos ex-
ample in the light of trace analysis.

5.1. Overview of the model

The model underlying the trace analysis method is very
close in spirit to Dolev-Yao’s one [15]. Informally, agents
executing the protocol communicate through a network of
public channels that are under the control of an adversary,
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therefore there are no private, secure channels. Sending
a message just means handing the message to the adversary.
Conversely, receiving a message just means accepting any
message among those the adversary can produce. The ad-
versary records all messages that transit over the network,
and can produce a message by either replaying an old one,
or by combining old messages (e.g. by pairing, encryption
and decryption) and/or by generating fresh quantities.
Formally, a state of the system is a pair s.P, called con-
figuration: s is a trace of past I/O events (actions), and
represents the current adversary’s knowledge; P is a spi-
term, describing the intended behavior of honest partici-
pants. The set of all configurations is denoted by C . The
dynamics of configurations is given by a transition relation
�!� C �C , that describes elementary steps of computa-
tions. In Table 5 we report the rules defining the transition
relation, for a subset of the language introduced in Sec-
tion 2. In particular, since we are looking for an automatic

Table 5
Transition relation on configurations (�! )

(INP) s.a(x):P �! s�ahMi.P[M=x]

if s ` M and M is closed

(OUT) s.ahMi:P �! s�ahMi.P

(CASE) s. casefMgkof fygk inP �! s.P[M=y]

(SPLIT) s.pair hM;Ni of hx;yi in P �!
�! s.P[M=x; N=y]

(MATCH) s. [M = M]P �! s.P

(RES) s. (ν a)P �! s[a0

=a].P[a0

=a]

if a0 is fresh for s

(PAR)
s.P �! s0 .P0

s.PjQ �! s0 .P0 jQ

plus symmetric version of (PAR).

method, we have omitted replication, which would make
the problem undecidable (see e.g. [16]). Rules (INP)
and (OUT) concern sending and receiving messages, re-
spectively. Since sending a message just means handing
the message to the adversary, any output action ahMi fired
by a process is recorded in the adversary’s current knowl-
edge s (rule (OUT)). Conversely, receiving a message just
means accepting any message among those the adversary
can produce. Therefore, in rule (INP) the variable x can
be replaced by any message M non-deterministically chosen
among those the adversary can synthesize from its current
knowledge s. The synthesis of a message M from a set of

known messages S is formalized by a deduction relation ` .
Here is a sample of deduction rules defining ` (see [7]):

M 2 S

S` M

S` M S` k

S` fMgk

S` fMgk S` k

S` M

The other operational rules in Table 5 govern how a pro-
cess decrypts a message (caseMof fygk inA), splits a pair
(pair hM;Ni of hx;yi in A), compares two messages for
equality ([M = N]A), handles a new name ((ν a)P) and in-
terleaves execution of parallel threads (A jB).

It is worthwhile to point out that there is no need for an
explicit description of the adversary’s behavior, as the lat-
ter is wholly determined by its current knowledge – the
s in s.P – and by the deduction relation ` . This is some-
how in contrast with other proposals [21, 26], where the
adversary must be explicitly described, but it is comform
to [6, 18, 27].

Given a configuration s.P and a trace s0, we say that s.P
generates s0 if s.P �!� s0 .P0 for some P0 (�!� is the
reflexive and transitive closure of �! , i.e. zero or more
steps of �! ). We express properties of the protocol in
terms of the traces it generates. In particular, we focus on
correspondence assertions of the kind:

for every generated trace, if action β occurs in
the trace, then action α must have occurred at
some previous point in the trace,

that is concisely written as α  - β . More accurately, we
allow α and β to contain free variables, that may be instan-
tiated to ground values. Thus α  - β actually means that
every instance of β must be preceded by the correspond-
ing instance of α , for every generated trace. We write
s. P j= α  - β if the configuration s. P satisfies this re-
quirement. This kind of assertions is flexible enough to
express interesting secrecy and authentication properties.
As an example, the final step of many key-establishment
protocols consists in A’s sending a message of the form
fNgk to B, where N is some authentication information,
and k the newly established key. A typical property one
wants to verify is that any message encrypted with k that
is accepted by B at the final step should actually originate
from A (this ensures B he is really talking to A, and that k is
authentic). If we call �nal

A
and �nal

B
the labels attached

to A’s and B’s final action, respectively, then the property
might be expressed by �nal

A
hfxgki  - �nal

B
hfxgki, for x

a variable. The scheme also permits expressing secrecy
as a reachability property (in the style of [5, 18]): this is
further discussed in Section 6.
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5.2. Symbolic execution

When synthesizing new messages, the adversary can apply
operations like pairing, encryption and generation of fresh
names, an arbitrary number of times. Thus the set of mes-
sages the adversary can synthesize at any time is actually
infinite in general (i.e. if not empty). Any such message
can be non-deterministically chosen by the adversary and
sent to a participant willing to receive it; therefore every
model based on Dolev and Yao’s is in principle infinite.
Our model makes no exception: in rule (INP) the set of
M s.t. s ` M is always infinite, and this makes the model
infinitely-branching. This can be regarded as a state explo-
sion problem induced by message exchange.
To overcome this problem, the STA tool implements a ver-
ification method based on a notion of symbolic execution.
A new transition relation (written �!

S
, below) is intro-

duced in order to condense the infinitely many transitions
that arise from an input action (rule (INP) in Table 5) into
a single, symbolic transition. The received message is now
represented simply by a free variable, whose set of possi-
ble values is constrained as the execution proceeds. Tech-
nically, a constraint takes the form of most general unifier
(mgu), i.e., the most general substitution that makes two
expressions equal. The set of traces generated using the
symbolic transition relation constitutes the symbolic model
of the protocol. Differently from the standard model given
by �! , the symbolic model is finite, because each input
action just gives rise to one symbolic transition and agents
cannot loop.
For a flavor of how symbolic execution works, let us
consider an example focusing on shared-key encryption.
Suppose that agent P, after receiving a message, tries
decrypting this message using key k; if this succeeds
and y is the result, the agent checks whether y equals
b and, if so, proceeds like P0. This is written as

P
def
= a(x):casexof fygk in [y= b]P0, for y fresh. Let us ex-

plain how the symbolic execution proceeds, starting from
the initial configuration ε . P. After the first input step,
in the second step the decryption casexof fygk in � � � is re-
solved by unifying x and fygk, which results in the substi-
tution [fygk=x]. In the third step, the equality test [y= b] is
in turn resolved by unifying y and b, that results in [b=y].
Formally,

ε .P �!
S

ahxi. casexof fygk in [y= b]P0

�!
S

ahfygki. [y= b]P0[fygk=x]

�!
S

ahfbgki.P0[fygk=x][b=y]:

An important point is that symbolic execution actually ig-
nores the deduction relation ` and thus may give rise to
“inconsistent” symbolic traces. These inconsistencies can
be detected and discovered via a refinement procedure de-
scribed in [7].
The verification method based on symbolic execution is
proven sound and complete w.r.t. the standard model, in
the sense that every consistent attack detected in the sym-
bolic model (relation �!

S
) corresponds to some attack in

the standard model (relation �! ), and vice-versa. In other

words, the symbolic model captures all and only the attacks
of the standard model. For instance, the method detects
type-dependent attacks, which usually escape finite-state
analysis, e.g. [22]. In this kind of attacks, the adversary
cheats on the type of some messages, e.g. by inserting
a nonce where a key is expected according to the protocol
description.

5.3. The Kerberos example

We illustrate the trace analysis method and the use of the
automatic tool STA on the simplified Kerberos protocol
of Section 3. The tool follows the syntax and semantics
of the formal model, with a few minor differences. E.g.,
action prefixing is written >>, parallel composition is writ-
ten ||, restriction is written new-in, while 0 is written
stop. Output actions are written as a!M, while input ac-
tions are written as a?M. Note that M can be a generic mes-
sage pattern: this means receiving any adversary-generated
message whose form matches M. To this purpose, we distin-
guish explicitly between names and variables (the latters, by
convention, start by x, y, : : : ). Finally, with <-- we mean
the predicate  - and with [] @ K the configuration ε .K.
What follows is the complete STA script defining one ses-
sion of Kerberos, and the desired authentication properties.
Since all channels are public and controlled by the environ-
ment, we have made all channel names distinct and used
them as references for process actions. Also, we need not
make commit actions explicit now, thus we have dropped
them.
Conf is the initial configuration of the protocol, composed
by an empty list of actions and by K while AuthKey,
AuthAtoB and AuthBtoA represent the properties we want
to check of this configuration. AuthKey states that any
message accepted by A at a2 should originate from S: this
implies the adversary cannot fool A into accepting a key
different from kAB. Property AuthAtoB states that any mes-
sage accepted by B at b1 should originate from A at a3.
AuthBtoA can be explained similarly. The three properties
together guarantee that A and B always talk to each other,
and that they agree on the exchanged data (in particular, on
the established key), which are authentic.
If we ask STA to check any of the three properties listed
above, we get this answer:

> val it = "No attack was found, 61
symbolic configurations reached."

: string
which means that STA has explored the whole symbolic
state-space of the protocol, consisting of 61 configurations,
without finding any trace violating the property (this explo-
ration takes STA a fraction of a second). Thus there are no
attacks on this configuration of the protocol.
Suppose now we modify B so that it omits the check on
the freshness of T , i.e. we re-define
val reB=b1?(ft,ykAB,AgkBS,fA,ynAgKAB) >>

b2!fynAgykAB >> stop;
where we have replaced the timestamp T by an arbitrary
variable t in b1. STA finds an attack on the property
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val inA = nA new-in ( a1!(A,B) >> a2?fT,xkAB,B,xCertBgKAS >>
a3!(xCertB, fA,nAgxkAB) >> a4?fnAgxkAB >> stop );

val S = kAB new-in ( s1?(A,B) >>
s2!fT,kAB,B,fT,kAB,AgkBSgkAS >> stop);

val reB = b1?(fT,ykAB,AgkBS,fA,ynAgykAB) >>
b2!fynAgykAB >> stop;

val K = kAS new-in kBS new-in ( lost!(kOld,fTOld,kOld,AgKBS)>>stop ||
T new-in ( clock!T >> stop || inA || reB || S ) );

val Conf = ( [] @ K );
val AuthKey = (s2!t <-- a2?t);
val AuthAtoB = (a3!u <-- b1?u);
val AuthBtoA = (b2!w <-- a4?w);

AuthAtoB. The attack is reported under the form of a trace
violating the property:

> val it = "An attack was found:
lost!(kOld,fTOld,kOld,AgkBS).
clock!T. a1!(A,B).
b1?(fTOld,kOld,AgkBS1,fA,ynAgkOld)

4 symbolic configurations
reached." : string

The attack is based on the adversary’s replaying the old,
compromised key kOld and the corresponding certificate
fTOld,kOld,AgkBS acquired thanks to the lost action.
Note that the trace contains a free variable ynA: it can take
on any value which is known to the attacker.

6. A comparison of two methods

An important problem left open by current research is that
of establishing a precise relationship between the notions
of authentication and secrecy conveyed by the two models
outlined in the previous sections.
The equivalence-based formalization is seemingly more de-
manding than the trace-based one. In fact, the former takes
into account the overall behaviour of the protocol – includ-
ing I/O traffic – while the latter takes into account only
correspondence between single actions, or exposure of se-
cret data items. Surprisingly, the two notions are formally
incomparable: we show below that neither is stronger than
the other. Thus, adopting one notion or the other is not
a matter of relative strength. We shall confine our discus-
sion to secrecy, but we feel that similar arguments apply
in the case of authentication. First of all, let us state more
precisely the notions of secrecy we are interested in.
Definition 3 (two notions of secrecy). Let P(x) be a spi-
calculus process. We say that:

� P(x) keeps x E-secret if for every x0: P(x) ' P(x0);

� P(x) keeps x T-secret if there is no configuration
s0 .P0 s.t. ε .P(x) �!� s0 .P0 and s0 ` x.

Now, consider the process P(x)
def
= (ν k)(a(y):[y =

x]bhfxgki:0. The process P(x) keeps x T-secret (by in-

spection), but not E-secret. In fact, consider the ob-

server O
def
= ahxi:b(z):ω :0: we have P(x) jO

ω
=) , but not

P(x0) jO
ω

=) , hence P(x) 6' P(x0) for x0 6= x.

On the other hand, consider Q(x)
def
= a(y):([y =

x]bhxi:0 j !bhyi:0). Clearly, Q(x) does not keep x T-secret.
However, Q(x) and Q(x0) are trace-equivalent, hence test-
ing equivalent, for any x0; this is a consequence of the fact
that bhxi:0 j !bhxi:0�!bhxi:0.
The above examples show that E-secrecy does not imply
T-secrecy, and, conversely, that T-secrecy does not imply
E-secrecy.

7. Concluding remarks and related work

We have outlined some recent approaches to the analysis of
security protocols, centered around concepts derived from
the field of process calculi, such as observational semantics
and symbolic transition systems.
Early work on reasoning methods for the spi-calculus was
presented in [4], where framed bisimulation was introduced
as a proof technique, though incomplete, for reasoning on
contextual equivalences. The environment sensitive tran-
sition system presented here was introduced in [10], and
based on that, the complete characterizations of contextual
semantics discussed in Section 4 were obtained. Some of
the reasoning principles used in this paper were introduced
there. A sound and complete proof system is discussed
in [11].
Concerning trace analysis, [7] develops the theory underly-
ing the verification tool STA, while [8] presents verification
examples and compares the results to those obtained using
finite-state methods. Initial work on symbolic analysis is
due to Huima [19]. Symbolic techniques are also exploited
in [5, 13, 29], but the algorithms they use are quite different
from ours.
Another possible approach consists in deriving properties
via type systems: example of these techniques are the type
systems in [1, 2] for secrecy and in [17] for authentication.
When compared to more traditional methods – like CSP-
based model checking [21, 26] – major benefits of the
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equivalence-based approach seem to be a host of syntax-
driven reasoning principles and a fully satisfactory formal-
ization of many important properties, including implicit in-
formation flow (that may arise due, e.g., to traffic analysis).
On the other hand, the equivalence-based method lacks at
present automatic verification techniques. Symbolic trace
analysis appears to be closer in spirit to model checking,
but does not suffer from the state-explosion problems of
model checking, which requires considering approximate
models, even when the number of protocol sessions is
bounded. Moreover, finite-state model checking has proven
very effective in practice to find bugs in security proto-
cols, e.g. [22]. Analysis of real-life case-studies could tell
whether the approaches derived from the spi-calculus may
represent a valid alternative to the established techniques.
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Paper Asymmetric cryptography
and practical security

David Pointcheval

Abstract — Since the appearance of public-key cryptogra-
phy in Diffie-Hellman seminal paper, many schemes have been
proposed, but many have been broken. Indeed, for many peo-
ple, the simple fact that a cryptographic algorithm withstands
cryptanalytic attacks for several years is considered as a kind
of validation. But some schemes took a long time before being
widely studied, and maybe thereafter being broken. A much
more convincing line of research has tried to provide “prov-
able” security for cryptographic protocols, in a complexity the-
ory sense: if one can break the cryptographic protocol, one
can efficiently solve the underlying problem. Unfortunately,
very few practical schemes can be proven in this so-called
“standard model” because such a security level rarely meets
with efficiency. A convenient but recent way to achieve some
kind of validation of efficient schemes has been to identify
some concrete cryptographic objects with ideal random ones:
hash functions are considered as behaving like random func-
tions, in the so-called “random oracle model”, block ciphers
are assumed to provide perfectly independent and random
permutations for each key in the “ideal cipher model”, and
groups are used as black-box groups in the “generic model”.
In this paper, we focus on practical asymmetric protocols to-
gether with their “reductionist” security proofs. We cover
the two main goals that public-key cryptography is devoted to
solve: authentication with digital signatures, and confidential-
ity with public-key encryption schemes.

Keywords — cryptography, digital signatures, public-key en-
cryption, provable security, random oracle model.

1. Introduction

1.1. Motivation

Since the beginning of public-key cryptography, with the
seminal Diffie-Hellman paper [24], many suitable algorith-
mic problems for cryptography have been proposed (e.g.
one-way – possibly trapdoor – functions) and many cryp-
tographic schemes have been designed, together with more
or less heuristic proofs of their security relative to the in-
tractability of these problems (namely from the number
theory, such as the integer factorization, RSA [69], the dis-
crete logarithm [26] and the Diffie-Hellman [24] problems,
or from the complexity theory with some N P-complete
problems, such as the knapsack [20] problem or the decod-
ing problem of random linear codes [49]). However, most
of those schemes have thereafter been broken.
The simple fact that a cryptographic algorithm withstands
cryptanalytic attacks for several years is often considered
as a kind of validation procedure, but some schemes take
a long time before being broken. The best example is cer-

tainly the Chor-Rivest cryptosystem [20, 47], based on the
knapsack problem, which took more than 10 years to be
totally broken [80], whereas before this last attack it was
believed to be very hard, since all the classical techniques
against the knapsack problems, such as LLL [46], had failed
because of the high density of the involved instances. With
this example, but also many others, the lack of attacks at
some time should never be considered as a security valida-
tion of the proposal.

1.2. Provable security and practical security

A completely different paradigm is provided by the concept
of “provable” security. A significant line of research has
tried to provide proofs in the framework of complexity the-
ory (a.k.a. “reductionist” security proofs [4]): the proofs
provide reductions from a well-studied problem (RSA or
the discrete logarithm) to an attack against a cryptographic
protocol. At the beginning, people just tried to define the
security notions required by actual cryptographic schemes,
and then to design protocols which achieve these notions.
The techniques were directly derived from the complex-
ity theory, providing polynomial reductions. However, their
aim was essentially theoretical, and thus they were try-
ing to minimize the required assumptions on the prim-
itives (one-way functions or permutations, possibly trap-
door, etc.) [33, 35, 52, 67]. Therefore, they just needed to
exhibit polynomial reductions from the basic assumption
on the primitive into an attack of the security notion, in an
asymptotic way.
However, such a result has no practical impact on actual
security. Indeed, even with a polynomial reduction, one
may be able to break the cryptographic protocol within
few hours, whereas the reduction just leads to an algo-
rithm against the underlying problem which requires many
years. Therefore, those reductions only prove the security
when very huge (and thus maybe unpractical) parameters
are used, under the assumption that no polynomial time
algorithm exists to solve the underlying problem.
For a few years, more efficient reductions were expected,
under the denominations of either “exact security” [10] or
“concrete security” [57], which provide more practical se-
curity results. The perfect situation is reached when one
manages to prove that, from an attack, one can describe an
algorithm against the underlying problem, with almost the
same success probability within almost the same amount
of time. We have then achieved “practical security”.
Unfortunately, in many cases, provable security is at the
cost of an important loss in terms of efficiency for the

41



David Pointcheval

cryptographic protocol. Thus some models have been pro-
posed, trying to deal with the security of efficient schemes:
some concrete objects are identified with ideal (or black-
box) ones.
For example, it is by now usual to identify hash functions
with ideal random functions, in the so-called “random ora-
cle model”, informally introduced by Fiat and Shamir [27],
and formalized by Bellare and Rogaway [8]. Similarly,
block ciphers are identified with families of truly random
permutations in the “ideal cipher model” [7]. A few years
ago, another kind of idealization was introduced in cryp-
tography, the black-box group [53, 77], where the group
operation is defined by a black-box: a new element neces-
sarily comes from the addition (or the subtraction) of two
already known elements. It is by now called the “generic
model”. Recent works [17, 73] even use many models to-
gether to provide some new validations.

1.3. Outline of the paper

In the next section, we explain and motivate more about
exact security proofs, and we introduce the notion of the
weaker security analyses, the security arguments (in an
ideal model). Then, we review the formalism of the most
important asymmetric primitives: signatures and public-
key encryption schemes. For both, we provide some ex-
amples, with some security analyses in the “reductionist”
sense.

2. Security proofs and security
arguments

2.1. Basic tools

For asymmetric cryptography, and symmetric cryptography
as well, no security can be unconditionally guaranteed, ex-
cept with the one-time pad [75, 81], an unpractical symmet-
ric encryption method. Therefore, for any cryptographic
protocol, security relies on a computational assumption:
the existence of one-way functions, or permutations, pos-
sibly trapdoor. A one-way function is a function f which
anyone can easily compute, but given y= f (x) it is com-
putationally intractable to recover x (or any preimage of y).
A one-way permutation is a bijective one-way function.
For encryption, one would like the inversion to be possible
for the recipient only: a trapdoor one-way permutation is
a one-way permutation for which a secret information (the
trapdoor) helps to invert the function on any point.
Given such objects, and thus computational assumptions,
we would like that security only relies on them. The only
way to formally prove such a fact is by showing that an
attacker against the cryptographic protocol can be used as
a sub-part in an algorithm that can break the basic compu-
tational assumption.

2.2. “Reductionist” security proofs

In complexity theory, such an algorithm which uses the
attacker as a sub-part in a global algorithm is called a re-
duction. If this reduction is polynomial, we can say that the
attack of the cryptographic protocol is at least as hard as
inverting the function: if one has a polynomial algorithm,
a.k.a. efficient algorithm, to solve the latter problem, one
can polynomially solve the former one, and thus efficiently
as well.
Therefore, in order to prove the security of a cryptographic
protocol, one first need to make precise the security notion
one wants the protocol to achieve: which adversary’s goal
one wants to be intractable, under which kind of attack.
At the beginning of the 1980’s, such security notions have
been defined for encryption [33] and signature [35, 36], and
provably secure schemes have been suggested. However,
those proofs had only a theoretical impact, because both
the proposed schemes and the reductions were completely
unpractical. Indeed, the reductions were efficient (i.e. poly-
nomial), and thus a polynomial attack against a cryptosys-
tem would have led to a polynomial algorithm that broke
the computational assumption. But this latter algorithm,
even polynomial, may require hundreds of years to solve
a small instance. For example, let us consider a crypto-
graphic protocol based on integer factoring. Let us assume
that one provides a polynomial reduction from the factor-
ization into an attack. But such a reduction may just lead
to a factorization algorithm with a complexity in 2100k10,
where k is the bit-size of the integer to factor. This indeed
contradicts the assumption that no-polynomial algorithm
exists for factoring. However, on a 1024-bit number, it
provides an algorithm that requires 2130 basic operations,
which is much more than the complexity of the best current
algorithm, such as NFS [44], which needs less than 2100.
Therefore, such a reduction would just be meaningful for
numbers above 2048 bits. Concrete examples are given
later.
Moreover, most of the proposed schemes were unpractical
as well. Indeed, the protocols were polynomial in time and
memory, but not efficient enough for practical implemen-
tation.
For a few years, people have tried to provide both practi-
cal schemes, with practical reductions and exact complex-
ity, which prove the security for realistic parameters, under
a well-defined assumption: exact reduction in the standard
model (which means in the complexity-theoretic frame-
work). For example, under the assumption that a 1024-bit
integer cannot be factored with less than 270 basic oper-
ations, the cryptographic protocol cannot be broken with
less than 260 basic operations. We will see such an exam-
ple later.
Unfortunately, as already remarked, practical and even just
efficient reductions, in the standard model, can rarely be
conjugated with practical schemes. Therefore, one need
to make some hypotheses on the adversary: the attack is
generic, independent of the actual implementation of some
objects:
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– of the hash function, in the “random oracle
model”;

– of the symmetric block cipher, in the “ideal cipher
model”;

– of the group, in the “generic model”.

The “random oracle model” was the first to be introduced
in the cryptographic community [8, 27], and has already
been widely accepted. Therefore, in the sequel, we focus
on security analyses in this model.

2.3. The random oracle model

As said above, efficiency rarely meets with provable secu-
rity. More precisely, none of the most efficient schemes
in their category have been proven secure in the standard
model. However, some of them admit security validations
under ideal assumptions: the random oracle model is the
most widely accepted one.
Many cryptographic schemes use a hash function H (such
as MD5 [68] or the American standards SHA-1 [55],
SHA-256, SHA-384 and SHA-512 [56]). This use of hash
functions was originally motivated by the wish to sign long
messages with a single short signature. In order to achieve
non-repudiation, a minimal requirement on the hash func-
tion is the impossibility for the signer to find two different
messages providing the same hash value. This property is
called collision-resistance.
It was later realized that hash functions were an essen-
tial ingredient for the security of, first, signature schemes,
and then of most cryptographic schemes. In order to ob-
tain security arguments, while keeping the efficiency of the
designs that use hash functions, a few authors suggested
using the hypothesis that H behaves like a random func-
tion. First, Fiat and Shamir [27] applied it heuristically
to provide a signature scheme “as secure as” factorization.
Then, Bellare and Rogaway [8, 9] formalized this concept
in many fields of cryptography: signature and public-key
encryption.
In this model, the so-called “random oracle model”, the
hash function can be formalized by an oracle which pro-
duces a truly random value for each new query. Of course,
if the same query is asked twice, identical answers are
obtained. This is precisely the context of relativized com-
plexity theory with “oracles,” hence the name.
About this model, no one has ever been able to provide
a convincing contradiction to its practical validity, but just
a theoretical counter-example [18] on a clearly wrong de-
sign for practical purpose! Therefore, this model has been
strongly accepted by the community, and is considered as
a good one, in which proofs of security give a good taste
of the actual security level. Even if it does not provide
a formal proof of security (as in the standard model, with-
out any ideal assumption), it is argued that proofs in this
model ensure security of the overall design of the scheme
provided that the hash function has no weakness, hence the
name “security arguments”.

More formally, this model can also be seen as a restriction
on the adversary’s capabilities. Indeed, it simply means
that the attack is generic without considering any particular
instantiation of the hash functions.
On the other hand, assuming the tamper-resistance of some
devices, such as smart cards, the random oracle model is
equivalent to the standard model, which simply requires the
existence of pseudo-random functions [32, 51].
As a consequence, almost all the standards bodies by now
require designs provably secure, at least in that model,
thanks to the security validation of very efficient protocols.

3. A first formalism

In this section we describe more formally what a signa-
ture scheme and an encryption scheme are. Moreover, we
make precise the security notions one wants the schemes to
achieve. This is the first imperative step towards provable
security.

3.1. Digital signature schemes

Digital signature schemes are the electronic version of
handwritten signatures for digital documents: a user’s sig-
nature on a message m is a string which depends on m, on
public and secret data specific to the user and – possibly –
on randomly chosen data, in such a way that anyone can
check the validity of the signature by using public data only.
The user’s public data are called the public key, whereas
his secret data are called the private key. The intuitive
security notion would be the impossibility to forge user’s
signatures without the knowledge of his private key. In
this section, we give a more precise definition of signature
schemes and of the possible attacks against them (most of
those definitions are based on [36]).

3.1.1. Definitions

A signature scheme is defined by the three following algo-
rithms:

� The key generation algorithm K. On input 1k, which
is a formal notation for a machine with running time
polynomial in k (1k is indeed k in basis 1), the al-
gorithm K produces a pair (kp;ks) of matching pub-
lic and private keys. Algorithm K is probabilistic.
The input k is called the security parameter. The
sizes of the keys, or of any problem involved in the
cryptographic scheme, will depend on it, in order to
achieve a security level in 2k (the expected minimal
time complexity of any attack).

� The signing algorithm Σ. Given a message m and
a pair of matching public and private keys (kp;ks),
Σ produces a signature σ . The signing algorithm
might be probabilistic.
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� The verification algorithm V. Given a signature σ ,
a message mand a public key kp, V tests whether σ is
a valid signature of m with respect to kp. In general,
the verification algorithm need not be probabilistic.

3.1.2. Forgeries and attacks

In this subsection, we formalize some security notions
which capture the main practical situations. On the one
hand, the goals of the adversary may be various:

� Disclosing the private key of the signer. It is the most
serious attack. This attack is termed total break.

� Constructing an efficient algorithm which is able to
sign messages with good probability of success. This
is called universal forgery.

� Providing a new message-signature pair. This is
called existential forgery.

In many cases this latter forgery, the existential forgery,
is not dangerous, because the output message is likely to
be meaningless. Nevertheless, a signature scheme which is
existentially forgeable does not guarantee by itself the iden-
tity of the signer. For example, it cannot be used to certify
randomly looking elements, such as keys. Furthermore,
it cannot formally guarantee the non-repudiation property,
since anyone may be able to produce a message with a valid
signature.
On the other hand, various means can be made available
to the adversary, helping her into her forgery. We focus
on two specific kinds of attacks against signature schemes:
the no-message attacks and the known-message attacks. In
the first scenario, the attacker only knows the public key
of the signer. In the second one, the attacker has access
to a list of valid message-signature pairs. According to
the way this list was created, we usually distinguish many
subclasses, but the strongest is the adaptive chosen-message
attack, where the attacker can ask the signer to sign any
message of her choice. She can therefore adapt her queries
according to previous answers.
When one designs a signature scheme, one wants to compu-
tationally rule out existential forgeries even under adaptive
chosen-message attacks. More formally, one wants that the
success probability of any adversary A with a reasonable
time is small, where

SuccA = Pr

�
(kp;ks) K(1k);(m;σ) AΣ

ks (kp) :
V(kp;m;σ) = 1

�
:

We remark that since the adversary is allowed to play an
adaptive chosen-message attack, the signing algorithm is
made available, without any restriction, hence the oracle
notation AΣ

ks . Of course, in its answer, there is the natural
restriction that the returned signature has not been obtained
from the signing oracle Σks

itself.
This above security level is the strongest one that one can
formalize in the communication model we consider. We
insist on the fact that in the current communication model,

we give the adversary complete access to the cryptographic
primitive, but as a black-box. She can ask any query of her
choice, and the box always answers correctly, in constant
time. Such a model does not consider timing attacks [42],
where the adversary tries to extract the secrets from the
computational time. Some other attacks analyze the electri-
cal energy required by a computation to get the secrets [43],
or to make the primitive fail on some computation [11, 15].
They are not captured either by this model.

3.2. Public-key encryption

The aim of a public-key encryption scheme is to allow
anybody who knows the public key of Alice to send her
a message that she will be the only one able to recover,
granted her private key.

3.2.1. Definitions

A public-key encryption scheme is defined by the three
following algorithms:

� The key generation algorithm K. On input 1k where
k is the security parameter, the algorithm K produces
a pair (kp;ks) of matching public and private keys.
Algorithm K is probabilistic.

� The encryption algorithm E. Given a message m and
a public key kp, E produces a ciphertext c of m. This
algorithm may be probabilistic. We write E(kp;m; r)
where r , in the probabilistic case, is the random input
to E.

� The decryption algorithm D. Given a ciphertext c
and the private key ks, D gives back the plaintext m.
This algorithm is necessarily deterministic.

3.2.2. Security notions

As for signature schemes, the goals of the adversary may be
various. The first common security notion that one would
like for an encryption scheme is one-wayness (OW): with
just public data, an attacker cannot get back the whole plain-
text of a given ciphertext. More formally, this means that
for any adversary A, her success in inverting E without the
private key should be negligible over the probability space
M �Ω, where M is the message space and Ω is the space
of the random coins r used for the encryption scheme, and
the internal random coins of the adversary:

SuccA = Pr
m;r

[(kp;ks) K(1k) : A(kp;E(kp;m; r)) = m]:

However, many applications require more from an encryp-
tion scheme, namely the semantic security (IND) [33],
a.k.a. polynomial security/indistinguishability of encryp-
tions: if the attacker has some information about the plain-
text, for example that it is either “yes” or “no” to a crucial
query, any adversary should not learn more with the view
of the ciphertext. This security notion requires computa-
tional impossibility to distinguish between two messages,
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chosen by the adversary, one of which has been encrypted,
with a probability significantly better than one half: her
advantage AdvA , formally defined as

2�Pr
b;r

�
(kp;ks) K(1k);(m0;m1;s) A1(kp);
c= E(kp;mb; r) : A2(m0;m1;s;c) = b

�
�1;

where the adversary A is seen as a 2-stage attacker (A1;A2),
should be negligible.
A later notion is non-malleability (NM) [25]. To break it,
the adversary, given a ciphertext, tries to produce a new
ciphertext such that the plaintexts are meaningfully related.
This notion is stronger than the above semantic security,
but it is equivalent to the latter in the most interesting sce-
nario [6] (the CCA attacks, see below). Therefore, we will
just focus on one-wayness and semantic security.
On the other hand, an attacker can play many kinds of at-
tacks, according to the available information: since we
are considering asymmetric encryption, the adversary can
encrypt any plaintext of her choice, granted the public key,
hence the chosen-plaintext attack (CPA). She may further-
more have access to more information, modeled by partial
or full access to some oracles: a plaintext-checking ora-
cle which, on input a pair (m;c), answers whether c en-
crypts the message m. This attack has been named the
plaintext-checking attack (PCA) [58]; a validity-checking
oracle which, on input a ciphertext c, just answers whether
it is a valid ciphertext or not. This weak oracle had been
enough to break some famous encryption schemes [13, 40],
running the so-called reaction attacks [37]; or the de-
cryption oracle itself, which on any ciphertext, except
the challenge ciphertext, answers the corresponding plain-
text (non-adaptive [52]/adaptive [67] chosen-ciphertext at-
tacks). This latter scenario which allows adaptively cho-
sen ciphertexts as queries to the decryption oracle is the
strongest attack, and is named the chosen-ciphertext at-
tack (CCA).
Furthermore, multi-user scenarios can be considered where
related messages are encrypted under different keys to be
sent to many people (e.g. broadcast of encrypted data).
This may provide many useful data for an adversary. For
example, RSA is well-known to be weak in such a sce-
nario [38, 76], namely with a small encryption exponent,
using the Chinese Remainders Theorem. But recent re-
sults prove that semantically secure schemes, in the classi-
cal sense as described above, remain secure in multi-user
scenarios [3, 5], whatever the kind of attacks.
A general study of these security notions and attacks was
conducted in [6], we therefore refer the reader to this pa-
per for more details. See also the summary diagram in
Fig. 1. However, we can just review the scenarios we will
be interested in in the following:

� One-wayness under chosen-plaintext attacks
(OW-CPA) – where the adversary wants to recover
the whole plaintext from just the ciphertext and the
public key. This is the weakest scenario.

� Semantic security under adaptive chosen-ciphertext
attacks (IND-CCA) – where the adversary just wants
to distinguish which plaintext, between two messages
of her choice, has been encrypted, while she can ask
any query she wants to a decryption oracle (except the
challenge ciphertext). This is the strongest scenario
one can define for encryption (still in our commu-
nication model), and thus our goal when we design
a cryptosystem.

Fig. 1. Relations between the security notions for asymmetric
encryption.

4. The basic assumptions

There are two major families in number theory-based
public-key cryptography:

1. The schemes based on integer factoring, and on the
RSA problem [69].

2. The schemes based on the discrete logarithm prob-
lem, and on the Diffie-Hellman problems [24], in
any “suitable” group. The first groups in use were
cyclic subgroups of Z?

p, the multiplicative group of
the modular quotient ring Zp = Z=pZ. But many
schemes are now converted on cyclic subgroups of
elliptic curves, or of the Jacobian of hyper-elliptic
curves, with namely the so-called ECDSA [1], the
US Digital Signature Standard [54] on elliptic curves.

4.1. Integer factoring and the RSA problem

The most famous intractable problem is factorization of in-
tegers: while it is easy to multiply two prime integers p
and q to get the product n = p �q, it is not simple to de-
compose n into its prime factors p and q.
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Currently, the most efficient algorithm is based on siev-
ing on number fields. The Number Field Sieve (NFS)
method [44] has a complexity in

O(exp((1:923+o(1))(lnn)1=3(ln lnn)2=3)):

It has been used to establish the last record, in August 1999,
by factoring a 155-digit integer, product of two 78-digit
primes [19].
The factored number, called RSA-155, was taken from the
“RSA challenge list”, which is used as a yardstick for the
security of the RSA cryptosystem (see later). The latter is
used extensively in hardware and software to protect elec-
tronic data traffic such as in the SSL (security sockets layer)
Handshake Protocol.
This record is very important since 155 digits correspond
to 512 bits. This is the size which is in use in almost all
the implementations of the RSA cryptosystem (namely for
actual implementations of SSL on the Internet).

RSA-155 =
109417386415705274218097073220403576120\
037329454492059909138421314763499842889\
347847179972578912673324976257528997818\
33797076537244027146743531593354333897

= 102639592829741105772054196573991675900\
716567808038066803341933521790711307779

* 106603488380168454820927220360012878679\
207958575989291522270608237193062808643

However, this record required thousands of machines, and
three months of computation. Furthermore, due to the
above complexity of NFS, integer factoring is believed to
be a difficult problem, especially for products of two primes
of similar sizes larger than 384 bits.
Unfortunately, it just provides a one-way function, with-
out any possibility to invert the process. No information
is known to make factoring easier. However, some alge-
braic structures are based on the factorization of an inte-
ger n, where some computations are difficult without the
factorization of n, but easy with it: the finite quotient
ring Zn which is isomorphic to the product ring Zp�Zq

if n= p �q.
For example, the eth power of any element x can be easily
computed using the square-and-multiply method. It con-
sists in using the binary representation of the exponent
e = ekek�1 : : :e0, computing the successive powers of 2

of x (x20
, x21

, : : : , x2k
) and eventually to multiply alto-

gether the ones for which ei = 1. However, to compute
eth roots, it seems that one requires to know an integer d
such that ed= 1 modϕ(n), where ϕ(n) is the totient Euler
function which denotes the cardinality of the multiplicative
subgroup Z?

n of Zn. In the particular case where n = pq,
ϕ(n) = (p� 1)(q� 1). And therefore, ed�1 is a multi-
ple of ϕ(n) which is equivalent to the knowledge of the
factorization of n [50].
In 1978, Rivest, Shamir and Adleman [69] defined the fol-
lowing problem:

The RSA problem. Let n= pq be the product
of two large primes of similar size and e an

integer relatively prime to ϕ(n). For a given
y 2 Z?

n, compute the modular eth root x of y
(i.e. x2 Z?

n such that xe = y modn.)

The Euler function can be easily computed from the fac-
torization of n, since for any n= ∏ pvi

i
,

ϕ(n) = n�∏
�

1�
1
pi

�
:

Therefore, with the factorization of n (the trapdoor), the
RSA problem can be easily solved. However nobody knows
whether the factorization is required, but nobody knows
how to do without it either:

The RSA assumption. For any product of two
large primes, n = pq, large enough, the RSA
problem is intractable (presumably as hard as
the factorization of n).

4.2. The discrete logarithm and the Diffie-Hellman
problems

The setting is quite general: one is given

– a cyclic group G of prime order q (such as the finite
group (Zq;+), a subgroup of (Z?

p;�) for qjp�1, or
an elliptic curve, etc.);

– a generator g (i.e. G = hgi).

We note in bold (such as g) any element of the group G , to
distinguish it from a scalar x2Zq. But such a g could be an
element in Z?

p or a point of an elliptic curve, according to
the setting. Above, we talked about a “suitable” group G .
In such a group, some of the following problems have to
be hard to solve (using the additive notation).

� The discrete logarithm problem (DL): given y 2
G , compute x2 Zq such that y = x �g = g+ : : :+g
(x times), then one writes x= loggy.

� The computational Diffie-Hellman problem
(CDH): given two elements in the group G , a = a � g
and b = b � g, compute c = ab � g. Then one writes
c= DH(a;b).

� The decisional Diffie-Hellman problem (DDH):
given three elements in the group G , a= a�g, b= b�g
and c= c�g, decide whether c= DH(a;b) (or equiv-
alently, whether c= ab modq).

It is clear that they are sorted from the strongest problem to
the weakest one. Furthermore, one may remark that they all
are “random self-reducible”, which means that any instance
can be reduced to a uniformly distributed instance: for ex-
ample, given a specific element y for which one wants to
compute the discrete logarithm x in basis g, one can choose
a random z2 Zq, and compute z= z�y. The element z is
therefore uniformly distributed in the group, and the dis-
crete logarithm α = loggz leads to x = α=z modq. As
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a consequence, there are only average complexity cases.
Thus, the ability to solve a problem for a non-negligible
fraction of instances in polynomial time is equivalent to
solve any instance in expected polynomial time.
Very recently, Tatsuaki Okamoto and the author [60] de-
fined a new variant of the Diffie-Hellman problem, which
we called the gap Diffie-Hellman problem (GDH), where
one wants to solve the CDH problem with an access to
a DDH oracle.
One may easily remark the following properties about above
problems:

DL� CDH� fDDH;GDHg;

where A�B means that the problem A is at least as hard as
the problem B. However, in practice, no one knows how to
solve any of them without breaking the DL problem itself.
Currently, the most efficient algorithms to solve this lat-
ter problem depend on the underlying group. For generic
groups (for which no specific algebraic property can be
used), algorithms have a complexity in the square root of q,
the order of the generator g [65, 74]. For example, on well-
chosen elliptic curves only these algorithms can be used.
The last record was established in April 2001 on the curve
defined by the equation y2+xy= x3+x2+1 over the finite
field with 2109 elements.
However, for subgroups of Z?

p, some better techniques can
be applied. The best algorithm is based on sieving on num-
ber fields, as for the factorization. The General Number
Field Sieve method [39] has a complexity in

O(exp((1:923+o(1))(ln p)1=3(ln ln p)2=3)):

It was used to establish the last record, in April 2001 as
well, by computing discrete logarithms modulo a 120-digit
prime. Therefore, 512-bit primes are still safe enough, as
far as the generic attacks cannot be used (the generator must
be of large order q, at least a 160-bit prime).
For signature applications, one only requires groups where
the DL problem is hard, whereas encryption needs trapdoor
problems and therefore requires groups where some of the
DH’s problems are also hard to solve.
The CDH problem is usually believed to be much stronger
than the DDH problem, which means that the GDH prob-
lem is difficult. This was the motivation of our work on
new encryption schemes based on the GDH problem [58]
(see Section 5.3.2).

5. Provably secure designs

5.1. Introduction

Until 1996, no practical DL-based cryptographic scheme
has ever been formally studied, only heuristically. And
surprisingly, at the Eurocrypt’96 conference, two oppo-
site studies were conducted on the El Gamal signature
scheme [26], the first DL-based signature scheme designed
in 1985 and depicted in Fig. 2.

Whereas existential forgeries were known for that scheme,
it was believed to prevent universal forgeries. The first
analysis, from Daniel Bleichenbacher [12], showed such
a universal forgery when the generator g is not properly
chosen. The second one, from Jacques Stern and the au-
thor [62], proved the security, against existential forgeries
under adaptive chosen-message attacks, of a slight variant
with a randomly chosen generator g. The slight variant
simply replaces the message m by H(m; r) in the compu-
tation, while one uses a hash function H that is assumed
to behave like a random oracle. It is amazing to remark
that the Bleichenbacher’s attack also applies on our vari-
ant. Therefore, depending on the initialization, our variant
could be a very strong signature scheme or become a very
weak one!

Initialization

g a generator of Z?
p,

where p is a large prime

K: Key generation
private key x2 Z?

p�1

public key y= gx mod p

! (y;x)

Σ: Signature of m! (r;s)

K is randomly chosen in Z?
p�1

r = gK mod p s= (m�xr)=K mod p�1

! (r;s) is a signature of m

V: Verification of (m; r;s)

check whether gm ?
= yrrs mod p

Fig. 2. The El Gamal signature scheme.

As a consequence, a proof has to be performed in details.
Furthermore, the conclusions have to be strictly followed
by developers, otherwise the concrete implementation of
a secure scheme can be very weak.

5.2. Digital signature schemes

5.2.1. History

The first secure signature scheme was proposed by Gold-
wasser et al. [35] in 1984. It used the notion of claw-free
permutations. A pair of permutations ( f ;g) is said claw-
free if it is computationally impossible to find a claw (x;y),
which satisfies f (x) = g(y). Their proposal provided poly-
nomial algorithms with a polynomial reduction between
the research of a claw and an existential forgery under an
adaptive chosen-message attack. However, the scheme was
totally unpractical. What about practical schemes?

The RSA signature scheme. Two years after the Diffie-
Hellman paper [24], Rivest, Shamir and Adleman [69]
proposed the first signature scheme based on the “trap-
door one-way permutation paradigm”, using the RSA func-
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tion: the generation algorithm produces a large compos-
ite number N = pq, a public key e, and a private key d
such that e�d = 1 modϕ(N). The signature of a mes-
sage m, encoded as an element in Z?

N, is its eth root,
σ = m1=e = md modN. The verification algorithm simply
checks whether m= σe modN.
However, the RSA scheme is not secure by itself since
it is subject to existential forgery: it is easy to create
a valid message-signature pair, without any help of the
signer, first randomly choosing a certificate σ and getting
the signed message m from the public verification relation,
m= σe modN.

The Schnorr signature scheme. In 1986 a new paradigm
for signature schemes was introduced. It is derived
from fair zero-knowledge identification protocols involv-
ing a prover and a verifier [34], and uses hash functions in
order to create a kind of virtual verifier. The first applica-
tion was derived from the Fiat-Shamir [27] zero-knowledge
identification protocol, based on the hardness of extracting
square roots, with a brief outline of its security. Another
famous identification scheme [71], together with the signa-
ture scheme [72], has been proposed later by Schnorr, based
on that paradigm: the generation algorithm produces two
large primes p and q, such that q� 2k, where k is the secu-
rity parameter, and qj p�1, as well as an element g in Z?

p
of order q. It also creates a pair of keys, the private key
x2 Z?

q and the public key y= g�x mod p. The signature
of a message m is a triple (r;e;s), where r = gK mod p,
with a random K 2 Zq, the “challenge” e= H(m; r) and
s= K+exmodq. This latter satisfies r = gsye mod p with
e= H(m; r), which is checked by the verification algorithm.
The security results for that paradigm have been consid-
ered as folklore for a long time but without any formal
validation.

5.2.2. Secure designs

Schnorr’s signature and variants. In our papers [62, 63],
with Jacques Stern, we formally proved the above paradigm
when H is assumed to behave like a random oracle. The
proof is based on the by now classical oracle replay tech-
nique: by a polynomial replay of the attack with different
random oracles (the Qi’s are the queries and the ρi’s are
the answers), we allow the attacker to forge signatures that

Fig. 3. The oracle replay technique.

are suitably related. This generic technique is depicted
in Fig. 3, where the signature of a message m is a triple
(σ1;h;σ2), with h= H(m;σ1) which depends on the mes-
sage and the first part of the signature, both bound not to
change for the computation of σ2, which really relies on the
knowledge of the private key. If the probability of fraud is
high enough, then with good probability, the adversary is
able to answer to many distinct outputs from the H func-
tion, on the input (m;σ1).

Initialization (security parameter k)

g a generator of any cyclic group (G ;+)

of order q, with 2k�1� q< 2k

H a hash function: f0;1g?! Zq

K: Key generation

private key x2 Z?
q

public key y =�x �g

! (y;x)

Σ: Signature of m! (r ;h;s)

K is randomly chosen in Z?
q

r = K �g h= H(m; r) s= K+xh modq

! (r ;h;s) is a signature of m

V: Verification of (m; r;s)

check whether h
?
= H(m; r)

and r ?
= s�g+h �y

Fig. 4. The Schnorr signature scheme.

To be more concrete, let us consider the Schnorr signa-
ture scheme, which is presented in Fig. 4, in any “suitable”
cyclic group G of prime order q, where at least the discrete
logarithm problem is hard. We expect to obtain two sig-
natures (r = σ1;h;s= σ2) and (r 0 = σ 0

1;h
0;s0 = σ 0

2) of an
identical message m such that σ1 = σ 0

1, but h 6= h0. We
then can extract the discrete logarithm of the public key:

r = s�g + h �y
r = s0 �g + h0 �y

�
) (s�s0) �g= (h0�h) �y;

which leads to

loggy = (s�s0) � (h0�h)�1 modq:

Let use denote by ε the success probability of the adver-
sary in performing an existential forgery after qh queries
to the random oracle H. One can prove that for ε large
enough, more precisely ε � 7qh=2k, after less than 16qh=ε
repetitions of this adversary, one can obtain such a pair of
signatures with probability greater than 1=9.
However, this just covers the no-message attacks, which
are the weakest attacks! But because we can simulate any
zero-knowledge protocol, even without having to restart the
simulation since we are in front of an honest verifier (i.e. the

48



Asymmetric cryptography and practical security

challenge is randomly chosen by the random oracle H) one
can easily simulate the signer without the private key:

– one first chooses random h;s2 Zq;

– one computes r = s�g+h �y and defines H(m; r) to
be equal to h, which is a uniformly distributed value;

– one can output (r ;h;s) as a valid signature of the
message m.

This furthermore simulates the oracle H, by defining
H(m; r) to be equal to h. This simulation is almost per-
fect since H is supposed to output a random value to any
new query, and h is indeed a random value. Neverthe-
less, if the query H(m; r) has already been asked, H(m; r)
is already defined, and thus the definition H(m; r) h is
impossible. But such a situation is very rare, which al-
lows us to claim the following result, which stands for the
Schnorr signature scheme but also for any signature derived
from a three-round honest verifier zero-knowledge interac-
tive proof of knowledge: let A be an adversary against the
Schnorr signature scheme, with security parameter k, in
the random oracle model. We assume that, after qh queries
to the random oracle and qs queries to the signing oracle,
A produces, with probability ε � 10(qs+1)(qs+qh)=2k,
a valid signature. Then, after less than 23qh=ε repetitions
of this adversary, one can extract the private key x with
probability ε 0 � 1=9.
From a more practical point of view, this result states that if
an adversary manages to perform an existential forgery un-
der an adaptive chosen-message attack within an expected
time T , after qh queries to the random oracle and qs queries
to the signing oracle, then the discrete logarithm problem
can be solved within an expected time less than 207qhT .
Brickell, Vaudenay, Yung and the author extended this tech-
nique [16, 64] to many variants of El Gamal [26] and
DSA [54], such as the Korean Standard KCDSA [41]. How-
ever, the original El Gamal and DSA schemes were not cov-
ered by this study, and are certainly not provably secure,
even if no attack has ever been found against DSA.

RSA-based signatures. Unfortunately, with these signa-
tures, we do not really achieve our goal, because the re-
duction is costly: if one can break the signature scheme
within an expected time T, and qh queries to the hash func-
tion, then one can compute loggy within an expected time
207qhT , where qh can be huge, as much as 260 in prac-
tice. This security proof is meaningful only for very large
groups.
In 1996, Bellare and Rogaway [10] proposed other can-
didates, based on the RSA assumption. The first scheme
is the by now classical hash-and-decrypt paradigm
(a.k.a. the Full-Domain Hash paradigm): as for the ba-
sic RSA signature, the generation algorithm produces
a large composite number N = pq, a public key e, and
a private key d such that e�d = 1 modϕ(N). In order
to sign a message m, one first hashes it using a full-
domain hash function H :f0;1g?!Z?

N, and computes the

eth root, σ = H(m)d mod N. The verification algorithm
simply checks whether the following equality holds,
H(m) = σe modN. For this scheme, they proved, in the
random oracle model: if an adversary can produce, with
success probability ε , an existential forgery under a chosen-
message attack within a time t, after qh and qs queries to
the hash function and the signing oracle respectively, then
the RSA function can be inverted with probability ε 0 within
time t 0 where

ε 0 �
ε

qs+qh
and t 0 � t +(qs+qh)Texp;

with Texp the time for an exponentiation to the power e,
modulo N. This reduction has been recently improved [21],
thanks to the random self-reducibility of the RSA function,
into:

ε 0 �
ε
qs
�exp(�1) and t 0 � t +(qs+qh)Texp:

This latter reduction works as follows: we assume the ex-
istence of an adversary that produces an existential forgery,
with probability ε , within time t, after qh queries to the
random oracle H and qs queries to the signing oracle. We
provide this adversary with all the inputs/outputs he needs,
while trying to extract the eth root of a given y. For that,
we have to simulate the random oracle and the signing
oracle.

Simulation of the random oracle H. For any fresh
query m to H, one chooses a random r 2 Z?

N and flips
a biased coin (which returns 0 with probability p, and 1
with probability 1� p.) If 0 appears, one defines and re-
turns H(m) = re mod N, otherwise one defines and returns
H(m)=yre mod N.

Simulation of the signing oracle. For any fresh query m,
one first invokes the random oracle on m (if not yet done).
If H(m) = re modN for some known r , then one returns r
as the signature of m, otherwise we stop the simulation and
return a failure signal.

At the end of the game, the adversary outputs a valid
message/signature H(m) = σe modN. If H(m) has been
asked to H during the simulation then, with probability
1�p, H(m)= yre=σe modN and thus y=(σ=r)e modN,
which leads to an eth root of y. Otherwise we return a fail-
ure signal.
One must first remark that the H simulation is perfect
since a new random element in Z?

N is returned for any
new query. However, the signing oracle simulation may
fail when a signing query is done on a message such that
H(m) = yre modN. Indeed, in this case, the simulation
aborts. But such a case happens with probability 1� p
for any signature. Therefore, the simulation is perfect with
probability pqs, and in such a good case, the forgery leads
to the eth root of y with probability 1� p. Therefore, the
success probability of our RSA inversion is (1� p)pqsε ,
which is optimal for p = 1�1=(qs+1). And for this pa-
rameter, and a huge value qs, the success probability is
approximately ε=eqs.
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As far as time complexity is concerned, each random oracle
simulation (which can be launched by a signing simulation)
requires a modular exponentiation to the power e, hence the
result.
This is a great improvement since the success probability
does not depend anymore on qh. Furthermore, qs can be
limited by the user, whereas qh cannot. In practice, one
only assumes qh� 260, but qs can be limited below 230.
However, one would like to get more, suppressing any coef-
ficient. In their paper [10], Bellare and Rogaway proposed
such a better candidate, the probabilistic signature scheme
(PSS, see Fig. 5): the key generation is still the same, but
the signature process involves three hash functions

F : f0;1gk2! f0;1gk0; G : f0;1gk2!f0;1gk1;

H : f0;1g?! f0;1gk2;

where k = k0+ k1+ k2+ 1 is the bit-length of the modu-
lus N. For each message m to be signed, one chooses a ran-
dom string r 2 f0;1gk1. One first computes w=H(m; r),
s = G(w) � r and t = F(w). Then one concatenates
y = 0kwkskt, where akb denotes the concatenation of the
bit strings a and b. Finally, one computes the eth root,
σ = yd modN.

Fig. 5. Probabilistic signature scheme.

The verification algorithm first computes y= σe modN,
and parses it as y = bkwkskt. Then, one can get r =
= s�G(w), and checks whether b = 0, w = H(m; r) and
t = F(w).
About PSS, Bellare and Rogaway proved, in the random
oracle model: if an adversary can produce, with success
probability ε , an existential forgery under a chosen-message
attack within a time t, after qh and qs queries to the hash
functions (F , G and H altogether) and the signing oracle
respectively, then the RSA function can be inverted with
probability ε 0 within time t 0 where

ε 0 � ε�
1

2k2
� (qs+qH) �

�
qs

2k1
+

qh+qs+1

2k2

�

and t 0 � t +(qs+qH)k2Texp;

with Texp the time for an exponentiation to the power e,
modulo N.
The reduction is a bit more intricate than the previous one:
once again, we assume the existence of an adversary that
produces an existential forgery, with probability ε , within
time t, after qF , qG, qH queries to the random oracles F ,
G, H (we denote qh = qF + qG + qH ) and qs queries to
the signing oracle. We provide this adversary with all the
inputs/outputs he needs, while trying to extract the eth root
of a given y. For that, we have to simulate the random
oracles and the signing oracle. For any fresh query (m; r)
to the random oracle H, one chooses a random u2 Z?

N and
computes z= yue modN, until the most significant bit of
z is 0. Then one parses z into 0kwkskt. Then one defines
H(m; r) w, G(w)  s� r and F(w)  t. One finally
returns w.
For any query w to the random oracles F or G, if the answer
has not already been defined (during a H simulation) then
a random string is returned.
A signing query m is trivially answered: one chooses a ran-
dom r and runs a specific simulation of H(m; r): one
chooses a random u 2 Z?

N and computes z= ue modN,
until the most significant bit of z is 0. Then one parses z
into 0kwkskt, and defines H(m; r) w, G(w) s� r and
F(w) t. One finally returns u as a signature of m.
At the end of the game, the adversary outputs a valid mes-
sage/signature (m;σ), where σe = 0kwkskt modN, which
corresponds to the signature of m with the random r =
= G(w)� s. If H(m; r) has not been asked, H(m; r) = w
with probability 1=2k2. Therefore

Pr[valid(m;σ) j:AskH(m; r)]� 2�k2;

where “valid(m;σ)” denotes the event that the mes-
sage/signature (m;σ) is a valid one (and thus accepted by
the verification algorithm), and “AskH(m; r)” denotes the
event that the query (m; r) has been asked to the random
oracle H.
Since this is a forgery, m has never been signed by the
signing oracle, and thus H(m; r) has been asked directly by
the adversary: H(m; r) w, G(w) s� r and F(w) t,
where yue = 0kwkskt, which leads to an eth root of y.
However, the simulations may not be perfect:

� The random oracles simulations may fail if when
defining F(w) and G(w), during an H-simulation
(a direct one, or the simulation done for the signing
simulation), one of them had already been defined
before. But this may just occur with probability less
than qF � 2

�k2 (because of a previous direct query
to F), qG �2

�k2 (because of a previous direct query
to G) or (qH +qs) �2�k2 (because of a previous direct
or indirect H-simulation).

� Even after many iterations, the z (computed during
the H-simulation, or the signing simulation) may still
be greater than N=2. We limit this number of iter-
ations to k2. Then the probability for z to be still
greater than N=2 is less than 1=2k2.
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� The signing simulation may fail if the H(m; r) value
has already been defined. But this may only occur
with probability (qH +qs)2�k1.

Therefore, the global success probability in inverting y is
greater than

ε�2�k2� (qH +qs)

�
qF +qG

2k2
+

qH +qs

2k2
+

1

2k2
+

qs

2k1

�
;

hence the result.
As fas as time complexity is concerned, each H simulation
(which can be launched by a signing simulation) requires
at most k2 modular exponentiations to the power e, hence
the result. Thanks to this exact and efficient security re-
sult, RSA-PSS has become the new PKCS #1 v2.0 standard
for signature [70]. Another variant has been proposed with
message-recovery. PSS-R allows one to include a large part
of the message inside the signature. This makes a signed-
message shorter than the size of the signature plus the size
of the message, since this latter is inside the former one.

5.3. Public-key encryption

5.3.1. History

The RSA encryption scheme. In the same paper as the
RSA signature scheme [69], Rivest, Shamir and Adleman
also proposed a public-key encryption scheme, thanks to the
“trapdoor one-way permutation” property of the RSA func-
tion: the generation algorithm produces a large composite
number N = pq, a public key e, and a private key d such
that e�d = 1 modϕ(N). The encryption of a message m,
encoded as an element in Z?

N, is simply c= me modN.
This ciphertext can be easily decrypted thanks to the knowl-
edge of d, m= cd modN. Clearly, this encryption is OW-
CPA, relative to the RSA problem. The determinism makes
a plaintext-checking oracle useless. Indeed, the encryp-
tion of a message m, under a public key kp is always the
same, and thus it is easy to check whether a ciphertext c
really encrypts m, by re-encrypting it. Therefore the RSA-
encryption scheme is OW-PCA relative to the RSA problem
as well.
Because of this determinism, it cannot be semantically se-
cure: given the encryption c of either m0 or m1, the adver-
sary simply computes c0 = me

0 modN and checks whether
c0 = c. Furthermore, with a small exponent e (e.g. e= 3),
any security vanishes under a multi-user attack: given
c1 =m3 modN1, c2 =m3 modN2 and c3 =m3 modN3, one
can easily compute m3 modN1N2N3 thanks to the Chinese
Remainders Theorem, which is exactly m3 in Z and there-
fore leads to an easy recovery of m.

The El Gamal encryption scheme. In 1985, El Gamal [26]
also designed a public-key encryption scheme based on the
Diffie-Hellman key exchange protocol [24]: given a cyclic
group G of order prime q and a generator g, the genera-
tion algorithm produces a random element x2 Z?

q as pri-
vate key, and a public key y = x � g. The encryption of

a message m, encoded as an element m in G , is a pair
(c= a �g;d = a �y+m). This ciphertext can be easily de-
crypted thanks to the knowledge of x, since

a �y = ax�g= x �c;

and thus m = d�x �c. This encryption scheme is well-
known to be OW-CPA relative to the computational Diffie-
Hellman problem. It is also semantically secure (against
chosen-plaintext attacks) relative to the decisional Diffie-
Hellman problem [79]. For OW-PCA, it relies on the new
gap Diffie-Hellman problem [60].

5.3.2. Secure designs

As we have seen above, the expected security level is
IND-CCA, whereas the RSA encryption just reaches
OW-CPA under the RSA assumption, and the El Gamal
encryption achieves IND-CPA under the DDH assump-
tion. Can we achieve IND-CCA for practical encryption
schemes?

OAEP: the optimal asymmetric encryption padding. In
1994, Bellare and Rogaway proposed a generic conver-
sion [9], in the random oracle model, the optimal asym-
metric encryption padding (OAEP, see Fig. 6), which was
claimed to apply to any family of trapdoor one-way permu-
tations, such as RSA. The key generation produces a one-
way permutation f : f0;1gk! f0;1gk, the public key. The
private key is the inverse permutation g, which requires
a trapdoor to be computable. The scheme involves two
hash functions

G : f0;1gk0! f0;1gn+k1; H : f0;1gn+k1! f0;1gk0;

where k = k0 + k1 +n+ 1. For any message m2 f0;1gn

to be encrypted. Instead of computing f (m), as done
with the above plain-RSA encryption, one first modifies m,
choosing a random string r 2 f0;1gk0. Then one computes
s= (mk0k1)�G(r) and t = r�H(s). Finally, one computes
c= f (skt).

Fig. 6. Optimal asymmetric encryption padding.
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The decryption algorithm first computes P= g(c), granted
the private key g, and parses it as P= skt. Then, one can
get r = t�H(s), and M = s�G(r), which is finally parsed
into M = mk0k1, if the k1 least significant bits are all 0.
For a long time, the OAEP conversion has been widely
believed to provide an IND-CCA encryption scheme from
any trapdoor one-way permutation. However, the sole
proven result (weak plaintext-awareness [9]) was the seman-
tic security against non-adaptive chosen-ciphertext attacks
(a.k.a. lunchtime attacks [52]). And recently, Shoup [78]
showed that it was very unlikely that a stronger secu-
rity result could be proven. However, because of the
wide belief of a strong security level, RSA-OAEP be-
came the new PKCS #1 v2.0 for encryption [70], and thus
a de facto standard, after an effective attack against the
PKCS #1 v1.5 [13].
Fortunately, Fujisaki, Okamoto, Stern and the author [31]
provided a complete security proof: first we proved that
combined with a trapdoor partial-domain one-way permu-
tation, the OAEP construction leads to an IND-CCA cryp-
tosystem. A partial-domain one-way permutation f is a one-
way permutation such that given y= f (skt) it is intractable
to recover the full skt, but even s only. Furthermore, we
provided a complete reduction between the full-domain in-
version of RSA and the partial-domain inversion. There-
fore, RSA-OAEP really achieves IND-CCA security under
the RSA assumption.
The proof is a bit intricate, so we refer the reader to [31]
for more information. Anyway, we can claim

if there exists a CCA-adversary against the “se-
mantic security” of RSA-OAEP (with a k-bit
long modulus, with k> 2k0), with running time
bounded by t and advantage ε , making qD, qG
and qH queries to the decryption oracle, and
the hash functions G and H respectively, then
the RSA problem could be solved with proba-
bility ε 0, within time bound t 0, where

ε 0 �
ε2

4
� ε �

�
2qDqG+qD +qG

2k0
+

2qD

2k1
+

32

2k�2k0

�

t 0 � 2t +qH � (qH +2qG)�O(k3):

Unfortunately, the reduction is very expensive, and is thus
meaningful only for huge moduli, more than 4096-bit
long. Indeed, the RSA inverter we can build, thanks
to this reduction, has a complexity at least greater than
qH � (qH +2qG)�O(k3). As already remarked, the adver-
sary can ask up to 260 queries to the hash functions, and
thus this overhead in the inversion is at least 2151. However,
current factoring algorithms can factor up to 4096 bit-long
integers within this number of basic operations (see [45]
for complexity estimates of the most efficient factoring al-
gorithms).
Anyway, the formal proof shows that the global design of
OAEP is sound, and that it is still probably safe to use it
in practice (e.g. in PKCS #1 v2.0, while being very careful
during the implementation [48]).

More general conversions. Unfortunately, there is no
hope to use OAEP with any DL-based primitive, because
of the “permutation” requirement. The OAEP construc-
tion indeed requires the primitive to be a permutation
(trapdoor partial-domain one-way), which is the case of
the RSA function. However, the only trapdoor problem
known in the DL-setting is the Diffie-Hellman problem,
and it does not provide any bijection. Thus, first Fujisaki
and Okamoto [29] proposed a generic conversion from
any IND-CPA scheme into an IND-CCA one, in the ran-
dom oracle model. While applying this conversion to the
above El Gamal encryption (see 5.3.1.), one obtains an
IND-CCA encryption scheme relative to the DDH prob-
lem. Later, independently, Fujisaki and Okamoto [30] and
the author [61] proposed better generic conversions since
they apply to any OW-CPA scheme to make it into an
IND-CCA one, still in the random oracle model.
This high security level is just at the cost of two more
hashings for the new encryption algorithm, as well as two
more hashings but one re-encryption for the new decryption
process.

REACT: a rapid enhanced-security asymmetric cryp-
tosystem transform. The re-encryption cost is the main
drawback of these conversions for practical purposes.
Therefore, Okamoto and the author tried and succeeded
in providing a conversion that is both secure and effi-
cient [58]: REACT, for “rapid enhanced-security asym-
metric cryptosystem transform”.
This latter conversion is indeed very efficient in many
senses

– the computational overhead is just the cost of two
hashings for both encryption and decryption,

– if one can break IND-CCA of the resulting scheme
with an expected time T , one can break OW-PCA of
the basic scheme within almost the same amount of
time, with a low overhead (not as with OAEP). It
thus provides a practical security result.

Let us describe this generic conversion REACT [58] on any
encryption scheme S= (K;E;D)

E : PK�M �R! C D : SK�C!M ;

where PK and SK are the sets of the public and private
keys, M is the messages space, C is the ciphertexts space
and R is the random coins space. One should remark that
R may be small and even empty, with a deterministic en-
cryption scheme, such as RSA. But in many other cases,
such as the El Gamal encryption, it is as large as M . We
also need two hash functions G and H,

G : M !f0;1g`;H : M �f0;1g`�C�f0;1g`!f0;1gκ ;

where κ is the security parameter, while ` denotes the size
of the messages to encrypt. The REACT conversion is
depicted in Fig. 7.
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K0: Key generation

(kp;ks) K(1k)

! (kp;ks)

E0: Encryption of m2M 0 = f0;1g`! (a;b;c)

R2M and r 2 R are randomly chosen

a= E(kp;R; r) b= m�G(R) c= H(R;m;a;b)

! (a;b;c) is the ciphertext

D0: Decryption of (a;b;c)

Given a2 C, b2 f0;1g` and c2 f0;1gκ

R= D(ks;a) m= b�G(R)

if c= H(R;m;a;b) and R2M !m is the plaintext

(otherwise, “Reject: invalid ciphertext”)

Fig. 7. Rapid enhanced-security asymmetric cryptosystem trans-
form S0.

In this new scheme S0, one can claim that if an attacker,
against the semantic security in a chosen-ciphertext sce-
nario, can gain an advantage ε after qD, qG and qH queries
to the decryption oracle and to the random oracles G and H
respectively, within a time t, then one can design an algo-
rithm that outputs, for any given C, the plaintext of C, after
less than qG+qH queries to the plaintext-checking oracle
with probability greater than ε=2� qD=2κ , within a time
t +(qG+qH)TPCA, where TPCA denotes the times required
by the PCA oracle to answer any query.
This security result, in the random oracle model, comes
from two distinct remarks:

� The adversary has necessarily asked either G(R) or
H(R;mi ;a;b) to get any information about the en-
crypted message m (either m0 or m1). Which means
that for a given C = E(kp;R; r), R is in the list of
queries asked to G or to H. Simply asking for the
qG+qH candidates to the plaintext-checking oracle,
one can output the right one. Then, with probabil-
ity ε=2, one inverts E, after (qG+qH) queries to the
plaintext-checking oracle.

� However, in the chosen-ciphertext scenario, the ad-
versary may ask queries to the decryption oracle. We
have to simulate this. For each query (a;b;c) asked
by the adversary to the decryption oracle, one looks
at all the pairs (R;m) such that (R;m;a;b) has been
asked to the random oracle H. For any such R, one
asks the plaintext-checking oracle whether a is a ci-
phertext of R (remark that it does not make more
queries to the plaintext-checking oracle, since it has
already been taken into account above). Then it com-
putes K = G(R), maybe using a simulation of G if
the query R has never been asked. If b= K�m then
one outputs m as the plaintext of the triple (a;b;c).
Therefore, any correctly computed ciphertext is de-
crypted by the simulator. But if the adversary has not
asked H(R;m;a;b) the probability that the ciphertext

is valid, and thus the decryption not correctly simu-
lated, is less than 1=2κ .

Hybrid conversion. In this REACT conversion, one can
improve efficiency, replacing the one-time pad [81] by any
symmetric encryption scheme: indeed, we have computed
some b= m�K, where K = G(R) can be seen as a session
key used in an one-time pad encryption scheme. But one
could use any symmetric encryption scheme (E;D) that is
just semantically secure (under no plaintext nor ciphertext
attacks). Indeed, the one-time pad achieves perfect seman-
tic security, against this kind of very weak attacks. But one
can tolerate some imperfection. Anyway, most of the candi-
dates to the AES process (the call for symmetric encryption
schemes, from the NIST, to become the new international
standard), and the AES itself (the winner), resisted to more
powerful attacks, and thus can be considered strongly se-
cure in our scenario. Therefore, plaintexts of any size could
be encrypted using this conversion (see Fig. 8), with a very
high speed rate.

Fig. 8. Hybrid rapid enhanced-security asymmetric cryptosystem
transform.

RSA-OAEP alternatives. As we have said, RSA-OAEP
has become a de facto standard, even if its security has
recently been subject to controversy. However, the practi-
cal security, for usual sizes (between 512 and 1024 bits),
is not really proven because of the huge overhead in the
reduction. Some alternatives have been proposed, such as
OAEP+ [78] and SAEP(+) [14], but still with expensive
reductions, in the general RSA context (some efficient re-
ductions have been proposed for OAEP or SAEP, but only
with RSA exponent 3, or the Rabin primitive [66]). There-
fore RSA-REACT [59] looks like the best alternative to
RSA-OAEP, thanks to the efficient reduction, and the prov-
able security relative the RSA assumption (in the random
oracle model).

6. Conclusion

Recently, Cramer and Shoup proposed the first schemes, for
both encryption [22] and signature [23], with formal secu-
rity proofs in the standard model (without any ideal assump-
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tion). The encryption scheme achieves IND-CCA under the
sole DDH assumption, which says that the DDH problem is
intractable. The signature scheme prevents existential forg-
eries, even against adaptive chosen-message attacks, under
the Strong RSA assumption [2, 28], which claims the in-
tractability of the Flexible RSA problem:

Given an RSA modulus N and any y 2 Z?
N,

produce x and a prime integer e such that
y= xe modN.

Both schemes are very nice because they are the first ef-
ficient schemes with formal security proofs in the stan-
dard model. However, we have not presented them, nor
the reductions either. Actually, they are very intricate and
pretty expensive. Furthermore, even if no ideal assumptions
are required, the complexity of the reductions make them
meaningless for practical parameters. Moreover, even if the
schemes are much more efficient than previous proposals
in the standard model, they are still much more than twice
as expensive as the schemes presented along this paper, in
the random oracle model. This is enough to rule them out
from practical use. Indeed, everybody wants security, but
only if it is quite transparent (and particularily from the
financial point of view). Therefore, provable security must
not decrease efficiency. It is the reason why strong security
arguments, under a realistic restriction on the adversary’s
capabilities, for efficient schemes have a more practical im-
pact than security proofs in the standard model for less ef-
ficient schemes. Of course, quite efficient schemes with
formal security proofs are still the target, and thus an ex-
citing challenge.
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Paper Analysis of cryptographic
protocols using logics of belief: an overview

David Monniaux

Abstract — When designing a cryptographic protocol or ex-
plaining it, one often uses arguments such as “since this mes-
sage was signed by machine B, machine A can be sure it came
from B” in informal proofs justifying how the protocol works.
Since it is, in such informal proofs, often easy to overlook
an essential assumption, such as a trust relation or the be-
lief that a message is not a replay from a previous session,
it seems desirable to write such proofs in a formal system.
While such logics do not replace the recent techniques of au-
tomatic proofs of safety properties, they help in pointing the
weaknesses of the system. In this paper, we present briefly
the BAN (Burrows-Abadi-Needham) formal system [10, 11] as
well as some derivative. We show how to prove some prop-
erties of a simple protocol, as well as detecting undesirable
assumptions. We then explain how the manual search for
proofs can be made automatic. Finally, we explain how the
lack of proper semantics can be a bit worrying.

Keywords — cryptographic protocols, logics of belief, BAN,
GNY, decidability.

1. Why logics of belief?

Cryptographic protocols are usually specified as sequences
of messages in the following kind of format:

Needham-Schroeder shared-keys protocol [10, 17, 24]
1: P! S : P;Q;Np

2: S! P :
n

Np;Q;Kpq;
�

Kpq;P
	

Kqs

o
Kps

3: P!Q :
�

Kpq;P
	

Kqs

4: Q! P :
�

Nq
	

Kpq

5: P!Q :
�

Nq�1
	

Kpq

where S, P, Q are machines or principals, or rather roles for
machines in this protocol. S, as usual, designates a server.

Np and Nq are nonces [21, x10.5]; these are random num-
bers (in this case, chosen respectively by P and Q) used
to prevent replay attacks. Such attacks consist in an in-
truder replaying parts of messages recorded during previ-
ous sessions. The usual use of nonces is that the principals
check that the values in certain encrypted message fields
correspond to the correct values of the nonces for this ses-
sion; discrepancies, arising from instance from messages
recorded during previous sessions, get detected, preventing
the principals from accepting those messages in a success-
ful run of the protocol. From the point of view of proto-
col analysis, nonces are treated as being distinct from any

other data used in the protocol. A related concept is that
of confounders [21, x10.5], random numbers incorporated
into messages to foil chosen plaintext attacks on public-key
ciphers.
Kxy is a generic notation for a key shared between x and y.
The goal of this protocol is to allow P and Q to agree on
a shared communication key Kpq; for this, on the one hand,
P and Q call a trusted server Swhich generates the key dur-
ing the execution of the protocol; on the other hand, Scom-
municates with P and Q using shared keys, Kps and Kqs

respectively, which are supposed to be known initially by
the concerned parties.
The above description is a bit ambiguous, since it uses the
same name (say, K) both for data that a principal generates
by itself and for data that a principal receives from outside.
For instance, in message 1, Np is generated by P and thus
treated by P as a known constant, but is received by S and
thus treated by Sas a variable. It can nevertheless be made
unambiguous by distinguishing those two uses. From such
an explicit description we can derive a semantics; that is, we
describe in a mathematical way the actions of the principal.
We also assume that we are in the Dolev-Yao model [13]:
the cryptography is perfect, the intruder has full control of
the network and can listen to, cancel and forge messages.
Various analysis techniques, some of which considerably
automated [5, 6, 8, 20, 26, 29, 32, and many others], have
been applied to this model to obtain proofs of certain prop-
erties, and more particularly secrecy.
For all the successes of the Dolev-Yao model, using it to
plan the design of a protocol is unnatural for a human.
People do not design protocols by enumerating all the ac-
tions that could take place; they rather think of higher-order
concepts such as “secret key only known to A and B and
used to communicate between them” and form inferences
such as “if a message arrives encrypted with a key known
only to me and machine M, and I did not send it origi-
nally, then it must have been sent by M”1. Such reasoning
is informal, which can be seen as a weakness. For this
reason, some logics of belief, aiming at formalizing such
inferences, have been proposed. The first of these was
the so-called BAN logic from Burrows, Abadi and Need-
ham [10, 11], which was followed by more expressive and
elaborate extensions such as GNY (Gong, Needham and
Yahalom [16, 17]), (Syverson and van Oorschot [33, 34])
and CKT5 [9]. One limitation of these logics is the need
to annotate the protocols with logical assertions that are as-
sumed to represent the intent of the sender of the message,
as well as logical assumptions on the secrecy or freshness

1See [36] for a long discussion on such issues.
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of certain pieces of information. Also, they cannot ver-
ify secrecy; in fact, they make the implicit assumption that
secrets are protected [25].
BAN and subsequent logics are modal logics of belief ; they
deal with the beliefs that the principals can hold about
their environment, for instance, about the distribution of
the shared keys. That notion of “beliefs” is to be under-
stood as the beliefs that a human playing the role of the
principal may reasonably hold; “sensible” rules of deduc-
tion will be provided in the definition of the logic. As
we will explain later (Section 4), it is difficult to provide
a more precise semantics.

2. A short presentation of BAN and
GNY logics

2.1. BAN logic

BAN logic [10, 11] is a many-sorted modal logic, which
distinguishes between several sorts of objects: principals,
encryption keys, nonces, and formulas, or statements. The
first three sorts of objects have already been seen 1; the
last sort is defined by the following syntax (taken from
[10, pp. 4–5]; we left out two less used constructs):2

� Pj�X: P believes X.

� P/X: P sees X. P initially knew or has received the
message X and can read and repeat it.

� Pj�X: P once said X. P has at one time sent a mes-
sage containing the statement X. It is not known
whether the message was sent long ago or during the
current session of the protocol, but it is known that P
believed X when it sent the messages.

� P Z) X: P has jurisdiction over X and should be
trusted on this matter. For instance, key distribution
servers will be trusted for statements pertaining to
keys.

� ](X): X is fresh; that is, X has not been sent in
a message at any time before the current run of the
protocol. This is usually true for nonces; ](X) will
then be used as a complement to Pj�X to establish
that a message from P is really about the current
session and is not some old recorded message used
by the intruder in a replay attack.

� P
K
$Q: P and Q may use the shared key K to com-

municate. The key K is good, in that it will never be
discovered by any principal except P or Q, or a prin-
cipal trusted by either P or Q. Note that we make
here the assumption that secrets are protected. This

symbol is commutative, i.e. P
K
$Q is equivalent to

Q
K
$P.

2We use the original notation from the authors [10], who later preferred
a more readable, albeit more verbose, notation [11]. We unfortunately
cannot use this latter notation due to width constraints.

�
+K
7! P: P has K as a public key. The matching secret
key (the inverse of K, denoted �K) will never be
discovered by any principal except P, or a principal
trusted by P.

� fXgK : This represents the formula X encrypted un-
der the key K. A weird point of BAN-like logics is
that they consider that one can encrypt beliefs repre-
sented in formula. We shall now see why.

Since messages are considered from the point of view
of their meaning, a message Kpq conveying a key
to be used between P and Q is represented in the

logic as P
Kpq
 !Q. Since the key is generally en-

crypted so as to not being divulged to the intruder,
the actually transmitted message is encrypted, for
instance

�
Kpq

	
Kqs

. The corresponding formula is�
P

Kpq
 !Q

�
Kqs

.

� (X;Y) represents the pair, or concatenation, of X
and Y. Note that this symbol will be treated as com-
mutative and associative.

We shall now see the deduction rules of BAN logic. A de-
duction rule is simply a set of premises, or hypotheses
H1; : : : ;Hn and a conclusion C written as formulas with
variables. Those variables stand for any formula, principal
or nonce. We shall write such a rule as follows:

H1 � � � Hn

C
:

Such rules allow writing proofs as trees, whose leaves are
the assumptions of the protocol or some already proved
intermediary results and whose nodes are applications of
the rules (see Figs. 1 and 2 for examples of somewhat
complex proof trees). The notation

.... α1
H1 � � �

.... αn

Hn

C

means that αi designates the branch of the proof tree whose
root is Hi . In our list of the rules for BAN logic, we shall
use this notation to identify some premises in some rules,
the use of which will be explained in Subsection 3.2.

� The message-meaning rules concern the interpreta-
tion of messages authenticated by encryption using
a shared or private key:

.... p1

Pj�P
K
$Q

.... p2

P/fXgK
Pj�Qj�X

MM1

The reasoning behind that rule is that if a key K is
shared between two principals P and Q and is kept
secret, if P sees a message encrypted with K, then it
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can assume it comes from Q. An additional (and easy
to overlook) assumption is that the message should
not have originally come from P. Burrows, Abadi
and Needham justify this by explaining that fXgK
is actually an abbreviation for fXgK from P, mean-
ing that the encryption was done by P. It is assumed
that each principal can recognize messages that it en-
crypted itself and ignore them. The message meaning
rule can then be rewritten as:

Pj�P
K
$Q P/fXgK f rom 6= P

Pj�Qj�X
MM1 :

This is a bit uneasy. GNY logic (Subsection 2.3) in-
troduces a symbol ?, meaning not originated here,
which makes such considerations internal to the
logic:

.... p1

Pj�
+K
7! Q

.... p2

P/fXg
�K

Pj�Qj�X
MM2 .

� The nonce verification or freshness rule expresses the
check that a message is recent (has been emitted in
the current session) and thus that the sender still be-
lieves in it. The freshness condition is thus meant
against replay attacks:

.... a
Pj�](X)

.... p
Pj�Qj�X

Pj�Qj�X
NV .

� The jurisdiction rule states that if P believes that Q
has jurisdiction over X then P trusts Q on the truth
of X:

.... p
Pj�Q Z) X

.... a
Pj�Qj�X

Pj�X
J .

� Unsurprisingly, a principal believes a group of state-
ments if and only if it believes each one. We recall
that pairs are treated as associative and commutative:

Pj�X Pj�Y

Pj� (X;Y)
BE1

.... p
Pj� (X;Y)

Pj�X
BE2

.... p
Pj�Qj� (X;Y)

Pj�Qj�X
BE3 .

Other similar rules may be introduced if necessary,
such as

Pj�Qj�X Pj�Qj�Y

Pj�Qj� (X;Y)
BE4 .

� Similarly, if a principal said a group of things, it said
each of them individually. Note that the converse is
not true, since it would imply that the principal said
all the things at the same moment:

.... p
Pj�Qj� (X;Y)

Pj�Qj�X
SG .

� If a principal sees a formula, then he also sees its
components, provided he knows the necessary keys:

.... p
P/ (X;Y)

P/X SP1

.... p1

P/fXgK

.... p2

Pj�P
K
$Q

P/X SP2 .

Note that the hypothesis is Pj�P
K
$Q, not P / K,

which would seem logical. In fact, this rule could
perhaps be replaced by the following pair of rules:

.... p
P/fXgK

.... a
P/K

P/X

.... p

Pj�P
K
$Q

P/K
:

The usual rule for public-key cryptosystems is that
message encrypted with the public keys are decipher-
able using the private key:

.... p
P/fXg

+K

.... a

Pj�
+K
7! P

P/X SP3 .

Note that this last rule supposes that if P believes that
K is its public key, then it holds the corresponding
private key.

The following optional rule expresses the fact
that for certain public-key cryptosystems (like
RSA [21, 28, 30]), it is possible for anybody with
the public key to decipher a message encrypted with
the private key:

.... p
P/fXg

�K

.... a

Pj�
+K
7! Q

P/X SP4 .
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� If one part of a formula is known to be fresh, then
the entire formula must also be fresh:

Pj�](X)

Pj�](X;Y)
FR1

Pj�](X)

Pj�](fXgK)
FR2 :

An important point about BAN logic is that it was intended
to be a starting point for logics adapted for certain partic-
ular uses. A person aiming at applying such techniques to
protocols may have to introduce additional constructs and
rules to reflect the particularities of the system. The use of
automatic decision procedures (see Section 3) may help in
this respect to identify the missing rules and assumptions –
which sometimes are indeed assumptions about the system
that the designer had not noticed.

2.2. The Needham-Schroeder protocol in BAN logic

We shall see here how to formalize and analyze the
Needham-Schroeder shared-keys protocol (see Section 1).
This protocol is of particular importance since many others,
such as Kerberos [22], have been derived from it; further-
more, it has a serious weakness, an undesirable assumption,
which can be demonstrated in the logical analysis.
We shall follow the analysis in [10, x 5]. The first step is
to convert the protocol description into a sequence of BAN
assumptions. Each line of the form A! B : F induces
a formula of the form B/F . We remove indications that
play no role in the logical deductions, such as the names
of the principals, and we replace some elements by their
semantic meaning: the freshly generated key Kpq, meant
to be used between P and Q, is idealized as the pair of

formulas P
Kpq
 !Q and ]

�
P

Kpq
 !Q

�
:

2: S! P :

�
Np;P

Kpq
 !Q; ]

�
P

Kpq
 !Q

�
;
n

P
Kpq
 !Q

o
Kqs

�
Kps

3: P!Q :
n

P
Kpq
 !Q

o
Kqs

4: Q! P :
n

Nq;P
Kpq
 !Q

o
Kpq

f rom Q

5: P!Q :
n

Nq;P
Kpq
 !Q

o
Kpq

f rom P:

The first message is omitted, since it does not contribute
to the logical properties of the protocol. We should never-
theless not forget that Np is created just before this first
message is sent and thus is assumed to be fresh. The
case of the last two messages is more interesting. In the
concrete protocol, Nq� 1 is used instead of Nq in mes-
sage 5 so that messages 4 and 5 are different. An in-
truder cannot replay to P its own message 4. We therefore
make this impossibility explicit by using the constructionn

Nq;P
Kpq
 !Q

o
Kpq

f rom P, give in the above explanation of

the message-meaning rule.

To start, we give some assumptions:

� The first assumptions state that the principals know
how to communicate using shared-key cryptography
between the clients and the server:

Pj�P
Kps
 !S Qj�Q

Kqs
 !S

Sj�P
Kps
 !S Sj�Q

Kqs
 !S

Sj�P
Kpq
 !Q:

� P and Q trust the server in producing a fresh and
correct shared key. They will accept whatever key K
that the server will supply; we shall therefore specify
these assumptions as axiom schemes, where K can
be instanced by any value:

8K Pj�S Z) P
K
$Q; Pj�S Z) ]

�
P

K
$Q

�
8K Qj�S Z) P

K
$Q:

Since the only value for K that makes sense to reach
useful conclusions is Kpq, we can replace these axiom
schemes by axioms:

Pj�S Z) P
Kpq
 !Q Pj�S Z) ](P

Kpq
 !Q)

Qj�S Z) P
Kpq
 !Q:

This is also required for our automatic proof tech-
nique (Section 3).

� Unsurprisingly, each principal believes in the fresh-
ness of what it generates:

Pj�](Np) Qj�](Nq)

Sj�](P
Kpq
 !Q) :

� This last assumption is needed to reach the protocol
goals, but is wrong. As pointed out in [10]:

[...] the protocol has been criticized for
using this assumption, and the authors did
not realize they were making it.

We shall discuss below the unwanted consequences
of this assumption:

8K Qj�](P
K
$Q) : (1)

Let us now see the proofs using BAN logic. First, principal
P has to ensure that the key is fresh (Fig. 1). It is then

possible to derive Pj�P
Kpq
 !Q (Fig. 2).

Also, P/

�
P

Kpq
 !Q

�
Kqs

. Since P has seen that part of the

message, it can retransmit it to Q. At this point, Q decrypts
the message, and we obtain:

Qj�Q
Kqs
 !S Q/

�
P

Kpq
 !Q

�
Kqs

Qj�Sj�P
Kpq
 !Q

MM1 .
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Let us note that Q has no means to check that this message
is fresh except for assumption 1. If we make this assump-
tion, we get

The last two messages are for P and Q to be sure that
the other one has indeed received the key and is ready to
use it:

In other words, each principal P or Q trusts the other one
in believing they share a secret key Kpq.
Let us now discuss the weakness of the protocol: assump-

tion 1
�
8K Qj�](P

K
$Q)

�
. It means that Q will accept

a proposal for a key Kpq without being able to check
whether this key is appropriate for this session. In fact,
let us suppose that an intruder I has listened to the network
and recorded a session involving P and Q. It therefore has
recorded a valid message

�
Kpq;P

	
Kqs

. Let us additionally

assume that the intruder has managed to get hold of Kpq.
Now the intruder impersonates P to initiate a run of the
protocol with Q using that recorded information:

3: I !Q :
�

Kpq;P
	

Kqs

4: Q! I :
�

Nq
	

Kpq

5: I !Q :
�

Nq�1
	

Kpq
:

Now Q believes it can communicate with P using Kpq.
Q will in good faith start talking with the intruder, believ-
ing the intruder is P. In other words, if one session key has
been compromised, all subsequent sessions can be compro-
mised as well. This contradicts one of the very motivations
for the use of session keys which is “to limit exposure, with

respect to both time period and quantity of data, in the event
of (session) key compromise” [21, x12.2.2]. As [10] points
out:

Denning and Sacco pointed out that compro-
mise of a session key can have very bad re-
sults: an intruder has unlimited time to find
an old session key and to reuse it as though it
were fresh (1981). Bauer, Berson, and Feiertag
pointed out that there are even more drastic
consequences if [P]’s private key is compro-
mised: an intruder can use [P]’s key to obtain
session keys to talk to many other principals,
and can continue to use these session keys even
after [P]’s key has been changed (1983). It is
comforting that the logical analysis makes ex-
plicit the assumption.

BAN logic has thus been successful in identifying an un-
wanted assumption of a protocol on the freshness of a mes-
sage, indicating the possibility of a replay attack.

2.3. A simple example in GNY logic

BAN logic was much criticized, on the one hand for being
some kind of dubious idealization of the already idealized
Dolev-Yao model, on the other hand for making unwanted
assumptions. We have already seen the uneasy treatment
that BAN makes of the situation where a principal P is sent
a message fMgKpq

, where Kpq is a shared key for P and Q:
P can believe that this message originated from Q only if
P is sure that this message is not a replay of one of its own
messages. GNY logic is a BAN-like logic that solves this
issue as well as others [17]:

Our new approach seems to offer important ad-
vantages over the BAN approach. It does not
require several universal assumptions which
the BAN work does. For example, it does
not assume that redundancy is always present
in encrypted messages incorporating instead
a new notion of recognizability which captures
a recipient’s expectation of the contents of mes-
sages he receives. Also, it does not assume
that a principal can always determine whether
a message was not once originated by himself.

GNY logic also separates what a principal says, what it
believes and what it possesses. Other logics have been
proposed to alleviate some other weaknesses of BAN
logic [33, 34]. We shall restrict ourselves here to a cur-
sory glance at GNY logic [17].
We shall consider a very simple (and admittedly silly) pro-
tocol:

1: A! B : Na

2: B! A : fNag�Kb

3: A! B :
�

Kab

	
+Kb

:
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Fig. 1. Deriving freshness in BAN logic.

Fig. 2. Deriving that a key is shared in BAN logic.

This is to be understood as: in step 1, A sends a newly gen-
erated number Na to B; B answers with the encryption of Na

by its private key �Kb; A answers with the encryption of
a newly generated session key Kab with B’s public key +Kb.

To illustrate how belief-logic deductions work, we first
show the idealized version of the protocol in GNY:

1: B/Na

2: A/?fNag�Kb

3: B/?

��
Kab

	
+Kb
;A

Kab !B

�
:

The star means that the following term was not originated
by the party who receives it. The statement after the wavy
arrow in 3 is an annotation meaning that Kab is intended to
be a shared secret key for use between A and B.
We also need some assumptions, written as follows in GNY:

(a) A3+Kb (A possesses +Kb)

(b) Aj�
+B
7! +Kb (A believes that +Kb is B’s public key)

(c) Aj�φ(Na) (A believes Na to be recognizable; that is,
if A sees a message field that is supposed to be Na,
A can check whether it is or not)

(d) Aj�](Na) (A believes Na to be fresh; that is, to have
been used for the first time in this run of the proto-
col).

See [17] for a complete list of the GNY inference rules
and their designations. Using those rules, we can derive
the conclusion Aj�B3 Na as in Fig. 3.

This means that from the fact, coming from protocol
step 2, that A sees the message consisting of the encryption
of Na by the private key for the public/private couple of
keys Kb, from assumption a (A possesses the correspond-
ing public key), from assumption b (B uses the private key
of the couple Kb) and from assumption c (A believes that it
can recognize Na), we deduce using rule I4 that A is entitled
to believe that B once said Na. Then, using assumption d,
which is that Na is fresh (has never been used in another
session before), we deduce that A is entitled to believe that
B possesses Na.

The final goal of the protocol might be to cause B to believe

that A believes that Kab is the shared key (Aj�A
Kab !B).

However, message 3 could have been forged by any intruder
possessing +Kb, which is realistic since it is a public key,
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Fig. 3. A derivation in GNY logic.

replacing Kab by any key of his choice. The logic (cor-
rectly) fails to conclude that the protocol accomplishes this
goal: this goal has no derivation in GNY logic from the
above set of hypotheses.

3. Decidability

A little known fact about the modal logics of belief (at
least BAN and GNY) is that they are decidable [23]. That
is, there exists an algorithm that, given a finite set of hy-
potheses H1 to Hn and a purported conclusion C, answers
whether or not C follows from H1; : : : ;Hn. We shall see in
this section the difficulties of establishing this property and
a practical algorithm.

3.1. Position of the problem

Let us first remark that not all logics are decidable. For
instance, set theory, the basis of usual mathematics, is un-
decidable [12]: that is, there exists no algorithm that takes
as input a mathematical proposition and answers whether it
is true or false. Furthermore, the analysis of cryptographic
protocols in the Dolev-Yao model, given some very reason-
able hypotheses, is also undecidable if an unbounded num-
ber of sessions is allowed, even with messages of bounded
depth [14] 3.
There are two traditional methods to test whether a for-
mula t admits a derivation from a set of hypotheses Γ in
a rule system ` (which we note by Γ ` t):

� Forward chaining, that is starting from the hypothe-
ses Γ, apply all the possible deduction rules to de-
duce new formulas, then start again with the union
of the hypotheses and the new formulas, until the
formula t is discovered.

� Backward chaining, that is, starting from the pur-
ported conclusion, find all the rules and all the instan-
tiations of the variables in them that yield that con-
clusion, then try recursively to prove the hypotheses
of each of these rules with each of the instantiations;
this requires backtracking.

There are two problems with the rule systems like BAN or
GNY:

3See also Comon and Shmatikov’s paper in this volume.

� Both forward chaining and backward chaining may
fail to terminate.

� There are rules that are unsuitable for forward-
chaining and rules that are unsuitable for forward-
chaining. For instance,

Pj�](X)

Pj�](X;Y)
FR1

has a conclusion in which there are variables that are
not found in the hypotheses. It is therefore impossi-
ble to apply forward chaining, except by introducing
variables representing unknown formulas. Similarly,
rule BE2 is not suitable for backward-chaining.

If we straightforwardly (and naively) implement the rules
of BAN or GNY logic in a general-purpose automatic the-
orem prover, as it has been done [31], the prover is likely
to search an infinite space of possible proofs, which means
that the system does not terminate when the conclusion
is not provable. Furthermore, even in cases of termina-
tion, the computation time might be prohibitive, because
the search procedure explores many useless avenues.
The approach taken by Kindred and Wing [19] and gen-
eralized by ourselves [23] is a refinement on a combina-
tion of forward and backward chaining. We shall expose
here briefly our method. This method analyses the GNY
logic [17], but is generic enough to be applied to most sim-
ilar logics. It is based on a careful application of forward-
chaining.

3.2. Composition and decomposition rules

Let us take a look at BAN logic4. We consider a partition
of the rules between these two classes:5

� Decomposition rules, in which all the variables of
the conclusion are found in the premises (these rules
are suitable for forward-chaining); for these rules, we
distinguish the principal premises (which can be one
or more) and the optional auxiliary premises; the

4We do similar work for a variant of GNY logic equivalent to GNY
logic in [23].

5This partition of the set of rules into two classes is very similar to that
of [19], where they are called respectively growing and shrinking rules.
This is also similar to the introduction and elimination rules of natural
deduction; see [15, p. 75] and [27 x II.1]. Our theorem on normal deriva-
tions is thus similar to the normalization theorem of natural deduction
[27, x IV.1] or Gentzen’s Hauptsatz [15, p. 105].
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variables in the auxiliary premises are a subset of
these in the principal premises; those rules in BAN
are the ones listed above as

.... p1
H1 � � �

.... pn

Hn

.... a1
Hn+1 � � �

.... am

Hn+m

C

� Composition rules, in which all the variables of the
premises are found in the conclusion (these rules are
suitable for backward-chaining).

The intuition is that composition rules introduce construc-
tors, like a pair, and decomposition rules break these con-
structors, as in taking the first projection of a pair.
GNY and similar logics fulfill the normal derivation crite-
rion: if there exists a derivation of Γ ` t then there must
also exist a normal derivation of Γ ` t. A derivation ∆ of
a conclusion Γ` t is said to be normal if there is no compo-
sition rule to be used as the root rule of the sub-derivation
for a principal premise of a decomposition rule: for any
decomposition rule d used in ∆:

...
P1

r1
� � �

...
Pn

rn

....
A1 � � �

....
Am

C d

where Pi are the principal hypotheses and A j the auxiliary
hypotheses, none of the rules r1; : : : ; rn is a composition
rule. In the opposite case, we say that there is a detour
at r .
Informally, that means that it must be possible to derive
anything that is derivable without having to compose some-
thing and decompose it afterwards;6 for instance, in

.... α
Pj�X

.... β
Pj�Y

Pj� (X;Y)
BE1

Pj�X
BE2

we compose a pair just to decompose it afterward, and we
could have reached the same conclusion directly using only
the α branch of the proof:

.... α
Pj�X :

3.3. Magic-set transformation

As we pointed out earlier, it is possible to implement
straightforwardly BAN or GNY logic into forward-chaining
or backward-chaining (Prolog-like) theorem provers; this is
nevertheless clumsy since:

6In terms of natural deduction and similar systems, this is often called
the inversion principle [27, ch. II].

� It is necessary to allow non-ground formulas, that is,
formulas containing variables representing unknown
sub-formulas. This means that the prover needs ap-
ply unification and not just pattern-matching when
applying rules. This makes the implementation far
more complex.

� Many unnecessary conclusions or intermediary goals
are generated. In the case of BAN or GNY logic, this
leads to non-termination when the purported conclu-
sion is not reachable from the hypotheses.

Similar problems were encountered in the field of logic
programming and queries in logical databases and led to
the introduction of the magic-set transformation [7]. This
transformation turns backward-chaining rules into forward-
chaining ones, by generating only “relevant” sub-goals.7

These sub-goals constitute the so-called “magic sets” as-
sociated with the predicates. The basic idea is that we
should only begin investigating sub-goals of a conclusion
only if some sub-goals have already been proved and some
variables instanciated (thus the vocabulary of Sideways In-
formation Passing Strategy or SIPS).
In our case, the partitions into composition and decom-
position rules, and in that latter class, between principal
and auxiliary premises gives us the SIPS. Furthermore, we
choose our partition so that all the forward-chaining rules
generated by the transformation make some measure de-
crease, thus ensuring termination. We then define another
logic, introducing a special symbol, goal. �X means that
“we would like to compose X”. Other authors call this
symbol “magic”.
Our transformation turns the composition rule

H1 � � �Hn

C

into a pair

�C H1 � � �Hn

C

�C

�H1 � � ��Hn

and adds to the decomposition rule

P1 � � �Pn A1 � � �Am

C
;

where the one or more Pi are principal premises and the
zero or more Ai are auxiliary premises, the triggering rule

P1 � � �Pm

�A1 � � ��An
:

It can be proved [23] that
Theorem 1: For any set of hypotheses H and purported
conclusion C for the ` proof system,

H ` C () H ;�C `0 C :

7As it has been pointed out [7, x II], “relevant” means “[that might] be
essential to the establishment of a fact that is in the answer”. “Relevant”
goals may actually be irrelevant to the query; the only insurance that we
have is that for any provable fact there will be one proof of that fact for
which we shall obtain all sub-goals as “relevant”.
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3.4. The decision procedure

The interest of turning the original problem on ` into
a problem on `0 is twofold:

1. All rules in `0 are suitable for forward-chaining.

2. For any finite set of hypotheses H , the length of
the derivations of the `0-proofs starting from H is
bounded. This condition is proved by giving a weight
function assigning an integer weight jF j to each for-
mula F so that the weight of the conclusion of
a `0-rule is strictly less than the maximal weight of
the premises8 (Table 1).

To some extent, the existence of the weight function is intu-
itive: some rules are evidently composition rules (building
a pair, for instance) or decomposition rules (splitting a pair),
and the intuition is that the conclusion of a decomposition
rule is “smaller” than the premises, and that the conclusion
of a composition rule is “bigger” than the premises. The
additional condition that the auxiliary premises are smaller
than the principal ones is also intuitive, since the auxiliary
premises often represent keys and the principal premises
represent encrypted data containing the key as a sub-term.
The rules resulting from the magic-set transformation then
have conclusions that are “smaller” than their premises.

Table 1
The weight function for BAN logic

F jFj

K 1

P 1

Np 1

Pj�X 1+ jXj

P/X 2+ jXj

Pj�X 3+ jXj

P Z) X 3+ jXj

](X) 1+ jXj

P
K
$Q 2+ jKj

+K
7! P 2+ jKj

fXgK 3+ jXj+ jKj

(X;Y) 1+ jXj+ jYj

For any finite set H of hypotheses, the set of conclusions
that can be derived from H is finite and can be enumer-
ated by exhaustively applying the rules of `0; this is of-
ten referred to as the saturation of the hypotheses by the
forward-chaining system `0. The decision procedure for `0

is thus simple: to test whether A`0 B, it suffices to saturate
A by `0 and test whether B belongs to the set. Let us note
that although W is used to prove the termination of the sat-
uration process, that process does not need to compute W .

8The problem is slightly more complex for GNY logic because of its
jurisdiction rule [23].

Using Theorem 1, we obtain a decision procedure for `
(which can be BAN logic or a modified version of GNY
logic [23]).
Minimal care must be taken when implementing the satura-
tion procedure, especially for more complex logics such as
GNY. Naive implementations may lead to prohibitive costs.
For instance, trying all possible rules in the fashion that to
try a n-ary rule you match it against all the n-tuples of al-
ready derived formulas, until it ends, leads to prohibitive
costs (in the case of GNY, n= 6; which makes the num-
ber of matchings grow in D7; where D is the number of
derivable formulas).
A first optimization we tried was based on the fact that one
need not test all possible n-tuples, but only ones containing
at least one “new” formula; that is, a formula made during
the last application of the rules. This is not sufficient, since
it reduces only to D6; experimentally, this is far too slow.

Our implementation is based on the fact that to instanti-
ate all the variables in a rule, you need not consider all the
hypotheses; especially, in the modified versions of the com-
position rules, only one “goal” hypothesis suffices; in the
decomposition and trigger rules, only the principal premises
are needed. Expensive exhaustive searches for the fully in-
stantiated hypotheses are replaced by a much faster binary
search. On problems taken from the protocol literature, this
implementation performed within seconds.9 Implementa-
tions based on efficient general-purpose forward chaining
systems are likely to perform even better.
Our goal is not only to “prove” protocols in the logic, but
also to identify undesirable assumptions. Our analyzer can
also help in that regard, since it generates a list of possi-
bly desirable assumptions (the formulas F so that �F is
in the saturation of the problem by `0, while F is not).
Experimentally, the list given by the analyzer tends to con-
tain the missing assumptions, but also many ludicrous ones.
Heuristics may help to produce meaningful output to the
protocol designer.

4. Semantics

We have so far defined a system of rules. But are we
sure that they are the right rules? Are we sure we are not
going to deduce something wrong because of a loophole in
the system? It would be much better if we had a way of
representing the concepts that are embodied in the formulas
and check whether the deductive relationships expressed by
the rules are actually true. For this, we must define the
semantics of formulas in terms of models.
We shall remind the reader briefly of the semantic aspects
of axiomatic methods. Let us take a simple example. It is
possible to write proofs of facts in planar geometry using
a few structural rules (modus ponens and other rules for
basic logical connectors) as well as a few axioms on geo-
metrical properties. This is the usual geometry that chil-
dren learn at school. On the other hand, it is possible to

9The implementation is freely available from the author.
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build a theory of geometry based on set theory, the integer,
the rationals, the real field and Euclidean spaces. What is
the relationship between those two theories? Every object
(point, line : : : ) of usual planar geometry can be repre-
sented by an object built from set theory. The same holds
for the relationships between those objects (parallelism, in-
tersections : : : ) and even whole statements. These rep-
resentations constitute a model. We say that a model M
represents a formula F (noted M j= F) if and only if the
representation of the formula F is true in the model M .
A statement is said to be valid if it is true in all models.
There are then two problems to consider:

� Is the system of rules that we consider sound? That
is, are all deducible statements true in all models?

� Is the system of rules complete? That is, is there
a proof for every valid statement that can be written
in the system?

It is interesting to note that indeed it is possible to give
a sound and complete axiomatic system for planar geome-
try [37] and quite a few other interesting theories.
Early attempts at giving semantics for logics of belief for
cryptographic protocols gave only somehow “trivial” se-
mantics: they basically said that what a principal believes
is what it had come to believe following the rules. Such
a semantics does not shed any light on what “belief” means
in the context of cryptographic protocols. It seems de-
sirable to have logics of belief proved to be sound with
respect to a non-trivial semantics for beliefs, which will
involve a notion of possible worlds [18]. Improved belief
logics, proved to be sound with respect to possible world
semantics, were therefore proposed [4, 34]. Later, seman-
tics based on strand spaces were also proposed [35].

5. Conclusions

BAN, and similar logics, are useful to get an idea of the
assumptions underlying the design of a cryptographic pro-
tocol. Their handling can be (partially) automated. While
they do not provide the same sort of assurance as analy-
ses in the Dolev-Yao model [13] or the spi-calculus and
its variants [1–3], they can point mistakes in the design of
protocols, including misplaced trust or failure to prevent
replay attacks.
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Paper CardS4: modal theorem
proving on Java smart cards

Rajeev Prabhakar Goré and Phuong Thê Nguyên

Abstract — We describe a successful implementation of a the-
orem prover for modal logic S4that runs on a Java smart card
with only 512 KBytes of RAM and 32 KBytes of EEPROM.
Since proof search in S4 can lead to infinite branches, this is
“proof of principle” that non-trivial modal deduction is fea-
sible even on current Java cards. We hope to use this prover
as the basis of an on-board security manager for restricting
the flow of “secrets” between multiple applets residing on the
same card, although much work needs to be done to design the
appropriate modal logics of “permission” and “obligations”.
Such security concerns are the major impediments to the com-
mercial deployment of multi-application smart cards.

Keywords — security of mobile code, modal deduction.

1. Introduction

Smart cards are credit-card sized pieces of plastic with an
embedded silicon chip. Smart cards are either memory
cards, which cannot be programmed, or microprocessor
cards, which contain a small amount of RAM and disc
(EEPROM) on the card itself. A card reader/writer is re-
quired to provide power to the card, to provide a clock
signal, and to act as an interface between the card and the
terminal (a PC, an ATM machine, a public telephone, or
even a mobile telephone).
Java cards are smart cards that contain a (downsized) Java
platform, installed by the manufacturer, thus allowing users
to download Java applets and run them on the card. Java
cards can therefore provide multiple applications such as
electronic purse, credit card, passport, loyalty programmes,
all residing on the same card.
While exchanging data securely already poses a number of
problems (this prompts the need for cryptographic proto-
cols, examined in a number of other papers in this issue),
exchanging, even if only down-loading programs entails
quite a number of new problems. It is all too easy to break
every security policy by just down-loading one bad applet
and letting it loose on the card. One example, not specific
to cards, is the BrownOrifice applet [10], a Java applet that
installs on any PC that down-loads and serves its entire file
system to any outside attacker. Another is an attack allow-
ing an outside intruder to register a bank transfer via the
Quicken home-banking software [8].
The purpose of this paper is, first, to give a short sur-
vey of proposed techniques to enforce security in settings
where applications can be loaded or down-loaded, and more
specifically of Java card related techniques. Orthogonally,
logics, and more specifically modal logics, have been used

to specify security policies. We review the use of logics
in this context. One challenge here is to be able to prove
automatically formulae in sophisticated modal logics, ef-
ficiently, and – in the Java card context at least – under
sparse memory resources. We shall demonstrate how this
can be done for the logic S4– not yet the kind of logics we
would like to deal with, but already one which is known
to pose non-trivial problems. (Technically, this is because
the transitivity of S4 frames, as opposed to, say, K frames
requires loop checks that are usually memory-consuming.)
The Java cards used in this project were the GemXpresso
RAD Protyping card, containing a 32-bit microprocessor
with 512 bytes of RAM, 32 KBytes of Flash EEPROM
and 8 KBytes of ROM. As of 2001, this is state of the art
in Java card technology, and gives an indication of how
little memory is available on Java cards.
The paper is set out as follows. We spend some time in
Section 2 surveying method for ensuring security of mo-
bile code, and Java card applets in particular. This includes
discussions of several models or techniques, including the
notion of non-interference, verification by typing, by static
analysis of programs and by formal proofs in specific log-
ics. We argue that being able to prove formulae of modal
logics on-card is a promising security enforcement tech-
nique. The rest of the paper shows that, in principle, even
complex modal logics with transitive frames can be han-
dled on a card, by studying the prototypical transitive modal
logic, S4. Section 3 describes the logic S4and the basics of
modal theorem proving using tableaux. Section 4 explains
the design of our prover CardS4, while Section 5 refines
this by explaining the precise data structures that allow our
prover to run in tiny memory spaces. Section 6 describes
our implementation, and Section 7 presents test results. We
conclude in Section 8.

2. Java cards and security
of mobile code

2.1. Java cards

Current Java cards are preprogrammed to contain applets
by the manufacturer for the card vendor, typically a bank
(for credit and debit cards), or an airline (for frequent flyer
cards). But if Java cards are to succeed then a card carrier
must be able to down-load new applets onto an existing
card “just in time”, or even merge existing cards into one
card. This would mean that multiple applets from different
vendors would reside on the same card.
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The single biggest problem with this scenario is that of se-
curity. How can we guarantee that a simple query to the
drivers licence section of the card for identification pur-
poses (say) will not steal money from the card’s electronic
purse? If new applets are to be down-loaded then how can
the vendor of applet A ensure that a competing vendor’s ap-
plet will not be down-loaded at a later stage and steal infor-
mation from applet A? Alternatively, applets A and B may
trust each other to some extent, and therefore share some
information. But if applets B and C enjoy a similar trust
relationship, how can A be sure that B will not tell C infor-
mation which it has obtained from A [14, 34] ?
Many methodologies for guaranteeing such security have
been investigated, but almost all of them involve a trusted
“third” party. For example, the bank applet may be signed
using a digital signature obtained from the government that
certifies that the applet really did originate from the bank
in question. The digital certificate is decoded by the card’s
on-board digital signature chip and the applet is allowed
to access the card’s electronic purse. But the need for
a certification agency and a certification procedure makes
this avenue cumbersome.

2.2. Enforcing security policies for mobile code

An alternative methodology that involves no third parties
is for card owners to implement a personal security pol-
icy using some international standard “language for secu-
rity”. The electronic purse applet installed on the card may
come with such a built in security policy which the user
is prompted to tailor to his or her needs. Another applet
which wishes to access the electronic purse must now pass
a challenge determined by the level of security chosen by
the card user.
As new applets are added to the card, they are slotted into
this set up either explicitly by the card user, or by some im-
plicit default method. The simplest method is to use some
form of access control list as is done by the smart card for
Windows system (http://www.microsoft.com/smartcard),
which uses simple propositional logic in its access con-
trol lists. A more sophisticated approach is to use a hierar-
chy with the “public” applets at the bottom, the “private”
applets at the top, and the others in between these two ex-
tremes in some partial order [14, 34]. This is similar to
the Bell-La Padula model of military security [7], which
is the basis of the access-right policy of operating systems
like Unix. Each applet A is given an accreditation acc(A)
from some partially ordered set, while each object O on
the card has an access right right(O); the security pol-
icy is that A can only access O if acc(A)� right(O); also
A can only modify O, storing the contents of object O0

into O, if acc(A) � right(O) and right(O0) � right(O).
This is Bell and La Padula’s star condition; without it,
A might unwittingly declassify O0 by storing its contents
into O, thereby allowing non-accreditated applets to access
the contents of O0 by subsequently reading that of O. These

conditions can be enforced at run-time. The relationship
between access control lists and object-level access rights
is essentially a matter of whether access rights are stored
in a centralized way or on a per-object basis. The pre-
cise relation between these and other so-called trust man-
agement models, such as capabilities, is analyzed in detail
in [9].
The latter paper in particular addresses the difficult matters
of handling delegation, whereby a subject (an applet, in
our context) is allowed to act in the name of another for
some designated objects, and revocation, whereby subjects
are deprived of their accreditation. In the latter case, think
of a vendor applet that will only provide a service to the
card owner while she holds an annual subscription to that
service.
Apart from revocation, trust management policies are still
limited in the way they deal with dynamic change. In par-
ticular, how should the ordering � be modified when a new
applet is down-loaded? The Bell-La Padula model and its
variants all assume a fixed ordering. But if down-loading
an applet is allowed to modify the access rights ordering,
possibly adding new accreditations or object access rights,
a new policy is needed to prevent abuses; e.g., we should
not allow the down-loading process to accept applets claim-
ing to introduce a new accreditation greater than all pre-
existing ones. Also, there should be some mechanism to
enforce that the modified ordering still is an ordering.
Even then, solving these problems would not solve prob-
lems related to transitive information flows. Take the shared
secrecy example above, where applet A trusts B, and
B trusts C, but A does not trust C [14, 34]. For exam-
ple, A might be a loyalty applet, and B might be a bank-
ing applet originating from a bank that has business deals
with A’s originator, so that if the card owner has accumu-
lated enough loyalty points through A (think frequent flyer
miles), then B will offer the card owner some added pay-
ment facilities. Now C might be the on-card part of an
account management programme, which will need to ac-
cess information from B, and will be trusted by B to do so.
Then C can learn about the degree of loyalty of the card
owner vis-a-vis A’s originator by examining payment facil-
ities offered by B: although A and C’s originators never
signed a deal allowing C to access loyality information
from A, C can still get it through interaction with B.

2.3. Non-interference

Checking such properties can be done, at least partially, by
checking non-interference properties [18]. At a basic level,
non-interference for some computer system S (an applet,
or a collection of applets) means that for every collection
of objects O in the system, the value of objects with low
access rights should never depend on the value of objects
with high access rights. In other words, no observer should
be able to tell anything about the values of objects with high
access rights by just looking at values of objects with lower
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access rights. In particular, if an applet’s accreditation level
is a, its output should be independent of the value of any
object with access right > a.
Non-interference is similar to the way secrecy and authen-
tication are originally defined in Abadi and Gordon’s spi-
calculus [3]: a message M is secret in some protocol P(M)
if and only if no outside attacker can tell the difference be-
tween running P(M) or running P(M0) for some other value
M0 of the secret. Formally, this is defined by saying that for
every process I in the calculus, I parallel P(M) and I par-
allel P(M0) should be may-testing equivalent. (Technically,
this also requires the parallel compositions to be enclosed in
suitably many (νn) constructs to represent channel, nonce
and key generation.) This similarity with non-interference
can be used to cast it as a non-interference problem, where
the secret M would be assigned some high access right,
and we require that non-interference holds assuming that
the intruder has strictly lower accreditation. This is used
in a typing system for secrecy [1]. A similar but slightly
more complicated typing system also exists for authentica-
tion [17].
While non-interference seems a promising idea, checking
non-interference is harder than it seems. Many type sys-
tems have been proposed in various restricted settings. One
of the most sophisticated is [38], which considers non-
interference in the presence of concurrency, where com-
putations have observable durations, and in a probabilistic
model.
Type systems for non-interference have to be crafted so that
well-typed applets do obey non-interference. The resulting
type systems are in general severely restricted as to which
applets it will accept as well-typed.
To show what the difficulties are, first examine concurrency.
Assume that applet A and applet B are both secure in the
sense that none, when run alone, may terminate with some
low object containing a value which depends on the initial
contents of a high object. Then the parallel composition
of A and B might be insecure. For example, consider three
objects Ohi, Olo and O0

lo, with respectively high, low and
low access rights. For simplicity, assume that these objects
only contain boolean values. Let A store the contents of
Ohi inside Olo, do nothing for a while, then erase all fields
of Olo; for short we write A as the program:

Olo := Ohi; sleep; Olo := 0;

A is secure, since the final value Olo, zero, is independent
of the initial value of Ohi. Let B do nothing for a while,
test whether Olo is true, and if so set O0

lo to true, otherwise
to false. That is, B is:

sleep; if Olo then O0

lo :=true else O0

lo :=false;

Again, B is secure, since it never reads the value of any
high object. Note that, if Olo were replaced by Ohi in B,
and even though B never copies its value to any other
object, the resulting value of O0

lo would depend on that
of Ohi, and B would not be secure; this shows that Bell and

La Padula’s conditions are in general not enough to ensure
non-interference.
The important point in this example is that A and B in
parallel are not secure: if A first does Olo := Ohi, then
B tests Olo, thus in effect B is computing a value of O0

lo
that depends on Ohi, violating non-interference. This may
in fact happen with non-negligible probability, depending
on the scheduler. The paper [38] examines more sophisti-
cated interference patterns in which B cannot actually learn
from the value of some high object because of timing con-
siderations under a probabilistic model, assuming a prob-
abilistically uniform scheduler. For example, if B sleeps
long enough first in the example above, and A and B are
started at the same time, then A parallel B will in fact still
be secure with high probability.

2.4. Static program analysis

Checking properties of programs, whether security prop-
erties or others, can be done through typing, or through
dataflow analysis, in general through any static program
analysis technique.
One of the most well-known Java related dataflow analysis
technique is Java’s bytecode verifier [27]. Every down-
loaded Java class file, in particular every Java applet, is
checked for format conformance first, then names are re-
solved, then every method in the class file is checked – this
is bytecode verification proper. This latter phase checks
that all operations are well-typed, that stacks do not over-
flow, plus a number of other sanity conditions, through
a dataflow analysis.
While these checks are absolutely necessary for security
(any type confusion error can indeed be exploited to create
a security breach [30]), there are two issues that need to
be addressed. First, the Java bytecode verifier consumes
too many resources to be implemented on a Java card: in
particular, the first Java cards did not include any byte-
code verifier, and rested solely on cryptographic certifi-
cates and a trust relationship with applet issuers; as [8]
demonstrates, this is not enough. Second, the bytecode ver-
ifier only addresses low-level safety issues (bounds check-
ing, typing), and is far from ensuring any security-related
property.
There are at least two different solutions to the first prob-
lem. One, inspired from Necula’s proof-carrying code con-
cept [32], is Rose’s lightweight bytecode verification [36],
used in Sun’s small-footprint KVM Java virtual ma-
chine [39], designed for embedded applications. The idea
is to split the bytecode verifier in an off-card part and an
on-card part. The off-card verifier actually runs a dataflow
analyzer similar to the standard bytecode verifier, except
that on success it also outputs a certificate. The off-card
verifier is run by the card issuer, who then appends the
certificate to the applet. When the applet is down-loaded
on the card, it comes with the certificate. The on-card
verifier then only checks that the certificate is valid and is
a certificate for the given applet. While cryptographic cer-
tificates are certainly the simplest form of certificates, the

70



CardS4: modal theorem proving on Java smart cards

approach of [36] is more drastic: the certificates there are
(a compressed form of) the typing information that a byte-
code verifier needs to compute. It merely remains for the
on-card verifier to check that the certificate is consistent
with the semantics of all bytecode instructions present in
each method. This takes less time, and more importantly
less space than standard bytecode verification. This method
applies to essentially any verification method that relies on
proving some property of an applet in some formal deduc-
tion system (in the large; here typing is thought as a for-
mal system, while Necula considers properties expressed
in a variant of the logical framework LF [22] with a few
extensions).
The other current way of incorporating bytecode verifica-
tion into Java cards is Leroy’s simplified bytecode verifier.
This does not conform to Sun’s specification of bytecode
verifier as such, and in particular may reject applets that
would be accept by the Sun’s verifier. However this is
repaired by an off-card component which rewrites any ap-
plet conforming to Sun’s specification into one that will be
accepted by the simplified verifier. The point is that the
simplified verifier is actually able to run on a standard Java
card, despite the severe restrictions on memory resources
on cards. The basic intuitions behind this technique, as well
as a lucid account of problems and solutions for bytecode
verification, can be found in Leroy’s paper [25].
The second problem with bytecode verification is that it
only addresses low-level issues: typing, stack overflows,
notably. It does not address any less trivial security issue
such as the transitive flows mentioned earlier, for exam-
ple. There is still little work on methods for checking more
sophisticated security properties. Leroy and Rouaix [26]
address the problem of verifying, by typing, that a down-
loaded applet does not corrupt designated sensitive data on
the system it is down-loaded onto. El Kadhi [5, 12] ap-
plies abstract interpretation methods to design a static ana-
lyzer that checks an applet for cryptographic confidentiality
preservation properties: the goal is to ensure that desig-
nated sensitive data on a card are not leaked to a Dolev-
Yao-style intruder (see [11]), even though this data may
have to be sent out of the card (i.e., properly encrypted).
This uses techniques from cryptographic protocol verifica-
tion.

2.5. Logics

For checking more sophisticated security properties, it is
implicit in the above discussion that we need a language
to talk about the security properties of interest that can be
understood both by card issuers and by on-card verifiers.
This language should have a formal semantics. In other
words, it should be a logic at large. Proof-carrying code
already takes the viewpoint that properties should be speci-
fied in a logic, and that proofs should be sent along with the
code to avoid costly reconstructions of proofs on the card
side – this is a technological choice that may or may not
be relevant, depending on the logic and available on-card

resources. El Kadhi’s work is another example: while the
paper [12] does not mention any specific logic, El Kadhi’s
analyzer actually does deductions in a system of symbolic
constraints that approximate the intruder’s state of knowl-
edge.
We can also use actual logics to express and check se-
curity properties. While this is the approach in Necula’s
original approach, taking a general logic such as LF might
be overkill. In particular, LF provability is undecidable.
However, multi-modal propositional logics provide interest-
ing languages that are expressive enough to encode most
properties of interest, while usually remaining decidable.
Multi-modal propositional logics are now well-established
in artificial intelligence research as bases for defeasible rea-
soning [37], logics of agents [35], and logics of authenti-
cation [4, 29]. Monniaux [31] shows that BAN and GNY
logics are decidable, while Massacci [28] gives a tableaux
calculus for the (undecidable) logic of access control of [2].
We refer the reader to [31] for more information on such
logics. Multi-modal logics like Propositional Dynamic
Logic [15] have also been used to model the changing
states of a program. Finally, propositional bi-modal tense
logics give a very simple and elegant model of the flow of
time [21].
Checking that a down-loaded applet meets the security cri-
teria is now reduced to proving, on-board, that an ap-
propriate formula is a theorem of the logic used to code
the criteria, since this is the only computer that the cus-
tomer should trust. Let us stress that multi-modal logics
are particularly well-suited to this task as most of them are
decidable. Consequently, the ability to perform automated
multi-modal deduction on Java smart cards may be of use
in electronic commerce.
But surely multi-modal deduction is simply too difficult to
perform on a smart card with extremely limited resources.
After all, even classical propositional logic is NP-complete,
and most multi-modal logics are actually PSPACE-complete!
In [19] automated deduction in bi-modal tense logics was
shown to be feasible on a Java smart card. It is reasonably
straightforward to extend this work to other multi-modal
logics, and hence to logics of knowledge and belief, or to
logics of authentication and security. But many of these
logics (e.g. PDL) contain operators which are inherently
transitive, and transitivity can lead to infinite loops. (This
will be illustrated in later sections on S4.) In the sequel we
show that transitivity is not insurmountable by implement-
ing a prover for the transitive modal logic S4. This also
shows that, although proof-carrying code-style techniques
could be used here as well, they are probably unneces-
sary.
This work is naturally still far from an on-card prover for
a logic of authentication or security, in the style of [4, 28].
This work should therefore be thought of as “proof of
principle” that a logic-based security policy could be im-
plemented on current Java cards. As the resources and
speed of Java cards skyrocket, the task will only become
simpler.
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w j=> for every w2W wj=? for no w2W
w j= p iff w2V(p) w j= :ϕ iff w 6j= ϕ
w j= ϕ ^ψ iff w j= ϕ and w j= ψ w j= ϕ _ψ iff w j= ϕ or w j= ψ
w j= ϕ ! ψ iff w 6j= ϕ or w j= ψ
w j= �ϕ iff (9v2 R(w))(v j= ϕ) w j=�ϕ iff (8v2 R(w))(v j= ϕ)

Fig. 1. Kripke semantics for S4.

3. Syntax, semantics and tableaux
for modal logic S4

3.1. Syntax and semantics for S4

Given a denumerably infinite set of atomic formulae PRP=
= fp0; p1; p2; � � � g, a formulae ϕ of modal logic is defined
using the following BNF grammar:

p ::= p0 j p1 j p2 j � � �

ϕ ::= > j ? j p j :ϕ1 j ϕ1^ϕ2 j ϕ1_ϕ2 j ϕ1 ! ϕ2

j �ϕ j�ϕ

Propositional symbols in PRP denote elementary proper-
ties, e.g., “file accounts has access right privileged”,
or “user Joe has accreditation standard”, or “stand-
ard � privileged”. They might be true or false; for
example, we may imagine that the first two properties above
are true, while the last one is false.
The other connectives are > (true), ? (false), : (negation),
^ (and, conjunction), _ (or, disjunction), ! (implication),
and the modal connectives � and �. The latter require
some explanation. We may for example understand these
connectives in the context of modeling agent knowledge
(with one agent a) by letting �A mean “a knows (is sure
that) A”, and �A mean “a believes A”. What the latter
means is that a is not sure that A is false, so a accepts A as
likely, although a cannot be sure of A.
The formulae of the logic S4 can also be given another,
temporal meaning, in which the truth-values of formulae
evolve through time, and �A means “from now on, A is
always true”, while �A means “A will eventually become
true at least once”.
These meanings of S4 formulae are special cases of its
Kripke semantics. A Kripke frame is a pair hW;Ri where
W is a non-empty set (of worlds) and R is a binary rela-
tion over W. A Kripke model hW;R;Vi is a Kripke frame
hW;Ri augmented with a valuation V : PRP 7! 2W map-
ping each atomic formula to the subset of W where they
take the value “true”. If w 2 V(p) we write w j= p and
extend this satisfaction relation to arbitrary formulae in
the usual way [21] as shown in Fig. 1 where for any
w2W, R(w) := fv2W j wRvg.

An S4-model is a Kripke model where R is both reflexive
(8w2W)[wRw] and transitive (8w1;w2;w32W)[w1Rw2&
w2Rw3 ) w1Rw3].
A formula ϕ is S4-satisfiable if and only if there exists
some S4-model with some w2W such that w j= ϕ . A for-
mula ϕ is S4-valid if w j= ϕ for every w 2 W in every
S4-model hW;R;Vi.
We illustrate this notion of model on a few S4 formulae.
First, �ϕ ! ϕ is a valid formula. Temporally, this means
that if from now on, ϕ is always true, then ϕ is true now.
For agents, if a knows that ϕ holds, then ϕ indeed holds;
that is, a does not make mistakes. Another interesting for-
mula is�ϕ !��ϕ . Temporally, this means that if ϕ holds
in every future from now, then in every future from now,
in every future of this future, ϕ will again hold. In the
world of agents, this is positive introspection: if a knows
that ϕ holds, then a also knows that it knows that ϕ holds.
A third important formula is �(ϕ ! ψ)! (�ϕ ! �ψ),
which states that agents can perform deductions: if a knows
that ϕ implies ψ , and a knows that ϕ holds, then a necessar-
ily knows that ψ holds, too. Finally, we mention the subtle
rule of necessitation: if ϕ is valid, then so is �ϕ . That
is, if ϕ is always true, typically because there is a proof
of ϕ , then a is sure that it holds. We let the logically-
minded reader that the three formulae above and the neces-
sitation rule all hold in any S4-model.

3.2. Proof search in S4 using tableau calculi

The problem of deciding whether or not a formula is
S4-satisfiable is known to be PSPACE-complete [24]. The
best known decision procedures use only O(n2:logn)-
space [23].
The most popular method for implementing theorem
provers for S4 is to use the tableau method [13, 16]. This
uses the rules of Fig. 2, plus their duals for :� and :�
obtained via the equivalences :�ϕ = �:ϕ and :�ϕ =
= �:ϕ , and for negations of other connectives obtained
via the equivalences :(ϕ1^ϕ2) =:ϕ1_:ϕ2, :(ϕ1_ϕ2) =
=:ϕ1^:ϕ2, :>=?, :?=>. The rules for implication
are derived from ϕ1 ! ϕ2 = :ϕ1_ϕ2.
An S4-tableau for a finite set of formulae Z is a binary
tree of nodes where: the root node contains Z and the
children are obtained by an application of some tableau
rules for S4 to the parent node. The rules are applied
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systematically so that the (�S4) rule is applied only to
a saturated node: a node to which all other rules have
already been applied. A branch of such an S4-tableau is
closed if its leaf node contains both ϕ and :ϕ for some
formula ϕ , or if it contains ?; otherwise the branch is
open. The whole S4-tableau is closed if every branch in
it is closed, otherwise it is open. A formula ϕ is proved
when there is a closed tableau for the finite set Z = f:ϕg.

X;ϕ1^ϕ2
(^)

X;ϕ1;ϕ2

X;ϕ1_ϕ2
(_)

X;ϕ1 X;ϕ2

X;�ϕ
(�S4)

X;�ϕ ;ϕ

X;�Y;�ϕ
(�S4)

�Y;ϕ

Fig. 2. Tableau rules for S4.

As a first example, we may prove the formula

(p^q)! (q^ (q! p))

as follows. First, negate this formula to get:

p^q^ (:q_ (q^:p)) :

Formally, we have simplified the negation by pushing nega-
tions inside formulae, using transformation rules :�A!
�:A, :�A ! �:A, :(A ! B) ! A^ :B, :(A^ B) !
:A_:B, :(A_B)! :A^:B, :> ! ?, :?! >, and
removing double negations ::A! A. This process ends
in a formula where negation is only applied to atomic for-
mulae, the so-called negation normal form (NNF).
Then, we may apply rule (^) twice to produce the tableau
node p;q;:q_ (q^:p). The only rule that applies now
is (_), yielding two nodes p;q;:q and p;q;q^:p. The
first one is closed. The only rule that applies to the second
is (^), yielding p;q;q;:p, which is closed. Each branch is
closed (contradictory): this terminates the proof. To sum
up, this proof is written:

p^q^ (:q_ (q^:p))
(^)

p;q;:q_ (q^:p)
(_)

p;q;:q p;q;q^:p
(^)

p;q;q;:p

One example we shall use in the sequel is:

��p^��q! �(q^ p) : (1)

Its temporal meaning is “if p is always such that it will be-
come true later on, and if q eventually becomes true then
remains true forever, then p and q will eventually become
true simultaneously”. Its meaning based on agent knowl-
edge is “if I know that I believe p, and if I believe that I

know q, then I believe p and q”. This formula is S4-valid,
as can be shown by looking at its Kripke semantics.
Alternatively, we prove it as follows. A tableau proof starts
with the NNF of its negation:

��p^��q^�(:q_:p): (2)

A closed tableau is then:

��p^��q^�(:q_:p)
(^)

��p;��q;�(:q_:p)
(�S4)

��p;�p(a);��q(b);�(:q_:p);:q_:p
(�S4)

��p;�q;�(:q_:p)
(�S4)

��p;�p(a);�q;q;�(:q_:p);:q_:p
(�S4)

��p; p;�q;�(:q_:p)
(�S4)

��p;�p(a); p;�q;q;�(:q_:p);:q_:p
(_)

��p;�p(a); p;
�q;q;�(:q_:p);

:q

��p;�p(a); p;
�q;q;�(:q_:p);

:p

(3)

The first (topmost) use of rule (�S4) generates a node
where there are two �-formulae, written here with super-
scripts (a) and (b). Then we may use (�S4) in two ways,
using (a) or (b). The proof above uses (b); in fact there
is no proof where we would use (a) instead at this point.
We retrieve (a) below in the same proof: this is where it is
used with (�S4). Although (a) is again regenerated below,
we do not use (�S4) again. The final rule is (_), which
closes the whole tableau. This proves (1).
Theorem 1 (Soundness and Completeness) . The finite set
f:ϕg has a closed S4-tableau iff the formula ϕ is
S4-valid [13, 16].
As a special case, ϕ is S4-valid if and only if the finite
set fψg, where ψ is the negation normal form of :ϕ , has
a closed S4-tableau using only the rules of Fig. 2. Indeed
a closed tableau for a negation normal form can only use
the rules of Fig. 2. We shall restrict to negation normal
forms in the rest of the paper.
The completeness proof gives a systematic method for
proof-search, which consists of repeatedly applying all the
invertible rules (^), (_) and (�S4) until no more appli-
cations of these rules are possible. In the case of (�S4),
this has to be made more precise: given �ϕ in the current
node, we add ϕ to it, and mark �ϕ so as to prevent any
reapplication of (�S4) to the same formula �ϕ . When
none of these rules is applicable, we have reached a node
that corresponds to a so-called saturated world in the under-
lying Kripke model under construction; see [16] for details.
Some �-formula �ϕ is then singled out for attention from
this saturated node and a successor is created for it using the
(�S4)-rule. Precisely, �ϕ is replaced by ϕ , all �-formulae
are unmarked (so as to reenable the application of (�S4)),
and all other formulae are removed from the current node.
The application of (�S4) usually requires backtracking: if
no proof is found by singling out �ϕ from the current node,
some other �-formula has to be chosen instead, until one
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finds one that leads to a proof, or until all �-formulae have
been tried.
Naive proof search for a closed S4-tableau for some finite
set of formulae Z using this systematic method can lead to
infinite loops viz. Z = f��p; pg:

��p; p
(�S4)

��p;�p; p
(�S4)

��p; p
�
�
�

Hence some form of loop-checking is necessary: if some
node is obtained that has already been generated above in
the same tableau, then proof search fails. In this example,
this means that there is no closed tableau for Z.
Backtracking involves additional complications, in that
loops do not always mean that there is no proof, rather
that we have to make different choices to find a proof (if
any). This can be seen from (3), where we can simulate
the above loop by repeatedly applying rule (�S4) on for-
mula (a) (in particular, by using this rule rather than (_)
in the bottom deduction). This would loop; nonetheless (1)
has a proof, namely (3).
Technically, it is also important that nodes are compared as
sets, not just as lists; that is, duplicate formulae in nodes
have to be removed. Otherwise, as the reader might want
to check, the formula ���p! ���p leads to infinitely
many nodes of the form ���p;���(:p);�p; : : : ;�p,
with an unbounded number of occurrences of �p.
It turns out that sets of nodes obtained higher up by the
(�S4) rule only need to be kept in the checklist. As we
shall demonstrate, this will allow us to keep the space re-
quirements for proof search to within polynomial bounds.

4. Algorithms

We now describe our algorithm and data structures in more
detail.

4.1. Terms

Negation normal form. Input formulae are assumed to
be in negated normal form (NNF). This requirement is not
restrictive since every formulae can be converted into a log-
ically equivalent NNF formula in linear time [6]. The ad-
vantage of using NNF is that the formulae in the parse tree
of the NNF formula constitute all of the formulae that can
appear in any node of the search tree.

Parse tree. A formula is parsed as a tree, where each
node has at most two children. The nodes are characterized
as CONJ, DISJ, ALL, SOME if they are of type ϕ ^ψ ;ϕ _
ψ ;�ϕ ;�ϕ respectively. At the leaves there are literals:
atomic formulae or their negations. Each node represents
a subformula of the original NNF formula, with the root
representing the whole NNF formula. With the tableau

rules of Fig. 2, it can be shown that the subformulae that
appear in the parse tree are all the formulae that can appear
in the nodes of the search tree. Clearly, the number of
nodes in the parse tree is less than or equal to the length of
the formula (it is exactly the length of the formula less the
number of negation symbols). The number of formulae in
any node of the search tree is therefore less than the length
of the original NNF formula.

The parse tree is indexed, i.e., each node of the parse tree
receives an integer number, so that each parent node has
a smaller index than its children. This simplifies the visit
sequence of the parse tree, as can be seen below.

Search tree. In the sequel we refer to the S4 tableau as
the search tree.

n�, n
�

, n_, n^. The number of subformulae of the appro-
priate type in the original NNF formula.

4.2. Storing nodes in the search tree

The parse tree provides access to the finite list of all for-
mulae that can appear in the nodes of the search tree. Thus
each node in the search tree can be represented as a bit
string, whose bits indicate whether or not the corresponding
formulae is present in the node. This bit string has length
equal to the length of the original formula. Thus storing
one node in the search tree requires n bits, where n is the
length of the original formula.
In the case of formula (2), we may index each subformula
by the following numbers

�� p
|{z}

7
| {z }

4
| {z }

1

^�� q
|{z}

8
| {z }

5
| {z }

2

^�( :q
|{z}

9

_ :p
|{z}

10

)

| {z }

6
| {z }

3
| {z }

0

(4)

The leftmost final node of the proof (3) is then the set
f1;4;7;5;8;3;9g, represented as the bit string 01110111010
(bit 0 being the rightmost), while the two conclusions of
rule (�S4) used in the proof are f1;5;3g (00000101010)
and f1;7;5;3g (00010101010).

4.3. Loop checking

As shown in Section 3.2, a S4-tableau can contain an
infinite branch. This problem can be solved by notic-
ing that only a finite number of different nodes can ap-
pear in a search tree, and by avoiding examining any node
twice. Thus if a node has ever been encountered before,
it can be safely ignored. In this case, we backtrack to
the last application of the (�S4) rule, and choose a dif-
ferent � formula there. If all � formulae have been tried,
we backtrack higher up to the previous application of the
(�S4)-rule, and so on until all avenues have been explored,
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prove(pos;neg;? :: `;boxes;dias;checkList) = true
prove(pos;neg;> :: `;boxes;dias;checkList) = prove(pos;neg; `;boxes;dias;checkList)
prove(pos;neg; p :: `;boxes;dias;checkList) = p2 neg_prove(pos[fpg;neg; `;boxes;dias;checkList) (p2 PRP)

prove(pos;neg;:p :: `;boxes;dias;checkList) = p2 pos_prove(pos;neg[fpg; `;boxes;dias;checkList) (p2 PRP)
prove(pos;neg;(ϕ ^ψ) :: `;boxes;dias;checkList) = prove(pos;neg;ϕ :: ψ :: `;boxes;dias;checkList)
prove(pos;neg;(ϕ _ψ) :: `;boxes;dias;checkList) = prove(pos;neg;ϕ :: `;boxes;dias;checkList)

^ prove(pos;neg;ψ :: `;boxes;dias;checkList)
prove(pos;neg;�ϕ :: `;boxes;dias;checkList) = prove(pos;neg; `;boxes;dias[fϕg;checkList)
prove(pos;neg;�ϕ :: `;boxes;dias;checkList) = prove(pos;neg;ϕ :: `;boxes[fϕg;dias;checkList)

prove(pos;neg; [];boxes;dias;checkList) = 9ϕ 2 dias� (boxes;ϕ) 62 checkList
^prove( /0; /0;ϕ :: boxes;boxes; /0;checkList[f(boxes;ϕ)g)

Fig. 3. A straightforward proof search algorithm.

or a closed S4-tableau is found. This, however, is not a prac-
tical method, since it would require exponential space to
store all the possible nodes of the search tree.
A better method is to check for repetitions of the nodes
obtained by the application of the (�S4) rule only, since
these contain the “core” of the new worlds built by this rule.
Thus the latter method looks for repetitions of the initial
configuration of each newly generated world. This also
guarantees the solution for the infinite branch problem, yet
requires polynomial space. The price is that identical nodes
on different branches now have to be treated separately.

4.4. A straightforward non-deterministic algorithm

A naive implementation of S4tableaux would be by the fol-
lowing recursive procedure prove. We specify it concretely
enough that we can use it as actual code in any functional
programming language. The prove function takes six ar-
guments (pos;neg; `;boxes;dias;checkList), where posand
negare sets of propositional variables (being variables p oc-
curring as p, resp. :p on the current node), ` is a list of
formulae (the part of the current node containing formulae
that we have to deal with), boxesis a set of formulae ϕ such
that �ϕ occurs in the current node, dias is a set of formu-
lae ϕ such that �ϕ occurs in the current node – so that
the current node is exactly the set of formulae in `, plus all
atoms from pos, all negations of atoms from neg, all for-
mulae of boxeswith a � added in front, and all formulae of
dias with a � added in front. Finally, checkListis a set of
pairs (boxes;ϕ) representing conclusions of the (�S4) rule
that we have encountered higher up in the current tableau
and which should not repeat (loop-checking).
Then our first algorithm may be written as in Fig. 3, which
may be implemented right away in languages like ML [33].
The notation ϕ :: ` denotes the list ` with ϕ added in front.
This is mainly used for pattern-matching purposes, and in
that case it checks that the corresponding argument is a non-
empty list, gets the first element in ϕ and the rest of the list
in `. We write [] the empty list, and [boxes] any list whose
elements are those of the set boxes.
All the clauses in Fig. 3 except the last one dispatch formu-
lae in the to-do list ` depending on their topmost symbol.
Eventually, prove will be called with ` = [], leading to

the last clause, which tries to apply rule (�S4) in a way
leading to a proof. The condition (boxes;ϕ) 62 checkList
implements loop-checking, together with the fact that we
add (boxes;ϕ) to checkList in the last call to prove. (It
would have been more natural, by the way, to call prove
on arguments ( /0; /0; ϕ :: [�ψ jψ 2 boxes]; /0; /0; :::); Figure 3
instead directly precompiles the obvious applications of
rule (�S4)).
Finally, to prove ϕ , call prove( /0; /0;Z; /0; /0; /0), where Z is
the one-element list containing the NNF of ϕ .

4.5. A non-deterministic algorithm

Figure 3 is quite detailed, and we shall rather use more
informal notation in the sequel, so as to concentrate on the
essentials. We shall also adopt a more imperative style of
writing, writing currentWorldfor the current node and as-
signing to it, and using the phrase “non-deterministically
do” to replace existential quantifications (as in the last
clause of the figure).
Since card memory is scarce, we also need to control how
much space is used, and in particular it is dangerous to use
a recursive style. Instead, we manage the recursion stack
by hand. This saves space for many useless local variables
and for return addresses: we don’t need to memorize either
kind of object. So our stack stackwill only contain pairs of
a checklist and a formula to backtrack to (these will always
be left arguments to _). As an optimization, the sequential
nature of the algorithm and the fact that check lists always
grow as a tableau expands ensure that we need not store
entire checklists: a single array checkListsuffices, and the
stack only memorizes which prefix of checkListis actually
relevant: this prefix is coded as an integer checkListSize
counting the number of initial objects in checkListthat con-
sistute the actual check list.
The following algorithm returns true if a given for-
mula ϕ0 of length n is S4-satisfiable, and false otherwise.
It requires n4 space.

stack::= empty
checkList::= empty
checkListSize::= 0
currentWorld ::= fϕ0g

75
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do
while there are ^, _, � rules that can be applied do

apply these rules to currentWorld
if the rule applied is an _ rule then

push (checkListSize, left child of the rule)
onto stack

currentWorld ::= the right child of rule
end if

end while
if currentWorld is closed then

if the stackis empty then
return false

else
(checkListSize, currentWorld) ::=

pop from stack
resize checkListto checkListSize
continue

end if
end if
if currentWorldappears in checkList[0..checkListSize-1]

then return true
end if
if no (�S4)-rules can be applied then

return true
end if
non-deterministically pick a formula �ϕ

from currentWorld
apply (�S4)-rule using �ϕ to currentWorld

to get newWorld
checkList[checkListSize] ::= currentWorld
checkListSize::= checkListSize+1
currentWorld ::= newWorld

while stackis not empty

Space complexity. It can be seen that stack grows by 1
only when the (_) rule is applied. Thus for one world, we
may need to store the maximum of n_ possible configura-
tions. Also the transitional rule (�S4) which moves from
one world to another preserves all the �-formulae, thus the
set of all �-formulae (the core) in consecutive worlds in
a branch of the search tree do not decrease. Therefore there
are at most n

�
different cores in the same branch of the

search tree. Also the worlds that have the same core will
form a chain in the branch. We need to find the maxi-
mum number of worlds in a chain that have the same core.
Since each new world is formed by taking all the � for-
mulae from the previous world together with one of the
� formulae, the maximum number of worlds in the chain
that have the same core is n�. Altogether, the maximum
number of configurations that we need to store in the stack
is n_�n

�
�n� � n3 (a better approximation is n3=3).

It can be seen that checkListcontains only the node which
is obtained by applying a (�S4) rule. It is also resized so
that all the nodes it contains are the initial configurations
of the worlds in the current search branch. Thus checkList
is always smaller than or equal to stack. Overall, the max-
imum number of configurations we might need to store in
stackand checkListis of order n3. Given that a configu-

ration needs n bits, the space complexity of this algorithm
is n4 [24].

4.6. An improved algorithm

First, the non-deterministic choice of the final part of the al-
gorithm must be eliminated: some form of enumeration of
� formulae has to be implemented. For each � formula �ϕ
in currentWorld, we have to generate the initial configura-
tion Xϕ of a new world by just keeping ϕ and all � formu-
lae from currentWorld, and proceeding to build a closed
sub-tableau for Xϕ . If some such attempt succeeds, then
currentWorld is refuted. To enumerate the formulae �ϕ ,
we store the world configuration currentWorld before we
apply the (�S4) rule and keep the index lastK indexof the
last (�S4) rule applied to that configuration.
Second, it is safe to always use the (_) rule before any
instance of (�S4), as done in Section 4.5, but also to only
apply (_) once all rules (^) and (�) have been applied.
While this is not always optimal, it is generally a good
heuristic: for example, the proof (3) never uses (_) before
(�S4) except at the last step. Indeed, with respect to Fig. 3,
the (_) rule involves a form of “universal” backtracking
while (�S4) involves a form of “existential” backtracking,
and it is usually better to postpone backtracking rules as
much as possible.
Third, while backtracking usually involves memorizing one
branch of the computation on the stack while we explore
the other branch, there is no need to memorize anything
when backtracking is caused by instances of (_), provided
we know which subformulae in the current node are first or
second arguments to an _ in the whole formula to prove,
and provided we exploit certain properties of our indexing
scheme for subformulae. Let us call a formula of type R if
it occurs as a second argument to _, and of type L if it
occurs as a first argument to _.
This is best explained on an example. Consider the node:

��p
|{z}

1

;�p(a)

| {z }

4

; �q
|{z}

5

; q
|{z}

8

;�(:q_:p)
| {z }

3

;:q_:p
| {z }

6

(5)

which we have already encountered in the proof (3). Note
that :q (subformula 9) is the only type L subformula, while
:p (subformula 10) is the only type R subformula, and
we may go from one to the other by incrementing, resp.
decrementing the index. This is because subformulae were
actually indexed in a breadth-first manner.
To look for a closed tableau from this node, set lastK index
to 0, and generate the first of the conclusions of
the (_) rule:

��p
|{z}

1

;�p(a)

| {z }

4

; �q
|{z}

5

; q
|{z}

8

;�(:q_:p)
| {z }

3

; :q
|{z}

9

(6)

Note that we do not stack the other conclusion of
the (_) rule. Once we reach a closed node for this node,
we know that we can obtain a corresponding node (not
necessarily closed) of the subtableau below the other con-
clusion of the (_) rule, by replacing the first type L subfor-
mula by the corresponding type R subformula (the unique
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other argument to the same _ operator), and all preceding
type R subformulae by the corresponding type L subfor-
mula. If there is no type L subformula remaining, then all
conclusions of the (_) rule have been dealt with. Here the
only type L subformula is 9, so we produce:

��p
|{z}

1

;�p(a)

| {z }

4

; �q
|{z}

5

; q
|{z}

8

;�(:q_:p)
| {z }

3

; :p
|{z}

10

(7)

Now no other rule than (�S4) applies: lastK index is in-
cremented to 4, the position of formula (a). We get:

��p
|{z}

1

; p
|{z}

7

; �q
|{z}

5

;�(:q_:p)
| {z }

3

(8)

which is the initial configuration of the new world. In par-
ticular, we memorize f1;7;5;3g into checkList. We must
also reset lastK index to 0, lest we lose required opportu-
nities for applying (�S4) later on.
Apply all ^ and �S4 rules, getting:

��p
|{z}

1

;�p(a)

| {z }

4

; p
|{z}

7

; �q
|{z}

5

; q
|{z}

8

;�(:q_:p)
| {z }

3

;:q_:p
| {z }

6

(9)

Again apply (_), leading to the closed node:

��p
|{z}

1

;�p(a)

| {z }

4

; p
|{z}

7

; �q
|{z}

5

; q
|{z}

8

;�(:q_:p)
| {z }

3

; :q
|{z}

9

(10)

This is closed, so change the type L formula :q
|{z}

9

into the

corresponding type R formula :p
|{z}

10

. This is now closed

again, and no type L formula remains. The proof is fin-
ished.
We let the interested reader do the full example (2), notic-
ing that loop-checking is now required.
Notice that our scheme for avoiding storing information for
backtracking on _ subformulae requires us to index each
subformula of the original formula with a distinct num-
ber, even though some subformulae may be equal. This
indexing of the nodes of the parse tree forbids common
sub-expressions and therefore introduces some redundancy.
There may be duplications of the same subformula, but they
are named with different indices, so they must be examined
independently.
In the following algorithm, the stack stores only the con-
figurations that have been fully expanded with non-(�S4)
rules. Also, “saturate currentWorldwith non-(�S4) rules”
means applying (^), (�S4) and the left part of (_):

X;ϕ1_ϕ2

X;ϕ1

to currentWorld while this changes currentWorld. Re-
call that the right part of the (_) rule will be obtained by
looking at remaining type L formulae in the initial config-
uration of the current world, what we call “another sibling
of currentWorld” below.

checkList::= empty
stack::= empty
currentWorld ::= world consisting of the original formula
do

1. Saturate currentWorldwith non-(�S4) rules
2. while currentWorld is closed do

if there is another sibling of currentWorldthen
take currentWorld to be that sibling
reset lastK index to indicate no �S4 rules

have been applied yet
else if the stackis empty then

return false
else

(lastK index,currentWorld) ::=
pop from stack

pop from checkList
end if

end while
3. do

lastK index ::= the next �-formula
from currentWorld

if no more (�S4) rules can be applied then
if stackis empty then

return true
else

(lastK index,currentWorld) ::=
pop from stack

pop from checkList
end if

end if
apply the �S4 rule to currentWorld

to get newWorld
while newWorldappears in checkList

4. put (lastK index,currentWorld) into stack
put newWorldinto checkList
currentWorld ::= newWorld

while stackis not empty

Note that now checkListand stack are of the same size.
The checkListis actually the core of the world configuration
stored at the corresponding location in stack. Thus it can
be obtained from stackby generating the core of each world
in stack. This gives a more efficient use of space. It can be
seen that for one node in the search tree, we need only one
location in stack. Thus the space requirement is reduced
by a factor of n_: the maximum number of configurations
stored in stackat one time is n

�
�n� � n2, and the space

complexity of this algorithm is n3 (a better approximation
is n

�
�n� � n2=2, and the space requirement is n3=2).

5. Data structures

5.1. The parse tree

The parse tree is stored in two byte arrays, one (childs) of
length 2n and the other (nature) of length n. The 2i and
2i +1 entries in the first array indicate the children of the
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ith node in the parse tree (i.e. the indices of some other
nodes in the parse tree, or the atom at that node), while the
ith entry in the second array indicates if the ith node in the
parse tree is a �, �, _, ^, : or PRP. The _ and ^ nodes
have two children. The �, �, : and PRP nodes have one
child, thus the second child for these node is redundant.
This is not a severe problem, since the parse tree is fixed
through the proving procedure. Note that in case of the :
and PRP nodes, the 2i entry of the child array contains the
atom itself, not the index to another node in the parse tree.

5.2. The nodes in the search tree

As discussed above, each node in the search tree can be
represented as a bit string of length n. To examine all the
(�S4)-rules that can be applied to a node (i.e all the � for-
mulae in that node), we need to store the index to the
last � formula that has been examined, requiring one more
byte.

5.3. The stack

Nodes are stored in a stack so that other branches in the
search tree can be generated from the current branch, and
so that a new node can be checked for duplication. This
requires searching through all nodes in the stack, and also
pushing and popping from the stack.
There are several possible implementations for the stack.
The first two options store the stack as an array of bytes,
and do not need extra memory for pointers. Since multidi-
mensional arrays are not supported, access to elements of
the stack will require some extra computations.
The upper bound of the size of the stack is known as seen
above. Thus the stack can be allocated at the beginning of
the procedure. We then need not worry about the growth of
the stack. However, this is not a practical method, since the
stack rarely grows to its theoretical upper bound size. Also,
the limited amount of memory on the card will restrict the
size of the input formulae. For example, with 512 bytes, the
length of the formula will be less than 16, i.e. 163=2 bits =
= 512bytes. Allocating more than the card’s RAM is possi-
ble, however it involves swapping to and from the EEPROM
and will slow down the proof procedure. Consequently, the
card reader usually cannot wait for the card and will throw
an exception.
Another way to implement the stack is to pre-allocate
a small stack, and gradually increase its size by a large step
when it becomes full. This ensures that the memory is
used more effectively. However it still contains redundancy
since it allocates more space than required each time it be-
comes full. Thus the longer formulae will result in larger
redundancy. It also involves a lot of copying each time the
stack grows.
The stack can also be implemented as a one way link list.
Each node in the search tree is an element of the list. This
requires extra memory for a pointer to the next element.
However this extra memory becomes insignificant for long

formulae. There is no redundancy. With this approach, the
program has been tested for formulae of length up to 120.

6. Implementation

The program consists of two packages: card and client.
The client package contains the classes for parsing the
formula and converting it into NNF. Parsing is done
by using Javacup (version 1.0j). We need a scanner
(scanner.java) and a specification (parser.cup) for
the formula, and Javacup automatically creates the parser.
There is also a card proxy which manages the interactions
with the card on behalf of the users. The class for testing
is also in this package. Note that all of these operations are
done off-board on a terminal (PC).
The card package contains an interface and two classes that
are downloaded onto the card. These are classes prover
and State, and the interface proverInterface. The in-
terface proverInterface provides access to the services
offered by the prover. These include loading the formula
onto the card and proving. The interface also defines con-
stants that are used by the prover, and are also used in
the parsing and converting procedures. The class prover
contains the codes for the proving procedure. The prover
object that is loaded onto the card reserves enough space to
hold the longest formula. When the formula is put onto the
card, it is stored in the object. The user then must explicitly
call the prove procedures. The prove method reads the
formula from the object, performs simplifications and then
starts looking for a model for the formula. (Note that there
is a separation between loading the formula and proving.
This is due to the fact that loading is rather complicated,
and it is discussed in the next paragraph).
Despite the limitations of the card, the prover is able to
work for a number of long formulae. Tests have been con-
ducted for formulae of length up to 120. Passing the input
to the card and storing input in the card then requires greater
care because communication with the card is not simple.
There is an upper-bound for the amount of data that can
be transfered in one transmission (approaching 64K is not
recommended). Long formulae therefore need to be bro-
ken into small pieces. Here, the input arrays are split into
pieces of length 32 bytes and each piece is passed sepa-
rately to the card, together with its length and position in
the original array. Thus the maximum amount of data in
one transmission is 34 bytes (one byte for the length and
one for the position).
Since the inputs to the prove method are not ready in one
pass, they need to be stored in the object prover, requiring
the reservation of space for the longest input. Note that this
also implies more time is required for copying the input
from EEPROM to RAM in the prove procedure.

7. Results

This section shows the average time spent on the card in
proving randomly generated formulae of various lengths
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Fig. 4. Time vs formulae length.

(from 20 to 120). As can be seen, the time increases with
the length of the formulae since longer formulae generally
require more stack space, and require more arithmetic op-
erations in the calculations (Fig. 4).

8. Conclusions and further work

We have shown that even modal logic S4can be handled on
a Java card. Thus transitive modal logics are not necessarily
beyond the scope of Java cards. We now need to invent or
explore appropriate logics of permissions and obligations
to allow us to capture basic security notions like “trust”.
This is the subject of further work.
Another method for loop checking is to keep track of cer-
tain formula using a history mechanism [20]. We intend to
investigate whether such a history mechanism can be easily
used in CardS4.
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Abstract — Security is becoming a major issue in our highly
networked and computerized era. Malicious code detection is
an essential step towards securing the execution of applications
in a highly inter-connected context. In this paper, we present
a formal definition of Java dynamic semantics. This seman-
tics has been used as a basis to develop efficient, rigorous and
provably correct static analysis tools and a certifying compiler
aimed to detect and prevent the presence of malicious code
in Java applications. We propose a small step operational se-
mantics of a large subset for Java. The latter includes features
that have not been completely addressed in the related work
or addressed in another semantics style. We provide a fully-
fledged semantic handling of exceptions, reachable statements,
modifiers and class initialization.

Keywords — security, static analysis, certifying compilers, Java,
dynamic semantics, operational semantics, small step seman-
tics.

1. Motivation

Security vulnerabilities occur at two levels, the communica-
tion level and the application level. At the communication
level the use of cryptographic protocols aims at protecting
from security breaches. This issue is being actively stud-
ied in order to ensure the absence of flaws in such proto-
cols [1, 7, 11–13]. At the application level, malicious code
could be inserted in applications without the consent nor
the knowledge of end users. This malicious code can cause
data corruption, data divulgation to non authorized users,
an extensive use of system resources leading to denial of
service, etc. Existing techniques to detect such a code are
ad-hoc techniques based on merely syntactic analysis to de-
tect the so-called virus signatures. They can only be effec-
tive in the detection of well known and cataloged malicious
code. In our research group, we explore three approaches
to address malicious code detection: dynamic analysis of
code, static analysis of code and self certifying compilation.
These approaches are described in [3, 4, 9, 10]. The main
idea underlying these approaches is the use of language
technology in order to address security issues. In order to
make our analysis reliable we base all our techniques on
formal and rigorous foundations. For this purpose we elab-
orated a static semantics for a large subset of the Java lan-
guage [8]. We present in this paper a dynamic operational
small-step semantics for the same Java language subset.
Lately, a surge of interest has been expressed in the elab-
oration of semantic foundations for Java. This interest is

not only motivated by popular appeal and fashion consid-
erations. Indeed, Java has a very sophisticated and subtle
semantics as we will exemplify in the sequel. Moreover,
Java is meant to be widely used in safety-critical embed-
ded systems. Furthermore, Java support for mobile code
through applets poses severe, and very interesting, chal-
lenges to the currently established language technologies
in terms of security. All these factors justify the need for
robust theoretical foundations for Java.
The Java language is, certainly, innovative, but still imma-
ture and unstable. Several modifications were made to its
description, and errors are still present in its implementa-
tions. This is understandable, since the language combines
attractive features, which makes its semantics far from be-
ing straightforward and leads to substantial complexity.
The only available official specification of Java [15] is an in-
formal description that is subject to different interpretations.
Besides, it is rather ambiguous, incomplete and sometimes
not consistent with the behavior of the Java compilers. This
is not acceptable mainly for the properties that have a direct
impact on the security.
We believe that the theoretical investigations of Java se-
mantics are very useful to clarify, correct and complete
its semantics description. It will lead, without any doubts,
to a better understanding of the language, to a more effi-
cient, safe and secure execution. We strongly believe that
a semantics theory for Java is not a luxury but rather a ne-
cessity.
A static semantics description has been elaborated in our
research group and presented in [8]. In the present paper,
we present a dynamic semantics for the same subset.
We believe that the operational semantics style is easy to
understand and to manipulate. Actually, the operational
style does not require complex mathematical tools which
would increase the difficulty to understand the Java lan-
guage.
Our ultimate goal is to provide a complete formal and easy
to use description of the semantic aspects of Java. This will
include static as well as dynamic semantics. Another goal
we would like to achieve is to prove the subject reduction
which guarantees the correctness of our static and dynamic
semantic descriptions. This would also be a guarantee that
the language is correctly designed i.e. the program behav-
ior is consistent with the typing specification. On the other
hand the two semantics could be used as guidelines to en-
sure a correct design of the Java Virtual Machine (JVM).
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The paper is structured as follows. Related work is de-
picted in Section 2. An evaluation of the semantic issues
related to the Java language specification is given in Sec-
tion 3. A short overview of the Java dynamic semantics is
presented in Section 4. Some concluding remarks are ulti-
mately sketched in Section 5 together with some directions
for the future work. The syntax of the language and the
whole semantic rules set are given in an Appendix.

2. Related work

Many investigations for studying the Java language yielded
very interesting results despite the restrictions that have
been adopted.
In a pioneering exploration of Java formal semantics,
Drossopoulou et al. [14] have studied a subset of Java
that includes many features like hiding, overloading and
exceptions. They proposed an operational semantics for
this subset. In order to formalize the evaluation of excep-
tions, it is not obvious to define rules that could represent
the control flow discontinuity which occurs when an ex-
ception is raised. The solution proposed by the authors is
based on the notion of context. A context encompasses all
the enclosing terms up to the nearest enclosing try-catch or
try-catch-finally clause i.e. up to the first possible position
at which the exception might be handled. Other important
features like modifiers and initialization still need to be
formalized. Among the assumptions used in [14], the exe-
cution of a return statement always terminates the execution
of a method. Actually, sometimes we need to execute the
enclosing finally clauses before returning to the caller. This
adds significant complexity when exceptions are considered
in the semantics formalization.
Syme [22] has studied a similar subset, except that he has
included, in addition, the local variables. He used the the-
orem prover Declare in order to validate the elaborated
operational semantics. The validation consists in proving
the soundness of the dynamic semantics w.r.t. the static se-
mantics which he has elaborated. In this work the try-catch,
statement is not considered.
Tobias and Oheimb [18] have designed an operational
semantics for a subset of Java called Bali. They adopted
a big-step natural semantics style for elaborating this se-
mantics. Many features of the Java language are considered
such as exceptions, local variables, etc. However, the au-
thors did not describe all the possibilities when handling the
finally clause. For instance, they did not consider the case
where a return statement occurs before the finally clause is
evaluated.
Boerger and Sculte [5] have elaborated a dynamic se-
mantics of Java by providing an ASM (abstract state ma-
chine) that interprets arbitrary Java programs. They have
considered a subset of Java including initialization, ex-
ceptions and threads. They have exhibited some weak-
nesses in the initialization process as far as the threads are
used. They pointed out that deadlocks could occur in such
a situation.

One of the related work covering almost all Java language
is the work of Alves-Foss et al. [2]. Their semantics covers
the full range of this language excluding concurrency and
the Java APIs. This semantics does not address the mod-
ifiers. Indeed, the evaluation of a field access expression
does not show the modifiers role. Another interesting work
is [16]. In this work the author presents a full treatment of
the exception mechanism. He uses coalgebras in order to
formalize the exception semantics in Java. In [23] the au-
thor extends the work done within the Bali project to cover
exception handling and class initialization. The extension is
elaborated in an axiomatic approach. Cenciarelli et al. [6]
have presented an operational semantics for a significant
subset of Java including threads. The major goal of their
work is to deal with shared memory.
The operational small step style [19] we have adopted to
formalize the dynamic semantics is easy to manipulate and
to understand than the denotational and axiomatic styles. It
is mandatory to understand the semantics of a language in
order to design reliable applications. A precise, formal and
easy to understand semantics specification helps to achieve
this goal. In our work, we put to the treatment of the
exceptions, the class initialization and the modifiers.

3. Semantic issues

The elaboration of a dynamic semantics for Java is a com-
plex task. This complexity is due to many semantic issues
related to the Java language. In the sequel, we highlight
some of these issues.

3.1. Specification evaluation

The first task when elaborating a formal semantics for any
language is to understand the existent informal specifica-
tion of this language and to evaluate it in order to check
whether it is consistent w.r.t. existing compiler reference
implementations. Hence, we have started this work by the
evaluation of the Java language as it is officially speci-
fied in [15]. We have discovered an inconsistency between
the aforementioned specification and the JDK 1.3.0 com-
piler under Linux Redhat 6.2(build Linux JDK 1.3.0 FCS).
It concerns the class initialization process when triggered
by a field access expression. Indeed, in the last clarification
published by SUN Microsystems in [17], null is considered
as a constant expression so every static and final field that
is initialized to null is considered as a constant field [15]
and cannot trigger class initialization. Actually, access to
such a field causes the initialization of the class in which
this field is declared.
This inconsistency pointed out that it is very hard to grasp
all the subtleties of Java semantics. This is especially cru-
cial when designing a compiler for the language.
One can draw two conclusions. First, the language de-
signers would gain if they adopt a less complex semantics.
Second, it is essential to have a non ambiguous specifica-
tion of the language which is easily understandable.
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Table 1
Exception handling

Table 2
Return statement evaluation

3.2. Java semantics is complex

Java is a real-life language that comes with many convenient
features that make its use appealing for the users. The
elaboration of a formal semantics for any significant subset
of it would be a complex task. The mechanisms underlying
some of the interesting features of Java contribute to the
complexity of the language semantics. As an example of
such mechanisms we can cite the exceptions and the class
initialization.

We give, in the sequel, details of the main difficulties or
subtleties we encountered while elaborating our dynamic
semantics.

The exception mechanism in Java has more complex seman-
tics than other exception mechanisms in other languages
due to the finally construct it offers. Actually, a try-catch
statement in Java is designed for handling the exceptions
that can occur during execution. The try clause contains
a block of statements that can raise exceptions. A catch
clause can handle an exception and then the execution con-
tinues normally. A finally clause may appear in the try
statement. This clause is executed whether an exception
has occurred or not. A try clause can be enclosed in an-

other one making the semantics more complex especially
when a return could occur.
The semantics of jumps and exceptions are usually elabo-
rated using continuation-based techniques [20, 21] in order
to preserve the compositionality of the semantic descrip-
tion. Compositionality might be affected by the disconti-
nuity of the control flow caused by jumps or exceptions.
Hence a special care is needed.
A continuation models the rest of the code to be executed
and is used as a parameter in the semantic functions (de-
notational framework) or in the semantic rules (operational
framework). For the sake of clarity, we use in our seman-
tic rules exception tables that help to compute the needed
continuation1.
Table 1 shows two of the most important rules for the eval-
uation of the finally clause. A finally clause can be eval-
uated in the context of an exception �. If this clause does
not raise any exception and if there is no return statement
executed yet then it re-throws the exception �. Another in-
teresting rule shows how the execution must return to the
caller method after a finally clause is executed. Actually, if
there is a return that has been executed and if there is no

1The interested reader can refer to the Appendix for more details.
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enclosing finally (the predicate HandlerlnTable is false), the
execution must return to the calling method after returning
the resulting value of the return statement evaluation. This
is specified in the second rule of Table 1. The previous
discussion shows how complex is the handling of a finally
clause. In fact its semantics depends on whether a return
occurs or not, whether there is another enclosing try or not
and whether there is a current raised exception or not.
The rules corresponding to the try and catch clauses eval-
uation can be found in the Appendix.

3.3. Staged semantics elaboration and its adequacy

Elaborating a dynamic semantics for a reduced subset of
Java cannot provide a full understanding of the specifica-
tions. When this subset is extended to include the omitted
features, a revision of the established rules is often neces-
sary. The dependence of a construct semantics on other
constructs makes a Java staged semantics an inadequate
strategy. For example, to formalize the semantics of a re-
turn statement, it is unavoidable to take in consideration
the finally statement as specified in [15]. The rule of the
Table 2 shows how the semantics of a return depends on
the existence of an enclosing finally. In fact, if there is no
enclosing finally to this return the execution returns to the
calling method. The statements that appear after the return
statement are not necessarily unreachable.

3.4. A deep understanding of the static semantics

Another complexity that we have encountered is that one
cannot elaborate a dynamic semantics without understand-
ing the static one. The class initialization illustrates such
dependency. Actually, a field access expression can trigger
the class initialization if the field is not constant. A con-
stant field is a final, static and initialized by a constant
expression at compile time. This information is defined by
the static semantics.
Another example concerns the method invocation seman-
tics. In fact, to determine the actual invoked method, a dy-
namic search process is needed. This search process is
based on the method signature which is determined by the
static semantics.

4. Short overview of the Java
dynamic semantics

In the sequel, we present some aspects of the Java dynamic
semantics that we have elaborated.

4.1. Grammar of the Java subset

The syntax of the Java subset that we have considered is
given in Tables 13, 14, 15 and 16 of the Appendix. This
syntax has been defined in [8]. Notice that this subset is
a large one.

4.2. Environment

A dynamic environment is denoted �. It consists of a set
of class file representations. Each class or interface repre-
sentation is composed of a set of fields including methods,
fields and the ConstantPool of the classfile. The complete
description of this environment is given in Tables 3 and 4.

4.3. Annotations

The execution of a Java program requires that the compiler
adds some relevant information. For instance, a field access
would be annotated with the descriptor of this field and the
class where it is defined.
Hereafter, we describe the annotations that have been added
in the corresponding cases.

Field access expression. Each field access expression e.f is
annotated with C, the class where this field f is declared,
and D its type (descriptor in the Java terminology).

Method invocation. Each method invocation e:m() is an-
notated with D the method descriptor2 and C the class
where it is declared.

Constructor invocation. An explicit constructor invoca-
tion or new instance creation expression is annotated with
its descriptor D.

Annotated syntax. We present in Table 5 the syntax anno-
tations which correspond to what a Java compiler generates.
The actual syntax that we adopt while elaborating the se-
mantics rules is actually the previously described syntax
in which the annotations in the Table 5 are assumed to be
propagated.

4.4. Notations

Notations:

� Given two sets A and B, A �

�!B denotes the set of
all maps from A to B. A map m 2 A

�

�!B could be
defined by extension as [a0 7! b0 : : : an�1 7! bn�1]
to denote the association of the elements bi’s to ai’s,
ai 2 A et bi 2 B.

� dom(m) denotes the domain of the map m. Given
two maps m and m0, we will write m ym0 the over-
writing of the map m by the associations of the
map m0 i.e. the domain of m ym0 is dom(m) [
dom(m0) and we have (m ym0)(a) = m0(a) if
a 2 dom(m0) and m(a) otherwise.

� s � s0 denotes the disjoint union of the two sets s

and s0.

� S[f  �] denotes the assignment of the value � to
the field f of the structure S.

� � denotes an empty value, cf Section 4.6.

2Descriptor stands for signature in Java terminology.
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Table 3
Environment – Part 1
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Table 4
Environment – Part 2

Table 5
Annotations
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Table 6
Configurations

Table 7
Computable values
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Table 8
Semantic categories

4.5. Intermediate terms

Since we adopted a small step style, we have to represent
intermediate results during the evaluation process. These
intermediate results are formalized as algebra terms and are
denoted intermediate terms. Actually, intermediate terms
consist of terms that involve syntactic entities as well as
computable values. For instance, let T [e] be a Java ex-
pression where T is an array and e is a Java expression.
The evaluation of this expression yields as an intermediate
result T [�] where � stands for a computable value repre-
senting the result of the evaluation of e. Clearly, this inter-
mediate result does not belong to the Java syntax because
the integer values are different from the integer constants
that would appear in a Java source code.

4.6. Configurations

A configuration is a tuple (�;F ; h; t) where � is the ob-
ject exception that is thrown and not yet handled, F is
the frame of the current method, h is the global memory
and t is an intermediate term. For the sake of convenience,
this configuration may appear as (F ; h; t) when no ex-
ception is thrown and not handled. Actually, this is an
abbreviation of (�; F ; h; t) where � is empty, denoting the
absence of exceptions. The configuration may also appear
as (F ; h) where there is no thrown-exception after evaluat-
ing the term t and this term is fully evaluated. The Table 6
shows the configurations used in our semantics. In our con-
figurations the notation �+ represent either an exception �

or the absence of a raised exception denoted by �.

4.7. Computable values

The evaluation of the syntactic constructs of a language us-
ing a formal semantics produces values that are commonly
denoted computable values. We define in Table 7 the com-
putable values manipulated by our dynamic semantics.

A computable value can be a primitive value or a reference
(memory address). We introduce the undefined value (?)
which is used as:

� the value of this in a static method,

� the value of the field ReturnValue in the current frame
if no return statement has been executed yet.

4.8. Memory abstraction

We abstract the memory by a map h which associates
a computable value to a RefValue (cf Table 7) or to a Field-
Record which represents a class field (cf Table 6). In the
map h a FieldRecord always corresponds to a static field.
Notice that a RefValue represents a reference to an object
or to an array.
The following items describe how objects and arrays are
represented in our memory abstraction:

� An object is represented by an ordered pair (Class-
Type, MF) where MF = [F0 7! �0; : : : ; Fn�i 7!
�n�i], ClassType is the concrete type of the object,
Fi is a FieldRecord structure corresponding to a non
static field and �i represents the computable value
associated to this field.

� An array T is represented by an ordered pair
(ClassType, MI) where MI = [0 7! �0; : : : ; n�1 7!
�n�1], n is the dimension of the array and �i is
a computable value associated with T [i].

4.9. Semantic categories

We define in Table 8 the semantic categories manipulated
by our semantics.

4.10. Semantic rules

The evaluation process is formalized as a transformation of
a configuration to a new one. We denote this transforma-
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Table 9
Return statement evaluation

Table 10
Exception handling

tion by � ` (�;F ; h; t) ! (�0;F 0; h0; t0) which says that
an intermediate term t is evaluated under the exception �,
in the frame F . The result of this evaluation is the new
intermediate term t0. The evaluation may modify the cur-
rent memory h, may raise a new exception and finally may
change the current method being evaluated. �0 stands for
the new exception, F 0 stands for the new frame correspond-
ing to the new method and h0 stands for the new memory.
The operational semantics consists of a set of semantic
rules. Each rule states that the evaluation in the conclusion
part can be deduced from the evaluations in the premise
part.
The complete set of the semantic rules is given in the Ap-
pendix. We give in the sequel the explanation of some rel-
evant rules. The remaining rules in the Appendix should
be understood in a similar way.

4.10.1. The return statement

The evaluation of a return statement is very subtle. Ac-
tually, after the execution of a return statement, every en-
closing finally clause must be executed. A predicate Han-
dlerlnTable (cf Section A.3.5 in the Appendix) indicates if

a finally clause exists in the exceptions table of the method
represented by the frame F . By the number associated to
this return statement, we can get the first enclosing finally,
if it exists, in the exceptions table of the method in F (cf Ta-
bles 26 and 27). H. Target represents this finally statement.
The value returned by the evaluation is assigned to the
field ReturnValue of the frame F representing the current
method, the current exception is given up and the execution
continues by handling the Block of the finally clause. This
is specified in the first rule in Table 9.
When there is no enclosing finally clause, the execution
continues in the calling method by returning the value of
the return evaluation. This is specified in the second rule
in Table 9.

4.10.2. Exceptions

Exception handling in Java is a highly designed mechanism
that provides to developers the possibility to deal with ab-
normal situations without causing the execution abortion.
Actually, the developer can control bad results and associate
a specific code to handle such situations. A try statement
in Java is designed for handling exceptions that can oc-
cur through execution. The try clause contains a block of
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Table 11
Static method call evaluation

Table 12
Instance method call evaluation

statements that can raise exceptions. A catch clause can
handle an exception and then the execution continues nor-
mally. A finally clause may appear in the try statement.
This clause is executed whether an exception has occurred
or not. It is considered as a clean code. We present two
rules for the finally evaluation. The rules corresponding to
the try and catch clauses evaluation can be found in the
Appendix).

Table 10 shows two rules for the evaluation of the finally
clause. A finally clause can be evaluated in the context
of an exception �. If this clause does not raise any if
exception and there is no return statement executed yet
(F :ReturnV alue =?) then it re-throws the exception �

at the position of the last statement of finally. The func-
tion finalPosition returns the number of the last statement
of a block of statements. This is specified in the first rule
in Table 10.

Another interesting rule shows how the execution must
return to the caller method after a finally clause. Ac-
tually, if there is a return that has been executed
(F :Returnvalue 6=?) and if there is no enclosing finally
(the predicate HandlerlnTable evaluates to false), the ex-
ecution must return to the caller method (represented by
F :P reviousFrame) after returning the resulting value of
the return evaluation. This is specified in the second rule
in Table 10.
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4.10.3. Method invocation

Java uses the dynamic dispatch to determine which method
is to be executed in each call site when an instance method
is invoked. The search of the actual method is performed at
run time. Actually, the JVM launches a search procedure
to determine the method to be executed. On the other
hand, if the invoked method is static or private there is
no need to launch this search the actual method would be
statically determined. The semantic rules corresponding to
the method invocation represent this process as a first step
of the evaluation.
After determining the method to be invoked, we proceed
to the evaluation of the actual parameters. Let M be
the invoked method and C the class where it is declared.
If static belongs to the modifiers set of M , the evalua-
tion of the invocation must trigger the initialization of the
class C if it is not initialized yet. This is checked using
the predicate initialized. If C is not initialized we call its
clinit() method before evaluating the code of M . The code
of M is evaluated under the substitution of the formal pa-
rameter by the value of the argument. A new frame is
created and used along the evaluation of the method code.
The semantic rules of evaluating a static method as well
as an instance method are shown in Tables 11 and 12. If
the method is an instance many operations are performed
before executing its code. Let M be the instance method,
C the class where it is declared as determined at com-
pile time and D its descriptor. The first evaluation step,
is the search of the actual method. For this, a predicate
InMethod checks the existence of a method M having a de-
scriptor D in the class C. The second evaluation step con-
sists in searching for the actual method to be executed at
this site. This depends on the type of the receiving ob-
ject. The semantic function LookupFirstSuperClass per-
forms this search. Notice that we consider methods with
one parameter if any. We made this restriction only to seek
more clarity of the rules. The generalization to more than
one parameter could be easily performed. For more details
cf Section A.3.13 in the Appendix.

5. Conclusion and future work

We discussed in this paper a dynamic semantics of a large
subset of Java in which we have handled some subtle prob-
lems such as initialization, modifiers, and exceptions. The
formalization has been carried out in an operational small
step style. This makes it extendable to handle another as-
pects of the language such as the threads. On the other
hand, this style is easily understood and manipulated with-
out any heavy theoretical background. The whole seman-
tics is detailed in the Appendix. We plan to extend this se-
mantics to include packages, inner-classes and threads and
ultimately to prove the consistency between this semantics
and the static one described in [8].
On the other hand, this paper gives some insights into the
task consisting in elaborating a Java dynamic semantics.

We can sum up our conclusions as follows. Elaborating
a dynamic semantics for Java should treat all features of the
language not just a reduced subset of it. Hence, a staged
semantics strategy would be inadequate. Any research ef-
fort that address the whole language or at least a realistic
subset of it would be a worthwhile. We hope that SUN
Microsystems simplifies some constructs semantics such as
the exceptions.
This work contributes to build a formal foundations for
our techniques and tools designed to address verification of
Java applications properties related to security issues.
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Appendix
A full overview of the Java

dynamic semantics
We present here a complete overview of the dynamic op-
erational semantics that we have elaborated.

A.1. Grammar of the subset

The syntax of the Java subset that we have considered is
given in Tables 13, 14, 15 and 16 (Tables 13–48, see this
issue, pp. 97–119). This syntax has been defined in [8].

A.2. Hypothesis

The following hypothesis are assumed in our work. We
present them together with the rationale underlying their
assumption:

� Our semantics is able to evaluate syntactically cor-
rect programs. Furthermore, we assume that all the
needed classes have been loaded and checked. We
also assume that the reference resolution step has
been performed correctly. These assumptions are es-
sential. Actually, we do not formalize the dynamic
linking process.

� We assume that the Java program is preprocessed so
that each statement is identified by a number and each
expression is tagged with some relevant annotations.
These annotations are described in the sequel. These
annotations correspond actually to what the compiler
generates.

� For the sake of clarity, we assume that all the methods
have only one argument. We also consider that all
arrays are mono-dimensional. The generalization is
obvious in both cases, but would unnecessarily make
cumbersome the presentation.

� We consider that two methods have been added in
each class, namely init() and clinit(). These methods
have been added in order to express the initialization
process as it is performed by the JVM.

– init (Argument): this method represents the con-
structor code of the class and the initializers of
the instance variables. Argument is the param-
eter of the constructor. It can be void.

– clinit(): this method contains the class static
code and the initializers of the static variables.

It is clear that these two methods represent what ac-
tually is generated by the compiler.

A.3. Semantics rules

The evaluation process is formalized as a transformation
of a configuration to a new one. We denote this transfor-
mation by � ` (�;F ; h; t) ! (�0;F 0; h0; t0) which means
that an intermediate term t is evaluated under the excep-
tion �, in the frame F . The result of this evaluation is the
new intermediate term t0. The evaluation may modify the
current memory h, may raise a new exception and finally
may change the current method being evaluated. �0 stands
for the new current exception, F 0 stands for the new frame
corresponding to the new method and h0 stands for the new
memory.
The operational semantics consists of a set of semantic
rules. Each rule states that the evaluation in the conclusion
part can be deduced from the evaluations in the premise
part.

A.3.1. Field declaration evaluation

The following remarks help the understanding of the field
declaration evaluation rules.

� A FieldDeclaration expression is considered as a part
of clinit() declaration or init() one depending on the
modifiers of this field. If the field is static then its
declaration will be included in the clinit() method
otherwise it will be in the init() method.

� We represent each static field in the memory by
a FieldRecord that contains the field itself (FieldInfo)
and the class in which it is declared (ClassFrom).

� Each declaration of a static field adds to the memory
the FieldRecord with its default value or the value
resulting from the evaluation of the expression that
initializes it.
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� An instance field declaration is included in the init()
method and will be executed when a new object is
created.

� A field is considered as an instance field when
static =2 modifiers of this field.

� A FieldRecord is added to an object having this as
its address.

� The concrete type of an object having ρ as
an address is obtained by applying the function
ConcreteType(ρ).

The methods clinit() and init() are defined in Tables 17
and 18.
In the field declaration evaluation rules, InField stands for
a predicate which evaluates to true when the field repre-
sented by the first argument belongs to the class represented
by the third argument and false otherwise. The second ar-
gument of the predicate InField stands for the simple name
of the field. The fourth argument represents the type of the
field.

InField : FieldInfo � Identifier � ClassFile �
� FieldDescriptor ! bool

InField ( f , Identifier, C, D) =
( f 2C:Fields) ^
( f :SimpleName=Identifier) ^
( f :Descriptor= D):

The rules of field declaration evaluation are presented in
Tables 19 and 20.

A.3.2. Constructor evaluation

A constructor invocation (Table 21) is equivalent to the in-
vocation of the method init() of the class that represents the
concrete type of the newly created object. For example, an
explicit constructor invocation like this (Argument) is anno-
tated with its descriptor D as follows [D] this (Argument)
is evaluated to this.[C; Djinit(υ) where C is the concrete
type of this and υ is the value of Argument.

A.3.3. Local variable declaration expression evaluation

A LocalVarDeclaration expression (Table 22) adds a new
variable to the local environment of the current method.
An initialization of a local variable updates its value in the
local variable table of the current method.

A.3.4. Statement evaluation

Statement evaluation:

� The statement if-then: first the condition of the if
clause is evaluated. When its value is true, the then
clause is executed otherwise the configuration is not
modified.

� The statement if-then-else: first the condition is eval-
uated to produce υ as a value. If υ is true then the
clause then is evaluated, otherwise the clause else is
evaluated.

� The statement while: we evaluate first the condition,
when its value is false the configuration does not
change, otherwise the evaluation of this statement
produces a statement if having the body of the while
statement as its then clause.

The evaluations of the previous statements are presented in
Tables 23 and 24.
The evaluation of the return statement is presented in Ta-
ble 25.

A.3.5. Exception handling

We suppose that a preprocessing of each method is per-
formed in order to associate numbers with statements.
These numbers respect the textual order. The exceptions
table indicates where the control has to flow (continuation)
after each potential exception occurrence in a try-catch con-
struct. For example, the exceptions Table 27 is associated
with the piece of code in Table 26. The column Target
represents the statement block of a catch that can handle
an exception in the clause try which is thrown between
statement 1 and statement i. The block of the finally
clause is executed if the exception is thrown between state-
ment 1 and n whether a catch has been executed or not,
where n represents the number of the last statement in the
last catch.
A throw statement raises an exception from the position
where it appears. First Argument, the argument of the throw,
is evaluated. It produces a reference value υ . If υ is null
then a NullPointerException is raised at the same posi-
tion as the throw statement. Otherwise, we must search
a handler for the thrown exception E. This is formalized
by the predicate HandlerlnTable(E;H;F :Method:Excep-
tionTable;P) which evaluates to true if the first enclosing
catch or the first enclosing finally exists in the exceptions
table given as its third argument. This exceptions table is
associated with the current frame F . The predicate evalu-
ates to false otherwise.
A try statement can have one of the following three forms:
try-catch or try-finally or try-catch-finally.
A try clause is a guarded section where each abnormal
execution will cause a jump to a catch which argument
type is a supertype of the raised exception type.
A finally clause is known as a clean code that will be ex-
ecuted whether a previous exception has occurred or not.
When a finally clause exists in a try statement, the pro-
gram must execute this clause whether an exception oc-
curred or not in the associated try and/or catch clauses of
the same statement. Accordingly, we should formally state
such a semantic constraint. In the exception table, we spec-
ify the column ExceptionType which contains the type of
the thrown exception. We introduce the type Any represent-
ing every non-primitive type that can exist. Hence, if an
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exception is thrown, it will verify the constraint of subtyp-
ing with Any. The example of Table 26 shows a try state-
ment with a finally clause: When an exception is thrown
at some position P , the program execution continues at
the first Target in the table that corresponds to a type in
the column Type, which is a supertype of this exception.
We define the predicate HandlerlnTable that checks the ex-
istence of the first catch or finally in the exceptions table of
the method represented by the frame F i.e. the first range
(From-To) that contains the position P where an exception
E has occurred and having an exception type in the third
column as a superclass of E (this relation is defined under
the environment Γ). It returns the Block contained in the
Target column. This Block represents the continuation of
the execution after the occurrence of the exception. The
predicate HandlerlnTable is defined as follows:

HandlerlnTable : ExceptionType � ExceptionTable �
� ExceptionHandler � Position ! bool

HandlerlnTable(E;F :Method:ExceptionTable;H;P)=
(F :Method:ExceptionTable= []) false) _
((H = hd(F :Method:ExceptionTable))^
(P � H:From) ^
(P � H:To) ^
((H:Type= Any)_ ((Ev H:Type)^ (E 6= Any))))_
((HandlerlnTable(E; tl(F:Method:ExceptionTable);
H;P))^
(P < hd(F :Method:ExceptionTable):From)_
(P > hd(F :Method:ExceptionTable):To)_
((hd(F :Method:ExceptionTable):Type) 6= Any) ^
((E 6v (hd(F :Method:ExceptionTable):Type))_
(E = Any)))

Let us explain now some rules from Tables 28, 29 and 30:

� A try clause can be executed without raising any ex-
ception. If there is an enclosing finally statement in
the exceptions table, the execution will continue at
the Block of this finally, otherwise it will continue
normally. If this clause raises an exception, it will be
equivalent to a throw statement at the position where
the exception occurred.

� A catch clause is executed when it handles a thrown
exception that has happened before (and not from
another catch clauses in the same statement). So, no
exception will be present in the configurations before
executing this clause. The enclosing finally clause
is then determined and the execution continues at
the Block of this finally if it is found. When this
catch clause raises an exception it will be equivalent
to a throw statement at the position of the statement
that has caused it.

� The finally clause is more complicated to formalize.
In fact, there are two factors that influence the evalu-
ation: first, a return statement (if it has been executed
before this finally or inside it) and second, if there
is an exception before executing it or caused by this

clause itself. When the evaluation of this clause ter-
minates normally and there is no return statement that
has been executed (F :ReturnValue=? where F is
the current frame) and no other enclosing finally (the
predicate Handlerlntable evaluates to false), the exe-
cution continues normally. When a return has been
executed before this finally and there is no thrown
exception in the left configuration, we must go to the
first enclosing finally if it exists. Otherwise the exe-
cution returns to the calling method. The execution
of finally can itself raise an exception and it will be
equivalent in this case to a throw. When a finally
clause is executed under some exception and raises
by itself another exception, it gives up the former and
raises this new exception. If it does not cause another
exception it removes the initial exception.

A.3.6. New array creation expression evaluation

An array creation expression returns a new reference to the
created array. Each element of the array is initialized by its
default value. A NegativeSizeException is raised when the
array size is negative. The Table 31 shows the semantics
of such an expression.

A.3.7. Literal, this and parenthesized expression
evaluation

A literal is evaluated to its primitive value this is evaluated
to the field this of the current frame. Evaluation of a paren-
thesized expression returns the value of the expression that
is inside the parentheses. All these rules are formally stated
in the Table 32.

A.3.8. New class instance creation expression evaluation

The Table 33 states how to evaluate a new instance class
creation which triggers a call of the method init() and the
initialization of this class (call of clinit() if it is not yet
initialized). To obtain all the fields of some class C, we
use the function Fields(C).

Fields : ClassFile! (FieldRecord)set

Fields (C) =
8 F 2C:Fields:

if static =2 F:Modi f iers
then fhF;Cig
[
(if (C:ThisClass6= Object)
then Fields(C:SuperClass))

A.3.9. Cast expression evaluation ((type) Expression)

At run time, the JVM checks if the concrete type of
the value υ of Expression evaluation (obtained by calling
ConcreteType(υ)) is a subclass of type. If this constraint
is not satisfied then the exception ClassCastException is
thrown from the position of the nearest statement where
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it exists. If no exception is thrown after the evaluation of
such an expression, the value of the expression is returned
as a result. This is presented in Table 34.

A.3.10. Field access expression evaluation

We evaluate the FieldAccess expression that appear in the
righthand side of an assignment expression. So, each ex-
pression will return a value. The static fields that are not
initialized with constant expressions, at compile time, can
trigger the initialization of the class in which they are de-
clared. In this case, before returning the value of the field,
the method clinit() is called to initialize this class.
The rules of the field access expression evaluation are pre-
sented in the Tables 35, 36, 37 and 38.

A.3.11. Array field access evaluation

An access to an array component of the form Prima-
ryNoNewArray[Expression] can cause the NullPointerEx-
ception if the reference to the array (value of Prima-
ryNoNewArray) is null. When the reference to this array is
not null, the value of Expression must be a positive integer
between 0 and the length of the array. Otherwise, an excep-
tion of type IndexOutOfBoundsException will be thrown.
The rules of evaluating such an expression are given in the
Table 39.

A.3.12. Simple local variable access evaluation

An access to a local variable returns its value from the local
variable table of the current frame. The rule is presented
in Table 40.

A.3.13. Method call evaluation

For a method invocation, there are many steps that are
needed before to jump to the invoked method. First, the
value of the receiver is computed. Then the argument
is evaluated after which the accessibility to the invoked
method is checked (we suppose that the method is accessi-
ble). Afterwards, the underlying method code is localized.
Finally, a new frame is created to contain the information
that is associated with the invoked method.

A.3.14. Computing receiver value

The invocation mode decides what value to give to the
receiver. Actually, for a static mode (static 2 modifiers of
the invoked method) the receiver value is ? (no receiver)
otherwise, it will have some reference value that is the value
of this.

A.3.15. Argument evaluation

An argument list is evaluated from the left to the right.
In our case, we show how to evaluate just one argument.

The same schema could be applied to the case of many
arguments.

A.3.16. Method code localization

The localization of the invoked method depends on the
invocation mode:

� If the invocation mode is static then we know that the
invoked method is from the class C (the ClassFrom
of the method annotation). In this case, the class C
can be initialized if it is not already.

� If the invocation mode is private the invoked method
is also known but no initialization is triggered.

� Otherwise, a dynamic process is required to retrieve
the real method to call. This is achieved in the
semantic rules of the method invocation evaluation
thanks to the function LookupFirstSuperClass.

We need some functions that allow us to gather the infor-
mation that is relevant to the invoked method:

� InMethod: a predicate that evaluates to trueif some
method exists in some class:

InMethod:
MethodInfo � Identifier � ClassFile �
� MethodDescriptor ! bool

InMethod:
(M, Identifier, C;D) =
(M 2C:Methods) ^
(M:SimpleName= Identifier)^
(M:Descriptor= D).

� GetlnvocMode(M;B): a function that returns the in-
vocation mode of a method invocation expression us-
ing the modifier information that is in M. The value
of the parameter B is true when the method invoca-
tion is super.

GetlnvocMode : MethodInfo � bool ! String

GetlnvocMode(M;B) =

if (static 2 M.Modifiers)
then ’static’
else if (private 2 M.Modifiers)

then ’nonvirtual’
else if (B)

then ’super’
else if (abstract 2 M.Modifiers)

then ’interface’
else ’virtual’

� LookupFirstSuperClass(ρ ;M;S; I): represents the
dynamic process to search in the class hierarchy (ex-
plored by Γ) a method M0 having the same name and
descriptor as M with respect to the invocation mode
I . This search is recursive through the class hierarchy
and begins from the class S.
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LookupFirstSuperClass:
address � MethodInfo � ClassFile �
� String ! (MethodInfo, ClassFile)

LookupFirstSuperClass(ρ ;M;S; InvocMode) =
if (Match(M;M0;S))
then if ((InvocMode=’super’) _

(InvocMode=’interface’))
then (M0;S)
else if (InvocMode=’virtual’ ^

overrides((M, con-
creteType(h(ρ))), (M0;S)))
then (M, concreteType(h(ρ)))

else if (S:ThisClass6= Object)
then LookupFirstSuperClass(ρ ;M;
S:SuperClass; InvocMode)

else (?;?)

� The function overrides verifies if some method over-
rides another one through the class hierarchy.

overrides : (MethodIn f o;ClassFile)�
�(MethodIn f o;ClassFile)!bool
overrides((m;C), (m0;C0) =
(CvC0) ^
(((private =2m0:Modi f iers)^ (CvC0))_
(9(m00;C00^m00 6= m00^m00 6= m0)^
(overrides ((m;C), (m00;C00))^
overrides ((m00;C00), (m0;C0))))) ^
(m:SimpleName= m0:SimpleNamê
m:Descriptor= m0:Descriptor)

The underlying rules are presented in Tables 41, 42, 43
and 44.

A.3.17. Assignment expression evaluation

An assignment expression is made of a left-hand side,
a right-hand side and the operator =. The left-hand side
must return a variable, the right-hand side must return
a value. We show in the rules of an assignment expres-
sion how a field access expression must return a variable.
The evaluation result of such an expression is an update
of the value of the class or the instance variable with the
value of the expression in the righthand side.
Another possible expression in the left hand side is an ac-
cess to an array component. A runtime check is made be-
tween to guarantee the type compliance between the type of
the righthand side expression and the type of the left hand
expression. If the former is not a subtype of the latter, the
arrayStoreException will be thrown at the position of the
statement containing this expression. If the left hand side
is a FieldAccess expression then it returns the variable rep-
resenting a static or an instance field. An access to a static
field can trigger the initialization of the class in which it
is declared (if it is not already). The value of the field is
updated with the value of the righthand side expression.
When the left hand side is an ArrayAccess expression, we
use a function GetMappeFields(h(ρ)) to return the map MI
of an array having ρ as address. The rules of the assign-
ment expression evaluation are presented in Tables 45, 46,
47 and 48.
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Table 13
Grammar of the subset – Part 1
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Table 14

Grammar of the subset – Part 2
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Table 15

Grammar of the subset – Part 3
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Table 16
Grammar of the subset – Part 4

Table 17
Method clinit
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Table 18
Method init

Table 19
Instance variables evaluation
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Table 20
Static variables evaluation

Table 21
Constructor evaluation
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Table 22
Local variable declaration evaluation

Table 23
Statement evaluation – Part 1
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Table 24
Statement evaluation – Part 2

Table 25
Return statement evaluation

Table 26
Exception constructs

Table 27
Exceptions table
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Table 28

Exception handling – Part 1
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Table 29

Exception handling – Part 2
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Table 30
Exception handling – Part 3

Table 31
New array expression evaluation
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Table 32
Literal, this and parenthesized expression evaluation

Table 33
New instance class creation evaluation

Table 34
Cast expression evaluation
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Table 35

Field access expression evaluation – Part 1
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Table 36

Field access expression evaluation – Part 2
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Table 37

Field access expression evaluation – Part 3
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Table 38
Field access expression evaluation – Part 4

Table 39
Array field access evaluation

Table 40
Simple local variable access
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Table 41
Method call evaluation – Part 1
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Table 42
Method call evaluation – Part 2
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Table 43
Method call evaluation – Part 3
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Table 44
Method call evaluation – Part 4
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Table 45
Assignment evaluation – Part 1

Table 46
Assignment evaluation – Part 2
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Table 47
Assignment evaluation – Part 3
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Table 48

Assignment evaluation – Part 4
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