3 research outputs found

    Complete Characterization of Incorrect Orthology Assignments in Best Match Graphs

    No full text
    Genome-scale orthology assignments are usually based on reciprocal best matches. In the absence of horizontal gene transfer (HGT), every pair of orthologs forms a reciprocal best match. Incorrect orthology assignments therefore are always false positives in the reciprocal best match graph. We consider duplication/loss scenarios and characterize unambiguous false-positive (u-fp) orthology assignments, that is, edges in the best match graphs (BMGs) that cannot correspond to orthologs for any gene tree that explains the BMG. Moreover, we provide a polynomial-time algorithm to identify all u-fp orthology assignments in a BMG. Simulations show that at least 75% of all incorrect orthology assignments can be detected in this manner. All results rely only on the structure of the BMGs and not on any a priori knowledge about underlying gene or species trees

    Gene Family Histories: Theory and Algorithms

    Get PDF
    Detailed gene family histories and reconciliations with species trees are a prerequisite for studying associations between genetic and phenotypic innovations. Even though the true evolutionary scenarios are usually unknown, they impose certain constraints on the mathematical structure of data obtained from simple yes/no questions in pairwise comparisons of gene sequences. Recent advances in this field have led to the development of methods for reconstructing (aspects of) the scenarios on the basis of such relation data, which can most naturally be represented by graphs on the set of considered genes. We provide here novel characterizations of best match graphs (BMGs) which capture the notion of (reciprocal) best hits based on sequence similarities. BMGs provide the basis for the detection of orthologous genes (genes that diverged after a speciation event). There are two main sources of error in pipelines for orthology inference based on BMGs. Firstly, measurement errors in the estimation of best matches from sequence similarity in general lead to violations of the characteristic properties of BMGs. The second issue concerns the reconstruction of the orthology relation from a BMG. We show how to correct estimated BMG to mathematically valid ones and how much information about orthologs is contained in BMGs. We then discuss implicit methods for horizontal gene transfer (HGT) inference that focus on pairs of genes that have diverged only after the divergence of the two species in which the genes reside. This situation defines the edge set of an undirected graph, the later-divergence-time (LDT) graph. We explore the mathematical structure of LDT graphs and show how much information about all HGT events is contained in such LDT graphs
    corecore