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A B S T R A C T

Detailed gene family histories and reconciliations with species trees are a pre-
requisite for studying associations between genetic and phenotypic innova-
tions. Even though the true evolutionary scenarios are usually unknown, they
impose certain constraints on the mathematical structure of data obtained
from simple yes/no questions in pairwise comparisons of gene sequences.
Recent advances in this field have led to the development of methods for
reconstructing (aspects of) the scenarios on the basis of such relation data,
which can most naturally be represented by graphs on the set of considered
genes.

Graph-based detection of orthologs, i.e., related genes that diverged as a
consequence of a speciation event, follow this paradigm since they usually
start from estimations of (reciprocal) best matches being the evolutionarily
closest relatives of a gene in another species. Orthology is a crucial concept
in genome annotation and phylogenomics. However, the mathematical prop-
erties of best match graphs (BMGs) have only recently been investigated in
detail. This work gives novel characterizations of this class of vertex-colored
directed graphs and some interesting subclasses, and studies their explaining
gene trees. In particular, BMGs that are associated with fully resolved trees
are considered. All such binary trees are refinements of the unique binary-
resolvable tree (BRT) which can be constructed in near-cubic time for a given
binary-explainable BMG.

There are two main sources of error in pipelines for orthology inference
based on BMGs. Firstly, measurement errors in the estimation of best matches
from sequence similarity in general lead to violations of the characteristic
properties of BMGs. This issue is addressed by means of arc modification
problems. We show that BMG editing, completion, and deletion are all NP-
complete in general, and provide integer linear programming formulations
to obtain exact solutions at least for small instances. Furthermore, a class of
heuristic approaches to BMG editing are studied that are similar to Aho et
al.’s supertree algorithm, and operate in a top-down fashion on a special set
of triples extracted from the input graph. Benchmarking results suggest that
the underlying tree structure is preserved in (moderately) perturbed BMGs.
The second issue concerns the reconstruction of the orthology relation from
a valid BMG. It was shown previously that, in the absence of horizontal gene
transfer (HGT), every pair of orthologs forms a reciprocal best match. We
extend these results by characterizing unambiguously false-positive (u-fp) or-
thology assignments in the setting of duplication-loss scenarios. In particular,
these edges can be identified in polynomial time.

Several implicit methods for HGT inference focus on pairs of genes that
have diverged only after the divergence of the two species in which the genes
reside. This situation defines the edge set of an undirected graph, the later-
divergence-time (LDT) graph. We investigate these graphs in the setting of

iii



relaxed scenarios, i.e., evolutionary scenarios that encompass all commonly
used variants of duplication-transfer-loss scenarios in the literature. We char-
acterize LDT graphs as a subclass of properly vertex-colored cographs that
can be recognized in polynomial time, and provide an algorithm to construct
a relaxed scenario that explains a given LDT graph. An edge in an LDT graph
implies that the two corresponding genes are separated by at least one HGT
event. The converse is not true, however. We introduce rs-Fitch graphs which
formalize the complete xenology relation. This class of vertex-colored graphs
comprises complete multipartite graphs that satisfy certain constraints on the
vertex colorings and is also recognizable in polynomial time. Finally, the
question of how much information about all HGT events is contained in LDT
graphs is addressed with the help of simulations of evolutionary scenarios
with a wide range of duplication, loss, and HGT event rates.
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1
I N T R O D U C T I O N

“I think”

Two words written above the first known illustration of an evolutionary
tree. The famous sketch was drawn by Charles Darwin in his “Note-
book B” on the Transmutation of species in 1837 [322]. By then, he had

understood that the diversity of species resulted from gradual processes of
change, selection, and branching from a common ancestor – a theory known
today as evolution. His book On the Origin of Species was published in 1859,
and before long, the majority of scientists were convinced that evolution was
real, despite many controversies surrounding its exact mechanisms [33].

Phyolgenetics is the field of biology that addresses the reconstruction of his-
tories and relationships of biological entities such as species. In Darwin’s
time, the DNA as the main molecule carrying the hereditary information for
the development of organisms had not yet been discovered. As a consequence,
taxonomists mainly relied on the comparison of morphological and physio-
logical traits and, in some cases, fossils to infer the relationships of species.
The development of high-throughput methods for DNA sequencing and, as
a result, the ever-increasing availability of sequenced genomes in the last few
decades have led to the dominance of molecular phylogenetics, a branch that
reconstructs species trees or networks based on sequence comparisons and
sophisticated mathematical models for their evolution [88, 335]. Intriguingly,
these advances enable us to observe ongoing evolution within the life span of
a human, especially on the border of living and dead matter – in the kingdom
of viruses. This is more relevant than ever since the appearance of new mu-
tated lineages of SARS-CoV-2 poses a threat in the current pandemic situation
e.g. to the effectiveness of vaccines [94, 314, 321].

Around the same time as Darwin, the Augustinian friar Gregor Mendel
proposed the existence of discrete heritable traits. However, his groundbreak-
ing findings remained largely unappreciated for decades and he was even
accused of falsifying his data [327]. Today, these traits are known as genes
and are usually defined as genomic sequences that encode some kind of func-
tional molecule [105]. Since the members of a so-called gene family share a
common ancestry and therefore usually show a certain degree of sequence
similarity, they are of key importance for all sequence-based analyses.

The evolution of a gene family is closely tied to that of the species in which
they reside. In particular, whenever a species splits into two or more lineages
that become reproductively isolated, the genes also continue to evolve inde-
pendently. Two genes in different species that have diverged as a consequence
of such a speciation event have been termed orthologs [89]. The knowledge of
orthologous genes is of particular practical interest in computational biology
for two main reasons: (i) the time since their divergence coincides with that
of their corresponding species, and thus, they are essential for the reconstruc-
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tion of species trees based on sequence similarity, and (ii) they are usually
assumed to fulfill the same or similar functions across species [309]. Albeit
controversial, the latter hypothesis is widely made in the computational pre-
diction of gene functions [95, 222, 296]. Not all genes that share a common
ancestry are orthologs. This is due to other types of events that shape the
history of a gene family. Genes that arose from a duplication event, i.e., the
insertion of a copy of a genomic region into the same genome, are called par-
alogs [89]. Similarly, genetic material can be transferred from one species to
another – a process called horizontal gene transfer (HGT). This process is most
common in prokaryotes, where it e.g. plays a crucial role in the acquisition
of antibiotic resistance genes [209], but also contributed to the genomes of
extant eukaryotes [63, 291]. Two genes of which at least one has undergone a
horizontal transfer since their divergence are called xenologs [91]. The fourth
of the most common events in gene families (and of those that will be consid-
ered here) is gene loss, i.e., a gene vanishes from the genome as a consequence
of a single mutational event or the gradual accumulation of smaller mutations
[8].

As a consequence of the different types of events, gene trees, representing
the evolutionary history of a gene family, are often incongruent with the corre-
sponding species trees. They are, however, “embedded” into the species trees
in a way that branching events corresponding to speciations are tied to the
branchings in the species trees, whereas all other types of events are located
independently of the latter. Moreover, genes can only be transferred between
species that coexisted at a certain point in their evolution which imposes cer-
tain time-consistency constraints on the evolutionary history [108, 212, 228].
A major task in phylogenetics, apart from the reconstruction of tress, is there-
fore the constructions of so-called reconciliations which are formalizations of
the notion of an embedding of one tree into another, see [80, 106, 109, 238, 316]
for some examples.

Detailed gene family histories and reconciliations are a valuable tool for
studying associations between genetic and phenotypic innovations. In partic-
ular, the orthology, paralogy, and xenology relation on the set of genes under
consideration can be extracted as a by-product from a reconciliation. Tree-
based methods for orthology and HGT inference indeed follow this strategy,
see [15] and [246] for reviews. However, they suffer from difficulties in the
reconstruction of species and gene trees which usually have to assume that
sequence evolution approximately follows some well-behaved mathematical
model [88, 335], as well as high computational costs of finding reconciliations
based on some optimality criterion [178].

Considerable efforts have therefore been put into the development of meth-
ods that circumvent the necessity of explicitly constructing trees and reconcil-
iations. Graph-based methods for orthology inference start from best matches,
i.e., by identifying, for each gene, its closest relative or relatives in every
other species, see e.g. [226, 252, 272] for a few key reviews and the refer-
ences therein. Similarly, implicit phylogenetic methods for HGT detection
identify xenologs as such genes whose divergence time differs from that of
their respective species. This is approximated by significantly lower or higher
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sequence similarity as compared to the majority of pairs of related genes
[246, 254].

The tree-less inference of such relation data also motivated a series of re-
cent publications that are concerned with the reversed procedure, i.e., how
evolutionary histories can be reconstructed from estimates of the orthology,
paralogy, or xenology relation. In particular, the mathematical structure of or-
thology [132, 180], xenology [101, 131, 135], and the best match relation [102]
have been characterized which led to efficient algorithms to extract gene trees,
species trees, and reconciliations from the relation data. Although the result-
ing representations of gene family histories are usually not fully resolved,
they can provide important constraints for subsequent refinements. The ad-
vantage of the relation-based approach is primarily robustness [133, 293] since
it starts from yes/no answers to simple, pairwise comparisons instead of de-
tailed probabilistic models. In particular, the data is a binary relation, and
thus, it can be represented by a graph, possibly augmented by a measure of
confidence. Noise and inaccuracies in the initial estimates then translate into
violations of the required mathematical properties of the graphs in question.
Therefore, graph editing approaches can be harnessed as a means of noise
reduction [79, 133, 137, 185].

This work is a contribution to a detailed mathematical understanding of the
different relations between genes and their interdependencies. It focuses on
two graphs: best match graphs (BMGs) and later-divergence-time (LDT) graphs,
which provide a theoretical framework for graph-based inference of the or-
thology and xenology relation, respectively.

Best match graphs (BMGs) have only very recently been introduced as
mathematical objects to formalize the idea of pairs of evolutionarily most
closely related genes in two species [102]. In practice, sequence similarity is
usually used as a proxy for relatedness. Stadler et al. [293] investigated in
some detail how best matches in the somewhat stricter sense of ancestry in
the gene tree can be reliably obtained from sequence data. As alluded to
above, best matches are closely related to orthology. In particular, two or-
thologous genes are always best matches of one another (so-called reciprocal
best matches), at least in the absence of horizontal gene transfer [103]. In
other words, there are no false-negative orthology assignments when recip-
rocal best matches are considered. Here, we investigate this relationship in
some more depth and ask which reciprocal best matches can be identified as
false-positive orthologs with the knowledge of the full BMG, i.e., by also con-
sidering the unidirectional best matches. Moreover, we continue the study of
how much information on the gene tree is contained in a BMG, and ask what
can be inferred if we make additional assumptions such as an evolution that
only produces bifurcations in the gene tree.

Horizontal gene transfer largely invalidates mathematical guarantees for
the relationship of orthology and best matches [103]. It is therefore of interest
to first identify groups of genes that do not contain transfers in their histories.
While an unexpectedly large divergence time of two genes as inferred in im-
plicit phylogenetic methods for HGT detection can alternatively be explained
by duplication and loss events, a smaller divergence time is a clear indicator
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of xenologs. To the best of our knowledge, there has not been an in-depth
investigation of the mathematical properties of such “later-divergence-time”
data. Here, we introduce LDT graphs as a formalization of this notion and
study the scenarios that explain them. In particular, we answer the ques-
tion of how LDT graphs can be recognized and when they coincide with the
xenology relation. Since the latter is not satisfied in general, we also pro-
pose methods for inferring the remaining xenologs by means of completing
an LDT graph to a so-called Fitch graph [135], and explore their performance
with the help of simulations.

structure of this thesis

Chapter 2 introduces the basic mathematical definitions, the notation and
some well-established results that will be needed throughout this work. This
is followed by an overview of the concepts and state-of-the-art methods in
the field of phylogenetics in Chapter 3. In particular, orthology, paralogy,
and xenology are formally introduced as the different types of homology.

Best match graphs and their properties are extensively revisited in Chap-
ter 4. Several novel characterizations are given for them as well as some
interesting subclasses. In particular, BMGs that are associated with fully re-
solved trees are studied. The question of how to correct initial estimates of
best match data is tackled in Chapter 5 using graph modification problems.
Chapter 6 then turns to the question of how the orthology relation can be
extracted from a BMG. To this end, only duplication-loss scenarios are con-
sidered, i.e., horizontal gene transfer is explicitly excluded. In this setting,
one obtains a characterization of all reciprocal best matches that can unam-
biguously be identified as false positives w.r.t. orthology with the knowledge
of a BMG alone. Chapter 7 introduces later-divergence-time graphs in the
framework of relaxed scenarios, a very general version of reconciliation that
primarily focuses on time consistency. Finally, the relationship between LDT
graphs and xenology is studied in Chapter 8.
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2
B A S I C D E F I N I T I O N S

In this chapter, the notation and basic mathematical concepts are intro-
duced that will be used throughout this work. Secs. 2.1–2.3 contain rather
general definitions concerning sets, binary relations, graphs, and trees.

Mostly, we will adopt the standard notation established in graph theory (see
e.g. [78]) and phylogenetics (see e.g. [271]). In Sec. 2.4, we turn to the special
class of cographs and their representations as cotrees. We close in Sec. 2.5
with a brief introduction into computational complexity. We note that we
will refer to some concepts from this latter section earlier in the chapter.

2.1 sets and binary relations

Throughout, we will only consider finite sets (with obvious exceptions such as
the real numbers R). Given two sets A and B, we write A ⊆ B (A ⊂ B) if A is a
(proper) subset of B. In case of a proper subset, we sometimes also write A (
B to emphasize that A 6= B. The union, the intersection, and the set difference
will be denoted by A ∪ B, A ∩ B, and A \ B, respectively. Moreover, we write
A1 ∪· . . . ∪· Ak for the (disjoint) union to emphasize that the sets A1, . . . , Ak,
k ≥ 2, are pairwise disjoint. We denote by A4 B := (A \ B) ∪· (B \ A) the
symmetric difference of two sets A and B. The power set of A is the set of all
subsets of A (including ∅ and A), and denoted by 2A. The set of (unordered)
n-element subsets of A is given by (A

n) := {A′ ⊆ A : |A′| = n} ⊆ 2A. The
Cartesian product of two sets A and B is A× B := {(a, b) | a ∈ A and b ∈ B}.
We will, moreover, frequently need the (irreflexive part of the) set of ordered
pairs of the set A, i.e., (A× A)irr := A× A \ {(a, a) | a ∈ A}.

A partition A = {A1, . . . , Ak} with k ≥ 1 of a non-empty set A satisfies (i)
Ai 6= ∅ for 1 ≤ i ≤ k, (ii)

⋃k
i=1 Ai = A, and (iii) Ai ∩ Aj = ∅ for 1 ≤ i <

j ≤ k. A partition is non-trivial if k = |A| ≥ 2. Consider two partitions
A = {A1, . . . , Ak} and A′ = {A′1, . . . , A′l} of A. If for every 1 ≤ j′ ≤ l there is
a j such that A′j′ ⊆ Aj, i.e., if every set in A′ is completely contained in a set
in A, then A′ is a refinement of A, and A is a coarse-graining of A′.

A collection C ⊆ 2A of non-empty subsets of A is a hierarchy if (i) {a} ∈ C

for all a ∈ A, (ii) A ∈ C, and (iii) Ai ∩ Aj ∈ {∅, Ai, Aj} for all Ai, Aj ∈ C. In
other words, Condition (iii) states that all pairs of sets in C must either be
disjoint or in a subset relation.

A (binary) relation on a set A is a set R ⊆ A× A of ordered pairs (a, b) with
a, b ∈ A. Instead of (a, b) ∈ R, we will also write aRb. The relation R is
symmetric if (a, b) ∈ R implies (b, a) ∈ R for all a, b ∈ A, in which case we
also write ab ∈ R. It is antisymmetric if (a, b), (b, a) ∈ R implies a = b. It is
reflexive (irreflexive) if (a, a) ∈ R ((a, a) /∈ R) holds for all a ∈ A. Furthermore,
R is transitive if (a, b), (b, c) ∈ R implies (a, c) ∈ R for all (not necessarily
distinct) a, b, c ∈ R. A relation R that is symmetric, reflexive and transitive
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is called an equivalence relation. In this case, the equivalence class of a ∈ A
is [a] := {b ∈ A | ab ∈ R}, and the set of all equivalence classes forms a
partition of A. A relation that is reflexive, antisymmetric and transitive is a
partial order.

2.2 graphs

A graph G = (V, E) is an ordered pair of the two sets V, the vertices (or nodes),
and E, the edges or arcs depending on the type of the graph. We will also
write V(G) and E(G), resp., to refer to a specific graph G. We will consider
undirected and directed graphs. An undirected graph satisfies E ⊆ (V

2). We
will call the elements {x, y} ∈ E edges and simply write xy (or equivalently
yx). A directed graph (or digraph), on the other hand, has a set of (directed)
arcs E ⊆ (V ×V)irr, and will often be denoted by ~G. An arc (x, y) ∈ E is also
called an arc from x to y, an out-arc of x and an in-arc of y. Note that both
types of graphs are defined in a way that excludes (self) loops, i.e., edges or
arcs connecting a vertex with itself. In the literature, such graphs are usually
called simple.

A graph G′ = (V ′, E′) is a subgraph of G = (V, E), in symbols G′ ⊆ G, if
V ′ ⊆ V and E′ ⊆ E. The subgraph is called induced if, additionally, xy ∈ E (or,
in case of a digraph, (x, y) ∈ E) implies xy ∈ E′ ((x, y) ∈ E′) for all x, y ∈ V ′.
The subgraph of G that is induced by a subset of vertices W ⊆ V is denoted
by G[W].

The underlying undirected graph G of a digraph ~G can be obtained from ~G
by “dropping the direction” of all arcs in E(~G), i.e., setting xy ∈ E(G) if an
only if (x, y) ∈ E(~G) or (y, x) ∈ E(~G) (or both). The (undirected) symmetric
part G of a digraph ~G also has vertex set V(~G) but edges xy ∈ E(G) if and
only if (x, y), (y, x) ∈ E(~G), i.e., (x, y) and (y, x) are bidirectional arcs in ~G. The
class of undirected graphs G can alternatively by defined as the subclass of
directed graphs that satisfy (x, y) ∈ E(G) if and only if (y, x) ∈ E(G) for all
x, y ∈ V(G). With this definition, the symmetric part is always a subgraph of
the original graph. We will make use of this definition in Chapter 6.

Both reflexive and irreflexive binary relations R (on V) can be represented
by a directed graph ~G = (V, E := R \ {(v, v | v ∈ V)}). If R is additionally
symmetric, it can analogously be represented by an undirected graph.

2.2.1 Adjacency, Subgraphs, and Connectedness

Two vertices in a (di)graph G are adjacent if they are connected by an edge
(an arc). A vertex x and an edge yz (or an arc (y, z)) are incident if x ∈
{y, z}. The neighbors or neighborhood of x in an undirected graph, denoted by
N(x), is the set of all vertices that are adjacent to x, its degree is deg(x) :=
|N(x)|. In case of a directed graph, we distinguish out-neighbors (or the out-
neighborhood) N+(x) := {y ∈ V | (x, y) ∈ E} and in-neighbors (or the in-
neighborhood) N−(x) := {y ∈ V | (y, x) ∈ E} of a vertex x, as well as its
out-degree, outdeg(x) := |N+(x)|, and in-degree, indeg(x) := |N−(x)|. To keep
the notation simple, we put here N(x) := N+(x). Consequently, for subsets

8



W ⊆ V, we also write N(W) :=
⋃

x∈W N(x) \W for both types of graphs, and
additionally N−(W) :=

⋃
x∈W N−(x) \W in case of a digraph.

A sequence S = (x1, . . . , xn) of vertices in an undirected graph G = (V, E)
is a path (of length n− 1) if (i) all elements in S are pairwise distinct, and (ii)
xixi+1 ∈ E holds for all 1 ≤ i ≤ n− 1. Moreover, S is a circle if additionally
x1xn ∈ E. The sequence S is a shortest part if there is no other path in G
connecting x1 and xn that contains less vertices. In a digraph ~G = (V, E),
S = (x1, . . . , xn) is a (directed) path if (i) all elements in S are pairwise distinct,
and (ii) (xi, xi+1) ∈ E holds for all 1 ≤ i ≤ n − 1, and a (directed) circle if
additionally (xn, x1) ∈ E.

Two vertices are connected in an undirected graph G = (V, E) if there exists
a path that connects them. If this is the case for any two vertices in G, then
G is called connected, and disconnected otherwise. A connected component C
is a connected subgraph of G that is maximal w.r.t. inclusion, i.e., there is
no vertex x ∈ V \V(C) such that G[V(C) ∪ {x}] is connected. Whenever the
context is clear, we will also refer to the vertex sets of these inclusion-maximal
subgraphs as the set C of connected components. In this case, C is a partition
of the vertex set V. Furthermore, for connected undirected graphs G, we
define the diameter, denoted by diam(G), as the length of the longest shortest
path between any two vertices of G.

In a digraph ~G, two vertices x and y are strongly connected if they are con-
nected by a directed path of the form (x, . . . , y), and weakly connected if they
are connected in the underlying undirected graph of ~G. Correspondingly, ~G
is strongly or weakly connected, resp., if this is the case for any two of its ver-
tices, and we can define strongly or weakly connected components as inclusion-
maximal strongly or weakly connected subgraphs of ~G, respectively. We usu-
ally call a weakly connected digraph/component simply connected. Hence,
when referring to a digraph, disconnected means that it is not weakly con-
nected.

2.2.2 Special Graphs, Graph Properties, and Operations

An undirected graph G = (V, E) with E = (V
2) is called complete and denoted

by K|V|. A complete subgraph G′ ⊆ G is called a clique in G. A graph
whose connected components are all cliques is a cluster graph. A subset of
vertices W is an independent set in a directed or undirected graph G if G[W] is
edgeless and W is maximal w.r.t. inclusion. It will be useful here to include
the maximality condition even though it usually is not part of the definition
of independent sets.

We will denote by Pn and Cn subgraphs with n vertices in an undirected
graph that form a path or circle, resp., that is, with no additional edges.

In a digraph, a vertex x is a sink if N(x) = ∅, and a source if N−(x) = ∅.
A digraph ~G is sink-free if it has no sinks. We call x a hub-vertex of a digraph
~G = (V, E) if (x, y), (y, x) ∈ E holds for all vertices y ∈ V \ {x}.

A directed or undirected graph G = (V, E) is called k-partite if there exists
a partition V = {V1, . . . , Vk} with k ≥ 1 such that x, y ∈ Vi ∈ V implies xy /∈ E
(or (x, y), (y, x) /∈ E in case of a digraph). For the special case that k = 2, we
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also use the term bipartite, and multipartite for an arbitrary k. If G is k-partite
with independent sets V = {V1, . . . , Vk} and, additionally, x ∈ Vi, y ∈ Vj
with i 6= j implies xy ∈ E (or (x, y), (y, x) ∈ E), then G is called complete
multipartite. Note that, since we allow k = 1, every edgeless graph is always
complete multipartite.

The complement of an undirected graph G = (V, E), denoted by G, has
vertex set V and edge set E := (V

2) \ E. Given two undirected graphs G =

(V, E) and H = (W, F) that satisfy V ∩W = ∅, their disjoint union is given
by G ∪· H := (V ∪· W, E ∪· F), and their join by GOH := (V ∪· W, E ∪· F ∪· {vw |
v ∈ V, w ∈ W}). In Chapters 7 and 8, we will need the graph K2 + K1 which
is the disjoint union of a K2 and a K1.

We write G −W := G[V \W] for the graph that is obtained from G by
removal of all vertices in W and all edges/arcs incident to elements in W.
Similarly, for a graph G = (V, E) and edge set F ⊆ (V

2) (or, in case of a
digraph, arc set F ⊆ (V × V)irr), we define the graphs G + F := (V, E ∪ F),
G− F := (V, E \ F), and G4 F := (V, E4 F).

2.2.3 Colorings

Given a graph G = (V, E), a map σ : V → M where M is a non-empty set
of colors is called a (vertex-)coloring. A graph G endowed with a coloring σ,
or short (vertex-)colored graph, will be denoted by (G, σ). The coloring σ is
proper if σ(x) 6= σ(y) for any two adjacent vertices x, y ∈ V. As a consequence,
we have

Observation 2.1. Let x be a hub-vertex in a properly colored digraph (~G, σ). Then
x is the only vertex of color σ(x) in (~G, σ).

We write σ(W) := {σ(x) | x ∈ W} for the subset of colors represented in
W ⊆ V. Moreover, we denote by V[r] := {x ∈ V | σ(x) = r and r ∈ M} the
subset of vertices of color r. We often write |σ(V)|-coloring to emphasize the
number of colors in (G, σ). Throughout, we will need restrictions of the color
map σ. For later reference, we present them in

Definition 2.1. Let σ : V → M be a map and V ′ ⊆ V. The map σ|V′ : V ′ → M is
defined by putting σ|V′(x) = σ(x) for all x ∈ V ′.

Given a set M′ with σ(V ′) ⊆ M′ ⊆ M, we may additionally restrict the codomain
by writing σ|V′,M′ : V ′ → M′.

We will usually only restrict the domain of σ. Hence, the subgraph of
a vertex-colored graph (G = (V, E), σ) induced by V ′ ⊆ V is given by
(G[V ′], σ|V′). If not stated otherwise, we do neither assume that σ nor that
its restrictions σ|V′ or σ|V′,M′ are surjective.

2.3 trees

An undirected graph without cycles is a forest. If it is additionally connected,
it is called a tree. A rooted tree T = (V, E) is a tree with one distinguished
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vertex ρT ∈ V (or simply ρ if there is no risk of ambiguity) which is called the
root of T. In this work, we will only consider rooted trees, and thus, simply
write trees. Moreover, we assume that all trees are non-empty, i.e., V contains
at least the root ρT.

The notion of a root naturally gives rises to the so-called ancestor order, a
relation on V denoted by �T, that is given by v �T u if and only if u lies
along the unique path from v to the root ρT. One easily verifies that �T is a
partial order. If v �T u, we call u an ancestor of v, and v a descendant of u. If
moreover v 6= u, we may write v ≺T u and speak of a strict ancestor/descendant.
For convenience, we may also write u �T v and u �T v instead of v �T u
and v ≺T u, respectively. If v �T u or u �T v, we say that u and v are
comparable (in T), and incomparable otherwise. If v �T u and uv ∈ E, then u
is the (unique) parent of v, denoted by parT(v), and v is a child of u. The set
of all children of a vertex u ∈ V will be denoted by childT(u). For the edges
uv ∈ E, we use the convention that v ≺T u, i.e., v is a child of u.

The leaf set L := L(T) ⊆ V are those vertices in a tree T with an empty set of
children. For brevity, we will often write a tree on L denoting a tree with leaf
set L. The vertices in V0(T) := V \ L are called the inner vertices. In particular,
ρT is an inner vertex if and only if the tree has at least two vertices. An edge
uv is an inner edge if both u and v are inner vertices, and an outer edge if one
of them is a leaf.

A tree is phylogenetic if every inner vertex has at least two children, and
binary if every inner vertex has exactly two children.

Remark 2.1. If not explicitly stated otherwise, we will always assume that a tree is
phylogenetic throughout this work.

The (maximal) subtree of a tree T rooted at a vertex u is induced by the set
of vertices {x ∈ V(T) | x �T u}, and will be denoted by T(u). In particular,
the set of all leaves that are descendants of a vertex u is given by L(T(u)).

We will often consider leaf-colored trees (T, σ), i.e., trees T endowed with
a (color) map σ : L(T) → M where M is again a non-empty set of colors.
The subtree of a leaf-colored tree (T, σ) rooted at u ∈ V(T) is given by
(T(u), σ|L(T(u))).

2.3.1 Tree Isomorphisms and Clusters

We call two rooted trees T and T′ on the same leaf set L isomorphic if there
exists a bijection Φ : V(T) → V(T′) satisfying (i) uv ∈ E(T) if and only if
Φ(u)Φ(v) ∈ E(T′) for any u, v ∈ V(T), (ii) Φ(ρT) = ρT′ , and (iii) Φ(x) = x
for all x ∈ L. For all purposes in this work, it will be convenient to consider two
isomorphic trees as identical. In particular, uniqueness of a tree w.r.t. some property
means that there exists no non-isomorphic tree satisfying this property.

The set of clusters of a tree T = (V, E) on L is given by C(T) := {L(T(u)) |
v ∈ V(T)}, and is always a hierarchy on L. Since rooted phylogenetic trees
satisfy L(T(u)) = L(T(v)) if and only if u = v for all u, v ∈ V, there exists
a well-known one-to-one correspondence between rooted phylogenetic trees
and hierarchies (on the same set L) [270].
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2.3.2 Last Common Ancestors

Given a tree T = (V, E), we extend the ancestor order to the union of vertices
and edges by setting, for each edge e = xy ∈ E with y ≺T x and vertex v ∈ V,
v ≺T e if and only if v �T y and e ≺T v if and only if x �T v. Similarly, for
two edges e = xy and f = ab with y ≺T x, b ≺T a in T, we put e �T f if and
only if y �T b.

For a non-empty subset A ⊆ V ∪ E, we define lcaT(A), the last common
ancestor of A, to be the unique �T-minimal vertex of T, i.e., the one that is
furthest away from ρT, that is an ancestor of every x ∈ A. For simplicity,
we simply write lcaT(x1, . . . , xn) instead of lcaT({x1, . . . , xn}). We will often
make use of the simple observation that u := lcaT(x, y) and v := lcaT(x, z) for
x, y, z ∈ V are both ancestors of x and lie on the (unique) path from x to the
root ρT. Therefore, u and v are always comparable w.r.t. �T.

2.3.3 Restrictions and Refinements

An edge e = uv in a tree T is contracted by removing e and identifying u and
v. We denote by Te the tree that is obtained from T by contraction of the edge
e ∈ E(T), and by TA the tree that is obtained by contraction of all edges in A ⊆
E(T) (in an arbitrary order). We will usually only consider the contraction of
inner edges. The contraction of inner edges in a phylogenetic T again yields a
phylogenetic tree, and has an interpretation in terms of the set of clusters C(T)
in such a way that contraction of uv (with v �T u) corresponds to removal
of the set L(T(v)) from C(T). Together with the observation that there is at
most one edge u′v such that v �T u′ and the one-to-one correspondence with
hierarchies, this implies that TA is well-defined, i.e., the resulting tree TA is
independent of the contraction order.

Following e.g. [37, 271], we denote by T|L′ the restriction of T to a subset L′ ⊆
L(T). More precisely, T|L′ is obtained by identifying the (unique) minimal
subtree of T that connects all leaves in L′, and suppressing all vertices in that
subtree that have only a single child left, i.e., by the stepwise contraction of
one incident edge of such vertices until none of them remain. In particular, as
a consequence of its construction, T|L′ is again phylogenetic. The root of T|L′
is given by lcaT(L′). An example for this construction is given in Fig. 1. The
restriction T|L′ can alternatively be defined as the unique tree corresponding
to the hierarchy {C ∩ L′ | C ∈ C(T) and C ∩ L′ 6= ∅} [e.g. 114].

We say that T displays a tree T′ on L′ ⊆ L(T), in symbols T′ ≤ T, if T′ can be
obtained from the restriction T|L′ of T by a series of inner edge contractions.
We write T′ < T for T′ ≤ T and T′ 6= T. Moreover, if T′ ≤ T and L(T′) =

L(T), then T is a refinement of T′, in which case C(T′) ⊆ C(T). We say that a
leaf-colored tree (T′, σ′) is displayed by (T, σ) if T′ ≤ T and σ(v) = σ′(v) for
all v ∈ L(T′).
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Fig. 1. The tree T has leaf set L := {a, b, c, d, e, f , g}. The minimal subtree connecting
all leaves in L′ := {a, c, d, f } is T′ with root u. Note that T′ is not phylogenetic. The
restriction T|L′ is obtained from T by first identifying T′ and then suppressing the
two single-child vertices x and y. T′′ is displayed by T since it can be obtained from
T|L′ by contraction of the edge uv.

2.3.4 Rooted Triples and Triple Consistency

A (rooted) triple is a binary rooted tree on three leaves, and thus, with ex-
actly two inner vertices. We write xy|z for the triple t on the leaves x, y
and z if the path from x to y does not intersect the path from z to the root,
i.e., if lcat(x, y) ≺t lcat(x, z) = lcat(y, z) = ρt. In particular, a tree T with
x, y, z ∈ L(T) displays xy|z if and only if lcaT(x, y) ≺T lcaT(x, z) = lcaT(y, z).
Note that xy|z = yx|z. Sets of rooted triples will usually be denoted by
R. We define LR :=

⋃
t∈R L(t) as the set of leaves appearing in R, and

R|L′ := {xy|z ∈ R : x, y, z ∈ L′} as the restriction of a triple set R to a set L′ of
leaves. Moreover, we denote by r(T) the set of all triples that are displayed
by a tree T.

A set R of triples is consistent if there is a tree T (on LR) that displays every
triple in R, i.e., R ⊆ r(T). It can be decided in polynomial time whether a
set of triples R is consistent using the well-known algorithm called BUILD by
Aho et al. [7] which, moreover, constructs such a tree in the affirmative case.
The BUILD algorithm (for the special case of triple sets as input) will play a
central role in this work. The special tree that it constructs for a consistent set
of triples R and leaf set L with LR ⊆ L will be called the Aho tree and denoted
by Aho(R, L). The algorithm relies on the construction of an (undirected)
auxiliary graph:

Definition 2.2. Given a set of rooted triples R and a set (of leaves) L, the undirected
Aho graph, denoted by [R, L], has vertex set L and edges xy if and only if xy|z ∈ R

for some z ∈ L.

Moreover, its correctness is a consequence of

Proposition 2.1. [37] A triple set R on L is consistent if and only if [R|L′ , L′] is
disconnected for every subset L′ ⊆ L with |L′| > 1.

The BUILD algorithm operates in a top-down recursive fashion in such way
that, given R is consistent, every recursion step corresponds to a vertex in the
resulting Aho tree T := Aho(R, L). In particular, the root ρT is initialized in
the top-level recursion step (with Aho graph [R, L]). The tree T is constructed

13



ρ

T

c

e

d

a

b f

c

a

b a

b

ab|c
ab|d
bc|f
de|f

c e fa b d

ab|c d

e

Fig. 2. Illustration of the BUILD algorithm with input R = {ab|c, ab|d, bc| f , de| f }
and L = {a, b, c, d, e, f }. Each recursion step (pink boxes) corresponds to a vertex of
the resulting tree T = Aho(R, L) (trivial steps on single vertices are omitted in the
drawing). The algorithm recurses on the connected components (gray dashed boxes)
of the Aho graphs and the corresponding subsets of triples.

by recursively attaching to the root the Aho trees returned by recursive calls of
BUILD with the vertex sets L′ of the connected components of the Aho graphs
(and the restricted triple sets R|L′) as input. In particular, there is a one-to-one
correspondence between the children v of the root ρ′, created in the step on L′,
and the connected components C of [R|L′ , L′] given by L(T(v)) = V(C). The
trivial cases of the recursion are those steps where |L′| = 1, in which case a
(sub)tree consisting of the single element in L′ is returned. The algorithm fails
if and only if |L′| > 1 and [R|L′ , L′] is connected in some recursion step. By
Prop. 2.1, this implies that R is not consistent. An example for the recursive
procedure with a consistent triple set as input is shown in Fig. 2.

Since the decomposition of the Aho graphs into their connected compo-
nents is unique, the Aho tree is also uniquely defined. Moreover, it is least
resolved in the following sense:

Proposition 2.2. [270, Prop. 4.1] Let R be a consistent set of rooted triples. Then
Aho(R, LR) is a minimal rooted phylogenetic tree consistent with R, i.e., there is no
tree T′ with T′ < T that displays all triples in R.

However, Aho(R, LR) is in general not the unique minimal tree in that sense,
nor the tree with a minimal number of inner vertices [159].

Aho et al.’s [7] original motivation for the BUILD algorithm was an applica-
tion to relational databases. In the early 1990s – about a decade later – Steel
[299] was among the first to realize that it can be used to solve the supertree
problem. The supertree problem, as it is e.g. defined in [71, 271, 299], is a
generalization of the triple consistency problem. It takes a so-called profile
P = {T1, . . . , Tk}, i.e., a set of k rooted trees, as input, and asks whether there
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is a tree T∗ with leaf set LP =
⋃k

i=1 L(Ti) that displays all trees in P . BUILD

can be used to solve this problem as a direct consequence of

Proposition 2.3. [37, Thm. 1] Let T and T′ be rooted phylogenetic trees. Then
T′ ≤ T if and only if r(T′) ⊆ r(T) and L(T′) ⊆ L(T).

Hence, the trees in a profile P can be encoded by the union RP of their triple
sets. Henzinger et al. [139] showed that consistency of RP can be checked
in O(|RP | log3 |LP |), which can be further reduced to O(|RP | log2 |RP |) us-
ing the HDT data structure described by Holm et al. [146] as pointed
out in [71]. Deng and Fernández-Baca [71] also present an alternative ap-
proach that avoids considering triples and Aho graphs explicitly, and runs in
O(MP log2 MP ) where MP is the total number of vertices and edges in P . We
note in passing that the corresponding consistency check for unrooted trees
is NP-complete [299]. In practice, efficient supertree methods – in particular,
such that can handle inconsistencies – have become relevant in the endeavor
to summarize published species trees in a comprehensive tree of life, see e.g.
[142].

We will also need to consider trees that explicitly do not display certain
triples. To this end, we generalize the notion of consistency for pairs of triple
sets:

Definition 2.3. A pair of triple sets (R,F) is consistent if there is a tree T that
displays all triples in R but none of the triples in F. In this case, we say that T
agrees with (R,F).

For F = ∅, this definition reduces to the usual notion of consistency of R.
Consistency of (R,F) can also be checked in polynomial time. The algorithm
MTT, named for mixed triplets problem restricted to trees, constructs a tree T that
agrees with (R,F) or determines that no such tree exists [128]. It can be seen
as a generalization of BUILD. Each recursion step of MTT starts by initializing
an auxiliary partition D of L′ according to the connected components of the
Aho graph [R|L′ , L′]. In a second step, it stepwise merges distinct sets D and
D′ in D if there are triples xy|z ∈ F|L′ with x, y ∈ D and z ∈ D′ until no such
triples remain. The algorithm then recurses on the sets in the so-constructed
partition D, and fails if and only if |L′| > 1 and |D| = 1 at some point.

Theorem 2.1. [128, Thm. 1] Algorithm MTT outputs a phylogenetic tree T that
agrees with the pair (R,F) (defined on n distinct leaves) if and only if (R,F) is
consistent in O(|R| · n + |F| · n log n + n2 log n) time.

Moreover, any pair of triples (R′,F′) such that R′ ⊆ R and F′ ⊆ F for a
consistent pair (R,F) remains consistent since any tree that agrees with (R,F)
clearly displays all triples in R′ and none of the triples in F′. Hence, we have

Observation 2.2. Let R′ ⊆ R and F′ ⊆ F for a consistent pair of triple sets (R,F).
Then (R′,F′) is consistent.

Following Bryant and Steel [37], an inner edge e of a rooted tree T is distin-
guished by a triple ab|c ∈ r(T) if the path from a to c in T intersects the path
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from b to the root ρT precisely on the edge e. In other words, e = uv with
v ≺T u is distinguished by ab|c if lcaT(a, b) = v and lcaT(a, b, c) = u.

A set of triples R on a set of leaves L is strictly dense if, for all three distinct
x, y, z ∈ L, exactly one of the triples xy|z, xz|y, and yz|x is contained in R. For
later reference, we will need

Lemma 2.1. [133, SI Appendix, Lemma 7] Let R be a consistent set of triples on
L. Then there is a strictly dense consistent triple set R′ on L such that R ⊆ R′.

Lemma 2.1 can be seen by considering a binary refinement T′ of an arbitrary
tree T that displays a consistent set R. Clearly, T′ also displays R, i.e., R ⊆
r(T′). Moreover, we have that r(T′) is strictly dense as a consequence of T′

being binary.

2.3.5 The Span and the Closure Operator

Following [37, 269], we call the span of R, denoted by 〈R〉, the set of all trees
with leaf set LR that display R. With this notion, we define the closure operator
for consistent triple sets by

cl(R) =
⋂

T∈〈R〉
r(T), (1)

i.e., a triple t is contained in cl(R) if all trees that display R also display t. In
particular, cl(R) is again consistent. The map cl is a closure in the usual sense
on the set of consistent triple sets, i.e., it is extensive [R ⊆ cl(R)], monotonic
[R′ ⊆ R =⇒ cl(R′) ⊆ cl(R)], and idempotent [cl(R) = cl(cl(R))] [37,
Prop. 4]. A consistent set of triples R is closed if R = cl(R).

The following characterization of triples that are contained in the closure
relies on Aho graphs:

Proposition 2.4. [35, Cor. 3.9] Let R be a consistent set. Then ab|c ∈ cl(R) if and
only if there is a subset L′ ⊆ LR such that the Aho graph [R|L′ , L′] has exactly two
connected components, one containing both a and b, and the other containing c.

Following [101, 114], a set of rooted triples R identifies a tree T on L if T
displays R and every other tree on L that displays R is a refinement of T.

Proposition 2.5. [114, Lemma 2.1] Let T be a phylogenetic tree and R ⊆ r(T).
Then cl(R) = r(T) if and only if R identifies T.

2.3.6 Special Trees

A star (tree) is a tree T that has exactly one inner vertex ρT, i.e., all of its leaves
are children of the root ρT. A caterpillar (tree) is a binary tree in which every
inner vertex has at most one child that is an inner vertex.

Following e.g. [103], a tree T is a planted phylogenetic tree if (i) it has a root
0T that has a single child ρT = lcaT(L(T)), and (ii) the subtree T(ρT) is a
phylogenetic tree in the usual sense, i.e., as introduced above. We will call
0T the planted root, as opposed to the conventional root ρT. Planted trees are
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useful in phylogenetics (where T represents the history of a group of genes
or species) to model events that took place before the first branching event
(represented by ρT). In particular, the unique planted edge 0TρT represents
the “ancestral lineage”. Note that by definition 0T /∈ L(T). Moreover, we
set V0(T) := V(T) \ (L(T) ∪ {0T}) for planted trees, i.e., 0T is also not an
inner vertex. We will make extensive use of planted trees in Chapters 6 to 8.
Therein, whenever there is no danger of confusion, we will refer to both
rooted phylogenetic trees and planted phylogenetic trees simply as trees.

2.4 cographs & cotrees

Cographs are a well-studied class of undirected graphs that, in particular,
appear often in the mathematical modeling of the relationship of genes
[103, 132, 185]. Cographs are generated from single-vertex graphs by repeated
application of disjoint union and join operations:

Definition 2.4. An undirected graph G is a cograph if

1. G is a K1,

2. G = H ∪· H′ is the disjoint union of two cographs H and H′, or

3. G = HOH′ is the join of two cographs H and H′.

The recursive construction defines a rooted tree (T, t) with t : V0(T)→ {0, 1},
called cotree. Its leaves are the vertices of the cograph G, i.e., the K1s, while
its inner vertices u represent the disjoint union or join operations, labeled
as t(u) = 0 and t(u) = 1, respectively. Hence, for a given cograph G and
its cotree (T, t), we have xy ∈ E(G) if and only if t(lcaT(x, y)) = 1. Since
both the disjoint union and the join are associative operations, a cotree is
not necessarily binary. In general, therefore, the cograph G = G[ρT] can be
obtained from a cotree (T, t) using

G[u] =





⋃
·

v∈childT(u)

G[v] if t(u) = 0

O
v∈childT(u)

G[v] if t(u) = 1

({u}, ∅) if u is a leaf

(2)

where G[w] with w ∈ V(T) denotes the cograph corresponding to the subtree
(T(w), t|L(T(w))).

Contraction of all tree edges uv ∈ E(T) with t(u) = t(v) results in the
discriminating cotree (TG, t̂) of G with cotree-labeling t̂ such that t̂(u) 6= t̂(v) for
any two adjacent interior vertices of TG. The discriminating cotree (TG, t̂) is
uniquely determined by G [57]. Cographs have a large number of equivalent
characterizations. In this work, we will need the following classical results:

Proposition 2.6. [57] Given an undirected graph G, the following statements are
equivalent:
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Fig. 3. Top row: Example for a cograph G and a corresponding cotree (T, t). The
unique discriminating cotree (TG, t̂) is obtained from (T, t) by contraction of the edge
that is highlighted in red. Bottom row: The P4 is the characteristic forbidden induced
subgraph of cographs (cf. Prop. 2.6). Its complement (drawn on the r.h.s.) is again a
P4.

1. G is a cograph.

2. G does not contain a P4, i.e., a path on four vertices, as an induced subgraph.

3. diam(H) ≤ 2 for all connected induced subgraphs H of G.

4. Every induced subgraph H of G is a cograph.

In particular, Prop. 2.6(4) states that cographs are a so-called hereditary class
of graphs. Moreover, they coincide with the P4-free graphs, i.e., graphs that
do not contain a P4 as an induced subgraph. A P4 is the smallest example of
a connected graph whose complement is again connected (cf. Fig. 3). There-
fore, graphs containing an induced P4 cannot be decomposed entirely into
single vertices by a recursive application of the complement operation on its
connected components. As a consequence of their construction (cf. Def. 2.4),
this is possible for cographs. In fact, the term cograph is short for complement-
reducible graph [57].

2.5 computational complexity

The complexity of an algorithm measures the amount of time or resources that
it requires. We will mainly consider the (worst-case) time complexity which
measures the number of elementary operations, which themselves are as-
sumed to take constant time, that are executed during the computation on
a (usually idealized) machine.

The time complexity of an algorithm is typically expressed as a function
of the input size using the so-called big O notation. We say that a function
f (n) is O(g(n)) if there are constants c and n0 such that f (n) ≤ c · g(n) for all
n > n0. Thus, with n denoting the input size, an algorithm runs in O(g(n))
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(time) if the number of required elementary operations as a function of n is
O(g(n)). If g is a polynomial of finite degree, then the algorithm is said to run
in polynomial time and called a polynomial-time algorithm. Common complexity
classes of algorithms are constant (O(1)), logarithmic (O(log n)), linear (O(n)),
quadratic (O(n2)), and exponential (e.g. O(2n)) time algorithms. In this work,
the input size will usually be measured in terms of the number of vertices
and/or edges of a graph, or the number of leaves of a tree. When speaking
of a linear-time algorithm that takes a graph G = (V, E) as input, we usually
mean O(|V|+ |E|), i.e., the algorithm runs in linear time w.r.t. the number of
vertices and edges.

As a consequence of their definition as upper bounds of the asymptotic
behavior of algorithms, complexity classes can be ordered according to the
inclusion of smaller classes, e.g., all algorithms that run in O(n) also run in
O(n2), the converse of which is not true. We are usually interested in finding
the smallest complexity class of an algorithm in that sense. Correspondingly,
the complexity of a problem is defined as the smallest complexity of all algo-
rithms that solve it. In general, determining the complexity of a problem is a
difficult task since one has to take all possible algorithms into account. Nev-
ertheless, it is often possible to classify problems according to their difficulty.
In the following, we will introduce some important concepts and methods
that are used in this field.

In complexity theory, decision problems are such problems for which the
problem instances can either be answered with “yes” or “no”. Even though
other problem classes such as optimization and search problems are often of
higher practical interest, decision problems are usually the starting point for
studying the complexity of a problem. In particular, other types can often be
transformed into decision problems. In this work, we will e.g. ask what the
minimum number of edges/arcs is that need to be inserted into or deleted
from a graph to obtain a graph with a certain property – a classical optimiza-
tion problem. One can alternatively ask whether there is a set of edge/arc
insertions/deletions of cardinality at most k such that the modified graph sat-
isfies the desired property, and then stepwise increase or decrease k. Hence,
we have obtained possibly multiple decision problems from the original opti-
mization problem. Accordingly, we will frequently speak of the optimization
and the decision version of such problems.

The class of all decision problems that can be solved by a (not necessarily
known) polynomial-time algorithm is denoted by P. The complexity class P is
contained in the class NP, which comprises all decision problems for which a
given solution can be verified as being valid or not in polynomial time. NP
stands for “non-deterministic polynomial time” which refers to the fact that
NP problems are solvable in polynomial time on a so-called nondeterministic
Turing machine, a theoretical model of a machine that is able to follow all
possible paths of a computation at the same time, and therefore, finds and
verifies a solution, if one exists, in polynomial time. A problem is called NP-
hard if it is at least as hard as the hardest problems in NP, and NP-complete
if it is additionally contained in NP. Well-known examples of NP-complete
problems are the Satisfiability (SAT) problem, the Chromatic Number of
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graphs, and 0-1 Integer Linear Programming (ILP) [165]. Several hundreds
more have been collected by Garey and Johnson [99].

There are thousands of problems in NP, including all NP-complete prob-
lems, for which no one has found a polynomial-time algorithm [19], leading
to the widely accepted conclusion that P 6=NP. So far, however, this has not
been proven. In fact, the P vs NP problem is one of the biggest unsolved prob-
lems in computer science and among the seven Millennium Prize Problems
[44]. At the same time, it is reasonable to believe that a nondeterministic
Turing machine cannot be realized in practice. Even quantum computers are
probably unable to solve NP-complete problems efficiently [2, 26]. The rela-
tionship of NP and BQP, the class of decision problems that can be solved in
polynomial time on a quantum computer, has been studied by computer sci-
entists since before the first notable realizations of quantum computers and
largely remains an open problem [1, 227, 247]. The latter arguments together
with the fact that non-polynomial-time algorithms are usually workable only
for small instances in a reasonable amount of time suggest that there are
problems for which an exact solution cannot be found efficiently, i.e., in poly-
nomial time. In particular, this provides a justification for the development
of faster heuristic algorithms that produce “good” but not necessarily optimal
solutions.

An important tool to study the complexity of (decision) problems are re-
ductions. A reduction is an algorithm that transforms instances of problem A
into instances of another problem B in a way that allows the reconstruction
of a solution for A from a solution for B. An important condition for a reduc-
tion to be useful is that it is easy w.r.t. the studied complexity class. There-
fore, polynomial-time reductions are employed to prove the membership of a
problem to the NP-hard problems. If problem A can be reduced to problem B
using a polynomial-time reduction and problem B can be solved in polyno-
mial time, then problem A clearly also can be solved in polynomial time. If,
on the other hand, we assume that problem A is not solvable in polynomial
time, then we obtain a contradiction and can conclude that problem B also
cannot be solved in polynomial time.

Integer Linear Programming (ILP) is a useful tool to derive exact solu-
tions for NP-complete problems by means of polynomial-time reductions. An
integer linear program consists of

(i) a set of integer variables x1, . . . , xn,

(ii) a set of linear constraints of the form ∑1≤j≤n aijxj ≤ bi
with aij, bi ∈ R, and

(iii) a linear objective function of the form min / max ∑1≤j≤n cjxj
with cj ∈ R.

In this work, we will, in particular, make use of ILPs with binary variables
only, i.e., xj ∈ {0, 1} for all 1 ≤ j ≤ n, to formulate certain graph modification
problems in Sec. 5.4. Even though ILP is NP-hard, there exist solvers such as
IBM ILOG CPLEX™ Optimizer [154] and Gurobi Optimizer [118] that allow
the computation of exact solutions at least for moderate-size instances.
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3
C O N C E P T S A N D M E T H O D S I N P H Y L O G E N E T I C S

Phylogenetics is a field in biology that addresses the reconstruction of
evolutionary histories and the relationship among biological entities
such as species (or higher-order taxa) and genes. The aim is usually

to construct a phylogenetic tree or phylogeny that describes the evolution from
a common ancestor (the root) to the extant species or genes (the leaves) that
we can observe now through a series of branching events (the inner vertices).
Rooted and unrooted trees as well as their application as models in biology
have been studied extensively, see e.g. [88] and [271] for standard textbooks
on the topic.

There are a number of evolutionary processes that trees cannot accommo-
date. Events such as recombination in (parts of) genes, hybridization, i.e.,
interbreeding between different species, and horizontal gene transfer can re-
sult in a rather reticulate evolutionary history of a group of species and genes.
Therefore, phylogenetic networks as a more general framework that enable
both bi- or multifurcations (as in trees) and reticulations have received great
attention especially in the last two decades, see e.g. [153] and [217] for reviews.
At the same time, software to infer and analyze such networks has been de-
veloped [e.g 36, 286, 328]. However, despite the fact that they may not cover
all subtleties of evolutionary histories, trees are still the most commonly used
model in phylogenetics [241]. In particular, it will also be assumed through-
out this work that evolution progresses in a tree-like manner.

3.1 evolutionary scenarios and the types of homology

In a species tree, usually denoted by S, the inner vertices represent the di-
vergence of some species into two or more descendant species. Even though
speciation is, as we will discuss briefly below, a gradual process, we will as-
sume that it takes a sufficiently small period of time such that a single point
in time can be assigned to the speciation vertices. In modern (molecular)
phylogenetics, species are represented by their genomes, i.e., the heritable in-
formation in form of a sequence of nucleic acids in the DNA (or RNA in the
case of some groups of viruses).

The genome of an organism comprises the genes as well as intergenic re-
gions. Genes have been defined in various different ways in history and also
in the more recent literature [105, 292]. For example, Gerstein et al. [105]
define a gene as “a union of genomic sequences encoding a coherent set of
potentially overlapping functional products”, where functional products are
either proteins or functional RNA molecules. Here, it will be convenient to
put a larger emphasis on the association of a gene to a sequence of nucleic or
amino acids, and to use the term gene in a more general way to refer to any
kind of heritable sequence information.
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Similar to species trees, a gene tree (usually denoted by T) describes the
evolutionary history of a gene family, i.e., a group of genes that share a com-
mon ancestry. Genes that have evolved from a common ancestor usually
exhibit a certain degree of sequence similarity and have been termed homol-
ogous or homologs by Fitch [89], as opposed to analogous genes which fulfill
similar functions but do not share a common ancestry. This terminology par-
allels the notion of homologies and analogies used for morphological traits
of organisms [43]. For example, the wings of birds and butterflies are anal-
ogous traits since they evolved independently on separate branches of the
bilaterian phylogeny, and are the result of so-called convergent evolution. On
the other hand, the four limbs of tetrapods are homologous as they emerged
from a common ancestry – as different as for example a human arm and a
whale’s front flipper may appear. Similarly, homologous genes do not nec-
essarily have the same function. In practice, it is usually known in which
genome/species an extant gene resides. We will encode this knowledge in
form of a leaf-coloring σ : L(T)→ M, which assigns to each leaf of T a species
from a set M, and often also call the pair (T, σ) a gene tree.

As a consequence of their association with a genome, the evolution of a
gene family is closely tied to the evolution of the underlying organisms. In
particular, the descendant species of a speciation event each obtain copies of
the genes in the parent species which, from then on, continue to evolve inde-
pendently, at least in the absence of events such as horizontal gene transfer
and hybridization. Therefore, the divergence of species also imposes a diver-
gence on the genes. Conversely, the evolution of gene families is additionally
driven by events that are independent of branching events in the species phy-
logeny. The most important of them and the ones that will be considered in
this work are the following:

1. (gene) duplication – a genomic sequence containing one or more genes
gets copied,

2. (gene) loss – a genomic sequence containing one or more genes gets lost
by deletion or by extensive accumulation of smaller mutations, and

3. horizontal gene transfer (HGT) – genetic material gets transferred between
organisms that are not in a parent-offspring relationship.

Some biological mechanisms and examples for these events will be discussed
in Sec. 3.2. As a consequence of these three processes, the topologies of
gene trees are not necessarily congruent with the topology of the underlying
species tree. Another phenomenon that can produce incongruent topologies
is incomplete lineage sorting (ILS) which refers to polymorphisms, i.e. the
occurrence of two or more variants of a gene at the same genomic locus (al-
leles) within a population, that are retained over multiple speciation events
followed by a (differential) loss of alleles in the descendant species. Through-
out, we will not consider ILS explicitly and refer to [202, 205] for reviews on
how to model and handle this phenomenon.

We will use the term (evolutionary) scenario to describe a pair consisting of
a gene tree and a corresponding species tree together with some form of re-
lationship between the two. Despite their possible incongruence, species and
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gene trees constrain one another in the sense that the gene tree is “embedded”
into the species tree in a manner that is, in particular, time-consistent [81, 228].
This means that it must be possible to assign a timing to each event such that
ancestral events predate their descendants and, moreover, no conflicts exist
between the timing of the gene tree’s events and the timing of the parts of
the species tree into which they are embedded. Mathematically, such embed-
dings are formalized by a so-called reconciliation (map). In the most common
setting, a reconciliation maps the vertices of the gene tree to vertices (or the
union of vertices and edges) of the species tree and satisfies a set of axioms
or constraints that depend on the exact purpose such as the modeling of sce-
narios that do or do not include HGT [103, 115, 228, 252, 316]. In Sec. 7.1,
several examples of specific reconciliation maps will be discussed. Moreover,
the reconciliation map for duplication-loss scenarios that first appeared in its
form in [103] will be introduced formally in Chapter 6. In Chapters 7 and 8,
relaxed scenarios will be introduced as a more general framework that also
allows horizontal gene transfer.

A reconciliation naturally gives rise to different types of inner vertices of
the gene tree. In particular, the vertices that are mapped to inner vertices
of the species tree rather than an edge are called speciation vertices. In the
absence of HGT, all other inner vertices must be duplication events. Using
these notions, the following distinction of pairs of genes in terms of their last
common ancestor can be applied to both reconciled pairs of trees and the
(generally unknown) true evolution of a gene family within its underlying
species phylogeny:

Definition 3.1. Two genes are called orthologs (or orthologous) if their last com-
mon ancestor was a speciation event, and paralogs (or paralogous) if their last
common ancestor was a duplication event.

We will work with this definition of orthology and paralogy which was
introduced by Walter Fitch [91] and has been adopted widely, see e.g.
[11, 14, 96, 173, 226]. Other notions of orthology will be discussed briefly
in Sec. 3.3.3. Note that orthology (as well as paralogy) defines a symmetric
and irreflexive relation on a set of homologous genes. As a consequence, this
relation can be represented by an undirected graph – the so-called orthology
graph (or paralogy graph, respectively). Both relations are in general not tran-
sitive [91]. Nevertheless, Hellmuth et al. [133] showed that orthology graphs
coincide with the well-known class of cographs (see also Thm. 6.1). To see
this, observe that we can obtain a cotree (T, t) for an orthology graph G on
the leaf set of a gene tree T by defining the labeling t(u) = 1 if and only if u
is a speciation vertex for all u ∈ V0(T). The relationship of a cotree and its
cograph together with Def. 3.1 almost immediately implies that G must be a
cograph.

In order to account for horizontal gene transfer, we introduce a third rela-
tion which was also introduced by Fitch [91]:

Definition 3.2. Two genes are called xenologs (or xenologous) if the history, since
their last common ancestor, involves an interspecies horizontal transfer of the genetic
material (i.e. an HGT) for at least one of them.
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Fig. 4. An evolutionary scenario consists of a (leaf-colored) gene tree (T, σ) em-
bedded into a species phylogeny S (in this example, on a set of five extant
species/genomes {A, B, C, D, E}) which is drawn in a tube-like fashion with hori-
zontal lines corresponding to the vertices. The coloring σ of the (non-loss) leaves of
the gene tree represents the (extant) species in which the (extant) genes reside. Inner
nodes of the gene tree correspond to gene duplications (�), horizontal gene transfer
events (4), or speciation events ( ), the latter coincide with the inner nodes of the
species tree S. For completeness, the branches leading to losses (a) are also shown.
The reconciliation is given implicitly by the drawing of T within S. Similarly, a (rela-
tive) timing of the events is given. If a timing is considered explicitly, we will usually
set the timing of the extant species/genes to zero, whereas ancestors receive larger
time stamps. We will often omit the drawing of the time scale. Adapted from [258].

Note that, in contrast to orthology and paralogy, xenology is not defined in
terms of the type of the last common ancestor of two genes. In particular, an
edge separating two genes in the tree that corresponds to an HGT event is not
necessarily incident to their last common ancestor, and thus, the two genes
can be both orthologs (or paralogs) and xenologs. Despite the asymmetric
nature of horizontal gene transfer events – from a donor to a recipient species,
we consider xenology as an undirected relationship here (see also [135]) rather
than the directed version that was e.g. investigated in [101, 134]. As we will
see in Chapter 8, it is easier to infer undirected xenology information from
the kind of data that we consider here.

Fig. 4 shows an example for an evolutionary scenario whose gene tree in-
cludes all four event types: speciation events, gene duplications, a horizontal
gene transfer, and losses. Therein, the gene pairs (a1, c1) and (b1, e1) are
examples for orthologs since, in both cases, the last common ancestor is a
speciation event. In contrast, (a1, b1) or (a1, c3) have duplication events as last
common ancestors, and thus, they are paralogs. The gene c2 emerged from its
parent by a horizontal gene transfer. Therefore, it is xenologous to any other
gene. For completeness, we will often include branches leading to losses in
the drawings of evolutionary scenarios. However, we will assume that a gene tree
does not contain leaves that correspond to losses if not explicitly stated otherwise.
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3.2 the biology behind evolutionary events

Speciation

Similar to the concept of genes, the definition of the term species is an on-
going process of controversies that required several re-interpretations in the
light of new findings [3, 206]. While Darwin viewed the variety of organ-
isms as a continuum in which species are only distinguishable by gaps in the
distribution of morphological traits [cf. 206], Ernst Mayr includes reproduc-
tive barriers in the so-called biological species concept by defining species as
“groups of actually or potentially interbreeding natural populations, which
are reproductively isolated from other such groups” [208]. This definition
has been widely adopted in biology textbooks [e.g. 43], however, it fails in
doing justice to organisms that (predominantly) reproduce asexually or to
clades in which hybridization is common as it is e.g. the case for certain taxa
of plants [10, 111].

One commonly distinguishes between different modes of speciation [40,
277]: Allopatric speciation refers to the geographical separation of popula-
tions, e.g. resulting from continental drift or mountain formation, which stops
the exchange of genetic material between them. The following independent
evolution eventually leads to a reproductive incompatibility by genetic drift
and the accumulation of mutations. Sympatric speciation, on the other hand,
refers to the divergence of species in the absence of such extrinsic barriers.
Mechanisms that drive in particular the latter kind of speciation include the
adaptation of parts of a population to certain ecological parameters (so-called
niches), genetic drift (a change of the frequency of certain genetic variants
resulting from random sampling), and the acquisition of new genes and fea-
tures resulting e.g. from (non-)homologous recombination, horizontal gene
transfer, or hybridization [276, 277].

Gene Duplications

Gene duplication provides new genetic material to be subject to mutation
and evolution, and thus, for the establishment of new features. A large and
well-known group of genes that most likely emerged from extensive tandem
duplication are the homeobox (Hox) genes, which are crucial in the regulation
of the formation of body segments in bilaterian embryonic development [145,
230]. This example demonstrates that gene duplication has been a major
driving force e.g. in the development of the morphological diversity among
species.

Genomic sequences containing parts of a gene, a whole or even multiple
genes can be duplicated by a variety of mechanisms with different charac-
teristics, see e.g. [203, 240, 341] for reviews. So-called tandem duplications
are the result of unequal crossing-over events, i.e., the misalignment of two
chromosomes during meiosis leading to the exchange of unequally long re-
gions between them. In contrast to tandem duplications, segmental duplica-
tions produce homologous sequences that are not necessarily neighboring in
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the genome. They often result from non-allelic homologous recombination
[22, 279]. Gene duplicates in a more or less random position of the genome
can be generated by a process called retroposition in which processed RNA
is reverse-transcribed into DNA and then inserted into the genome [34]. As
a consequence, the introns, i.e., parts of the transcribed sequence that are
spliced out during the RNA processing, are missing in the copy, which is in-
dicative of this type and makes original and copy distinguishable. A fourth
important mechanism is whole-genome duplication (WGD), or polyploidiza-
tion. Albeit observed in many branches of eukaryotes, this phenomenon is
particularly common in plants [234] and has been of key importance for the
development of innovations in angiosperms [240, 287].

Once a duplicate is introduced into the genome, its fate may simply be
to accumulate mutations and eventually lose its ability to be described, and
thus, become nonfunctional. This process is called pseudogenization. In fact,
this seems to be the most common case since, like most mutations, duplica-
tions often have a deleterious effect on the fitness of individuals [199]. For
the cases in which the two (or more) versions of a duplicated gene are re-
tained, several models have been developed to make predictions about the
acquisition of new functions and, in particular, the possibly unequal rates of
evolution resulting from changed selective forces. Ohno’s neofunctionaliza-
tion model [231] predicts that one copy retains its original function, while the
other becomes relieved from selective pressure which leads to the accumu-
lation of mutations and, in some cases, to the acquisition of novel functions.
The duplication-degeneration-complementation (DDC) model was proposed
by Force et al. [93]. It states that both copies will lose the ability to fulfill their
original function alone in the ‘degeneration phase’, leading to the situation
that both copies must be retained and subject to selective pressure (‘com-
plementation phase’). The specialization model [72, 151] is closely related
and applies to genes with multiple functions. The main idea is that multi-
ple functions lead to a so-called adaptive conflict, i.e., the gene is prohibited
from adapting to fulfill either function efficiently. Therefore, an additional
copy of the gene may allow an escape from adaptive conflict (EAC). For a
review on several variations and extensions of these models, it is referred
to [155]. In practice, characteristics of various models have been observed
[70, 72, 127, 313] suggesting that these mechanisms coexist in biology.

Gene Losses

The loss of a gene may refer to either the absence of some gene that is iden-
tified by the comparison with different genomes or the non-functionalization
of a gene [8]. The latter is the consequence of a loss-of-function mutation in
the coding region or in its regulatory sequence, in particular, in its promoter.
A non-functional gene usually undergoes pseudogenization, i.e., it accumu-
lates mutations, due to the missing selective pressure. Eventually, this may
lead to the first situation, i.e., the actual absence of the gene. Apart from this
gradual process, the second mechanism of gene loss may be a single muta-
tional event such as unequal crossing over or the activity of a transposable
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element or retrovirus [8]. In this work, we will mainly refer to the actual ab-
sence of genes rather than non-functionalization when speaking about gene
losses. In particular, we consider gene families which are usually determined
by sequence similarity, and assume that lost genes are not observable and
may only be inferred indirectly.

It seems rational to believe that gene losses should have a deleterious effect
in most cases. However, mutagenesis studies intended to discover functions
of genes suggest that most genes, even in eukaryotes, are dispensable at least
to some extent, i.e., their knockout leaves organisms viable and, in some cases,
has no apparent effect at all [177]. The ‘less-is-more’ hypothesis even states
that gene losses are a driving force for innovations that enable organisms to
improve their fitness and to adapt to new environments [232]. In particular,
there is evidence that losses were of importance in human evolution [218, 233,
298]. Other notable examples for innovations associated with losses include
inactivating mutations in dentin- and enamel-related genes in the common
avian ancestor that were probably necessary for the development of the horny
beak of modern birds [211], and the loss of hair- and epidermis-related genes
in cetaceans as an adaptation of their ancestors to an aquatic environment
[278].

Horizontal Gene Transfer

Horizontal gene transfer (HGT), also called lateral gene transfer, is the trans-
mission of genetic material between organisms that are not in a parent-
offspring relationship, i.e., it is decoupled from reproduction. Since the dis-
covery of the first mechanisms for HGT in the first half of the twentieth cen-
tury [e.g. 308], the role of HGT as one of the major forces that shape the
genomes of bacteria, archaea, and even eukaryotes has been investigated in-
depth and widely accepted, for recent reviews see e.g. [63, 291].

The probably best-known examples of HGTs are the acquisition of antibi-
otic resistance and pathogenicity factors in microbes posing a threat to medi-
cal systems worldwide [143, 191, 209]. However, another important aspect is
the exchange of genes involved in metabolic pathways. A peculiar example
is the transfer of a gene encoding a polysaccharide-digesting enzyme from a
parasite of marine algae to the gut bacteria of Japanese people enabling the
latter to digest the cell walls of seaweed [129]. The phenomenon is particu-
larly frequent in prokaryotes [224, 291], with variable rates across different
clades [4], but multiple cases involving eukaryotes have also been described
[6, 152, 167, 192, 215, 267]. For example, it was found that the evolution of
C4-photosynthesis in plants has been mediated by HGT [54]. Moreover, the
sporadic occurrence of type II antifreeze protein in three widely separated
branches of teleosts most likely is the result of HGT [112].

There are three main mechanisms of HGT in prokaryotes [291]: Conjuga-
tion is the transfer of genetic material from a donor to a recipient cell via the
formation of a so-called pilus that is produced by the donor cell, and thus,
requires direct physical contact. Transformation is the uptake of DNA from
the environment into the cell. Transduction refers to the situation in which
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foreign genetic material is injected into the cell by a bacteriophage, i.e., a
virus that infects prokaryotes. More recently identified mechanisms include
so-called gene transfer agents (GTAs) [297] and cell fusion [219]. According to
the exact mechanism of the integration of foreign DNA into the host genome
(or its co-existence with the latter e.g. in form of a so-called plasmid), HGT
may be additive, in which case its effect is similar to gene duplications, or
lead to the replacement of a vertically inherited homolog.

3.3 inference methods

For the longest time in the history of taxonomy and phylogenetics so far,
biologists’ only tools to disentangle the diversity of life on this planet were
comparisons of morphological and physiological traits of different extant or-
ganisms and, in some cases, fossils. Clearly, this kind of data is still one
of the main pillars in the reconstruction of phylogenies. However, it is of-
ten insufficient for resolving the details of the evolutionary relationships.
Since the sequencing of the first organisms’ genomes – including the bac-
teriophage φX174 in the 1970s [255], Haemophilus influenzae as the first com-
pletely sequenced prokaryote in 1995 [92], and eventually, the publication of
the “finished” human genome in 2004 [156] – the emergence of various high-
throughput approaches to DNA sequencing have drastically decreased the
amount of time and money required for whole-genome sequencing, see e.g.
[248] for a review. This has led to an enormous amount of DNA sequence
data, large parts of which are publicly available and at least partially anno-
tated in databases such as GenBank [27], RefSeq [244] and Ensembl [338]. At
the same time, a broad spectrum of mathematical models and computational
methods have been developed for the use of this molecular data in phylo-
genetic analyses, see e.g. [18, 88, 335, 336] for well-known textbooks on the
topic.

3.3.1 Gene Similarity, Distances, and the Molecular Clock

DNA is a molecule composed of two complementary polynucleotide strands.
The genetic information is encoded as the specific sequence of the monomers
(nucleotides) in these strands, or, more precisely, the sequence of the four nu-
cleobases adenine (A), cytosine (C), guanine (G), and thymine (T) being the
variable component of the nucleotides. Similarly, proteins are comprised of
one or multiple chains of the 20 (standard) amino acid residues. Naturally
occurring errors in the replication or repair of DNA, as well as many chem-
icals and radiation with a wavelength shorter than light (UV and ionizing
radiation), can lead to alterations of the genomic sequences in a cell, so-called
mutations [9, 43]. Mutations include the substitution, insertion, or deletion
of a single or a few nucleotides but also larger-scale alterations such as re-
arrangements of DNA segments within or among chromosomes. Since the
amino acid sequence of a protein is encoded in the DNA, mutations in the
latter may also affect an encoded protein resulting e.g. in the substitution of
a single or multiple amino acids or a truncation of the protein.
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While most mutations affect somatic cells or decrease the reproductive fit-
ness of the offspring, some mutations become established within a population
or a whole species – especially if they have an advantageous effect on the fit-
ness. As a consequence, genes (or proteins) that share a common ancestry, i.e.
homologs, usually have a similar but different nucleotide (amino acid, resp.)
sequence. Therefore, the first step in computational phylogenetic analyses is
usually the identification of similar sequences (as an indication of relatedness)
and, in particular, the assignment of residues that emerged from a common
position in an ancestral sequence through sequence alignment. The initial
search of similar sequences usually operates on large databases containing
sequences from multiple organisms, and thus, requires fast methods such as
BLAST [17, 216] or its more modern successors [141]. Homology is inferred
from excess similarity which, in turn, is assessed using statistical estimates
computed by these tools and appropriate cut-off values [189, 242]. Once a set
of (putative) homologs is identified, more accurate alignment methods can
be applied. While exact algorithms exist for an optimal global [221] or local
[284] alignment of two sequences according to some rule that e.g. aims at
minimizing the number of substitutions and insertions/deletions (appearing
as gaps in the alignment), exact solutions quickly become infeasible for more
than two sequences. Commonly used heuristic tools for the construction of
multiple sequence alignments include Clustal Omega [281], MAFFT [166] and
MUSCLE [84].

Apart from various metrics for sequence similarity, the distance of two (ho-
mologous) sequences can be used to measure how closely they are related.
In the simplest case, distance refers to the number of different sites of two
aligned sequences which, divided by the length of the alignment, gives the
so-called normalized Hamming distance or p distance. Another commonly ap-
plied definition of distance is the expected number of nucleotide substitutions
per site [335], which includes mutations that are invisible as a consequence
of back-mutations. Clearly, the normalized Hamming distance does not ac-
count for the latter, and therefore in general underestimates the number of
substitutions that have occurred. As a consequence, more sophisticated, prob-
abilistic methods are required to estimate distances. These are commonly
based on the modeling of sequence evolution as a continuous-time Markov
chain [88, 335]. Such models assume the so-called Markovian property, i.e.,
the probability of a specific substitution at some site solely depends on the
current state of the site (e.g. nucleotide or amino acid) and is independent of
the past. The simplest such model for nucleotide substitution is the model
by Jukes and Cantor [161] which assumes equal rates of substitution for all
nucleotide pairs as well as equal equilibrium frequencies. In contrast, the
generalized time-reversible model allows different substitution rates for dif-
ferent nucleotide pairs [311]. In the case of proteins, one usually relies on
empirically estimated substitution rate matrices such as in the PAM [66] and
the JTT [160] model. Depending on the complexity of the model, estimates
for the distance can be obtained using a corresponding formula, e.g. for the
Jukes-Cantor-Model, or by means of maximum likelihood estimation (MLE),
as usually necessary for the empirically-derived models [335].
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The motivation for probabilistic models for sequence evolution is to obtain
distances that are proportional to the length of the branch that connects two
genes or species in their phylogeny [88]. In other words, one aims to obtain
a distance d defined on the pairs in a set X of species or homologous genes
that can be represented by a tree T endowed with a map l : E(T) → R≥0 of
edge lengths. More formally, a distance d is called an additive (tree) metric if
there is an unrooted tree T with edge lengths l such that, for all x, y ∈ X,
d(x, y) = ∑e∈Pxy

l(e) where Pxy is the set of edges on the path from x to y in
the tree T [38]. Some of the methods for tree reconstruction discussed in the
next section at least implicitly assume additivity, i.e., that sequence evolution
progresses in a way that can be represented by such an edge-weighted tree.

The molecular clock is an even stronger assumption which postulates that
mutation rates are (at least approximately) constant in time and across dif-
ferent branches of a phylogeny [343]. As a consequence, distances of genes
or species are proportional to the elapsed time since their divergence. The
corresponding trees that describe such histories are the so-called ultrametric
trees [88]. These are rooted trees where the total distance (i.e. the sum of the
edge lengths) from the root to any leaf is equal.

3.3.2 Inference of Trees

The reconstruction of phylogenetic trees is the key task in the field of phyloge-
netics. Consequently, a variety of approaches to this problem exist [88, 335].
The starting point (for reconstructions based on molecular data) is usually
a multiple sequence alignment (MSA) of nucleic acid or protein sequences
which, in the case of gene tree reconstruction, comprises a putative group
of homologous genes. For the reconstruction of a species phylogeny, it is
common practice to consider multiple loci, usually of well-conserved gene
families in which events such as duplications do not or only rarely occur. The
sequences of the same species can then be concatenated to obtain one long
MSA. Alternatively, so-called coalescent methods estimate the species tree and
multiple gene trees in a single or two subsequent steps [196, 245]. In the fol-
lowing sections, some classes of methods that rely on an MSA as input are
briefly discussed.

Parsimony and Likelihood Methods

The parsimony paradigm is a commonly applied concept in phylogenetics
and aims at finding histories with a minimal number of events that explain
the observed data. In the reconstruction of trees from MSAs, this amounts to
finding a tree that admits a minimal number of substitutions that must have
occurred to explain the MSA, a problem known as the large parsimony problem.
The closely related problem of finding the minimal number of substitutions
for a given tree topology is referred to as the small parsimony problem and can
e.g. be solved efficiently for binary rooted trees using Fitch’s algorithm [90] or,
given one prefers substitutions with unequal costs, Sankoff’s algorithm [256].
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In contrast, Graham and Foulds [113] have shown that the large parsimony
problem is NP-complete.

The most important aspect causing the “hardness” of this problem is cer-
tainly the rapidly growing number of tree topologies for an increasing num-
ber of leaves. For example, the number of binary rooted trees with n labeled
leaves is given by (2n − 3)!/(2n−2(n − 2)!) [88]. Therefore, it is usually im-
practical to enumerate and check all possible trees. Instead, the space of all
trees can be explored according to some notion of neighborhood among the
trees and the search for a local optimum. In practice, neighborhood is de-
fined in such a way that a tree can be obtained from another tree by one
or a few simple operations [88]: Nearest-neighbor interchanges delete an inner
edge of a binary unrooted tree as well as the four other edges incident to
its endpoints and then reconnect the resulting four subtrees in the two ways
that differ from the original topology. Another commonly used operation is
subtree pruning and regrafting which consists of the removal of a whole sub-
tree by deletion of an edge (and the suppression of the degree-two vertex in
the remaining tree), followed by the re-attachment of the subtree at a vertex
which is newly-created to subdivide some other edge in the remaining tree.

Maximum likelihood methods also rely on a heuristic exploration of the
space of possible trees. Instead of minimizing the number of substitutions,
they aim at maximizing the likelihood, i.e., the probability to observe the
given data (the columns/sites of the MSA). At the same time, the model
parameters m and the branch lengths l must be estimated giving the following
general equation for the likelihood [241]:

L(T) = P(data | T, m, l).

In the simplest case, the statistical model consists of a model for sequence
evolution discussed in Sec. 3.3.1. However, more complex models that e.g.
account for variable substitution rates among different sites are also possible
[334]. Maximum likely methods are for example efficiently implemented in
FastTree [243], PhyML [117] and RAxML [295].

Bayesian inference methods are also based on probabilistic models for se-
quence evolution. However, they also include prior distributions for the tree,
model parameters, and branch lengths. This allows the computation of pos-
terior probabilities according to Bayes’ theorem [88, 241]:

P(T, m, l | data) =
P(data | T, m, l) · P(T, m, l)

P(data)
.

Similar to maximum likelihood methods, the tree with a maximum a posteri-
ori probability among the resulting ensemble of trees produced by a Bayesian
inference method can be chosen as the final result [329]. As a remedy for
the infinitely large search space (due to the continuous branch lengths and
parameters), Markov Chain Monte Carlo (MCMC) is applied to estimate pos-
terior probabilities. In brief, MCMC comprises sampling algorithms such as
the commonly-used Metropolis-Hastings algorithm [126, 213] which, start-
ing from some initial estimate, construct a chain of “states”. In phylogeny
reconstruction, each state consists of the tree topology, branch lengths, and
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model parameters [241, 329]. In each step of the chain construction, a new
state is proposed according to some perturbation algorithm. The chain either
remains in the old state or accepts the new state according to a probability
function that depends on the likelihood ratio of the two states, the priors,
and a specific correction factor for the sampling approach. After thousands
or even millions of steps, the frequency of a tree in the chain is an estimate
for its posterior probability. Popular tools that implement Bayesian inference
include MRBAYES [147] and BEAST [302].

Distance-Based Methods

Distance-based methods rely on pre-calculated pairwise sequence distances,
which are usually provided in form of a distance matrix. Given an unrooted
tree topology T and a distance d on its leaves, the optimal edge lengths l
can be calculated efficiently using standard least squares methods, i.e., the min-
imization of the term ∑n

i=0 ∑n
j=0(d(i, j)− dT(i, j))2 where dT(i, j) is the sum of

the edge lengths on the path connecting the ith and jth leaf [45]. Bandelt and
Dress [23] found that, in contrast to the parsimony and probabilistic methods,
a unique and optimal (unrooted) tree can be constructed from distance data
in polynomial time given the distances are additive.

Clustering methods such as UPGMA (short for Unweighted Pair Group
Method with Arithmetic Mean) [285] and Neighbor-Joining [253] are popular and
fast distance-based methods.

UPGMA constructs an ultrametric tree on a set X of leaves, and thus, as-
sumes that the distances satisfy a molecular clock. It starts from a set of
clusters C in which each element of X forms its own cluster and with dis-
tances d(C, C′) that equal the distances of the single elements in C, C′ ∈ C. It
then repeatedly merges the two clusters with the smallest distance until only
one cluster remains, which corresponds to the root of the resulting tree. In
each step the distances of the clusters are updated according to the equation
d(C, C′) = 1/(|C| · |C′|)∑x∈C ∑y∈C′ d(x, y). There are well-known examples
where unequal mutation rates in sister branches lead to a situation in which
two leaves with the shortest distance are not connected to the same inner
vertex of the tree. In such cases, UPGMA fails to reconstruct the correct tree
topology.

Neighbor-Joining starts by initializing the leaves X as the set of ver-
tices (= clusters) under consideration. It accounts for unequal rates across
the branches of a tree by constructing, in each step, an auxiliary ma-
trix Q on the vertices according to the formula Q(i, j) = (n − 2)d(i, j) −
∑k 6=i d(i, k) − ∑k 6=j d(j, k), and connecting a pair of vertices f and g to a
newly-created vertex u that minimize Q( f , g) instead of d( f , g). The branch
lengths of the edges f u and gu in the resulting tree can by calculated as
d( f , u) = d( f , g)/2+ (∑k 6= f ,g d( f , k)−∑k 6= f ,g d(g, k))/(2(n− 2)) and, by sym-
metry, d(g, u) = d( f , g) − d( f , u), respectively. Finally in each step, f and
g are removed from the vertices under consideration and replaced by the
new vertex u. The distance of u to any other vertex k 6= f , g is calculated
as d(u, k) = (d( f , k) + d(g, k) − d( f , g))/2. Given the input distance matrix

32



on X was additive, Neighbor-Joining is guaranteed to construct the correct
unrooted tree topology and branch lengths [214]. In a naïve implementation,
Neighbor-Joining runs in O(|X|3). However, clever bookkeeping techniques
such as e.g. implemented in QuickTree [204] and RapidNJ [282] can reduce
this to a best-case O(|X|2) running time.

Distance data obtained in real-life analyses often violates additivity (and
more often a molecular clock), in particular, if evolution was not tree-like. To
this end, generalizations of Neighbor-Joining for phylogenetic networks have
been developed, the best-known of which is the Neighbor-Net algorithm [36].

Tree Rooting

A common drawback of probabilistic methods based on time-reversible mod-
els of sequence evolution and Neighbor-Joining as the probably most popular
distance-based method is their inability to infer the position of the root.

There are two main approaches to rooting a tree, recently reviewed in
[171]: outgroup rooting includes a gene or species in the analysis that is
known to have diverged before the last common ancestor of the remaining
genes/species, i.e., an outgroup. After the construction of an unrooted tree,
the leaf corresponding to the outgroup can be discarded while its unique
neighbor serves as the root for the remaining tree. The molecular clock pre-
dicts the existence of a point in the tree that is equidistant from all leaves.
Consequently, molecular clock rooting aims at identifying such a point. Mid-
point rooting [305] can be viewed as one way of tackling this task. It identifies
the longest path between two leaves in the tree and places the root in its cen-
ter. If this center corresponds to a vertex, the latter is declared as the root.
Otherwise, the edge containing the center becomes subdivided by a newly-
created vertex. Other methods based on a molecular clock include Bayesian
approaches as e.g. proposed by Huelsenbeck et al. [148].

Recently, alternative methods for the inference of the root or even whole
rooted trees have been proposed that rely on a different kind of data.

Hellmuth et al. [133] start with tree-free estimates of the orthology relation
(see also Sec. 3.3.3) of the genes in a set of genomes/species. They demon-
strate that cograph editing as a means of noise reduction can be used to
obtain a set of event-labeled gene trees. Each individual gene tree may be
poorly resolved, depending on the number of duplication events in the re-
spective gene family. However, so-called informative triples for the species
tree (not to be confused with the informative triples for best match graphs
introduced in Chapter 4) can be extracted from these gene trees which, taken
together, have been shown to often convey enough information to reconstruct
a fully resolved species phylogeny. In particular, this phylogeny is rooted by
construction.

Other approaches exploit information conveyed by horizontal gene trans-
fers [65, 306]. In particular, HGT events imply constraints on the (relative)
timing in a way that donor and recipient branches in the species tree must
have existed at the same time. To this end, Davín et al. [65] start from an
unrooted species tree and sample gene families that involve HGT events uti-
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lizing undated reconciliation methods. This is followed by the extraction of a
maximal subset of transfers that are time-consistent in a dated setting. They
demonstrate that the constraints implied by these transfers can be a valuable
source of information especially in the reconstruction of microbial phyloge-
nies for which timing information gathered from fossils and stratigraphy is
rare.

3.3.3 Inference of Orthology

The distinction of orthologs (genes that diverged as a consequence of speci-
ation) from paralogs or xenologs (genes that diverged as a consequence of
duplication or have undergone horizontal gene transfer, respectively) is of
considerable practical importance in evolutionary biology for several reasons.
According to the “ortholog conjecture”, orthologous genes in different species
are expected to have essentially the same biological and molecular functions,
whereas paralogs and xenologs tend to have similar, but distinct functions
[222, 309]. This hypothesis is supported by some of the above-mentioned the-
oretic models for the functional fate of paralogs after duplication such as the
neofunctionalization model which predicts duplications to be a major driv-
ing force for innovations. In the light of the empirical evidence, however,
the ortholog conjecture is controversial. While some studies based on the
comparison of the orthology relation with experimentally determined anno-
tations of gene function and gene expression profiles confirm the hypothesis
[12, 249], other groups come to the conclusion that the correlation between or-
thology and preservation of function is much weaker than originally expected
[222, 296]. Nevertheless, this assumption is widely made in the computational
prediction of gene functions [95, 222, 290, 340]. Reliable predictions, in turn,
are the basis for annotating genes in genomes for which experimental data is
rare or non-existent, as well as the study of human diseases and gene func-
tions in model organisms such as Drosophila melanogaster and Mus musculus.

Moreover, the distinction of orthologs and paralogs is crucial in phyloge-
nomics [68], i.e., the reconstruction of species trees from genomic data, since
the divergence time of orthologous genes (that are not xenologous in the
sense of Def. 3.2) is equal to the divergence time of their respective species.

For these reasons, orthology identification has received increasing attention
from both a mathematical and a computational perspective. In particular, a
wide array of orthology detection tools has been developed, see e.g. [15, 97,
226, 272, 288] for reviews and applications. In order for researchers to be
able to test their methods and compare them with other tools, the Quest for
Orthologs consortium maintains a web service that provides curated reference
proteomes and species trees, as well as a number of standardized methods
for orthology benchmarking [14, 16]. One classically distinguishes tree-based
and graph-based methods for orthology detection.
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Tree-Based Orthology Inference

Tree-based methods aim at reconstructing event-labeled rooted gene trees.
Once the inner vertices of a gene tree are labeled as either a speciation, dupli-
cation, or HGT event, it becomes a trivial task to extract the orthology relation
(cf. Def. 3.1). An event-labeling, in turn, is naturally implied by a reconcili-
ation between a gene and species tree. In case a reconciliation µ maps onto
both vertices and edges of the species tree, the speciation vertices are given
by those gene tree vertices that map onto vertices [80, 103, 252]. In some
frameworks for reconciliation, on the other hand, such as the DLS-trees in
[109] and the DTL-scenarios in [24, 316], the assignment of the event type is
directly included in the definition.

Therefore, the actual problem in tree-based orthology inference usually
amounts to finding a suitable reconciliation. To this end, it is most common
to employ parsimony criteria. In particular, one aims to minimize the num-
ber of duplication, loss, and HGT events (possibly weighted by specific costs)
necessary to explain the respective reconciliation [106, 115, 237]. Given a pair
of rooted gene tree (T, σ) and species tree S, a simple approach to parsimo-
nious reconciliation is the well-known last-common-ancestor (LCA) mapping,
which maps every vertex v ∈ V(T) to the vertex lcaS(σ(L(T(v)))), i.e., the last
common ancestor in S of the set of species appearing as colors of the leaves
in the subtree below v. In the setting of pure duplication-loss scenarios, a
vertex is then inferred as a duplication event whenever it has some child that
is mapped to the same vertex in S, and as a speciation event otherwise. For
binary trees, it was shown that the LCA mapping requires a minimal number
of explaining duplication and loss events which can, moreover, be computed
in linear time [87, 109, 342]. The permission of HGT events, on the other
hand, may admit reconciliations that require an even smaller total number
of events. The problem of reconciliation with HGT first arose in the context
of host/parasite assemblages [48, 121, 237] where the equivalent problem of
mapping a parasite tree T into a host phylogeny S is considered such that
the number of events, including host switches (i.e., horizontal transfers), is
minimized. The early literature on the topic is reviewed e.g. in [49]. A major
difficulty is to enforce time consistency in the presence of multiple horizontal
transfer events, which renders the problem of finding optimal reconciliations
NP-hard [123, 125, 235, 316].

Commonly used parsimony-based methods and databases for gene and
species tree reconciliation include PhylomeDB [149] which uses outgroups
to root the gene tree, as well as Ensembl Compara/TreeBeST [324] and
Orthostrapper [301] both of which use the parsimony criterion, i.e., the num-
ber of duplication-loss events, to root the gene tree. As in gene tree recon-
struction, probabilistic models for gene evolution pose an alternative to par-
simony approaches. Such a method for orthology detection based on MCMC
is implemented in DLRSOrthology [20, 320].

Tree-based methods are often considered to be more accurate than graph-
based approaches, and thus the methods of choice for smaller datasets [15,
178]. Their applicability in large-scale analyses, however, is limited due to the
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high computational cost. Other drawbacks include the dependence on the
correctness of the input trees, and thus, their sensitivity to phenomena like
long attraction which is a common bias in phylogeny reconstruction [303].

Graph-Based Orthology Inference

The results derived in Chapters 4 to 6 of this work primarily fit into second
class of methods for orthology inference: Graph-based approaches are based
on the idea that, in the absence of horizontal gene transfer, the time at which
two species A and B diverged is also the latest possible time at which two
genes a and b (from A and B, resp.) may have diverged. Consequently, if
a and b are orthologs, then a should be among the closest relatives of b in
species A and vice versa. The notion of closest relatives in pairs of species
can naturally be expressed as a graph on the set of genes, and the symmetry
condition results in a certain robustness of these methods. They usually op-
erate in two phases: a graph construction phase followed by a clustering or
filtering phase [15].

The graph construction phase builds an initial estimate of the orthology
relation based on pairwise sequence comparison. To this end, the closest
relatives of a gene in some other species are approximated as those with
the highest similarity or smallest distance. In the former case, estimations
of symmetrical closest relatives have e.g. been termed symmetrical best hits
(symmetrical BeTs) [309], bidirectional best hits (BBH) [236], and reciprocal
best hits [32]; and in the latter case, reciprocal smallest distance (RSD) [325].
In order to clearly distinguish between such estimations and the actual closest
relatives of a gene in other species, i.e., those with the lowest last common
ancestor in the “true” gene tree, we will follow Stadler et al. [293] and use the
terms (reciprocal) best hits and (reciprocal) best matches, respectively. We will
return to a discussion of this distinction and on how to obtain best matches
in Chapter 4.

To obtain similarity scores for pairs of sequences, most tools employ fast
heuristic searches such as BLAST [17]. Commonly used tools that rely on
BLAST scores include InParanoid [289], OrthoInspector [195, 225], OrthoMCL
[193], and ProteinOrtho [189]. Some methods, such as eggNOG [150] and
OrthoDB [179], use scores obtained from the Smith-Waterman algorithm for
exact local alignment. The computation of maximum likelihood estimates
for evolutionary distances is in general more time-consuming than that of
similarity scores. Methods that follow this approach include OMA [251, 318]
and Roundup [69].

The identification of reciprocal best hits is usually followed by a clustering
phase or at least some filtering and refinement steps to improve the results.
Tatusov et al. [309] proposed a simple method for cluster detection in the esti-
mated graph that consists in the identification and stepwise merging of pairs
of triangles that have a common edge. Another approach is Markov Cluster-
ing as e.g. applied in OrthoMCL [193]. This method simulates random walks
through the graph from which probabilities that two genes are in the same
cluster are estimated. The set of genes is then partitioned according to these
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probabilities. ProteinOrtho attempts to eliminate spurious orthology edges
using Spectral Clustering [189]. More precisely, the connected components of
the graph are partitioned according to the Fiedler vector, which is the eigenvec-
tor associated with the second smallest eigenvalue of the so-called Laplacian
matrix of the graph. This process recurses on the resulting components as
long as they are below a user-defined threshold for graph connectivity. Fi-
nally, some methods determine groups of orthologs by identifying (maximal)
cliques in the graph [74, 185]. However, the associated decision problem of
deleting at most k edges to obtain a cluster graph, i.e., a graph in which every
connected component is a clique, is NP-complete [275], and thus, heuristics
are applied.

Some clustering methods, in particular those based on the identification of
cliques, assume that orthologs in a pair of species form a one-to-one relation-
ship. However, a duplication event that occurs after a speciation event may
lead to the situation that a gene a in species A has two or more orthologs in
species B. In this case, the latter are called co-orthologs w.r.t. gene a. Hence, the
orthology relation as given by Def. 3.1 for a pair of species is a many-to-many
relationship in general. In particular, therefore, clustering cannot capture all
orthology pairs while, at the same time, excluding paralogous relations. To
this end, alternative concepts such as the clusters of orthologous groups (COGs)
[310] have been introduced. COGs contain all genes that descended from a
common ancestor gene in the last common ancestor of the species under con-
sideration. Thus, these groups may also contain paralogs that emerged from
a (more recent) duplication event. From a practical perspective, the many-
to-many relationship is usually accounted for by the definition of a tolerance
threshold up until which sub-optimal (reciprocal) best hits are included as
edges in the graph construction phase [150, 189, 195, 251].

Software tools that aim at resolving the orthology relation for pairs of genes
instead of only outputting clusters include InParanoid [289], ProteinOrtho
[189] as well as more recent versions of OMA [251, 318]. An interesting trade-
off between the details of the relationships conveyed by a pairwise resolution
and the somewhat more workable groups of orthologs is the inference of hier-
archical groups, i.e., groups of genes that all descended from a common ances-
tor w.r.t. some speciation event. By definition, such groups become more and
more inclusive starting from the most recent speciation events towards the
root of the species tree under consideration. In particular, this naturally im-
plies a bottom-up approach that merges lower-level groups at each inner ver-
tex of a given species tree. This way, corresponding tools such as Hieranoid

[268] and OMA GETHOGs [13, 318] reduce the time complexity by avoiding ex-
pensive initial all-vs-all similarity searches between the genomes while also
yielding accurate ortholog groups.

Hybrid and Other Methods

Since both tree- and graph-based methods for orthology inference have their
specific strengths, mainly an expected higher accuracy and a much lower
running time, respectively, it seems natural to combine these advantages in
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a hybrid approach. For example, the computational pipeline of the Ensembl

Compara project [324] starts with a BLAST-based inference of reciprocal best
hits and a clustering phase. Then, a gene tree is built for each cluster and
reconciled with a gene tree. Conversely, hierarchical graph-based methods
such as Hieranoid [268] operate bottom-up along a guide tree and could
therefore also be viewed as a hybrid method. The HyPPO method (for ‘Hybrid
Prediction of Paralogs and Orthologs’) described in [185] constructs a species
tree from an initial estimate of cliques of orthologs which is then used to infer
additional orthologs which have undergone accelerated mutation after they
emerged from a duplication event and therefore show a smaller similarity to
the related genes. In particular, this method exploits the fact that there must
be a species tree that allows a reconciliation to explain the ortholog groups.

Similarly, correction methods have been proposed that edit an initial esti-
mate of the orthology relation to a (biologically feasible) cograph using the
awareness of an underlying species tree and an event-labeled gene tree that
explain the relation [79, 133, 184].

Finally, alternative sources of information (i.e., apart from sequence simi-
larity) can be used for the inference or correction of orthology. In particular,
gene order conservation (synteny), which is expected to be indicative for true
orthology, has been used for this purpose, see e.g. [182] and tools like SYNERGY

[326] and the ProteinOrtho extension PoFF [190].

3.3.4 Inference of Horizontal Gene Transfer

A broad spectrum of computational methods have also been developed to
identify horizontally transferred genes and/or HGT events, recently reviewed
in [246]. Similar to orthology detection, these methods are usually separated
into two classes: parametric and phylogenetic methods.

Parametric methods are based on the fact that the genomes of different
(groups of) species often differ in certain characteristics (“parameters”). This
kind of signature is inherent to the transferred genomic sequence and can
therefore mark them as candidate foreign genetic material in the recipient
species (whose signature is different). A commonly used characteristic is
the nucleotide composition and, in particular the GC content, i.e., the rela-
tive abundance of guanine-cytosine base pairs, which varies widely across
different species [28, 64, 273]. Similarly, one can use k-mer distributions,
sequence autocorrelation, and the so-called codon usage bias which refers
to the tendency of certain species to prefer some codons over other syn-
onymous codons, i.e., triplets of nucleotides that encode the same amino
acid [25, 83, 188]. Other indicators include structural features of the DNA
such as deformability [332] and proximity of sequences to transposases and
integrases [120], i.e., genes encoding enzymes that mediate cutting and re-
insertion of (often neighboring) DNA sequences. An advantage of paramet-
ric methods is the fact that, in principle, only a single genome, the recipient’s,
needs to be investigated. However, in the reconstruction of gene families, it
is also of interest to infer the origin, the donor species, of horizontally trans-
ferred genes. Another drawback of these methods is the fact that sequences

38



acquired by HGT will usually adapt to the characteristics of the host genome,
a process that is called amelioration [187]. Therefore, parametric methods are
usually restricted to the inference of more recent transfers.

Phylogenetic methods for HGT inference are based on the incongruence
of species and gene distances or trees. They are further distinguished into
explicit and implicit phylogenetic methods [246].

Explicit (or direct) phylogenetic methods start from a given gene tree T
and species tree S and compute a reconciliation, i.e., a mapping of the gene
tree into the species tree. An edge in T can then be labeled as a horizontal
transfer whenever its endpoints are mapped to incomparable vertices/edges
of the species tree. Correspondingly, two genes are inferred as xenologous
whenever the path in T that connects them contains such an edge. As already
mentioned in Sec. 3.3.3, finding an optimal reconciliation involving HGT, i.e.,
one that minimizes the number of events necessary to explain a scenario, is
NP-hard in general. Nevertheless, several practical approaches have become
available, see e.g. [51, 200, 316]. Moreover, probabilistic models for sampling
reconciliations that involve HGT have been found to produce reliable esti-
mates of transfers [170, 283].

Implicit (or indirect) phylogenetic methods forego the reconstruction of
trees and start from sequence similarity or evolutionary distances and use un-
expectedly small or large distances between genes as indicators of HGT. The
basic idea is that the evolutionary distance between orthologous genes is ap-
proximately proportional to the distances between their species. Xenologous
gene pairs, as well as duplicate genes, thus appear as outliers [55, 76, 186, 229].
The situation in which two genes diverged earlier than their respective species
can be explained by duplication events (and complementary losses if there
are no closer related genes), whereas the opposite, i.e., the divergence of the
genes being more recent than that of the species, can only be explained by
a transfer across incomparable branches of the species tree, and thus, is a
clear indicator for HGT. The pairs of genes with this property define the edge
set of a graph with the set of genes within a gene family as vertices. One
main contribution of this work is a detailed mathematical investigation of the
properties of these later-divergence-time (LDT) graphs in Chapters 7 and 8.

A framework to distinguish between additive and replacing HGT was re-
cently described in [176]. Therein, the authors also show that the associated
optimal reconciliation-cost problem is NP-complete, and present a simple
heuristic that starts with a previously known heuristic for reconciliation in-
volving only additive HGT and then greedily reclassifies transfers as replac-
ing whenever this does not create inconsistencies in the model.

3.4 simulation of phylogenetic scenarios

A common problem in phylogenetics is the absence of reliable data sets for
benchmarking new methods. Even though standardized methods for bench-
marking as in the quest for orthologs service provide reliable data sets on the
basis of manually curated databases or consensus approaches that combine
the results of various methods [14, 16], it cannot be guaranteed that these
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Fig. 5. The general simulation scheme in AsymmeTree. See the text and the caption of
Fig. 4 for details.

faithfully reflect the true evolutionary histories of the genes in question. Sim-
ulated scenarios often provide a remedy to this issue. In particular, they
enable researchers to systematically analyze the behavior of their newly de-
veloped methods when only selected parameters are changed (such as certain
event rates). Therefore, they can give valuable insights into the strengths and
weaknesses of a method. However, it is clear that simulations cannot replace
benchmarking with biological data for any method that is intended for the
application to real-life data.

In order to illustrate the mathematical concepts and methods described in
this work and to demonstrate their potential relevance for integration into
bioinformatics tools, we will also rely on simulated evolutionary scenarios.
To this end, we will use the Python package AsymmeTree which was first de-
scribed in [293] and in some more detail in [258]. AsymmeTree can be used
to simulate pairs of dated species trees and gene trees involving gene dupli-
cations, losses as well as HGT. Commonly used tools for this task include
ALF [60] and SimPhy [207]. However, we will need to be able to manipulate
certain parameters and e.g. allow non-binary duplication events. Moreover,
AsymmeTree provides a number of methods to directly extract statistics and
various graphs (BMGs, LDT graphs, etc.) from the simulated scenarios.

General simulation scheme

In brief, AsymmeTree generates realistic evolutionary scenarios in four steps
(illustrated in Fig. 5): (1) First, a planted species tree S is generated which (2)
gets equipped with dating map τS. (3) Along S, the event-labeled “true” gene
tree (T̃, t, σ) with dating map τT is simulated that also contains duplication,
loss, and HGT events according to user-specified rates. In the context of the
simulations, the “true” gene tree denotes the gene tree which still contains all
branches leading to loss events only. (4) In a final step, the “observable” gene
tree is constructed whose leaf set is exactly the set of surviving/extant genes.

The topology of the species tree S is generated using the Innovation Model
[168], which models observed phylogenies well. Therein, the branching is
driven by innovations that are determined by the gain and loss of so-called
features. More precisely, the species are represented by their sets of features.
Starting with a set containing a single feature, one selects at random the addi-
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tion of a novel feature to some set or the deletion of an existing feature from
some set. If the resulting feature set is not already among the current set of
species/sets, this leads to a branching event. This way, a tree is constructed
starting from the root until a user-defined number of leaves is reached. Fi-
nally, a planted edge above the root is added to account for the ancestral line,
in which gene duplications may already occur. Note that the so-constructed
tree does not contain any extinct species branches.

The planted tree S is then equipped with a dating function that assigns
timestamps to its vertices. To this end, the tree is traversed in pre-order,
i.e., all vertices v are visited before their descendants. If a vertex v is a leaf
or the planted root 0S, then it obtains a time stamp τS(v) = 0 or τS(v) =

1, respectively. Otherwise, a random leaf x in the subtree S(v) is chosen.
Moreover, a real number r is drawn from the uniform distribution on the
interval [0, 2). It is then set τS(v) = τS(parS(v)) · r/(p + 1) where p is the
the number of edges on the path from v to the leaf x. By construction, the
species tree covers a total time span of one unit in the end. AsymmeTree also
implements alternative models for the generation of species trees such as
the well-known Yule model [339] as well as constant-rate or episodic birth-
death processes [122, 169, 294]. All of these methods directly yield a time
map τS. However, we will exclusively consider the Innovation Model in the
simulations throughout this work.

Along the dated species tree (S, τS), an event-labeled, dated “true” gene
tree (T̃, t, τT, σ) is simulated using a variant of the constant-rate birth-death
process with a given age, see e.g. [122, 169]. To this end, the user must specify
rates for the three event types duplication, loss, and HGT which serve as
parameters for exponential distributions from which waiting times until the
next events are drawn. By setting the respective rate to zero, an event type is
disabled completely. The simulation starts with a single gene in the planted
root of the species tree and proceeds stepwise in time towards the leaves
by drawing waiting times until the next event and branches in which these
events take place. At each point in the simulation, the total rate is given by the
sum of the three event types over the currently existing branches in the gene
tree under construction. Speciations are included as additional branching
events that generate copies of all genes present at a speciation vertex in all
descendant lineages. In particular, if a waiting time for a duplication, loss, or
HGT event is drawn such that the next speciation event would occur earlier,
then this waiting time is discarded, the time is updated to the next speciation
event, and the latter is executed. If a duplication event is drawn for some
branch, then a copy of the gene is placed into the same branch of the species
tree. Similarly, for HGT events, a copy is placed into some other branch of
the species tree. The recipient branches are chosen at random among the
species branches that coexist at the respective point in time. A loss event in
some (gene tree) branch results in the creation of a leaf, and the removal of
the branch from the set of active branches. An extant gene x corresponds to
a branch of T̃ that reaches present time (i.e., timestamp zero) and thus a leaf
s of S, determining σ(x) = s. All other leaves of T̃ correspond to losses.
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To avoid trivial cases (gene trees with no survivors), AsymmeTree imple-
ments two different strategies, both of which constrain the loss events. The
first one avoids the extinction of the gene family in every branch of the species
tree by temporarily setting the loss rate in a branch to zero as long as this gene
is the only current survivor in its species branch. In particular, this ensures
that every leaf of S has at least one surviving gene. The second method is
less restrictive and only forbids the complete extinction of the gene family
by setting the loss rate to zero whenever only a single survivor in all species
branches is left.

Finally, the “observable” part T of the gene tree T̃ is obtained by removing
all branches that lead to losses only and by suppressing inner vertices with
a single child. AsymmeTree can also assign rates to edges of T to convert
evolutionary time differences into general additive distances. However, this
is not relevant here since the rates do not affect evolutionary relatedness or
the timing, and thus the simulation analyses considered in this work, which
start from the best match graph (Chapters 4 to 6) and the later-divergence-
time graph (Chapters 7 and 8), respectively.

Polytomies

Extending the simulations used in [103, 293], we also consider non-binary
gene trees. This is important here since, by Lemma 4.15 below, the special
motif called hourglass cannot appear in BMGs that are explained by a binary
tree. There is an ongoing discussion to what extent polytomies, i.e., vertices
with more than two children, in phylogenetic trees are biological reality as
opposed to an artifact of insufficient resolution. At the level of species trees,
the assumption that cladogenesis occurs by a series of bifurcations [e.g. 73,
201] seems to be prevailing, several authors have argued quite convincingly
that there is evidence for a least some bona fide multifurcations of species
[172, 257, 307]. In the simulation, polytomies in species trees are introduced
after the first step by edge contraction with a user-defined probability p.

The reality of polytomies is less clear for gene trees, in particular, the ex-
istence of multifurcations apart from those that are “inherited” by the un-
derlying species tree. One reason is the abundance of tandem duplications.
Although the majority of tandem arrays comprises only a pair of genes, larger
clusters are not at all rare [239]. Although one may argue that mechanistically
they likely arise by stepwise duplications, such arrangements are often sub-
ject to gene conversion and non-homologous recombination that keeps the
sequences nearly identical for some time before they eventually escape from
concerted evolution and diverge functionally [124, 194]. As a consequence,
duplications in tandem arrays may not be resolvable unless witnesses of dif-
ferent stages of an ongoing duplication process have survived. To model
polytomies in the gene tree, we modify step (3) of the simulation procedure
by replacing a simple duplication with the generation of 2+ k offspring genes.
The number k of additional copies is drawn from a Poisson distribution with
a user-defined parameter λ > 0. By setting k = 0, polytomies at duplication
events are disabled.
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4
B E S T M AT C H G R A P H S

Evolutionary closest relatedness among a set of (homologous)
genes L is most naturally expressed in terms of last common ances-
tors of their underlying phylogeny, i.e., the tree (T, σ) that describes

their emergence from a single common ancestor through branching events (cf.
Sec. 3.1). The best matches of a gene x w.r.t. a species s 6= σ(x) comprise exactly
those genes y in species s such that there is no other gene y′ of this species
that shares a more recent last common ancestor with x in T. This definition
closely ties best matches to the concept of orthology which is also defined in
terms of last common ancestors. In particular, graph-based methods for or-
thology inference approximate best matches by means of sequence similarity
or distances as discussed in Sec. 3.3.3. Under the assumption of a strict molec-
ular clock and noise-free data, best hits (i.e., genes with the highest similarity
or closest distance) and best matches are equivalent [102]. For real-life data,
however, these conditions are often violated, and thus, additional efforts are
required to obtain reliable best match estimates, see [293] and Sec. 4.1.4 below
for a short summary thereof.

Best matches have several appealing properties. Most importantly, in con-
trast to best hits, they admit mathematical guarantees for graph-based or-
thology inference. In particular, all pairs of orthologs are also reciprocal
best matches, at least in the absence of HGT [103]. As a consequence, false-
negative orthologs are not an issue given one has reliable best match esti-
mates. Moreover, Dessimoz et al. [75] and Geiß et al. [104] discovered that best
matches are also sufficient to unambiguously identify certain false-positive or-
tholog pairs among the reciprocal best matches. We will return to a complete
characterization of these pairs in Chapter 6.

Best matches are defined in terms of inequalities w.r.t. the ancestor relation
of the underlying gene tree. Therefore, they contain valuable information on
the topology of this (usually unknown) tree [102]. If the best matches are es-
timated with a tree-free approach, e.g. based on best hits, this can be used as
an alternative source of information in phylogeny reconstruction compared
to the traditional methods discussed in Sec. 3.3.2. Since (reciprocal) best hits
are usually inferred using sequence similarity/distance inequalities, they are
invariant under monotonic transformations of the similarity or distance mea-
sures. This is of great practical relevance in the light of back-mutations and
the difficulties arising in the reconstruction of additive distances as they are re-
quired by distance-based methods (cf. Secs. 3.3.1–3.3.2). Moreover, since best
hits only require considering two genomes at a time, it suffices that the evo-
lutionary rates are approximately the same for all genes in the same species
lineage for them to correctly reflect the best match relation.

Gaining a detailed mathematical understanding of best matches is a crucial
step on the way to their direct application in orthology or gene tree recon-
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Fig. 6. An evolutionary scenario (left) consisting of a gene tree (T, σ) embedded into
a species phylogeny S. For further explanation, see also Fig. 4. The BMG (~G, σ)
(right) depends on the topology of the gene tree (middle). A gene y is a best match
of x (x → y in the BMG) if there is no gene y′ of the same color that has a lower last
common ancestor with x than y. For instance, b1 but not b2 is a best match for a1 in
the blue species.

struction. This chapter establishes a number of novel characterizations of
best match graphs (BMGs) and several interesting subclasses. We start by
introducing BMGs formally and summarizing the most important previously
established results in Sec. 4.1. In Sec. 4.2, we provide two characterizations
of general BMGs that are based on certain triple sets and already appeared
in [259] and [266]. Sec. 4.3 is entirely dedicated to the subclass of BMGs that
can be explained by binary trees. It contains a structural and an algorithmic
characterization that have been published previously in [264] and [260], re-
spectively. Finally, Sec. 4.4 is based on [262] and describes a fast algorithm for
the recognition of BMGs that contain at most two colors and the construction
of their least resolved trees.

4.1 recent work on best match graphs

4.1.1 Best Matches, BMGs, and Their Basic Properties

The combinatorial properties of best matches and their applicability to the
correction of orthology estimates have only recently become the topic of in-
depth investigations [102, 103, 293], and they were formally introduced by
Geiß et al. [102]:

Definition 4.1. Let (T, σ) be a leaf-colored tree. A leaf y ∈ L(T) is a best match of
the leaf x ∈ L(T) if σ(x) 6= σ(y) and lcaT(x, y) �T lcaT(x, y′) holds for all leaves
y′ of color σ(y′) = σ(y).

The colored digraph ~G(T, σ) = ((L, E), σ) with vertex set L = L(T) and
arcs (x, y) ∈ E if and only if y is a best match of x w.r.t. (T, σ) is known as the
(colored) best match graph (BMG) of (T, σ) [102]. Correspondingly, we obtain
the following class among the properly vertex-colored digraphs:

Definition 4.2. An arbitrary vertex-colored digraph (~G, σ) is a best match graph
(BMG) if there exists a leaf-colored tree (T, σ) such that (~G, σ) = ~G(T, σ). In this
case, we say that (T, σ) explains (~G, σ).

44



An example for a leaf-colored tree (T, σ) explaining a BMG (~G, σ) together
with an evolutionary scenario which may have given rise to the gene phy-
logeny (T, σ) is given in Fig. 6.

Remark 4.1. We note that, in contrast to [102], we do not assume that the coloring
σ : L→ M in a BMG (~G, σ) or a leaf-colored tree (T, σ) is a surjective map.

Since additional “unused” colors by definition have no effect on the best
match relation, this assumption was merely made in [102] to simplify the
notation, i.e., for writing M instead of σ(L) to refer to the full color set. In
particular, therefore, the previously established results for BMGs remain valid
(except for replacing M by σ(L) of course). We omit the surjectivity assump-
tion since it is problematic when subgraphs (~G|L′ , σ|L′) for a subset L′ ⊂ L are
considered that satisfy the conditions of being a BMG except for surjectivity
of σ|L′ . We will, however, sometimes speak of r being a color in (~G, σ) or the
colors in (~G, σ) to refer to the set σ(L), i.e., the colors that actually appear on
the vertices, rather than M.

A BMG (~G = (L, E), σ) with ` := |σ(L)| colors will often simply be called
`-BMG. By construction, no vertex x of a BMG (~G, σ) has a neighbor with
the same color, i.e., the coloring σ is proper. Since the last common ances-
tors of any two vertices of T always exists, and lcaT(x, y) and lcaT(x, z) are
comparable, there is by definition at least one best match of x for every color
s ∈ σ(L) \ {σ(x)}:
Observation 4.1. For every vertex x and every color s ∈ σ(L) \ {σ(x)} in a BMG
(~G = (L, E), σ), there is some vertex y ∈ N(x) with σ(y) = s.

Equivalently, the subgraph induced by every pair of colors is sink-free. In
particular, therefore, BMGs are sink-free whenever they contain at least two
colors. For a characterization of BMGs, it will be useful to formalize this
property:

Definition 4.3. Let (~G, σ) be a colored digraph. The coloring σ is sink-free if it
is proper and, for every vertex x and every color s ∈ σ(V(~G)) \ {σ(x)}, there is a
vertex y ∈ N(x) with σ(y) = s. A digraph with a sink-free coloring is sf-colored.

In particular, the definition of BMGs together with Obs. 4.1 implies that
BMGs are always sf-colored.

Whether two vertices x and y are best matches or not does not depend on
the presence or absence of vertices z with σ(z) /∈ {σ(x), σ(y)}. More precisely,
we have

Observation 4.2. [102, Obs. 1] Let (~G, σ) be a BMG explained by (T, σ) with
leaf set L and let L′ :=

⋃
s∈M′ L[s] be a subset of vertices with a restricted color set

M′ ⊆ σ(L). Then the induced subgraph (~G[L′], σ|L′) is explained by the restriction
T|L′ of T to the leaf set L′, i.e. (~G[L′], σ|L′) = ~G(T|L′ , σ|L′).

Geiß et al. [102] introduced a set of induced subgraphs of vertex-colored
digraphs (~G, σ) associated with certain rooted triples, the informative triples,
which, in the case of a BMG, contain valuable information on the topologies of
all trees that explain (~G, σ). Using Fig. 7, one easily verifies that the definition
given in [102] is equivalent to the following simplified version:
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Fig. 7. The informative triple ab|b′ ∈ R(~G, σ) is obtained from the induced subgraph
of (~G, σ) on the left-hand side. The gray dashed arcs may or may not exist.

Definition 4.4. Let (~G, σ) be a vertex-colored digraph. We say that a triple ab|b′
is informative for (~G, σ) if a, b and b′ are pairwise distinct vertices in ~G such that
(i) σ(a) 6= σ(b) = σ(b′) and (ii) (a, b) ∈ E(~G) and (a, b′) /∈ E(~G). The set of
informative triples is denoted by R(~G, σ).

Hence, the set of informative triples of (~G, σ) can be expressed as

R(~G, σ) =
{

ab|b′ : σ(a) 6= σ(b) = σ(b′), (a, b) ∈ E(~G), and (a, b′) /∈ E(~G)
}

(3)

The term informative refers to the following result that all triples in R(~G, σ)

are displayed by every tree explaining a BMG (~G, σ):

Lemma 4.1. Let (~G, σ) be a BMG and ab|b′ an informative triple for (~G, σ). Then,
every tree (T, σ) that explains (~G, σ) displays the triple ab|b′, i.e. lcaT(a, b) ≺T

lcaT(a, b′) = lcaT(b, b′).

Proof. The definition of informative triples implies that (a, b) ∈ E(~G) and (a, b′) /∈
E(~G). Using σ(b) = σ(b′) and the definition of best matches, we immediately con-
clude that lcaT(a, b) ≺T lcaT(a, b′).

The structure of a tree (T, σ) can be related to the connectedness of the
BMG ~G(T, σ) that it explains.

Proposition 4.1. [102, Thm. 1] Let (T, σ) be a leaf-colored tree and ~G(T, σ) its
BMG. Then ~G(T, σ) is connected if and only if there is a child v of the root ρT such
that σ(L(T(v))) 6= σ(L(T)). Furthermore, if ~G(T, σ) is not connected, then for
every connected component ~Gi of ~G(T, σ) there is a child v of the root ρT such that
V(~Gi) ⊆ L(T(v)).

In other words, a BMG (~G, σ) explained by (T, σ) is connected if and only if
the root of T has a child v whose subtree T(v) does not contain the full set of
colors σ(V(~G)) = σ(L(T)). The following result is closely related.

Lemma 4.2. [102, Prop. 1] The disjoint union of vertex disjoint BMGs (~Gi, σi), 1 ≤
i ≤ k, is a BMG if and only if all color sets are the same, i.e., σi(V(~Gi)) = σj(V(~Gj))

for 1 ≤ i < j ≤ k.

In particular, therefore, BMGs can also be understood in terms of their
connected components: a digraph (~G, σ) is an `-BMG if and only if all of
its connected components are `-BMGs. Moreover, an explaining tree for the
vertex-disjoint union of BMGs (~Gi, σi) with the same color set can easily be
constructed from their explaining trees (Ti, σi) by joining the latter under a
common root.
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4.1.2 Least Resolved Trees

In general, a BMG (~G, σ) can be explained by multiple leaf-colored trees.
However, it will be useful to consider those trees among them that are mini-
mal, or least resolved, in the following sense:

Definition 4.5. A leaf-colored tree (T, σ) is least resolved if there is no non-empty
subset A ⊆ E(T) such that ~G(T, σ) = ~G(TA, σ) where TA is obtained from T by
contraction of all edges in A.

Thus, a least resolved tree (T, σ) does not display a tree (T′, σ) with fewer
edges that still explains ~G(T, σ). Note that we define the notion of being
least resolved here as a property of the tree (T, σ) alone. Of course, every
least resolved tree is also least resolved w.r.t. some BMG, namely the (uniquely
defined) digraph ~G(T, σ). Least-resolvedness is closely related to the concept
of redundant edges in a tree (T, σ).

Definition 4.6. An edge e ∈ E(T) is redundant with respect to ~G(T, σ) if the tree
Te obtained by contracting the edge e satisfies ~G(Te, σ) = ~G(T, σ).

A redundant edge e trivially cannot be an outer edge of a (phyloge-
netic) tree T, since otherwise, we have L(Te) 6= L(T), i.e., the two digraphs
~G(Te, σ|L(Te)) and ~G(T, σ) do not have the same vertex set, and are therefore
not equal. Redundant edges have been characterized in [102] by means of
certain equivalence classes, the thinness classes, defined on the vertex set of
a BMG (~G, σ). In Sec. 4.2.2, we will derive a novel characterization that is
somewhat simpler and does not need additional notation.

The following result from [102] states that every BMG (~G, σ) is explained
by a unique least resolved tree, its LRT, and relates all other trees that explain
(~G, σ) via their sets of redundant edges:

Theorem 4.1. [102, Thm. 8] Every BMG (~G, σ) is explained by a unique least
resolved tree (T∗, σ). The tree (T∗, σ) is obtained from an arbitrary tree (T, σ) that
explains (~G, σ) by contraction of all redundant edges of (T, σ). In particular, every
such tree (T, σ) is a refinement of (T∗, σ).

Therefore, there is a one-to-one correspondence between BMGs and LRTs.
Moreover, we immediately obtain

Corollary 4.1. A tree (T, σ) is least resolved if and only if it does not contain
redundant edges.

4.1.3 Reciprocal Best Match Graphs

The reciprocal best match graphs (RBMGs) are the symmetric parts of BMGs:

Definition 4.7. Two leaves x, y ∈ L(T) of a leaf-colored tree (T, σ) are reciprocal
best matches if y is a best match of x and vice versa.

An undirected graph (G, σ) is a reciprocal best match graph (RBMG) if it is
the symmetric part of some BMG ~G(T, σ). In this case, we say that (T, σ) explains
(G, σ).
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Conceptually, reciprocal best matches correspond to the reciprocal best hits
used in orthology detection. In contrast to BMGs, RBMGs are much more
difficult to handle and are not associated with unique trees [104].

RBMGs with at most three colors can be recognized in polynomial time
as shown in [104, Lemma 30 and 31] and [137, Cor. 1]. The complexity of
deciding whether a graph (G, σ) with more than three colors is an RBMG
is an open problem. Nevertheless, it was shown in [137] that the decision
version of the deletion and editing problem to obtain a valid RBMG is NP-
hard for ` ≥ 2 colors. In particular, therefore, it is NP-complete for two and
three colors.

RBMGs that are cographs, or co-RBMGS for short, can be recognized in
polynomial time since they admit a characterization as hierarchically colored
cographs, a certain class of vertex-colored cographs whose coloring satisfies a
particular recursive construction rule [104, Thm. 11]. Intriguingly, 2-colored
RBMGs are always cographs [137, Cor. 1] and, for an RBMG with more col-
ors, it suffices to check whether all of its 3-colored induced subgraphs are
cographs to decide whether the full graph is a cograph as well [104, Thm. 8].
Otherwise, at least one of the 3-colored induced subgraphs contains a 3-
colored P4 as an induced subgraph. These P4s fall into three distinct classes:
the good, the bad, and the ugly quartets [104]. These are determined by the
order of the colors in the P4 and the additional one-directional arcs between
the four vertices in the corresponding BMG. Good quartets have already been
shown to indicate false-positive orthology assignments [75, 103]. We will
show in Chapter 6 that this is the case for all three types of quartets.

4.1.4 Inference of Best Matches

The inference of best matches as those genes in some other species with the
smallest distance becomes exact when the distance is an ultrametric on the
set of extant genes, i.e., when sequences evolve under a strict molecular clock
[102, 293, 343]. However, many models for the functional fate of the gene
copies predict unequal substitution rates after they emerged from a duplica-
tion event [93, 231]. Indeed, experimental evidence also suggests that asym-
metric divergence of paralogs is a common phenomenon across the tree of
life [21, 42, 70, 72, 127].

As a consequence, best match estimates based on best hits are burdened
with systematic errors, i.e., false predictions arising from varying evolution-
ary rates across the tree rather than simple noise. Of course, the latter is
also unavoidable due to sequencing and alignment errors as well as limited
sequence lengths. Even if the measured distances are free of noise and per-
fectly additive, both false-negative and false-positive best match assignments
are possible as the examples in Fig. 8 show.

Stadler et al. [293] suggest several strategies to deal with unequal mutation
rates in the inference of best matches.

The simplest approach is the definition of a relative threshold parameter ε.
More precisely, sub-optimal hits in a species Y are inferred as best matches
of x if their distance is not worse than a factor 1 + ε than that of the closest
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Fig. 8. Examples for the incongruence of best hits and best matches. The lengths
of the edges indicate evolutionary distances. On the l.h.s., both y and y′ are best
matches of x but the distance to y is much smaller. Hence, (x, y′) is a false-negative
best match. On the r.h.s., the smallest distance of 3 results in the false-positive best
match assignments (x, y′) and (y′, x). For approximately additive distances, the in-
clusion of an outgroup gene z in the analysis often reveals the correct best match
relation in such situations. Adapted from [258].

gene of x in species Y. A very similar approach defining a relative threshold
for sequence similarity is e.g. implemented in ProteinOrtho [189] in order
to account for co-orthologs. Depending on the choice of ε and the extent of
asymmetric divergence in the data set under consideration, the inclusion of
sub-optimal best hits can correctly deal with situations such as on the l.h.s. of
Fig. 8. However, the false-positive assignments (x, y′) and (y′, x) on the r.h.s.
cannot be corrected with this approach.

The “quartet” method provides a solution to this issue. It requires the
knowledge of one or more reliable outgroup genes z for every gene x and
its best match candidates in some species Y( 6= σ(x)). By considering x, z
and two candidate genes from Y, a so-called quartet, i.e., one of the four
possible unrooted trees (including the star tree) with four labeled leaves, can
be inferred based on their pairwise distances. This only requires that the
distance is just close enough to being additive such that the correct quartet
is inferred. In the example on the l.h.s. of Fig. 8, the quartet on {x, y, y′, z}
is the unrooted tree with an inner edge uv such that x and z are adjacent
to u, whereas y and y′ are adjacent to v. Since z is a known outgroup gene,
this implies a unique triple on the remaining three genes (yy′|x in the l.h.s.
example). By considering all candidate pairs in species Y and with the help
of an auxiliary digraph, the best matches of x can be identified in this way.
A problem that remains is the choice of suitable outgroup genes z. To this
end, the authors of [293] suggest using homologous genes from outgroup
species as a heuristic. Hence, only additional (partial) information on the
topology of the species tree is required. They show that this method yields
suitable outgroup genes in the majority of cases with the exception of some
(presumably rare) scenarios that include multiple duplication events in the
ancestral line of the species under consideration.
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4.2 novel characterizations of best match graphs

4.2.1 Useful Properties

We start by collecting some useful properties of BMGs and RBMGs that will
be needed for later reference.

Observation 4.3. Let (T, σ) be a tree explaining the BMG (~G, σ), and v ∈ V(T)
a vertex such that σ(L(T(v))) = σ(L(T)). Then (a, b) ∈ E(~G) and a ∈ L(T(v))
implies b ∈ L(T(v)).

The following two closely related results on bidirectional arcs in BMGs (and
thus edges in the corresponding RBMGs) will be needed regularly in this and
the following chapters.

Lemma 4.3. [104, Lemma 10] Let (T, σ) be a leaf-colored tree on L and let
v ∈ V(T). Then, for any two distinct colors r, s ∈ σ(L(T(v))), there are arcs
(x, y), (y, x) in ~G(T, σ) with x ∈ L[r] ∩ L(T(v)) and y ∈ L[s] ∩ L(T(v)).

Lemma 4.4. Let (~G, σ) be a BMG explained by a tree (T, σ). Moreover, let x, y ∈
L(T) with σ(x) 6= σ(y) and vx, vy ∈ childT(lcaT(x, y)) with x �T vx and y �T vy.
Then, σ(x) /∈ σ(L(T(vy))) and σ(y) /∈ σ(L(T(vx))) if and only if (x, y), (y, x) are
arcs in ~G.

Proof. By the definition of best matches, it holds that (x, y), (y, x) are arcs in ~G if
and only if lcaT(x, y) �T lcaT(x, y′) for all y′ ∈ L(T) of color σ(y) and lcaT(x, y) �T
lcaT(x′, y) for all x′ ∈ L(T) of color σ(x). Clearly, lcaT(x, y) �T lcaT(x, y′) for all
such y′ if and only if σ(y) /∈ σ(L(T(vx))), and lcaT(x, y) �T lcaT(x′, y) for all such x′

if and only if σ(x) /∈ σ(L(T(vy))).

The next result is concerned with pairs of “overlapping” informative triples
and the positions of the involved leaves that they imply for every explaining
tree.

Lemma 4.5. Let ab|b′ and cb′|b be informative triples for a BMG (~G, σ). Then
every tree (T, σ) that explains (~G, σ) contains two distinct children v1, v2 ∈
childT(lcaT(a, c)) such that a, b ≺T v1 and b′, c ≺T v2.

Proof. Let (T, σ) be an arbitrary tree that explains (~G, σ). By Lemma 4.1, T displays
the informative triples ab|b′ and cb′|b. Thus we have lcaT(a, b) ≺T lcaT(a, b′) =
lcaT(b, b′) and lcaT(c, b′) ≺T lcaT(c, b) = lcaT(b, b′). In particular, lcaT(a, b′) =
lcaT(b, b′) = lcaT(c, b) =: u. Therefore, a �T v1 and b′ �T v2 for distinct
v1, v2 ∈ childT(u). Since lcaT(a, b) ≺T u, we have a, b ≺T v1 and thus v1 is an in-
ner vertex. Likewise, lcaT(b′, c) ≺T u implies b′, c ≺T v2.

4.2.2 Least Resolved Trees

Edges in leaf-colored trees (T, σ) that are redundant w.r.t. their BMGs ~G(T, σ)

have already been characterized in [102, Lemma 15, Thm. 8] in terms of cer-
tain equivalence classes using a rather complicated notation. Here we give a
simpler characterization:
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Lemma 4.6. Let (~G, σ) be a BMG explained by a tree (T, σ). The edge e = uv
with v ≺T u in (T, σ) is redundant w.r.t. (~G, σ) if and only if (i) e is an inner
edge of T and (ii) there is no arc (a, b) ∈ E(~G) such that lcaT(a, b) = v and
σ(b) ∈ σ(L(T(u)) \ L(T(v))).

Proof. Let we be the vertex in Te resulting from the contraction e = uv with v ≺T u
in T. By assumption we have (~G, σ) = ~G(T, σ).

First, assume that e is redundant and thus, ~G(Te, σ) = ~G(T, σ). Then e must
be an inner edge, since otherwise L(T) 6= L(Te) and, therefore, (Te, σ) does not
explain (~G, σ). Now assume, for contradiction, that there is an arc (a, b) ∈ E(~G)
such that lcaT(a, b) = v and σ(b) ∈ σ(L(T(u)) \ L(T(v))). Then there is a leaf
b′ ∈ L(T(u)) \ L(T(v)) with σ(b′) = σ(b) and lcaT(a, b) = v ≺T u = lcaT(a, b′). Thus,
(a, b′) /∈ E(~G). After contraction of e, we have lcaT(a, b) = lcaT(a, b′) = we. Hence,
by definition of best matches, (a, b) is an arc in ~G(Te, σ) if and only if (a, b′) is an arc
in ~G(Te, σ); a contradiction to the assumption that (Te, σ) explains (~G, σ).

Conversely, assume that e = uv with v ≺T u is an inner edge in T and that there
is no arc (a, b) ∈ E(~G) such that lcaT(a, b) = v and σ(b) ∈ σ(L(T(u)) \ L(T(v))). In
order to show that an edge e is redundant, we need to verify that ~G(T, σ) = ~G(Te, σ).
To this end, consider an arbitrary leaf c ∈ L(T). Then we have either Case (1) c ∈
L(T) \ L(T(v)), or Case (2) c ∈ L(T(v)).

In Case (1) it is easy to verify that lcaT(c, d) = lcaTe(c, d) for every d ∈ L(T). In
particular, therefore, (c, d) ∈ E(~G(T, σ)) if and only if (c, d) ∈ E(~G(Te, σ)).

In Case (2), i.e. c ∈ L(T(v)), consider another, arbitrary, leaf d ∈ L(T). Note,
if σ(c) = σ(d), then c and d never form a best match. Thus, we assume σ(c) 6=
σ(d). Now, we consider three mutually exclusive Subcases (a) lcaT(c, d) �T v, (b)
lcaT(c, d) = u and (c) lcaT(c, d) �T u.

Case (a). Since no edge below v is contracted, we have for every d′ with σ(d′) =
σ(d), lcaT(c, d′) ≺T lcaT(c, d) �T v if and only if lcaTe(c, d′) ≺Te lcaTe(c, d) �Te we. In
particular, therefore, (c, d) ∈ E(~G(T, σ)) if and only if (c, d) ∈ E(~G(Te, σ)).

Case (b). lcaT(c, d) = u and c ≺T v implies that d ∈ L(T(u) \ L(T(v)) and thus,
σ(d) ∈ σ(L(T(u)) \ L(T(v))). If (c, d) ∈ E(~G(T, σ)), then σ(d) /∈ σ(L(T(v))) must
hold. Therefore, (c, d) is still an arc after contraction of e. For the case (c, d) /∈
E(~G(T, σ)), assume for contradiction (c, d) ∈ E(~G(Te, σ)). Then (c, d) /∈ E(~G(T, σ))
implies that there must be a vertex d′ with σ(d′) = σ(d) and lcaT(c, d′) �T v ≺T
u = lcaT(c, d). In particular, d′ ∈ L(T(v)) can be chosen such that lcaT(c, d′) is
farthest away from v and thus, (c, d′) ∈ E(~G(T, σ)). Now, lcaT(c, d′) �T v and
(c, d) ∈ E(~G(Te, σ)) imply that lcaTe(c, d′) = we = lcaTe(c, d), which is only possible if
lcaT(c, d′) = v. In summary, we found an arc (c, d′) ∈ E(~G(T, σ)) with lcaT(c, d′) = v
and σ(d′) ∈ σ(L(T(u)) \ L(T(v))); a contradiction to our assumption. Hence, in Case
(b) we have (c, d) ∈ E(~G(T, σ)) if and only if (c, d) ∈ E(~G(Te, σ)).

Case (c). Since lcaT(c, d) �T u, it is again easy to see that, for every d′ with
σ(d′) = σ(d), lcaT(c, d′) ≺T lcaT(c, d) if and only if lcaTe(c, d′) ≺Te lcaTe(c, d) and
thus, (c, d) ∈ E(~G(T, σ)) if and only if (c, d) ∈ E(~G(Te, σ)).

In summary, we have (c, d) ∈ E(~G(T, σ)) if and only if (c, d) ∈ E(~G(Te, σ)) for all
c, d ∈ L(T). Thus, e is redundant.

Recall that an inner edge e = uv with v ≺T u of a rooted tree T is dis-
tinguished by a triple ab|c ∈ r(T) if lcaT(a, b) = v and lcaT(a, b, c) = u.
Lemma 4.6 immediately implies the following generalization of Lemma 13

in [102]:

Corollary 4.2. Let (~G, σ) be a BMG explained by a tree (T, σ). An inner edge
e of (T, σ) is non-redundant w.r.t. (~G, σ) if and only if it is distinguished by an
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Fig. 9. Visualization of (A) a non-redundant edge uv for Lemma 4.6 and (B) a re-
dundant edge uv as in Cor. 4.3. The gray subtrees may or may not exist. In (A), the
crossed out leaf indicates that the blue color must not be present in this subtree and
thus (a, b) is a best match. In (B), σ(L(T(v))) must not have elements in common
with σ(L(T(u)) \ L(T(v))). See text for further details.

informative triple ab|b′ for (~G, σ). In particular, if (T, σ) is least resolved, then each
of its inner edges is distinguished by an informative triple.

As another consequence of Lemma 4.6, we obtain

Corollary 4.3. Let (T, σ) be a leaf-colored tree explaining (~G, σ) and uv an inner
edge inner of T with v ≺T u. If σ(L(T(v))) ∩ σ(L(T(v′))) = ∅ for every v′ ∈
childT(u) \ {v}, then uv is redundant in T (w.r.t. (~G, σ)).

Proof. If there is an arc e = (a, b) ∈ E(~G) with lcaT(a, b) = v we have σ(b) /∈
L(T(u)) \ L(T(v)) = ∪v′∈childT(u)\{v}L(T(v

′)) because σ(L(T(v)))∩ σ(L(T(v′))) = ∅
for every v′ ∈ childT(u) \ {v}. By Lemma 4.6, the inner edge uv is redundant.

Both Lemma 4.6 and Cor. 4.3 are illustrated in Fig. 9: In (A), uv is a non-
redundant inner edge since (a, b) is a best match such that a and b have v as
their last common ancestor and the color of b is present in another subtree
below vertex u. Contraction of the edge uv would result in a tree Tuv in which
lcaTuv(a, b) = lcaTuv(a, b′), and thus, introduce the additional best match (a, b′).
Clearly, this cannot occur whenever the other subtrees of u do not share any
colors with the subtree T(v), a situation that is shown in (B), i.e., the edge uv
is redundant w.r.t. the BMG ~G(T, σ).

Finally, we show that redundant edges can be contracted in an arbitrary
order, similar to [102, Lemma 6 & Cor. 2]. To this end, we first prove a more
general statement.

Lemma 4.7. If TA is obtained from T by contracting all edges in a subset A of inner
edges in T, then ~G(T, σ) ⊆ ~G(TA, σ).

Proof. First note that L(TA) = L(T) since A only contains inner edges. Let (x, y)
be an arc in ~G(T, σ). This implies that there is no y′ with σ(y′) = σ(y) such that
lcaT(x, y′) ≺T lcaT(x, y). It is easy to verify that the latter is still true after contraction
of an arbitrary edge e, i.e. there is no y′ with σ(y′) = σ(y) such that lcaTe(x, y′) ≺Te

lcaTe(x, y). Hence, (x, y) is an arc in ~G(Te, σ). Now consider the subsets A1 ⊂ A2 ⊂
· · · ⊂ A|A| = A where each |Ai| = i, 1 ≤ i ≤ |A|. The argument above implies
~G(T, σ) ⊆ ~G(TA1 , σ) ⊆ · · · ⊆ ~G(TA, σ), which completes the proof.
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Lemma 4.8. Let A and B be disjoint sets of redundant edges in (T, σ) w.r.t. (~G, σ)

and denote by TA the tree obtained by contraction of all edges in A in arbitrary order.
Then B is a set of redundant edges in TA w.r.t. ~G(TA, σ) = ~G(T, σ).

Proof. By Lemma 4.7, contraction of any inner edge e = uv ∈ E(T) never leads to
a loss of arcs in the BMG (~G, σ) = ~G(T, σ). Furthermore, the redundant edges in
T w.r.t. (~G, σ) are completely characterized by Lemma 4.6. Thm. 8 in [102] states
that by contraction of all redundant edges (in an arbitrary order), one obtains the
unique least resolved tree (T∗, σ) of (~G, σ). As argued above, no arc of ~G(T, σ) can
be lost in the stepwise contraction of redundant edges. Together with ~G(T, σ) =
~G(T∗, σ) = (~G, σ) this implies ~G(TA, σ) = (~G, σ). Since by assumption A ∩ B = ∅
and A ∪ B is a set of redundant edges w.r.t. (~G, σ), we have (TA)B = TA∪B and
~G(TA, σ) = (~G, σ) = ~G(TA∪B, σ) = ~G((TA)B, σ). Hence, B is a set of redundant
edges in TA w.r.t. ~G(TA, σ).

Somewhat surprisingly, the property of being least resolved is preserved
under contraction of inner edges of a tree (T, σ).

Proposition 4.2. Suppose (T, σ) is least resolved and let A be a set of inner edges
of T, and denote by TA the tree obtained from a tree T by contracting all edges in A.
Then (TA, σ) is again least resolved.

Proof. Assume that (T, σ) is least resolved, i.e., it does not contain any redundant
edges, and set (~G, σ) := ~G(T, σ). Lemma 4.6 implies that an inner edge e = uv with
v ≺T u in (T, σ) is non-redundant if and only if there is an arc (a, b) ∈ E(~G) such
that lcaT(a, b) = v and σ(b) ∈ σ(L(T(u)) \ L(T(v))). The statement trivially holds
if (T, σ) has at most one inner edge. Hence, we assume that (T, σ) has at least two
distinct inner edges e = uv and e′. We show that every non-redundant edge e in
T remains non-redundant in Te′ . Thus, let e be a non-redundant edge in T. Hence,
there is an arc (a, b) ∈ E(~G) such that lcaT(a, b) = v and σ(b) ∈ σ(L(T(u)) \ L(T(v))).
Now consider the tree Te′ obtained from T by contraction of the inner edge e′ 6= e.
Clearly, we also have lcaTe′ (a, b) = v and σ(b) ∈ σ(L(Te′(u)) \ L(Te′(v))). Lemma 4.7
implies ~G(T, σ) ⊆ ~G(Te′ , σ), and thus, (a, b) ∈ E(~G(Te′ , σ)). Making again use of
Lemma 4.6, we conclude that e is non-redundant in (Te′ , σ).

Since both e and e′ were chosen arbitrarily, we observe that the contraction of a
single inner edge does not produce new redundant edges. We can therefore apply
this argument for each step in the consecutive contraction of all edges in A (in an ar-
bitrary order) to conclude that (TA, σ) does not contain redundant edges. Therefore,
Cor. 4.1 implies that (TA, σ) is least resolved.

Corollary 4.4. If (T, σ) is least resolved and A is a non-empty set of inner edges of
T, then ~G(T, σ) ( ~G(TA, σ).

Proof. By Lemma 4.7, we have ~G(T, σ) ⊆ ~G(TA, σ). By Prop. 4.2, (TA, σ) is least
resolved. Since the LRT of a BMG is unique (cf. Thm. 4.1), we have ~G(T, σ) 6=
~G(TA, σ).

As another immediate consequence of Prop. 4.2 and uniqueness of the LRT
of a BMG (Thm. 4.1), we obtain

Corollary 4.5. If e and e′ are two distinct inner edges of a least resolved tree (T, σ),
then ~G(Te, σ) 6= ~G(Te′ , σ).

The following technical result relates subtrees and induced subgraphs of
BMGs.
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Lemma 4.9. Let (T, σ) be a tree explaining a BMG (~G, σ). Then
~G(T(u), σ|L(T(u))) = (~G[L(T(u))], σ|L(T(u))) holds for every u ∈ V(T). More-
over, if (T, σ) is least resolved for (~G, σ), then the subtree T(u) is least resolved for
~G(T(u), σ|L(T(u))).

Proof. Let (~G1, σ′) := ~G
(

T(u), σ|L(T(u))
)

and (~G2, σ′) := (~G[L(T(u))], σ|L(T(u))). By

definition, we have V(~G1) = V(~G2) = L(T(u)). First assume that (x, y) ∈ E(~G1)
for some x, y ∈ L(T(u)). Hence, it holds that lcaT(u)(x, y) �T(u) lcaT(u)(x, y′) for
all y′ with σ(y) = σ(y′) in T(u) and thus, since T(u) is a subtree of T, we have
lcaT(x, y) �T lcaT(x, y′) for all y′ with σ(y) = σ(y′) in T. Therefore, (x, y) ∈ E(~G).
Since x, y ∈ L(T(u)) and ~G2 is the subgraph of ~G induced by L(T(u)), we have
(x, y) ∈ E(~G2) and thus E(~G1) ⊆ E(~G2). Now assume (x, y) ∈ E(~G2) for some
x, y ∈ L(T(u)). Hence, (x, y) ∈ E(~G). Consequently, there is no leaf y′ in T with
σ(y′) = σ(y) 6= σ(x) such that lcaT(x, y′) ≺T lcaT(x, y) �T u. This clearly also holds
for the subtree T(u). Therefore, we have (x, y) ∈ E(~G1) and thus E(~G2) ⊆ E(~G1).

The second part of the statement is trivially satisfied if T(u) does not contain
any inner edges, which is exactly the case if either u ∈ L(T) or u ∈ V0(T) with
childT(u) ⊆ L(T). Thus, let u ∈ V0(T) and childT(u) ∩ V0(T) 6= ∅. Since (T, σ)
is least resolved, it does not contain redundant edges. Let vw be an inner edge of
T(u) with w ≺T v �T u, and note that vw must also be an inner edge in T. By
Lemma 4.6 and since vw is not redundant in T, there is an arc (a, b) ∈ E(~G) such
that lcaT(a, b) = w and σ(b) ∈ σ(L(T(v)) \ L(T(w))). Since u �T v, the arguments
above imply that (a, b) is also an arc in ~G(T(u), σ|L(T(u))) and lcaT(u)(a, b) = v. Hence,
in particular, we have σ(b) ∈ σ(L(T(v)) \ L(T(w))). We can now apply Lemma 4.6
to conclude that vw is not redundant in T(u). Since vw was chosen arbitrarily, we
conclude that T(u) does not contain any redundant edge and thus, it must be least
resolved for ~G(T(u), σ|L(T(u))) for all u ∈ V(T).

Interestingly, all (proper) subtrees T(u) of a least resolved tree explain a
connected BMG:

Lemma 4.10. Let (~G, σ) be a BMG and (T, σ) its least resolved tree. Then the BMG
~G(T(v), σ|L(T(v))) is connected for every v ∈ V(T) with v ≺T ρT.

Proof. Set Lv := L(T(v)). By Lemma 4.9, ~G(T(v), σ|Lv) is a BMG. First observe that
the BMG ~G(T(v), σ|Lv) is trivially connected if v is a leaf. Now let v ≺T ρT be
an arbitrary inner vertex of T. Thus, there exists a vertex u �T v such that uv
is an inner edge. Since (T, σ) is least resolved, it does not contain any redundant
edges. Hence, by contraposition of Lemma 4.6, there is an arc (a, b) ∈ E(~G) such
that lcaT(a, b) = v and σ(b) ∈ σ(L(T(u)) \ Lv). Since a, b ∈ Lv, Lemma 4.9 implies
that (a, b) is also an arc in ~G(T(v), σ|Lv). Moreover, lcaT(v)(a, b) = v clearly also
holds in the subtree rooted at v. Now consider the child w ∈ childT(v)(v) such that
a �T(v) w. There cannot be a leaf b′ ∈ L(T(w)) with σ(b′) = σ(b) since otherwise
lcaT(v)(a, b′) �T(v) w ≺T(v) v would contradict that (a, b) is an arc in ~G(T(v), σ|Lv).
Thus σ(b) /∈ σ(L(T(w))). Since σ(b) ∈ σ(Lv), we thus conclude σ(L(T(w))) 6= σ(Lv).
The latter together with Prop. 4.1 implies that ~G(T(v), σ|Lv) is connected.

The converse of Lemma 4.10, however, is not true, i.e., a tree (T, σ) for
which ~G(T(v), σ|Lv) is connected for every v ∈ V(T) with v ≺T ρT is not
necessarily least resolved. To see this, consider the caterpillar tree (T, σ) given
by (x′′, (x′, (x, y))) with σ(x) = σ(x′) = σ(x′′) 6= σ(y) and u = lcaT(x, x′). It
is an easy task to verify that the BMG of each subtree of T is connected.
However, the edge ρTu is redundant.
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4.2.3 Characterization via Informative Triples

In this section, we derive a new characterization of best match graphs based
on informative triples and the BUILD algorithm. In particular, we address a
necessary correction of a similar result, Theorem 9, in [102]. Therein, it was
claimed that a connected vertex-colored digraph (~G = (L, E), σ) is a BMG if
all of its 2-colored induced subgraphs are BMGs and the union

R :=
⋃

s,t∈σ(L)

r(T∗st) (4)

of all triples obtained from the least resolved tree T∗st of its 2-colored induced
subgraphs (~Gst, σst) is consistent. More precisely, the original result reads as
follows:

“A connected colored digraph (~G = (L, E), σ) is a BMG if and only if
(i) all induced subgraphs (~Gst, σst) on two colors are 2-BMGs, and (ii) the
union R of all triples obtained from their least resolved trees (Tst, σst) forms
a consistent set. In particular, (Aho(R, L), σ) is the unique least resolved
tree that explains (~G, σ).”

We shall see in Prop. 4.5 below that ~G(Aho(R, L), σ) is always a subgraph
of (~G = (L, E), σ) whenever R is consistent. The example in Fig. 10 shows,
however, that ~G(Aho(R, L), σ) 6= (~G, σ) is possible because Aho(R, L) can
contain triples that are not present in any of the 2-colored trees (Tst, σst).

a1 a2

c1

b

c2 a1 a2b a1 a2c1 c2c1 c2b

a1 a2b c1 c2

A B

C D E
(T, σ)a1 a2

c1

b

c2

a1 a2

c1

b

c2

Fig. 10. Counterexample for Thm. 9 in [102]. (A) A vertex-colored di-
graph with vertex set L that is not a (3-)BMG. (B) The least resolved trees
for the three 2-colored induced subgraphs. The union of their triples is R :=
{a1b|a2, a1c1|a2, a1c1|c2, a2c2|a1, a2c2|c1}. (C) The Aho graph [R, L]. In particu-
lar, R forms a consistent set. (D) The tree T := Aho(R, L). (E) The 3-BMG ~G(T, σ).
The arc (b, c2) that was present in (~G, σ) is missing in ~G(T, σ).

As a consequence, the characterization of BMGs requires the equality
(~G, σ) = ~G(Aho(R, L), σ) as an additional condition. However, instead of
proving an amended version of Thm. 9 in [102], we will state and prove a
slightly stronger and more convenient result, Thm. 4.2 below.
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To this end, we will first provide several technical results that make use of
of (non-)redundant tree edges and, in particular, of least resolved trees. We
note that the proofs of Lemma 4.1 and 4.6 above only require the definition of
best match graphs, and are thus independent of the results proved in [102].

We can relate the subtrees T(u) to the construction of the Aho graph in the
following way:

Lemma 4.11. Let (T, σ) be least resolved for a BMG (~G, σ) with informative triple
set R := R(~G, σ). Then, L(T(v)) is a connected component in the Aho graph
[R|L(T(u)), L(T(u))] for every inner vertex u and each of its children v ∈ childT(u).

Proof. We proceed by induction on L := V(~G). The statement trivially holds for
|L| = 1. Hence, suppose that |L| > 1 and assume that the statement is true for every
BMG with less than |L| vertices.

Let u be an inner vertex of T and v ∈ childT(u). We first show that L(T(v)) is
connected in [R|L(T(u)), L(T(u))], and then argue that there are no edges between
L(T(v)) and L(T(u)) \ L(T(v)), i.e., that L(T(v)) forms a connected component.

If uv is an outer edge, i.e., v is a leaf, then L(T(v)) is trivially connected. Now
suppose that uv is an inner edge of T. By Lemma 4.9, (~G[L(T(v))], σ|L(T(v))) is
explained by the least resolved tree (T(v), σ|L(T(v))). By the induction hypothe-
sis, L(T(w)) forms a connected component in [R|L(T(v)), L(T(v))] for all children
w ∈ childT(v). Together with R|L(T(v)) ⊆ R|L(T(u)), this implies that the elements
in L(T(w)) are also connected in [R|L(T(u)), L(T(u))] for all w ∈ childT(v). Since
uv is an inner edge of the least resolved tree (T, σ), we can apply Cor. 4.2 to con-
clude that there is an informative triple ab|b′ in (~G, σ) that distinguishes uv, i.e.
lcaT(a, b) = v and b′ ∈ L(T(u)) \ L(T(v)) with color σ(b′) = σ(b). Hence, ab|b′ is also
contained in [R|L(T(u)), L(T(u))]. In particular, there are children w, w′ ∈ childT(v)
such that a �T w and b �T w′, and the edge ab connects L(T(w)) and L(T(w′)) in
[R|L(T(u)), L(T(u))].

Now suppose that there is an additional child w′′ ∈ childT(v) \ {w, w′}. We distin-
guish two cases. Either there is a leaf b′′ �T w′′ with σ(b′′) = σ(b) or no such leaf ex-
ists. If there is such a leaf b′′, then (a, b′′) forms an arc in (~G, σ) and ab′′|b′ is an infor-
mative triple making L(T(w)) and L(T(w′′)) connected in [R|L(T(u)), L(T(u))]. Other-
wise, take an arbitrary leaf c �T w′′. Since σ(b) /∈ σ(L(T(w′′))), we have σ(c) 6= σ(b)
and thus, there is an arc (c, b) in (~G, σ). Since lcaT(c, b′) = u �T v = lcaT(c, b), the
arc (c, b′) is not contained in (~G, σ). Hence, cb|b′ is an informative triple making
L(T(w′)) and L(T(w′′)) connected in [R|L(T(u)), L(T(u))].

Therefore, the subgraph in [R|L(T(u)), L(T(u))] induced by L(T(v)) must be con-
nected.

It remains to show that L(T(v)) is a connected component in [R|L(T(u)), L(T(u))]
and thus, that there are no edges ab in [R|L(T(u)), L(T(u))] with a ∈ L(T(v)) and
b ∈ L(T(u)) \ L(T(v)). Assume, for contradiction, that there exists such an edge
ab. Hence, this edge must be supported by an informative triple w.l.o.g. ab|b′ with
σ(a) 6= σ(b) = σ(b′) and b′ ∈ L(T(u)). Lemma 4.1 implies that ab|b′ must be
displayed by T. However, lcaT(a, b) = u = lcaT(a, b, b′) implies that such a triple
cannot exist. Thus, L(T(v)) is a connected component in [R|L(T(u)), L(T(u))].

The least resolved tree of a BMG therefore coincides with the Aho tree of
its informative triples. In more detail, we have

Proposition 4.3. If (~G = (L, E), σ) is a BMG, then (Aho(R(~G, σ), L), σ) is the
unique least resolved tree for (~G, σ).
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Fig. 11. Construction of the LRT for a BMG (~G, σ) using the BUILD algorithm. Each
recursion step (pink boxes) corresponds to a vertex of the resulting tree (trivial steps
on single vertices are omitted in the drawing). The algorithm recurses on the con-
nected components (gray dashed boxes) of the Aho graphs and the corresponding
subsets of triples.

Proof. Since (~G, σ) is a BMG, Lemma 4.1 implies that there is a tree displaying all
triples in R(~G, σ). In particular, therefore, Aho(R(~G, σ), L) exists. Moreover, there
must be a least resolved tree (T∗, σ) for (~G, σ). To see this, consider an arbitrary tree
(T, σ) that explains (~G, σ), and repeatedly identify and contract a redundant edge
until no redundant edges remain. By definition, the resulting tree still explains (~G, σ)
and is least resolved. By Lemma 4.11 and by construction of (Aho(R(~G, σ), L), σ),
any least resolved tree (T∗, σ) for (~G, σ) coincides with the latter. The uniqueness of
Aho(R(~G, σ), L) therefore implies that the least resolved tree is also unique.

We now have all the pieces in place to formulate and prove the main result
of this section:

Theorem 4.2. A colored digraph (~G = (L, E), σ) is a BMG if and only if
~G(Aho(R(~G, σ), L), σ) = (~G, σ). Moreover, (Aho(R(~G, σ), L), σ) is the unique
least resolved tree explaining a BMG (~G, σ).

Proof. If (~G = (L, E), σ) is a BMG, then Prop. 4.3 implies that (T :=
Aho(R(~G, σ), L), σ) is its unique least resolved tree, and thus ~G(T, σ) = (~G, σ). Con-
versely, (~G(T, σ), σ) is a BMG.

By Thm. 4.2, the set of informative triples R(~G, σ) of a BMG (~G, σ) is consis-
tent. In particular, it can be used to construct its LRT by means of the BUILD

algorithm, see Fig. 11 for an example.
None of the intermediate results used to prove Thm. 9 in [102] is used in

our proof of Thm. 4.2. It is worth noting, therefore, that Thm. 4.2 immediately
implies Thms. 5, 6, and 7, as well as the existence of a unique least resolved
tree in Thms. 2 and 8 of [102]. In particular, Thm. 4.2 allows us to obtain the
least resolved tree of a BMG without the need to explicitly construct the least
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resolved trees of all its 2-colored induced subgraphs, and is not restricted to
connected digraphs.

For completeness, we provide two additional results concerning the triple
set R as defined in Eq. (4). To this end, we will need that, given a digraph
(~G, σ) for which R exists, Lemma 4.1 implies that

R(~G, σ) ⊆ R. (5)

Proposition 4.4. If (~G = (L, E), σ) is a BMG, then Aho(R(~G, σ), L) =

Aho(R, L).

Proof. For brevity set R := R(~G, σ). From Eq. (5), i.e., R ⊆ R, we immediately have
R|L(T(u)) ⊆ R|L(T(u)) for every inner vertex u of T. Moreover, by Thm. 4.2, (T, σ) with
T := Aho(R, L) is the least resolved tree that explains (~G, σ).

Hence, we can apply the same arguments as in the proof of Lemma 4.11

to conclude that L(T(v)) forms a connected component in the Aho graph
[R|L(T(u)), L(T(u))] for every inner vertex u and each of its children v ∈ childT(u).
More precisely, note that connectedness of any such L(T(v)) is guaranteed by the
informative triples. Now assume, for contradiction, that there is an edge ab in
[R|L(T(u)), L(T(u))] with a ∈ L(T(v)) and b ∈ L(T(u)) \ L(T(v)) connecting L(T(v))
and L(T(v′)) for some child v′ ∈ childT(u) \ {v}. In this case, there is a triple
ab|c ∈ R|L(T(u)) and thus, a, b, c ∈ L(T(u)) and lcaT(a, b, c) = u. By definition of R
and Observation 4 in [102], ab|c must be displayed by T. However, a, b, c ∈ L(T(u))
and lcaT(a, b) = u = lcaT(a, b, c) imply that ab|c is not displayed by T; a contradiction.
Therefore, (T, σ) = (Aho(R, L), σ), which completes the proof.

Moreover, existence and consistency of R and R(~G, σ) guarantees that the
BMGs of their Aho graphs are subgraphs of any vertex-colored digraph
(~G, σ):

Proposition 4.5. Let (~G = (L, E), σ) be a properly colored digraph with all 2-
colored induced subgraphs being 2-BMGs. Then the following two statements hold:

(i) If R(~G, σ) is consistent, then ~G(Aho(R(~G, σ), L), σ) ⊆ (~G, σ).
(ii) If R is consistent, then ~G(Aho(R, L), σ) ⊆ (~G, σ).

Proof. We set (~G′, σ) := ~G(Aho(R(~G, σ), L), σ). Since Aho(R(~G, σ), L) is defined on
L, we have V(~G′) = L = V(~G). Now assume, for contradiction, that there is an
arc (a, b) ∈ E(~G′) such that (a, b) /∈ E(~G). By assumption, the induced subgraph
(~Gst, σst) of (G, σ), where s = σ(a) and t = σ(b), is a 2-BMG and thus sink-free.
Therefore, there must be a vertex b′ of color σ(b) with (a, b′) ∈ E(~G). Hence, ab′|b is
informative for (~G, σ) and contained in R(~G, σ). In particular, ab′|b must be displayed
by Aho(R(~G, σ), L); contradicting that (a, b) is an arc in (~G′, σ). Hence, statement (i)
is true.

Statement (ii) can be shown using Eq. (5), i.e., R(~G, σ) ⊆ R, and arguments similar
to the previous paragraph.

Finally, we discuss the consequences of the corrected characterization of
BMGs for the algorithmic aspects outlined in Sec. 5 of [102]. Regarding the
recognition of BMGs, we have noted above that the consistency of the triple
set R and the fact that all 2-colored induced subgraphs are 2-BMGs are not suf-
ficient. Algorithm 1 of [102] therefore also needs to be corrected. By Thm. 4.2,
it suffices to construct the tree T := Aho(R(~G, σ), L) and to check whether
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~G(T, σ) = (~G, σ). On the other hand, it is no longer necessary to require con-
nectedness of the input digraph. We therefore obtain a considerably simpler
procedure, see Alg. 1.

Algorithm 1: Unique least resolved tree of a BMG.

Input: Properly colored digraph (~G = (L, E), σ).
Output: Least resolved tree (T, σ) if (~G, σ) is a BMG, false otherwise.

1 T ← Aho(R(~G, σ), L)
2 if ~G(T, σ) = (~G, σ) then
3 return (T, σ)
4 else
5 return false

The same arguments as in [102] show that T = Aho(R(~G, σ), L) can be
constructed in O(|E||L| log2(|E||L|)) = O(|E||L| log2 |L|) time using the algo-
rithm by Deng and Fernández-Baca [71]. The construction of ~G(T, σ) can then
be achieved in O(|L|2) time e.g. using Algorithm 1 in the Supplement of [103].
The equality ~G(T, σ) = (~G, σ) can be checked in O(|L|2) operations. The total
effort therefore remains dominated by the construction of the least resolved
tree T. Therefore, we obtain

Corollary 4.6. Alg. 1 determines in polynomial time whether a vertex-colored di-
graph (~G, σ) is a BMG. In the affirmative case, a (least resolved) tree that explains
(~G, σ) can be constructed in polynomial time.

We note that Algorithm 3 in [102] is essentially the simplified Algorithm 1

above with its input restricted to 2-colored connected digraphs. Its correct-
ness therefore follows immediately from Thm. 4.2.

4.2.4 Characterization via Informative and Forbidden Triples

In this section, we provide a second novel characterization of BMGs utilizing
forbidden triples as an additional source of information as compared to that
provided by the informative triples. This characterization will in particular be
useful for understanding BMGs that can be explained by binary trees (Sec. 4.3)
and for the derivation of an integer linear programming formulation for BMG
editing (Sec. 5.4). The following set of rooted triples obtained from a vertex-
colored digraph will be essential.

Definition 4.8. Let (~G, σ) be a vertex-colored digraph. We say that a triple xy|y′ is
forbidden for a digraph (~G, σ) if x, y and y′ are pairwise distinct vertices in ~G such
that (i) σ(x) 6= σ(y) = σ(y′) and (ii) (x, y) ∈ E(~G) and (x, y′) ∈ E(~G). The set of
forbidden triples of (~G, σ) is denoted by F(~G, σ).

For short, the set of forbidden triples of (~G, σ) can be expressed as

F(~G, σ) =
{

ab|b′ : σ(a) 6= σ(b) = σ(b′), b 6= b′, and (a, b), (a, b′) ∈ E(~G)
}

(6)
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Fig. 12. The forbidden triples ab|b′, ab′|b ∈ F(~G, σ) are obtained from the induced
subgraph of (~G, σ) on the left-hand side. The gray dashed arcs may or may not exist.

and is illustrated in Fig. 12. As a direct consequence of their definition, for-
bidden triples always come in pairs:

Observation 4.4. Let (~G, σ) be a vertex-colored digraph. Then ab|b′ ∈ F(~G, σ)

with σ(b) = σ(b′) if and only if ab′|b ∈ F(~G, σ).

We emphasize that a BMG (~G, σ) can contain arcs (a, b), (a, b′) with σ(a) 6=
σ(b) = σ(b′). In this case, however, a tree that explains (~G, σ) cannot display
the triple ab|b′, as shown in

Lemma 4.12. Let (~G, σ) be a BMG explained by (T, σ). Then, none of the triples in
F(~G, σ) is displayed by (T, σ).

Proof. Assume, for contradiction, that (T, σ) displays ab|b′ ∈ F(~G, σ). Hence,
lcaT(a, b) ≺T lcaT(a, b′) and thus, (a, b′) /∈ E(~G) contradicting the definition of ab|b′
as a forbidden triple of (~G, σ).

Lemma 4.13. Let (~G, σ) be an sf-colored digraph with vertex set L. Then for every
tree (T, σ) on L displaying all triples in R(~G, σ), it holds E(~G(T, σ)) ⊆ E(~G).

Proof. Let (T, σ) be a tree displaying all triples in R(~G, σ) and set E′ := E(~G(T, σ))
and E := E(~G). First note that (~G, σ) and ~G(T, σ) have the same vertex set L. Suppose
that (a, b) ∈ E′ but (a, b) /∈ E. Since (~G, σ) is sf-colored, vertex a must have at least
one out-neighbor b′ (distinct from b) of color σ(b) in (~G, σ), i.e. (a, b′) ∈ E. Hence,
(a, b′) ∈ E and (a, b) /∈ E imply that ab′|b is an informative triple of (~G, σ) and thus
displayed by T. Therefore lcaT(a, b′) ≺T lcaT(a, b) which, together with σ(b) = σ(b′),
contradicts (a, b) ∈ E′. Therefore, E′ ⊆ E.

Proposition 4.6. Let (~G, σ) be a sf-colored digraph with vertex set L. A leaf-colored
tree (T, σ) on L explains (~G, σ) if and only if (T, σ) agrees with (R(~G, σ),F(~G, σ)).
In this case, (~G, σ) is a BMG.

Proof. First suppose that (T, σ) explains (~G, σ), in which case (~G, σ) is a BMG. The
only-if-direction now immediately follows from Lemmas 4.1 and 4.12.

Now suppose that there is a tree (T, σ) on L that displays all triples in R(~G, σ) and
none of the triples in F(~G, σ). Hence, we can apply Lemma 4.13 to conclude that
E′ := E(~G(T, σ)) ⊆ E(~G) =: E. Note that (~G, σ) and ~G(T, σ) have the same vertex
set L. We show that E′ = E. Assume, for contradiction, that E′ ⊂ E, and thus, that
there is an (a, b) ∈ E \ E′. By Obs. 4.1 and since ~G(T, σ) is a BMG, vertex a must
have at least one out-neighbor b′ of color σ(b). Hence, there is an arc (a, b′) ∈ E′.
Thus, ab′|b is an informative triple of ~G(T, σ) and must therefore be displayed by T.
Moreover, (a, b′) ∈ E′ and E′ ⊂ E imply (a, b′) ∈ E. Hence, (a, b), (a, b′) ∈ E implies
that ab′|b is a forbidden triple of (~G, σ) and thus, not displayed by T by assumption;
a contradiction. Therefore, E = E′ must hold and thus, ~G(T, σ) = (~G, σ) which, in
particular, implies that (~G, σ) is a BMG.
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We can now formulate and prove the main result of this section:

Theorem 4.3. A vertex colored digraph (~G, σ) is a BMG if and only if (i) (~G, σ) is
sf-colored and (ii) (R(~G, σ),F(~G, σ)) is consistent.

Proof. First suppose that (~G, σ) is a BMG. The definition of BMGs together with Obs.
4.1 implies that (~G, σ) is sf-colored. Thus, there is a tree (T, σ) that explains (~G, σ).
By Lemmas 4.1 and 4.12, (T, σ) displays all triples in R(~G, σ) and none of the triples
in F(~G, σ). Hence, the pair (R(~G, σ),F(~G, σ)) is consistent.

For the converse, suppose that (~G, σ) is a sf-colored digraph and that
(R(~G, σ),F(~G, σ)) is consistent. The latter implies that there is a tree (T, σ) on L
displaying all triples in R(~G, σ) and none of the triples in F(~G, σ). Now, we can
apply Prop. 4.6 to conclude that (~G, σ) is a BMG.

We note that one may extend the set of forbidden triples F(~G, σ) to the set
F∗(~G, σ) that consists of all triples ab|b′ for which σ(a) 6= σ(b) = σ(b′) and
(a, b′) ∈ E(~G). This may be useful for practical computations. By definition,
it holds F(~G, σ) ⊆ F∗(~G, σ).

Corollary 4.7. A vertex colored digraph (~G, σ) is a BMG if and only if (i) (~G, σ) is
sf-colored and (ii) (R(~G, σ),F∗(~G, σ)) is consistent.

Proof. If (~G, σ) satisfies (i) and (ii), then F(~G, σ) ⊆ F∗(~G, σ) implies that
(R(~G, σ),F(~G, σ)) is consistent. By Thm. 4.3, (~G, σ) is a BMG. Now assume that
(~G, σ) is a BMG. Hence, by Thm. 4.3, (~G, σ) is sf-colored and (R(~G, σ),F(~G, σ))
is consistent. Hence, there is a tree (T, σ) that displays, in particular, all triples
in R(~G, σ). For each triple xy|y′ ∈ R(~G, σ), we have σ(x) 6= σ(y) = σ(y′)
and (x, y) ∈ E(~G), (x, y′) /∈ E(~G). This is precisely the definition of the triples
xy′|y ∈ F := F∗(~G, σ) \ F(~G, σ). Hence, none of the triples in F is displayed by T. In
summary, (T, σ) displays all triples in R(~G, σ) and none of the triples in F(~G, σ) and F
and, therefore, also none of the triples in F∗(~G, σ). Consequently, (R(~G, σ),F∗(~G, σ))
is consistent.

As argued in the proof of Cor. 4.7, the information provided by triples in
F := F∗(~G, σ) \ F(~G, σ) is entirely covered by the set of informative triples
R(~G, σ). In the following, we will therefore use the characterization of BMGs
as in Thm. 4.3.

In order to use the MTT algorithm [128] to recognize BMGs (~G, σ), we show
for completeness that the set of informative and forbidden triples already
determines V(~G) except for trivial cases.

Lemma 4.14. Let (~G, σ) be a sf-colored digraph, V(~G) 6= ∅ and L′ :=⋃
t∈R(~G,σ)∪F(~G,σ) L(t). Then the following statements are equivalent:

1. L′ = V(~G).
2. R(~G, σ) ∪ F(~G, σ) 6= ∅.
3. (~G, σ) is `-colored with ` ≥ 2 and contains two vertices of the same color.

Otherwise, (~G, σ) is a BMG that is explained by any tree (T, σ) on V(~G).

Proof. The fact that L′ = V(~G) 6= ∅ immediately implies that R(~G, σ)∪F(~G, σ) must
not be empty. Hence, (1) implies (2).

Suppose Condition (2) is satisfied. Since all triples xy|y′ ∈ R(~G, σ)∪F(~G, σ) satisfy
σ(x) 6= σ(y) = σ(y′), Condition (3) must be satisfied. Hence, (2) implies (3).
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Suppose Condition (3) is satisfied. Hence, there are two vertices of the same color
r and there must be a vertex x ∈ V(~G) with σ(x) 6= r. Since (~G, σ) is sf-colored, there
is a vertex y ∈ V(~G) of color r such that (x, y) ∈ E(~G). Now let y′ ∈ V(~G), y′ 6= y be
one of the additional vertices of color σ(y′) = r. If (x, y′) /∈ E(~G) then xy|y′ ∈ R(~G, σ)
and, otherwise, if (x, y′) ∈ E(~G) then xy|y′ ∈ F(~G, σ). In summary, every vertex x of
(~G, σ) is part of some informative or forbidden triple and thus, L′ = V(~G). Hence,
(3) implies (1).

Finally, suppose that none of the equivalent statements (1), (2), and (3) holds.
Then (~G, σ) is either 1-colored and thus, does not contain any arc, or |V(~G)|-colored
in which case (~G, σ) is a complete digraph. In both cases, the tree topology of (T, σ)
does not matter.

It is straightforward to test whether a vertex colored digraph (~G, σ) is sf-
colored in O(|E(~G)|) time. Moreover, MTT [128] accomplishes the consistency
check of (R(~G, σ),F(~G, σ)) and the construction of a corresponding tree in
polynomial time (cf. Thm. 2.1). If R(~G, σ) ∪ F(~G, σ) = ∅, (~G, σ) is a BMG.
Otherwise, Lemma 4.14 implies that every vertex in the sf-colored digraph
(~G, σ) appears in an informative and/or a forbidden triple. Together with
Prop. 4.6 and Thm. 4.3, this also implies that BMGs can be recognized in
polynomial time (cf. Cor. 4.6).

We summarize the characterizations of BMGs in Thm. 4.2 and 4.3 in the
following

Proposition 4.7. Let (~G, σ) be a properly colored digraph with vertex set L. Then
the following three statements are equivalent:

1. (~G, σ) is a BMG.

2. R(~G, σ) is consistent and ~G(Aho(R(~G, σ), L), σ) = (~G, σ).

3. (~G, σ) is sf-colored and (R(~G, σ),F(~G, σ)) is consistent.

In this case, (Aho(R(~G, σ), L), σ) is the unique least resolved tree for (~G, σ),
and a leaf-colored tree (T, σ) on L explains (~G, σ) if and only if it agrees with
(R(~G, σ),F(~G, σ)).

4.3 binary-explainable best match graphs

Phylogenetic trees are often binary. Multifurcations are in many cases – but
not always – the consequence of insufficient data [73, 257], see also Sec. 3.4 for
some discussion on the topic. It is therefore of practical interest to consider
BMGs that can be explained by a binary tree.

Definition 4.9. A properly colored digraph (~G, σ) is a binary-explainable best
match graph (beBMG) if there is a binary tree T such that ~G(T, σ) = (~G, σ).

In Sec. 4.3.1, we introduce and characterize the hourglass as the forbidden
induced subgraph for the subclass of beBMGs among BMGs in general. The
results of this section previously appeared in [264]. Secs. 4.3.2–4.3.4 are based
on [260]. Sec. 4.3.2 is concerned with a constructive algorithm for beBMG
recognition that runs in near-cubic time Õ(|V|3). It produces a unique tree,
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Fig. 13. The hourglass on the left-hand side is explained by the leaf-colored tree on
the right-hand side.

the binary-refinable tree (BRT) of a beBMG. The BRT has several interesting
properties that are studied in detail in Sec. 4.3.3. Simulated data are used in
Sec. 4.3.4 to show that BRTs are much better resolved than the least resolved
trees of BMGs.

4.3.1 Hourglasses

In this section, we will derive a structural characterization of binary-
explainable BMGs. To this end, we introduce an additional motif that may
occur in vertex-colored digraphs, and that will turn out to be the characteris-
tic forbidden induced subgraph of this subclass of BMGs.

Definition 4.10 (Hourglass). An hourglass in a properly vertex-colored digraph
(~G, σ), denoted by [xy ↘↗ x′y′], is a subgraph (~G[Q], σ|Q) induced by a set of four
pairwise distinct vertices Q = {x, x′, y, y′} ⊆ V(~G) such that

(i) σ(x) = σ(x′) 6= σ(y) = σ(y′),

(ii) (x, y), (y, x) and (x′, y′), (y′, x′) are arcs in ~G,

(iii) (x, y′), (y, x′) ∈ E(~G), and

(iv) (y′, x), (x′, y) /∈ E(~G).

Note that Condition (i) rules out arcs between x, x′ and y, y′, respectively,
i.e., the only arcs in an hourglass are the ones specified by Conditions (ii) and
(iii). The definition of hourglasses is illustrated in Fig. 13, together with the
tree that explains a BMG which itself is an hourglass. Hence, we have

Observation 4.5. Every hourglass is a BMG since it can be explained by a tree as
shown in Fig. 13.

Definition 4.11. A BMG (~G, σ) is hourglass-free if it does not contain an hour-
glass as an induced subgraph.

We first show that hourglasses cannot appear in a BMG that can be ex-
plained by a binary tree.

Lemma 4.15. If (~G, σ) is a BMG containing the hourglass [xy ↘↗ x′y′], then every
tree (T, σ) that explains (~G, σ) contains a vertex u ∈ V0(T) with three distinct
children v1, v2, and v3 such that x �T v1, lcaT(x′, y′) �T v2 and y �T v3.
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Proof. By assumption, (x, y), (y, x) and (x′, y′), (y′, x′) are arcs in ~G, (x, y′), (y, x′) ∈
E(~G), and (y′, x), (x′, y) /∈ E(~G). By Lemma 4.1, the informative triples x′y′|x and
x′y′|y thus must be displayed by every tree (T, σ) that explains (~G, σ). Thus ux′y′ :=
lcaT(x′, y′) ≺T ux := lcaT(x, ux′y′) and ux′y′ ≺T uy := lcaT(y, ux′y′). Furthermore,
ux and uy are both ancestors of ux′y′ and thus comparable w.r.t. �T . If ux ≺T uy,
then lcaT(x, y′) ≺T lcaT(x, y) which implies that (x, y) cannot be an arc in ~G; a
contradiction. By similar arguments, uy ≺T ux is not possible and therefore, ux =
uy =: u.

Since ux′y′ ≺T u, there are two distinct children v1, v2 ∈ childT(u) of u such that
x �T v1 and ux′y′ �T v2. Clearly, y /∈ L(T(v2)) since lcaT(y, ux′y′) = u �T v2. We
also have y /∈ L(T(v1)) since y ∈ L(T(v1)) would imply lcaT(x, y) �T v1 ≺T u =
lcaT(x, ux′y′) = lcaT(x, y′), contradicting (x, y′) ∈ E(~G). Together with y ∈ L(T(u)),
this implies the existence of a vertex v3 ∈ childT(u) such that v3 /∈ {v1, v2} and
y �T v3.

As an immediate consequence, we obtain

Corollary 4.8. If a BMG (~G, σ) is binary-explainable, then it is hourglass-free.

As we shall see, the converse of Cor. 4.8 is also true. In order to show this,
we will need the following technical result.

Lemma 4.16. Let (~G, σ) be a BMG explained by (T, σ). Then (~G, σ) has an hour-
glass [xy ↘↗ x′y′] as an induced subgraph if and only if there is a vertex u ∈ V0(T)
with distinct children v1, v2, and v3 and two distinct colors r and s satisfying

1. r ∈ σ(L(T(v1))), r, s ∈ σ(L(T(v2))), and s ∈ σ(L(T(v3))), and

2. s /∈ σ(L(T(v1))), and r /∈ σ(L(T(v3))).

Proof. First assume that (~G, σ) contains the hourglass [xy↘↗ x′y′] as an induced sub-
graph. Then by Lemma 4.15, (T, σ) contains a vertex u ∈ V0(T) with three distinct
children v1, v2, and v3 such that x �T v1, lcaT(x′, y′) �T v2 and y �T v3. Putting
r := σ(x) = σ(x′) and s := σ(y) = σ(y′) immediately implies Condition (1). Now,
assume for contradiction that Condition (2) is violated and thus s ∈ σ(L(T(v1))) or
r ∈ σ(L(T(v3))). If s ∈ σ(L(T(v1))), then there is a leaf y′′ ≺T v1 with σ(y′′) = s. In
this case, however, lcaT(x, y′′) �T v1 ≺T u = lcaT(x, y′) implies that (x, y′) cannot be
an arc in (~G, σ); a contradiction to [xy ↘↗ x′y′] being an hourglass. By similar argu-
ments, r ∈ σ(L(T(v3))) is not possible. Therefore, Condition (2) must be satisfied.

Now assume that there is a vertex u ∈ V0(T) with pairwise distinct children v1,
v2, and v3 and two distinct colors r and s satisfying Conditions (1) and (2). It is
now straightforward to see that (~G, σ) contains an hourglass: Condition (1) immedi-
ately implies the existence of vertices x ∈ L[r] ∩ L(T(v1)) and y ∈ L[s] ∩ L(T(v3)).
Moreover, r, s ∈ σ(L(T(v2))) together with Lemma 4.3 imply that there is are arcs
(x′, y′), (y′, x′) in (~G, σ) with x′ ∈ L[r] ∩ L(T(v2)) and y′ ∈ L[s] ∩ L(T(v2)). Clearly,
the vertices in {x, x′, y, y′} are pairwise distinct. By Condition (2) and the location
of the four leaves, we obtain the arcs (x, y′), (x, y), (y, x′), and (y, x). Since T(v2)
contains both colors r and s, we can furthermore conclude that (x′, y) and (y′, x) are
not arcs in (~G, σ). In summary, the subgraph of (~G, σ) induced by the set {x, x′, y, y′}
is an hourglass [xy↘↗ x′y′].

In the following, a tree (T, σ) is called refinable if there is a proper refine-
ment (T′, σ) of (T, σ), i.e., T ≤ T′ and T 6= T′, such that ~G(T′, σ) = ~G(T, σ).
Otherwise, (T, σ) is non-refinable. An inner vertex of a tree is non-refinable if
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it cannot be refined without changing the best match graph explained by the
tree.

Clearly, for every BMG (~G, σ), there is a tree that has the maximum number
of vertices among all trees that explain (~G, σ) and thus, a tree that cannot be
further resolved. Hence, every BMG can be explained by a non-refinable tree.
We will need the following useful property of non-refinable vertices:

Lemma 4.17. Let (~G, σ) be a BMG explained by a tree (T, σ), and let u ∈ V0(T)
be a non-refinable vertex of (T, σ). Then, for any proper subset C ( childT(u) with
|C| ≥ 2, there are two distinct vertices v, v′ ∈ C, a vertex v′′ ∈ childT(u) \ C, and
two vertices a �T v and b �T v′ such that (a, b) ∈ E(~G) and σ(b) ∈ σ(L(T(v′′))).

Proof. First note that the statement is trivially true if u is binary, since then there is
no proper subset C ( childT(u) such that |C| ≥ 2. Thus, assume |childT(u)| ≥ 3 in
the following.

We refine (T, σ) at vertex u as follows: Take an arbitrary subset C ( childT(u)
such that |C| ≥ 2 (which exists since |childT(u)| ≥ 3) and place all vertices in C as
the children of a new vertex w, and connect w as a child of u. Since u is a non-
refinable vertex of (T, σ), this refinement leads to a tree (T′, σ) that does not explain
(~G, σ), and therefore, the inner edge uw must be non-redundant w.r.t. ~G(T′, σ). By
Lemma 4.6, there must be an arc (a, b) in ~G(T′, σ) such that lcaT′(a, b) = w and σ(b) ∈
σ(L(T′(u)) \ L(T′(w))). In particular, lcaT′(a, b) = w implies that a �T v and b �T v′

for two distinct vertices v, v′ ∈ childT′(w) = C. Note that (T, σ) can be obtained from
(T′, σ) by contraction of the edge uw. Hence, we can apply Lemma 4.7 to conclude
that ~G(T′, σ) ⊆ (~G, σ). Therefore, (a, b) ∈ E(~G). Taking the latter arguments together,
for any subset C ( childT(u) with |C| ≥ 2, there are vertices a �T v and b �T v′

with distinct v, v′ ∈ C such that (a, b) ∈ E(~G) and σ(b) ∈ σ(L(T(v′′))) for some
v′′ ∈ childT(u) \ C.

We now show that hourglasses are the forbidden induced subgraph char-
acterizing BMGs that can be explained by binary trees.

Proposition 4.8. A BMG (~G, σ) can be explained by a binary tree if and only if it
is hourglass-free.

Proof. By Cor. 4.8, every binary-explainable BMG (~G, σ) must be hourglass-free. To
prove the converse, we assume, for contradiction, that (~G, σ) is hourglass-free and
cannot be explained by any binary tree. Then there is a non-refinable non-binary tree
(T, σ) that explains (~G, σ). By construction, furthermore, T contains a non-binary
vertex u ∈ V0(T), which by assumption is non-refinable.

The key device for our proof are pairs (M,N) where M := {v1, . . . , vk} is an or-
dered set of k ≥ 2 pairwise distinct children of u and N := {c1, . . . , ck−1} is an
ordered set of k − 1 pairwise distinct colors. We call (M,N) an hourglass-free pair
(hf-pair) of order k for u if the following conditions are satisfied:
(i) For all ci ∈ N we have ci ∈ σ(L(T(vj))), i ≤ j ≤ k− 1,
(ii) For all ci ∈ N we have ci /∈ σ(L(T(vj))), 1 ≤ j < i, and
(iii) N ⊆ σ(L(T(vk))).
If (M,N) is an hf-pair of order k, then Condition (i) implies by construction that
N ⊆ σ(L(T(vk−1))). Therefore, (M′ = (v1, . . . , vk, vk−1),N) is also an hf-pair where
M′ is obtained from M by exchanging the positions of its last two elements. Hf-
pairs and the following arguments are illustrated in Fig. 14. In order to obtain the
desired contradiction, we show by induction that the children of the non-binary, non-
refinable vertex u harbor hf-pairs of arbitrary large order k.
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Base case. There is an hf-pair (M,N) of order 2 for u.
Proof of Claim. Consider an arbitrary subset {v, v′} ( childT(u) consisting of two
distinct children v and v′ of the non-binary vertex u. By Lemma 4.17 and since u is
non-refinable, there are vertices a �T v and b �T v′ such that w.l.o.g. (a, b) ∈ E(~G)
and σ(b) ∈ σ(L(T(v′′))) for some v′′ ∈ childT(u) \ {v, v′}. The latter implies that
there is a vertex b′ �T v′′ of color σ(b). Clearly, b and b′ are distinct and the color
σ(b) is also present in the subtree T(v′). Thus we can set M := (v1 := v′, v2 := v′′)
and N := (c1 := σ(b)). It is an easy task to verify that (M,N) satisfies Conditions (i)–
(iii). �
Induction step. The existence of an hf-pair of order k implies the existence of an
hf-pair of order k + 1 for u.
Proof of Claim. Let (M = (v1, . . . , vk),N = (c1, . . . , ck−1)) be an hf-pair, and consider
the set {vk−1, vk} ( childT(u). By Lemma 4.17 and since u is non-refinable, there are
again vertices a �T v and b �T v′ for distinct v, v′ ∈ {vk−1, vk} such that (a, b) ∈
E(~G) and σ(b) ∈ σ(L(T(v′′))) for some v′′ ∈ childT(u) \ {vk−1, vk}. We can assume
w.l.o.g. that a �T v = vk−1 and b �T v′ = vk since otherwise we can simply swap
vk−1 and vk in the ordered set M as argued above. Since (a, b) is an arc in (~G, σ)
and lcaT(a, b) = u, the color σ(b) cannot be present in the subtree T(vk−1). Since
N ⊆ σ(L(T(vk−1))) and σ(b) /∈ σ(L(T(vk−1))), we conclude that σ(b) /∈ N.

We continue to show that v′′ is distinct from all elements in M. Clearly, in the
case k = 2, v′′ is distinct from all elements in M = {v1, v2} = {v, v′} by con-
struction. Now let k > 2 and assume, for contradiction, that there is a vertex
vj ∈ {v1, . . . , vk−2} such that σ(b) ∈ σ(L(T(vj))). In this case, j < k− 1 and Condi-
tion (ii) imply that ck−1 /∈ σ(L(T(vj))). In addition, we have ck−1 ∈ σ(L(T(vk−1)))
and ck−1 ∈ σ(L(T(vk))) by Conditions (i) and (iii), respectively. Recall that v′ = vk.
In summary, we obtain three distinct vertices vj, vk, vk−1 and two distinct colors
σ(b) and ck−1 satisfying Conditions (1) and (2) in Lemma 4.16, which implies that
(~G, σ) contains an hourglass; a contradiction. Hence, σ(b) /∈ σ(L(T(vj))) for all
j ∈ {1, . . . , k − 2}. This implies that v′′ is distinct from v1, . . . , vk−2. Moreover, by
construction, v′′ is distinct from vk−1 and vk. In summary, v′′ is therefore distinct
from all elements in M.

Consider now the pair (M′ := (v1, . . . , vk, vk+1 := v′′),N′ := (c1, . . . , ck−1, ck :=
σ(b))). Since (M,N) is an hf-pair, and since, by construction, ck = σ(b) /∈ σ(L(T(vj)))
for 1 ≤ j ≤ k− 1 and ck = σ(b) ∈ σ(L(T(vk))), we can immediately conclude that
Conditions (i) and (ii) are satisfied for (M′,N′). It remains to show that Condi-
tion (iii) is satisfied as well, i.e., ci ∈ σ(L(T(vk+1))) for all 1 ≤ i ≤ k. By con-
struction, we have ck ∈ σ(L(T(vk+1))). Now assume that ci /∈ σ(L(T(vk+1))) for
some 1 ≤ i ≤ k − 1. We have ci ∈ σ(L(T(vk−1))) and ci, ck ∈ σ(L(T(vk))) by
Condition (i), and ck /∈ σ(L(T(vk−1))) by Condition (ii). Taken together, we obtain
three distinct vertices vk−1, vk, vk+1 and two distinct colors ci and ck satisfying Con-
ditions (1) and (2) in Lemma 4.16, which implies that (~G, σ) contains an hourglass; a
contradiction. Therefore, Condition (iii) must be satisfied as well, and (M′,N′) is an
hf-pair of order k + 1. �

Repeated application of the induction step implies that children of a non-refinable
non-binary vertex u in a non-refinable tree (T, σ) explaining an hourglass-free BMG
harbor an hf-pair of arbitrary order. This is of course impossible since ~G is finite,
i.e, no such vertex u can exist. Therefore, every hourglass-free BMG (~G, σ) can be
explained by a binary tree.

Prop. 4.8 gives rise to a procedure for determining whether a BMG (~G, σ)

can be explained by a binary tree. We simply need to check whether (~G, σ) is
hourglass-free, a task that can be done trivially in O(|E(~G)|2) time by check-
ing, for all pairs of bidirectional arcs (a, b), (b, a) and (a′, b′), (b′, a′) in con-
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Fig. 14. Illustration of the induction argument in the proof of Prop. 4.8. (A) Base
case: an hourglass-free pair (hf-pair) (M = {v1, v2},N = {σ(b)}) of order 2. Note
that vertex a is only required to show the existence of (M,N). (B) An hf-pair (M =
{v1, v2, v3},N = {c1, c2}) of order 3. (C) Induction step: The existence of an hf-
pair of order k implies the existence of an hf-pair of order k + 1, and thus, an infinite
number of children of u. This gives the desired contradiction in the proof of Prop. 4.8.
The dashed arrow indicates the last two elements in the ordered set M of an hf-pair
(M,N) are interchangeable.

stant time, whether or not they induce an hourglass [ab↘↗ a′b′] or [a′b′ ↘↗ ab].
Hence, we obtain

Corollary 4.9. It can be decided in polynomial time whether a BMG (~G, σ) can be
explained by a binary tree.

We shall see, however, in the next section that this can be achieved faster
using a certain extended set of informative triples.

4.3.2 Binary Trees Explaining a BMG in Near Cubic Time

The characterization of binary-explainable BMGs given in Prop. 4.8 is not
constructive, i.e., it does not answer the question of how to construct a binary
tree explaining a given BMG, if one exists. In this section, we derive an
efficient algorithm for this problem, and show that it can be expressed as
a consistency problem involving a certain set of triples obtained from the
informative and the forbidden triples. It is therefore related to the Most

Resolved Compatible Tree and Forbidden Triples (restricted to binary

trees) problems, both of which are NP-complete [35]. However, we have
already seen that it can be decided in O(|E(~G)|2) time whether a BMG is
binary-explainable (cf. Cor. 4.9). In particular, this time complexity will be
reduced further.

We start with a few technical results on the structure of the triples sets
R(~G, σ) and F(~G, σ). To this end, recall that, by Obs. 4.4, forbidden triples
always come in pairs of the form ab|b′ and ab′|b.

Lemma 4.18. Let (~G, σ) be explained by a binary tree (T, σ). If ab|b′ ∈ F(~G, σ)

with σ(b) = σ(b′), then (T, σ) displays the triple bb′|a.

Proof. Suppose that ab|b′ ∈ F(~G, σ) with σ(b) = σ(b′), and recall that a, b, b′ must
be pairwise distinct. By Obs. 4.4, we have ab′|b ∈ F(~G, σ). By Prop. 4.7 and since
(T, σ) explains (~G, σ), (T, σ) displays none of the two forbidden triples ab|b′ and ab′|b.
However, the fact that (T, σ) is binary implies that exactly one triple on {a, b, b′}must
be displayed, of which only bb′|a remains.
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Lemma 4.18 implies that we can infer a set of additional triples that would
be required for a binary tree to explain a vertex-colored digraph (~G, σ). This
motivates the definition of an extended informative triple set

RB(~G, σ) := R(~G, σ) ∪ {bb′|a : ab|b′ ∈ F(~G, σ) and σ(b) = σ(b′)}. (7)

Since informative and forbidden triples are defined by the presence and ab-
sence of certain arcs in a vertex-colored digraph, this leads to the following

Observation 4.6. Let (~G, σ) be a vertex-colored digraph and L′ ⊆ V(~G). Then
R(~G, σ)|L′ = R(~G[L′], σ|L′) holds for any R ∈ {R,F,RB}.

Lemma 4.19. If (T, σ) is a binary tree explaining the BMG (~G, σ), then (T, σ)

displays RB(~G, σ).

Proof. Let (T, σ) be a binary tree that explains (~G, σ). By Prop. 4.7, (~G, σ) displays all
informative triples R(~G, σ). Now let bb′|a ∈ RB(~G, σ) \R(~G, σ). Hence, by definition
and Obs. 4.4, ab|b′ and ab′|b are forbidden triples for (~G, σ). This together with
Lemma 4.18 and the fact that (T, σ) is binary implies that bb′|a is displayed by (T, σ).
In summary, therefore, (T, σ) displays all triples in RB(~G, σ).

Lemma 4.20. Let (~G, σ) be an sf-colored digraph with vertex set L. Every tree on L
that displays RB(~G, σ) explains (~G, σ).

Proof. Suppose that a tree (T, σ) on L displays RB(~G, σ) and thus, in particular,
R(~G, σ). Now suppose ab|b′ ∈ F(~G, σ) with σ(b) = σ(b′) is a forbidden triple for
(~G, σ) and hence, bb′|a ∈ RB(~G, σ). Clearly, (T, σ) displays at most one of the three
possible triples on {a, b, b′}. Taken together, the latter arguments imply that (T, σ)
does not display ab|b′. In summary, (T, σ) displays all triples in R(~G, σ) and none of
the triples in F(~G, σ) and thus, (R(~G, σ),F(~G, σ)) is consistent. Therefore and since
(~G, σ) is sf-colored by assumption, we can apply Prop. 4.7 to conclude that the tree
(T, σ) on L explains the BMG (~G, σ).

Using Lemmas 4.19 and 4.20, it can be shown that consistency of RB(~G, σ)

is sufficient for an sf-colored digraph (~G, σ) to be binary-explainable.

Theorem 4.4. A properly vertex-colored digraph (~G, σ) with vertex set L is binary-
explainable if and only if (i) (~G, σ) is sf-colored, and (ii) RB := RB(~G, σ) is con-
sistent. In this case, the BMG (~G, σ) is explained by every refinement of the tree
(Aho(RB, L), σ).

Proof. First suppose that (~G, σ) is sf-colored and that RB is consistent. Therefore, the
tree T := Aho(RB, L) exists. By correctness of BUILD [7], T displays all triples in RB.
Clearly, every refinement T′ of T also displays RB. Hence, for every refinement T′

of T (including T itself), we can apply Lemma 4.20 to conclude that (T′, σ) explains
(~G, σ). In particular, (~G, σ) is a BMG. Since there always exists a binary refinement
of T, the latter arguments imply that (~G, σ) is binary-explainable.

Now suppose that (~G, σ) can be explained by a binary tree (T, σ), and note that
(~G, σ) is a BMG in this case. By Prop. 4.7, (~G, σ) is sf-colored. Moreover, the binary
tree (T, σ) displays RB as a consequence of Lemma 4.19. Therefore, RB must be
consistent.
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Algorithm 2: Construction of a binary tree explaining (~G, σ).

Input: A properly vertex-colored digraph (~G, σ) with vertex set L.
Output: Binary tree (T, σ) explaining (~G, σ) if one exists.

1 if (~G, σ) is not sf-colored then
2 exit false
3 construct the extended triple set RB := RB(~G, σ)

4 T ← Aho(RB, L)
5 if T is a tree then
6 construct an arbitrary binary refinement T′ of T
7 return (T′, σ)

8 else
9 exit false

Thm. 4.4 implies that the problem of determining whether an sf-colored
digraph (~G, σ) is binary-explainable can be reduced to a triple consistency
problem. More precisely, it establishes the correctness of Alg. 2, which in
turn relies on the construction of Aho(RB, L). The latter can be achieved
in polynomial time [7]. Making use of the improvements achievable by using
dynamic graph data structures [71, 139], we obtain the following performance
bound:

Corollary 4.10. There exists an O(|L|3 log2 |L|)-time algorithm that constructs a
binary tree explaining a vertex-colored digraph (~G, σ) with vertex set L, if and only
if such a tree exists.

Proof. For a vertex-colored digraph (~G, σ) with vertex set L it can be decided in
O(|L|2) whether it is sf-colored, i.e., whether it is properly colored and every ver-
tex has an out-neighbor with every other color. The set RB := RB(~G, σ) can eas-
ily be constructed in O(|L|3) using Eqs. (3), (6) and (7) and the number of triples
in RB is bounded by O(|L|3). Note that every triple in RB is a tree with a con-
stant number of vertices and edges. Thus, the total number M of vertices and
edges in RB is also in O(|L|3). The algorithm BuildST [71] solves the consistency
problem for RB and constructs a corresponding (not necessarily binary) tree T in
O(M log2 M) = O(|L|3 log2 |L|) time [71, Thm. 3]. Finally, we can obtain an arbitrary
binary refinement T′ of T in O(|L|). Thus there exists a version of Alg. 2 that solves
the problem in O(|L|3 log2 |L|) time.

We close this section with a summary of the characterizations of beBMGs
among BMGs in general.

Proposition 4.9. For every BMG (~G, σ) explained by a tree (T, σ), the following
three statements are equivalent:

1. (~G, σ) is binary-explainable.

2. (~G, σ) is hourglass-free.

3. There is no vertex u ∈ V0(T) with three distinct children v1, v2, and v3 and
two distinct colors r and s satisfying

a) r ∈ σ(L(T(v1))), r, s ∈ σ(L(T(v2))), and s ∈ σ(L(T(v3))), and
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b) s /∈ σ(L(T(v1))), and r /∈ σ(L(T(v3))).

4. RB(~G, σ) is consistent.

Proof. By Prop. 4.8 and Lemma 4.16, Statements (1) to (3) are equivalent. By Obs. 4.1
and Def. 4.2, the BMG (~G, σ) is sf-colored. By Thm. 4.4, an sf-colored graph is binary-
explainable if and only if RB(~G, σ) is consistent. It follows that Statements (1) and (4),
and thus all of them, are equivalent.

4.3.3 The Binary-Resolvable Tree

If a digraph (~G, σ) with vertex set L is binary-explainable, Thm. 4.4 implies
that RB := RB(~G, σ) is consistent and every refinement of (Aho(RB, L), σ)

explains (~G, σ). In this section, we investigate the properties of this tree in
more detail.

Definition 4.12. The binary-refinable tree (BRT) of a binary-explainable BMG
(~G, σ) with vertex set L is the leaf-colored tree (Aho(RB(~G, σ), L), σ).

The BRT is not necessarily a binary tree. However, Thm. 4.4 implies that
the BRT as well as each of its binary refinements explain (~G, σ). Note that
the tree Aho(RB, L) and thus the BRT are well-defined because Thm. 4.4 en-
sures consistency of RB for binary-explainable digraphs, and the Aho tree as
produced by BUILD is uniquely determined by the set of input triples [7].

Corollary 4.11. If (~G, σ) is a binary-explainable BMG, then its BRT is a refinement
of the LRT.

Proof. Since each BMG has a unique LRT [102, Thm. 8], the BRT of a binary-
explainable BMG is necessarily a refinement of the LRT.

Clearly, the BRT is least resolved among the trees that display RB, i.e., con-
traction of an arbitrary edge results in a tree that no longer displays all triples
in RB [270, Prop. 4.1]. Now, we tackle the question whether the BRT is the
unique least resolved tree in this sense. In other words, we ask whether every
tree that displays RB is a refinement of the BRT. As we shall see, this question
can be answered in the affirmative.

We will make extensive use of the closure operator for sets of rooted triples.
To this end, recall the properties of cl(R) and Prop. 2.4 given in Sec. 2.3.5.

The following extension of Lemma 4.14 shows that Prop. 2.4 can be applied
to the triple set RB(~G, σ) of an sf-colored digraph (~G, σ) with the exception
of the two trivial special cases in which either all vertices of (~G, σ) are of the
same color or of pairwise distinct colors.

Lemma 4.21. Let (~G, σ) be an sf-colored digraph with vertex set L 6= ∅, LR,F :=⋃
t∈R(~G,σ)∪F(~G,σ) L(t) and LRB :=

⋃
t∈RB(~G,σ) L(t). Then the following statements

are equivalent:

1. LR,F = LRB = L.
2. R(~G, σ) ∪ F(~G, σ) 6= ∅.
3. RB(~G, σ) 6= ∅.
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4. (~G, σ) is `-colored with ` ≥ 2 and contains two vertices of the same color.

If these statements are not satisfied, then (~G, σ) is a BMG that is explained by any
tree (T, σ) on L.

Proof. By Lemma 4.14, Statements 2 and 4, and LR,F = L are equivalent. One easily
verifies using Eqs. (3) and (7) that there is a triple on {a, b, c} in R(~G, σ) ∪ F(~G, σ) if
and only if there is a triple on {a, b, c} in RB(~G, σ). Therefore, Statements 2 and 3 are
equivalent and we always have LR,F = LRB . Thus all statements are equivalent. If
the statements are not satisfied, i.e., in particular, Statement (4) is not satisfied, then
the vertices in L are all either of the same or of different color. In both cases, (~G, σ)
is explained by any tree on L.

Lemma 4.21 holds for BMGs since these are sf-colored by Prop. 4.7. The
following result is essential for the application of Prop. 2.4 to a triple set
RB(~G, σ).

Lemma 4.22. Let (~G, σ) be a binary-explainable BMG with vertex set L and RB :=
RB(~G, σ). Then, for any two distinct connected components C and C′ of the Aho
graph H := [RB, L], the subgraph H[L′] induced by L′ = V(C) ∪· V(C′) satisfies
H[L′] = [RB

|L′ , L′] = C ∪· C′.

Proof. Since (~G, σ) is binary-explainable, RB is consistent by Thm. 4.4. Thus H :=
[RB, L] contains at least two connected components. If H contains exactly two con-
nected components C and C′, the statement trivially holds. Hence, assume that H
contains at least three connected components. Let C and C′ be two distinct con-
nected components of H, and set L′ := V(C) ∪ V(C′) and H′ := [RB|L′ , L′]. Note,
V(H[L′]) = V(H′) = L′, and H[L′] = C ∪· C′ is the induced subgraph of H that
consists precisely of the two connected components C and C′. From RB|L′ ⊆ RB and
the construction of H we immediately observe that H′ is a subgraph of H[L′]. Hence,
it remains to show that every edge xy in H[L′] is also an edge in H′.

To this end, we consider the BRT (T, σ) of (~G, σ), which exists since RB is con-
sistent and explains (~G, σ) by Thm. 4.4. By construction, there is a one-to-one cor-
respondence between the connected components of H and the children of the root
ρ of T. Thus, let v and v′ be the distinct children of ρ such that L(T(v)) = V(C)
and L(T(v′)) = V(C′) and let xy be an edge in H[L′]. Since x and y lie in the same
connected component of H and x, y ∈ L′, we can assume w.l.o.g. that x, y ∈ L(T(v)).
It suffices to show that there is a triple xy|z ∈ RB with z ∈ L′, since in this case, we
obtain xy|z ∈ RB|L′ and thus xy ∈ E(H′).

We assume, for contradiction, that there is no z ∈ L′ with xy|z ∈ RB. Then, by
construction of H and since xy is an edge therein, RB contains a triple xy|z with
z ∈ L(T(v′′)) for some v′′ ∈ childT(ρ) \ {v, v′} and a connected component C′′ of H
with V(C′′) = L(T(v′′)). By Eqs. (3) and (7), there are exactly two cases for such a
triple:

(a) xy|z = ab|b′ (and w.l.o.g. x = a, y = b) such that
σ(a) 6= σ(b) = σ(b′), (a, b) ∈ E(~G), and (a, b′) /∈ E(~G), and

(b) xy|z = bb′|a (and w.l.o.g. x = b, y = b′) such that
σ(a) 6= σ(b) = σ(b′), b 6= b′, (a, b), (a, b′) ∈ E(~G).

In Case (a), we have a, b ∈ L(T(v)), b′ = z ∈ L(T(v′′)) and (a, b) ∈ E(~G). Assume,
for contradiction, that there is a vertex b′′ of color σ(b′′) = σ(b) in L(T(v′)). In this
case, lcaT(a, b) �T v ≺T ρ = lcaT(a, b′′) would imply that (a, b′′) /∈ E(~G). Hence,
we obtain the informative triple ab|b′′ ∈ R(~G, σ) ⊆ RB with b′′ ∈ L(T(v′)) ⊂ L′. By
assumption, such a triple does not exist and thus we must have σ(b) /∈ σ(L(T(v′))).
Hence, every leaf c ∈ L(T(v′)) 6= ∅ satisfies σ(c) 6= σ(b) = σ(b′). Since the color
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σ(b) is not present in T(v′) and lcaT(c, b) = lcaT(c, b′) = ρ, we can conclude that
(c, b), (c, b′) ∈ E(~G). By Eq. (7), bb′|c ∈ RB and thus, bb′ is an edge in H. However,
as argued above, b and b′ lie in distinct connected components C and C′′ of H; a
contradiction.

In Case (b), we have b, b′ ∈ L(T(v)), a = z ∈ L(T(v′′)) and (a, b), (a, b′) ∈ E(~G).
The latter implies that the color σ(b) is not present in the subtree T(v′′).

Now assume, for contradiction, that σ(b) is not present in T(v′) either. Then,
(c, b), (c, b′) ∈ E(~G) for any c ∈ L(T(v′)) 6= ∅, thus bb′|c ∈ RB; a contradiction.
Hence, there exists a vertex b′′ ∈ L(T(v′)) with σ(b′′) = σ(b). Similarly, since
σ(b) /∈ σ(L(T(v′′))), we can conclude that (a, b), (a, b′′) ∈ E(~G) and thus bb′′|a ∈ RB.
This implies that bb′′ is an edge in H. However, b and b′′ lie in distinct connected
components C and C′ of H; a contradiction.

In summary, we conclude that for every edge xy in H[L′], there is a triple xy|z
with {x, y, z} ⊆ L′, and hence xy ∈ E(H′). Together with V(H[L′]) = V(H′) = L′

and E(H′) ⊆ E(H[L′]), this implies H′ = H[L′].

Lemma 4.23. The BRT (T, σ) of a binary-explainable BMG (~G, σ) satisfies r(T) =
cl(RB(~G, σ)).

Proof. First note that since (~G, σ) is binary-explainable, Thm. 4.4 ensures the consis-
tency of RB := RB(~G, σ), and hence, the existence of the BRT (T, σ) and cl(RB). We
proceed by induction on L := V(~G). The statement trivially holds for |L| ∈ {1, 2},
since in this case, we clearly have r(T) = cl(RB) = ∅. Moreover, we can assume
w.l.o.g. that L = LRB :=

⋃
t∈RB L(t) since otherwise Lemma 4.21 implies RB = ∅. In

this case, (T, σ) is the star tree on L, and again r(T) = cl(RB) = ∅.
For |L| > 2 and L = LRB we assume that the statement is true for every binary-

explainable BMG with less than |L| vertices. We write Lv := L(T(v)) for the set of
leaves in the subtree of (T, σ) rooted at v.

By construction of the BRT (T, σ) from RB, there is a one-to-one correspondence
between the connected components of the Aho graph [RB, L] and the children v
of the root ρ of T. For each such vertex v ∈ childT(ρ), the digraph ~G(T(v), σ|Lv)

is a BMG and, by Lemma 4.9, ~G(T(v), σ|Lv) = (~G[Lv], σ|Lv). Moreover, we have
RB|Lv = RB(~G[Lv], σ|Lv) by Obs. 4.6. By the recursive construction of (T, σ) via BUILD,
we therefore conclude that (T(v), σ|Lv) is the BRT for the BMG (~G[Lv], σ|Lv). By
induction hypothesis, we can therefore conclude r(T(v)) = cl(RB(~G[Lv], σ|Lv)).

Let ab|c ∈ r(T) and suppose first lcaT({a, b, c}) �T v ≺T ρ for some v ∈
childT(ρ). In this case, we have ab|c ∈ r(T(v)) = cl(RB(~G[Lv], σ|Lv)). Together
with RB(~G[Lv], σ|Lv) = RB|Lv ⊆ RB and monotonicity of the closure it follows
ab|c ∈ cl(RB).

It remains to show that, for each triple ab|c ∈ r(T) with lcaT({a, b, c}) = ρ, it
also holds ab|c ∈ cl(RB). In this case, we have a, b ∈ Lv and c ∈ Lv′ for two distinct
children v and v′ of the root ρ. As argued above, Lv and Lv′ correspond to two distinct
connected components Cv and Cv′ of [RB, L]. Consider the set L′ := Lv ∪ Lv′ =
V(Cv)∪V(Cv′). By Lemma 4.22, the Aho graph [RB|L′ , L′] consists exactly of the two
connected components Cv and Cv′ , where Cv contains a and b, and Cv′ contains c.
This and the fact that L = LRB allows us to apply Prop. 2.4 and to conclude that
ab|c ∈ cl(RB).

In summary, every triple in ab|c ∈ r(T) satisfies ab|c ∈ cl(RB), thus r(T) ⊆ cl(RB).
On the other hand, the fact that T displays RB and that r(T) is closed imply cl(RB) ⊆
cl(r(T)) = r(T). Therefore, cl(RB) = r(T).
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Fig. 15. A least resolved tree (T, σ) explaining the BMG (~G, σ) with informative
triples R := R(~G, σ) = {a2b1|a1, a2b1|a3, a2b1|b2, a1b1|b2} for which r(T) 6= cl(R).
The tree (T′, σ) also displays R but a1a2|a3 ∈ r(T) and a1a2|a3 /∈ r(T′). In particular,
(T′, σ) explains a different BMG (~G′, σ) in which the arc (a3, b2) is missing.

No analog of Lemma 4.23 holds for LRTs, i.e., in general we have
cl(R(~G, σ)) 6= r(T) for the LRT (T, σ) of a BMG (~G, σ). Fig. 15 shows a
counterexample.

Recall that a set of triples R identifies a tree T, if every other tree (on L(T))
that displays R is a refinement of T (see Sec. 2.3.4). From Prop. 2.5 and
Lemma 4.23, we immediately obtain the main result of this section:

Theorem 4.5. Let (~G, σ) be a binary-explainable BMG with vertex set L and BRT
(T, σ). Then every tree on L that displays RB(~G, σ) is a refinement of (T, σ). In
particular, every binary tree that explains (~G, σ) is a refinement of (T, σ).

Corollary 4.12. If (~G, σ) is binary-explainable with BRT (T, σ), then a binary tree
(T′, σ) explains (~G, σ) if and only if it is a refinement of (T, σ).

Assuming that evolution of a gene family only progresses by bifurcations
and that the correct BMG (~G, σ) is known, Cor. 4.12 implies that the true
(binary) gene tree displays the BRT of (~G, σ). Fig. 16 shows the LRT and
BRT for the BMG (~G, σ). The BRT is more finely resolved than the LRT. The
difference arises from the triple a2a3|c2 ∈ RB(~G, σ) \ R(~G, σ). The true gene
tree (Fig. 16B) is a binary refinement of the BRT (and thus also of the LRT).

4.3.4 Simulation Results

As argued in the previous sections, best match graphs contain valuable infor-
mation on the (rooted) gene tree topology since both their LRTs and BRTs are
displayed by the latter (cf. [102] and Cor. 4.12). Hence, they are of interest for
the reconstruction of gene family histories. In order to illustrate the potential
benefit of using the better resolved BRT instead of the LRT, we simulated real-
istic, but idealized, evolutionary scenarios using the library AsymmeTree [293],
i.e., we extracted the “true” BMGs from the simulated gene trees. Hence, we
do not take into account errors arising in the approximation of best matches
from sequence data. In real-life applications, of course, factors such as rate
variation among different branches and inaccuracies in sequence alignment
need to be taken into account, see e.g. [293] and Chapter 5 for a more detailed
discussion of this topic.
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Fig. 16. (A) An evolutionary scenario consisting of a gene tree (T, σ) (whose topology
is again shown in (B)) together with an embedding into a species tree S. (C) The best
match graph (~G, σ) explained by (T, σ). (D) The unique least resolved tree (LRT)
explaining (~G, σ). (E) The binary-refinable tree (BRT) is better resolved than the LRT.
The remaining polytomy in the BRT (red arrow) can be resolved arbitrarily. Out of
the three possibilities, one results in the original binary tree in (B).

Pairs of binary planted species and gene trees are simulated as described
in Sec. 3.4. The number of species leaves is chosen at random from a range
of 10 to 30, and various combinations of event rates are considered as speci-
fied in Fig. 17. To avoid trivial cases and to ensure that all colors appear in
the resulting BMGs, losses are constrained in such a way that every branch
(and in particular every leaf) of S has at least one surviving gene. From the
observable gene tree (T, σ), the BMG and its LRT and BRT are constructed.

We consider single leaves and the full set L as trivial clades since they
appear in any phylogenetic tree T = (V, E) with leaf set L. We can quantify
the resolution res(T) as the fraction of non-trivial clades of T retained in the
LRT or BRT, respectively, which is the same as the fraction of inner edges
that remain uncontracted. To see this, we note that T has between 0 and
|L| − 2 edges that are not incident with leaves, with the maximum attained
if and only if T is binary. Thus T has |E| − |L| edges that have remained
uncontracted. On the other hand, each vertex of T that is not a leaf or the
root defines a non-trivial clade. Thus T contains |V| − 1 − |L| non-trivial
clades. Since |E| = |V| − 1 we have

res(T) :=
|E| − |L|
|L| − 2

=
|V| − |L| − 1
|L| − 2

. (8)

The parameter res(T) is well-defined for |L| > 2, which is always the case in
the simulated scenarios. It satisfies res(T) = 0 for a tree consisting only of
the root and leaves, and res(T) = 1 for binary trees. Since the true gene tree
(T, σ) is binary, it displays both the LRT and BRT of its BMG. Thus we have
0 ≤ res(LRT) ≤ res(BRT) ≤ res(T) = 1.
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Fig. 17. Comparison of LRTs and BRTs of BMGs obtained from simulated evolution-
ary scenarios with 10 to 30 species and binary gene trees with different combinations
of rates for gene duplications, gene loss, and horizontal transfer (indicated as triples
on the horizontal axis). Top: Fraction of resolved non-trivial clades res(LRT) and
res(LRT). Below: The ratio of these parameters. Distributions are computed from
1000 scenarios for each combination of rates. The box plots show the median and
inter-quartile range.

The results for the simulated scenarios with different rates for duplications,
losses, and horizontal transfers are summarized in Fig. 17. In general, the
BRT is much better resolved than the LRT with the median values of res(BRT)
exceeding res(LRT) by about a factor of two (cf. lower panel).
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4.4 two-colored best match graphs

By Obs. 4.2, the subgraphs of BMGs induced by all vertices of two selected col-
ors are again BMGs. In particular, a BMG can be viewed as the edge-disjoint
union of these 2-colored induced subgraphs. Conceptually, this corresponds
to the extraction of best hits in graph-based orthology detection by compar-
ing two genomes at a time. The comparatively simple structure of 2-BMGs
has been the key for deriving mathematical results that could then be gen-
eralized to BMGs with more colors, see e.g. [102], [137] and the complexity
results for BMG modification that will be presented in Chapter 5 of this work.
Moreover, this promises the potential development of practical applications
for best matches that first operate on pairs of two colors and then combine
the results while somehow ensuring consistency. For these reasons, 2-colored
BMGs recently received some attention in the literature [102, 174, 175].

This section is organized as follows: In Sec. 4.4.1, we briefly review the
previously established characterizations of 2-BMGs. In Sec. 4.4.2, we trans-
late one of them into a set of forbidden induced subgraphs resulting in a
novel characterization of 2-BMGs which appeared previously in [266]. The re-
mainder of the section is based on [262]. We are concerned with the peculiar
properties of the LRTs of 2-BMGs in Sec. 4.4.3. To this end, we introduce the
concept of “support leaves” that uniquely determine the LRT. The main result
of this section is Thm. 4.8, which shows that the support leaves of the root can
be identified directly in the 2-BMG. In Sec. 4.4.4, we then turn Thm. 4.8 into
an efficient algorithm for recognizing 2-BMGs and constructing their LRTs.
Computational experiments demonstrate the performance gain in practice. In
Sec. 4.4.5, we extend the algorithmic approach to binary-explainable 2-BMGs,
a subclass of 2-BMGs featuring the hourglass as an additional forbidden in-
duced subgraph.

4.4.1 Recent Work on 2-BMGs

Two-colored BMGs have first been characterized in [102] in two different ways.
One way of recognizing a 2-colored digraph (~G = (V, E), σ) as a 2-BMG is
the extraction of its informative triple set R(~G, σ), and the comparison of
the BMG ~G(T∗, σ) of the Aho tree T∗ := Aho(R(~G, σ), V) with the original
digraph (~G, σ) (cf. [102, Thm. 6] and Thm. 4.2 in this work). The second
characterization presented in [102] is formulated in terms of the so-called
thinness relation which is defined on the vertices V:

Definition 4.13. Two vertices x, y ∈ V are in relation ∼• if N(x) = N(y) and
N−(x) = N−(y).

A digraph is thin if no two vertices have the same neighborhood. Clearly,
the thinness relation ∼• is an equivalence relation on V. For each ∼• class α,
we have N(α) = N(x) and N−(α) = N−(x) for all x ∈ α. The following
characterization of 2-BMGs makes use of the structure of the trees by which
they are explained. These properties can be expressed in terms of properties
of the vertex neighborhoods in the 2-BMGs.
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(T  , σ)*

Fig. 18. Example for a 2-BMG (~G, σ) and its explaining least resolved tree (T∗, σ).

Theorem 4.6. [102, Thm. 3 and 4] Let (~G, σ) be a connected properly 2-colored
digraph. Then, (~G, σ) is a BMG if and only if for any two ∼• classes α and β of ~G
holds

(N0) N(α) 6= ∅,

(N1) α ∩ N(β) = β ∩ N(α) = ∅ implies
N(α) ∩ N(N(β)) = N(β) ∩ N(N(α)) = ∅,

(N2) N(N(N(α))) ⊆ N(α), and

(N3) α ∩ N(N(β)) = β ∩ N(N(α)) = ∅ and N(α) ∩ N(β) 6= ∅ implies
N−(α) = N−(β) and N(α) ⊆ N(β) or N(β) ⊆ N(α).

We note that [102] tacitly assumed (N0), i.e., that (~G, σ) is sink-free. While
all conditions can be tested in polynomial time, some of them are far from
being intuitive. However, the four properties relate 2-BMGs to previously
studied classes of digraphs, see also [174] for a detailed discussion.

Property (N0) states that ~G is sink-free, i.e., every vertex has at least one out-
neighbor. Note that BMGs will in general have sources, i.e., N−(x) may be
empty. Sink-free graphs have appeared in particular in the context of graph
semigroups [5] and graph orientation problems [56]. Since they are sink-free
and properly colored, 2-BMGs can alternatively be defined as the class of
bipartite digraphs ~G that satisfy Properties (N0)–(N3), i.e., without an a priori
assignment of a coloring σ. This definition is almost equivalent to Def. 4.2
(restricted to 2-colored digraphs) since it induces a coloring that is unique
only up to relabeling of the colors independently on each (weakly) connected
component of ~G.

Property (N2) has also been described earlier in graph theory literature.
It can be rephrased as follows: For any four vertices u1, u2, v1, v2 with
(u1, v1), (v1, u2), (u2, v2) ∈ E we have (u1, v2) ∈ E, i.e., ~G is bi-transitive. Bi-
transitive graphs were introduced in [62] in the context of oriented bipartite
graphs and investigated in more detail in [174, 175].

Based on Thm. 4.6, Geiß et al. [102] derived an O(|V|3)-time algorithm for
2-BMG recognition that first checks Properties (N0)–(N3), and, if they are
satisfied, constructs the hierarchy on V that corresponds to the unique least
resolved tree of 2-BMG (~G, σ). Fig. 18 shows an example for a 2-BMG together
with its LRT.

77



x1

x2y1

y2 x1

x2y1
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x1

y1 y2

x2

F1-graphs F2-graphs F3-graphs

Fig. 19. Templates of the three families of forbidden induced subgraphs in BMGs.
Black arcs must exist, non-arcs must not exist and dashed gray arcs may or may not
be present.

4.4.2 Forbidden Induced Subgraphs of 2-BMGs

In this section, we derive a new characterization of 2-colored BMGs in terms
of forbidden induced subgraphs. Our starting point is the observation that
certain constellations of arcs on four or five vertices cannot occur.

Definition 4.14 (F1-, F2-, and F3-graphs).

(F1) A properly 2-colored digraph on four distinct vertices V = {x1, x2, y1, y2}
with coloring σ(x1) = σ(x2) 6= σ(y1) = σ(y2) is an F1-graph if
(x1, y1), (y2, x2), (y1, x2) ∈ E and (x1, y2), (y2, x1) /∈ E.

(F2) A properly 2-colored digraph on four distinct vertices V = {x1, x2, y1, y2}
with coloring σ(x1) = σ(x2) 6= σ(y1) = σ(y2) is an F2-graph if
(x1, y1), (y1, x2), (x2, y2) ∈ E and (x1, y2) /∈ E.

(F3) A properly 2-colored digraph on five distinct vertices V = {x1, x2, y1, y2, y3}
with coloring σ(x1) = σ(x2) 6= σ(y1) = σ(y2) = σ(y3) is an F3-graph if
(x1, y1), (x2, y2), (x1, y3), (x2, y3) ∈ E and (x1, y2), (x2, y1) /∈ E.

The “templates” for F1-, F2-, and F3-graphs are shown in Fig. 19. They
define 8, 16, and 64 digraphs by specifying the presence or absence of the 3, 4,
and 6 optional (dashed) arcs, respectively, see Figs. A.10 and A.11 in [266] for
a full enumeration. The F1- and F2-graphs fall into a total of 16 isomorphism
classes, four of which are both F1- and F2-graphs. All but one of the F3-
graphs contain an F1- or an F2-graph as induced subgraph. The exception is
the “template” of the F3-graphs without optional arcs. The 17 non-redundant
forbidden subgraphs are collected in Fig. 20. We shall see below that they are
sufficient to characterize 2-BMGs among the sink-free digraphs.

Lemma 4.24. If (~G, σ) is a BMG, then it contains no induced F1-, F2-, or F3-graph.

Proof. Let (T, σ) be a tree that explains (~G, σ).
First, assume that (~G, σ) contains an induced F1-graph, i.e., there are four vertices

x1, x2, y1, y2 satisfying (F1), and let u := lcaT(x1, y2). Then, (x1, y1), (y2, x2) ∈ E,
(x1, y2), (y2, x1) /∈ E and Lemma 4.1 imply that T must display the informative triples
x1y1|y2 and y2x2|x1. Hence, u must have two distinct children v1 and v2 such that
x1, y1 ≺T v1 and x2, y2 ≺T v2 by Lemma 4.5. Therefore, lcaT(x1, y1) �T v1 ≺T u =
lcaT(x2, y1) and σ(x1) = σ(x2) imply that (y1, x2) /∈ E(~G); a contradiction.
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Fig. 20. Forbidden induced subgraphs in BMGs. All F3-graphs with at least one
optional arc have an induced F1- or F2-graph and thus are redundant.

Next, assume that (~G, σ) contains an induced F2-graph, i.e., there are four vertices
x1, x2, y1, y2 satisfying (F2). Then (x1, y1) ∈ E, (x1, y2) /∈ E and Lemma 4.1 imply that
T displays the informative triple x1y1|y2 and thus lcaT(x1, y1) ≺T lcaT(x1, y2). Since
(y1, x2) ∈ E and σ(x1) = σ(x2), we conclude that lcaT(x2, y1) �T lcaT(x1, y1) ≺T
lcaT(x1, y2) and therefore also lcaT(x2, y1) ≺T lcaT(x2, y2) = lcaT(x1, y2). Together
with σ(y1) = σ(y2), the latter contradicts (x2, y2) ∈ E.

Finally, assume that (~G, σ) contains an induced F3-graph, i.e., there are five vertices
x1, x2, y1, y2, y3 satisfying (F3). By Lemmas 4.1 and 4.5, (x1, y1) ∈ E and (x1, y2) /∈ E
implies that T displays the triple x1y1|y2, and (x2, y2) ∈ E together with (x2, y1) /∈ E
implies that T displays the triple x2y2|y1. Furthermore, lcaT(x1, x2) has distinct chil-
dren v1 and v2 such that x1, y1 ≺T v1 and x2, y2 ≺T v1. Now since σ(y1) = σ(y2) =
σ(y3), the two arcs (x1, y3) and (x2, y3) imply that lcaT(x1, y3) �T lcaT(x1, y1) �T v1
and lcaT(x2, y3) �T lcaT(x2, y2) �T v2, respectively. Since v1 and v2 are incompara-
ble w.r.t. �T , this is a contradiction.

Lemma 4.25. Let (~G, σ) be a properly 2-colored digraph. Then (~G, σ) satisfies (N1)
if it does not contain an induced F1-graph, it satisfies (N2) if it does not contain an
induced F2-graph, and it satisfies (N3) if is contains neither an induced F1-graph
nor an induced F3-graph.

Proof. We employ contraposition and thus show that (~G = (V, E), σ) contains a for-
bidden subgraph whenever (N1), (N2) or (N3) are violated.

Assume that (N1) is not satisfied. Thus, there are two ∼• -classes α and β with
α ∩ N(β) = β ∩ N(α) = ∅ for which N(α) ∩ N(N(β)) 6= ∅ or N(β) ∩ N(N(α)) 6= ∅.
We can w.l.o.g. assume that N(β) ∩ N(N(α)) 6= ∅. Note that α ∩ N(β) = ∅ implies
that (y, x) /∈ E for all x ∈ α, y ∈ β. Likewise (x, y) /∈ E for all x ∈ α, y ∈ β, since
β ∩ N(α) = ∅. Let x1 ∈ α, y2 ∈ β and x2 ∈ N(β) ∩ N(N(α)) 6= ∅. It must hold
(x1, y2), (y2, x1) /∈ E by the arguments above. Since x2 ∈ N(β), we have (y2, x2) ∈
E. Moreover, σ(x1) = σ(x2) 6= σ(y2), since (~G, σ) is properly colored. Clearly,
x2 ∈ N(N(α)) implies that N(α) 6= ∅. Now, let y1 ∈ N(α) be a vertex such that
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(y1, x2) ∈ E, which must exist as a consequence of x2 ∈ N(N(α)). We have (x1, y1)
since y1 ∈ N(α) and thus σ(y1) = σ(y2) 6= σ(x1) = σ(x2). Finally, (y1, x2) ∈ E
immediately implies that y1 6= y2. In summary, (x1, y1), (y1, x2), (y2, x2) ∈ E and
(x1, y2), (y2, x1) /∈ E, and thus (~G, σ) contains an induced F1-graph.

Now assume that (N2) is not satisfied and thus, N(N(N(α))) 6⊆ N(α) for some
∼• -class α. Note, the latter implies that N(N(N(α))) 6= ∅. Hence, there is a vertex
y2 ∈ N(N(N(α))) such that y2 /∈ N(α). Thus, there is a vertex x1 ∈ α such that
(x1, y2) /∈ E. By the definition of neighborhoods and since y2 ∈ N(N(N(α))), we
find vertices y1 ∈ N(α) and x2 ∈ N(N(α)) such that (x1, y1), (y1, x2), (x2, y2). Since
(~G, σ) is properly colored, we must have σ(x1) = σ(x2) 6= σ(y1) = σ(y2). Moreover,
(x1, y2) /∈ E together with (x2, y2) ∈ E and (x1, y1) ∈ E implies x1 6= x2 and y1 6= y2,
respectively. We conclude that the subgraph induced by x1, x2, y1, y2 contains an
induced F2-graph.

Finally, assume that (N3) is not satisfied. Hence, there are two ∼• -classes α and
β with α ∩ N(N(β)) = β ∩ N(N(α)) = ∅ and N(α) ∩ N(β) 6= ∅, but (i) N−(α) 6=
N−(β), or (ii) neither N(α) ⊆ N(β) nor N(β) ⊆ N(α). Note, N(α) ∩ N(β) 6= ∅
implies that there a vertices x1 ∈ α and x2 ∈ β with σ(x1) = σ(x2) since (~G, σ) is
properly 2-colored. In particular, there must be a vertex y3 with (x1, y3), (x2, y3) ∈ E
and thus σ(x1) = σ(x2) 6= σ(y3).

Now consider Case (i) and suppose that N−(α) 6= N−(β). Thus we can assume
w.l.o.g. that there is a y∗ with (y∗, x2) ∈ E but (y∗, x1) /∈ E. Note, (x1, y∗) /∈ E, since
otherwise (x1, y∗), (y∗, x2) ∈ E would contradict β ∩ N(N(α)) = ∅. Thus, y∗ 6= y3
since (x1, y∗) /∈ E and (x1, y3) ∈ E. Furthermore, σ(y∗) = σ(y3) 6= σ(x1) = σ(x2),
since (~G, σ) is properly 2-colored. In summary, (y∗, x2), (x1, y3), (x2, y3) ∈ E and
(y∗, x1), (x1, y∗) /∈ E which implies that (~G, σ) contains an induced F1-graph.

Now consider Case (ii) and assume that it holds neither N(α) ⊆ N(β) nor N(β) ⊆
N(α). Clearly, the latter implies N(α) 6= ∅ and N(β) 6= ∅. The latter two arguments
imply that there must be two distinct vertices y1 ∈ N(α) \ N(β) and y2 ∈ N(β) \
N(α) and, therefore, (x1, y1), (x2, y2) ∈ E and (x1, y2), (x2, y1) /∈ E. It follows that
y1 6= y3 and y2 6= y3 and σ(y1) = σ(y2) = σ(y3) 6= σ(x1) = σ(x2). This and
(x1, y1), (x2, y2), (x1, y3), (x2, y3) ∈ E together with (x1, y2), (x2, y1) /∈ E implies that
(~G, σ) contains an induced F3-graph.

Hence, the forbidden induced F1-, F2-, and F3-subgraphs characterize ex-
actly the class of bipartite digraphs satisfying the Properties (N1), (N2), and
(N3) mentioned above. Based on the latter findings we obtain here a new char-
acterization of 2-colored BMGs that is not restricted to connected digraphs.

Theorem 4.7. A properly 2-colored digraph is a BMG if and only if it is sink-free
and does not contain an induced F1-, F2-, or F3-graph.

Proof. Suppose that (~G, σ) is 2-colored BMG and C be the set of its connected com-
ponents. By Lemma 4.24, (~G, σ) does not contain an induced F1-, F2- or F3-graph.
Moreover, by Lemma 4.2, (~G[C], σ|C) must be a 2-colored BMG for all C ∈ C. Hence,
we can apply Thm. 4.6 to conclude that each (~G[C], σ|C) satisfies (N0)-(N3). Since
every x ∈ V is contained in some ∼• -class, (N0) is equivalent to N(x) 6= ∅, i.e., (~G, σ)
is sink-free.

Now suppose that (~G, σ) is properly 2-colored and sink-free, and that it does not
contain an induced F1-, F2- and F3-graph. By Lemma 4.25, (~G, σ) satisfies (N1)-(N3).
Thus, in particular, each connected component of (~G, σ) is sink-free and satisfies
and (N1)-(N3). Note, N(x) 6= ∅ implies that the connected components of (~G, σ)
contain at least one arc and, by assumption, they are properly 2-colored. Moreover,
this implies that (N0) is satisfied for every connected component of (~G, σ). Hence,
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Thm. 4.6 implies that every connected component of (~G, σ) is a 2-colored BMG. By
Lemma 4.2, (~G, σ) is also a 2-colored BMG.

4.4.3 Support Leaves

In this section, we introduce “support leaves” as a means to recursively con-
struct the LRT of a 2-BMG. The main result of this section shows that these
leaves can be inferred directly from the BMG without any further knowledge
of the corresponding LRT. In this and the following sections, we will make
extensive use of restrictions of the coloring σ on V(~G) or L(T) to subsets of
vertices or leaves. Since in situations like (~Gi, σ|V(~Gi)

) the set to which σ is
restricted is clear, we will write σ|. to keep the notation less cluttered.

We start with an interesting property of LRTs of BMGs with an arbitrary
number of colors which we will use repeatedly.

Lemma 4.26. Let (T, σ) be the least resolved tree of some BMG (~G, σ). Then every
vertex v ≺T ρT with |σ(L(T(v)))| = 1 is a leaf.

Proof. Let v ≺T ρT with |σ(L(T(v)))| = 1 and assume, for contradiction, that v is
not a leaf. Hence, |L(T(v))| > 1. By Lemma 4.9 ~G(T(v), σ|.) is a BMG and, therefore,
properly colored. But then ~G(T(v), σ|.) is disconnected; a contradiction to Lemma
4.10.

As a consequence, we find

Corollary 4.13. Let (T, σ) be the least resolved tree of some BMG (~G, σ). Then any
vertex v ∈ V(T) with v ≺T ρT is an inner vertex if and only if |σ(L(T(v)))| > 1.

Proof. If |σ(L(T(v)))| = 1, Lemma 4.26 implies that v is a leaf. Otherwise, if
|σ(L(T(v)))| > 1, T(v) clearly must contain at least two leaves and thus v cannot
be a leaf.

The following two results link the out-neighborhood of a vertex in a 2-
colored BMG to its position in the least resolved tree, and are needed for later
reference.

Lemma 4.27. Let (~G, σ) be a 2-colored BMG, (T, σ) its LRT and x, y ∈ L(T) =

V(~G). Then (x, y) ∈ E(~G) if and only if σ(x) 6= σ(y) and y ∈ L(T(parT(x))).

Proof. First note that, since (~G, σ) is 2-colored, (T, σ) has at least two leaves and
u := parT(x) is always defined. First, assume σ(x) 6= σ(y), and thus x 6= y, and let
y ∈ L(T(u)). Since x is a child of u, we have lcaT(x, y) = u. Moreover, since u is the
parent of x, there is no vertex y′ of color σ(y) such that lcaT(x, y′) ≺T lcaT(x, y) = u.
Hence, y is a best match of x, i.e., (x, y) ∈ E(~G).

Now suppose, for contraposition, that σ(x) = σ(y) or y /∈ L(T(u)). If σ(x) = σ(y),
then, by definition, (x, y) /∈ E(~G). If y /∈ L(T(u)), then u ≺T ρT . Hence, we can
apply Cor. 4.13 to the inner vertex u to conclude that |σ(L(T(u)))| > 1, i.e., the
subtree L(T(u)) contains both colors. Thus, we can find a vertex y′ of color σ(y)
such that lcaT(x, y′) �T u ≺T lcaT(x, y) which implies that (x, y) /∈ E(~G).

As an immediate consequence, we find
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Corollary 4.14. Let (~G, σ) be a 2-colored BMG, (T, σ) its LRT and x, y ∈ V(~G) =

L(T). Then (x, y), (y, x) ∈ E(~G) if and only if σ(x) 6= σ(y) and parT(x) =

parT(y).

We continue with a technical result similar to Cor. 3 in [102]; here we use a
much simpler, more convenient notation.

Lemma 4.28. Let (T, σ) be the least resolved tree of a 2-colored BMG (~G, σ). Then,
for every vertex u ∈ V0(T) \ {ρT}, it holds childT(u) ∩ L(T) 6= ∅. If (~G, σ) is
connected, then childT(u) ∩ L(T) 6= ∅ holds for every u ∈ V0(T).

Proof. Suppose first that (~G, σ) is disconnected and let u ∈ V0(T) \ {ρT}. Since
(T, σ) is least resolved, Lemma 4.10 implies that ~G(T(u), σ|.) is connected for every
u ∈ V(T) with u ≺T ρT . Hence, we can apply Prop. 4.1 to ~G(T(u), σ|.) and conclude
that there is a child v ∈ childT(u)(u) such that σ(L(T(v))) 6= σ(L(T(u))), hence in
particular σ(L(T(v))) ( σ(L(T(u))). Since (T, σ) is 2-colored, the latter immediately
implies |σ(L(T(v)))| = 1 and, by Cor. 4.13, v is a leaf. Thus every u ∈ V0(T) \ {ρT}
has a leaf v among its children, i.e. childT(u) ∩ L(T) 6= ∅. If in addition (~G, σ) is
connected, we can apply the same argumentation to u = ρT and conclude that a leaf
v is attached to ρT .

Lemma 4.28 states that, in the least resolved tree of a connected 2-colored
BMG, every inner vertex u is adjacent to at least one leaf, and thus in a way
“supported” by it.

Definition 4.15 (Support Leaves). For a given tree T, the set Su := childT(u) ∩
L(T) is the set of all support leaves of vertex u ∈ V(T).

Note that Lemma 4.28 is in general not true for `-BMGs with ` ≥ 3, as
exemplified by the (least resolved) tree ((a, b), (c, a′)) with three distinct leaf
colors σ(a) = σ(a′) 6= σ(b) 6= σ(c).

As a simple consequence of Prop. 4.1 and Cor. 4.13, we find

Corollary 4.15. Let (T, σ) be the least resolved tree (with root ρ) of some 2-colored
BMG ~G(T, σ). Then, ~G(T, σ) is connected if and only if Sρ 6= ∅.

Proof. By Prop. 4.1, ~G(T, σ) is connected if and only if there exists a child v of the root
ρ of T, v ∈ childT(ρ), such that T(v) does not contain all colors. Thus |σ(L(T(v)))| =
1. By Cor. 4.13, we have |σ(L(T(v)))| = 1 if and only if v is a leaf, i.e. v ∈ Sρ. Hence,
~G(T, σ) is connected if and only if Sρ 6= ∅.

Lemma 4.29. Let (T, σ) be the least resolved tree of a 2-BMG (~G, σ), and Sρ the set
of support leaves of the root ρ. Then the connected components of (~G − Sρ, σ|.) are
exactly the BMGs ~G(T(v), σ|.) with v ∈ childT(ρ) \ Sρ.

Proof. Let v ∈ childT(ρ) ∩V0(T) = childT(ρ) \ Sρ and consider the BMG ~G(T(v), σ|.).
By Lemma 4.10 and Lemma 4.9, ~G(T(v), σ|.) is connected and we have ~G(T(v), σ|.) =
(~G[L(T(v))], σ|.). Moreover, it holds ((~G− Sρ)[L(T(v))], σ|.) = (~G[L(T(v))], σ|.) since
L(T(v)) = V(~G[L(T(v))]) = V(H[L(T(v)))] for H := ~G− Sρ = ~G[V(~G) \ Sρ].

If childT(ρ) \ Sρ = {v}, then the statement is trivially satisfied. Therefore, suppose
that |childT(ρ) \ Sρ| > 1. Hence, it remains to show that there are no arcs between
~G(T(v), σ|.) and ~G(T(w), σ|.) for any w ∈ childT(ρ) \ Sρ, w 6= v. Cor. 4.13 and v ≺T ρ
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imply that T(v) contains both colors. Thus, by Obs. 4.3, there are no out-arcs to any
vertex in L(T) \ L(T(v)), hence in particular there are no out-arcs (x, y) with x �T v,
y �T w. By symmetry, the same holds for w, thus we can conclude that there are no
arcs (y, x). From the observation that each x ∈ L(T) \ Sρ must be located below some
v ∈ childT(ρ) ∩ V0(T), it now immediately follows that (~G− Sρ, σ|.) consists exactly
of these connected components as stated.

As a consequence, we have

Corollary 4.16. Let (T, σ) with root ρ be the LRT of a 2-BMG (~G, σ). Then each
child of ρ is either one of the support leaves Sρ of ρ or the root of the LRT for a
connected component of (~G− Sρ, σ|.).

Proof. Let (T, σ) with root ρ be the least resolved tree for (~G, σ). The support leaves
Sρ are children of ρ by definition. By Lemma 4.29, the connected components of
(~G− Sρ, σ|.) are exactly the BMGs ~G(T(v), σ|.) with v ∈ childT(ρ) \ Sρ. Moreover, by
Lemma 4.9, the subtrees T(v) with v ∈ childT(ρ) \ Sρ are exactly the unique LRTs for
these BMGs.

In order to use this property as a means of constructing the LRT in a re-
cursive manner, we need to identify the support leaves of the root Sρ directly
from the 2-BMG (~G, σ) without constructing the LRT first. To this end, we
consider the set of umbrella vertices U(~G, σ) comprising all vertices x for which
N(x) consists of all vertices of V(~G) that have the color distinct from σ(x).

Definition 4.16 (Umbrella Vertices). For an arbitrary 2-colored digraph (~G, σ),
the set

U(~G, σ) :=
{

x ∈ V(~G) | y ∈ N(x) if σ(y) 6= σ(x) and y ∈ V(~G)
}

is the set umbrella vertices of (~G, σ).

The intuition behind this definition is that every support leaf of the root
of the LRT of a 2-BMG must have all differently colored vertices as out-
neighbors, i.e., they are umbrella vertices. We now define “support sets”
of digraphs as particular subsets of umbrella vertices. As we shall see later,
support sets are closely related to support vertices in Sρ.

Definition 4.17 (Support Set of (~G, σ)). Let (~G, σ) be a 2-colored digraph. A
support set S := S(~G, σ) of (~G, σ) is a maximal subset S ⊆ U(~G, σ) of umbrella
vertices such that x ∈ S implies N−(x) ⊆ S.

Lemma 4.30. Every 2-colored digraph (~G, σ) has a unique support set S(~G, σ).

Proof. Assume, for contradiction, that (~G, σ) has (at least) two distinct support sets
S, S′ ⊆ U(~G, σ). Clearly neither of them can be a subset of the other, since supports
sets are maximal. We have N−(x) ⊆ S for all x ∈ S and N−(x′) ⊆ S′ for all x′ ∈ S′,
which implies that N−(z) ⊆ S∪ S′ for all z ∈ S∪ S′. Together with the fact that S, S′,
and thus S ∪ S′, are all subsets of U(~G, σ), this contradicts the maximality of both S
and S′.
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For the construction of the support set S := S(~G, σ), we consider the fol-
lowing sequence of sets, defined recursively by

S(k) := {x ∈ S(k−1) | N−(x) ⊆ S(k−1)} for k ≥ 1 and S(0) = U(~G, σ). (9)

By construction S(k+1) ⊆ S(k). Furthermore, there is a k < |V(~G)| such that
S(k+1) = S(k). Next we show that in a 2-BMG, S is obtained in a single
iteration.

Lemma 4.31. If (~G, σ) is a 2-BMG, then S = S(1).

Proof. Let (~G = (V, E), σ) be a 2-BMG and U = U(~G, σ). Assume for contradiction
that S 6= S(1), and thus S(2) ( S(1). We will show that this implies the existence
of a forbidden F2-graph. By assumption, there is a vertex x2 ∈ S(1) \ S(2). Thus,
there must be a vertex y1 ∈ N−(x2) (and thus (y1, x2) ∈ E) with σ(y1) 6= σ(x2)
such that y1 /∈ S(1). However, by definition, y1 ∈ N−(x2) and x2 ∈ S(1) implies
y1 ∈ U. Now, it follows from y1 ∈ U \ S(1) that there is a vertex x1 ∈ N−(y1) with
σ(x1) = σ(x2) 6= σ(y1) such that x1 /∈ U. The latter together with x2 ∈ S(1) ⊆ U
implies x1 6= x2. In particular, since x1 /∈ U, the vertex x1 does not have an out-arc to
every differently colored vertex, thus there must be a vertex y2 with σ(y2) = σ(y1)
such that (x1, y2) /∈ E. Since x1 ∈ N−(y1), we have (x1, y1) ∈ E and y1 6= y2. Finally,
x2 ∈ U and σ(y2) = σ(y1) 6= σ(x2) implies that (x2, y2) ∈ E. In summary, we have
four distinct vertices x1, x2, y1, y2 with σ(x1) = σ(x2) 6= σ(y1) = σ(y2) and (non-)arcs
(x1, y1), (y1, x2), (x2, y2) ∈ E and (x1, y2) /∈ E, and hence an induced F2-graph in
(~G, σ). By Thm. 4.7, we can conclude that (~G, σ) is not a BMG; a contradiction.

In general, S = S(0) = U(~G, σ) is not satisfied. To see this, consider the
BMG (~G, σ) that is explained by the triple x1y|x2 with σ(x1) = σ(x2) 6= σ(y).
One easily verifies that U(~G, σ) = {x1, x2} but S = {x2}.

Theorem 4.8. Let (T, σ) be the least resolved tree of a 2-BMG (~G, σ). Then, the set
of support leaves Sρ of the root ρ equals the support set S of (~G, σ). In particular
S 6= ∅ if and only if (~G, σ) is connected.

Proof. Let (T, σ) be the LRT of a 2-BMG (~G = (V, E), σ). We set U := U(~G, σ) and
note first that S = S(1) by Lemma 4.31.

First, suppose that (~G, σ) is not connected. Then it immediately follows from
Prop. 4.1 that σ(L(T(v))) = σ(L(T)) and thus |σ(L(T(v)))| > 1 for any v ∈ childT(ρ).
The latter together with Cor. 4.13 implies that any child of ρ must be an inner vertex
in T. Hence, Sρ = ∅. On the other hand, since (~G, σ) is not connected, each of its
connected components is a 2-BMG (cf. Lemma 4.2), and thus, contains both colors.
Therefore, for each vertex x in ~G, we can find a vertex y with σ(x) 6= σ(y) such
that (x, y), (y, x) /∈ E, and thus x /∈ S. Since this is true for any vertex in ~G, we can
conclude S = ∅ = Sρ.

Now, suppose that (~G, σ) is connected. By Cor. 4.15, we have Sρ 6= ∅. We first
show Sρ ⊆ S. Let x ∈ Sρ. By definition, x satisfies lcaT(x, y) = ρ and therefore
(x, y) ∈ E for all y ∈ L(T) with σ(y) 6= σ(x), i.e., x has an out-arc to every dif-
ferently colored vertex in ~G. By definition, we thus have x ∈ U. Now assume
for contradiction that x /∈ S = S(1) = {z ∈ U | N−(z) ⊆ U}. The latter implies
that there exists a vertex y ∈ N−(x) such that y /∈ U. In particular, (y, x) ∈ E.
Since y /∈ U, there is some vertex x′ with σ(x′) = σ(x) such that (y, x′) /∈ E. To-
gether this implies that xy|x′ is an informative triple. By Lemma 4.1, we obtain
lcaT(x, y) ≺T lcaT(x, x′) = lcaT(x′, y) �T ρ; a contradiction to the assumption that x
is a support leaf of ρ. Thus x ∈ S.
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Next, we show by contraposition that S ⊆ Sρ. To this end, suppose that x is not a
support leaf of ρ, i.e. x /∈ Sρ. Hence, there is an inner vertex v ∈ childT(ρ) ∩ V0(T)
such that x ≺T v. By Cor. 4.13, we conclude that |σ(L(T(v)))| = 2, i.e., the subtree
T(v) contains both colors. We now distinguish two cases: (i) there is a leaf y′ ∈
L(T) \ L(T(v)) with σ(y′) 6= σ(x), and (ii) there is no leaf y′ ∈ L(T) \ L(T(v)) with
σ(y′) 6= σ(x).

Case(i): Since T(v) contains both colors, there is a leaf y ∈ L(T(v)), with y 6= y′

and σ(y) = σ(y′) 6= σ(x). Since, by construction, we have lcaT(x, y) �T v ≺T ρ =
lcaT(x, y′), it follows (x, y′) /∈ E. Together with σ(x) 6= σ(y′), this immediately
implies x /∈ U. From S(2) ⊆ S(1) ⊆ U, we conclude x /∈ S(1) = S.

Case(ii): Suppose that there is no leaf y′ ∈ L(T) \ L(T(v)) with σ(y′) 6= σ(x). We
will continue by showing that there is a support leaf y of vertex v with σ(y) 6= σ(x).
Assume, for contradiction, that the latter is not the case. Since (T, σ) is least resolved,
the inner edge ρv is not redundant. Hence, by Lemma 4.6, there must be an arc
(a, b) ∈ E such that lcaT(a, b) = v and σ(b) ∈ σ(L(T) \ L(T(v))). Since there is
no leaf y′ ∈ L(T) \ L(T(v)) with σ(y′) 6= σ(x), we conclude that σ(b) = σ(x) and
σ(a) 6= σ(x). Clearly, it holds a, b ∈ L(T(v)). Now consider an arbitrary a′ ∈ L(T(v))
with σ(a′) 6= σ(x). Since, by assumption, every such a′ is not a support leaf of v,
there must be an inner vertex w ∈ childT(v)(v) with a′ ≺T w. By Cor. 4.13 and since
w ≺T v ≺T ρ, we conclude that |σ(L(T(w)))| = 2, i.e., the subtree T(w) contains
both colors. Thus there is some b′ with σ(b′) = σ(x) and lcaT(a′, b′) �T w ≺T v.
Since a′ was chosen arbitrarily, we conclude that there cannot be an arc (a, b) ∈ E
such that lcaT(a, b) = v; a contradiction. It follows that there is a support leaf y of
vertex v with σ(y) 6= σ(x). Hence, lcaT(x, y) = v �T lcaT(x′′, y) for all x′′ ∈ L(T)
with σ(x′′) = σ(x), and thus (y, x) ∈ E and y ∈ N−(x). Since Sρ 6= ∅ and σ(y) /∈
σ(L(T) \ L(T(v))), there must be a leaf x′ ∈ Sρ with σ(x′) = σ(x). The fact that
lcaT(x, y) = v ≺T ρ = lcaT(x′, y) implies (y, x′) /∈ E. Therefore and since σ(x′) 6=
σ(y), it follows y /∈ U. Together with y ∈ N−(x), we conclude that x /∈ S(1) = S.

In summary, we have shown S = Sρ for any BMG (~G, σ). Finally, S = Sρ together
with Cor. 4.15 implies that S 6= ∅ if and only if (~G, σ) is connected, which completes
the proof.

4.4.4 Construction of LRTs of 2-BMGs

Thm. 4.8 provides not only a convenient necessary condition for connected 2-
BMGs but also a fast way of determining the support set S = Sρ and thus also
a fast recursive approach to construct the LRT for a 2-BMG. It is formalized
in Alg. 3 and illustrated in Fig. 21.

Lemma 4.32. Let (~G, σ) be a connected 2-BMG. Then Alg. 3 returns the least re-
solved tree for (~G, σ).

Proof. Let (T, σ) be the (unique) least resolved tree of (~G, σ) with root ρ. The latter
is supplied to Alg. 3 to initialize the tree. By Thm. 4.8, Lemma 4.31 and since (~G, σ)
is connected, the set of support leaves Sρ = S(2) = S(1) 6= ∅ for the root ρ is correctly
identified in the top-level recursion of Alg. 3 (Line 2-4) and attached to the root ρ
(Line 8-9). According to Cor. 4.16, one can now proceed to recursively construct the
LRTs for the connected components of (~G− Sρ, σ|.), which is done in Lines 10-15. By
Lemma 4.29, these connected components (~Gv, σ|.) are exactly the BMGs ~G(T(v), σ|.)
with v ∈ childT(ρ) \ {Sρ} (Line 14). In particular, therefore, we have V(~Gv) = L(T(v)).
Since v /∈ Sρ, i.e., v is an inner vertex, Cor. 4.13 and v ≺T ρ imply |σ(L(T(v)))| > 1.
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Algorithm 3: LRT for connected 2-colored BMGs (~G, σ).

Input: Connected properly 2-colored digraph (~G = (L, E), σ), vertex ρ.
Output: LRT of (~G, σ) if (~G, σ) is a BMG.

1 Function Build2ColLRT(~G, σ, ρ)
2 U ← {x ∈ L | outdeg(x) = |L| − |L[σ(x)]|} // umbrella vertices

3 S(1) ← {x ∈ U | N−(x) ⊆ U} // all in-neighbors in U
4 S(2) ← {x ∈ S(1) | N−(x) ⊆ S(1)} // all in-neighbors in S(1)

5 if S(1) = ∅ or S(2) 6= S(1) then
6 exit false
7 else
8 foreach x ∈ S(2) do
9 add x as a child of ρ

10 foreach connected component ~Gv of ~G− S(2) do
11 if |V(~Gv)| = 1 then
12 exit false

13 create vertex v
14 Tv ←Build2ColLRT(~Gv, σ|., v)
15 connect the root v of Tv as a child to ρ

Hence, in particular, the condition |V(~Gv)| > 1 (cf. Line 11) to proceed recursively is
satisfied for each connected component.

Theorem 4.9. Given a connected properly 2-colored digraph (~G, σ) as input, Alg. 3
returns a tree T if and only if (~G, σ) is a 2-colored BMG. In particular, T is the
unique least resolved tree for (~G, σ).

Proof. By Lemma 4.32, Alg. 3 returns the unique least resolved tree T if (~G, σ) is a
connected 2-colored BMG. To prove the converse, suppose that Alg. 3 returns a tree
T given the connected properly 2-colored digraph (~G, σ) as input. We will show that
(~G, σ) = ~G(T, σ), and thus (~G, σ) is a BMG.

It is easy to see that L(T) = V(~G) must hold since, in each step of Alg. 3 every
vertex is either attached to some inner vertex or passed down to a deeper-level recur-
sion as part of some connected component. Therefore, every vertex of ~G eventually
appears in the output. Thus σ(L(T)) = σ(V(~G)) and |σ(L(T))| = |σ(V(~G))| = 2. It
remains to show E(~G) = E(~G(T, σ)).

Note first that neither (~G, σ) nor ~G(T, σ) contain arcs between vertices of the same
color. Moreover, since Alg. 3 eventually returns a tree, we have S(1) = S(2) 6= ∅
in every recursion step. Throughout the remainder of the proof, we will write S(1)

i

and S(2)
i for the sets S(1) and S(2) of the ith recursion step. Likewise, in every step,

each connected component (~Gv, σ|.) computed in Line 10 must contain at least two
vertices (cf. Line 11), and thus |σ(V(~Gv))| = 2 because (~G, σ) is properly 2-colored.

First, let S be the support set of ~G(T, σ) and x ∈ S be arbitrary. Note that the
support set is computed in the first iteration step of the algorithm as S = S(2)

1 , hence

S = S(2)
1 6= ∅. By construction of T, x is attached as a leaf to ρ, i.e. lcaT(x, y) = ρ.

Consequently, (x, y) is an arc in ~G(T, σ) for all y ∈ V(~G) with σ(y) 6= σ(x). By
construction of S in Alg. 3, we have x ∈ S ⊆ U, i.e. x is an umbrella vertex in (~G, σ)
and has out-arcs to every vertex y ∈ V(~G) with σ(y) 6= σ(x). Hence, all arcs of the
form (x, y) with x ∈ S and σ(x) 6= σ(y) exist both in (~G, σ) and in ~G(T, σ). The latter
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U  =  {b1, b2}

S(2) = {b1, b2}

U  =  {a1, b3}

S(2) = {a1, b3}
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S(2) = {a2, b4}

U  =  {a3, a4}

S(2) = {a3}

U  =  {a4, b5}

S(2) = {a4, b5}

Fig. 21. Illustration of Alg. 3 with input (~G, σ) (uppermost box). The boxes indicate
the five recursion steps that are necessary to decompose (~G, σ), and correspond to
the five inner vertices of the LRT shown on the right. Note that, in the recursion step
on (~G[{a3, a4, b5}], σ|.), we have U 6= S(2).

property is in particular satisfied for all vertices in S and hence, all arcs between
differently colored elements in S exist both in (~G, σ) and in ~G(T, σ). Now consider
an arbitrary vertex y ∈ V(~G) \ S. Clearly, all in-neighbors in (~G, σ) of the elements
in S = S(2)

1 must be contained in S, as a consequence of the condition S(1)
1 = S(2)

1

(cf. Line 5) and the construction of S(1)
1 and S(2)

1 . Hence, y /∈ S and x ∈ S implies
that (y, x) is not an arc in (~G, σ). Moreover, y /∈ S also implies that y is part of some
connected component (~Gv, σ|.) of (~G− S, σ|.). Therefore, and because Alg. 3 returns
T, we must have y ∈ V(~Gv) = L(T(v)) for some inner vertex v ∈ childT(ρ). As
argued above, (~Gv, σ|.) and thus also the subtree T(v) contain both colors. Together
with Obs. 4.3 and x /∈ L(T(v)), this implies that ~G(T, σ) does not contain the arc
(y, x). By the same arguments, there is no arc (y, x′) in ~G(T, σ) such that the vertex
x′ is contained in a different connected component (~Gv′ , σ|.) 6= (~Gv, σ|.) of (~G− S, σ|.)
than y. Since x ∈ S and y /∈ S were chosen arbitrarily, we conclude that (i) any arc
incident to some vertex in S exists in (~G, σ) if and only if it exists in ~G(T, σ), and
(ii) ~G(T, σ) contains no arcs between distinct connected components of (~G − S, σ|.).
Hence, it remains to consider the arcs within a connected component (~Gv, σ|.) of
(~G− S, σ|.).

Alg. 3 recurses on each such connected component (~Gv, σ|.) using a newly created
vertex v ∈ childT(ρ) to initialize the tree T(v). By Lemma 4.9, it clearly holds that,
for any x, y ∈ L(T(v)) = V(~Gv), (x, y) is an arc in ~G(T, σ) if and only it is an arc in
~G(T(v), σ). Thus, it suffices to consider only the subtree T(v). Now, we can apply the
same arguments as in the previous recursion step to conclude that all arcs incident
to the support set S(2)

2 constructed in the current recursion step are the same in
(~G, σ) and ~G(T, σ) and that neither (~G, σ) nor ~G(T, σ) contain arcs between distinct
connected components of (~Gv− S(2)

2 , σ|.). Hence, it suffices to consider the connected

components of (~Gv − S(2)
2 , σ|.). Repeated application of this argumentation results

in a chain of connected components that are contained in each other. Since Alg. 3
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finally returns a tree, this chain is finite, say with a last element (~Gw − S(2)
k , σ|.), and

thus S(2)
k = V(~Gw). In particular, therefore, every vertex in V(~G) is contained in the

support set of some recursion step.
In summary, we have shown that ~G(T, σ) = (~G, σ). Hence, (~G, σ) is a connected

2-BMG and, by Lemma 4.32, T is the unique least resolved tree of (~G, σ).

The construction in Lines 2-4 in Alg. 3 naturally produces two cases, U =

S(1) = S(2) and S(2) ⊆ S(1) ( U. The following result shows that the latter
case implies that the corresponding interior node in the LRT has only a single
non-leaf descendant:

Lemma 4.33. Let (~G, σ) be a 2-BMG and Sρ the support leaves of the root ρ of its
LRT (T, σ). If W := U(~G, σ) \ Sρ 6= ∅, then the following statements are true:

1. Sρ 6= ∅, ~G is connected, and ~G− Sρ is connected.

2. All vertices in U(~G, σ) = Sρ ∪· W have the same color.

3. The set of support leaves Sv of the unique inner vertex child v of ρ contains
vertices of both colors.

4. W ( Sv.

Proof. First recall that, by Thm. 4.8 and the definition of the support set S of (~G, σ),
we have Sρ = S ⊆ U(~G, σ), and thus U(~G, σ) = Sρ ∪· W. Moreover, by Lemma 4.29,
the connected components of (~G − Sρ, σ|.) are exactly the BMGs ~G(T(v), σ|.) with
v ∈ childT(ρ) \ Sρ. The vertices v ∈ childT(ρ) \ Sρ are all inner vertices of T since, by
definition, the support leaves Sρ are exactly the children of ρ that are leaves. Together
with the contraposition of Lemma 4.26 this implies that T(v) contains both colors.

Statement 1: Let x ∈ W, which exists due to the assumption W := U(~G, σ) \ Sρ 6= ∅.
Since x /∈ Sρ, it must be part of some connected component of (~G − Sρ, σ|.), say
~G(T(v), σ|.) for some v ∈ childT(ρ) \ Sρ. Now assume, for contradiction, that ~G− Sρ

consists of more than one connected component. By Lemmas 4.29 and 4.26, there
is a vertex v′ ∈ childT(ρ) \ Sρ such that v 6= v′ and both subtrees T(v) and T(v′)
contain both colors. Hence, there are distinct y ∈ L(T(v)) and y′ ∈ L(T(v′)) with
σ(y) = σ(y′) 6= σ(x). Together with x ∈ L(T(v)), we therefore have lcaT(x, y) �T
v ≺T ρ = lcaT(x, y′), which implies (x, y′) /∈ E(~G). However, x ∈ W ⊆ U(~G, σ) and
σ(y′) 6= σ(x) imply (x, y′) ∈ E(~G); a contradiction. Hence, we conclude that ~G− Sρ

has exactly one connected component, and thus ρ has a single inner vertex child v.
Since T is phylogenetic, the latter implies that ρ must be incident to at least one leaf,
i.e. Sρ 6= ∅. Together with Thm. 4.8 this in turn implies that ~G is connected. In
summary, Statement 1 is true.

Statement 2: Let x ∈ W as in the proof of Statement 1. By arguments analogous to
those used for Statement 1, we conclude that σ(x) = σ(y) for every y ∈ Sρ, since
otherwise we would obtain (x, y) /∈ E(~G), and thus a contradiction to x ∈ U(~G, σ).
Since x ∈W was chosen arbitrarily and Sρ is non-empty, we immediately obtain that
all vertices in U(~G, σ) = Sρ ∪· W have the same color, i.e., Statement 2 is true.

Statement 3: Now consider the single inner vertex child v of ρ, and its set of support
leaves Sv, which must be non-empty by Lemma 4.28. Note that W must be entirely
contained in L(T(v)) and recall that all vertices in Sρ ∪· W are of the same color (cf.
Statement 2). First suppose, for contradiction, that Sv only contains vertices of the
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Fig. 22. Illustration of Lemma 4.33. (A) The (local) situation if W = U \ Sρ 6= ∅ as
implied by Lemma 4.33. In particular, ρ only has a single inner vertex child v, all
vertices in U = Sρ ∪· W have the same color, Sv contains vertices of both colors, and
W ( Sv. (B) There cannot be a second inner vertex child v′, since then none of the
vertices except those in Sρ can be umbrella vertices, e.g. (a, b) is not an arc in the
digraph explained by the tree in (B). Hence, this situation is not possible for W 6= ∅.
(C) If Sv does not contain vertices of both colors, then the edge ρv is redundant in
the tree, contradicting that (T, σ) in Lemma 4.33 is the LRT.

opposite color as the vertices in Sρ ∪· W. This immediately implies Sv ∩W = ∅, thus
every vertex x ∈ W must be located in a subtree T(w) of some inner vertex child w
of v. Again by contraposition of Lemma 4.26, every such T(w) contains both colors.
However, this contradicts (x, y) ∈ E(~G) for every y ∈ Sv, which must hold as a
consequence of x ∈ W ⊂ U(~G, σ) and σ(y) 6= σ(x). Next suppose, for contradiction,
that Sv only contains vertices of the same color as the vertices in Sρ ∪· W. In this case,
we obtain that the edge ρv is redundant w.r.t. (~G, σ). To see this, consider an arc
(x, y) ∈ E(~G) such that lcaT(x, y) = v. Clearly, x must be directly incident to v, since
otherwise the subtree below v to which x belongs would contain both colors, and
thus contradict (x, y) ∈ E(~G). In other words, every such vertex x is a support leaf
of v, thus σ(x) = σ(Sv) = σ(Sρ) and σ(y) 6= σ(Sρ). In particular, there exists no arc
(x, y) ∈ E(~G) such that lcaT(x, y) = v and σ(y) ∈ σ(L(T) \ L(T(v))) = σ(Sρ) and
therefore, by Lemma 4.6, the inner edge ρv is redundant. However, this contradicts
the fact that T is least resolved. In summary, only the case in which Sv 6= ∅ contains
vertices of both colors is possible, and thus Statement 3 is true.

Statement 4: First, recall from the proof of Statement 3 that W ⊆ L(T(v)) for the
single inner vertex child v of ρ. In order to see that W ⊆ Sv, assume for contradiction
that this is not the case. By similar arguments as used for showing Statement 3, this
implies that some x ∈W lies in a 2-colored subtree T(w) for some w ∈ childT(v) \ Sv.
Together with the above established fact that Sv contains both colors, this contradicts
x ∈ U(~G, σ). Finally, W 6= Sv is a consequence of the fact that Sv contains both colors
(Statement 3) but W ⊆ Sρ ∪· W contains only one color (Statement 2).

We now use this result to consider the performance of Alg. 3.

Lemma 4.34. Alg. 3 can be implemented to run in O(|E| log2 |V|) time for a con-
nected input digraph.

Proof. Since ~G is connected by assumption, we have |V| ∈ O(|E|). Starting from
(~G, σ), the list of out-degrees can be constructed in O(|E|). The initial umbrella set
U is then obtained by listing the vertices with maximal out-degree in the color class.
The initial set S(1) is constructed by checking, for each u ∈ U, the in-neighbors of u
for membership in U in O(|V|+ |E|) operations. Then S(2) is obtained in the same
manner from S(1), requiring O(|V|+ |E|) operations. The initial umbrella set U and
the sets S(1) and S(2) thus can be constructed in linear time. In each recursive call
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of Build2ColLRT, at least one leaf is split off, hence the recursion depth is |V| − 1
in the worst case. Since the support vertices removed in each step have all of their
in-neighbors in U, their removal does not affect the out-neighborhood for any x ∈
V(~G −U) ⊆ V(~G − S(2)), and hence, outdeg(x) does not require updates. The in-
neighborhoods N−(x) can be updated by removing the arcs between ~G − S(2) and
S(2) as a consequence of Lemma 4.29 and Thm. 4.8. Since every arc appears exactly
once in the removal, the total effort for these updates is O(|E|).

We continue by showing that every vertex needs to be considered as an umbrella
vertex at most twice, and that the total effort of constructing all sets S(1) and S(2)

is O(|E|), given that the umbrella vertices U can be obtained efficiently, which we
discuss afterwards. To this end, we distinguish, for each of the single recursion steps,
two cases: S(1) = U and S(1) ( U. First if S(1) = U, and thus also S(2) = S(1) = U,
we consider each in-arc of x ∈ U. Since these vertices and their corresponding arcs
are removed when constructing ~G− S(2), they are not considered again in a deeper
recursion step. In the second case, we have S(1) ( U, which together with S(2) = S(1)

implies W := U \ S(2) 6= ∅, and only the vertices in U \W are removed. However,
Lemma 4.33 guarantees that, for a 2-BMG as input digraph, the vertices in W appear
as support leaves in the next step and thus appear in the update of U, S(1), and S(2)

no more than a second time. In order to use the properties in Lemma 4.33 for the
general case (i.e. (~G, σ) is not necessarily a BMG), we can, whenever W 6= ∅, (i) check
that ~G− S(2) only has a single connected component ~Gv, and (ii) pass down the set
W to the recursion step on ~Gv in which the condition W ( S(2) is checked. If any of
these checks fails, we can exit false. This way, we ensure that every vertex appears at
most two times as an umbrella vertex in the general case. To construct S(1) from U,
we have to scan the in-neighborhood N−(x) of each vertex x ∈ U and check whether
N−(x) ⊂ U. We repeat this step to construct S(2) from S(1). Membership in U and
S(1), resp., can be checked in constant time (e.g. by marking the vertices in the current
set U). Since we have to consider each vertex, and hence, each in-neighborhood at
most twice, all sets S(1) and S(2) can be obtained with a total effort of O(|E|).

It remains to show that the input digraph can be decomposed efficiently in such
a way that the connectivity information is maintained and the candidates for um-
brella vertices in each component are updated. The connected components ~Gv can
be obtained by using the dynamic data structure described in [146], often called HDT
data structure. It maintains a maximal spanning forest representing the underlying
undirected graph with edge set Ẽ = {xy | (x, y) ∈ E or (y, x) ∈ E}, and allows
deletion of all |Ẽ| ∈ O(|E|) edges with amortized cost O(log2 |V|) per edge deletion.
The explicit traversal of the connected components to compute U can be avoided as
follows: Since outdeg(x) does not require updates, we can maintain a doubly-linked
list of vertices x for each color i ∈ {1, 2}, and each value of outdeg(x) where σ(x) = i.
In order to be able to access the highest value of the out-degrees, we maintain these
values together with pointer to the respective doubly-linked list in balanced binary
search trees (BST), one for each color and each connected component. The BSTs for
the two colors are computed first for (~G, σ) in O(|V| log(|V|)) time and afterwards
updated to fit with the out-degree of the currently considered component ~Gv. To
update these lists and BSTs for ~Gv, observe first that ~Gv can be obtained from ~G by
stepwise deletion of single arcs, i.e. edges in the HDT data structure representing the
underlying undirected versions. We update, resp., construct the pair of BSTs (one
for each color) for each connected component as follows: Since a single arc deletion
splits a connected component ~G′ into at most two connected components ~G1, and ~G2,
we can apply the well-known technique of traversing the smaller component [280].
The size of each connected component can be queried in O(1) time in the HDT data
structure. Suppose w.l.o.g. that |V(~G1)| ≤ |V(~G2)|. We construct a new pair of BSTs
for ~G1, and delete the vertices V(~G1) and the respective degrees from the two original
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BSTs for ~G, which then become the BSTs for ~G2. More precisely, we delete each vertex
x ∈ V(~G1) in the respective list corresponding to outdeg(x), and if the length of this
list drops to zero, we also remove the corresponding out-degree in the BST. Likewise,
we insert the out-degree of x and an empty doubly-linked list into the newly-created
BST for ~G1, if it is not yet present, and append x to this list. Note that the number of
out-degree deletions and insertions does not exceed |V(~G1)|. Due to the technique
of traversing the smaller component, every vertex is deleted and inserted at most
blog |V|c times. Therefore, we obtain an overall complexity of O(|V| log2 |V|) for the
maintenance of the BSTs where the additional log-factor originates from re-balancing
the BSTs whenever necessary.

In each recursion step, the set U can now be obtained by listing (at most) the
vertices with the maximal out-degree for each of the two colors. Finding the two out-
degrees and corresponding lists in the BSTs requires O(log |V|) in each step, and thus
O(|V| log |V|) in total. In order to determine whether these candidates x are actually
umbrella vertices, we have to check whether outdeg(x) = |V(~Gv)| − |V(~Gv)[σ(x)]|.
The HDT data structure allows constant-time query of the size of a given connected
component, since this information gets updated during the maintenance of the span-
ning forest. By the same means, we can keep track of the number of vertices of a
specific color in each connected components. Note that we only need to do this for
one color r since |V(~Gv)[s]| = |V(~Gv)| − |V(~Gv)[r]|. This does not increase the over-
all effort for maintaining the data structure since it happens alongside the update of
|V(~Gv)|.

In summary, the total effort is dominated by maintaining the connectedness infor-
mation while deleting O(|E|) arcs, i.e., O(|E| log2 |V|) time.

As a direct consequence of Thm. 4.8, the LRT of a disconnected digraph ~G is
obtained by connecting the roots of the LRTs Tv of the connected components
~Gv to an additional root vertex, see also [102, Cor. 4]. Lemma 4.34 thus implies

Theorem 4.10. The LRT of a 2-BMG can be computed in O(|V|+ |E| log2 |V|).

Proof. The connected components ~Gi = (Vi, Ei) of ~G = (V, E) can be enumerated in
O(|V| + |E|) operations, e.g. using a breadth-first search on the underlying undi-
rected graph. By Lemma 4.34, O(|Ei| log2 |Vi|) ≤ O(|Ei| log2 |V|) operations are
required for each ~Gi. Hence, the total effort is O(|V| + |E| + log2 |V|∑i |Ei|) =
O(|V|+ |E| log2 |V|).

In order to illustrate the improved complexity for the construction of LRTs
of 2-BMGs, we implemented both the triple-based approach in Alg. 1, i.e.,
the application of BUILD [7] with the informative triples defined in Eq. (3) as
input, and Alg. 3. As input, we used 2-BMGs that were randomly generated
as follows: First, we simulate random trees T recursively, starting from a
single vertex, by attaching to a randomly chosen vertex v either a single leaf
if v is an inner vertex of T or a pair of leaves if v is a leaf. The construction
stops when the desired number of leaves is reached. Note that the resulting
tree is phylogenetic by construction. Each leaf is then colored by selecting at
random one of the two colors. Finally, we compute the 2-BMG ~G(T, σ) from
each of the simulated leaf-colored trees (T, σ).

Both methods for the LRT computation were implemented in Python.
Moreover, we note that we did not implement the sophisticated dynamic data
structures used in the proof of Lemma 4.34, but a rather naïve implementa-
tion of Alg. 3. Similarly, we used a simple implementation of BUILD instead
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Fig. 23. Running time comparison of the general approach for constructing an LRT
using Alg. 1, i.e. BUILD, (blue) vs. Alg. 3 (green). For each number of leaves, 200 2-
BMGs were generated as described in the text. In the right panel, the median values
are shown with logarithmic axes. The additional dotted line indicates the median
values of the size of the simulated BMGs, i.e. the number of arcs, scaled by a factor
10−3. We did not compute the LRTs with the first method for instances with more
than 1000 leaves because of the excessive computational cost.

of the O(|V| |E| log2 |V|) version of the approach for `-BMGs detailed in [102]
and Sec. 4.2.3. In this setting, Fig. 23 shows a remarkable improvement of
the running time when compared to the general approach. Empirically, we
observe that the running time of Alg. 3 indeed scales nearly linearly with the
number of edges.

The decomposition of 2-BMGs based on support vertices may provide an
avenue for a class of heuristic algorithms that correct a given 2-colored di-
graph, that was estimated from real-life data and thus contains noise, to a
2-BMG by recursively identifying candidates for support leaves in the under-
lying “true” LRT. This is conceptually distinct from the approaches for BMG
editing that are based on triples R(~G, σ) or RB(~G, σ) as presented in Sec. 5.5
later in this work; however, restricted to 2-colored digraphs.

4.4.5 Binary-Explainable 2-BMGs

In this section, we briefly describe a modification of Alg. 3 that allows the
efficient recognition of binary-explainable 2-BMGs.

The following Lemma shows that the third statement in Prop. 4.9 can be
translated to a much simpler statement in terms of the support leaves of its
LRT.

Lemma 4.35. A 2-BMG (~G, σ) contains an induced hourglass if and only if its LRT
(T, σ) contains an inner vertex u such that Su contains support vertices of both colors
and V(~G(T(u))− Su) 6= ∅.
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Proof. By Thm. 4.9, Alg. 3 returns the LRT (T, σ) for (~G, σ) if and only if (~G, σ) is a 2-
BMG. Hence, we assume in the following that the latter is satisfied. As a consequence
of Prop. 4.9 and the fact that (T, σ) explains (~G, σ), we know that (~G, σ) is binary-
explainable if and only if there is no vertex u ∈ V0(T) with three distinct children
v1, v2, and v3 and two distinct colors r and s satisfying (a) r ∈ σ(L(T(v1))), r, s ∈
σ(L(T(v2))), and s ∈ σ(L(T(v3))), and (b) s /∈ σ(L(T(v1))), and r /∈ σ(L(T(v3))).

First, suppose that (~G, σ) contains an hourglass, i.e., by Prop. 4.9 there is a vertex
u ∈ V0(T) with distinct children v1, v2, and v3 and two distinct colors r and s
satisfying (a) and (b). Since (~G, σ) is 2-colored and (T, σ) is its LRT, Lemma 4.26

together with s /∈ σ(L(T(v1))) and r /∈ σ(L(T(v3))) implies that v1 of color r and v2
of color s, respectively, are both leaves. In particular, therefore, we know that v1, v2 ∈
Su are support leaves. By Lemma 4.29 and since ~G(T(u), σ|.) is also a BMG, the
connected components of (~G(T(u))− Su, σ|.) = (~G[L(T(u))]− Su, σ|.) (cf. Lemma 4.9)
are exactly the BMGs ~G(T(v), σ|.) with v ∈ childT(u) \ Su. Together with the fact that
v2 ∈ V0(T) as a consequence of L(T(v2)) containing both colors r and s, this implies
that (~G(T(u))− Su, σ|.) is not the empty digraph.

Conversely, suppose there is a vertex u ∈ V0(T) such that Su contains support
vertices v1 and v3 with distinct colors σ(v1) 6= σ(v3) and V(~G(T(u))− Su) 6= ∅, i.e., u
has a child v2 ∈ childT(u) \Su that is not a support leaf and hence satisfies v2 ∈ V0(T).
Lemma 4.26 implies that L(T(v2)) contains both colors since v2 ∈ V0(T). Hence, the
three children v1, v2, and v3 of u satisfy conditions (a) and (b) of Prop. 4.9(3), and
thus (~G, σ) contains an induced hourglass.

Corollary 4.17. It can be checked in O(|V|+ |E| log2 |V|) whether or not a properly
2-colored digraph (~G, σ) is a binary-explainable BMG.

Proof. Recall that there is a one-to-one correspondence between the recursion step in
Alg. 3 and the inner vertices u ∈ V0(T). As argued in the proof of Lemma 4.34, every
vertex appears at most twice in an umbrella set U. Therefore, it can be checked in
O(|V|) total time whether S = S(2) contains vertices of both colors. Since the vertex
set of ~Gu − Su is maintained in the dynamic graph HDT data structure, it can be
checked in constant time for each u whether ~Gu − Su is non-empty. The additional
effort to check the condition of Lemma 4.35 is therefore only O(|V|). Hence, we still
require a total effort of O(|V|+ |E| log2 |V|) (cf. Thm. 4.10).

Cor. 4.17 improves the complexity for the decision whether a 2-BMG is
binary-explainable as compared to the O(|V|3 log2 |V|)-time algorithm for
(general) BMGs presented in Sec. 4.3.

4.5 summary

In this chapter, we extensively revisited best match graphs. In particular, a
correction of the previously published characterization of BMGs based on in-
formative triples was presented in Thm. 4.2. This will be the starting point
for the development of a group of heuristic algorithms for BMG editing
in Sec. 5.5. We also gave an alternative characterization using informative
and forbidden triples that can be easily extracted from a colored digraph
(Thm. 4.3). This will be useful for phrasing and solving the BMG editing
problem as an ILP (cf. Sec. 5.4).

We introduced binary-explainable BMGs (beBMGs) as an interesting sub-
class of BMGs. These are of practical relevance since polytomies in gene

93



trees are often considered to be the result of insufficient data. They can
be characterized as hourglass-free BMGs (Prop 4.8), or, alternatively, as sf-
colored digraphs (~G = (V, E), σ) for which the triple set RB(~G, σ) is consis-
tent (Thm. 4.4). As a consequence of the latter, beBMGs can be recognized
in O(|V|3 log2 |V|) (Cor. 4.10). In particular, beBMGs are explained by the
unique binary-resolvable tree (BRT) which is often much better resolved than
the LRT, and thus, may be a valuable source of information in the applica-
tion to gene tree reconstruction. We will continue to keep an eye on beBMGs
when we turn to BMG modification problems in the next chapter.

We also gave a novel characterization of 2-BMGs in terms of forbidden
induced subgraphs, which will turn out to be useful for deriving complex-
ity results and ILP formulations for BMG modification problems in the next
chapter. Moreover, we have shown that 2-BMGs have a recursive structure
that is reflected in certain induced subgraphs that correspond to subtrees of
the LRT. The leaves connected directly to the root of a given subtree play a
special role as support vertices in the corresponding subgraph of the 2-BMG.
Since the support vertices of the root can be identified efficiently in a given
input digraph, there is a recursive decomposition of (~G, σ) that directly yields
the LRT, and can be implemented to run in O(|V|+ |E| log2 |V|) (Alg. 3 and
Thm. 4.10) with help of a dynamic data structure to maintain connectedness
information [146]. This provides a considerable speed-up compared to the
previously known O(|V||E| log2 |V|) and O(|V|3) algorithms [102]. Empiri-
cally, we observe a substantial speed-up even if simpler data structures are
used to implement Alg. 3.
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5
B E S T M AT C H G R A P H E D I T I N G

Empirically, best matches are estimated on the basis of gene sequence
similarities or distances [223], which in turn are usually obtained from
sequence alignments [50]. In practice, fast heuristic algorithms such

as BLAST [17] and its more modern successors are usually used for this pur-
pose [141, 216]. Apart from simple measurement inaccuracies, systematic
biases such as deviations from a common molecular clock, i.e., differences
in the evolutionary rates of different genes, cause discrepancies between best
hits (most similar sequences) and best matches (evolutionary most closely re-
lated sequences). While some systematic effects can be corrected directly (cf.
Sec. 4.1.4 and [293]), a residual level of error is unavoidable. It is therefore a
question of considerable practical interest in computational biology whether
the mathematical properties characterizing BMGs can be used to correct em-
pirical estimates. Formally, this question amounts to a graph editing problem:
Given a vertex-colored directed graph (~G, σ), what is the minimal number of
arcs that need to be inserted or deleted to convert (~G, σ) into a BMG (~G∗, σ)?

This chapter is organized as follows: In Sec. 5.1, we formally introduce
various modification problems for BMGs. We prove in Sec. 5.2 that 2-BMG
Deletion and 2-BMG Editing are NP-complete by reduction from Exact

3-Cover, and that 2-BMG Completion is NP-complete by reduction from
Chain Graph Completion. These results are used in Sec. 5.3 to establish
NP-completeness for any fixed number ` ≥ 2 of colors. We provide ILP solu-
tions for the respective `-BMG modification problems in Sec. 5.4. Most of the
complexity and ILP results appeared previously in [266]. However, a slightly
modified reduction [260] from Exact 3-Cover is presented here which also
shows NP-hardness of editing a digraph to a beBMG. The polynomial-time
solution for completing a 2-BMG to a beBMG has been published in [261].
We turn to an investigation of several heuristic algorithms for BMG editing
in Sec. 5.5. This last part of the chapter is based on [263].

5.1 bmg modification problems

Best matches are closely linked to the identification of orthologous genes,
and considerable efforts have already been expended to devise methods for
orthology assessment, see Sec. 3.3.3. The orthology graph of a gene fam-
ily (with the genes as vertices and undirected edges between orthologous
genes) can be shown to be a subgraph of the reciprocal best match graph
(RBMG), i.e., the symmetric part of the BMG [103]. This has sparked in-
terest in a characterization of RBMGs [104] and the corresponding graph
editing problems [137]. The deletion and the editing problems of 2-colored
RBMGs are equivalent to Bicluster Deletion and Bicluster Editing, re-
spectively, a fact that was used to demonstrate NP-hardness for the general,
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`-colored case. On the other hand, orthology graphs are cographs [132]. Co-
graph Editing or Cograph Deletion thus have been used to correct empir-
ical approximations of RBMGs to orthology graphs in [133]. Several related
problems have been discussed in the literature, often aiming at using addi-
tional biological information as part of the graph modification process, cf. eg.
[79, 136, 180, 182, 184, 220]. Both Cograph Editing and Cograph Deletion

are NP-complete [197].
In Chapter 6, we will see that knowledge of the BMG makes it possible to

identify, in polynomial time, a certain set of edges of the RBMG that cannot
be part of the orthology graph and that these edges, in general, do not form
an optimal solution of either Cograph Editing or Cograph Deletion. This
observation suggests correcting the empirical similarity data at the outset
by editing them to the nearest BMGs instead of operating on an empirical
approximation of the RBMG.

In real-life applications, we have to expect that digraphs estimated from em-
pirical best match data will contain both erroneous and/or missing arcs. We
will assume, however, that the coloring σ of a given digraph (~G, σ), encoding
the information in which species/genome a gene resides, is correct. Formally,
we consider the following graph modification problems for properly colored
digraphs.

Problem 5.1 (`-BMG Deletion).
Input: A properly `-colored digraph (~G = (V, E), σ) and an integer k.

Question: Is there a subset F ⊆ E such that |F| ≤ k and (~G− F, σ) is an

`-BMG?

It is worth noting that `-BMG Deletion does not always have a feasible
solution. In particular, if (~G, σ) contains a sink, no solution exits for any ` > 1
as a consequence of Thm. 4.3 and the fact that we only delete arcs. In contrast,
it is always possible to obtain a BMG from a properly colored digraph (~G, σ)

if arc insertions are allowed. To see this, observe that the digraph (~G′, σ) with
V(~G′) = V(~G) that contains all arcs between vertices of different colors is a
BMG, since it is explained by the star tree with leaf set V(~G′). This suggests
that the following two problems are more relevant for practical applications:

Problem 5.2 (`-BMG Editing).
Input: A properly `-colored digraph (~G = (V, E), σ) and an integer k.

Question: Is there a subset F ⊆ (V ×V)irr such that |F| ≤ k and

(~G4 F, σ) is an `-BMG?

Problem 5.3 (`-BMG Completion).
Input: A properly `-colored digraph (~G = (V, E), σ) and an integer k.

Question: Is there a subset F ⊆ (V ×V)irr \ E such that |F| ≤ k and

(~G + F, σ) is an `-BMG?

In Sec. 4.3, we have characterized the subclass of BMGs that can be ex-
plained by binary trees. In particular, recall that, by Prop. 4.8, binary-
explainable BMGs are exactly the hourglass-free BMGs. As argued before,
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they are of practical significance because phylogenetic trees are often as-
sumed to be binary by nature, with multifurcations arising in many cases
as an artifact of insufficient data [73, 144, 201].

We therefore consider the slightly different modification problems that,
given an arbitrary properly colored digraph (~G, σ), aim to find a binary-
explainable BMG:

Problem 5.4 (`-BMG Editing restricted to Binary-Explainable Graphs

(`-BMG EBEG)).
Input: A properly `-colored digraph (~G = (V, E), σ) and an integer k.

Question: Is there a subset F ⊆ (V ×V)irr such that |F| ≤ k and

(~G4 F, σ) is a binary-explainable `-BMG?

The corresponding completion and deletion problems will be called `-BMG
CBEG and `-BMG DBEG, respectively.

5.2 complexity of 2-bmg modification problems

In this section, we consider decision problems related to modifying 2-colored
digraphs. The general case with an arbitrarily large number ` ≥ 2 of colors
will be the subject of the following section. For ` = 2, we will show that both
2-BMG Editing and 2-BMG Deletion as well as `-BMG EBEG and `-BMG
DBEG are NP-complete by reduction from the Exact 3-Cover problem (X3C),
one of Karp’s famous 21 NP-complete problems [165].

Problem 5.5 (Exact 3-Cover (X3C)).
Input: A set S with |S| = 3t elements and a collection C of 3-element

subsets of S.

Question: Does C contain an exact cover for S, i.e., a subcollection C ′ ⊆ C
such that every element of S occurs in exactly one member of C ′?

An exact 3-cover C ′ of S with |S| = 3t is necessarily of size |C ′| = t and
satisfies

⋃
C∈C ′ C = S.

Theorem 5.1. [165] X3C is NP-complete.

In the following, we will make extensive use of properly 2-colored digraphs
that contain all possible arcs:

Definition 5.1. A bi-clique of a colored digraph (~G, σ) is a subset of vertices C ⊆
V(~G) such that (i) |σ(C)| = 2 and (ii) (x, y) ∈ E(~G[C]) if and only if σ(x) 6= σ(y)
for all x, y ∈ C. A colored digraph (~G, σ) is a bi-cluster graph if all its connected
components are bi-cliques.

In a bi-clique, all arcs between vertices of different color are present. Thus,
a bi-clique with n and m vertices in the two color classes has 2nm arcs, see
Fig. 24 for the case n = m = 3. We emphasize that, in contrast to the definition
used in [137], single vertex graphs are not considered as bi-clique.

We start with a simple construction of a special subclass of BMGs that
contain a number of bi-cliques and will appear as connected components in
our reduction from X3C:
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Fig. 24. A (sub)graph induced by a bi-clique consisting of 3 black and 3 white vertices.
It has 18 arcs in total.
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Fig. 25. Illustration of the digraph (~G, σ) constructed in Lemma 5.1 and its (least re-
solved) tree (T, σ). The boxes represent the set of black and white vertices contained
in the sets X, Y1, . . . , Yn. The thick gray arrows indicate that all arcs in that direction
exist between the respective sets. The tree (T′, σ) (with the triangles representing ar-
bitrary binary subtrees) is a possible binary refinement of (T, σ) that explains (~G, σ).

Lemma 5.1. Let (~G = (V, E), σ) be a 2-colored digraph obtained as follows: Set
V := X ∪· Y1 ∪· . . . ∪· Yn where each set in C := {X, Y1, . . . , Yn}, n ≥ 1, consists of
at least one black and at least one white vertex. For the (initially empty) arc set E,
add

(i) all arcs from the black vertices in X to the white vertices in X,

(ii) all arcs (x, y) with x ∈ X and y ∈ V \ X for which σ(x) 6= σ(y), and

(iii) all arcs (y1, y2) such that y1 and y2 are contained in the same set Yi ∈
{Y1, . . . , Yn} and σ(y1) 6= σ(y2).

Then (~G, σ) is a binary-explainable BMG. Moreover, the disjoint union of such di-
graphs (with the same two colors) is a binary-explainable BMG.

Proof. The construction of the digraph (~G, σ) is illustrated on the l.h.s. of Fig. 25.
To show that (~G, σ) is a BMG, it suffices to verify that the tree (T, σ) in Fig. 25

explains (~G, σ). For all black vertices in X, we have lcaT(x, y) = ρ for all white
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vertices y ∈ V. Hence, every white vertex y ∈ V is a best match of every black
vertex in X. All white vertices in x ∈ X are children of u and lcaT(x, y) = u for
all vertices y ∈ V \ X. Taken together these two facts imply that every black vertex
y ∈ V \ X is a best match of x. Since n ≥ 1, there is at least one such black vertex
y ∈ V \ X and lcaT(x, y) = u ≺T ρ = lcaT(x, y′) holds for every black vertex y′ ∈ X.
Therefore, none of the black vertices in X is a best match of any white vertex in
X. If x, y ∈ Yi ∈ C \ {X} and x′, y′ ∈ L(T) are all distinct, we have lcaT(x, y) =
vi �T lcaT(x, y′), lcaT(x′, y). Hence every Yi ∈ C \ {X} is a bi-clique. Furthermore, if
x′ ∈ L(T) \ Yi or y′ ∈ L(T) \ Yi, we have lcaT(x, y) = vi ≺T lcaT(x′, y) ∈ {u, ρ} and
lcaT(x, y) = vi ≺T lcaT(x, y′) ∈ {u, ρ}, resp., and therefore there are no arcs from
vertices in Yi to vertices in X and no arcs between distinct vertex sets Yi, Yj ∈ C \ {X}.
Therefore, ~G(T, σ) = (~G, σ), and thus (~G, σ) is a BMG.

It is now an easy task to verify that none of the inner vertices of (T, σ) satisfies
Condition (a) and (b) in Prop. 4.9(3). Since (T, σ) explains (~G, σ), Prop. 4.9 implies
that (~G, σ) is also binary-explainable.

It remains to show that the disjoint union (~G′, σ′) of such digraphs (~Gi, σi) with
the same two colors is a binary-explainable BMG. Since all (~Gi, σi) are in particular
BMGs, Prop. 1 in [102] implies that (~G′, σ′) is a BMG. By Prop. 4.8 and since every
(~Gi, σi) is binary-explainable, every (~Gi, σi) is hourglass-free. Since hourglasses are
connected, their disjoint union (~G′, σ′) is also hourglass-free. Applying Prop. 4.8
again, we conclude that (~G′, σ′) is a binary-explainable BMG.

We note that the LRT used in the proof of Lemma 5.1 is in general not
binary. As argued above, this does not imply that its BMG (~G, σ) is not binary-
explainable. The tree (T′, σ) in Fig. 25 shows a possible binary refinement of
the LRT (T, σ).

We are now in the position to prove NP-completeness of 2-BMG Editing.
The strategy of the NP-hardness proof is very similar to the one used in
[85] and [197] to show the NP-hardness of Cograph Editing. Nevertheless,
although similar in fashion, our proof has subtle but important differences
when compared to the proofs provided in [85] and [197]. In particular, at
the heart of our construction are 2-colored bi-cliques rather than complete
graphs.

Theorem 5.2. 2-BMG Editing and 2-BMG EBEG are NP-complete.

Proof. Since BMGs can be recognized in polynomial time by Cor. 4.6, the 2-BMG
Editing problem is clearly contained in NP. Since binary-explainable BMGs can be
recognized in polynomial time by Cor. 4.10, the 2-BMG EBEG problem is also con-
tained in NP. To show the NP-hardness, we use reduction from X3C.

Let S with |S| = n = 3t and C = {C1, . . . , Cm} be an instance of X3C. Clearly, if
m = t the X3C problem becomes trivial and thus, we assume w.l.o.g. that m > t. The
latter implies that every solution C ′ of X3C satisfies C ′ ( C. Moreover, we assume
w.l.o.g. that Ci 6= Cj, 1 ≤ i < j ≤ m. We construct an instance (~G = (V, E), σ, k),
where (~G, σ) is colored with the two colors black and white, of the 2-BMG Editing

or 2-BMG EBEG problem as follows: First, we construct a bi-clique S consisting of a
black vertex sb and a white vertex sw for every s ∈ S. Thus the subgraph induced
by S has 6t vertices and r := 18t2 arcs in total. Let q := 3× [6r(m − t) + r − 18t].
For each of the m subsets Ci in C, we introduce two vertex sets Xi and Yi, where Xi
consists of r black and r white new vertices, and Yi consists of q black and q white
new vertices. Arcs are inserted from the black vertices to the white vertices in Xi, and
all Yi are completed to bi-cliques. In addition, we insert the following arcs:
– (x, y) for every x ∈ Xi and y ∈ Yi with σ(x) 6= σ(y) (note (y, x) /∈ E),
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Fig. 26. Illustration of the reduction from Exact 3-Cover. The thick gray arrows indi-
cate that all arcs from that set to another set/vertex exist. The illustration emphasizes
the analogy to [85] and [197].

– (x, sb) for every white vertex x ∈ Xi and every element s ∈ Ci, and,
– (x, sw) for every black vertex x ∈ Xi and every element s ∈ Ci.
This construction is illustrated in Fig. 26. Clearly, (~G, σ) is properly 2-colored and
can be constructed in polynomial time.

We set k := 6r(m − t) + r − 18t and show that there is a t-element subset C ′ of
C that is a solution of X3C if and only 2-BMG Editing/2-BMG EBEG with input
(~G, σ, k) has a yes-answer. We emphasize that the coloring σ remains unchanged in
the proof below.

First suppose that X3C with input S and C has a yes-answer. Thus, there is a
t-element subset C ′ of C such that

⋃
C∈C ′ C = S. We construct a set F and add, for all

Ci ∈ C \ C ′ and all s ∈ Ci, the arcs (x, sw) for every black vertex x ∈ Xi and the arcs
(x, sb) for every white vertex x ∈ Xi. Since |Ci| = 3 for every Ci ∈ C and |C \ C ′| =
m − t, the set F contains exactly 6r(m − t) arcs, so far. Now, we add to F all arcs
(sb, s′w) and (sw, s′b) whenever the corresponding elements s and s′ belong to distinct
elements in C ′, i.e., there is no C ∈ C ′ with {s, s′} ⊂ C. Therefore, the subgraph of
~G − F induced by S is the disjoint union of t bi-cliques, each consisting of exactly
3 black vertices, 3 white vertices, and 18 arcs. Hence, F contains, in addition to the
6r(m− t) arcs, further r− 18t arcs. Thus |F| = k. This completes the construction of
F.

Since F contains only arcs but no non-arcs of ~G, we have ~G4 F = ~G − F. It
remains to show that ~G4 F is a (binary-explainable) BMG. To this end observe that
~G4 F has precisely m connected components that are either induced by Xi ∪ Yi (in
case Ci ∈ C \ C ′ ) or Xi ∪ Yi ∪ S′ where S′ is a bi-clique containing the six vertices
corresponding to the elements in Ci ∈ C ′. In particular, each of these components
corresponds to the subgraph as specified in Lemma 5.1. To see this, note that the
arcs in each connected component are given by (i) all arcs from the black to the
white vertices in X := Xi, (ii) all arcs (x, y) with x ∈ X and y ∈ Yi (or y ∈ Yi ∪ S′,
respectively), and (iii) all arcs (y1, y2) such that y1 and y2 are both contained in Yi
(or in the same set in {Yi, S′}, respectively). In particular, Lemma 5.1 implies that
the disjoint union, i.e. (~G4 F, σ), is a binary-explainable BMG. Hence, both BMG
Editing and 2-BMG EBEG with input (~G, σ, k) have a yes-answer.

Now, suppose that 2-BMG Editing/2-BMG EBEG with input (~G, σ) has a yes-
answer. Thus, there is a set F with |F| ≤ k such that (~G4 F, σ) is a BMG. We
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will prove that we have to delete an arc set similar to the one as constructed above.
First note that the number of vertices affected by F, i.e. vertices incident to insert-
ed/deleted arcs, is at most 2k. Since 2k < q = |{y ∈ Yi | σ(y) = black}| = |{y ∈
Yi | σ(y) = white}| for every 1 ≤ i ≤ m, we have at least on black vertex bi ∈ Yi
and at least one white vertex wi ∈ Yi that are unaffected by F. Recall that S is the
bi-clique that we have constructed from a black vertex sb and a white vertex sw for
every s ∈ S. We continue by proving

Claim 5.2.1. Every vertex s ∈ S has in-arcs from at most one Xi in ~G4 F.

Proof of Claim: Assume w.l.o.g. that s is black and, for contradiction, that there are
two distinct vertices x1 ∈ Xi and x2 ∈ Xj with i 6= j and (x1, s), (x2, s) ∈ E4 F.
Clearly, both x1 and x2 are white. As argued above, there are two (distinct) black
vertices b1 ∈ Yi and b2 ∈ Yj that are not affected by F. Thus, (x1, b1) and (x2, b2)

remain arcs in ~G4 F, whereas (x1, b2) and (x2, b1) are not arcs in ~G4 F, since they
do not form arcs in ~G. In summary, we have five distinct vertices x1, x2, b1, b2, s
with σ(x1) = σ(x2) 6= σ(b1) = σ(b2) = σ(s), arcs (x1, b1), (x2, b2), (x1, s), (x2, s)
and non-arcs (x1, b2), (x2, b1). Thus (~G4 F, σ) contains an induced F3-graph. By
Lemma 4.24, (~G4 F, σ) is not a BMG; a contradiction. �

By Claim 5.2.1, every vertex in S has in-arcs from at most one Xi. Note each Xi
has r black and r white vertices. Since each element in S is either white or black,
each single element in S has at most r in-arcs. Since |S| = 2n, we obtain at most
2rn = 2r(3t) = 6rt such arcs in ~G4 F. In ~G, there are in total 6rm arcs from the
vertices in all Xi to the vertices in S. By Claim 5.2.1, F contains at least 6r(m − t)
deletions. It remains to specify the other at most r − 18t arc modifications. To this
end, we show first

Claim 5.2.2. Every vertex s ∈ S has in-arcs from precisely one Xi in ~G4 F.

Proof of Claim: Assume that there is a vertex s ∈ S that has no in-arc from any Xi.
Hence, to the aforementioned 6r(m− t) deletions we must add r further deletions.
However, at most r− 18t further edits are allowed; a contradiction. �

So far, F contains only arc-deletions. For the next arguments, we need the following
two statements:

Claim 5.2.3. The modification set F does not insert any arcs between Xi and Xj with i 6= j.

Proof of Claim: Assume for contradiction that F, and thus ~G4 F, contains an arc
(x1, x2) with x1 ∈ Xi, x2 ∈ Xj and i 6= j. W.l.o.g. assume that x1 is white and x2
is black. As argued above there are black, resp., white vertices b, w ∈ Yj that are
unaffected by F. Therefore, (x2, w) and (b, w) remain arcs in ~G4 F, whereas (x1, b)
and (b, x1) are not arcs in ~G4 F since they do not form arcs in ~G. In summary,
(x1, x2), (b, w), (x2, w) are arcs in ~G4 F while (x1, b), (b, x1) are not arcs in ~G4 F.
Since moreover σ(x1) = σ(w) 6= σ(b) = σ(x2), (~G4 F, σ) contains an induced
F1-graph. By Lemma 4.24, (~G4 F, σ) is not a BMG; a contradiction. �

Claim 5.2.4. Let s1, s2 ∈ S be vertices with in-arcs (x1, s1), resp., (x2, s2) in ~G4 F for
some x1 ∈ Xi and x2 ∈ Xj with i 6= j. Then (s1, s2) and (s2, s1) cannot be arcs in ~G4 F.

Proof of Claim: Assume w.l.o.g. that (s1, s2) is an arc in ~G4 F and that s1 is
black. It follows that x1 and s2 are white and x2 is black. By construction of ~G
and by Claim 5.2.3, we clearly have (x1, x2), (x2, x1) /∈ E4 F. In summary, we
have four distinct vertices x1, x2, s1, s2 with σ(x1) = σ(s2) 6= σ(s1) = σ(x2), arcs
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(x1, s1), (x2, s2), (s1, s2) and non-arcs (x1, x2), (x2, x1) in ~G4 F. Thus (~G4 F, σ) con-
tains an induced F1-graph. By Lemma 4.24, (~G4 F, σ) is not a BMG; a contradiction.
�

In summary, ~G4 F has the following property: Every s ∈ S has in-arcs from exactly
one Xi, and there are no arcs between two distinct vertices s1 and s2 in S that have
in-arcs from two different sets Xi and Xj, respectively. Since |Ci| = 3 for every Ci ∈ C,
(~G4 F)[S] contains connected components of size at most 6, i.e., the black and white
vertex for each of the three elements in Ci. Hence, the maximum number of arcs in
(~G4 F)[S] is obtained when each of its connected components contains exactly these
6 vertices and they form a bi-clique. In this case, (~G4 F)[S] contains 18t arcs. We
conclude that F contains at least another r − 18t deletion arcs for S. Together with
the at least 6r(m− t) deletions between the Xi and the elements of S, we have at least
6r(m− t) + r − 18t = k ≥ |F| arc-deletions in F. Since |F| ≤ k by assumption, we
obtain |F| = k.

As argued above, the subgraph induced by S is a disjoint union of t bi-cliques
of 3 white and 3 black vertices each. Since all vertices of such a bi-clique have in-
arcs from the same Xi and these in-arcs are also in ~G, we readily obtain the desired
partition C ′ ⊂ C of S. In other words, the Ci corresponding to the Xi having out-arcs
to vertices in S in the edited digraph ~G4 F induce an exact cover of S.

The set F constructed in the proof of Thm. 5.2 contains only arc deletions.
This immediately implies

Corollary 5.1. 2-BMG Deletion and 2-BMG DBEG are NP-complete.

In order to tackle the complexity of the 2-BMG Completion and 2-BMG
CBEG problem, we follow a different approach and employ a reduction from
the Chain Graph Completion problem. To this end, we need some ad-
ditional notation. An undirected graph U is bipartite if its vertex set can be
partitioned into two non-empty disjoint sets P and Q such that V(U) = P∪· Q
and every edge has one endpoint in P and the other endpoint in Q. In the fol-
lowing, we write U = (P ∪· Q, Ẽ) to emphasize that Ẽ is a set of (undirected)
edges and that U is bipartite. Thus U is bipartite if and only if x ∈ P implies
N(x) ⊆ Q and x ∈ Q implies N(x) ⊆ P.

Definition 5.2. [cf. 220, 337] An undirected, bipartite graph U = (P ∪· Q, Ẽ) is a
chain graph if there is an order l on P such that u l v implies N(u) ⊆ N(v).

The Chain Graph Completion problem consists of finding a minimum-
sized set of additional edges that converts an arbitrary undirected, bipartite
graph into a chain graph. More formally, its decision version can be stated as
follows:

Problem 5.6 (Chain Graph Completion (CGC)).
Input: An undirected, bipartite graph U = (P ∪· Q, Ẽ) and an integer k.

Question: Is there a subset F̃ ⊆ {pq | (p, q) ∈ P×Q} \ Ẽ such that |F̃| ≤ k

and U′ := (P ∪· Q, Ẽ ∪ F̃) is a chain graph?

It is shown in [337] that CGC is NP-complete. Following [337], we say that
two edges uv and xy in an undirected graph U are independent if u, v, x, y
are pairwise distinct and the subgraph U[{u, v, x, y}] contains no additional
edges. We will need the following characterization of chain graphs:
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Fig. 27. Illustration of the reduction from CGC. A pair of independent edges in U
and the corresponding induced F3-graph in (~G, σ) are highlighted.

Lemma 5.2. [337, Lemma 1] An undirected, bipartite graph U = (P ∪· Q, Ẽ) is a
chain graph if and only if it does not contain a pair of independent edges.

Theorem 5.3. 2-BMG Completion is NP-complete.

Proof. Since BMGs can be recognized in polynomial time by Cor. 4.6, 2-BMG Comple-
tion is clearly contained in NP. To show NP-hardness, we use a reduction from CGC.
Let (U = (P∪· Q, Ẽ), k) be an instance of CGC with vertex sets P = {p1, . . . , p|P|} and
Q = {q1, . . . , q|Q|}. To construct an instance (~G = (V, E), σ, k) of the 2-BMG Comple-
tion problem, we set V = P∪· Q∪· R∪· {b}∪· {w}where R = {r1, . . . , r|Q|} is a copy of
Q. The vertices are colored σ(pi) = σ(rj) = σ(b) = black and σ(qi) = σ(w) = white.
The arc set E contains (qi, ri) and (ri, qi) for 1 ≤ i ≤ |Q|, (pi, w) for 1 ≤ i ≤ |P|,
(w, b) and (b, w), and (p, q) for every pq ∈ Ẽ. This construction is illustrated in
Fig. 27. Clearly, (~G, σ) is properly colored, and the reduction can be computed in
polynomial time. Moreover, it is easy to verify that (~G, σ) is sink-free by construction,
and thus, any digraph (~G′, σ) obtained from (~G, σ) by adding arcs is also sink-free.
As above, we emphasize that the coloring σ remains unchanged in the completion
process.

A pair (F, F̃) with F ⊆ P × Q and an edge set F̃ = {pq | (p, q) ∈ F} will be
called a completion pair for the bipartite graph U = (P ∪· Q, Ẽ) and the corresponding
2-colored digraph (~G = (V, E), σ).

Claim 5.3.1. If (F, F̃) is a completion pair, then |F| = |F̃|, (p, q) ∈ F if and only if pq ∈ F̃,
and (p, q) ∈ F ∪ E if and only if pq ∈ F̃ ∪ Ẽ.

Proof of Claim: First note that, by construction, F contains only arcs from vertices in
P to vertices in Q. This together with the definition F̃ = {pq | (p, q) ∈ F} clearly
implies (p, q) ∈ F if and only if pq ∈ F̃ and thus |F| = |F̃|. By construction of our
reduction we have (p, q) ∈ E if and only if pq ∈ Ẽ and thus also (p, q) ∈ E ∪ F if
and only if pq ∈ Ẽ ∪ F̃. �

Before we continue, observe that, for every pair of independent edges p1q1, p2q2 ∈
Ẽ, the subgraph of (~G, σ) induced by {p1, p2, q1, q2, w} is an F3-graph. Together with
Lemmas 4.24 and 5.2, this implies that (~G, σ) cannot be a BMG if U is not a chain
graph. Eliminating these induced F3-graphs is closely connected to chain graph
completion. More precisely we will show:

Claim 5.3.2. Let (F, F̃) be a completion pair. If (~G + F, σ) is a BMG, then U′ = (P ∪·
Q, Ẽ ∪ F̃) is a chain graph.
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Proof of Claim: Suppose that (~G + F, σ) is a BMG and assume, for contradiction,
that U′ = (P ∪· Q, Ẽ ∪ F̃) is not a chain graph. The latter and Lemma 5.2 imply
that U′ has two independent edges p1q1, p2q2 ∈ Ẽ ∪ F̃. Thus p1q2, p2q1 /∈ Ẽ ∪ F̃.
The latter arguments and Claim 5.3.1 imply that (p1, q1), (p2, q2) ∈ E ∪ F and
(p1, q2), (p2, q1) /∈ E ∪ F. Since moreover (p1, w), (p2, w) and σ(p1) = σ(p2) 6=
σ(q1) = σ(q2) = σ(w), it follows that the five distinct vertices p1, p2, q1, q2, w in-
duce an F3-graph in (~G + F, σ). By Lemma 4.24, (~G + F, σ) cannot be a BMG; a
contradiction. �

The converse is also true:

Claim 5.3.3. Let (F, F̃) be a completion pair for U = (P ∪· Q, Ẽ), and suppose U′ =
(P ∪· Q, Ẽ ∪ F̃) is a chain graph. Then (~G + F, σ) is a BMG.

Proof of Claim: By Thm. 4.7, (~G + F, σ) is a 2-colored BMG if and and only if it is
sink-free and does not contain an induced F1-, F2-, or F3-graph. Since (~G, σ) is
sink-free, this is also true for (~G + F, σ). Thus it suffices to show that (~G + F, σ)
does not contain an induced F1-, F2-, or F3-graph.

Suppose that (~G + F, σ)[u, u′, v, v′] is an induced F1-graph. Let H be a subgraph
of (~G + F, σ)[u, u′, v, v′] that is isomorphic to the essential F1-graph, that is, the F1-
graph as specified in Fig. 19 that contains only the solid-lined arcs and none of
the dashed arcs while all other non-arcs remain non-arcs. In this case, there is an
isomorphism ϕ from H to the essential F1-graph with vertex-labeling as in Fig. 19.
Hence, ϕ(u) corresponds to one of the vertices x1, x2, y1 or y2. To simplify the
presentation we will say that, in this case, “u plays the role of ϕ(u) in an F1-graph”.

The latter definition naturally extends to F2- and F3-graphs and we will use analo-
gous language for F2- and F3-graphs. Note, in the latter definition, it is not required
that σ(u) = σ(ϕ(u)). Nevertheless, for a, b ∈ {u, u′, v, v′}with σ(a) 6= σ(b) it always
holds, by construction, that σ(ϕ(a)) 6= σ(ϕ(b)).

In the following, an in- or out-neighbor of a vertex is just called neighbor. A flank
vertex in an F1-, F2-, resp., F3-graph is a vertex that has only a single neighbor in the
essential F1-, F2-, resp., F3-graph. To be more precise, when referring to Fig. 19, the
flank vertices in an F1-graph and F2-graph are x1 and y2, while the flank vertices in
an F3-graph are y1 and y2.

Since (F, F̃) is a completion pair, by definition, F adds only arcs from P to Q. Hence,
each of the vertices in R∪ {b} has a single neighbor in (~G + F, σ) irrespective of the
choice of F. Therefore, if u ∈ R ∪ {b} is contained in an induced F1-, F2-, or F3-
graph in (~G, σ) or (~G + F, σ), it must be a flank vertex. Observe first that b can
only play the role of y2 in the F1- or F2-graph, since otherwise, the fact that w is the
single neighbor of b in (~G, σ) or (~G + F, σ) implies that w must play the role of y1
in the F1- or F2-graph, which is not possible since b is the single out-neighbor of w
and F does not affect w. By similar arguments, none of the vertices in R ∪ {b} can
play the role of x1 in an F1- or F2-graph, or the role of y1 or y2 in an F3-graph in
(~G, σ) or (~G+ F, σ). The vertex w has only in-arcs from the elements in P and from b.
Likewise, the vertices qi ∈ Q have only in-arcs from P and from their corresponding
vertex ri ∈ R. Therefore and since all elements in P have only out-neighbors, it is
an easy task to verify that none of the vertices in R ∪ {b} can play the role of y2 in
an F1- or F2-graph. Thus none of the vertices in R ∪ {b} is part of an induced F1-,
F2-, or F3-graph.

Thus it suffices to investigate the subgraph (~G′, σ) of (~G + F, σ) induced by {w} ∪
P ∪ Q for the presence of induced F1-, F2-, and F3-graphs. In ~G′, none of the
vertices in {w} ∪Q have out-neighbors since F ⊆ P×Q does not affect w and does
not contain arcs from qi ∈ Q to any other vertex. Thus, none of the vertices in
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{w} ∪ Q can play the role of x1, y1 or y2 in an F1-, the role of x1, y1 or x2 in an
F2-graph, or the role of x1 or x2 in an F3-graph. Since {w} ∪ Q has only in-arcs
from P, and P has no in-arcs in ~G′, none of the vertices in {w} ∪Q can play the role
of x2 in an F1-graphs or the role of y2 in an F2-graph. Thus none of the vertices in
{w} ∪Q is part of an induced F1- or F2-graph. Hence, any induced F1- or F2-graph
must be contained in ~G′[P]. However, all vertices of P are colored black, and hence
(~G′[P], σ|P) cannot harbor an induced F1- or F2-graph.

Suppose (~G′, σ) contains an induced F3-graph. Then there are five pairwise dis-
tinct vertices x1, x2, y1, y2, y3 ∈ {w} ∪ P ∪ Q with coloring σ(x1) = σ(x2) 6=
σ(y1) = σ(y2) = σ(y3) satisfying (x1, y1), (x2, y2), (x1, y3), (x2, y3) ∈ E ∪ F and
(x1, y2), (x2, y1) /∈ E ∪ F. Since P has no in-arcs in (~G′, σ), it must hold that
y1, y2, y3 /∈ P. Since σ({w} ∪ Q) 6= σ(P) and (~G′, σ) is properly 2-colored, we have
x1, x2 ∈ P. Since w has in-arcs from all vertices in P and (x1, y2), (x2, y1) /∈ E ∪ F,
vertex w can neither play the role of y1 nor of y2 in an F3-subgraph. Thus, y1, y2 ∈ Q.
Claim 5.3.1 therefore implies x1y1, x2y2 ∈ Ẽ ∪ F̃ and x1y2, x2y1 /∈ Ẽ ∪ F̃. Hence, U′

contains a pair of independent edges. By Lemma 5.2, it follows that U′ is not a
chain graph; a contradiction. �

Together, Claims 5.3.2 and 5.3.3 imply that (~G + F, σ) is a BMG if and only if
U′ = (P ∪· Q, Ẽ ∪ F̃) is a chain graph; see Fig. 28 for an illustrative example.

Claim 5.3.4. If F is a minimum-sized arc completion set such that (~G + F, σ) is a BMG,
then F ⊆ P×Q.

Proof of Claim: Let F be an arbitrary minimum-sized arc completion set, i.e., (~G +

F, σ) is a BMG, and put F′ := F ∩ (P × Q) and let (F′, F̃′) be the corresponding
completion pair.

If F′ = F, there is nothing to show. Otherwise, we have |F′| < |F| and minimal-
ity of |F| implies that (~G + F′, σ) is not a BMG. By contraposition of Claim 5.3.3,
we infer that U′ = (P ∪· Q, Ẽ ∪ F̃′) is not a chain graph. Hence, Lemma 5.2
implies that U′ contains a set of independent edges p1q1, p2q2 ∈ Ẽ ∪ F̃′ and
p1q2, p2q1 /∈ Ẽ ∪ F̃′. By Claim 5.3.1, it follows that (p1, q1), (p2, q2) ∈ E ∪ F′ and
(p1, q2), (p2, q1) /∈ E ∪ F′. Since F′ ⊂ F, we have (p1, q1), (p2, q2) ∈ E ∪ F. Fur-
thermore, from (p1, q2), (p2, q1) ∈ P × Q and F′ = F ∩ (P × Q), we conclude
that (p1, q2), (p2, q1) /∈ E ∪ F. By construction of our reduction and since we
only insert arcs, we have (p1, w), (p2, w) ∈ E ∪ F. Together with the coloring
σ(p1) = σ(p2) 6= σ(q1) = σ(q2) = σ(w), the latter arguments imply that (~G + F, σ)
contains an induced F3-graph. By Lemma 4.24, this contradicts that (~G + F, σ) is a
BMG. �

Now, let (F, F̃) be a completion pair such that |F̃| ≤ k and F̃ is a minimum-sized
edge completion set for U. Thus U′ = (P ∪· Q, Ẽ ∪ F̃) is a chain graph. Hence,
Claim 5.3.3 implies that (~G + F, σ) is a BMG. Since |F| = |F̃| ≤ k, it follows that
2-BMG Completion with input (~G, σ, k) has a yes-answer if CGC with input (U =
(P ∪· Q, Ẽ), k) has a yes-answer.

Finally, let F be a minimum-sized arc completion set for (~G, σ), i.e. (~G + F, σ) is a
BMG, and assume |F| ≤ k. This and Claim 5.3.4 implies F ⊆ P× Q. For the corre-
sponding completion pair (F, F̃) we have |F̃| = |F| ≤ k. Moreover, since (~G + F, σ)
is a BMG, Claim 5.3.2 implies that U = (P ∪· Q, Ẽ ∪ F̃) is a chain graph. Therefore,
CGC with input (U = (P ∪· Q, Ẽ), k) has a yes-answer if 2-BMG Completion with
input (~G, σ, k) has a yes-answer. This completes the proof.

The reduction employed in the proof of Thm. 5.3 can be adapted to show
that the 2-BMG CBEG problem is hard. In particular, neither the original
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Fig. 28. An example solution for CGC, resp., 2-BMG Completion as constructed
in the proof of Thm. 5.3. A tree (T, σ) that explains the resulting BMG is shown
on the right. Here, we have k = 4 edge, resp., arc additions (indicated by dashed-
gray lines) to obtain a chain graph, resp., 2-BMG. The indices of the vertices in
P = {p1, . . . , p|P|} are chosen w.r.t. the order l on P i.e. i < j if and only if pi l pj
and thus, N(pi) ⊆ N(pj). In this example, we have N(p1) ∩ Q = ∅. Moreover, the
vertex q1 has no neighbor in P.

graph construction in the reduction nor the (optimally) modified version con-
tain hourglasses. Hence, we have

Corollary 5.2. 2-BMG CBEG is NP-complete.

Proof. By Cor. 4.10, binary-explainable BMGs can be recognized in polynomial time.
Therefore, 2-BMG CBEG is contained in the class NP.

To show hardness of the problem, we use the same reduction from CGC and
the same arguments as in the proof of Thm. 5.3. In addition, we observe that the
hourglass [xy↘↗ x′y′] contains the bidirectional arcs (x, y) and (y, x) and each of the
two vertices x and y has two out-neighbors, and thus, also at least two out-neighbors
in every digraph that contains the hourglass as an induced subgraph.

We have to show that CGC with input (U = (P ∪· Q, Ẽ), k) has a yes-answer if and
only if 2-BMG CBEG with input (~G, σ, k) as constructed in the proof of Thm. 5.3 has
a yes-answer. Recall that by Claims 5.3.2 and 5.3.3, (~G + F, σ) is a BMG if and only
if U′ = (P ∪· Q, Ẽ ∪ F̃) is a chain graph, where (F, F̃) is a completion pair. Moreover,
by Claim 5.3.4, every minimum-sized arc completion set F for which (~G + F, σ) is a
BMG satisfies F ⊆ P × Q. Therefore, we can again argue via minimal completion
pairs (F, F̃) to conclude that, both in the if - and in the only-if -direction, we have a
2-BMG (~G + F, σ) with F ⊆ P × Q, i.e., we only inserted arcs from P to Q. Using
Fig. 28, it is now easy to verify that every bidirectional pair of arcs in (~G + F, σ) is
either incident to the vertex b or to one of the vertices in R. Moreover, every vertex
in R ∪ {b} has exactly one out-neighbor. The latter two arguments together with the
observation that hourglasses require bidirectional arcs (x, y), (y, x) such that both
x and y have at least two out-neighbors imply that (~G + F, σ) must be hourglass-
free. Therefore, (~G + F, σ) is binary-explainable by Prop. 4.8, which completes the
proof.

In summary, all three variants of 2-BMG modification problems as well as
their beBMG counterparts are NP-complete.

However, we will now turn to an interesting restriction of the 2-BMG CBEG
problem, namely the completion of a 2-colored digraph that is already a BMG
to a binary-explainable BMG, which we will show to have a unique optimal
solution that can be constructed in polynomial time. To this end, we start
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with the following result which holds for BMGs and their completions to
beBMGs with an arbitrary number of colors.

Lemma 5.3. Let (~G′, σ) be a completion of a BMG (~G, σ) to a beBMG, and let
[xy ↘↗ x′y′] be an induced hourglass in (~G, σ). Then (~G′, σ) contains both arcs
(x′, y) and (y′, x).

Proof. As a direct consequence of Obs. 4.2, the subgraphs of a BMG induced by all
vertices with any two given colors is a 2-BMG. Since (~G′, σ) is a (binary-explainable)
BMG, all of its 2-colored induced subgraphs are therefore 2-BMGs. By assumption,
(~G, σ) is not binary-explainable since it contains the hourglass [xy ↘↗ x′y′] as an
induced subgraph (cf. Prop. 4.8). The hourglass contains all possible arcs between
vertices of different colors except (x′, y) and (y′, x). Since (~G′, σ) contains no hour-
glass, and ~G′ is a completion of ~G, i.e., E(~G) ⊆ E(~G′), we conclude that (~G′, σ)
contains at least one of the arcs (x′, y) and (y′, x).

Assume for contradiction that, w.l.o.g., (~G′, σ) only contains (x′, y). We have
(y′, x′), (y, x) ∈ E(~G′) and σ(y′) = σ(y) 6= σ(x′) = σ(x) by the definition of hour-
glasses, and by assumption (x′, y) ∈ E(~G′) and (y′, x) /∈ E(~G′). Hence, the four
vertices x, x′, y, y′ induce an F2-graph in (~G′, σ). By Thm. 4.7, the 2-colored subgraph
of (~G′, σ) induced by the two colors σ(x) and σ(y) is not a BMG. Consequently,
(~G′, σ) is not a BMG either; a contradiction. Hence, (~G′, σ) contains both arcs (x′, y)
and (y′, x).

For the following, recall the definition of support leaves (Def. 4.15) and that
every inner vertex u of the LRT of a 2-BMG (~G, σ), with the possible exception
of the root ρ, has a non-empty set of support leaves Su, and Sρ 6= ∅ if and
only if (~G, σ) is connected (Lemma 4.28).

Definition 5.3. Let (T, σ) be a tree with a 2-colored leaf set, i.e., |σ(L(T))| = 2.
Denote by (Tc, σ) the collapsed tree obtained from (T, σ) by contraction of all inner
edges in T(u) for all u ∈ V0(T) that have support leaves of both colors.

In other words, the collapsed tree (Tc, σ) is obtained from (T, σ) by collaps-
ing every subtree T(u) to a star if u has support leaves of both colors.

Lemma 5.4. The collapsed tree (Tc, σ) of (T, σ) is uniquely defined and can be
computed from (T, σ) in O(|V(T)|)-time.

Proof. The collapsed tree (Tc, σ) is well-defined because whenever v ≺T u, then
collapsing the subtree T(v) to a star does not change the set of support leaves Su.
Similarly, collapsing T(v) if v is not ≺T-comparable with u does not change Su.
Thus (Tc, σ) is uniquely defined. To see that (Tc, σ) can be computed in O(|V(T)|)
operations, we observe that it suffices to collapse all subtrees T(u) such that u ∈
V0(T) has support leaves of both colors and there is no u′ ≺T u with this property,
i.e., u is �T-maximal in that sense. These vertices u for which T(u) is replaced by a
star are found by a top-down traversal of T and evaluating |σ(Su)|, all of which can
be computed in linear total time.

As an immediate consequence of the uniqueness of (Tc, σ) and the con-
struction in the second part of the proof of Lemma 5.4, we obtain

Corollary 5.3. The collapsed tree ((Tc)c, σ) of a collapsed tree (Tc, σ) satisfies
(Tc)c = Tc.
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Lemma 5.5. If (Tc, σ) is the collapsed tree of an LRT (T, σ) with 2-colored leaf set,
then ~G(Tc, σ) is binary-explainable.

Proof. Since the collapsed tree (Tc, σ) is obtained from the LRT (T, σ) by contraction
of edges, Prop. 4.2 implies that (Tc, σ) is also least resolved. Now suppose, for
contradiction, that ~G(Tc, σ) is not binary-explainable. By, Prop. 4.9(3), (Tc, σ) has a
vertex u ∈ V0(Tc) with three distinct children v1, v2, and v3 and two distinct colors r
and s satisfying (i) r ∈ σ(L(Tc(v1))), r, s ∈ σ(L(Tc(v2))), and s ∈ σ(L(Tc(v3))), and
(ii) s /∈ σ(L(Tc(v1))), and r /∈ σ(L(Tc(v3))). Since (~G, σ) is only 2-colored, the latter
arguments imply that |σ(L(Tc(v1)))| = |σ(L(Tc(v3)))| = 1 and |σ(L(Tc(v2))| = 2.
Since moreover (Tc, σ) is least resolved and none of the vertices v1, v2, and v3 is the
root of Tc, we can apply Lemma 4.26 to conclude that v1 and v2 are leaves, and that
v3 is an inner vertex, respectively. In particular, σ(v1) = r 6= s = σ(v3). Hence, Tc(u)
is not a star tree and u has support leaves of both colors in Tc; a contradiction to its
construction. Therefore, we conclude that ~G(Tc, σ) is binary-explainable.

Theorem 5.4. The optimization version of 2-BMG CBEG with a 2-BMG (~G, σ)

as input has the unique solution F := E(~G(Tc, σ)) \ E(~G), where (Tc, σ) is the
collapsed tree of the LRT (T, σ) of (~G, σ).

Proof. First note that the optimization version of 2-BMG CBEG always has a solution.
To see this, consider the complete bipartite and properly 2-colored digraph (~G′, σ)
with vertex set V(~G). This digraph is explained by the star tree with leaf set V(~G).
Moreover, (~G′, σ) is clearly hourglass-free since hourglasses require non-arcs (be-
tween vertices of distinct colors). By Prop. 4.8, the BMG (~G′, σ) is binary-explainable.

Now consider the collapsed tree (Tc, σ) of (T, σ). Since Tc is obtained from T
by contraction of inner edges, Lemma 4.7 implies (~G, σ) = ~G(T, σ) ⊆ ~G(Tc, σ) =:
(~G∗, σ). Furthermore, (~G∗, σ) is binary-explainable by Lemma 5.5. Therefore, (~G∗, σ)
is a valid completion of (~G, σ) to a beBMG.

We continue by showing the existence of certain arcs in every (not necessarily op-
timal) completion (~G′, σ) of (~G, σ) to a beBMG. To this end, consider a �T-maximal
vertex u such that the subtree T(u) is not a star tree and u has support leaves Su of
both colors in T. We will make frequent use of the fact that E(~G) ⊆ E(~G′). We con-
sider the following cases in order to show that all arcs between vertices x, y ∈ L(T(u))
with σ(x) 6= σ(y) exist in (~G′, σ):

(i) x, y ∈ Su,

(ii) x ∈ L(T(u)) \ Su and y ∈ Su, and

(iii) x, y ∈ L(T(u)) \ Su.

In Case (i), the leaves x and y are both children of u. Together with Cor. 4.14, this
implies (x, y), (y, x) ∈ E(~G) ⊆ E(~G′).

In Case (ii), we can find a vertex x′ ∈ Su of color σ(x) since Su contains ver-
tices of both colors. As in Case (i), we have (x′, y), (y, x′) ∈ E(~G) ⊆ E(~G′).
Since x ∈ L(T(u)) \ Su, we can conclude that v := parT(x) ≺T u by the defi-
nition of support leaves. Hence, the inner vertex v is not the root of T and we
can apply Cor. 4.13 to conclude that the subtree T(v) of the inner vertex v con-
tains both colors. The latter together with Lemma 4.3 implies that there are arcs
(x′′, y′′), (y′′, x′′) ∈ E(~G) ⊆ E(~G′) with x′′, y′′ ∈ L(T(v)) and σ(x) = σ(x′′) 6=
σ(y) = σ(y′′). Note that x = x′′ is possible. Since x, x′′, y′′ in L(T(v)) ⊂ L(T(u)),
x′, y ∈ L(T(u)) \ L(T(v)) and v ≺T u, we can apply Lemma 4.27 to conclude that
(x′, y′′), (y, x), (y, x′′) ∈ E(~G) ⊆ E(~G′) and (y′′, x′), (x, y), (x′′, y) /∈ E(~G) ⊆ E(~G′).
Together with (x′, y), (y, x′), (x′′, y′′), (y′′, x′′) ∈ E(~G) and the coloring, this implies
that x′, y, x′′, y′′ induce an hourglass [x′y ↘↗ x′′y′′] in (~G, σ). By Lemma 5.3, we have
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arcs (x′′, y), (y′′, x′) ∈ E(~G′). If x = x′′, we immediately obtain (x, y), (y, x) ∈ E(~G′).
Now suppose x 6= x′′, i.e., it remains to show that (x, y) ∈ E(~G′). Thus assume,
for contradiction, that (x, y) /∈ E(~G′). Lemma 4.27 together with σ(x) 6= σ(y′′) and
y′′ ∈ L(T(parT(x) = v)) implies that (x, y′′) ∈ E(~G) ⊆ E(~G′). Hence, we have the
arcs (x, y′′), (y′′, x′), (x′, y) ∈ E(~G′) but (x, y) /∈ E(~G′), i.e., x, x′, y, y′′ induce a for-
bidden F2-graph. Together with Thm. 4.7, this is a contradiction to (~G′, σ) being a
2-BMG. Therefore, we conclude that (x, y) ∈ E(~G′).

In Case (iii), we have x, y ∈ L(T(u)) \ Su. We can find two vertices x′, y′ ∈ Su,
which are distinct from x and y and satisfy σ(x) = σ(x′) 6= σ(y) = σ(y′). From
Cases (i) and (ii), we obtain (x′, y′), (y′, x′) ∈ E(~G′) and (x′, y), (y, x′), (x, y′), (y′, x) ∈
E(~G′), respectively. Now assume for contradiction that (x, y) /∈ E(~G′). Thus, we have
(x, y′), (y′, x′), (x′, y) ∈ E(~G′) and (x, y) /∈ E(~G′), i.e., x, x′, y, y′ induce a forbidden F2-
graph in (~G′, σ); a contradiction to (~G′, σ) being a 2-BMG. Hence, we conclude that
(x, y) ∈ E(~G′). The existence of the arc (y, x) ∈ E(~G′) can be shown by analogous
arguments.

We will now show that E(~G∗) ⊆ E(~G′) for every (not necessarily optimal) com-
pletion (~G′, σ) of the 2-BMG (~G, σ) to a beBMG. To this end, consider an arbitrary
arc (x, y) ∈ E(~G∗). If (x, y) ∈ E(~G), then (x, y) ∈ E(~G′) follows immediately. Now
assume that (x, y) ∈ F = E(~G∗) \ E(~G). Since (~G, σ) is a 2-BMG and thus properly-
colored and sink-free (cf. Thm. 4.7), there must be a vertex y′ of color σ(y) such
that (x, y′) ∈ E(~G). Since (x, y) /∈ E(~G), we have lcaT(x, y′) ≺T lcaT(x, y) and thus
the LRT (T, σ) displays the triple xy′|y. However, (x, y), (x, y′) ∈ E(~G∗) implies that
(Tc, σ) does not display the triple xy′|y, i.e., all edges on the path from lcaT(x, y′)
to lcaT(x, y) have been contracted. Therefore, there is a �T-maximal inner vertex
u ∈ V0(T) such that x, y ∈ L(T(u)), T(u) is not a star tree and u has support leaves
of both colors in T. By the arguments above, we can conclude that (x, y) ∈ E(~G′).

In summary, F is a solution for 2-BMG CBEG with the 2-BMG (~G, σ) (and some
integer k ≥ |F|) as input, and F ⊆ F′ for every other solution F′ = E(~G′) \ E(~G).
Therefore, we conclude that F is the unique optimal solution.

As a direct consequence of Thm. 5.4, the fact that LRTs can be constructed
in O(|V|+ |E| log2 |V|) (cf. Thm. 4.10) and Lemma 5.4, we have

Corollary 5.4. 2-BMG CBEG with a 2-BMG as input can be solved in O(|V| +
|E| log2 |V|) time.

We also immediately obtain a characterization of the LRTs of 2-beBMGs.

Corollary 5.5. A 2-colored least resolved tree (T, σ) is the LRT of 2-beBMG if and
only if it is a collapsed tree.

In contrast to the 2-colored case, `-BMG CBEG with a BMG as input and
` ≥ 3 in general does not have a unique optimal solution. In the example in
Fig. 29, the missing arcs (a2, b1) and (b2, a1) in the induced hourglass [a1b1 ↘↗
a2b2] must be inserted (cf. Lemma 5.3). The resulting digraph is not a BMG.
To obtain a BMG, it suffices to insert in addition either the arc (c, a1) or the
arc (c, b1) to obtain a beBMG. (cf. Prop. 4.9).

The simple solution of 2-BMG CBEG begs the question whether other arc
modification problems for beBMGs, in particular the corresponding deletion
and editing problems, have a similar structure. This does not seem to be case,
however. Neither 2-BMG EBEG nor 2-BMG DBEG with a 2-BMG as input
have a unique optimal solution. To see this, consider the 2-BMG consisting of
the hourglass [xy ↘↗ x′y′] which is explained by the unique non-binary tree
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Fig. 29. Example for 3-BMG CBEG with the 3-BMG (~G, σ) (explained by the LRT
(T, σ)) as input that has no unique optimal solution. Insertion of the missing arcs
(a2, b1) and (b2, a1) produces a digraph that is not a BMG. At least one of the arcs
(c, a1) or (c, b1) has to be inserted additionally to obtain the beBMGs (~G1, σ) and
(~G2, σ) (shown with their LRTs (T1, σ) and (T2, σ)), respectively.

(x, y, (x′, y′)) (in Newick format, see also Fig. 13). Deletion of the arcs (x, y) or
(y, x) results in a digraph that is explained by the binary trees (y, (x, (x′, y′)))
or (x, (y, (x′, y′))), respectively. We suspect that a BMG as input does not
make these problems easier than the general case – the complexity of which
remains an open questions, however.

5.3 complexity of `-bmg modification problems

We now turn to the graph modification problems for an arbitrary number `

of colors. The proof of the next theorem follows the same strategy of adding
hub-vertices as in [137].

Theorem 5.5. `-BMG Deletion, `-BMG Completion, and `-BMG Editing are
NP-complete for all ` ≥ 2.

Proof. BMGs can be recognized in polynomial time by Cor. 4.6 and thus, all three
problems are contained in the class NP. Let (~G = (V, E), σ) be a properly colored
digraph with ` colors. Thm. 5.2, Cor. 5.1 and Thm. 5.3 state NP-completeness for the
case of ` = 2 colors. Thus assume ` ≥ 3 in the following.

By slight abuse of notation, we collectively refer to the three problems `-BMG
Deletion, `-BMG Completion, and `-BMG Editing simply as `-BMG Modifica-
tion. Correspondingly, we write (~G � F, σ) and distinguish the three problems by
the modification operation � ∈ {−,+,4}, where � = −, � = + and � = 4
specifies that F is a deletion-, completion, or edit set, respectively.

We use reduction from 2-BMG Modification. To this end, let (~G2 = (V2, E2), σ2, k)
be an instance of one of the latter three problems. To obtain a properly colored
digraph (~G` = (V`, E`), σ`) with ` colors, we add to ~G2 a set VH of `− 2 new vertices
with pairwise distinct colors that also do not share any colors with the vertices in
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(~G2, σ2). Moreover, we add arcs such that every h ∈ VH becomes a hub-vertex. Note
that V` = V2 ∪· VH , ~G`[V2] = ~G2, and (σ`)|V2

= σ2. Furthermore, V2 is a subset of V`

satisfying the condition in Obs. 4.2, i.e., V2 =
⋃

s∈S2
V`[s] for the color set S2 in (~G2, σ2).

Clearly, the reduction can be performed in polynomial time. We proceed by showing
that an instance (~G2, σ2, k) of the respective 2-BMG Modification problem has a yes-
answer if and only if the corresponding instance (~G`, σ`, k) of `-BMG Modification

has a yes-answer.
Suppose that 2-BMG Modification with input (~G2, σ2, k) has a yes-answer. Then

there is an arc set F ⊆ V2 × V2 \ {(v, v) | v ∈ V2} with |F| ≤ k such that
(~G2 � F, σ2) is a BMG. Let (T2, σ2) be a tree with root ρ explaining (~G2 � F, σ2).
Now take (T2, σ2) and add the vertices in VH as leaves of the root ρ and color
these leaves as in (~G`, σ`), to obtain the tree (T`, σ`). By construction, we have
L(T`) = V` = V2 ∪ VH and T2 = (T`)|V2

, where (T`)|V2
is the restriction of

T` to the leaf set V2. The latter arguments together with Obs. 4.2 imply that
(~G(T`, σ`)[V2], (σ`)|V2

) = ~G((T`)|V2
, (σ`)|V2

) = ~G(T2, σ2) = (~G2 � F, σ2).
Let h ∈ VH be arbitrary. Since h is the only vertex of its color, (x, h) is an arc in

~G(T`, σ`) for every x ∈ V` \ {h}. Since h is a child of the root, we have moreover
lcaT`(x, h) = ρ, and thus, (h, x) is an arc in ~G(T`, σ`) for every x ∈ V` \ {h}. The latter
two arguments imply that h is a hub-vertex in ~G(T`, σ`). Since F is not incident to
any vertex in V` \ V2 = VH and each vertex h ∈ VH is a hub-vertex in (~G`, σ`) and
in ~G(T`, σ`), we conclude that ~G(T`, σ`) = (~G` � F, σ`). Hence, (~G` � F, σ`) is a BMG
and the corresponding `-BMG Modification problem with input (~G`, σ`, k) has a
yes-answer.

For the converse, suppose that `-BMG Modification with input (~G`, σ`, k) has a
yes-answer. Thus, there is an arc set F ⊆ V` × V` \ {(v, v) | v ∈ V`} with |F| ≤ k
such that (~G` � F, σ`) is a BMG. Let (T`, σ`) be a tree explaining (~G` � F, σ`). Let
F′ ⊆ F be the subset of arc modifications (x, y) for which x, y ∈ V2. Thus, it
holds |F′| ≤ |F| ≤ k. By construction, (~G` � F)[V2] = ~G`[V2] � F′. Moreover, by
Obs. 4.2, we have (~G(T`, σ`)[V2], (σ`)|V2

) = ~G((T`)|V2
, (σ`)|V2

). In summary, we obtain
(~G2 � F′, σ2) = (~G`[V2]� F′, σ2) = ((~G` � F)[V2], (σ`)|V2

) = (~G(T`, σ`)[V2], (σ`)|V2
) =

~G((T`)|V2
, (σ`)|V2

). Thus, (~G2 � F′, σ2) is a BMG. Together with |F′| ≤ k, this implies
that 2-BMG Modification with input (~G2, σ2, k) has a yes-answer.

As in the 2-colored case, we can reuse the reduction to show that `-BMG
DBEG/CBEG/EBEG are all NP-complete.

Corollary 5.6. `-BMG DBEG, `-BMG CBEG and `-BMG EBEG are NP-complete
for all ` ≥ 2.

Proof. By Cor. 4.10, binary-explainable BMGs can be recognized in polynomial time.
Therefore, all three problems are contained in the class NP. Cor. 5.1, Cor. 5.2 and
Thm. 5.2 state NP-completeness for the case ` = 2. Thus, it remains to show NP-
hardness for the case ` ≥ 3.

We use a reduction from 2-BMG DBEG/CBEG/EBEG and the same polynomial-
time construction as in the proof of Thm. 5.5, i.e., we construct an `-colored digraph
(~G` = (V`, E`), σ`) from a 2-colored digraph (~G2 = (V2, E2), σ2) by adding a hub-
vertex of ` − 2 pairwise distinct new colors. As before, we write (~G � F, σ) and
distinguish the three problems by the modification operation � ∈ {−,+,4}, where
� = −, � = + and � = 4 specifies that F is a deletion-, completion, or edit set,
respectively. We proceed by showing that an instance (~G2, σ2, k) of the respective 2-
BMG DBEG/CBEG/EBEG problem has a yes-answer if and only if the corresponding
instance (~G`, σ`, k) of `-BMG DBEG/CBEG/EBEG has a yes-answer.
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First suppose that 2-BMG DBEG/CBEG/EBEG with input (~G2, σ2, k) has a solution
F ⊆ V2 × V2 \ {(v, v) | v ∈ V2} with |F| ≤ k such that (~G2 � F, σ2) is a binary-
explainable BMG. By Prop. 4.8, (~G2 � F, σ2) is hourglass-free. Since (~G2 � F, σ2) is in
particular a BMG, we can use the same arguments as in the proof of Thm. 5.5 to
conclude that (~G` � F, σ`) is a BMG. Now observe that an hourglass contains two
vertices of each of its two colors. Therefore and since every vertex in VH = V` \ V2
is the only vertex of its color, none the vertices in VH is part of an induced subgraph
of (~G` � F, σ`) that is an hourglass. Hence, all hourglasses of (~G` � F, σ`) must be
part of the induced subgraph ((~G` � F)[V2], (σ`)|V2

). This together with the facts
that ((~G` � F)[V2], (σ`)|V2

) = (~G2 � F, σ2) and (~G2 � F, σ2) is hourglass-free implies
that (~G` � F, σ`) must also be hourglass-free. By Prop. 4.8, the BMG (~G` � F, σ`)
is binary-explainable, and hence, `-BMG DBEG/CBEG/EBEG with input (~G`, σ`, k)
has a yes-answer.

For the converse, suppose that `-BMG DBEG/CBEG/EBEG with input (~G`, σ`, k)
has a solution F ⊆ V` × V` \ {(v, v) | v ∈ V`} with |F| ≤ k such that (~G` � F, σ`) is
a binary-explainable BMG. By Prop. 4.8, (~G` � F, σ`) is hourglass-free. As before, let
F′ ⊆ F be the subset of arc modifications (x, y) for which x, y ∈ V2. By the same
arguments as in the proof of Thm. 5.5, we have |F′| ≤ |F| ≤ k and (~G2 � F′, σ2) =
((~G`� F)[V2], (σ`)|V2

) is a BMG. In particular, (~G2� F′, σ2) is an induced subgraph of
(~G` � F, σ`), and thus, hourglass-free. Together with Prop. 4.8, the latter arguments
imply that 2-BMG DBEG/CBEG/EBEG with input (~G2, σ2, k) has a yes-answer.

We note in passing that 2-BMG Deletion and 2-BMG Completion can
be shown to be fixed-parameter tractable (with the number k of edits as pa-
rameter) provided that the input digraph is sink-free. To see this, observe
that sink-free 2-colored digraphs are BMGs if and only if they do not contain
induced F1-, F2-, and F3-subgraphs (cf. Thm. 4.7). The FPT result follows di-
rectly from the observation that all such subgraphs are of fixed size and only
a fixed number of arc deletions (resp., additions) are possible. In the case of
2-BMG Deletion, only those arc deletions are allowed that do not produce
sinks in ~G. Clearly, digraphs remain sink-free under arc addition. It remains
unclear whether 2-BMG Editing is also FPT for sink-free digraphs. One diffi-
culty is that arc deletions may result in a sink-vertex which then needs to be
resolved by subsequent arc additions. It also remains an open question for
future research whether the BMG modification problems for (not necessarily
sink-free) `-colored digraphs are also FPT. We suspect that this is not the case
for ` ≥ 3, where the characterization also requires consistency of the set of in-
formative triples. Since removal of a triple from R(~G, σ) requires the insertion
or deletion of an arc, it seems difficult to narrow down the editing candidates
to a constant-size set. Indeed, Maximum Triple Inconsistency is not FPT
when parametrized by the number k of triples to be excluded [41]. On the
other hand, the special case of Dense Maximum Triple Inconsistency is
FPT [116]. The set of informative triples R(~G, σ), however, is usually far from
being dense.

In summary, we have shown that arc modification problems for BMGs
and beBMG are NP-complete. This is not necessarily an obstacle for using
BMG editing in practical workflows – after all, the computational problems
in phylogenetics all involve several NP-complete steps, including Multiple

Sequence Alignment [86] and the Maximum Parsimony Tree [113] or Max-
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imum Likelihood Tree problems [53]. Nevertheless, highly efficient and ac-
curate heuristics have been devised for these problems, often adjusted to the
peculiarities of real-life data, so that the computational phylogenetics have
become a routine task in bioinformatics. As a starting point to tackling BMG
editing in practice, we will introduce an ILP formulation in the next section
that should be workable at least for moderate-size instances, before turning
to an in-depth investigation of some heuristic algorithms in Sec. 5.5, aiming
to pave the way for larger-scale practical applications.

5.4 ilp formulation of bmg modification problems

Hard graph editing problems can often be solved with integer linear pro-
gramming (ILP) on practically relevant instances. It is of interest, therefore,
to consider an ILP formulation of the BMG deletion, completion and editing
problems and their binary-explainable BMG counterparts considered above.
This section is organized as follows: First, we will describe the encoding of col-
ored digraphs and the objective function together with some constraints that
are relevant for all of the considered general and more special cases of BMG
modification problems. Then we will turn to additional variables and con-
straints needed to solve 2-BMG modification problems (based on Thm. 4.7),
the general `-BMG modification problems (based on Thm. 4.3), and finally
`-BMG DBEG/CBEG/EBEG (based on Thm. 4.4).

As input, we are given an `-colored digraph (~G = (V, E), σ). We encode its
arcs by the binary constants

Exy = 1 if and only if (x, y) ∈ E (10)

for all pairs (x, y) ∈ V×V, x 6= y. The vertex coloring σ is represented by the
binary constant

ςy,s = 1 if and only if σ(y) = s (11)

for all pairs (x, s) ∈ V × σ(V). We will denote the modified digraph as
(~G∗, σ) and encode its arcs by binary variables εxy, i.e., εxy = 1 if and only
if (x, y) ∈ E(~G∗). The aim is to minimize the number of edit operations,
and thus, the symmetric difference between the respective arc sets. This is
represented by the objective function

min ∑
(x,y)∈V×V

(1− εxy)Exy + ∑
(x,y)∈V×V

(1− Exy)εxy (12)

with the first sum counting arc deletions and the second counting insertions.
The same objective function can also be used for the BMG completion and
BMG deletion problem. To ensure that only arcs between vertices of distinct
colors exist, we add the constraints

εxy = 0 for all (x, y) ∈ V ×V with σ(x) = σ(y). (13)

For the BMG completion problem, the arc set E must be contained in the
modified arc set. Hence, we add

Exy ≤ εxy for all (x, y) ∈ V ×V. (14)
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In this case, Eq. (14) ensures that εxy = 1 if Exy = 1 and thus, (x, y) remains
an arc in the modified digraph. In contrast, for the BMG deletion problem, it
is not allowed to add arcs and thus, we use

εxy ≤ Exy for all (x, y) ∈ V ×V. (15)

In this case, Eq. (15) ensures that εxy = 0 if Exy = 0 and thus, (x, y) does
not become an arc in the modified digraph. For the BMG editing problem,
we neither need Constraint (14) nor (15). The characterizations in Thm. 4.7,
4.3 and Thm. 4.4 require that (~G∗, σ) is sf-colored. Eq. 13 already ensures
a proper coloring and thus, it remains to make sure that each vertex has at
least one out-neighbor of every other color. This property translates to the
constraint

∑
y 6=x

εxy · ςy,s > 0 (16)

for all s 6= σ(x).
The O(|V|2) variables and O(|V|2) constraints introduced above are rele-

vant for `-BMG modification problems for an arbitrary ` as well as for the
modification to a binary-explainable BMG. In the following two subsections,
we present additional constraints and variables that are sufficient for the cases
` = 2 and ` ≥ 2, respectively.

5.4.1 2-BMG Modification Problems

By Thm. 4.7, a properly 2-colored digraph is a BMG if and only if it is
sink-free and does not contain an induced F1-, F2-, or F3-graph. Eq. (16) al-
ready guarantees that (~G∗, σ) is sink-free. Hence it suffices to add constraints
that exclude induced F1-, F2-, and F3-graphs. For every ordered four-tuple
(x1, x2, y1, y2) ∈ V4 with pairwise distinct x1, x2, y1, y2 and σ(x1) = σ(x2) 6=
σ(y1) = σ(y2), we require

(F1) εx1y1 + εy1x2 + εy2x2 + (1− εx1y2) + (1− εy2x1) ≤ 4 and (17)

(F2) εx1y1 + εy1x2 + εx2y2 + (1− εx1y2) ≤ 3. (18)

In addition, for every ordered five-tuple (x1, x2, y1, y2, y3) ∈ V5 with pairwise
distinct x1, x2, y1, y2, y3 and σ(x1) = σ(x2) 6= σ(y1) = σ(y2) = σ(y3), we
enforce

(F3) εx1y1 + εx1y3 + εx2y2 + εx2y3 + (1− εx1y2) + (1− εx2y1) ≤ 5. (19)

By construction, we still have O(|V|2) variables but O(|V|5) constraints.
We note that the 2-colored case is handled correctly by the ILP formulation
for the general `-colored case given in the next section. However, the addi-
tional variables required for ` > 2 are not needed here. We note in passing
that, accordingly, we observed a significant speedup when compared to the
application of the general formulation to 2-colored digraphs in a cursory sim-
ulation.
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5.4.2 General `-BMG Modification Problems

For the general `-colored case, we drop Equations (17)–(19), and instead rely
on Thm. 4.3, which requires that the pair (R(~G∗, σ),F(~G∗, σ)) is consistent.
To implement this constraint, we follow the approach of [47] and [133]. Note
that we make no distinction between the two triples ba|c and ab|c. In order
to avoid superfluous variables and symmetry conditions connecting them, we
assume that the first two indices in triple variables are ordered. Thus there are
three triple variables tab|c, tac|b and tbc|a for any three distinct a, b, c ∈ V. We
add constraints such that tab|c = 1 if ab|c is an informative triple (cf. Def. 4.4
and Lemma 4.1) and tab|c = 0 if ab|c is a forbidden triple (cf. Def. 4.8 and
Lemma 4.12). Hence, we add

εxy + (1− εxy′)− txy|y′ ≤ 1 and (20)

εxy + εxy′ + txy|y′ ≤ 2 (21)

for all ordered (x, y, y′) ∈ V3 with three pairwise distinct vertices x, y, y′ and
σ(x) 6= σ(y) = σ(y′). Eq. (20) ensures that if (x, y) is an arc (εxy = 1) and
(x, y′) is not an arc (εxy′ = 0) in the edited digraph, then txy|y′ = 1. To obtain
a BMG, we must ensure that there is a tree that displays all triples in R(~G∗, σ)

and none of the triples in F(~G∗, σ).
A phylogenetic tree T is uniquely determined by its sets of clusters

C(T) := {L(T(v)) | v ∈ V(T)} [271]. Thus, it is possible to reconstruct
T by building the clusters induced by the informative triples while avoid-
ing that forbidden triples are displayed. The set of clusters C(T) forms a
hierarchy, that is, for all p, q ∈ C(T) it holds that p ∩ q ∈ {∅, p, q}. It is
easy to see that, in order to recover T from C(T), it suffices to take into ac-
count only the non-trivial clusters p ∈ C(T) with |p| 6= 1 and p 6= V(T).
The number of non-trivial clusters of T is bounded by L(T) − 2 (cf. [133,
Lemma 1]), where L(T) = V, i.e., the vertex set of the `-colored digraph
(~G = (V, E), σ) given as input. In order to translate the condition that C(T)
forms hierarchy into the language of ILPs, we follow [47, 133]. Let M be a
binary |V| × (|V| − 2) matrix with entries M(x, p) = 1 iff vertex x ∈ V is
contained in cluster p. Each cluster p of the tree TM encoded by M, which is
represented by the p-th column of M, corresponds to an inner vertex vp in T
so that L(T(vp)) = {x | x ∈ V, M(x, p) = 1}. In the following, we identify
column p with the corresponding cluster L(T(vp)).

We next ensure that all informative triples and none of the forbidden triples
ab|c are displayed by TM. This is case if and only if there exists an inner vertex
vp such that a, b ∈ L(T(vp)) and c /∈ L(T(vp)) for every informative triple and
no such vertex exists for any forbidden triple. Therefore, we define, for all
ordered three-tuples (a, b, c) ∈ V3 and all p ∈ {1, . . . , |V| − 2}, the binary
variable m((ab|c), p) and set m((ab|c), p) = 1 iff M(a, p) = M(b, p) = 1 and
M(c, p) = 0, i.e., iff the cluster p contains a and b but not c. The latter can be
achieved by adding, for all these variables, the constraint

0 ≤ −3 ·m((ab|c), p) + M(a, p) + M(b, p) + (1−M(c, p)) ≤ 2. (22)
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Full enumeration of all possible values that can be assigned to M(a, p),
M(b, p) and M(c, p) shows that m((ab|c), p) = 1 if and only if M(a, p) =

M(b, p) = 1 and M(c, p) = 0.
For every informative triple ab|c there must be at least one column p for

which m((ab|c), p) = 1 and for each forbidden triple it must be ensured that
m((ab|c), p) = 0 for all p ∈ {1, . . . , |V| − 2}. This is achieved by adding

tab|c ≤
|V|−2

∑
p=1

m((ab|c), p) ≤ (|V| − 2) · tab|c (23)

for all ordered (a, b, c) ∈ V3 with three pairwise distinct vertices a, b, c and
σ(a) 6= σ(b) = σ(c). If tab|c = 1, then m((ab|c), p) = 1 for at least one p and if

tab|c = 0 then, ∑|V|−2
p=1 m((ab|c), p) ≤ 0 implies that all m((ab|c), p) are put to

0.
Finally, we must ensure that the matrix M indeed encodes the hierar-

chy of a tree. This is the case if all clusters p and q are compatible, i.e.,
if p ∩ q ∈ {p, q, ∅}. Equivalently, two clusters p and q are incompati-
ble if there are vertices a, b and c such that a ∈ p \ q, b ∈ q \ p and
c ∈ p ∩ q, which is represented by the “gametes” (M(a, p), M(a, q)) = (1, 0),
(M(b, p), M(b, q)) = (0, 1) and (M(c, p), M(c, q)) = (1, 1). We avoid such
incompatible clusters by using the so-called three-gamete condition which is
described e.g. in [119] or [133, SI]. To this end, we add for each of the three ga-
metes (Γ, Λ) ∈ {(0, 1), (1, 0), (1, 1)} the binary variables C(p, q, ΓΛ) for every
pair of columns p 6= q. Furthermore, we add the constraints

C(p, q, 01) ≥ −M(a, p) + M(a, q) (24)

C(p, q, 10) ≥ M(a, p)−M(a, q) (25)

C(p, q, 11) ≥ M(a, p) + M(a, q)− 1 (26)

for every pair of columns p 6= q and every a ∈ V. This ensures that
C(p, q, ΓΛ) = 1 whenever M(a, p) = Γ and M(a, q) = Λ holds for at least
one a ∈ V. Finally, we add the constraint

Cp,q,01 + Cp,q,10 + Cp,q,11 ≤ 2 (27)

for every pair of columns p 6= q, in order to ensure the compatibility of
clusters p and q.

In total, this ILP formulation requires O(|V|4) variables and O(|V|4) con-
straints where the most expensive part stems from the variables m((ab|c), p)
and their corresponding constraints (cf. Eq. 22).

5.4.3 Binary-Explainable BMG Modification Problems

For solving the problems `-BMG DBEG, `-BMG CBEG and `-BMG EBEG with
an arbitrary number of colors ` ≥ 2, we also require Eqs. (10)–(16) (depend-
ing on the individual of the three problems as described above). Addition-
ally, we can employ Thm. 4.4, which states that the properly vertex-colored
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digraph (~G∗, σ) is a binary-explainable BMG if and only if (i) (~G, σ) is sf-
colored, and (ii) RB(~G∗, σ) is consistent. Condition (i) is already satisfied by
Eqs. (13) and (16). To implement Condition (ii), i.e., consistency of RB(~G∗, σ),
we follow the approach of [133]. As before, no distinction is made between
two triples ba|c and ab|c, and we assume that the first two indices in triple
variables are ordered, i.e., there are three triple variables tab|c, tac|b and tbc|a
for any three distinct a, b, c ∈ V. We add constraints such that tab|c = 1 if
ab|c ∈ RB(~G∗, σ) (cf. Eq. (7)), i.e.,

εxy + (1− εxy′)− txy|y′ ≤ 1 (28)

εxy + εxy′ − tyy′|x ≤ 1 (29)

for all ordered (x, y, y′) ∈ V3 with three pairwise distinct vertices x, y, y′ and
σ(x) 6= σ(y) = σ(y′). Eq. (28) ensures that if xy|y′ is an informative triple,
i.e., (x, y) is an arc (εxy = 1) and (x, y′) is not an arc (εxy′ = 0) in the edited
digraph, then txy|y′ = 1. Similarly, Eq. (29) ensures that if xy|y′ and xy′|y are
forbidden triples, i.e., εxy = 1 and εxy′ = 1, then tyy′|x = 1. These constraints
allow some degree of freedom for the choice of the binary triple variables. For
example, we may put txy|y′ = 1 also in case (x, y) is not an arc. However, by
Lemma 2.1, for every consistent set of triples R on V, there is a strictly dense
consistent set of triples R′ with R ⊆ R′. We therefore add the constraint

tab|c + tac|b + tbc|a = 1 for all {a, b, c} ∈
(

V
3

)
(30)

that ensures that precisely one of the binary variables representing one of the
three possible triples on three leaves is set to 1. The final set R′ of triples ob-
tained in this manner contains all informative triples but could be larger than
RB(~G, σ). This reflects Thm. 4.5 which states that every binary tree (T′, σ′) ex-
plaining a BMG (~G′, σ′) is a refinement of the BRT (T, σ′). Moreover, note that
the triple set r(T′) of the binary tree T′ is clearly strictly dense. In particular,
we have RB(~G′, σ′) ⊆ r(T) ⊆ r(T′).

To ensure consistency of the triple set, we employ Thm. 1, Lemma 4, and
ILP 5 from [133], which are based on so-called 2-order inference rules and
add

2tab|c + 2tad|b − tbd|c − tad|c ≤ 2 for all {a, b, c, d} ∈
(

V
4

)
. (31)

In summary, we require O(|V|3) variables and O(|V|4) conditions, where
the most expensive parts are the triple variables tab|c and the 2-order in-
ference rules in Eq. (31). For comparison, the general approach above re-
quires O(|V|4) variables and conditions. Due to the lower number of pos-
sible choices for the variables, we expect the ILP solution for the binary-
explainable-restricted case to run (at least moderately) faster.

5.4.4 Remarks on the Running Time

We tested all three versions of BMG editing, i.e., the 2-colored, the general `-
colored and the binary-explainable-restricted `-colored approach, using IBM
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ILOG CPLEX™ Optimizer 12.10 [154] and Gurobi Optimizer 9.0 [118], and
applied them to randomly disturbed 2-BMGs, BMGs in general and binary-
explainable BMGs. Without further optimization, instances with ` ≥ 3 colors
are very demanding and already problems with ten vertices may take a few
hours on a desktop system. The 2-colored version (requiring only O(|V|2)
variables) on the other hand, handles instances with 20 vertices in about a
minute. Not surprisingly, the version for beBMG editing also outperforms
the general `-colored version in terms of speed. However, it was only able
to process instances of up to 15 vertices in about a minute. We note that if
one aims to obtain a beBMG from a 2-colored digraph, one could amend the
general 2-colored version in Sec. 5.4.1 by additional O(|V|4) constraints that
forbid hourglasses in the editing result (~G∗, σ), which may lead to a slight
speed-up for this special case.

5.5 heuristics of best match graph editing

In the previous sections, we have seen that the arc modification problems for
BMGs are all NP-complete in general, and provided ILP solutions allowing
exact solutions for small instances. However, in computational biology, ap-
plications to large gene families would be of particular interest, creating the
need for faster, approximate solutions for BMG editing. Before embarking
to develop software for a BMG-based analysis of large sequence data sets,
we need to understand whether the editing problem for BMGs is tractable in
practice with sufficient accuracy and for interestingly large instances.

Motivated by both theoretical and practical considerations, we are mainly
interested in heuristics that are consistent in the sense that they leave input di-
graphs (~G, σ) that are already BMGs unchanged. More precisely, the heuristic
algorithms considered in this section can be thought of as maps A on the set
of finite vertex-colored digraphs such that A(~G, σ) is a BMG for every vertex-
colored input digraph (~G, σ). In particular, the following property of such
algorithms is desirable:

Definition 5.4. A (BMG-editing) algorithm is consistent if A(~G, σ) = (~G, σ)

whenever (~G, σ) is a BMG.

Similarly, we will call a heuristic for the Maximum Rooted Triple Consis-
tency Problem (MaxRTC), see Sec. 5.5.1 below, consistent if it returns the
full set R whenever the input R is already a consistent set of triples.

By Thm. 4.2, the LRT of a BMG (~G = (V, E, σ) can be constructed from its
set of informative triples as Aho(R(~G, σ), V) by means of the BUILD algorithm.
The simplest approach, therefore, is to extract a maximal consistent subset R∗

from R(~G, σ) and to use ~G(Aho(R∗, V), σ) as an approximation, see Sec. 5.5.1.
A more detailed analysis of arcs in (~G, σ) that violate the property of being

a BMG in Sec. 5.5.2, however, will lead to a notion of “unsatisfiable relations”
(UR), which can be used to count the arc modifications associated with a par-
tition V of the vertex set V of ~G. It also gives rise to a top-down algorithm in
which the vertex set of ~G is recursively edited and partitioned. A large class
of heuristics for BMG editing can be constructed depending on the construc-
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tion of the partition V in each recursion step. We shall see that the arc edit sets
in different steps of the recursion are disjoint. A main result of this section,
Thm. 5.8, links the partitions V appearing in BMG editing algorithms to the
auxiliary graphs appearing in the BUILD algorithm for supertree construction
[7]. This provides a guarantee that the BMG editing algorithms are consistent
provided the choice of V is such that it does not enforce edits whenever an
alternative partition with empty UR is available. For BMGs, this is in particu-
lar the case for the partitions appearing in the BUILD algorithm. In Sec. 5.5.3,
we proceed to show by reduction from Set Splitting that finding a partition
with a minimal number of unsatisfiable relations is NP-hard.

The theoretical results are complemented by computational experiments
on BMGs with randomly perturbed arc sets in Sec. 5.5.4. We focus on a
comparison of different algorithms to construct the partitions V. Somewhat
surprisingly, we find that minimizing the cardinality of the UR alone is not
the best approach, since this tends to produce very unbalanced partitions and
thus requires a large number of steps in the recursions whose costs add up.
Instead, certain types of clustering or community detection approaches that
favor more balanced partitions tend to perform well.

5.5.1 A Simple, Triple-Based Heuristic

By Thm. 4.2, a vertex-colored digraph (~G = (V, E), σ) is a BMG if and only if
(a) its set of informative triples R(~G, σ) is consistent and (b) the BMG ~G(T̂, σ)

of the corresponding tree T̂ := Aho(R(~G, σ), V) coincides with (~G, σ). In
general, the tree Aho(R, V) of a consistent set of triples R on a set V is a least
resolved supertree of all the triples in R. For a BMG, T̂ := Aho(R(~G, σ), V)

is the unique least resolved tree (LRT) for (~G, σ) = ~G(T̂, σ). These close
connections between recognizing BMGs and constructing supertrees suggest
to adapt ideas from heuristic algorithms for triple consistency problems and
supertree construction for BMG editing. In particular, the triple set R(~G, σ)

can easily be read off an arbitrary vertex-colored input digraph.
We expect that empirically estimated best match relations will typically

contain errors that correspond to both arc insertions and deletions w.r.t. the
unknown underlying “true” best match graph. It is important to note that
both arc insertions and deletions may lead to creation and loss of informative
triples. In particular, when starting from a BMG, both types of modifications
have the potential to make the triple set inconsistent as the example in Fig. 30

shows. This is indeed often the case even for moderate disturbances of a
BMG as we shall see in Sec. 5.5.4.

The latter argumentation suggests a simple heuristic for BMG editing that
relies on replacing the consistency checks for triple sets by the extraction
of maximal sets of consistent triples R∗ from R(~G, σ) and to use the BMG
~G(Aho(R∗, V), σ) as an approximation, see Alg. 4.

Unfortunately, the decision versions of both MaxRTC, the problem of ex-
tracting from a given set R of rooted triples a maximum-size consistent subset,
and MinRTI, the problem of finding a minimum-size subset I such that R \ I
is consistent, are themselves NP-hard [157]. Furthermore, MaxRTC is APX-
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Fig. 30. Both arc insertions and deletions into a BMG (~G = (V, E), σ) can
introduce inconsistencies into the set of informative triples. Top row: Leaf-
colored tree (T, σ) explaining the BMG (~G, σ). Its set of informative triples is
R(~G, σ) = {ab1|b2, ab1|b3, c1b2|b1, c1b3|b1, c2b2|b1, c2b3|b1} giving the Aho graph
H = [R(~G, σ), V]. Bottom left: Insertion of the arc (a, b2) creates a new informa-
tive triple ab2|b3 (ab1|b2 gets lost) resulting in a connected Aho graph H′. Bottom
right: Deletion of the arc (a, c1) creates a new triple ac2|c1 resulting in a connected
Aho graph H′′.

hard and MinRTI is Ω(ln n)-inapproximable [41]. However, because of their
practical importance in phylogenetics, a large number of practically useful
heuristics have been devised, see e.g. [100, 312, 333].

Algorithm 4: Simple Heuristic for BMG editing.

Input: Properly colored digraph (~G, σ).
Output: BMG (~G∗, σ).

1 R∗ ← MaxRTC(R(~G, σ))

2 return ~G(Aho(R∗, V(~G)), σ)

As a consequence of Thm. 4.2, Alg. 4 is consistent, i.e., (~G∗, σ) = (~G, σ)

if and only if the input digraph (~G, σ) is a BMG, if a consistent heuristic
is employed to solve MaxRTG/MinRTI, i.e., if consistent triple sets remain
unchanged by the method approximating MaxRTG/MinRTI.

The heuristic Alg. 4 is not always optimal, even if MaxRTC/MinRTI is
solved optimally. Fig. 31 shows an unconnected 2-colored digraph (~G, σ) on
three vertices that is not a BMG and does not contain informative triples. The
BMG (~G∗, σ) produced by Alg. 4 introduces two arcs into (~G, σ). However,
(~G, σ) can also be edited to a BMG by inserting only one arc.

A simple improvement is to start by enforcing obvious arcs: If v is the only
vertex with color σ(v), then by definition there must be an arc (x, v) for every
vertex x 6= v. The computation then starts from the sets of informative triples
of the modified digraph. We shall see that these are the only arcs that can
safely be added to ~G without other additional knowledge or constraints (cf.
Thm. 5.7 below).
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Fig. 31. Example for a digraph (A) where Alg. 4 does not lead to an opti-
mal BMG editing. The set R(~G, σ) is empty and thus consistent. (B) The tree
T = Aho(R(~G, σ), V(~G)) and (C) its corresponding BMG. The two arcs (b, a) and
(b, a′) have been inserted. (D) A tree (T′, σ) and (E) its corresponding BMG ~G(T′, σ)
in which only the arc (b, a) has been inserted.

5.5.2 Locally Optimal Splits

Finding an optimal BMG editing of a digraph (~G = (V, E), σ) is equivalent to
finding a tree (T, σ) on V that minimizes the cardinality of

U(~G, T) := {(x, y) ∈ V ×V | (x, y) ∈ E and (x, y) /∈ E(~G(T, σ)), or

(x, y) /∈ E and (x, y) ∈ E(~G(T, σ))}.
(32)

Clearly, U(~G, T) = ∅ implies that (~G, σ) = ~G(T, σ) is a BMG. However, find-
ing a tree (T, σ) that minimizes |U(~G, T)| is intractable (unless P = NP) since
`-BMG Editing, Problem 5.2 above, is NP-complete [266].

We may ask, nevertheless, if trees (T, σ) on V contain information about
arcs and non-arcs in (~G, σ) that are “unambiguously false” in the sense that
they are contained in every edit set that converts (~G, σ) into a BMG. Denote
by TV the set of all phylogenetic trees on V. The set of these “unambiguously
false” (non-)arcs can then be expressed as

U∗(~G) :=
⋂

T∈TV

U(~G, T). (33)

Since there are in general exponentially many trees on V and thus, the prob-
lem of determining U∗(~G) seems to be quite challenging on a first glance. We
shall see in Thm. 5.7, however, that U∗(~G) can be computed efficiently. We
start with a conceptually simpler construction.

Definition 5.5. Let (~G = (V, E), σ) be a properly vertex-colored digraph and V a
partition of V with |V| ≥ 2. Moreover, let T(V) be the set of trees T on V that satisfy
V = {L(T(v)) | v ∈ childT(ρT)}. The set of unsatisfiable relations (UR), denoted
by U(~G,V), is defined as

U(~G,V) :=
⋂

T∈T(V)
U(~G, T). (34)
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The associated UR-cost is c(~G,V) := |U(~G,V)|.

The set of (phylogenetic) trees T(V) is non-empty since |V| ≥ 2 in Def. 5.5.
Moreover, by construction, (x, y) ∈ U(~G,V) if and only if

(x, y) ∈ E and (x, y) /∈ E(~G(T, σ)) for all T ∈ T(V), or

(x, y) /∈ E and (x, y) ∈ E(~G(T, σ)) for all T ∈ T(V).

Intriguingly, the set U(~G,V), and thus the UR-cost c(~G,V), can be com-
puted in polynomial time without any explicit knowledge of the possible
trees to determine the set U(~G,V). To this end, we define the three sets

U1(~G,V) =
⋃

Vi∈V
{(x, y) | (x, y) ∈ E, x ∈ Vi, y ∈ V \Vi, σ(y) ∈ σ(Vi)},

U2(~G,V) =
⋃

Vi∈V
{(x, y) | (x, y) /∈ E, x ∈ Vi, y ∈ V \Vi, σ(y) /∈ σ(Vi)},

U3(~G,V) =
⋃

Vi∈V
{(x, y) | (x, y) /∈ E, distinct x, y ∈ Vi, Vi[σ(y)] = {y}}.

Lemma 5.6. Let (~G = (V, E), σ) be a properly vertex-colored digraph and let V =

{V1, . . . , Vk} be a partition of V with |V| = k ≥ 2. Then

U(~G,V) = U1(~G,V) ∪· U2(~G,V) ∪· U3(~G,V) .

Proof. We first note that U1 := U1(~G,V), U2 := U2(~G,V) and U3 := U3(~G,V) are
pairwise disjoint. Furthermore, we have x 6= y and σ(x) 6= σ(y) for every (x, y) ∈
U1 ∪· U2 ∪· U3 and every (x, y) ∈ U(~G,V). Moreover, recall that T(V) is the set of
trees T on V that satisfy V = {L(T(v)) | v ∈ childT(ρT)}. Therefore, there is a one-
to-one correspondence between the k ≥ 2 sets in V and the children childT(ρT) of the
root ρT for any T ∈ T(V). We denote by vi the child corresponding to Vi ∈ V; thus
Vi = L(T(vi)).

We first show that (x, y) ∈ U1 ∪· U2 ∪· U3 implies (x, y) ∈ U(~G,V). Let T ∈ T(V)
be chosen arbitrarily, and let ρ be its root. Suppose that (x, y) ∈ U1. Thus, we
have (x, y) ∈ E, σ(y) ∈ σ(L(T(vi))), x �T vi and y �T v′ for some v′ ∈ childT(ρ) \
{vi}. Moreover, σ(y) ∈ σ(L(T(vi))) implies that there is a vertex y′ �T vi with
σ(y′) = σ(y). Taken together, we obtain lcaT(x, y′) �T vi ≺T ρ = lcaT(x, y), and thus
(x, y) /∈ E(~G(T, σ)). If (x, y) ∈ U2, we have (x, y) /∈ E, σ(y) /∈ σ(L(T(vi))), x �T vi
and y �T v′ for some v′ ∈ childT(ρ) \ {vi}. Moreover, σ(y) /∈ σ(L(T(vi))) implies
that there is no vertex y′ �T vi with σ(y′) = σ(y). Thus, lcaT(x, y′) = lcaT(x, y) = ρ
holds for all y′ of color σ(y′) = σ(y), and thus (x, y) ∈ E(~G(T, σ)). Finally, suppose
(x, y) ∈ U3. We have (x, y) /∈ E and y is the only leaf of its color in L(T(vi)).
Therefore, there is no vertex y′ with σ(y′) = σ(y) and lcaT(x, y′) ≺T lcaT(x, y), and
thus (x, y) ∈ E(~G(T, σ)). In summary, one of the conditions in Def. 5.5 is satisfied
for T in all three cases. Since T was chosen arbitrarily, we conclude (x, y) ∈ U(~G,V)
for any (x, y) ∈ U1 ∪· U2 ∪· U3.

In order to show that (x, y) ∈ U(~G,V) implies (x, y) ∈ U1 ∪· U2 ∪· U3, we distin-
guish Case (a): (x, y) ∈ E and (x, y) /∈ E(~G(T, σ)) holds for all T ∈ T(V), and Case (b):
(x, y) /∈ E and (x, y) ∈ E(~G(T, σ)) holds for all T ∈ T(V).
Case (a). (x, y) ∈ E implies σ(x) 6= σ(y). Moreover, there is a vertex y′ with σ(y′) =
σ(y), and lcaT(x, y′) ≺T lcaT(x, y) for every T ∈ T(V) because (x, y) /∈ E(~G(T, σ)).
Since this is true for all trees in T(V), there must be a set Vi ∈ V such that x, y′ ∈
Vi, and in particular σ(y′) = σ(y) ∈ σ(Vi). Now suppose, for contradiction, that
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Fig. 32. Example for unsatisfiable relations U(~G,V) of a vertex-colored digraph (~G =
(V, E), σ) w.r.t. a partition V = {V1, V2} (indicated by the gray boxes). In the middle,
the set of trees T(V) is illustrated, i.e., the triangles represent all possible phylogenetic
trees on the respective subset of leaves. On the right, the arc modifications implied
by V (i.e., U(~G,V)) are illustrated where U1, U2, and U3 indicate the type according
to Lemma 5.6.

y ∈ Vi and thus x, y, y′ ∈ Vi. In this case, we can choose a tree T ∈ T(V) such
that x, y ≺T vi for some child vi ∈ childT(ρT) and lcaT(x, y) �T lcaT(x, y′) hold for
all y′ of color σ(y′) = σ(y). Hence, we obtain (x, y) ∈ E(~G(T, σ)) for this tree; a
contradiction. Therefore, we conclude that y ∈ V \Vi. In summary, all conditions for
U1 are satisfied, and thus (x, y) ∈ U1.
Case (b). We have (x, y) /∈ E and (x, y) ∈ E(~G(T, σ)) for all T ∈ T(V). Let Vi ∈ V

such that x ∈ Vi. We distinguish the two cases (i) y /∈ Vi, and (ii) y ∈ Vi. In Case (i),
suppose, for contradiction, that σ(y) ∈ σ(Vi). Then, for every tree T ∈ T(V), there
must be a vertex y′ of color σ(y) such that lcaT(x, y′) �T vi ≺T ρT = lcaT(x, y),
contradicting (x, y) ∈ E(~G(T, σ)). Therefore, we conclude σ(y) /∈ σ(Vi). It follows
that (x, y) ∈ U2. In Case (ii), assume, for contradiction, that there is a vertex y′ ∈ Vi
of color σ(y) such that y 6= y′. This together with σ(y′) = σ(y) 6= σ(x) implies
that all three vertices x, y, y′ are pairwise distinct. Since in addition x, y, y′ ∈ Vi, we
can choose a tree T ∈ T(V) such that x, y, y′ ≺T vi for some child vi ∈ childT(ρT)
and lcaT(x, y′) ≺T lcaT(x, y); a contradiction to (x, y) ∈ E(~G(T, σ)) for all T ∈ T(V).
Therefore, we conclude that y is the only vertex of its color in Vi. It follows that
(x, y) ∈ U3.

The proof of Lemma 5.6 relates the possible cases between V and the tree
set T(V) in a straightforward manner. Fig. 32 gives examples for all three
types of unsatisfiable relations, i.e., for U1(~G,V), U2(~G,V), and U3(~G,V). In
particular, we have (b′, a) ∈ U1(~G,V) since it is an arc in ~G but V2 contains
another red vertex a′. Moreover, (b, c) ∈ U2(~G,V) since it is not an arc in ~G but
V1 does not contain another green vertex. Finally, we have (a, b) ∈ U3(~G,V)
since it is not an arc in ~G but b is the only blue vertex in V1. In the example,
the digraph (~G4U(~G,V)) is already a BMG which, however, is not true in
general.

Corollary 5.7. The set U(~G,V) can be computed in quadratic time.

Proof. We first compute all numbers ni,A of vertices in Vi with a given color A. This
can be done in O(|V|) if we do not explicitly store the zero-entries. Now, σ(y) ∈
σ(Vi), i.e. ni,σ(y) > 0, can be checked in constant time, and thus, it can also be
decided in constant time whether or not a pair (x, y) is contained in U1(~G,V) or
U2(~G,V). Since, given y ∈ Vi, the condition Vi[σ(y)] = {y} is equivalent to ni,σ(y) = 1,
membership in U3(~G,V) can also be decided in constant time. Checking all ordered
pairs x, y ∈ V thus requires a total effort of O(|V|2).
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Algorithm 5: General BMG editing via locally optimal steps.
The parts highlighted in color produce a tree T explaining the edited
digraph (~G∗, σ). If the tree is not needed, these steps can be omit-
ted. The method for choosing the partition V (framed box) determines
different variants of the algorithm.

Input: Properly colored digraph (~G = (V, E), σ).
Output: BMG (~G∗, σ).

1 initialize (~G∗, σ)← (~G, σ)

2 Function Edit(V′)
3 if |V′| > 1 then
4 V← suitably chosen partition of V′ with |V| ≥ 2

5 ~G∗ ← ~G∗4U(~G∗[V′],V)
6 create a tree T′ with root ρ′

7 foreach Vi ∈ V do
8 attach the tree Edit(Vi) to ρ′

9 return T′

10 else
11 return a tree with the single element in V′ as root

12 T ← Edit(V(~G))

13 return (~G∗, σ) and T

Our discussion so far suggests a recursive top-down approach, made pre-
cise in Alg. 5. In each step, one determines a “suitably chosen” partition V

and then recurses on the subgraphs of the edited digraph ~G∗4U(~G∗[V ′],V).
More details on such suitable partitions V will be given in Thm. 5.8 below.
The parts in the algorithm highlighted in color can be omitted. They are use-
ful, however, if one is also interested in a tree (T, σ) that explains the editing
result (~G∗, σ) and to show that (~G∗, σ) is indeed a BMG (see below).

Alg. 5 is designed to accumulate the edit sets in each step, Line 5. In par-
ticular, the total edit cost and the scores c(~G∗[V ′],V) are closely tied together,
which follows from Lemma 5.8 below. For its proof, we first need the follow-
ing technical result which shows that the editing of an arc in Alg. 5 will not
be reversed in the subsequent recursion step.

Lemma 5.7. Let (~G = (V, E), σ) be a properly vertex-colored digraph, V =

{V1, . . . , Vk} a partition of V with |V| = k ≥ 2, and Vi = {Vi,1, . . . , Vi,l}, 1 ≤ i ≤ k,
a partition of Vi with |Vi| = l ≥ 2. Moreover, let (~G′ := ~G4U(~G,V), σ) be the
colored digraph that is obtained by applying the edits in U(~G,V) to (~G, σ). Then
U(~G,V) ∩U(~G′[Vi],Vi) = ∅.

Proof. Let ~G′i := ~G′[Vi]. The sets of unsatisfiable relations U(~G,V) and U(~G′i ,Vi)

are given by the (disjoint) unions U1(~G,V) ∪· U2(~G,V) ∪· U3(~G,V) and U1(~G′i ,Vi) ∪·
U2(~G′i ,Vi) ∪· U3(~G′i ,Vi), respectively (cf. Lemma 5.6). First, let (x, y) ∈ U1(~G,V).
Since, by definition of U1(~G,V), x and y are contained in different sets of the partition
V, they cannot be both contained in Vi and thus, U1(~G,V) ∩ U(~G′i ,Vi) = ∅. One
analogously argues that U2(~G,V) ∩U(~G′i ,Vi) = ∅. Now, assume for contradiction
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that (x, y) ∈ U3(~G,V) ∩U(~G′i ,Vi). By definition of U(~G′i ,Vi), this implies x, y ∈ Vi.
Moreover, by definition of U3(~G,V), we have (x, y) /∈ E, which immediately implies
(x, y) ∈ E(~G′i). By Lemma 5.6, we therefore conclude (x, y) ∈ U1(~G′i ,Vi). Let Vi,j be
the set of the partition Vi which contains x. Then, by definition of U1(~G′i ,Vi), the
color of y is contained in both Vi,j and Vi \Vi,j, i.e., Vi contains at least two vertices of
color σ(y). However, (x, y) ∈ U3(~G,V) and y ∈ Vi together imply that y is the only
vertex of its color in Vi; a contradiction.

We are now in the position to prove the more general

Lemma 5.8. All edit sets U(~G∗[V ′],V) constructed in Alg. 5 are pairwise disjoint.

Proof. First note that, by Lemma 5.6, we have σ(x) 6= σ(y) for all (x, y) ∈
U(~G∗[V′],V). Hence, the digraph (~G∗, σ) remains properly colored during the whole
recursion. Moreover, recursive calls on a set V′ with |V′| = 1 trivially contribute with
a UR-cost of zero.

By construction, the partitions in consecutive calls of Edit() form a hierarchical re-
finement such that in each recursive call a single element of Vi ∈ V is refined. Clearly
edit sets encountered in independent branches of the recursion tree are disjoint be-
cause they pertain to disjoint vertex sets. For directly consecutive calls of Edit(),
Lemma 5.7 states that the edits sets are disjoint. Now consider two recursive call on
V′ and V′′ with V′′ ⊂ V′ that are not directly consecutive. Let V′ and V′′, resp., be
the partitions chosen for the vertex sets V′ and V′′ of ~G′ and ~G′′ at the beginning
of the two recursion steps. We can apply the same arguments as in the proof of
Lemma 5.7 to conclude that Ui(~G′[V′],V′) ∩U(~G′′[V′′],V′′) = ∅, i ∈ {1, 2}. Finally,
assume, for contradiction, that (x, y) ∈ U3(~G′[V′],V′)∩U(~G′′[V′′],V′′). By definition
of U(~G′′[V′′],V′′), this implies x, y ∈ V′′. Moreover, by definition of U3(~G′[V′],V′),
we have (x, y) /∈ E(~G′), which immediately implies (x, y) ∈ E(~G′4U(~G′[V′],V′)),
i.e., (x, y) is an arc after the editing in this step. Since both x, y are contained in
V′′, it follows from Lemma 5.6 that all edit steps on the way from ~G′[V′′] to ~G′′[V′′]
must be performed by the set U3, i.e., they exclusively correspond to arc insertions.
Therefore, (x, y) is still an arc in ~G′′[V′′]. By Lemma 5.6, we therefore conclude that
(x, y) ∈ U1(~G′′[V′′],V′′). Let Vx be the set of the partition V′′ that contains x. Then,
by definition of U1(~G′′[V′′],V′′), the color of y is contained in both Vx and V′′ \ Vx,
i.e., V′′ contains at least two vertices of color σ(y). However, (x, y) ∈ U3(~G′[V′],V′)
and y ∈ V′′ ⊂ Vx,y for some Vx,y ∈ V′ together imply that y is the only vertex of its
color in V′′; a contradiction.

As an immediate consequence of Lemma 5.8, we have

Corollary 5.8. The edit cost of Alg. 5 is the sum of the UR-costs c(~G∗[V ′],V) in
each recursion step.

It is important to note that the edits U(~G∗[V ′],V) must be applied immedi-
ately in each step (cf. Line 5 in Alg. 5). In particular, Lemma 5.8 and Cor. 5.8
pertain to the partitioning of the edited digraph (~G∗, σ), not to the original
digraph (~G, σ).

Theorem 5.6. Every pair of edited digraph (~G∗, σ) and tree T produced as output
by Alg. 5 satisfies (~G∗, σ) = ~G(T, σ). In particular, (~G∗, σ) is a BMG.

Proof. By construction, the tree T is phylogenetic and there is a one-to-one corre-
spondence between the vertices u ∈ V(T) and the recursion steps, which operate on
the sets V′ = L(T(u)). If |V′| ≥ 2 (or, equivalently, u is an inner vertex of T), we
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furthermore have V = {L(T(v)) | v ∈ childT(u)} for the partition V of V′ chosen in
that recursion step. In the following, we denote by (~G∗, σ) the digraph during the
editing process, and by (~G, σ) the input digraph, i.e., as in Alg. 5. For brevity, we
write E∗ for the arc set of the final edited digraph and ET := E(~G(T, σ)).

Let us assume, for contradiction, that there exists (a) (x, y) ∈ E∗ \ ET 6= ∅, or
(b) (x, y) ∈ ET \ E∗ 6= ∅. In either case, we set u := lcaT(x, y) and consider the
recursion step on V′ := L(T(u)) with the corresponding partition V := {L(T(v)) |
v ∈ childT(u)} chosen for V′. Note that x 6= y, and thus u ∈ V0(T). Moreover, let vx
be the child of u such that x �T vx, and Vx := L(T(vx)) ∈ V.

Case (a): (x, y) ∈ E∗ \ ET 6= ∅.
Since (x, y) /∈ ET and by the definition of best matches, there must be a vertex
y′ ∈ Vx of color σ(y) such that lcaT(x, y′) ≺T lcaT(x, y) = u, and thus σ(y) ∈ σ(Vx).
Moreover, we have Vx ∈ V, x ∈ Vx and y ∈ V′ \ Vx. Two subcases need to be
considered, depending on whether or not (x, y) is an arc in ~G∗ at the beginning
of the recursion step. In the first case, the arguments above imply that (x, y) ∈
U1(~G∗[V′],V), and thus, (x, y) ∈ U(~G∗[V′],V) by Lemma 5.6. Hence, we delete the
arc (x, y) in this step. In the second case, it is an easy task to verify that none of
the definitions of U1(~G∗[V′],V), U2(~G∗[V′],V), and U3(~G∗[V′],V) matches for (x, y).
Since this step is clearly the last one in the recursion hierarchy that can affect the
(non-)arc (x, y), it follows for both subcases that (x, y) /∈ E∗; a contradiction.

Case (b): (x, y) ∈ ET \ E∗ 6= ∅.
Since (x, y) ∈ ET and by the definition of best matches, there cannot be a vertex
y′ ∈ Vx of color σ(y) such that lcaT(x, y′) ≺T lcaT(x, y) = u, and thus σ(y) /∈ σ(Vx).
Moreover, we have Vx ∈ V, x ∈ Vx and y ∈ V′ \ Vx. Again, two subcases need to be
distinguished depending on whether or not (x, y) is an arc in ~G∗ at the beginning of
the recursion step. In the first case, the arguments above make it easy to verify that
none of the definitions of U1(~G∗[V′],V), U2(~G∗[V′],V), and U3(~G∗[V′],V) matches
for (x, y). In the second case, we obtain (x, y) ∈ U2(~G∗[V′],V), and thus, (x, y) ∈
U(~G∗[V′],V) by Lemma 5.6. Hence, we insert the arc (x, y) in this step. As before,
the (non-)arc (x, y) remains unaffected in any deeper recursion step. Therefore, we
have (x, y) ∈ E∗ in both subcases; a contradiction.

Finally, (~G∗, σ) = ~G(T, σ) immediately implies that (~G∗, σ) is a BMG.

Cor. 5.8 suggests a greedy-like “local” approach. In each step, the partition
V is chosen to minimize the score c(~G,V) in Line 4. The example in Fig. 33

shows, however, that the greedy-like choice of V does not necessarily yield a
globally optimal edit set.

In order to identify arcs that must be contained in every edit set, we first
clarify the relationship between the partitions P≥2 on V and the partitions
defined by the phylogenetic trees on V.

Lemma 5.9. Let V be a set with |V| ≥ 2. Let P≥2 be the set of all partitions V of
V with |V| ≥ 2. Then the set TV of all phylogenetic trees with leaf set V satisfies
TV =

⋃
V∈P≥2

T(V).

Proof. For every V ∈ P≥2, T(V) is a set of phylogenetic trees on V. Hence, we
conclude

⋃
V∈P≥2

T(V) ⊆ TV . Conversely, assume that T ∈ TV . Since T (with root ρT)
is a phylogenetic tree and has at least two leaves, we have |childT(ρT)| ≥ 2. Together
with L(T(ρT)) = L(T) = V, this implies V∗ := {L(T(v)) | v ∈ childT(ρT)} ∈ P≥2. In
particular, T satisfies T ∈ T(V∗) for some V∗ ∈ P≥2, and is therefore contained in⋃

V∈P≥2
T(V).
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Fig. 33. (A) Example for a colored digraph (~G, σ) in which the “locally” optimal (first)
split does not result in a global optimal BMG editing. The minimal UR-cost equals 3
and is attained only for the partition V = {{a1, a2, a3, b1, b2, b3}, {a4, a5, a6, b4, b5, b6}},
which was verified by full enumeration of all partitions and Lemma 5.6. For this
partition, U(~G,V) comprises the three purple arcs. (B) The two (isomorphic) induced
subgraphs obtained by applying the locally optimal partition V. Each of them has a
(global) optimal BMG editing cost of 4. Therefore, the overall symmetric difference of
an edited digraph (using the initial split V as specified) comprises at least c(~G,V)+ 2 ·
4 = 11 arcs. (C) An optimal editing removes the 8 green arcs and results in a digraph
that is explained by the tree in (D). The optimality of this solution was verified using
an implementation of the ILP formulation for 2-BMG editing given in Sec. 5.4.1.

Using Lemma 5.9 and given that |V| ≥ 2, we can express the set of relations
that are unsatisfiable for every partition as follows

⋂

V∈P≥2

U(~G,V) =
⋂

V∈P≥2


 ⋂

T∈T(V)
U(~G, T)


 =

⋂

T∈⋃V∈P≥2
T(V)

U(~G, T)

=
⋂

T∈TV

U(~G, T) = U∗(~G) ,

(35)

i.e., it coincides with the set of relations that are unsatisfiable for every phylo-
genetic tree, and thus part of every edit set. Note that U∗(~G) is trivially empty
if |V| < 2. We next show that U∗(~G) can be computed without considering
the partitions of V explicitly.

Theorem 5.7. Let (~G = (V, E), σ) be a properly vertex-colored digraph with |V| ≥
2 then

U∗(~G) = {(x, y) | (x, y) /∈ E, x 6= y, V[σ(y)] = {y}} . (36)

Proof. First note that |V| ≥ 2 ensures that P≥2 6= ∅. Moreover, since |V| ≥ 2 for any
V ∈ P≥2, the sets T(V) are all non-empty as well. With the abbreviation Û(~G) for the
right-hand side of Eq. (36), we show that Û(~G) =

⋂
V∈P≥2

U(~G,V) which by Eq. (35)

equals U∗(~G).
Suppose first that (x, y) ∈ Û(~G). Then x 6= y and V[σ(y)] = {y} imply that

σ(x) 6= σ(y). This together with the facts that (i) y is the only vertex of its color in
V, and (ii) L(T) = V for each T ∈ T(V) and any V ∈ P≥2 implies that y is a best
match of x in every such tree T, i.e. (x, y) ∈ E(~G(T, σ)). Since in addition (x, y) /∈ E
by assumption, we conclude that (x, y) ∈ U∗(~G).
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Now suppose that (x, y) ∈ U∗(~G). Observe that σ(x) 6= σ(y) (and thus x 6= y) as
a consequence of Def. 5.5 and the fact that (~G, σ) and all BMGs are properly colored.
If V = {x, y} and thus {{x}, {y}} is the only partition in P≥2, the corresponding
unique tree T consists of x and y connected to the root. In this case, we clearly have
(x, y) ∈ E(~G(T, σ)) since σ(x) 6= σ(y). On the other hand, if {x, y} ( V, then we
can find a partition V ∈ P≥2 such that Vi = {x, y} for some Vi ∈ V. In this case,
every tree T ∈ T(V) has a vertex vi ∈ childT(ρT) with the leaves x and y as its single
two children. Clearly, (x, y) ∈ E(~G(T, σ)) holds for any such tree. In summary,
there always exists a partition V ∈ P≥2 such that (x, y) ∈ E(~G(T, σ)) for some tree
T ∈ T(V). Therefore, by (x, y) ∈ ⋂

V∈P≥2
U(~G,V) and Def. 5.5, we conclude that

(x, y) /∈ E. In order to obtain (x, y) ∈ Û(~G), it remains to show that V[σ(y)] = {y}.
Since (x, y) /∈ E and (x, y) ∈ ⋂V∈P≥2

U(~G,V), it must hold that (x, y) ∈ E(~G(T, σ))
for all T ∈ T(V) and all V ∈ P≥2. Now assume, for contradiction, that there is a
vertex y′ 6= y of color σ(y′) = σ(y). Since σ(x) 6= σ(y), the vertices x, y, y′ must be
pairwise distinct. Hence, we can find a partition V ∈ P≥2 such that Vi = {x, y′} for
some Vi ∈ V. In this case, every tree T ∈ T(V) has a vertex vi ∈ childT(ρT) with only
the leaves x and y′ as its children. Clearly, lcaT(x, y′) = vi ≺T ρT = lcaT(x, y), and
thus (x, y) /∈ E(~G(T, σ)); a contradiction. Therefore, we conclude that y is the only
vertex of its color in V, and hence, (x, y) ∈ Û(~G). In summary, therefore, we have
U∗(~G) = Û(~G).

As a consequence of Thm. 5.7 and by similar arguments as in the proof of
Cor. 5.7, we observe

Corollary 5.9. The set U∗(~G) can be computed in quadratic time.

By Thm. 5.7, U∗(~G) contains only non-arcs, more precisely, missing arcs
pointing towards a vertex that is the only one of its color and thus, by defini-
tion, a best match of every other vertex irrespective of the details of the gene
tree. By definition, furthermore, U∗(~G) is a subset of every edit set for (~G, σ).
We therefore have the lower bound

|U∗(~G)| ≤ c(~G,V) (37)

for every V ∈ P≥2.
The following result shows that if (~G, σ) is a BMG, then a suitable partition

V can be chosen such that c(~G,V) = |U∗(~G)| = 0.

Lemma 5.10. Let (~G = (V, E), σ) be a BMG with |V| ≥ 2 and V be the connected
components of the Aho graph [R(~G, σ), V]. Then the partition V of V satisfies |V| ≥
2 and c(~G,V) = 0.

Proof. Since (~G, σ) is a BMG, we can apply Prop. 4.7 to conclude that R := R(~G, σ)
is consistent and that (T, σ) := (Aho(R, V), σ) explains (~G, σ), i.e., ~G(T, σ) = (~G, σ).
Hence, U(~G, T) = ∅. From |V| ≥ 2 and consistency of R, it follows by Lemma 2.1
that [R, V] has at least two connected components, and thus, by construction, |V| ≥ 2.
Moreover, we clearly have T ∈ T(V) by the construction of T via BUILD. Together with
U(~G, T) = ∅, the latter implies U(~G,V) = ∅, and thus c(~G,V) = 0.

Lemma 5.11. Let (~G = (V, E), σ) be a BMG, and V a partition of V such that
c(~G,V) = 0. Then the induced subgraph (~G[V ′], σ|V′) is a BMG for every V ′ ∈ V.
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Proof. Set R := R(~G, σ) and F := F(~G, σ) for the sets of informative and forbidden
triples of (~G, σ), respectively. Since (~G, σ) is a BMG, we can apply Prop. 4.7 to
conclude that (R,F) is consistent. Now we choose an arbitrary set V′ ∈ V and set
(~G′, σ′) := (~G[V′], σ|V′). By Obs. 4.6, we obtain R(~G′, σ′) = R|V′ and F(~G′, σ′) = F|V′ .
This together with the fact that R|V′ ⊆ R and F|V′ ⊆ F and Obs. 2.2 implies that
(R|V′ ,F|V′) = (R(~G′, σ′),F(~G′, σ′)) is consistent.

By Prop. 4.7, it remains to show that (~G′, σ′) is sf-colored to prove that it is a
BMG. To this end, assume for contradiction that there is a vertex x ∈ V′ and a
color s ∈ σ(V′) such that x has no out-neighbor of color s 6= σ(x) in V′. However,
since the color s is contained in σ(V) and (~G, σ) is a BMG, and thus sf-colored, we
conclude that there must be a vertex y ∈ V \ V′ of color s such that (x, y) ∈ E. In
summary, we obtain (x, y) ∈ E, x ∈ V′, y ∈ V \ V′ and σ(y) = s ∈ σ(V′). Thus, we
have (x, y) ∈ U1(~G,V). Hence, Lemma 5.6 implies that (x, y) ∈ U(~G,V) and, hence,
c(~G,V) > 0; a contradiction. Therefore, (~G′, σ′) must be sf-colored, which concludes
the proof.

Lemma 5.10 and 5.11 allow us to choose the partition V in each step of
Alg. 5 in such a way that Alg. 5 is consistent, i.e., BMGs remain unchanged.

Theorem 5.8. Alg. 5 is consistent if, in each step on V ′ with |V ′| ≥ 2, the partition
V in Line 4 is chosen according to one of the following rules:

1. V has minimal UR-cost among all possible partitions V′ of V ′ with |V′| ≥ 2.

2. If the Aho graph [R(~G∗[V ′], σ|V′), V ′] is disconnected with the set of connected
components VAho, and moreover c(~G∗[V ′],VAho) = 0, then V = VAho.

Proof. We have to show that the final edited digraph (~G∗, σ) returned in Line 13

equals the input digraph (~G = (V, E), σ) whenever (~G, σ) already is a BMG, i.e.,
nothing is edited. Thus suppose that (~G, σ) is a BMG and first consider the top-level
recursion step on V (where initially ~G∗ = ~G still holds at Line 1). If |V| = 1, neither
(~G, σ) nor (~G∗, σ) contain any arcs, and thus, the edit cost is trivially zero. Now
suppose |V| ≥ 2. Since (~G, σ) is a BMG, Lemma 5.10 guarantees the existence of a
partition V satisfying c(~G,V) = 0, in particular, the connected components VAho of
the Aho graph [R(~G, σ), V] form such a partition. Hence, for both rules (1) and (2),
we choose a partition V with (minimal) UR-cost c(~G,V) = 0. Now, Lemma 5.11

implies that the induced subgraph (~G[V′], σ|V′) is a BMG for every V′ ∈ V. Since we
recurse on these subgraphs, we can repeat the arguments above along the recursion
hierarchy to conclude that the UR-cost c(~G∗[V′],V′) vanishes in every recursion step.
By Cor. 5.8, the total edit cost of Alg. 5 is the sum of the UR-costs c(~G∗[V′],V′) in
each recursion step, and thus, also zero. Therefore, we conclude that we still have
(~G∗, σ) = (~G, σ) in Line 13.

By Thm. 5.8, Alg. 5 is consistent whenever the choice of V minimizes the
UR-cost of V in each step. We shall see in Sec. 5.5.3 that minimizing c(~G,V)
is a difficult optimization problem in general. Therefore, a good heuristic
will be required for this step. This, however, may not guarantee consis-
tency of Alg. 5 in general. The second rule in Thm. 5.8 provides a rem-
edy: the Aho graph [R(~G∗[V ′], σ|V′), V ′] can be computed efficiently. When-
ever [R(~G∗[V ′], σ|V′), V ′] is not connected, the partition VAho defined by the
connected components [R(~G∗[V ′], σ|V′), V ′] is chosen provided it has UR-cost
zero. This procedure is effectively a generalization of the algorithm BUILD us-
ing as input the set of informative triples R(~G, σ) of a properly vertex-colored
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digraph (~G, σ). If (~G, σ) is already a BMG, then the recursion in Alg. 5 is
exactly the same as in BUILD: it recurses on the connected components of the
Aho graph (cf. Thm. 4.2). We can summarize this discussion as

Corollary 5.10. (~G, σ) is a BMG if and only if, in every step of the BUILD al-
gorithm operating on R(~G, σ)|V′ and V ′, either |V ′| = 1, or c(~G∗[V ′],VAho) =

0 for the connected component partition VAho of the disconnected Aho graph
[R(~G∗[V ′], σ|V′), V ′].

For recursion steps in which the Aho graph [R(~G∗[V ′], σ|V′), V ′] is con-
nected, and possibly also in steps with non-zero UR-cost, another (heuris-
tic) rule has to be employed. As a by-product, we obtain an approach for
the case that R(~G, σ) is consistent: Following BUILD yields the approximation
~G(Aho(R(~G, σ), V(~G)), σ) as a natural choice.

In the remainder of the section, we will turn to special variants of Alg. 5 for
the problem of editing a vertex-colored digraph to a beBMG. As for the more
general counterpart of the latter, we have seen that the corresponding decision
problem `-BMG EBEG is also NP-complete for ` ≥ 2 (cf. Cor. 5.6). Since the
recursive partitioning in Alg. 5 defines a tree that explains the edited BMG,
see Thm. 5.6, it is reasonable to restrict the optimization of V in Line 4 to bi-
partitions. The problem still remains hard, however, since the corresponding
decision problem (problem BPURC in Sec. 5.5.3) is NP-complete as shown in
Thm. 5.11 below.

Recall that, by Thm. 4.4, a properly vertex-colored digraph (~G, σ) with ver-
tex set V is a beBMG if and only if (i) (~G, σ) is sf-colored, and (ii) the triple
set RB(~G, σ) is consistent, and that moreover, the BMG (~G, σ) is explained
by every refinement of the BRT (Aho(RB(~G, σ), V), σ) in this case. Using
this characterization, we can apply analogous arguments as in the proof of
Lemma 5.10 for RB(~G, σ) instead of R(~G, σ) to obtain

Corollary 5.11. Let (~G = (V, E), σ) be a beBMG with |V| ≥ 2 and V be the
connected components of the Aho graph [RB(~G, σ), V]. Then the partition V of V
satisfies |V| ≥ 2 and c(~G,V) = 0.

Since a beBMG (~G, σ) is explained by every refinement of the BRT (cf.
Thm. 4.4), we can obtain a slightly more general result:

Lemma 5.12. Let (~G = (V, E), σ) be a beBMG with |V| ≥ 2 and V be the connected
components of the Aho graph [RB(~G, σ), V]. Then, every coarse-graining V′ of V
with |V′| ≥ 2 satisfies c(~G,V′) = 0.

Proof. First note that RB(~G, σ) is consistent by Thm. 4.4 since (~G, σ) is a beBMG.
Therefore, |V| ≥ 2 implies |V| ≥ 2 [7]. For the trivial coarse-graining V′ = V,
Cor. 5.11 already implies the statement. Now assume V′ 6= V. Observe that the tree
(T, σ) := (Aho(RB(~G, σ), V), σ) exists and explains (~G, σ) by Thm. 4.4. Moreover,
there is, by construction, a one-to-one correspondence between the children vi of
its root ρ and the elements in Vi ∈ V given by L(T(vi)) = Vi. We construct a
refinement (tree) T′ of T as follows: Whenever we have multiple sets Vi ∈ V that
are subsets of the same set Vj ∈ V′, we remove the edges ρvi to the corresponding
vertices vi ∈ childT(ρ) in T, and collectively connect these vi to a newly created
vertex wj. These vertices wj are then reattached to the root ρ. Since |V′| ≥ 2 by
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assumption, the so-constructed tree T′ is still phylogenetic. Moreover, it satisfies
V′ = {L(T′(v)) | v ∈ childT′(ρ)}, and thus, T′ ∈ T(V′). It is a refinement of T
since contraction of the edges ρwj again yields T. Hence, we can apply Thm. 4.4 to
conclude that (T′, σ) also explains (~G, σ). It follows immediately that U(~G, T′) = ∅.
The latter together with T′ ∈ T(V′) implies U(~G,V′) = ∅, and thus c(~G,V′) = 0.

We are now in the position to formulate an analogue of Thm. 5.8 for vari-
ants of Alg. 5 that aim to edit a properly-colored digraph (~G, σ) to a beBMG.

Theorem 5.9. Alg. 5 is consistent for beBMGs (~G, σ) if, in each step on V ′ with
|V ′| ≥ 2, a bipartition V in Line 4 is chosen according to one of the following rules:

1. V has minimal UR-cost among all possible bipartitions V′ of V ′.

2. If the Aho graph [RB(~G∗[V ′], σ|V′), V ′] is disconnected with the set of con-
nected components VAho, and moreover c(~G∗[V ′],VAho) = 0, then V is a
coarse-graining of VAho.

Proof. We have to show that the final edited digraph (~G∗, σ) returned in Line 13

equals the input digraph (~G = (V, E), σ) whenever (~G, σ) already is a beBMG, i.e.,
nothing is edited. Thus suppose that (~G, σ) is a beBMG and first consider the top-
level recursion step on V (where initially ~G∗ = ~G still holds at Line 1). If |V| = 1,
neither (~G, σ) nor (~G∗, σ) contain any arcs, and thus, the edit cost is trivially zero.
Now suppose |V| ≥ 2. Since (~G, σ) is a beBMG, RB := RB(~G, σ) is consistent, and
thus, the set of connected components VAho of the Aho graph [RB, V] has a cardinality
of at least two. If |VAho| = 2, V := VAho is a bipartition satisfying c(~G,V) = 0 by
Cor. 5.11. If |VAho| > 2, we can find an arbitrary bipartition V that is a coarsement
of VAho. By Lemma 5.12, V also satisfies c(~G,V) = 0 in this case. Hence, for both
rules (1) and (2), we choose a bipartition V with (minimal) UR-cost c(~G,V) = 0. Now,
Lemma 5.11 implies that the induced subgraph (~G[V′], σ|V′) is a BMG for every V′ ∈
V. To see that (~G[V′], σ|V′) is also binary-explainable, first note that RB(~G[V′], σ|V′) =
RB|V′ by Obs. 4.6. This together with the fact that RB|V′ ⊆ RB and Obs. 2.2 implies
that RB(~G[V′], σ|V′) is consistent. Moreover, Prop. 4.7 and (~G[V′], σ|V′) being a BMG
together imply that (~G[V′], σ|V′) is sf-colored. Hence, we can apply Thm. 4.4 to
conclude that (~G[V′], σ|V′) is a beBMG.

Since we recurse on the subgraphs (~G[V′], σ|V′), which are again beBMGs, we can
repeat the arguments above along the recursion hierarchy to conclude that the UR-
cost c(~G∗[V′],V′) vanishes in every recursion step. By Cor. 5.8, the total edit cost of
Alg. 5 is the sum of the UR-costs c(~G∗[V′],V′) in each recursion step, and thus, also
zero. Therefore, we conclude that we still have (~G∗, σ) = (~G, σ) in Line 13.

5.5.3 Minimizing the UR-Cost c(~G,V)

The problem of minimizing c(~G,V) for a given properly colored digraph
(~G, σ) corresponds to the following decision problem.

Problem 5.7 ((Bi)Partition with UR-Cost ((B)PURC)).
Input: A properly `-colored digraph (~G = (V, E), σ) and an integer k ≥ 0.

Question: Is there a (bi)partition V of V such that c(~G,V) ≤ k?

We will show now that BPURC is NP-hard by reduction from Set Split-
ting, one of Garey and Johnson’s [99] classical NP-complete problems:
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Problem 5.8 (Set Splitting).
Input: A collection C of subsets of a finite set S, denoted by (C, S).

Question: Is there a bipartition of S into two subsets S1 and S2 such that

no subset in C is entirely contained in either S1 or S2?

Theorem 5.10. [198] Set Splitting is NP-complete.

Theorem 5.11. BPURC is NP-complete.

Proof. Given a properly vertex-colored digraph (~G = (V, E), σ) and a bipartition V

of V, the set U(~G,V) and thus the UR-cost c(~G,V) = |U(~G,V)| can be computed
in polynomial time according to Cor. 5.7. Therefore, BPURC is contained in NP. To
show NP-hardness, we use reduction from Set Splitting.

Let (C, S) be an instance of Set Splitting. We may assume w.l.o.g. that |C| ≥ 2
holds for all C ∈ C, since otherwise there is no solution at all for Set Splitting.
In addition, we assume that

⋃
C∈C C = S. To see that this does not yield a loss of

generality, suppose that
⋃

C∈C C = S′ ( S. If {S′1, S′2} is a solution for (C, S′) then
no subset in C is entirely contained in either S′1 or S′2. Therefore, we can construct a
solution (S1, S2) for (C, S) by arbitrarily adding the elements in S \ S′ to either S′1 or
S′2. In contrast, {S1 ∩ S′, S2 ∩ S′} is a solution for (C, S′) provided that {S1, S2} is a
solution for (C, S).

Now, let (C, S) be an instance of Set Splitting and define, for all s ∈ S, the set
C(s) := {C | C ∈ C, s ∈ C} as the subset of C that comprises all elements C ∈ C that
contain s. Note that C(s) 6= ∅ for all s ∈ S, since we have assumed

⋃
C∈C C = S, i.e.,

every s ∈ S is contained in some element of C.
We construct a digraph (~G = (V, E), σ) that serves as input for BPURC as follows:

Step 1: For all s ∈ S, construct an s-gadget Gs as follows:

(i) For all C ∈ C(s), add four new vertices to Gs of which two are colored
with (C, 1) and the other two with (C, 2).

(ii) Add arcs (x, y), (y, x) between all x, y ∈ V(Gs) with σ(x) 6= σ(y).

Step 2: Set V :=
⋃· s∈S V(Gs), E :=

⋃· s∈S E(Gs) and preserve the coloring of the
vertices within the s-gadgets to obtain the digraph (~G, σ).

By construction, |V(Gs)| = 4|C(s)| and |V| = ∑s∈S 4|C(s)| ≤ 4|C||S|. Hence, the
construction of (~G, σ) can be achieved in polynomial time. Moreover, by construction,
{V(Gs) | s ∈ S} forms a partition of V and there are no arcs between vertices of
distinct s-gadgets. Furthermore, σ(V) = C× {1, 2}. An illustrative example of such
a constructed digraph (~G, σ) is provided in Fig. 34.

We continue by showing that an instance (C, S) of Set Splitting has a yes-answer
if and only if BPURC has a yes-answer for the input digraph (~G = (V, E), σ) con-
structed above and k = 0. In particular, we will show that {S1, S2} is a solution of
(C, S) if and only if V = {V1, V2} with Vi = ∪s∈Si V(Gs), i ∈ {1, 2} is a solution for
(~G, σ) where c(~G,V) = 0.

Recall that the set of unsatisfiable relations U(~G,V) of a bipartition V of V is given
by the (disjoint) union U1 ∪· U2 ∪· U3 of the three sets U1 := U1(~G,V), U2 := U2(~G,V)
and U3 := U3(~G,V) (cf. Lemma 5.6).

First suppose that Set Splitting with input (C, S) has a yes-answer and let {S1, S2}
be one of its solutions. Hence, no subset in C is entirely contained in either S1 or
S2, and both sets must be non-empty. Consider the set V = {V1, V2} with Vi =
∪s∈Si V(Gs), i ∈ {1, 2}. Since {S1, S2} is a bipartition of S and {V(Gs) | s ∈ S} is
a partition of V, we conclude that V is a bipartition of V and that V(Gs) is entirely
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C1 = {a, b}

C
2
 = {a, c}

C3 = {b, c, d}

a-gadget

c-gadget

b-gadget

d-gadget

V1

V2

coloring:

(G = (V, E), σ)S = {a, b, c, d}

Fig. 34. Example for the reduction from an instance (C, S) of Set Splitting to an
instance (~G, σ) with k = 0 of BPURC, as specified in the proof of Thm. 5.11. In this
example, we have S = {a, b, c, d} and C = {C1, C2, C3}. By construction, all arcs are
bidirectional and thus, arrow heads are omitted in the drawing of (~G, σ). A solution
for (C, S) is S1 = {a, d} and S2 = {b, c}. The latter is equivalent to a solution of
BPURC by “separating” the a- and d-gadget from the b- and c-gadget as indicated
by the dashed line. The latter yields a bipartition V = {V1, V2} of V(~G) that solves
BPURC with input (~G, σ, k = 0).
Note, slight changes of the input (C, S) to S′ = S \ {d} and C′ = {C1, C2, C3 \ {d}}
would yield an instance of Set Splitting that has no yes-answer. In this case, the
d-gadget would disappear from (~G, σ) resulting in the digraph (~G′, σ′). It is easy to
see that there is no bipartition V = {V1, V2} of V(~G′) such that σ(V1) = σ(V2) =
σ(V(~G′)) and no gadget gets split up between V1 and V2; two necessary properties
to obtain a solution for BPURC with input (~G′, σ′) and k = 0 (cf. proof of Thm. 5.11).

contained in either V1 or V2 for all s ∈ S. Together with the fact that there are no arcs
in ~G between vertices of distinct s-gadgets this implies that U1 = ∅.

In order to verify that U2 = U3 = ∅, we first show that σ(V1) = σ(V2) = σ(V)
and that V1 and V2 contain at least two vertices of every color, respectively. Consider
two arbitrary pairs (C, 1), (C, 2) ∈ σ(V) = C× {1, 2}. Since {S1, S2} is a solution for
Set Splitting with input (C, S), there are vertices s ∈ C ∩ S1 and s′ ∈ C ∩ S2 and
thus, V(Gs) ⊆ V1 and V(Gs′) ⊆ V2. By construction, each of the sets V(Gs) and V(Gs′)
contains two vertices of color (C, 1) and two vertices of color (C, 2). Since V(Gs) ⊆ V1
and V(Gs′) ⊆ V2, the sets V1 and V2 each contain two vertices of both colors (C, 1)
and (C, 2). Since (C, 1), (C, 2) ∈ σ(V) are arbitrary and σ(V) = C× {1, 2}, we can
conclude that σ(V1) = σ(V2) = σ(V), and that V1 and V2 contain at least two vertices
of every color. Now, σ(V1) = σ(V2) implies that U2 = ∅. Moreover, since V1 and V2
contain at least two vertices of every color, we also have that U3 = ∅. In summary,
we have U(~G,V) = U1 ∪· U2 ∪· U3 = ∅, and thus, c(~G,V) = 0. Therefore, BPURC
with input (~G, σ, k = 0) has a yes-answer.

Now suppose BPURC with input (~G, σ, k = 0) has a yes-answer and thus, a solu-
tion V = {V1, V2}. Consequently, U(~G,V) = U1 ∪· U2 ∪· U3 = ∅. We first show that
both V1 and V2 must contain a vertex of every color in σ(V) = C× {1, 2}. To this
end, we assume for contradiction that w.l.o.g. V1 contains no vertex of color (C, 1)
for some C ∈ C. Since |C| ≥ 2, C contains two distinct elements s, s′ ∈ S. Note that
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C ∈ C(s) and C ∈ C(s′). By construction in Step 1, there are vertices y ∈ V(Gs) and
y′ ∈ V(G′s) of color σ(y) = σ(y′) = (C, 1). Since (C, 1) /∈ σ(V1), it must hold that
y, y′ ∈ V2. Now consider an arbitrary vertex x ∈ V1. Note that (C, 1) /∈ σ(V1) implies
σ(x) 6= (C, 1). Since Gs and Gs′ are, by construction, vertex disjoint, x cannot belong
two both gadgets Gs and Gs′ . Therefore, we can choose ỹ ∈ {y, y′} such that x and ỹ
belong to distinct gadgets, and we obtain (x, ỹ) /∈ E by construction. This together
with x ∈ V1, ỹ ∈ V2 = V \ V1 and σ(ỹ) = (C, 1) /∈ σ(V1) implies (x, ỹ) ∈ U2. Hence,
U2 6= ∅; a contradiction. Therefore, we conclude that both V1 and V2 contain vertices
of all colors in σ(V) = C× {1, 2}.

We continue by showing that V(Gs) is entirely contained in either V1 or V2 for
all s ∈ S. To this end, assume for contradiction that there is a gadget Gs such that
W1 := V1 ∩ V(Gs) and W2 := V2 ∩ V(Gs) are both non-empty. Since V(Gs) forms a
connected component in (~G, σ) and all arcs are bidirectional by construction, we can
find two vertices x ∈ W1 and y ∈ W2 such that (x, y) ∈ E. This together with the
facts that x and y are in distinct sets V1 and V2 and that both V1 and V2 contain all
colors of σ(V), implies that (x, y) ∈ U1. Hence, U1 6= ∅; a contradiction. Therefore,
the vertex set of each s-gadget is entirely contained in either V1 or V2.

We can construct a well-defined partition {S1, S2} of S such that s ∈ Si if and only
if V(Gs) ⊆ Vi, i ∈ {1, 2}. By construction, there are vertices of color (C, 1) and (C, 2)
in Gs if and only if s ∈ C. This together with the fact that both V1 and V2 contain
vertices of all colors C× {1, 2} implies that S1 ∩C and S2 ∩C are both non-empty for
every C ∈ C. Hence, {S1, S2} is a solution for Set Splitting with input (C, S).

Thm. 5.8 suggests to consider heuristics for (B)PURC that make use of the
Aho graph in the following manner:

1. Construct the Aho graph H := [R(~G, σ), V] based on the set of informa-
tive triples R(~G, σ).

2. If H has more than one connected component, we use the set of con-
nected components as the partition V.

3. If H is connected, a heuristic that operates on the Aho graph H is used
to find a partition V with small UR-cost c(~G,V).

Plugging any algorithm of this type into Line 4 of Alg. 5 reduces the algo-
rithm to BUILD if a BMG is used as input and thus guarantees consistency
(cf. Thm. 4.2). We note, however, that the connected components of a discon-
nected Aho graph are not guaranteed to correspond to an optimal solution
for (B)PURC in the general case.

5.5.4 Computational Experiments

In this section, we compare different heuristics for the (B)PURC Problem and
their performance in the context of BMG editing. Somewhat unexpectedly,
but in accordance with Fig. 33, the results suggest that a good (or bad) per-
formance of (B)PURC is not directly linked to a good (or bad) performance
for BMG editing. Moreover, we find that, even for noisy data, all analyzed
methods are able to capture the tree structure of the underlying “true” BMG
at least to some extent. As we shall see, community detection approaches in
combination with the UR-cost appear to be more promising for BMG editing
than optimal solutions of (B)PURC alone.
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Heuristics for (B)PURC

(B)PURC is a variation on graph partitioning problems. It seems reasonable,
therefore, to adapt graph partitioning algorithms for our purposes.

mincut. We solve the minimum edge cut problem for the connected undi-
rected graph H, i.e., we want to find a bipartition V = {V1, V2} such that
the number of edges between V1 and V2 is minimal in H. The problem can
be solved exactly in polynomial time using the Stoer-Wagner algorithm [300].
Note, however, that the minimum edge cut in H will in general not deliver
an optimal solution of (B)PURC.

karger’s algorithm is a randomized algorithm that, in its original
form, also aims to find a minimum edge cut [163]. In brief, it merges ver-
tices of the graph by randomly choosing and contracting edges, until only
two vertices remain, which induce a bipartition V according to the vertices
that were merged into them. By repeating this process a sufficient number of
times, a minimum edge cut can be found with high probability. Here, we use
the UR-cost c(~G,V) instead of the size of the edge cut as objective function to
select the best solution over multiple runs.

a simple greedy approach starts with V = {V1 = ∅, V2 = V ′} and
stepwise moves a vertex v ∈ V2 to V1 such that c(~G, {V1 ∪ {v}, V2 \ {v}}) is
optimized. Ties are broken at random. This produces |V| − 1 “locally optimal”
bipartitions, from which the best one is selected.

gradient walks . Here we interpret the space of all bipartitions V en-
dowed with the objective function c(~G,V) as a fitness landscape. We start
with a random but balanced bipartition V = {V1, V2}. As the move set, we
allow moving one vertex from V1 to V2 or vice versa. In each step, we execute
the move that best improves the objective function, and stop when we reach
a local optimum.

louvain method. This method for community detection in graphs
greedily optimizes the so-called modularity of a vertex partition V [29]. Its ob-
jective function is q(V) = ∑W∈V ∑u,v∈W(auv − dudv/(2m)), where auv are the
entries of the (possibly weighted) adjacency matrix of a graph H, du = ∑v auv

the vertex degrees, and m is the sum of all edge weights in the graph. This
favors so-called communities or modules W that are highly connected internally
but have only few edges between them. The Louvain method operates in two
phases starting from the discrete partition V = {{u} | u ∈ V}. In the first
phase, it repeatedly iterates over all vertices x and moves x into the commu-
nity of one of its neighbors that leads to the highest gain in modularity as
long as a move that increases q(V) can be found. The second phase repeats
the first one on the weighted quotient graph H/V whose vertices are the sets
of V and whose edge weights are the sum of the original weights between the
communities. In addition to maximizing the modularity, we also investigate
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a variant of the Louvain method that moves vertices into the community of
one of their neighbors if this results in a lower UR-cost c(~G,V), and other-
wise proceeds analogously. We exclude the merging of the last two vertices
to ensure that a non-trivial partition is returned. Since the Louvain method
is sensitive to the order in which the vertex set is traversed, we randomly
permute the order of vertices to allow multiple runs on the same input.

With the exception of the Stoer-Wagner algorithm for solving the minimum
edge cut problem, all of these partitioning methods include random decisions.
One may therefore run them multiple times and use the partition correspond-
ing to the best objective value, i.e., the lowest UR-cost c(~G,V) or the highest
modularity. If not stated otherwise, we apply five runs for each of these
methods in each recursion step (with a connected Aho graph) in the follow-
ing analyses.

Construction of Test Instances

Since we are interested in the (B)PURC problem in the context of BMG editing,
we test the heuristics on ensembles of perturbed BMGs that were constructed
as follows: We first generate leaf-colored trees (T, σ) with a predefined num-
ber of vertices N and colors ` and then compute their BMGs ~G(T, σ). For
each tree, we start from a single vertex. We then repeatedly choose one of the
existing vertices v randomly, and, depending on whether v is currently an in-
ner vertex or a leaf, attach either a single or two new leaves to it, respectively.
Hence, the number of leaves increases by exactly one and the tree remains
phylogenetic in each step. We stop when the desired number N of leaves is
reached. In the next step, colors are assigned randomly to the leaves under
the constraint that each of the ` colors appears at least once. We note that trees
created in this manner are usually not least resolved, and their BMGs are in
general not binary-explainable. Finally, we disturb these BMGs by inserting
and deleting arcs according to a specified insertion and deletion probability,
respectively. Since arcs between vertices of the same color trivially cannot
correspond to best matches, we do not insert arcs between such vertices, i.e.,
the input digraphs for the editing are all properly vertex-colored.

For the purpose of benchmarking the heuristics for the (B)PURC prob-
lem, we only retain perturbed BMGs (~G, σ) with a connected Aho graph
H := [R(~G, σ), V(~G)] because the heuristics are not applied to instances with
a disconnected Aho graph H. Depending on the insertion and deletion prob-
abilities, we retained 93% to 100% of the initial sample, except in the case
where arcs were only inserted to obtain a disturbed digraph. Here, the Aho
graph H was connected in 60% of the initial sample. Thus, even moderate
perturbation of a BMG introduces inconsistencies into the triple set R(~G, σ)

and results in a connected Aho graph H in the majority of cases. As shown
in Fig. 30, both arc insertions and deletions can cause triple inconsistencies.

Benchmarking Results

Fig. 35 suggests that the Simple Greedy approach is best suitable for the min-
imization of the UR-cost c(~G,V) for any of the considered parameters for
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Fig. 35. Performance of partitioning methods for minimizing c(~G,V) on perturbed
BMGs (~G, σ). The rows correspond to different insertion and deletion probabilities
(indicated in the l.h.s. panels) used to disturb the original BMGs. The l.h.s. panels
show the distribution of the no. of arc modifications in total, arc insertions and arc
deletions of the disturbed digraphs w.r.t. the original BMGs. The r.h.s. panels show
the distribution of UR-costs c(~G,V) (red) obtained for each method, and of the no. of
arcs in U1(~G,V), U2(~G,V), and U3(~G,V) (i.e., the sets that contribute to the UR-cost).
Example plot for |V| = 30 vertices and |σ(V)| = 10 colors in each digraph. Among
the 200 generated digraphs, only those with a connected Aho graph [R(~G, σ), V(~G)]
are included in each of the five rows (93%, 100%, 100%, 60%, 95%).

BMG disturbance. The Louvain method based on graph modularity (Louvain
(m)) appears to have by far the worst performance which, moreover, quickly
produces higher UR-costs with an increasing intensity of the perturbations.
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In order to better understand the behavior of the repeated application of the
partitioning heuristics of Alg. 5, it is instructive to consider not only the score
but also the structure of partitions. We observe a strong tendency of some of
the partitioning methods to produce single-leaf splits, i.e., (bi)partitions V in
which at least one set W ∈ V is a singleton (i.e., |W| = 1). Single-leaf splits in
general seem to have relatively low UR-costs.
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Fig. 36. Abundance of single-leaf splits for pairs of BMGs (~Gorig, σ) and disturbed
digraphs (~G, σ) (both with vertex set V). The partition Vorig corresponds to the
connected components of the Aho graph Horig := [R(~Gorig, σ), V] and, hence, to the
partition induced by the subtrees of the children of the root of the LRT (T, σ) of
(~Gorig, σ) (cf. Prop. 4.7). The partition Vheur corresponds to the partition of V as
determined by one of the partitioning methods (based on H := [R(~G, σ), V]). The
gray parts of the bars comprise those instances for which H is disconnected. The
light and dark red bars indicate the amount of graphs for which only Vorig or Vheur,
resp., is a single-leaf split, while light and dark green bars represent instances for
which both and none of the two partitions, resp., are single-leaf splits. Note that
the partitions were not compared explicitly, in particular, the identified singletons
in Vheur in the light green instances may deviate from those in Vorig in some cases.
Example plot for |V| = 30 vertices and |σ(V)| = 10 colors in each digraph. 200

generated digraph pairs per combination of arc insertion (ins.) and deletion (del.)
probabilities.

Fig. 36 quantifies the abundance of single-leaf splits on the same instances
as in Fig. 35. We distinguish between single-leaf splits that are correct w.r.t.
the Aho graph Horig of the original unperturbed digraph, and single-leaf
splits that are not present in the unperturbed target. MinCut, Karger, Simple
Greedy and Gradient Walk frequently produce single-leaf splits that are not
present in Horig. The modularity-based Louvain method, in contrast, never
returned a single-leaf split, even if it was present in Horig. The modified Lou-
vain method is most often in good agreement with Horig as far as single-leaf
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splits are concerned, at least for perturbation levels of 10% of insertions and
deletions.

Heuristics for BMG Editing

In this section, we explore the performance of several variants of Alg. 4 and 5

for BMG editing. The variants of Alg. 5 correspond to using the heuristics
for (B)PURC discussed above for processing a connected Aho graph H :=
[R(~G∗[V ′], σ|V′), V ′] for the informative triples R(~G∗[V ′], σ|V′) in each step of
the recursion. We note that Alg. 5 in combination with any of the heuristics
for (B)PURC also serves as a heuristic for MaxRTC because the choice of
the partition V in each recursion step determines a set of included triples
xy|z, namely those for which x and y are contained in one set of V while
z is contained in another. Another way of expressing that same fact is that
an approximation to MaxRTC is given by the subset R∗ ⊆ R(~G, σ) of the
informative triples of the input digraph (~G, σ) that are displayed by the tree
T constructed in Alg. 5. In particular, Alg. 5 together with the MinCut method
has been described as a heuristic for MaxRTC in earlier work [41, 100]. For
comparison, we will also consider the following bottom-up approach as a
component of Alg. 4:

best-pair-merge-first (bpmf) was described by Wu [333], and con-
structs a tree from a set of triples R in a bottom-up fashion. We use here
a modified version introduced by Byrka et al. [41]. BPMF operates similar to
the well-known UPGMA clustering algorithm [285]. Starting with each ver-
tex x ∈ V as its own cluster, pairs of clusters are merged iteratively, thereby
defining a rooted binary tree with leaf set V. The choice of the two clusters
to merge depends on a similarity score with the property that any triple xy|z
with x, y, and z lying in distinct clusters Sx, Sy, and Sz contributes positively
to score(Sx, Sy) and negatively to score(Sx, Sz) and score(Sy, Sz). Since BPMF
constructs the tree T from the bottom, it does not imply a vertex partition-
ing scheme that could be plugged into the top-down procedure of Alg. 5.
Importantly, BPMF is not a consistent heuristic for MaxRTC, i.e. it does not
necessarily recognize consistent triples sets. Hence, consistency in the appli-
cation to BMG editing is also not guaranteed as the example in Fig. 37 shows.
Therein, the input digraph (~Gorig = (V, E), σ) is a BMG and explained by
(Torig, σ). Therefore, its set of informative triples

R :=R(~Gorig, σ)

={ab1|b2, ac1|c2, ac1|c3, b1c1|c2, b1c1|c3, b2c1|c2, b2c1|c3, c1b2|b1}

is consistent (cf. Prop. 4.7). On the right-hand side of Fig. 37, the first three
cluster merging steps in BPMF with input R are shown where the numbers
are the scores score(Si, Sj) for each pair of clusters Si and Sj as defined in [41].
The pink arrows link inner vertices of the resulting binary tree (T, σ) and the
corresponding cluster merging step based on the maximal score. The tree
(T, σ) does not display the triple ab1|b2. As a consequence, its BMG ~G(T, σ)

contains the additional arc (a, b2), and the triple set R∗ extracted from T in
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Fig. 37. Example showing that BPMF is not a consistent heuristic for MaxRTC, and
that Alg. 4 with BPMF is not a consistent heuristic for BMG editing. See the text for
a detailed description.

Alg. 4 is a proper subset of R. In particular, the final editing result ~G(T∗, σ)

with T∗ = Aho(R∗, V) also contains the arc (a, b2) which was not present in
the original BMG.

In summary, we have two distinct ways to obtain an edited BMG: We may
take either

1. ~G(T, σ), where T is the output tree of Alg. 5 or BPMF, respectively, or

2. ~G(T∗, σ), where T∗ = Aho(R∗, V(~G)) is constructed from the consistent
triple subset of triples R∗. This corresponds to Alg. 4.

Somewhat surprisingly, the results in Fig. 38 suggest that it is in general
beneficial to extract the triple set R∗ and rerun the BUILD algorithm, i.e., to
use ~G(T∗, σ).

Benchmarking Results

To assess the performance of the various heuristics, we consider the dif-
ferences between the editing result (~G∗, σ) from both the original BMG
(~Gorig, σ) and the perturbed input digraphs (~G, σ). In Fig. 38, we sum-
marize the absolute values of the symmetric differences of the arc sets
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Fig. 38. Performance comparison of several BMG editing heuristics based on the no.
of arc differences. The rows correspond to different insertion and deletion probabili-
ties (indicated in the second column panels) used to perturb the original BMGs. The
l.h.s. panels show the distribution of the no. of arcs in the original BMG and in the
perturbed digraph. The second column panels show the distribution of the no. of
arc modifications in total, arc insertions and arc deletions of the perturbed digraphs
w.r.t. the original BMGs. The red lines mark the median values of the total no. of
modifications. The r.h.s. panels show the total no. of arc differences w.r.t. the original
random BMGs (blue) and the perturbed digraphs (green). The light colors indicate
the “direct” performance of each method, i.e., the digraph ~G(T, σ) where T is the tree
that is directly constructed by each method. The darker colors indicate the results if
the methods are used as heuristic for MaxRTC in Alg. 4. Example plot for |V| = 30
vertices and |σ(V)| = 10 colors in each digraph, 100 digraphs per row.
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Fig. 39. Performance comparison of several BMG editing heuristics based on recall,
precision, specificity, and accuracy (rows 1 to 4). The l.h.s. panels show the respective
measure for the perturbed digraph w.r.t. the original random BMG. The red lines
marks the median values of the latter. The r.h.s. panels show the results for the
edited digraphs w.r.t. the original BMGs (blue) and the perturbed graphs (green).
The light colors indicate the “direct” performance of each method, i.e., the digraph
~G(T, σ) where T is the tree that is directly constructed by each method. The darker
colors indicate the results if the methods are used as heuristic for MaxRTC in Alg. 4.
Example plot for |V| = 30 vertices and |σ(V)| = 10 colors in each digraph, insertion
and deletion probability 0.1, and 100 digraphs.
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dorig := |E(~G∗)4 E(~Gorig)| and d := |E(~G∗)4 E(~G)|, respectively. These re-
sults are translated to usual normalized performance indicators (recall, preci-
sion, specificity, and accuracy; all defined in terms of the arc sets) in Fig. 39.

Comparing the distances dorig (blue boxplots) and d (green boxplots) of the
editing result (~G∗, σ) to original unperturbed BMG and the input digraph,
resp., we find that, for the methods investigated here, on average dorig is
smaller than d. This indicates that all methods are able to capture the un-
derlying tree structure of the original BMG at least to some extent. The dis-
crepancy between dorig and d tends to increase with the level of perturbation,
a trend that is most pronounced for Louvain (c). This result is encouraging
for practical applications of BMG modification to correcting noisy best match
data, where the eventual goal is to obtain a good estimate of the underlying
true BMG.

Intriguingly, the extraction of consistent informative triples R∗ from the
reconstructed tree T and rerunning BUILD, i.e., using ~G(T∗, σ), in general im-
proves the estimation results for the majority of methods. In particular, this
increases the recall without a notable negative impact on precision and speci-
ficity (cf. Fig. 39). A better recall, corresponding to a higher proportion of
correctly inferred arcs, is not surprising in this context, since this additional
step in essence reduces the number of triples. We therefore expect the tree
T∗ = Aho(R∗, V(~G)) to be on average less resolved than T. The BMGs of
less resolved trees tend to have more arcs than BMGs of highly resolved
tree (cf. [264, Lemma 8]). In good accordance with this prediction, BPMF,
which shows a strong increase of recall, always constructs a binary, i.e., fully-
resolved, tree T – whereas the corresponding tree T∗ in general is much less
resolved.

Somewhat surprisingly, a good or bad performance for minimizing the UR-
cost in individual steps apparently does not directly translate to the perfor-
mance in the overall editing procedure. In particular, the modularity-based
Louvain (m) method seems to be a better choice than the Simple Greedy ap-
proach. The methods MinCut and Karger do not seem to be suitable compo-
nents for Alg. 5, with the exception of the case where perturbations are arc
deletions only (Fig. 38, bottom row). Here, MinCut produces reasonable es-
timates that compare well with other methods. The bottom-up method for
the MaxRTC problem BPMF also produces relatively good results. It appears
to be robust at high levels of perturbation. For most of the parameter combi-
nations, we obtain the best results with the UR-cost-based Louvain method
(Louvain (c)). Here, we often observe a symmetric difference (w.r.t. the arcs
sets) that is better than the difference between the original and the perturbed
digraph. This trend is illustrated by the red median lines in Fig. 38 and 39.
Hence, we achieve two goals of BMG editing: (i) the resulting digraph (~G∗, σ)

is a BMG, i.e., it satisfies Def. 4.2, and (ii) it is closer to the original BMG than
the perturbed digraph. We note that we observed similar trends across all
investigated combinations for the numbers of leaves N (ranging from 10 to
40) and of colors ` (` < N ranging from 2 to at most 20).

Our results show that minimization of the UR-cost in each step is not the
best approach to BMG editing because this often produces very unbalanced
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Fig. 40. Example of an instance where the Louvain method performs better due to
more balanced partitions. The (least resolved) tree (T, σ) explains the BMG (~Gorig, σ)

with vertex set V. The graph Horig = [R(~Gorig, σ), V] is the Aho graph corresponding
to the informative triple set R(~Gorig, σ). The perturbed digraph (~G, σ) is obtained
from (~Gorig, σ) by inserting the arcs (b3, a1), (c2, a1), and (c2, b1) and deletion of
(a1, b2). The corresponding Aho graph H = [R(~G, σ), V] is connected because the
perturbation introduced the additional informative triple c2b1|b2. The green and
pink frames correspond to the partitions V1 and V2 of V constructed by the methods
Louvain (c) and MinCut, respectively.

partitions. As a consequence, more recursion steps are needed in Alg. 5 re-
sulting in higher accumulated number of arc edits. Fig. 40 shows that better
solutions to the BMG editing problem are not necessarily composed of vertex
partitions with minimal UR-cost in each step. The perturbed digraph (~G, σ)

in Fig. 40 was obtained from the randomly simulated BMG (~Gorig, σ) as de-
scribed above using equal insertion and deletion probabilities of 0.1. As an
example, the partitions V1 and V2 as constructed by the MinCut and the Lou-
vain (c) method in the first iteration step of Alg. 5 are shown as pink and green
frames, respectively. MinCut produces a single-leaf split V1 with an isolated
vertex b2 and UR-cost c(~G,V1) = 1 deriving from U1(~G,V1) = {(b2, a2)}.
Louvain (c) identifies the partition V2 with c(~G,V2) = 3 originating from
U2(~G,V1) = {(b3, a1), (c2, a1), (c2, b1)}, which corresponds to the connected
components of the Aho graph Horig of the unperturbed BMG and thus iden-
tifies the split in the original tree (T, σ). Here, the correct partition V2 has
a strictly larger UR-cost than the misleading choice of V1. However, MinCut
results in a higher total edit cost than Louvain (c) for (~G, σ).

In order to account for the issue of unbalanced partitions, we performed a
cursory analysis on maximizing a gain function rather than minimizing the
UR-cost. In analogy to c(~G,V), we defined g(~G,V) as the number of arcs and
non-arcs that are satisfied by the BMGs of all trees in T(V). Recapitulating
the arguments in the proof of Lemma 5.6, one can show that these relations
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Fig. 41. Running times of the different methods for BMG editing. The time only
includes the construction of the tree T, i.e., Alg. 5 or BPMF, resp., but not the ex-
traction of the triple set R∗ followed by rerunning BUILD. For each number of leaves
N ∈ {10, 20, 30, 40} and each number of colors ` (taken from {2, 5, 10, 20} such that
` < N), 100 perturbed BMGs were generated using equal insertion and deletion
probabilities of 0.1. In the right panel, the median values are shown with logarithmic
axes.

can also be determined as the union of three sets by replacing “(x, y) ∈ E”
with “(x, y) /∈ E” and vice versa in the definitions of U1(~G,V), U2(~G,V), and
U3(~G,V). The gain function g(~G,V) can be used instead of the UR-cost with
Karger, Simple Greedy, Gradient Walk, and in a gain-function-based Louvain
method. For all these algorithms, however, maximizing g(~G,V) leads to parti-
tions that appear to be too balanced, and a performance for BMG editing that
is worse than the use of the UR-cost. A possible explanation for both unbal-
anced and too balanced partitions as produced with a cost and gain function,
resp., is the fact that U1(~G,V) and U2(~G,V) (and their gain function counter-
parts) contain pairs of vertices (x, y) that lie in distinct sets of V. Hence, both
single-leaf splits and perfectly balanced partitions minimize (maximize, resp.)
the number of pairs that could potentially be contained in these arc sets.

All methods for BMG editing were implemented and compared using
Python on an off-the-shelf laptop. Fig. 41 summarizes the running times.
The right panel shows that all methods appear to scale polynomially in the
size |V| of the vertex set of the input digraph. The methods that explicitly
rely on the UR-cost are much slower than the other methods. We suspect that
this is largely due to the repeated O(|V ′|2)-computation of c(~G,V) whenever
a vertex is moved between the sets/communities in V. This could possibly be
improved by an incremental algorithm.
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Heuristics for Binary-Explainable BMG Editing

In order to test the heuristics for the slightly different task of obtaining a
binary-explainable BMG (~G∗, σ), we constructed a similar set of test instances.
The only difference is that we ensured that Torig is binary by modifying the
attachment procedure (cf. Section 5.5.4) such that in each growth step we
only choose among the vertices that are currently leaves for attaching two
new leaves. Thus, (~Gorig, σ) = ~G(Torig, σ) is binary-explainable. The editing
heuristics are analogous, with two straightforward modifications:

• In the Aho graphs, RB(~G, σ) is used instead of R(~G, σ).

• If we encounter a partition V of cardinality greater than two in some
recursion step, we use a coarse-graining V′ of V such that |V′| = 2 in-
stead. This modification is necessary whenever [RB(~G, σ)[V ′], V ′] itself
has more than two connected components, and for the partitions with
|V| ≥ 3 returned by the Louvain method.

By Thm. 5.9, this procedure is consistent for binary-explainable BMGs.
Thm. 5.9, moreover, guarantees some freedom in the choice of a coarse-
graining V′ = {V1, V2} whenever V is not a bipartition. We therefore aim to
produce (locally) balanced trees in such situations, i.e., we seek to minimize
the difference of |V1| and |V2|. Formally, this corresponds to the well-known
Number Partitioning problem with the multiset {|Vi| | Vi ∈ V} as input.
We use the efficient heuristic described by Karmarkar and Karp [164], which
in general appears to yield very good solutions of the Number Partitioning

problem [31].
To construct the second binary tree T∗ based on subset of triples R∗ ⊆

RB(~G, σ) that are displayed by T, we employ an analogous coarse-graining
in an otherwise unmodified BUILD algorithm. We note, however, that one
could incorporate more sophisticated approaches which e.g. use some greedy
coarse-graining method based on the UR-cost.

The results for beBMG editing in Fig. 42 in essence recapitulate the observa-
tions for general BMG editing: Alg. 5 in combination with Louvain (c) appears
to be the best choice for the majority of parameter combinations. However, it
is outperformed by the BPMF heuristic at high levels of perturbation (inser-
tion and deletion probability 0.2). As in the general case, construction of T∗

and using (~G∗, σ) := ~G(T∗, σ) as editing result appears to be advantageous.
Moreover, the difference of the editing result (~G∗, σ) to the original beBMG
(~Gorig, σ) is on average smaller than the difference of (~G∗, σ) to the perturbed
digraph (~G, σ).

Remarks on the Results and Open Problems

For all of the methods investigated here, we found that the Aho graph
H := [R(~G, σ)[V ′], V ′] serves as a useful starting point for finding a suitable
partition. This choice is based on the idea that, due to the properties of BMGs
and in particular the construction of the tree (T, σ) from informative triples of
the BMG (~G, σ) = ~G(T, σ), arc insertions and deletions in (~G, σ) should not
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Fig. 42. Performance comparison of several beBMG editing heuristics based on the
no. of arc differences. See Fig. 38 for further description. Example plot for |V| = 30
vertices and |σ(V)| = 10 colors in each digraph, 100 digraphs per row.

add too many new edges between the connected components of the originally
disconnected Aho graph of R(~G, σ) (cf. Fig. 30). Therefore, we suggest that
there is a correlation between good partitions V of V ′, i.e. partitions linked
to few edits, and the minimization of the number of edges in H connecting
vertices in distinct sets of V.

For the general BMG editing problem, we did not make use of the infor-
mation contained in the set of forbidden triples F(~G, σ) of the input digraph
(~G, σ). It might be possible to adapt the algorithm MTT [128], which identi-
fies consistent pairs (R,F), instead of BUILD. MTT constructs a coarse-graining
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VMTT of the set of connected components of the Aho graph (on R) in order
to account for the forbidden triples in F in each recursion step. Possibly,
VMTT (or some suitable graph representation) yields a further improvement.
However, in case of beBMG editing, the extended triple set RB(~G, σ) and thus
the corresponding Aho graphs by construction already cover the information
contained in F(~G, σ). Since no substantial improvement over the general case
was observed in this case (cf. Fig. 42), we opted against more detailed bench-
marking of VMTT in comparison to partitions based on the Aho graph.

We have demonstrated that the problem of BMG editing can be solved for
interestingly large instances at reasonable accuracy. In computational biology,
however, much larger problems than the ones considered here would also be
of interest. Less emphasis has been placed here on computational efficiency
and scalability of different variants. We leave this as topic for future research.
Given the performance advantage of community detection over minimization
of the UR-cost in each step, it seems most promising to focus on community
detection methods that scale well for very large system. The Louvain method
seems to be a promising candidate, since it has been applied successfully
to large networks in the past [29]. This is largely due to the fact that the
change of modularity in response to moving a vertex between modules can
be computed efficiently. We suspect that a comparably fast computation of
the UR-cost may also be possible; this does not appear to be trivial, however.
Moreover, the method could probably be accelerated by moving vertices into
the community of the first neighbor such that this results in a (not necessarily
optimal) improvement of the UR-cost. A similar randomization approach
has already shown to only slightly affect the clustering quality in terms of
modularity [317].

Since the restriction of a (be)BMG to a subset of colors is again a (be)BMG,
it may also be possible to remove large parts of the noise by editing induced
subgraph on a moderate number of colors, possibly using information of the
phylogeny of the species to select species (= color) sets. Presumably, color sets
with sufficient overlaps will need to be considered. A systematic analysis of
this idea, however, depends on scalable BMG editing for large instances.

A potential shortcoming of the empirical analysis in this section is the sim-
plistic error model, i.e., the independent perturbation of arcs (and non-arcs).
Better models will depend on the investigation of BMGs derived from real-
life sequence data. Such data is often burdened with systematic errors arising
e.g. from the fact that a common ancestry often cannot be detected for very
large evolutionary distances and from unequal mutation rates during the evo-
lution of gene families, see e.g. [185, 250, 293] for more in-depth discussions
of these issues. Benchmarking using real-life data, however, is a difficult task
because the ground truth is unknown and large, well-curated data sets are not
available. As a potential remedy, our results so far suggest that a good per-
formance w.r.t. the input digraph is also an indicator for a good performance
w.r.t. the true digraph (cf. Fig. 38 and 39, green vs. blue boxplots).
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5.6 summary

In this chapter, we have investigated the complexity and presented heuristic
algorithms for arc set modification problems of an arbitrary vertex-colored
digraph (~G, σ) to a BMG (or beBMG).

In Secs. 5.2 and 5.3, we have seen that the deletion, completion, and editing
problems are all NP-complete (Thm. 5.5 and Cor. 5.6) and that they remain
NP-complete even if the input digraph has only two colors, and when the
output is additionally constrained to be binary-explainable. However, we
were able to derive ILP formulations that are guaranteed to return optimal
solutions for all of these problems in Sec. 5.4. Moreover, we gave a sim-
ple polynomial-time algorithm for solving the special case of completing a
2-colored BMG to a beBMG (cf. Thm. 5.4).

In Sec. 5.5, we have described a large class of heuristics for BMG editing
that operate in a recursive top-down fashion to (at least implicitly) construct
a tree (T, σ) capturing the underlying BMG-structure of an arbitrary input
digraph (~G, σ). We have shown that this is closely related to a specific notion
of locally good edits, which we assess using the UR-cost. The UR-cost counts
the minimum number of arc insertions and deletions of the BMG-editing for
(~G, σ) that are linked to each inner node (and thus to their corresponding leaf
partitions) in (T, σ) and cannot be reversed in subsequent recursion steps.
In particular, we showed that an optimal solution among all possible parti-
tions guarantees consistency of this class of heuristics (cf. Thm. 5.8 and 5.9).
Unfortunately, the corresponding problem BPURC is itself NP-complete (cf.
Thm. 5.11).

We therefore suggested a number of heuristic methods for finding suitable
partitions, and compared their performances in the context of Alg. 5 using
randomly generated perturbed BMGs. We find that, even though good solu-
tions for (B)PURC alone do not seem to be the most adequate approach, the
value of the UR-costs appears most clearly in a combination with a method for
community detection, more precisely, a modification of the Louvain method
[29]. In particular, the results of our simulations suggest that realistic BMG
data can be processed with sufficient accuracy and efficiency to make BMGs
an attractive alternative to classical phylogenetic methods. The construction
of bioinformatics workflows to process best hit data, e.g. at the first process-
ing stage of ProteinOrtho [190], is a logical next step.
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6
F R O M B E S T M AT C H E S T O O RT H O L O G Y

The orthology relation has been characterized as a cograph by Hell-
muth et al. [132] based on earlier work by Böcker and Dress [30]. This
line of research has led to the idea of editing reciprocal best hit/match

data to conform to the required cograph structure [133]. There are, however,
two distinct sources of error in an orthology assignment pipeline based on
best matches:

(i) inaccuracies in the assignment of best matches from sequence similarity
data [293], and

(ii) limits in the reconstruction of the “true” orthology relation from best
match graphs [103].

The estimation of best matches from similarity data has been discussed in
Sec. 4.1.4 and [293], and we have investigated a further correction by means
of arc modification in Chapter 5. In this chapter, we are only concerned
with the second source of error. We, therefore, assume throughout that a
“correct” BMG (cf. Def. 4.2) is given. We do not assume, however, that we have
any a priori knowledge about the underlying gene or species tree. The problem
we aim to solve is to determine the orthology relation that is best supported
by the given BMG. Geiß et al. [103] showed that, for evolutionary scenarios
that involve only speciations, gene duplications, and gene losses, there are no
false-negative orthology assignments in the RBMG (see also Thm. 6.2 below).
Our task, therefore, reduces to understanding the false-positive orthology
assignments. Importantly, we consider exclusively duplication-loss scenarios, i.e.,
we explicitly exclude horizontal gene transfer.

This chapter is organized as follows: In Sec. 6.1, we formally introduce a
reconciliation map for duplication-loss scenarios which was e.g. also used in
[103] and present previous results that relate orthology and best matches in
this framework. Sec. 6.2 formalizes the notion of unambiguous false-positive
(u-fp) edges, i.e., reciprocal best matches that cannot be orthologs w.r.t. to any
gene tree explaining the BMG. Secs. 6.3 and 6.4 contain the main mathemati-
cal contributions of this chapter:

1. We provide a full characterization of unambiguous false-positive orthol-
ogy assignments in BMGs.

2. We provide a polynomial-time algorithm to determine all unambiguous
false-positive orthology assignments in BMGs.

In Sec. 6.5, we complement the mathematical results with a computational
analysis of simulated scenarios and observe that at least three-quarters of all
false positives fall into this class. The remaining cases are not recognizable
from best matches alone and correspond to complementary losses without
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surviving witnesses, i.e., cases that cannot be corrected without additional
knowledge on the gene tree and/or the species tree. The results and ideas in
this chapter appeared previously in [264].

Different Definitions and Notation in this Chapter

In biology, duplication events are not restricted to only occur after the first
speciation event, i.e., the point in time when the last common ancestor of
the species under consideration started diverging into two or more lineages.
As alluded to in Sec. 2.3.6, we will assume that all trees in this chapter are
planted to account for situations in which a (duplication) event occurs in the
ancestral line. Recall that planted trees T are distinguished by a planted root
0T whose unique child is the conventional root ρT.

In particular, it will be convenient to allow LRTs (T, σ) of BMGs to con-
tain a planted edge 0TρT that is not contractible in the sense of least resolved
trees (Def. 4.5) and redundant edges (Def. 4.6). Strictly speaking, this differs
from the construction in [102, 104] and the previous chapters. However, there
clearly is a one-to-one mapping between LRTs with and without an additional
planted edge 0TρT. Hence, the (non-contractible) planted edge is a trivial de-
tail that does not affect the properties of LRTs. In particular, since 0TρT is not
an inner edge by definition (cf. Sec. 2.3.6), the characterization of redundant
edges in Lemma 4.6 does not need adjustment.

Throughout this and the following chapters, we will, whenever there is no danger
of confusion, refer also to planted phylogenetic trees simply as trees.

In this chapter, we will furthermore consider RBMGs (G, σ) being the sym-
metric parts of BMGs (~G, σ). In order to simplify the presentation, we will
therefore interpret undirected graphs as the subclass of directed graphs G
that satisfy (x, y) ∈ E(G) if and only if (y, x) ∈ E(G) for all x, y ∈ V(G).
Hence, a BMG (~G, σ) is always a supergraph of its corresponding RBMG
(G, σ), and thus, we can write (G, σ) ⊆ (~G, σ). In turn, we will call bidirec-
tional arcs (x, y), (y, x) ∈ E(~G) edges, and denote them by xy, even if ~G is not
undirected according to this definition. Consequently, we say that an hour-
glass [xy ↘↗ x′y′] has edges xy and x′y′ (cf. Def. 4.10), and we will omit the
arrow heads of all edges in the drawings in this chapter (see e.g. the BMG
(~G, σ) in Fig. 43).

Finally, we follow [103] and assume w.l.o.g. that the vertex- and leaf-
colorings σ are surjective maps in this chapter to avoid species trees with
superfluous leaves.

6.1 reconciliation maps , event-labeling , and orthology rela-
tions

Consider a gene tree (T, σ) and a corresponding species tree S, i.e., we have
σ(L(T)) = L(S). An evolutionary scenario extends the map σ : L(T)→ L(S) to
an embedding of the gene tree into the species tree. It (implicitly) describes
different types of evolutionary events: speciations, gene duplications, and
gene losses. As already mentioned, we do not consider other types of events
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Fig. 43. An evolutionary scenario (left) with an observable part of the gene tree
(T, σ) (second panel). See Fig. 6 and Def. 6.2 for an explanation of the symbols. The
reciprocal best match graph (RBMG) (G, σ) on the right is the (undirected) symmetric
part of the best match graph (BMG) (~G, σ) (third panel).

such as horizontal gene transfer in this chapter. Gene losses do not appear
explicitly since L(T) only contains extant genes. Inner vertices in the gene
tree T that designate speciations have their correspondence in inner vertices
of the species tree. In contrast, gene duplications occur independently of
speciations and thus belong to edges of the species tree. An example for
an evolutionary scenario (with indicated loss events) and the corresponding
BMG and RBMG is given in Fig. 43.

So far, a rather large number of axiom sets have been proposed and charac-
terized to formalize reconciliations of gene and species trees, some of which
are equivalent, see [82, 109, 130, 228, 252, 323] and the references therein.
We will briefly discuss some of them in Sec. 7.1, especially such that include
HGT. For duplication-loss scenarios and trees that are not necessarily binary,
the embedding of T into S can be formalized by

Definition 6.1 (Reconciliation Map). Let S and T be two planted phylogenetic
trees and let σ : L(T)→ L(S) be a surjective map. A reconciliation from (T, σ) to S
is a map µ : V(T)→ V(S) ∪ E(S) satisfying

(R0) Root Constraint. µ(x) = 0S if and only if x = 0T.
(R1) Leaf Constraint. If x ∈ L(T), then µ(x) = σ(x).
(R2) Ancestor Preservation. If x ≺T y, then µ(x) �S µ(y).
(R3) Speciation Constraints. Suppose µ(x) ∈ V0(S) for some x ∈ V(T). Then

(i) µ(x) = lcaS(µ(v′), µ(v′′)) for at least two distinct children v′, v′′ of x
in T.

(ii) µ(v′) and µ(v′′) are incomparable in S for any two distinct children v′

and v′′ of x in T.

This type of reconciliation map has been established in [103]. Moreover, it
has been shown in [103] that the axiom set used here is equivalent to axioms
that are commonly used in the literature such as the DLS-trees of Górecki
and Tiuryn [109] and reconciliation map introduced by Doyon et al. [82]. Ax-
ioms (R0) and (R1) are very simple constraints that determine the mapping
of the planted root and the leaves of T, respectively. In particular, (R1) guar-
antees that µ is an extension of the leaf-coloring σ. The ancestor preservation
constraint (R2) ensures that there are no conflicts between the ancestor re-
lations �T and �S for any distinct x, y ∈ V(T) and their images µ(x) and
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µ(y). In [103], it was shown that the axioms imply the somewhat stronger
condition µ(x) ≺S µ(y) if at least one of x and y is mapped to a vertex of S.
Finally, the two conditions in (R3) are concerned with speciation vertices in
T, i.e., vertices x that are mapped to inner vertices of the species tree. They
ensure that any two children of x are mapped into incomparable branches
below µ(x), and that, for at least two among them, the last common ancestor
of their images in S is exactly the speciation µ(x).

Without any further constraints, Def. 6.1 gives rise to a well-known result
[103, 115, 238]:

Lemma 6.1. [103, Lemma 3] For every tree (T, σ) there is a reconciliation map µ

to any species tree S with leaf set L(S) = σ(L(T)).

The proof of Lemma 6.1 in [103] explicitly constructs a reconciliation map
µ by simply applying Rules (R1) and (R2) and additionally mapping all inner
vertices of T to the planted edge 0SρS. Even though this usually implies a
large number of loss events, and thus, seems unlikely to happen in biology, it
is not ruled out logically by the axioms in Def. 6.1.

The reconciliation map µ from (T, σ) to S determines the types of evolu-
tionary events in T. This can be formalized by associating an event labeling
with the vertices of T. We use the notation introduced in [103]:

Definition 6.2. Given a reconciliation map µ from (T, σ) to S, the event labeling
on T (determined by µ) is the map tµ : V(T)→ {},�, ,�} given by:

tµ(u) =





} if u = 0T, i.e., µ(u) = 0S (root)

� if u ∈ L(T), i.e., µ(u) ∈ L(S) (leaf)

 if µ(u) ∈ V0(S) (speciation)

� else, i.e., µ(u) ∈ E(S) (duplication)

While every gene tree can be reconciled with any species tree, this is no
longer true if event labels are prescribed in the gene tree T [130, 140, 180].
The following result is a simple but useful consequence of combining the
axioms of the reconciliation map with the event labeling of Def. 6.2.

Lemma 6.2. [103, Lemma 3] Let µ be a reconciliation map from (T, σ) to a tree S
and suppose that u ∈ V(T) is a vertex with µ(u) ∈ V0(S) and thus, t(µ(u)) =  .
Then, σ(L(T(v1))) ∩ σ(L(T(v2))) = ∅ for any two distinct v1, v2 ∈ childT(u).

We will regularly make use of the observation that, by contraposition of
Lemma 6.2, σ(L(T(v))) ∩ σ(L(T(v′))) 6= ∅ for two distinct v1, v2 ∈ childT(u)
implies that µ(u) ∈ E(S), and thus tµ(u) = �. Lemma 6.2 suggests to define
event-labeled trees as trees (T, t) endowed with a map t : V(T)→ {},�, ,�}
such that t(0T) = } and t(u) = � for all u ∈ L(T). In [103], Lemma 6.2 also
served as a motivation for
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Definition 6.3. Let (T, σ) be a leaf-colored tree. The extremal event labeling of T
is the map t̂T : V(T)→ {},�, ,�} defined for u ∈ V(T) by

t̂T(u) =





} if u = 0T

� if u ∈ L(T)

� if there are two children v1, v2 ∈ childT(u) such that

σ(L(T(v1))) ∩ σ(L(T(v2))) 6= ∅

 otherwise

The extremal event labeling t̂T of (T, σ) is the one that minimizes the nec-
essary number of duplications on (T, σ) in the light of Lemma 6.2. In a con-
ceptual sense, therefore, (T, t̂T) is a “most parsimonious” solution, matching
the idea of most parsimonious reconciliations [115, 238]. An example of an
extremal event labeling is shown in Fig. 53 on page 180 (rightmost tree). The
extremal event labeling is closely related to the concept of apparent duplica-
tion (AD) vertices often found in the literature [e.g. 183, 304]. For a (binary)
gene tree T and a reconciliation of T with a species tree S, a duplication ver-
tex of T is an AD vertex if its two subtrees have at least one color in common.
In contrast, it is a non-apparent duplication (NAD) vertex if the color sets
of its subtrees are disjoint. This notion is useful for a variety of parsimony
problems that usually aim to avoid or minimize the number of NAD vertices
[183, 304]. However, the extremal event labeling t̂T is completely defined by
(T, σ). That is, in contrast to both the event labeling in Def. 6.2 and the con-
cept of AD and NAD vertices, t̂T does not depend on a specific reconciliation
map. On the other hand, there is no guarantee that there always exists a
reconciliation map µ from (T, σ) to some species tree S such that tµ = t̂T, cf.
[103, Fig. 2] and Fig. 53 in Sec. 6.3.7 for counterexamples. Nevertheless, we
shall see below that the extremal labeling is a key step towards identifying
false-positive orthology assignments.

The event labeling on T defines the orthology graph.

Definition 6.4. The orthology graph Θ(T, t) of an event-labeled tree (T, t) has
vertex set L(T) and edges uv ∈ E(Θ) if and only if t(lcaT(u, v)) =  .

The orthology graph is often referred to as the orthology relation. Hellmuth
et al. [132] showed that orthology graphs coincide with cographs:

Theorem 6.1. [132, Cor. 4] A graph G is an orthology graph for some event-labeled
tree (T, t), i.e. G = Θ(T, t), if and only if G is a cograph.

In particular, therefore, orthology graphs do not contain induced paths on
four vertices (P4s), cf. Prop. 2.6.

The orthology graph is a subgraph of the RBMG (and thus also of the BMG)
for any given reconciliation map connecting a gene with a species tree.

Theorem 6.2. [103, Lemmas 4 and 5] Let (T, σ) be a leaf-colored tree and µ a
reconciliation map from (T, σ) to some species tree S. Then Θ(T, tµ) ⊆ Θ(T, t̂T) ⊆
G(T, σ) ⊆ ~G(T, σ).
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(G, σ)

~

Fig. 44. Two scenarios (1st and 2nd panel to the left) for the evolution of a gene family
embedded into a species tree (shown in gray), where  represents speciation and �
duplication events. The second scenario is the simplest example for a complementary
gene loss that is not witnessed by any other species. In particular, the two different
true histories result in the same topology T̃ of the true (loss-free) gene tree, and thus
explain the same BMG (~G, σ). However, only for the leftmost scenario the edge xy
in (~G, σ) describes correct orthologs.

In particular, tµ(v) =  implies t̂T(v) =  for any reconciliation map.
By contraposition, therefore, if t̂T(v) = �, then tµ(v) = � for all possible
reconciliation maps µ from (T, σ) to any species tree S. A crucial implication
of Thm. 6.2 is that edges in a BMG ~G(T, σ) always correspond to either correct
orthologous pairs of genes or false-positive orthology assignments. Hence,
~G(T, σ) never contains false-negative orthology assignments.

6.2 false-positive orthology assignments

Of course, the true orthology relation is not known. Nevertheless, we start
our mathematical analysis with the following definition: Assume that (~G, σ)

is the BMG (with corresponding RBMG (G, σ)) deriving from a duplication-
loss scenario that is unknown to us. Denote by (T̃, t̃, σ) the corresponding
true leaf-colored and event-labeled gene tree. A pair of genes x and y that are
not true orthologs (xy /∈ E(Θ(T̃, t̃))) but reciprocal best matches (xy ∈ E(G))
are false-positive orthologs. If they are orthologs (xy ∈ E(Θ(T̃, t̃))) but not
reciprocal best matches (xy /∈ E(G)), they are false-negative orthologs. By
Thm. 6.2, (G, σ) cannot contain false-negative orthology assignments. Being
a false positive is a property of the edge xy in an RBMG, and equivalently
of the symmetric pair (x, y) and (y, x) in the BMG. Here, we aim to identify
false-positive edges from the structure of the BMG itself.

We first note that false positives cannot be avoided altogether, i.e., not all
false positives can be identified from a BMG alone. The simplest example,
Fig. 44 (second scenario), comprises a gene duplication and a subsequent spe-
ciation and complementary gene losses in the descendant lineages such that
each paralog survives only in one of them. In this situation, xy is a reciprocal
best match. If there are no other descendants that harbor genes witnessing
the duplication event, then the framework of best matches provides no infor-
mation to recognize xy as a false-positive assignment.

On the other hand, RBMGs and thus BMGs contain at least some infor-
mation on false positives. Since the orthology relation forms a cograph but
RBMGs are not cographs in general [104], incorrect orthology assignments
are associated with induced P4s, the forbidden subgraphs that characterize
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cographs (cf. Prop. 2.6). P4s arise for instance as a consequence of the com-
plete loss of different paralogous groups in disjoint lineages. Dessimoz et al.
[75] noted that such false-positive orthology assignments can be identified
under certain circumstances, in particular, if there is some species in which
both paralogs have survived. The corresponding motif in BMGs, the “good
quartets”, was investigated in some detail by Geiß et al. [104]. The removal
of such false-positive orthologs already leads to a substantial improvement
of the orthology assignments in simulated data [103]. Here, we extend the
results of Geiß et al. [103] to a complete characterization of false-positive or-
thology assignments for a given BMG. Importantly, good quartets cannot be
defined on RBMGs alone because information on non-reciprocal best matches
is also needed explicitly.

As discussed above, we are not concerned here with the errors that arise in
the reconstruction of best matches from sequence similarity data. We there-
fore assume that we are given a BMG (~G, σ) as specified in Def. 4.2. We
assume no additional information about the gene tree or the species tree, i.e.,
the only data about the evolutionary scenario that is available to us is the
BMG (~G, σ).

In order to study false-positive orthology assignments, we first consider a
tree (T, σ) that explains the BMG (~G, σ). We neither make the assumption
that (T, σ) is least resolved nor that (T, σ) reflects the true history, i.e., that
(T, σ) is related to the true gene tree (T̃, σ).

Definition 6.5 ((T, σ)-false-positive). Let (T, σ) be a tree explaining the BMG
(~G, σ). An edge xy in ~G is called (T, σ)-false-positive, or (T, σ)-fp for short, if for
every reconciliation map µ from (T, σ) to any species tree S we have tµ(lcaT(x, y)) =
�, i.e., µ(lcaT(x, y)) ∈ E(S).

In other words, xy is called (T, σ)-fp whenever x and y cannot be ortholo-
gous w.r.t. any possible reconciliation µ from (T, σ) to any species tree. Inter-
estingly, (T, σ)-fps can be identified without considering reconciliation maps
explicitly.

Lemma 6.3. Let (~G, σ) be a BMG, xy be an edge in ~G and (T, σ) be a tree that
explains (~G, σ). Then, the following statements are equivalent:

1. The edge xy is (T, σ)-fp.
2. There are two children v1 and v2 of lcaT(x, y) such that σ(L(T(v1))) ∩

σ(L(T(v2))) 6= ∅.
3. For the extremal labeling t̂T of (T, σ) it holds that t̂T(lcaT(x, y)) = �.

Proof. (2) implies (1). Suppose that there are two children v1 and v2 of lcaT(x, y) such
that σ(L(T(v1))) ∩ σ(L(T(v2))) 6= ∅. By Lemma 6.2, µ(lcaT(x, y)) ∈ E(S) and thus,
tµ(lcaT(x, y)) = � for all possible reconciliation maps µ from (T, σ) to any species
tree S. Hence, xy is (T, σ)-fp.
(1) implies (2). By contraposition, let v = lcaT(x, y) and suppose that for all distinct
children vi, vj ∈ childT(v) = {v1, . . . , vk}, k ≥ 2 we have σ(L(T(vi)))∩ σ(L(T(vj))) =
∅. In the following, we show that there is a species tree S and a reconciliation map
µ from (T, σ) to S such that tµ(lcaT(x, y)) =  , which implies that xy is not (T, σ)-fp.

We construct the species tree S as follows: S has root edge 0SρS. Now add k chil-
dren u1, . . . , uk to ρS. For each of these children ui with |σ(L(T(vi)))| > 1, we add
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a leaf t for every color t ∈ σ(L(T(vi))) and the edge uit. Any other ui is considered
to be a leaf in S, and we identify ui with the single element in σ(L(T(vi))). Further-
more, add for all t ∈ σ(L(T)) \ σ(L(T(v))) a leaf t that is adjacent to ρS. Since the
color sets σ(L(T)) \ σ(L(T(v))), σ(L(T(v1))), . . . , σ(L(T(vk)) are pairwise distinct, S
is well-defined, and, by construction, a planted phylogenetic tree. To construct a
reconciliation map we put (i) µ(0T) = 0S; (ii) µ(x) = σ(x) for all x ∈ L(T); (iii)
µ(v) = ρS; (iv) µ(w) = 0SρS for all w ∈ V0(T \ T(v)); and (v) µ(w) = ρSui for all
w ∈ V0(T(vi)). By Condition (i) and (ii), the Axioms (R0) and (R1) are satisfied,
respectively. By Condition (v), we have µ(vi) = ρSui if vi is an inner vertex. Other-
wise, vi is a leaf and |σ(L(T(vi)))| = 1. Therefore, µ(vi) = σ(vi) = ui by (ii) and by
construction. It is easy to verify that µ satisfies (R2). A sketch of construction of the
species tree S and the reconciliation map µ is provided in Fig. 45.

v1 vi

vk
... ...

... ...

...

0S

ρS

u1 ui uk

... ...

v

ST

x

Fig. 45. Visualization of the construction of a species tree S and reconciliation map µ
as described in the proof of Lemma 6.3. Note that, in the example, vk is already a leaf
in the gene tree T. Hence, the corresponding uk is also a leaf since |σ(L(T(vk)))| = 1.
Moreover, note that for x ∈ L(T) \ L(T(v)), it is possible that µ(x) = uj or µ(x) = t
with t ∈ childS(uj) for some uj.

The only vertex of T that is mapped to a vertex in S is v. Hence, it remains to
show that µ(v) = ρS ∈ V0(S) satisfies (R3). Note that for every two distinct children
vi, vj of v we have µ(vi) ∈ {ρSui, ui} and µ(vj) ∈ {ρSuj, uj}. In any case, µ(vi)
and µ(vj) are incomparable in S. Hence, (R3.ii) is satisfied. In particular, µ(v) =
ρS = lcaS(µ(vi), µ(vj)) for all distinct vi, vj ∈ childT(v). Hence, (R3.i) is satisfied. In
summary, µ is a reconciliation map from (T, σ) to S. Since µ(v) = ρS ∈ V0(S), we
have tµ(v) =  .

Statements (2) and (3) are equivalent by definition of the extremal event labeling.

Lemma 6.3 implies that (T, σ)-fp can be verified in polynomial time for any
given gene tree (T, σ). By contraposition of Lemma 6.2, inner vertices with
two distinct children v1 and v2 satisfying σ(L(T(v1))) ∩ σ(L(T(v2))) 6= ∅ are
duplication vertices for every possible reconciliation map to every possible
species tree. Therefore, the property of being an AD vertex only depends on
(T, σ). In particular, (T, σ)-fp edges coincide with the edges xy in (~G, σ) for
which lcaT(x, y) is an AD vertex.

As shown in Fig. 46, there are trees (T1, σ) and (T2, σ) that explain the
same BMG for which, however, the edges xz, x′z, and yz are (T1, σ)-fp but not
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Fig. 46. The BMG (~G, σ) shown on the right is explained by both (T1, σ), which is
the unique least resolved tree for (~G, σ), and (T2, σ). The vertices labeled � must
be duplications due to Lemma 6.2, whereas the vertices labeled “?” could be both
duplications or speciations. The edges xz, x′z and yz are (T1, σ)-fp but not (T2, σ)-fp
(cf. Lemma 6.3). Thus, neither of the edges xz, x′z and yz is u-fp.

(T2, σ)-fp. Since we assume that no information on (T, σ) is available a priori,
it is natural to consider the set of edges that are false positives for all trees
explaining a given BMG.

Definition 6.6 (Unambiguous false-positive). Let (~G, σ) be a BMG. An edge xy
in ~G is called unambiguous false-positive (u-fp) if for all trees (T, σ) that explain
(~G, σ) the edge xy is (T, σ)-fp.

Hence, if an edge xy in (~G, σ) is u-fp, then it is in particular (T, σ)-fp in
the true history that explains (~G, σ). Thus, u-fp edges are always correctly
identified as false positives. Not all “correct” false-positive edges are u-fp,
however. It is possible that, for an edge xy in ~G, we have tµ(lcaT(x, y)) = �
for the true gene tree and the true species tree, but xy is not (T′, σ)-fp for
some gene tree (T′, σ) possibly different from (T, σ). One of the simplest
examples is shown in Fig. 44, assuming that (~G, σ) is the “true” BMG. Since
tµ(lcaT̃(x, y)) =  may be possible (Fig. 44, leftmost scenario) the edge xy is
not (T̃, σ)-fp and therefore not u-fp.

6.3 characterization of unambiguous false-positive (u-fp)
edges

In order to adapt the concept of AD vertices for our purposes, we introduce
the color-intersection S∩ associated with a gene tree (T, σ). For a pair of
distinct leaves x, y ∈ L(T) we denote by vx, vy ∈ childT(lcaT(x, y)) the unique
children of the last common ancestor of x and y for which x �T vx and
y �T vy. That is, T(vx) and T(vy) are the subtrees of T rooted in the children
of lcaT(x, y) with x ∈ L(T(vx)) and y ∈ L(T(vy)). The set

S∩T (x, y) := σ(L(T(vx))) ∩ σ(L(T(vy)))

contains the colors, i.e. species, that are common to both subtrees. In particu-
lar, the existence of common colors, S∩T (x, y) 6= ∅, determines whether or not
the inner vertex lcaT(x, y) is AD. Lemma 4.4 immediately implies

Corollary 6.1. Let xy be an edge in a BMG (~G, σ). Then σ({x, y})∩S∩T (x, y) = ∅
for all trees (T, σ) that explain (~G, σ).

159



The following result shows that the color-intersection of a given edge in a
BMG (~G, σ) in fact does not depend on the tree representation of (~G, σ).

Lemma 6.4. Let (~G, σ) be a BMG and (T∗, σ) the corresponding unique least re-
solved tree explaining (~G, σ). Then, for each tree (T, σ) that explains (~G, σ), every
edge xy in (~G, σ) satisfies S∩T∗(x, y) = S∩T (x, y). Thus, in particular, S∩T∗(x, y) 6= ∅
if and only if S∩T (x, y) 6= ∅.

Proof. Let (T, σ) be an arbitrary tree that explains (~G, σ). Moreover, let xy be an
edge in ~G and denote by vx and vy be the unique children vx, vy ∈ childT(lcaT(x, y))
with x �T vx and y �T vy. Analogously, v∗x and v∗y are the unique children v∗x, v∗y ∈
childT∗(lcaT∗(x, y)) with x �T∗ v∗x and y �T∗ v∗y .

First, we show that t ∈ S∩T∗(x, y) implies t ∈ S∩T (x, y). Since (T, σ) explains
(~G, σ), we apply Thm. 4.1 to conclude that T is a refinement of T∗ and thus,
C(T∗) ⊆ C(T). Therefore, L(T∗(lcaT∗(x, y)), L(T∗(v∗x)) and L(T∗(v∗y)) are con-
tained in C(T). This implies that there must be vertices u, wx, and wy in T with
L(T(u)) = L(T∗(lcaT∗(x, y)), L(T(wx)) = L(T∗(v∗x)) and L(T(wy)) = L(T∗(v∗y)).
Note that L(T∗(v∗x))∩ L(T∗(v∗y)) = ∅, and thus L(T(wx))∩ L(T(wy)) = ∅. In partic-
ular, wx and wy are incomparable in T. Moreover, u = lcaT(x, y) = lcaT(wx, wy),
thus we have wx �T vx and wy �T vy. Therefore, L(T∗(v∗x)) ⊆ L(T(vx)) and
L(T∗(v∗y)) ⊆ L(T(vy)). Therefore, t ∈ S∩T∗(x, y) implies t ∈ S∩T (x, y).

Now, we show that t ∈ S∩T (x, y) implies t ∈ S∩T∗(x, y). Let t ∈ S∩T (x, y) 6= ∅. In this
case, t ∈ σ(L(T(vx))) and we can choose a vertex z1 ∈ L(T(vx)) such that σ(z1) = t
and lcaT(x, z1) is as far away as possible from vx compared to all lcaT(x, z) with z ∈
L[t], i.e., lcaT(x, z1) �T lcaT(x, z) for all z ∈ L[t]. Thus, (x, z1) ∈ E(~G). An analogous
argument ensures that there is a vertex z2 ∈ L(T(vy)) such that σ(z2) = t and
(y, z2) ∈ E(~G). Clearly, lcaT(x, z2) = lcaT(x, y) = lcaT(y, z1) and thus lcaT(x, z1) �T
vx ≺T lcaT(x, z2), which in turn implies that (x, z2) /∈ E(~G). Since (x, z1) ∈ E(~G)
and (x, z2) /∈ E(~G), we obtain the informative triple xz1|z2 for (~G, σ). Analogously,
yz2|z1 is an informative triple for (~G, σ). Lemma 4.5 and the fact that T∗ explains
(~G, σ) implies that there are distinct vertices v1, v2 ∈ childT∗(lcaT∗(x, y)) such that
x, z1 �T∗ v1 and y, z2 �T∗ v2. Since t = σ(z1) = σ(z2), we have t ∈ S∩T∗(x, y).

Finally, t ∈ S∩T∗(x, y) if and only if t ∈ S∩T (x, y) implies both S∩T∗(x, y) = S∩T (x, y)
and S∩T∗(x, y) 6= ∅ if and only if S∩T (x, y) 6= ∅.

Remark 6.1. By Lemma 6.4, we have S∩T (x, y) = S∩T∗(x, y) for every tree (T, σ)

explaining a BMG (~G, σ) with corresponding least resolved tree (T∗, σ). Therefore,
it is sufficient to consider S∩T∗(x, y). We will therefore drop the explicit reference to
the tree and simply write S∩(x, y). We can verify in polynomial time whether or
not S∩(x, y) = ∅ because the least resolved tree (T∗, σ) explaining (~G, σ) can be
computed in polynomial time (cf. Cor. 4.6).

Proposition 6.1. Every edge xy in a BMG (~G, σ) with S∩(x, y) 6= ∅ is u-fp.

Proof. By Lemma 6.4 and Remark 6.1, S∩(x, y) 6= ∅ if and only if S∩T (x, y) 6= ∅ for
all trees (T, σ) that explain (~G, σ). By Lemma 6.2, µ(lcaT(x, y)) ∈ E(S) and thus,
tµ(lcaT(x, y)) = � for all trees (T, σ) that explain (~G, σ). Hence, xy is u-fp.

An immediate consequence of Prop. 6.1 is:

Corollary 6.2. An edge xy in a BMG ~G(T, σ) with S∩(x, y) 6= ∅ is (T, σ)-fp.

As we shall see later, the converse of Prop. 6.1 and Cor. 6.2 is not always
satisfied (cf. also Fig. 48). However, we show next that it does hold for the
special case of binary trees.
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Lemma 6.5. Let xy be an edge in ~G(T, σ) and suppose lcaT(x, y) is a binary vertex.
Then, the following three statements are equivalent:

1. The edge xy is (T, σ)-fp.
2. S∩(x, y) 6= ∅.
3. The edge xy is u-fp.

Proof. (1) implies (2). Suppose xy is (T, σ)-fp. Since v is binary, it has precisely two
children v1 and v2. In particular, v = lcaT(x, y) implies that that x �T vi and x �T vj
for i, j ∈ {1, 2} being distinct. By Lemma 6.3, the two children v1 and v2 of v satisfy
σ(L(T(v1)))∩ σ(L(T(v2))) 6= ∅. By Lemma 6.4 and Remark 6.4, we have S∩(x, y) 6=
∅.
(2) implies (3). If S∩(x, y) 6= ∅, we can apply Prop. 6.1 to conclude that xy is u-fp.
(3) implies (1). By definition, if xy is u-fp, then it is in particular also (T, σ)-fp.

Theorem 6.3. Let (~G, σ) be a BMG that is explained by a binary tree (T, σ). Then,
for every edge xy in (~G, σ), the following three statements are equivalent:

1. The edge xy is (T, σ)-fp.
2. S∩(x, y) 6= ∅.
3. The edge xy is u-fp.

Proof. For every edge xy in ~G the last common ancestor lcaT(x, y) is binary. Now
apply Lemma 6.5.

Thm. 6.3 implies that all u-fp edges can be detected in a BMG that is ex-
plained by a known binary gene tree. If existent, such a tree can be con-
structed in polynomial time as a consequence of Cor. 4.10. However, Thm. 6.3
does not generalize to the non-binary case, and S∩(x, y) is not sufficient to
identify all u-fp edges. Furthermore, it is not difficult to find non-binary trees
in which (T, σ)-fp and u-fp edges are not the same: As show in Fig. 46, the
edge xz in is (T1, σ)-fp but not (T2, σ)-fp according to Lemma 6.3. Since both
trees explain the same BMG, the edge xy is not u-fp.

Recall that Prop. 4.8 in Sec. 4.3 provides a characterization of BMGs that
can be explained by binary trees as such BMGs that are hourglass-free; a
property that can be tested in polynomial time (cf. Cor. 4.9). We shall see in
Sec. 6.3.2 that hourglasses play a central role in the identification of additional
u-fp edges.

6.3.1 u-fp Edges in Quartets – The Case S∩(x, y) 6= ∅

Since every orthology graph is a cograph (Thm. 6.1) and thus free of induced
P4s, every induced P4 in the RBMG necessarily contains a false-positive orthol-
ogy assignments. The subgraphs of the BMG spanned by a P4 in its symmetric
part (i.e., the RBMG) are known as quartets. The quartets on three colors of a
BMG (~G, σ) fall into three distinct classes depending on the coloring and the
additional, non-symmetric edges (cf. [104, Lemma 32]). We write 〈abcd〉 or,
equivalently, 〈dcba〉 for an induced P4 with edges ab, bc, and cd. The quartets
on three colors fall into three classes:
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Fig. 47. The three types of quartets in BMGs. Ugly quartets may or may not contain
either of the two (dashed) arcs between x and y, and y and z, respectively. Bold
edges highlight the middle and first edges of the respective quartets as specified in
Def. 6.7.

Definition 6.7 (Good, bad, and ugly quartets). Let (~G, σ) be a BMG with sym-
metric part (G, σ) and vertex set L, and let Q := {x, y, z, z′} ⊆ L with x ∈ L[r],
y ∈ L[s], and z, z′ ∈ L[t]. The set Q, resp., the induced subgraph (~G[Q], σ|Q) is

• a good quartet if (i) 〈zxyz′〉 is an induced P4 in (G, σ) and (ii)
(z, y), (z′, x) ∈ E(~G) and (y, z), (x, z′) /∈ E(~G),

• a bad quartet if (i) 〈zxyz′〉 is an induced P4 in (G, σ) and (ii) (y, z), (x, z′) ∈
E(~G) and (z, y), (z′, x) /∈ E(~G),

• an ugly quartet if 〈zxz′y〉 is an induced P4 in (G, σ).
The edge xy in a good quartet 〈zxyz′〉 is its middle edge. The edge zx of an ugly
quartet 〈zxz′y〉 or a bad quartet 〈zxyz′〉 is called its first edge. First edges in ugly
quartets are uniquely determined due to the colors. In bad quartets, this is not the
case and therefore, the edge yz′ in 〈zxyz′〉 is a first edge as well.

The three different types of quartets are shown in Fig. 47. RBMGs never
contain induced P4s on two colors [104, Obs. 5]. This, in particular, implies
that for the induced P4s in Def. 6.7 the colors r, s, and t must be pairwise
distinct. Note that (R)BMGs may also contain induced P4s on four colors.
These are investigated in some more detail in Sec. 6.4.3.

Good quartets are characteristic of a complementary gene loss (as shown
in Fig. 44) that is “witnessed” by a third species in which both child branches
of the problematic duplication event survive. That is, good quartets appear if
there is a pair of genes z and z′ with σ(z) = σ(z′) and lcaT(z, z′) = lcaT(x, y)
in the true gene tree. We remark that previous work also noted that comple-
mentary gene loss can be resolved successfully under certain circumstances
[75] such as this one. An in-depth analysis of quartets shows that they can be
used to identify many of the u-fp edges.

The key property of good quartets is a consequence of [103, Cor. 5], and
restated here as:

Proposition 6.2. If 〈zxyz′〉 is a good quartet in the BMG (~G, σ), then S∩(x, y) 6=
∅ and thus, xy is u-fp.

Proof. Let 〈zxyz′〉 in (~G, σ) be a good quartet in (~G, σ) and let (T, σ) be an arbitrary
tree explaining (~G, σ). Then [104, Lemma 36] implies that v := lcaT(x, y, z, z′) has
two distinct children v1, v2 ∈ childT(v) such that x, z �T v1 and y, z′ �T v2. Hence,
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v = lcaT(x, y). Since σ(z) ∈ σ(L(T(v1))) ∩ σ(L(T(v2))), we have S∩(x, y) 6= ∅ and,
by Prop. 6.1, the edge xy is u-fp.

Prop. 6.2 provides a convenient way to identify unambiguous false-positive
edges in a BMG.

Lemma 6.6. If xy is an edge in a BMG ~G(T, σ) and t ∈ S∩(x, y), then there is a
good quartet 〈z1x∗y∗z2〉 such that
(a) σ(x∗) = σ(x), σ(y∗) = σ(y), and σ(z1) = σ(z2) = t;
(b) x∗, z1 ∈ L(T(vx)) and y∗, z2 ∈ L(T(vy)) with vx and vy being the unique

children in childT(lcaT(x, y)) such that with x �T vx and y �T vy.

Proof. Consider an edge xy of ~G(T, σ) and a color t ∈ S∩(x, y). By Cor. 6.1, t 6=
σ(x), σ(y). Lemma 4.3 ensures the existence of an edge x∗z1 in ~G for some leaves
x∗ ∈ L(T(vx)) ∩ L[σ(x)] and z1 ∈ L(T(vx)) ∩ L[t]. By the same arguments as in
the proof of Cor. 6.1, we can conclude that z1y′ is not an edge in ~G for all y′ ∈
L(T(vy)) ∩ L[σ(y)]. However, (z1, y′) ∈ E(~G) since the color of y′ is not present in
T(vx). Likewise, there are leaves y∗ ∈ L(T(vy)) ∩ L[σ(y)] and z2 ∈ L(T(vy)) ∩ L[t]
such that y∗z2 forms an edge in ~G. Reusing the arguments from L(T(vx)), we find
that x′z2 is not an edge in ~G and (z2, x′) ∈ E(~G) for any x′ ∈ L(T(vx)) ∩ L[σ(x)].
Finally, σ(x) /∈ σ(L(T(vy))) and σ(y) /∈ σ(L(T(vx))) implies that x∗y∗ forms an edge
in ~G. Hence, 〈z1x∗y∗z2〉 is a good quartet.

The edge x∗y∗ in Lemma 6.6 is the middle edge of a good quartet. For
completeness, we also provide a result for the identification of u-fp edges
using bad quartets:

Proposition 6.3. Let 〈zxyz′〉 be a bad quartet in a BMG (~G, σ). Then, the edges xz
and yz′ are u-fp and every tree that explains (~G, σ) is non-binary.

Proof. Let (T, σ) be an arbitrary tree that explains (~G, σ), set u := lcaT(x, z) and let
vx, vz ∈ childT(u) be the two distinct children of u such that x �T vx and z �T vz. By
symmetry, it suffices to show that xz is u-fp. Since 〈zxyz′〉 is a bad quartet, we have
(x, z), (x, z′) ∈ E(~G) and thus lcaT(x, z′) = lcaT(x, z) = u. Let vz′ ∈ childT(u) be the
child of u such that z′ �T vz′ . Since lcaT(x, z′) = u we have vx 6= vz′ . Now, assume
for contradiction that vz = vz′ , and thus z′ ∈ L(T(vz)). Since 〈zxyz′〉 is a bad quartet,
we have (z′, x) /∈ E(~G), which implies the existence of a vertex x′ with σ(x) = σ(x′)
and lcaT(x′, z′) ≺T lcaT(x, z′) = u and therefore, x′ ∈ L(T(vz)). However, this
implies that lcaT(x′, z) �T vz ≺T u = lcaT(x, z), which together with σ(x) = σ(x′)
contradicts the fact that xz is an edge in ~G. Hence, vz 6= vz′ . Therefore, σ(z) =
σ(z′) ∈ σ(L(T(vz))) ∩ σ(L(T(vz′))) 6= ∅ for distinct children vz, vz′ ∈ childT(u). By
Lemma 6.3, the edge xz is (T, σ)-fp and since (T, σ) was chosen arbitrarily, the edge
xz is u-fp. Moreover, we have shown that vx, vz and vz′ must be pairwise distinct and
thus, (T, σ) is non-binary.

Fig. 49 shows that u-fp edges xy with S∩(x, y) 6= ∅ exist that are neither
middle edges of good quartets or first edges of bad quartets. Thus we next
consider ugly quartets.

Proposition 6.4. If 〈xyx′z〉 is an ugly quartet in a BMG (~G, σ), then the edges xy
and yx′ are u-fp.
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Proof. Consider an ugly quartet 〈xyx′z〉. Let (T, σ) be an arbitrary tree explaining
(~G, σ), put u := lcaT(x, y) and let vx, vy ∈ childT(u) be the two distinct children of u
such that x �T vx and y �T vy.

Since x′y and xy are edges in ~G we have lcaT(x′, y) �T u. Moreover, Cor. 6.1
implies σ(x′) = σ(x) /∈ σ(L(T(vy))) and thus x′ /∈ L(T(vy)). Therefore, lcaT(x′, y) =
lcaT(x, y) = u.

Now consider an arbitrary reconciliation map µ from (T, σ) to some species tree
S. The existence of µ is guaranteed by Lemma 6.1. If x′ /∈ L(T(vx)), then there
is a vertex v3 ∈ childT(u), v3 6= vx, vy such that x′ �T v3 and σ(x) = σ(x′) ∈
σ(L(T(vx))) ∩ σ(L(T(v3))) 6= ∅, which by Lemma 6.2 implies tµ(u) = �.

Now suppose x′ ∈ L(T(vx)) and recall that x′z is an edge in ~G by assumption.
Since lcaT(x′, z) and lcaT(x, x′) are both ancestors of x′ they are comparable. If
lcaT(x′, z) �T lcaT(x, x′), then lcaT(x, z) = lcaT(x′, z). Together with the fact that
x′z is an edge in ~G but not xz, this implies that there is a z′ ∈ L[σ(z)] such that
lcaT(x, z′) ≺T lcaT(x, z). This in turn implies lcaT(x′, z′) ≺T lcaT(x′, z), which con-
tradicts that x′z is an edge in ~G. Therefore, x′ ∈ L(T(vx)) implies lcaT(x′, z) �T
lcaT(x, x′) and x, x′, z ∈ L(T(vx)). Since yz is not an edge in ~G by assumption and
Cor. 6.1 implies σ(y) /∈ σ(L(T(vx)), there is a leaf z′ with color σ(z′) = σ(z) such that
lcaT(y, z′) ≺T lcaT(y, z). This is only possible if z′ ∈ L(T(vy)) ∩ L[σ(z)]. Therefore,
σ(z) ∈ σ(L(T(vx))) ∩ σ(L(T(vy))) and Lemma 6.2 implies that tµ(u) = �.

In summary, lcaT(x′, y) = lcaT(x, y) = u and tµ(u) = � for every tree explaining
(~G, σ) and every possible reconciliation map µ from (T, σ) to any species tree. Thus
both xy and x′y are u-fp.

Proposition 6.5. Let (~G, σ) be a BMG and xy an edge in ~G with S∩(x, y) 6= ∅.
Then xy is either the middle edge of some good quartet 〈zxyz′〉 or the first edge in
some ugly quartet 〈xyx′z〉 or 〈yxy′z〉.

Proof. Let (T, σ) be a leaf-colored tree explaining the BMG (~G, σ) with symmetric
part (G, σ). Let vx, vy ∈ childT(lcaT(x, y)) such that x �T vx and y �T vy. Since
S∩(x, y) 6= ∅, Lemma 6.6 implies that there is a good quartet 〈z1x∗y∗z2〉 with
σ(x∗) = σ(x), σ(y∗) = σ(y), σ(z1) = σ(z2) = t ∈ S∩(x, y), x∗, z1 ∈ L(T(vx)) and
y∗, z2 ∈ L(T(vy)).

If x = x∗ and y = y∗ we are done. By symmetry it suffices to consider the
case x 6= x∗. Before we proceed, we consider the (non-)existence of certain edges
in the RBMG G(T, σ) and the BMG ~G(T, σ). By definition of good quartets, we
have x∗z1, x∗y∗, y∗z2 ∈ E(G) and Cor. 6.1 implies σ(x), σ(y) /∈ S∩(x, y). Hence,
σ(x∗) = σ(x) /∈ σ(L(T(vy))) and σ(y∗) = σ(y) /∈ σ(L(T(vx))), and thus x∗y ∈ E(G)
and xy∗ ∈ E(G). Moreover, since lcaT(y, z2) ≺T lcaT(y, z1), we have yz1 /∈ E(G).
Similarly, xz2 /∈ E(G). However, σ(x) /∈ σ(L(T(vy))) implies that lcaT(z2, x) =

lcaT(x, y) �T lcaT(z2, x′) for all x′ ∈ L[σ(x)] and thus, (z2, x) ∈ E(~G). Similarly,
(z1, y) ∈ E(~G). Furthermore, we note that neither x and x∗ nor y and y∗ can be
adjacent in G or ~G since σ(x) = σ(x∗) and σ(y) = σ(y∗).

If xz1 /∈ E(G), then 〈xyx∗z1〉 forms an ugly quartet. Now suppose that xz1 ∈
E(G). Assume that there is an edge yz′ ∈ E(G) with z′ ∈ L(T(vy)) ∩ L[t]. Then,
lcaT(x, z1) ≺T lcaT(x, z′) implies xz′ /∈ E(G). Moreover, since σ(x) /∈ σ(L(T(vy)))

we have, by similar arguments as above, that (z′, x) ∈ E(~G). Thus, 〈z′yxz1〉 forms
a good quartet. Finally, if there is no such edge yz′ ∈ E(G) then, in particular,
yz2 /∈ E(G) and y 6= y∗. In this case, 〈yxy∗z2〉 forms an ugly quartet.

The example Fig. 48 shows that the converse of Prop. 6.5 is not true in
general.
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Fig. 48. The edge xy is u-fp since it is the first edge of an ugly quartet. However,
S∩(x, y) = ∅ and thus, the converse of Prop. 6.5 is not satisfied.
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Fig. 49. Example for a (T, σ)-fp edge xy in (~G, σ) which is not the middle edge of
a good quartet, but the first edge in an ugly quartet (right). Note, (~G, σ) does not
contain bad quartets.

Not surprisingly, quartets are intimately linked to color intersections. We
summarize the results of Props. 6.1, 6.2, 6.4 and 6.5 in the following

Corollary 6.3. Let (~G, σ) be a BMG that contains the edge xy. Then, S∩(x, y) 6= ∅
implies that xy is either the middle edge of some good quartet or the first edge of some
ugly quartet, which in turn implies that xy is u-fp.

All u-fp edges xy with S∩(x, y) 6= ∅ in (~G, σ) are therefore completely
determined by the middle edges of good quartets and the first edges of ugly
quartets. In particular, not all such edges are the middle edge of a good
quartet as the example in Fig. 49 shows. Therein, the edge xy must be u-fp
since S∩(x, y) = {σ(z)} 6= ∅ (cf. Prop. 6.1). The only good quartet is 〈zx′yz′〉
identifying x′y as u-fp. Moreover, (~G, σ) does not contain any bad quartet.
The edge xy, on the other hand, is the first edge of the ugly quartet 〈xyx′z〉.

Furthermore, if an edge xy is the middle edge of a good quartet, then
S∩(x, y) 6= ∅. Therefore, only ugly quartets may provide additional infor-
mation about u-fp edges that are not identified with the help of the color-
intersection S∩ (see Fig. 48 for an example). Ugly quartets, however, do not
convey all the missing information on u-fp edges. The edge xy in the BMG
shown in Fig. 50(A), i.e., in an hourglass [xy ↘↗ x′y′], is u-fp, but it is not
contained in a good, bad, or ugly quartet.

6.3.2 u-fp Edges in Hourglasses and Hourglass Chains – The Case S∩(x, y) = ∅

The case S∩(x, y) 6= ∅ is sufficient to detect the edge xy as u-fp. In this
section, we turn to the case S∩(x, y) = ∅ and show how to identify further
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Fig. 50. A: Hourglass. B: The unique tree explaining the hourglass (cf. Lemma 4.15).
C: Hourglass chain with left tail z and right tail z′ for an odd number of hourglasses
in the chain. Edges of the form xiy′j ∈ E(G) are only shown for x1, the others are
omitted. An hourglass chain H is a subgraph but not necessarily induced and thus
additional arcs may exist. In particular, the elements e ∈ {x1yk, zyk, x1z′, zz′} are not
necessarily edges in an hourglass chain. However, whenever they exist, they are u-fp
(cf. Lemma 6.9). Moreover, each single hourglass in H is an induced subgraph of the
BMG; by definition, therefore, there are no arcs (z, x′1) or (z′, y′k). Note, σ(z) 6= σ(z′)
is possible. D: Visualization of Lemmas 6.7 and 6.8.

u-fp edges using hourglasses. Recall their definition in Sec. 4.3 which is again
illustrated in Fig. 50(A). Hourglasses are not necessarily part of an induced
P4. In particular, an hourglass does not contain an induced P4.

Lemma 4.15 in Sec. 4.3 shows that hourglasses [xy ↘↗ x′y′] can be used to
identify false-positive edges xy with S∩(x, y) = ∅. More precisely, we have

Proposition 6.6. If a BMG (~G, σ) contains an hourglass [xy↘↗ x′y′], then the edge
xy is u-fp.

Proof. According to Lemma 4.15, every tree (T, σ) that explains (~G, σ) contains a
vertex u ∈ V0(T) with three distinct children v1, v2, and v3 such that x �T v1,
lcaT(x′, y′) �T v2 and y �T v3. Thus, u = lcaT(x, y) and σ(x) ∈ σ(L(T(v1))) ∩
σ(L(T(v2))). Hence, we can apply Lemma 6.3 to conclude that xy is (T, σ)-fp for
every tree that explains (~G, σ). Therefore, the edge xy is u-fp.

Prop. 6.6 implies that there are u-fp edges that are not contained in a quar-
tet, see Fig. 50(A). In this example, we have S∩(x, y) = ∅ and no induced
P4. However, as shown in Fig. 50(B), the subtree T(v2) contains both colors
σ(x) and σ(y) and thus, “bridges” the color sets of the subtrees T(v1) and
T(v3). Similarly, in the tree (T, σ) in Fig. 50(D), each subtree T(vi), 1 ≤ i ≤ k
“bridges” the color sets of the subtrees T(vi−1) and T(vi+1). This observation
suggests the concept of hourglass chains, a generalization of hourglasses.
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Definition 6.8 (Hourglass chain). An hourglass chain H in a digraph (~G, σ) is
a sequence of k ≥ 1 hourglasses [x1y1 ↘↗ x′1y′1], . . . , [xkyk ↘↗ x′ky′k] such that the
following two conditions are satisfied for all i ∈ {1, . . . , k− 1}:
(H1) yi = x′i+1 and y′i = xi+1, and
(H2) xiy′j is an edge in ~G for all j ∈ {i + 1, . . . , k}
A vertex z is called a left (resp., right) tail of the hourglass chain H if it holds that
(z, x1) ∈ E(~G) and (z, x′1) /∈ E(~G) (resp., (z, yk) ∈ E(~G) and (z, y′k) /∈ E(~G)). We
call H tailed if it has a left or right tail.

In contrast to the quartets and the hourglass, an hourglass chain in (~G, σ)

is not necessarily an induced subgraph.

Observation 6.1. If H = [x1y1 ↘↗ x′1y′1], . . . , [xkyk ↘↗ x′ky′k] be an hourglass chain
in (~G, σ), then [xiyi ↘↗ x′iy

′
i], . . . , [xjyj ↘↗ x′jy

′
j] is an hourglass chain in (~G, σ) for

every 1 ≤ i < j ≤ k.

Hourglass chains are “overlapping” hourglasses. The additional condition
that xiy′j ∈ E(G) for all 1 ≤ i < j ≤ k ensures that the two pairs x′k, y′k and x′l , y′l
with k 6= l cannot lie in the same subtree below the last common ancestor u
which is common to all hourglasses in the chain. More precisely, we have

Lemma 6.7. Let H = [x1y1 ↘↗ x′1y′1], . . . , [xkyk ↘↗ x′ky′k] be an hourglass chain in
a BMG (~G, σ). Then, for every tree (T, σ) that explains (~G, σ) there is a vertex u ∈
V0(T) with pairwise distinct children v0, v1, . . . , vk, vk+1 such that x1 ∈ L(T(v0)),
yk ∈ L(T(vk+1)), and, for all 1 ≤ i ≤ k, we have x′i , y′i ∈ L(T(vi)).

Proof. We prove the statement by induction on k. For the base case k = 1, observe
that the hourglass [x1y1 ↘↗ x′1y′1] together with Lemma 4.15 implies that there is a
vertex u ∈ V0(T) with pairwise distinct children v0, v1 and v2 such that x1 �T v0,
lcaT(x′1, y′1) �T v1 (thus x′1, y′1 �T v1) and y1 �T v2.

Now let k > 1 and assume that the statement is true for all hourglass chains
containing less than k hourglasses. Let H = [x1y1 ↘↗ x′1y′1], . . . , [xkyk ↘↗ x′ky′k] be
an hourglass chain. By induction hypothesis, for every subsequence Hi| := [x1y1 ↘↗
x′1y′1], . . . , [xiyi ↘↗ x′iy

′
i] of H with 1 ≤ i < k, which by Obs. 6.1 is again an hourglass

chain, the statement is true.
Consider the subsequence Hi| with i = k − 1. By assumption, there is a vertex

u ∈ V0(T) with pairwise distinct children v0, v1, . . . , vi, vi+1 such that it holds x1 ∈
L(T(v0)), yi ∈ L(T(vi+1)), and, for all 1 ≤ j ≤ i, we have x′j, y′j ∈ L(T(vj)). The
hourglass [xi+1yi+1 ↘↗ x′i+1y′i+1] and Lemma 4.15 imply the existence of a vertex
u′ ∈ V0(T) with pairwise distinct children v′i, v′i+1 and v′i+2 such that xi+1 �T v′i,
lcaT(x′i+1, y′i+1) �T v′i+1 and yi+1 �T v′i+2. By the definition of hourglass chains, we
have yi = x′i+1 and y′i = xi+1. Therefore, u′ = lcaT(x′i+1, xi+1) = lcaT(yi, y′i) = u.
Since vi and v′i are both children of u, y′i = xi+1 and it holds both that y′i �T vi
and xi+1 �T v′i, we conclude that vi = v′i. Similarly, it holds vi+1 = v′i+1 since
vi+1, v′i+1 ∈ childT(u) and yi = x′i+1. In particular, we have v′i+2 6= v′i+1 = vi+1
and v′i+2 6= v′i = vi. It remains to show that v′i+2 6= vj for 0 ≤ j < i. Assume,
for contradiction, that v′i+2 = vj for some fixed j with 0 ≤ j < i. By assumption,
x1 �T vj if j = 0, and otherwise, xj+1 = y′j �T vj. Moreover, since v′i+2 = vj, we have
yi+1 �T vj. Hence, lcaT(xj+1, yi+1) �T vj. Furthermore, since y′i+1 �T vi+1 6= vj,
it holds lcaT(xj+1, y′i+1) = u �T vj. Since σ(yi+1) = σ(y′i+1) by the definition of
hourglasses, the latter two arguments contradict xj+1y′i+1 ∈ E(G), which must hold
by the definition of hourglass chains. Hence, we can conclude that v′i+2 6= vj for and
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0 ≤ j < i and we set vi+2 := v′i+2. In summary, the statement holds for the hourglass
chain Hi+1| = H.

It is straightforward to generalize the latter statement to tailed hourglass
chains.

Lemma 6.8. Let H = [x1y1 ↘↗ x′1y′1], . . . , [xkyk ↘↗ x′ky′k] be an hourglass chain with
left (resp. right) tail z in a BMG (~G, σ). Then, every tree (T, σ) that explains (~G, σ)

contains a vertex u ∈ V0(T) with pairwise distinct children v0, v1, . . . , vk, vk+1 such
that it holds x1 ∈ L(T(v0)), yk ∈ L(T(vk+1)), and, for all 1 ≤ i ≤ k, we have
x′i , y′i ∈ L(T(vi)). Furthermore, we have z �T v0 (resp. z �T vk+1).

Proof. By Lemma 6.7, there is a vertex u ∈ V0(T) with pairwise distinct children
v0, v1, . . . , vk, vk+1 such that it holds x1 ∈ L(T(v0)), yk ∈ L(T(vk+1)), and, for all
1 ≤ i ≤ k, we have x′i , y′i ∈ L(T(vi)).

Suppose that z is a left tail of H. We need to show that z �T v0. By definition,
(z, x1) ∈ E(~G), (z, x′1) /∈ E(~G), and σ(x1) = σ(x′1). Therefore, zx1|x′1 is an informative
triple for (~G, σ), and hence lcaT(z, x1) ≺T lcaT(z, x′1) = lcaT(x1, x′1) = u. Since v0 is
the unique child of u with x1 ≺T v0, we can conclude that lcaT(z, x1) �T v0 and thus,
z �T v0.

If z is a right tail of H, a similar argument using the informative triple z′yk|y′k,
which must be displayed by T because (z, yk) ∈ E(~G) and (z, y′k) /∈ E(~G), implies
z �T vk+1.

We are now in the position to show that hourglass chains identify addi-
tional u-fp edges that are not contained in a single hourglass.

Lemma 6.9. Let H = [x1y1 ↘↗ x′1y′1], . . . , [xkyk ↘↗ x′ky′k] be an hourglass
chain in (~G, σ), possibly with a left tail z or a right tail z′. Then every edge
e ∈ {x1yk, zyk, x1z′, zz′} ∩ E(G) is u-fp, where G denotes the symmetric part of
~G.

Proof. Let (T, σ) be an arbitrary tree that explains (~G, σ). By the definition of
hourglass chains, we have k ≥ 1. Hence, the sequence contains at least the hour-
glass [x1y1 ↘↗ x′1y′1]. Since H = [x1y1 ↘↗ x′1y′1], . . . , [xkyk ↘↗ x′ky′k] in ~G(T, σ),
Lemma 6.8 implies the existence of a vertex u ∈ V0(T) with pairwise distinct chil-
dren v0, v1, . . . , vk, vk+1 such that it holds x1 ∈ L(T(v0)), yk ∈ L(T(vk+1)), and, for all
1 ≤ i ≤ k, we have x′i , y′i ∈ L(T(vi)). Furthermore, this lemma also implies z �T v0 if
z is a left tail of H, and z′ �T vk+1 if z′ is a right tail of H. Note that lcaT(x1, x′1) = u,
and x1 and x′1 lie below distinct children of u. More precisely x1 �T v0 and
x′1 �T v1. Since σ(x1) = σ(x′1), we have σ(L(T(v0))) ∩ σ(L(T(v1))) 6= ∅. More-
over, lcaT(a, b) = u for every edge e = ab in ~G that coincides with one of x1yk, zyk,
x1z′, and zz′. The latter two arguments together with Lemma 6.3 imply that every
such edge is (T, σ)-fp. Since (T, σ) was chosen arbitrarily, every such edge is also
u-fp.

It is important to note that the construction of hourglass chains does not
imply that an edge e ∈ {x1yk, zyk, x1z′, zz′} must exist in (~G, σ). Nevertheless,
whenever such an edge occurs, it is u-fp. We will take a closer look at the
properties of hourglass chains in Sec. 6.4.
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6.3.3 Color-set Intersection Graphs

Our goal is to derive a polynomial-time algorithm to identify all u-fp edges
in a given BMG. To this end, we now take a closer look at hourglass
chains and the trees that explain them. In Fig. 50(D), each subtree T(vi),
1 ≤ i ≤ k, “bridges” the color sets of the subtrees T(vi−1) and T(vi+1). That is,
σ(L(T(vi−1))) ∩ σ(L(T(vi))) and σ(L(T(vi))) ∩ σ(L(T(vi+1))) are non-empty.
This suggests to consider the children of a vertex u as the vertices of a “color-
set intersection graph” with edges connecting children with non-empty color-
set intersection:

Definition 6.9. The color-set intersection graph CT(u) of an inner vertex u of a
leaf-colored gene tree (T, σ) is the undirected graph with vertex set V := childT(u)
and edge set

E := {v1v2 | v1, v2 ∈ V, v1 6= v2 and σ(L(T(v1))) ∩ σ(L(T(v2))) 6= ∅}.

This construction is similar to the definition of intersection graphs e.g. used
in [210]. CT(u) can be viewed as a natural generalization of S∩(x, y) in the
following sense: if u = lcaT(x, y) is a binary vertex, then CT(u) = K2 iff
S∩(x, y) 6= ∅ and therefore, CT(u) = K1 ∪ K1 iff S∩(x, y) = ∅. In the non-
binary case, there is an edge v1v2 iff S∩(x, y) 6= ∅ for some x ∈ L(T(v1)) and
y ∈ L(T(v2)).

Shortest paths in the color-set intersection graphs will play an important
role in identifying many u-fp edges.

Lemma 6.10. Let v1 and vk be two distinct vertices in the same connected component
of the color-set intersection graph CT(u) of a leaf-colored gene tree (T, σ), and let
P(v1, vk) = (v1, . . . , vk) be a shortest path in CT(u) connecting v1 and vk. Then
σ(L(T(vi))) ∩ σ(L(T(vj))) = ∅ for all i and j satisfying 1 ≤ i < i + 2 ≤ j ≤ k.

Proof. Assume, for contradiction, that σ(L(T(vi))) ∩ σ(L(T(vj))) 6= ∅ for some i, j
with 1 ≤ i < i + 2 ≤ j ≤ k. Then the edge vivj must be contained in CT(u),
contradicting the fact that P(v1, vk) is a shortest path.

The following lemma establishes a close connection between color-set inter-
section graphs and hourglass chains.

Lemma 6.11. Let (~G, σ) be a BMG that is explained by (T, σ) and suppose that
x, y ∈ L(T) are two distinct leaves with u := lcaT(x, y) and vx, vy ∈ childT(u)
such that (i) x �T vx and y �T vy, and (ii) there is a shortest path (vx =

v0, v1, . . . , vk, vk+1 = vy) of length at least two in CT(u). Then there is an hourglass
chain H = [x1y1 ↘↗ x′1y′1], . . . , [xkyk ↘↗ x′ky′k] in (~G, σ). In particular, precisely one
of the following conditions is satisfied:

1. x1 = x and yk = y;
2. yk = y and z := x is a left tail of H;
3. x1 = x and z′ := y is a right tail of H; or
4. z := x is a left tail and z′ := y is a right tail of H.
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Proof. Lemma 6.10 implies S∩(x, y) = σ(L(T(vx))) ∩ σ(L(T(vy))) = σ(L(T(v0))) ∩
σ(L(T(vk+1))) = ∅. We proceed by showing that the BMG ~G(T, σ) contains an
hourglass chain H = [x1y1 ↘↗ x′1y′1], . . . , [xkyk ↘↗ x′ky′k] possibly with left tail z and
right tail z′ such that one of the Conditions 1–4 is satisfied.

We first consider the two cases: either (A) σ(x) ∈ σ(L(T(v1))) or (B) σ(x) /∈
σ(L(T(v1))). In Case (A), we set x1 := x and c0 := σ(x). In Case (B), we set z := x,
choose c0 ∈ σ(L(T(v0))) ∩ σ(L(T(v1))) arbitrarily (note v0v1 forms an edge in CT(u)
and thus, the latter intersection is non-empty) and we set x1 = v for some v ∈
L(T(v0))∩ L[c0] such that lcaT(v, x) �T lcaT(v′, x) �T v0 for all v′ ∈ L(T(v0))∩ L[c0].
Clearly, such a vertex v exists. Moreover, c0 6= σ(x) and we obtain (x, v) = (z, x1) ∈
E(~G) as necessary requirement for left tails. In summary, we have in Case (A) x1 = x
and in Case (B) x plays the role of the left tail z and x1 is some other vertex. Moreover,
in both Cases (A) and (B), we have σ(x1) = c0 ∈ σ(L(T(v0))) ∩ σ(L(T(v1))).

We now consider the “other end” of the hourglass chain, that is, vertex yk and
the possible right tail. Again, we have two cases: either (A’) σ(y) ∈ σ(L(T(vk+1)))
or (B’) σ(y) /∈ σ(L(T(vk+1))). In Case (A’), we set yk := y and ck := σ(y). In
Case (B’), we set z′ := y, and , by similar arguments as in Case (A) and (B), we
can choose ck ∈ σ(L(T(vk))) ∩ σ(L(T(vk+1))) arbitrarily and set yk = w for some
vertex w ∈ L(T(vk+1)) ∩ L[ck] such that (y, w) = (z′, yk) ∈ E(~G) as a necessary
requirement for right tails. Again, for both cases (A’) and (B’) we have σ(yk) = ck ∈
σ(L(T(vk))) ∩ σ(L(T(vk+1))).

We continue by picking an arbitrary color ci from σ(L(T(vi))) ∩ σ(L(T(vi+1))) for
each 1 ≤ i < k. This is possible because vivi+1 ∈ E(CT(u)), and thus σ(L(T(vi))) ∩
σ(L(T(vi+1))) 6= ∅. Note that now ci ∈ σ(L(T(vi))) ∩ σ(L(T(vi+1))) holds for all
0 ≤ i ≤ k. In particular, the colors c0, c1, . . . , ck are pairwise distinct. To see this,
assume, for contradiction, that ci = cj for some i, j with i < j. Then ci ∈ σ(L(T(vi)))
and ci = cj ∈ σ(L(T(vj+1))) which implies ci ∈ σ(L(T(vi))) ∩ σ(L(T(vj+1))). This
contradicts Lemma 6.10 for j + 1 ≥ i + 2.

For each 1 ≤ i ≤ k, we have ci−1, ci ∈ σ(L(T(vi))). Thus Lemma 4.3 ensures
the existence of vertices x′i ∈ L(T(vi)) ∩ L[ci−1] and y′i ∈ L(T(vi)) ∩ L[ci] that form
an edge x′iy

′
i in ~G. By assumption we have x′iy

′
i ∈ E(G) for all 1 ≤ i ≤ k since

[xiyi ↘↗ x′iy
′
i] is an hourglass. We already set x1 and yk. We furthermore set xi := y′i−1

for all 1 < i ≤ k, and yi := x′i+1 for all 1 ≤ i < k. Thus ensures that (H1) in Def. 6.8
is satisfied. Moreover, since σ(x1) = c0 = σ(x′1) and σ(xi) = σ(y′i−1) = ci−1 for all
1 < i ≤ k, we have σ(xi) = ci−1 = σ(x′i) for all 1 ≤ i ≤ k. Similar arguments imply
σ(yi) = ci = σ(y′i) for all 1 ≤ i ≤ k.

We next show that the induced subgraph ~G[xi, x′i , yi, y′i] is an hourglass for 1 ≤ i ≤
k and thus xiy′j is an edge in ~G for all i < j ≤ k. We also know, by construction, that

x′iy
′
i is an edge in ~G.

Independent of whether x1 was constructed based on the cases (A) or (B), we have
xi �T v0 if i = 1 and xi = y′i−1 �T vi−1 otherwise. Thus xi �T vi−1. Likewise,
independent of whether yk was constructed based on the cases (A’) or (B’), we have
yi �T vk+1 if i = k and yi = x′i+1 �T vi+1 otherwise. Thus yi �T vi+1. In summary,
we have xi �T vi−1; x′i , y′i �T vi; and yi �T vi+1 for all i ∈ {1, . . . , k}. This implies
lcaT(xi, y′i) = lcaT(xi, yi) = lcaT(x′i , yi) = u. Since i + 1 ≥ (i− 1) + 2 and P(v0, vk+1)
is a shortest path, Lemma 6.10 implies σ(L(T(vi−1))) ∩ σ(L(T(vi+1))) = ∅.

From σ(xi) ∈ σ(L(T(vi−1))) and σ(yi) ∈ σ(L(T(vi+1))) we obtain σ(xi) /∈
σ(L(T(vi+1))) and σ(yi) /∈ σ(L(T(vi−1))). Thus, there is no ỹ such that σ(ỹ) =
σ(y′i) = σ(yi) and lcaT(xi, ỹ) ≺T u = lcaT(xi, y′i) = lcaT(xi, yi), and no x̃ such that
σ(x̃) = σ(x′i) = σ(xi) and lcaT(yi, x̃) ≺T u = lcaT(yi, x′i) = lcaT(yi, xi). Hence, ~G
contains the arcs (xi, y′i), (xi, yi), (yi, xi) and (yi, x′i). Moreover, xiyi is an edge in ~G.
However, since σ(x′i) = σ(xi) and lcaT(x′i , y′i) �T vi ≺T u = lcaT(xi, y′i) we conclude
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(y′i, xi) /∈ E(~G). Likewise, σ(y′i) = σ(yi) and lcaT(x′i , y′i) �T vi ≺T u = lcaT(x′i , yi) im-
ply that (x′i , yi) /∈ E(~G). In summary, ~G[xi, x′i , yi, y′i] = [xiyi ↘↗ x′iy

′
i] is an hourglass,

for all i ∈ {1, . . . , k}, and xi �T vi−1 and y′j �T vj for all 1 ≤ i < j ≤ k.
Since j ≥ (i − 1) + 2 and P(v0, vk+1) is a shortest path, Lemma 6.10 implies that

σ(L(T(vi−1))) ∩ σ(L(T(vj))) = ∅. Thus, there is no ỹ such that σ(ỹ) = σ(y′j) and
lcaT(xi, ỹ) ≺T u = lcaT(xi, y′j), and no x̃ such that σ(x̃) = σ(xi) and lcaT(y′j, x̃) ≺T

u = lcaT(y′j, xi). This implies that (xi, y′j) ∈ E(~G) and (y′j, xi) ∈ E(~G), respectively.

Therefore xiy′j is an edge in ~G for 1 ≤ i < j ≤ k. In summary, (H2) of in Def. 6.8 is
always satisfied.

Hence, if x1 and y1 are constructed based on Case (A) and (A’), respectively, we
are done.

It remains to show that z and z′ are a left and a right tail, resp., of the hourglass
chain in Case (B) or (B’). First assume Case (B), and thus z = x. We have z, x1 �T v0
by construction and (z, x1) ∈ E(~G) as shown above. Together with x′1 �T v1, this
implies that lcaT(z, x1) �T v0 ≺T u = lcaT(z, x′1). Using σ(x1) = σ(x′1) we therefore
obtain (z, x′1) /∈ E(~G). and hence z is a left tail of the constructed hourglass chain.
Now assume Case (B’), and thus, z′ = y. We have z′, yk �T vk+1 and (z′, yk) ∈ E(~G)
by construction. Together with y′k �T vk this implies lcaT(z′, yk) �T vk+1 ≺T u =

lcaT(z′, y′k). Using σ(yk) = σ(y′k), we obtain (z′, y′k) /∈ E(~G) and hence z′ is a right
tail of the constructed hourglass chain.

In summary, H = [x1y1 ↘↗ x′1y′1], . . . , [xkyk ↘↗ x′ky′k] is an hourglass chain, possibly
with left tail z and right tail z′. Furthermore, precisely one of the Conditions 1–4 in
the statement holds by construction.

6.3.4 Hug-Edges and No-Hug Graphs

Definition 6.10. An edge xy in a vertex-colored digraph (~G, σ) is a hug-edge if it
satisfies at least one of the following conditions:
(C1) xy is the middle edge of a good quartet in (~G, σ);
(C2) xy is the first edge of an ugly quartet in (~G, σ); or
(C3) there is an hourglass chain H = [x1y1 ↘↗ x′1y′1], . . . , [xkyk ↘↗ x′ky′k] in (~G, σ),

and one of the following cases holds:
1. x1 = x and yk = y;
2. yk = y and z := x is a left tail of H;
3. x1 = x and z′ := y is a right tail of H; or
4. z := x is a left tail and z′ := y is a right tail of H.

The term hug-edge refers to the fact xy is a particular edge of an hourglass-
chain, an ugly quartet, or a good quartet. As we shall see later, hug-edges
coincide with the u-fp edges (cf. Thm. 6.6 below).

Theorem 6.4. An edge xy in ~G(T, σ) with u := lcaT(x, y), vx, vy ∈ childT(u),
x �T vx, and y �T vy is a hug-edge if vx and vy belong to the same connected
component of CT(u). Moreover, every hug-edge is u-fp.

Proof. We show first that xy satisfies one of the Conditions (C1), (C2), or ((C3), and
hence is hug-edge. First, note that vx 6= vy. Moreover, Lemma 4.4 implies σ(x) /∈
σ(L(T(vy))) and σ(y) /∈ σ(L(T(vx))). Since by assumption vx, vy belong to the same
connected component, there is a shortest path P := (vx = v0, . . . , vk+1 = vy) in CT(u).
For k = 0, vxvy ∈ E(CT(u)). This implies S∩(x, y) = σ(L(T(vx)))∩ σ(L(T(vy))) 6= ∅.
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By Prop. 6.5, the edge xy is either the middle edge of a good quartet or the first edge
of an ugly quartets in (~G, σ). Hence, Condition (C1) or (C2) is satisfied. If k > 0,
Lemma 6.11 implies Condition (C3).

For each of the three cases we have already shown that xy is u-fp: For (C1) Prop. 6.2
applies, for (C2) Prop. 6.4 provides the desired result, and for (C3) we use Lemma 6.9.

Lemma 6.12. If the BMG ~G(T, σ) contains a hug-edge xy in a BMG ~G(T, σ),
then there are distinct vertices v1, v2 ∈ childT(lcaT(x, y)) such that σ(L(T(v1))) ∩
σ(L(T(v2))) 6= ∅.

Proof. Let xy be a hug-edge in the BMG (~G, σ) = ~G(T, σ), i.e. one of (C1), (C2), or
(C3) applies.

If e = xy satisfies (C1), then xy is the middle edge of a good quartet 〈zxyz′〉 in
(~G, σ). By [104, Lemma 36], there is a vertex u := lcaT(x, y, z, z′) such that x, z �T v1
and y, z′ �T for some distinct v1, v2 ∈ childT(u). Thus, u = lcaT(x, y). Moreover,
since σ(z) = σ(z′), we have σ(L(T(v1))) ∩ σ(L(T(v2))) 6= ∅ for two distinct vertices
v1, v2 ∈ childT(u).

If e = xy satisfies (C2), then it is the first edge of some ugly quartet, which w.l.o.g.
has the form 〈xyx′z〉. Re-using the arguments in the proof of Prop. 6.4 shows that
there must be two distinct children v1 and v2 of vertex u = lcaT(x, y) such that
σ(L(T(v1))) ∩ σ(L(T(v2))) 6= ∅.

If e = xy satisfies (C3), then there is a (tailed) hourglass chain H = [x1y1 ↘↗
x′1y′1], . . . , [xkyk ↘↗ x′ky′k], k ≥ 1, in ~G(T, σ), such that either x = x1 or z := x is a left
tail of H, and either y = yk or z′ := y is a right tail of H. In either case, Lemma 6.8
implies x �T v0 and y �T vk+1. Since x1 and x′1 lie below distinct children v0 and v1
of vertex lcaT(x, y) and σ(x1) = σ(x′1) by the definition of hourglasses, it holds that
σ(L(T(v0))) ∩ σ(L(T(v1))) 6= ∅.

In each case, therefore, there are distinct vertices v1, v2 ∈ childT(lcaT(x, y)) such
that σ(L(T(v1))) ∩ σ(L(T(v2))) 6= ∅.

The fact that all hug-edges are u-fp by Thm. 6.4 suggests to consider the
subgraph of a BMG that is left after removing all these unambiguously recog-
nizable false-positive orthology assignments.

Definition 6.11. Let (~G, σ) be a BMG with symmetric part G and let F be the set of
its hug-edges. The no-hug1 graph NH(~G, σ) is the subgraph of G with vertex set
V(~G), coloring σ and edge set E(G) \ F.

By Thm. 6.6, NH(~G, σ) is therefore the subgraph of the underlying RBMG
of (~G, σ) that contains all edges that cannot be identified as u-fp by using
only good quartets, ugly quartets and (tailed) hourglass chains as outlined in
Thm. 6.4. Importantly, it contains the orthology graph for every reconciliation
map µ as well as the orthology graph induced by the extremal event labeling
as subgraphs:

Corollary 6.4. Let (T, σ) be a leaf-colored tree and µ a reconciliation map from
(T, σ) to some species tree S. Then,

Θ(T, tµ) ⊆ Θ(T, t̂T) ⊆NH(~G(T, σ)) ⊆ ~G(T, σ).

1 a good advice in the time of COVID-19
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Proof. By Thm. 6.2, Θ(T, tµ) ⊆ Θ(T, t̂T) ⊆ ~G(T, σ); and by definition, we
have NH(~G(T, σ)) ⊆ ~G(T, σ). Now, let xy be an edge in Θ(T, t̂T) and thus,
t̂T(lcaT(x, y)) =  . By definition of t̂T , we have σ(L(T(v1))) ∩ σ(L(T(v2))) = ∅
for any two distinct v1, v2 ∈ childT(lcaT(x, y)). The contraposition of Lemma 6.12 im-
plies that xy is not a hug-edge and thus an edge of NH(~G(T, σ)), which completes
the proof.

The no-hug graph still may contain false-positive orthology assignments,
i.e., NH(~G(T, σ)) = Θ(T, tµ) does not hold in general. As an example, con-
sider the BMG ~G(T1, σ) in Fig. 46. Here, none of the edges xz, x′z and yz
are u-fp and thus, by Thm. 6.6 also not hug-edges. Hence, they still remain
in NH(~G(T1, σ)). However, these edges are not contained in Θ(T1, t̂T), since
t̂T(lcaT1(x, x′, y, z)) = � and thus, Θ(T1, t̂T) ( NH(~G(T1, σ)). In the follow-
ing section, we shall see that there are, however, no u-fp edges left in the
no-hug graph.

6.3.5 Resolving Least Resolved Trees

Every BMG (~G, σ) contains all information necessary to determine the trees
(T, σ) by which it is explained. Since u-fp edges are defined in terms of the
explaining trees, every BMG (~G, σ) also contains – at least implicitly – all
information needed to identify its u-fp edges. Since (~G, σ) is determined by
its unique least resolved tree (T∗, σ), the u-fp edges must also be determined
by (T∗, σ). It is not sufficient for this purpose, however, to find an event
labeling t of the vertices of T∗.

To see this, consider for example the “true” history (T̃, t̃, σ) of the BMG
~G(T̃, σ) as shown in Fig. 51. The unique least resolved tree (T∗, σ) for ~G(T̃, σ)

is obtained by merging the two vertices v1 and v2 of T̃ resulting in the vertex v
of T∗. We have t̃(v1) =  6= � = t̃(v2). For vertex v and every reconciliation
map µ from (T∗, σ) to any species tree S, it must hold that µ(v) ∈ E(S) and
thus t∗µ(v) = �, since v has two children with overlapping color sets and by
Lemma 6.2. Thus, the edges cx with x ∈ {a1, a2, b1, b2} are (T∗, σ)-fp although
they are not false positives at all. Since speciation and duplication vertices
may be merged into the same vertex v of T∗, the least resolved tree T∗ in
general cannot simply inherit the event labeling from the true gene history,
and thus there may not be a “correct” labeling t∗ of T∗ that provides evidence
for all u-fp edges.

The example in Fig. 51 shows that the least resolved tree T∗ simply may not
be “resolved enough”. In the following, we therefore describe how the unique
least resolved tree can be resolved further to provide more evidence about u-
fp edges. Eventually, this will lead us to a characterization of the u-fp edges.
To this end, we need to gain more insights into the structure of redundant
edges, i.e., those edges e in T for which (Te, σ) still explains ~G(T, σ).

Since the color sets of distinct subtrees below a speciation vertex cannot
overlap by Lemma 6.2, Cor. 4.3 implies that all edges below a speciation vertex
are redundant and thus can be contracted. More precisely, we have
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Fig. 51. The evolutionary scenario (left) shows the event-labeled gene tree (T̃, t̃, σ)
embedded into a species tree S. In the least resolved tree (T∗, σ) of ~G(T̃, σ), the edge
v1v2 of T̃ has been contracted into vertex v. The BMG ~G(T̃, σ) does not contain any
u-fp edge. See text for further explanations.

Observation 6.2. Let µ be a reconciliation map from (T, σ) to S and assume that
there is a vertex u ∈ V0(T) such that µ(u) ∈ V0(S) and thus, tµ(u) =  . Then
every inner edge uv of T with v ∈ childT(u) is redundant w.r.t. ~G(T, σ). Moreover,
if an inner edge uv with v ∈ childT(u) is non-redundant, then u must have two
children with overlapping color sets, and hence, tµ(u) = �.

Our goal is to identify those vertices in (T∗, σ) that can be expanded to
yield a tree that still explains ~G(T∗, σ). To this end, we need to introduce a
particular way of “augmenting” a leaf-colored tree.

Definition 6.12. Let (T, σ) be a leaf-colored tree, u be an inner vertex of T, CT(u)
the corresponding color-set intersection graph, and C the set of connected components
of CT(u). Then the tree Tu augmented at vertex u is obtained by applying the
following editing steps to T:

• If CT(u) is connected, do nothing.
• Otherwise, for each C ∈ C with |C| > 1

– introduce a vertex w and attach it as a child of u, i.e., add the edge uw,
– for every element vi ∈ C, substitute the edge uvi by the edge wvi.

The augmentation step is trivial if Tu = T, in which case we say that no edit step
was performed.

An example of an augmentation is shown in Fig. 52.
It is easy to see that the tree Tu obtained by an augmentation of a phylo-

genetic tree T is again a phylogenetic tree. The augmentation step at vertex
u of T is trivial if and only if either CT(u) is connected or all connected
components C ∈ C are singletons, i.e., |C| = 1. If (Tu, σ) is obtained by
augmenting (T, σ) at node u, we denote the set of newly introduced vertices
by V¬T := V(Tu) \ V(T). Note that V¬T = ∅ whenever no edit step was
performed.

Since augmentation only inserts vertices between u and its children, it af-
fects neither L(T(u)) nor L(T(v)) for v ∈ childT(u). As an immediate conse-
quence, we find

Observation 6.3. Let (T, σ) be a leaf-colored tree, u 6= v two inner vertices of T,
CT(u) the corresponding color-set intersection graph, and (Tu, σ) the tree obtained
by augmenting T at u. Then CTu(v) = CT(v).
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Fig. 52. Left, a (part of a) leaf-colored tree (T, σ). The tree (Tu, σ) on the right is
obtained from (T, σ) by augmenting T at vertex u. The color-set intersection graph
CT(u) (shown in the middle) has more than one connected component and there
are connected components consisting of more than two vertices vi ∈ childT(u). Ac-
cording to Lemma 6.13, σ(L(Tu(v)))∩ σ(L(Tu(v′))) = ∅ for any two distinct vertices
v, v′ ∈ childTu(u) = {v1, w1, w2}. By Cor. 4.3, the edges uw1 and uw2 are redundant
w.r.t. ~G(Tu, σ) and thus, both trees explain the same BMG.

Lemma 6.13. Let (T, σ) be a leaf-colored tree. Let u ∈ V0(T) and Tu be the tree
after augmenting T at vertex u. If CT(u) is disconnected, then σ(L(Tu(w1))) ∩
σ(L(Tu(w2))) = ∅ for any two distinct vertices w1, w2 ∈ childTu(u).

Proof. By construction, the vertex wi in Tu, i = 1, 2, is either a child of u in T or
was inserted in the augmentation step. Therefore, the two connected components
C1 and C2 of CT(u) to which w1 and w2 belong are disjoint. Thus σ(L(T(vi))) ∩
σ(L(T(vj))) = ∅ for all vi, vj ∈ childT(u) with vi ∈ C1 and vj ∈ C2 because otherwise
there would be an edge vivj in CT(u) and thus, C1 = C2. Since wi is either the single
vertex in Ci or wi has as children the vertices of Ci in Tu, i ∈ {1, 2}, we conclude that
σ(L(Tu(w1))) ∩ σ(L(Tu(w2))) = ∅.

The following result shows that no further edit step can be performed at
vertices that have been newly introduced by a previous augmentation step or
have already undergone an augmentation.

Lemma 6.14. Let (T, σ) be a leaf-colored tree, u ∈ V0(T), (Tu, σ) the tree obtained
by augmenting T at u, and denote by (Tuw, σ) the tree obtained by augmenting Tu

at w. Then Tuw = Tu for w = u as well as for all newly introduced vertices, i.e., for
all w ∈ V¬T ∪ {u}.
Proof. If Tu = T, then V¬T = ∅ and thus Tuu = Tu = T. If Tu 6= T, then the
definition of the augmentation step at u implies that either CTu(u) is connected or all
connected components of CTu(u) are singletons. In either case Lemma 6.13 ensured
that augmentation at u leaves Tu unchanged, i.e., Tuu = Tu. By construction, CTu(w)
is connected for w ∈ V¬T \ {u} and thus, we have Tuw = Tu.

Hence, a key property of the procedure in Def. 6.12 is that repeated aug-
mentation of the same inner vertex leads to at most one expansion. The tree
obtained by augmenting a set of inner vertices of (T, σ) is therefore indepen-
dent of the order of the augmentation steps.

Definition 6.13 (Augmented tree). Let (T, σ) be a leaf-colored tree. The aug-
mented tree of (T, σ), denoted by (A(T), σ), is obtained by augmenting all inner
vertices of (T, σ).
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Algorithm 6: Augmented tree
Data: Leaf-colored phylogenetic tree (T, σ).
Result: Augmented tree (A(T), σ).

1 foreach u ∈ V0(T) in pre-order do
2 Compute CT(u).
3 C ← set of connected components of CT(u)
4 if |C| > 1 then
5 foreach C ∈ C such that |C| > 1 do
6 Introduce a vertex w and the edge uw.
7 foreach vi ∈ C do
8 Remove the edge uvi.
9 Add the edge wvi.

10 end
11 end
12 end

The following result ensures that such an augmented tree is unique.

Lemma 6.15. For every leaf-colored tree (T, σ), there is a unique tree (A(T), σ)

obtained from (T, σ) by repeated application of augmentation steps until only trivial
augmentation steps remain. The tree (A(T), σ) is computed by Alg. 6.

Proof. Lemma 6.14 together with Obs. 6.3 implies that (i) every vertex u in T can be
non-trivially augmented at most once, (ii) the newly introduced vertices cannot be
non-trivially augmented at all, and (iii) augmentation of two distinct inner vertices
of T yields the same result irrespective of the order of the augmentation steps. Thus,
(A(T), σ) is unique. The correctness of Alg. 6 now follows immediately.

Lemma 6.16. Alg. 6 with input T = (V, E) and σ runs in O(|V|2|S|) time and
O(|V|2) space, where S = σ(L(T)) is the set of species under consideration.

Proof. Assigning the color set L(T(u)) to each u requires O(|V||S|) time, where |S| <
|V|. The total effort to construct all CT(u) is bounded by O(|V|2|S|), corresponding
to comparing the color sets of all pairs of vertices of T. The total size of all color-set
intersection graphs in O(|V|2). Computation of the connected components is linear
in the size of the graph, which also bounds the editing effort for each u, implying
the claim.

We finally show that augmentation preserves the best match relation, i.e.,
it does not affect the underlying BMG.

Proposition 6.7. For every leaf-colored tree (T, σ), it holds ~G(T, σ) = ~G(A(T), σ).

Proof. Let u ∈ V0(T) and Tu be the tree after augmenting T at vertex u. Put A :=
{uw | w ∈ V¬T} and note that all edges of Tu in A are inner edges. Now consider
e ∈ A. Since w ∈ V¬T , an edit step was performed to obtain w and thus, |C| > 1
in CT(u). Lemma 6.13 and |C| > 1 imply that for any v′ ∈ childTu(u) with v′ 6= w
we have σ(L(Tu(v′))) ∩ σ(L(Tu(w))) = ∅. Thus, Cor. 4.3 implies that the edge uw is
redundant in (Tu, σ) w.r.t. ~G(T, σ).

Denoting by TuA the tree obtained from Tu by contraction of all edges in A, we
obtain (T, σ) = (TuA , σ). Lemma 4.8 now implies ~G(Tu, σ) = ~G(TuA , σ) = ~G(T, σ)
for every augmentation step. By Lemma 6.15, we can repeat this argument for every
augmentation in the arbitrary order in which ~G(A(T), σ) is obtained from ~G(T, σ),
and thus ~G(A(T), σ) = ~G(T, σ).
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6.3.6 Extremal Labeling of Augmented Trees

While the least resolved tree in general cannot support an event labeling that
properly reflects the underlying true history of a gene family, we shall see
here that the augmented tree (A(T), σ) does feature sufficient resolution. To
this end, we investigate the extremal event labeling of (A(T), σ).

Lemma 6.17. Let t̂ := t̂A(T) be the extremal event labeling of the augmented tree
(A(T), σ) obtained from (T, σ) and let u be some vertex of A(T). Then it holds
t̂(u) = � if and only if CA(T)(u) is connected.

Proof. By the definitions of the extremal event labeling and CA(T)(u), the ‘if’-
direction is clear. Now suppose that t̂(u) = �. There are two possibilities:
(1) u ∈ V0(T). If CT(u) is connected, then CA(T)(u) = CT(u). Otherwise, Lemma 6.13

implies that σ(L(A(T)(w1))) ∩ σ(L(A(T)(w2))) = ∅ for all w1, w2 ∈ childA(T)(u),
thus the definition of the extremal event labeling implies t̂(u) 6= �, a contradiction.
(2) u ∈ V¬T , i.e., u is newly created by augmenting some u′ ∈ V0(T), hence CT(u) is
connected and, by Obs. 6.3 and Lemma 6.14, CA(T)(u) is connected.

For later reference, we need the following

Lemma 6.18. Let (~G, σ) be a BMG, (T∗, σ) its least resolved tree, and t̂ := t̂A(T∗)
the extremal event labeling of the augmented tree (A(T∗), σ). Then, (A(T∗), t̂, σ)

does not contain adjacent speciation vertices, i.e., if t̂(u) =  for a vertex u ofA(T∗),
then t̂(v) = � for any of its non-leaf children v ∈ childA(T∗)(u) \ L(A(T∗)).

Proof. Set A := A(T∗) and note that, by Prop. 6.7, (A, σ) explains (~G, σ). Assume,
for contradiction, that there is an inner edge uv in A with v ≺A u such that t̂(u) =
t̂(v) =  . By the definition of the extremal event labeling t̂, we have σ(L(A(v))) ∩
σ(L(A(v′))) = ∅ for any v′ ∈ childA(u) \ {v}. Together with Cor. 4.3 this implies
that uv is redundant for (~G, σ), and hence, not an edge in the least resolved tree
(T∗, σ). Now consider the augmentation in which the edge uv, and thus vertex v
was created; resulting in a tree (T′, σ). By the definition of augmenting (Def. 6.12),
it clearly holds that CT′(v) is connected. By Lemma 6.14, the edges adjacent to v do
not change in any subsequent augmentation. Thus CA(v) must be connected as well.
Lemma 6.17 now implies that t̂(v) = �; a contradiction.

Lemma 6.19. Let (~G, σ) be a BMG and (T∗, σ) its unique least resolved tree. More-
over, let t̂ := t̂A(T∗) be the extremal event labeling of the augmented tree (A(T∗), σ).
Then, Θ(A(T∗), t̂) ⊆ ~G.

Proof. Since (T∗, σ) explains (~G, σ), we have (~G, σ) = ~G(T∗, σ). By Prop. 6.7,
we have ~G(T∗, σ) = ~G(A(T∗), σ). Let xy be an edge in Θ(A(T∗), t̂). By def-
inition, t̂(lcaA(T∗)(u)) =  where u := lcaA(T∗)(x, y). By definition of the ex-
tremal event labeling, σ(L(A(T∗)(v1))) ∩ σ(L(A(T∗)(v2))) = ∅ for all two dis-
tinct vertices v1, v2 ∈ childA(T∗)(u). The latter is true, in particular, for the two
children vx, vy ∈ childA(T∗)(u) with x �A(T∗) vx and y �A(T∗) vy. Therefore,
σ(x) /∈ σ(L(A(T∗)(vy))) and σ(y) /∈ σ(L(A(T∗)(vx))). We conclude that x and y
are reciprocal best matches in A(T∗). Finally, (~G, σ) = ~G(A(T∗), σ) implies that xy
is an edge in ~G.

Now we are in the position to prove the main results of this chapter.
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Theorem 6.5. Let (~G, σ) be a BMG, (T∗, σ) its unique least resolved tree, and
t̂ := t̂A(T∗) the extremal event labeling of the augmented tree (A(T∗), σ). Then
(Θ(A(T∗), t̂), σ) = NH(~G, σ).

Proof. Let (G, σ) be the symmetric part of (~G = (V, E), σ). For simplicity, we write
GΘ := Θ(A(T∗), t̂) and GNH := (V, E(NH(~G, σ))). Recall that, by definition,
GNH ⊆ G and, by Lemma 6.19, GΘ ⊆ ~G. Finally, as G contains only edges of ~G,
we have GΘ ⊆ G. Let F := E(G) \ E(GNH) be the set of all edges of G that are
hug-edges, and let F′ := E(G) \ E(GΘ) be the set of all edges in G that do not form
orthologous pairs. Since GNH, GΘ ⊆ G it suffices to verify that F = F′ in order to
show that (GΘ, σ) = (GNH, σ).

Assume e = xy ∈ F′. Hence, xy /∈ E(GΘ) and therefore, t̂(u) = � where u :=
lcaA(T∗)(x, y). By Lemma 6.17, CA(T∗)(u) has exactly one connected component. This
together with Thm. 6.4 implies that xy is a hug-edge and thus, xy ∈ F, and hence
F′ ⊆ F.

Assume e = xy ∈ F is a hug-edge. Assume, for contradiction, that e /∈ F′ and
thus, t̂(u) =  where u := lcaA(T∗)(x, y). By definition of the extremal event la-
beling, it must therefore hold that σ(L(A(T∗)(v1))) ∩ σ(L(A(T∗)(v2))) = ∅ for
any two distinct vertices v1, v2 ∈ childA(T∗)(u). By Prop. 6.7, (A(T∗), σ) explains
(~G, σ). This together with Lemma 6.12 implies that there are two distinct vertices
v1, v2 ∈ childA(T∗)(u) such that σ(L(A(T∗)(v1))) ∩ σ(L(A(T∗)(v2))) 6= ∅; a contra-
diction. Therefore, e ∈ F′, and hence F ⊆ F′.

Theorem 6.6. An edge xy in a BMG (~G, σ) is u-fp if and only if xy is a hug-edge
of (~G, σ).

Proof. Let (~G, σ) be a BMG, (T∗, σ) its unique least resolved tree, and t̂ := t̂A(T∗) the
extremal event labeling of the augmented tree (A(T∗), σ). As shown in the proof of
Thm. 6.5, every edge xy of of the symmetric part G that is not a hug-edge satisfies
xy ∈ E(GΘ) and therefore t̂(u) =  , where u := lcaA(T∗)(x, y). Lemma 6.3 implies
that e is not (A(T∗), σ)-fp and thus, in particular, not u-fp. That is, all edges in
(GΘ, σ) = (GNH, σ) are non-u-fp edges. Moreover, Thm. 6.4 implies that all hug-
edges in E(G) \ E(GNH) are u-fp. Since (GNH, σ) does not contain u-fp edges, all
u-fp edges must also be hug-edges, which completes the proof.

Since (Θ(A(T∗), t̂), σ) = NH(~G, σ) is the subgraph of the underly-
ing RBMG of (~G, σ) that does not contain any u-fp edges (cf. Def. 6.11

and Thm. 6.6), the set of all u-fp edges can readily be obtained by com-
paring the edges of (~G, σ) with the edges in the orthology graph ob-
tained from (A(T∗), t̂). Since only u-fp edges have been removed to ob-
tain (Θ(A(T∗), t̂), σ) and since (A(T∗), σ) still explains (~G, σ), the graph
(Θ(A(T∗), t̂), σ) is, in the sense of an unambiguous editing, the best estimate
of the orthology relation that we can make by solely utilizing the structural
information of a given BMG (~G, σ). Note, Thm. 6.1 implies that NH(~G, σ)

must, in particular, be a cograph.
Orthology prediction tools intended for large data sets often do not attempt

to infer the orthology graph, but instead are content with summarizing the in-
formation as clusters of orthologous groups (COGs) in an empirically estimated
RBMG [251, 309]. Formally, this amounts to editing the BMG to a set of dis-
joint cliques. The example in Fig. 51 shows that this approach can destroy
correct orthology information: the BMG (~G, σ) does not contain u-fp edges
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and thus, it is the closest orthology graph. However, (~G, σ) is not the disjoint
union of cliques.

Interestingly, bad quartets turn out to be redundant for the identification
of u-fp edges in the sense that every u-fp edge in a bad quartet appears as
a u-fp edge in a good quartet, an ugly quartet, or an hourglass chain. At
present, we do not know whether hourglass chains in a colored digraph (~G, σ)

can be found efficiently. However, the identification of u-fp edges does not
require the explicit enumeration of hourglass chains. More precisely, since
(Θ(A(T∗), t̂), σ) = NH(~G, σ), the computation of NH(~G, σ) can be achieved
in polynomial time and avoids the need to find the hourglass chains of (~G, σ).
In fact, the effort is dominated by computing the least resolved tree (T∗, σ)

for a given BMG.

Theorem 6.7. For a given BMG (~G, σ), the set of all u-fp edges can be computed
in O(|L|3|S|) time, where L = V(~G) and S = σ(L(T)) is the set of species under
consideration.

Proof. Given a BMG (~G, σ), its least resolved tree (T∗, σ) can be computed in
O(|L|3|S|) time (cf. [102, Sec. 5]). The augmented tree (A(T∗), σ) can be obtained
from (T∗, σ) in O(|L|2|S|) time according to Lemma 6.16. The extremal event label-
ing t̂ can be obtained from the connectivity information on the CA(T∗)(u) in linear
time. Computing (Θ(A(T∗), t̂), σ) = NH(~G, σ) then only requires evaluation of
lcaA(T∗)(x, y), which can be achieved in polynomial time in O(|L|2) as described in
[102, Sec. 5]).

As argued in [102, Sec. 5], the number of genes between different species
will be comparable in practical applications, i.e., O(`) = O(|L|/|S|) with
` = maxs∈S |L[s]|. In this case, the running time to compute (T∗, σ) reduces
to O(|L|3/|S|) and we obtain an overall running time to compute the set of
all u-fp edges of O(|L|3/|S|+ |L|2|S|). Thms. 6.5 and 6.7 imply that we do not
need to find induced quartets and hourglasses explicitly, nor do we need to
identify the hourglass chains. Instead, it is more efficient to compute the least
resolved tree (T∗, σ), its augmented tree (A(T∗), σ), and the corresponding
extremal event labeling t̂.

6.3.7 Additional Unidentified False Positives

Deletion of all u-fp edges is necessary to obtain an orthology relation with-
out false positives. It is not sufficient, however, since NH(~G, σ) may contain
additional false-positive orthology assignments. In order to construct an ex-
ample, we consider for a BMG (~G, σ) the set T of all trees (T, t, σ) for which
NH(~G, σ) = (Θ(T, t), σ). The example in Fig. 53 shows that it may be the
case that none of the trees (T, t, σ) ∈ T admits a reconciliation map µ to any
species tree such that tµ = t.

For an event-labeled, leaf-colored tree (T, t, σ), we consider the triple set

S(T, t, σ) = {σ(a)σ(b)|σ(c) : ab|c ≤ T; t(lcaT(a, b, c)) =  ;

σ(a), σ(b), σ(c) pairwise distinct}. (38)
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Fig. 53. An evolutionary scenario (left) with a no-hug graph NH(~G, σ) that still
contains false-positive edges. Deletion of the highlighted u-fp edge a1b1 for ~G(T̃, σ)
yields NH(~G, σ) = (Θ(A(T∗), t̂), σ) and thus, an orthology graph. However, none
of its cotrees can be reconciled with any species tree since each of them contains
the contradictory species triples σ(a1)σ(b1)|σ(c1) and σ(a1)σ(c1)|σ(b1) (see e.g. [130,
140]). Note, the trees (T̃, t̃) and (A(T∗), t̂) differ in the event label marked by the
arrows, resulting in the three additional fp edges a3b3, c2b3 and c3b3 in NH(~G, σ).

Moreover, we will need the following characterization of biologically plausi-
ble event-labeled gene trees:

Theorem 6.8. [130, 140] There is a species tree S together with a reconciliation map
µ from (T, t, σ) to S such that tµ = t if and only if S(T, t, σ) is consistent. In
this case, every species tree S that displays S(T, t, σ) can be reconciled with (T, t, σ).
Moreover, there is a polynomial-time algorithm that determines whether a species tree
for (T, t, σ) exists, and if so, returns a species tree S together with a reconciliation
map µ : T → S.

Throughout this section, we are only concerned with the extremal event la-
beling t̂A(T∗) of the augmented trees (A(T∗), σ) of least resolved trees (T∗, σ).
For brevity, we simply write t̂. For a BMG (~G, σ), we consider the set of trees

T :=
{
(T, t, σ) |NH(~G, σ) = (Θ(T, t), σ)

}
. (39)

An orthology relation NH(~G, σ) obtained from a BMG (~G, σ) by removing
all of its u-fp edges is biologically feasible only if there is an event-labeled
gene tree (T, t, σ) ∈ T that can be reconciled with some species tree. To show
that this condition can be tested in polynomial time, we first need a technical
result.

Lemma 6.20. Let (~G, σ) be a BMG with LRT (T∗, σ), and let T be be given by
Eq. (39). If ab|c is displayed by A(T∗) and t̂(lcaA(T∗)(a, b, c)) =  , then ab|c is
also displayed by every tree (T, t, σ) ∈ T and t(lcaT(a, b, c)) =  .

Proof. Suppose that ab|c is displayed by A(T∗) and t̂(lcaA(T∗)(a, b, c)) =  . Thm. 6.5
implies (Θ(A(T∗), t̂), σ) = NH(~G, σ). Thus NH(~G, σ) is a cograph by Thm. 6.1. Let
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(T′, t′, σ) be a least resolved tree for the cograph NH(~G, σ). Clearly, (T′, t′, σ) ∈ T.
This tree is unique and any other tree in T must be a refinement of (T′, t′, σ) [30, 57].
We proceed with showing that (1) t′(lcaT′(a, b, c)) =  and (2) ab|c is displayed by
T′.

In order to show (1), assume for contradiction that t′(lcaT′(a, b, c)) = � and note
that (T′, t′, σ) ∈ T implies NH(~G, σ) = (Θ(T′, t′), σ). Since t̂(lcaA(T∗)(a, b, c)) =  

and ab|c ≤ A(T∗), the induced subgraph of NH(~G, σ) on {a, b, c} contains at least
the two edges ac and bc. However, if t′(lcaT′(a, b, c)) = �, then this induced subgraph
can contain at most one edge; a contradiction. Hence, t′(lcaT′(a, b, c)) =  .

Next, we show (2). Since A(T∗) displays ab|c and T′ is obtained from A(T∗)
by a series of edge contractions, T′ can neither display ac|b nor bc|a, thus either
ab|c ≤ T′ or lcaT′(a, b) = lcaT′(a, b, c). By Lemma 6.18, (A(T∗), t̂) does not contain
adjacent (consecutive) speciation vertices. Therefore and since A(T∗) displays ab|c,
the path from lcaA(T∗)(a, b, c) to lcaA(T∗)(a, b) in A(T∗) must contain at least one
duplication vertex. Since T′ can be obtained from A(T∗) by contracting all edges
uv in A(T∗) with t̂(u) = t̂(v) [30, 57], the path from lcaT′(a, b, c) to lcaT′(a, b) in T′

must contain at least one duplication vertex. Together with t′(lcaT′(a, b, c)) =  this
implies lcaT′(a, b) 6= lcaT′(a, b, c), and hence, ab|c is displayed by T′.

Since every tree (T, t, σ) ∈ T is a refinement of (T′, t′, σ), the triple ab|c is also
displayed by T. Finally, since NH(~G, σ) = (Θ(T, t), σ) for every tree (T, t, σ) ∈
T, we can re-use the arguments from the proof of Statement (1) to conclude that
t(lcaT(a, b, c)) =  .

Lemma 6.21. Let (~G, σ) be a BMG with LRT (T∗, σ) and let T be given by Eq. (39).
Then, the following statements are equivalent:

(1) There is no reconciliation map µ from (A(T∗), t̂, σ) to any species tree such
that tµ = t̂.

(2) For all trees (T, t, σ) in T there is no reconciliation map µ from (T, t, σ) to any
species tree such that tµ = t.

In particular, Condition (1) can be verified in polynomial time.

Proof. First note that (A(T∗), t̂, σ) ∈ T since, by Thm. 6.5, (Θ(A(T∗), t̂), σ) =
NH(~G, σ). Hence, Statement (2) implies (1).

For the converse, let ab|c be displayed by A(T∗) where σ(a) = A, σ(b) =
B, σ(c) = C are pairwise distinct, and t̂(lcaA(T∗)(a, b, c)) =  . By definition,
AB|C ∈ S(A(T∗), t̂, σ). Lemma 6.20 implies that ab|c is also displayed by every tree
(T, t, σ) ∈ T and t(lcaT(a, b, c)) =  . Therefore, we have S(A(T∗), t̂, σ) ⊆ S(T, t, σ)
for all (T, t, σ) ∈ T. Now suppose that Condition (1) holds. Then, by Thm. 6.8,
S(A(T∗), t̂, σ) is not consistent. Thus, S(T, t, σ) must be inconsistent as well for
every tree (T, t, σ) ∈ T. Together with Thm. 6.8, this implies Condition (2).

Using the arguments in the proof of Thm. 6.7 and Thm. 6.8 we find that Condi-
tion (1) can be verified in polynomial time by checking whether S(A(T∗), t̂, σ) is
inconsistent.

Hence, the augmented tree (A(T∗), t̂, σ) is sufficient to test in polynomial
time whether or not T contains a reconcilable tree, i.e., whether or not the
cograph NH(~G, σ) is a biologically feasible orthology relation for (~G, σ). In
the negative case, we have clear evidence that NH(~G, σ) still contains a false-
positive edge and thus must be edited further. This type of false-positive
orthology assignments is the topic of ongoing work.
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Now consider again a true evolutionary scenario (T̃, t̃, σ). In contrast to the
LRT (T∗, σ) of a BMG ~G(T̃, σ), its augmented tree A(T∗) is not necessarily
displayed by the true gene tree of the underlying evolutionary scenario. As
an example, consider the scenario in Fig. 51. Augmenting the only multifur-
cation in this case further resolves the root of T∗ and thus yields a tree that is
not displayed by T̃. Hence, we advocate the augmented tree endowed with
the corresponding extremal event labeling (A(T∗), t̂, σ) primarily as conve-
nient tool to identify false-positive orthology assignments. Whether or not
(A(T∗), t̂, σ) is a plausible representation of the gene phylogeny depends on
whether it admits a reconciliation of the (phylogenetically correct) species
tree. As discussed above, this is not always the case. The following result,
however, shows that (A(T∗), t̂, σ) is informative in an important special case.

Lemma 6.22. Let (T, t, σ) be an event-labeled tree explaining the BMG (~G, σ), and
let (T∗, σ) be the least resolved tree of (~G, σ). If (Θ(T, t), σ) = NH(~G, σ), then
A(T∗) is displayed by T.

Proof. Let T be the set of trees corresponding to (~G, σ) as given by Eq. (39). First
note that (T, t, σ) ∈ T and that (T∗, σ) is displayed by (T, σ) [cf. 102, Thm. 8]. Now
consider the set r(A(T∗)) of all triples displayed by A(T∗). For any triple ab|c ∈
r(A(T∗)), there are exactly two cases: (a) t̂(u) =  and (b) t̂(u) = �, where u :=
lcaA(T∗)(a, b, c).

In Case (a), Lemma 6.20 together with (T, t, σ) ∈ T immediately implies that ab|c
is also displayed by T.

In Case (b), we have t̂(u) = �. Consider the child v ∈ childA(T∗)(u) with
a, b ≺A(T∗) v. Assume, for contradiction, that v is not a vertex in T∗, i.e., it was newly
created by augmenting a vertex u′. We have u′ = u by Lemma 6.14 since u′ cannot be
(non-trivially) augmented any further. Since A(T∗) does not depend on the order of
augmentation steps, we may assume w.l.o.g. that v was created in the first augmenta-
tion step; resulting in the augmented tree Tu. Def. 6.12 implies that CT(u) is discon-
nected. Together with Lemma 6.13, this implies σ(L(Tu(w1))) ∩ σ(L(Tu(w2))) = ∅
for any two distinct vertices w1, w2 ∈ childTu(u). This must still hold for (A(T∗), σ)
since the edges uw, where w ∈ childTu(u) correspond to the vertices that have been
newly introduced in the first augmentation step, do not change in any subsequent
augmentation due to Lemma 6.14. The definition of the extremal event labeling now
implies t̂(u) =  ; a contradiction. Therefore, we conclude that v is a vertex in T∗,
and in particular, a, b ∈ L(T∗(v)) and c /∈ L(T∗(v)), which in turn implies that ab|c is
displayed by T∗. From T∗ ≤ T we finally conclude that T also displays ab|c. Denot-
ing by r(T) the set of all triples displayed by T we therefore have r(A(T∗)) ⊆ r(T).
Finally, we apply Thm. 1 in Bryant and Steel [37] to conclude that A(T∗) is displayed
by T.

Lemma 6.22 guarantees that A(T∗) is displayed by the true gene tree T̃
whenever NH(~G, σ) equals the true orthology relation. In a practical work-
flow, it can be checked efficiently whether there is evidence for additional
false-positive edges because T contains no reconcilable tree. If this is not the
case, then it is likely that NH(~G, σ) equals the true orthology relation. In this
case, T̃ also displays the unique discriminating cotree of NH(~G, σ).

One has to keep in mind, however, that it is not possible to find a mathe-
matical guarantee for NH(~G, σ) to be the true orthology relation, because it
cannot be ruled out that the true scenario contains unwitnessed duplications
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that are compensated by additional gene losses. Additional evidence, such
as the assumption of a molecular clock or synteny may be used to resolve
situations such as the complementary loss shown in Fig. 44. In the extreme
case, it is logically possible for every BMG that, in the true scenario, all inner
vertices of the gene tree predate the root of the species tree, resulting in a
true orthology graph without any edges [103, 115, 238]. This comes at the
expense of reassigning events as duplications and usually requires a large
number of loss events as an explanation. Of course, this is extremely unlikely
for real data. Therefore, the question arises whether one can characterize and
efficiently compute the minimal relabelings? In the general case, a further
refinement of A(T∗) may be sufficient. Is a refinement of speciation nodes
sufficient, or are there in general speciation nodes in (A(T∗), t̂) that need to
be refined into separate speciation and duplication events?

6.4 quartets , hourglasses , and the structure of reciprocal

best match graphs

The characterization of u-fp edges is in a way surprising when compared to
previous results on the structure of RBMGs [103, 104], which were focused on
P4s and quartets. The expected connection between good and ugly quartets
and u-fp edges is captured by Cor. 6.3. However, Prop. 6.6 implies that there
are also u-fp edges entirely unrelated to quartets and thus induced P4s. In
this section, we aim to close this gap in our understanding.

6.4.1 Hourglass-Free BMGs

We start with an important special case for which quartets are sufficient. By
Thm. 6.3 and Prop. 6.3, this is the case for binary-explainable, i.e., hourglass-
free (Prop. 4.8), BMGs. In particular, an hourglass-free BMG also does not
contain an hourglass chain.

Geiß et al. [104] found that a certain type of colored 6-cycles is an impor-
tant characteristic of RBMGs with a “complicated” structure that can only be
explained by multifurcating trees. Let us write 〈x1x2 . . . xk〉 for an induced
cycle Ck with edges xixi+1, 1 ≤ i ≤ k − 1, and xkx1 in the symmetric part
G of ~G. We say that (~G, σ) contains a hexagon if the corresponding RBMG
(G, σ) contains an induced C6 = 〈x1x2 . . . x6〉 such that any three consecutive
vertices of C6 have pairwise distinct colors, i.e., σ(xi) = σ(xi + 3), 1 ≤ i ≤ 3.
Since hexagons contain P4s and, by [104, Lemma 32], any P4 is either a good
or a bad quartet, there are exactly two possible induced subgraphs spanned
by a hexagon C6 = 〈x1x2 . . . x6〉, which are shown in Fig. 54. A digraph (~G, σ)

is hexagon-free if it does not contain a hexagon.

Lemma 6.23. Every hourglass-free BMG (~G, σ) is hexagon-free.

Proof. By Prop. 4.8, every hourglass-free BMG (~G, σ) can be explained by a binary
tree. Lemma 9 in [103] implies that hexagons can only be explained by non-binary
trees. Hence, (~G, σ) must be hexagon-free.
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Fig. 54. Two examples of trees whose BMGs ~G(T, σ) contain a hexagon
〈x1x2x3x4x5x6〉. There are exactly two distinct possibilities for the placement of the
non-symmetric arcs in the subgraph of the BMG induced by the hexagon.

Clearly, the converse of Lemma 6.23 is not always satisfied, since, by
Obs. 4.5, an hourglass is a BMG without hexagons.

A very useful observation in previous work is the fact that every 3-colored
vertex induced subgraph of an RBMG (G, σ) is again an RBMG [104, Thm. 7].
Furthermore, the connected components (C, σ) of every 3-colored vertex in-
duced subgraph of (G, σ) belong to precisely one of the three types [104,
Thm. 5]:

Type (A) (C, σ) contains a K3 on three colors but no induced P4.

Type (B) (C, σ) contains an induced P4 on three colors whose endpoints have
the same color, but no induced cycle Cn on n ≥ 5 vertices.

Type (C) (C, σ) contains a hexagon.

The graphs for which all such 3-colored connected components are of Type
(A) are exactly the RBMGs that are cographs, or co-RBMGs for short [104,
Thm. 8 and Remark 2]. Together with Lemma 6.23, this classification imme-
diately implies

Corollary 6.5. Let (~G, σ) be an hourglass-free BMG. Then its symmetric part (G, σ)

is either a co-RBMG or it contains an induced P4 on three colors whose endpoints
have the same color, but no induced cycle Cn on n ≥ 5 vertices.

As a consequence of Thm. 6.6, all u-fp edges in an hourglass-free BMG
are identified by the good and ugly quartets, which are 3-colored by con-
struction. In hourglass-free BMGs, it is indeed sufficient to consider only the
3-colored P4s to identify all u-fp edges and thus, to obtain an orthology graph,
even though the BMG may also contain 4-colored P4s. Since hourglasses can
only appear in BMGs that require multifurcations for their explanation (cf.
Lemma 4.15), the case of hourglass-free BMGs is the most relevant for practi-
cal applications.

Since all u-fp edges in an hourglass-free BMG are contained in quartets, it
is also easy to identify the hourglass-free BMGs that are already orthology
graphs.

Corollary 6.6. Let (~G, σ) be an hourglass-free BMG. Then its symmetric part (G, σ)

is a co-RBMG if and only if there are no u-fp edges in (~G, σ).
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Proof. Since (G, σ) is a cograph, it contains no induced P4s and thus, (~G, σ) contains
no good or ugly quartets. By Thm. 6.6, all hug-edges are determined by hourglass
chains and good or ugly quartets. Since none of them is contained in (~G, σ), it also
does not contain u-fp edges. Conversely, suppose that (~G, σ) contains no u-fp edges.
Then, by Thm. 6.5, (G, σ) = NH(~G, σ) is an orthology graph and thus, by Thm. 6.1,
a cograph.

6.4.2 u-fp Edges in Hourglass Chains

The situation is much more complicated in the presence of hourglasses. We
start by providing sufficient conditions for u-fp edges that are identified by
hourglass chains.

Proposition 6.8. Let H = [x1y1 ↘↗ x′1y′1], . . . , [xkyk ↘↗ x′ky′k] be an hourglass chain
in (~G, σ), possibly with a left tail z or a right tail z′. Then, an edge in ~G is u-fp if it
is contained in the set

F ={xiyj | 1 ≤ i ≤ j ≤ k} ∪ {zz′} ∪ {zyi, xiz′, zy′i, x′iz
′ | 1 ≤ i ≤ k}

∪ {xixj+1 | 1 ≤ i < j < k} ∪ {yiyj+1 | 1 ≤ i < j < k}
∪ {x′1y′i, x′1yi | 2 ≤ i ≤ k} ∪ {xiy′k, x′iy

′
k | 1 ≤ i ≤ k− 1}

∪ {x′1z, x′1z′, y′kz, y′kz′}
Proof. Let (T, σ) be an arbitrary tree that explains (~G, σ). By analogous arguments
as in the proof of Lemma 6.9 and by Lemma 6.8, there is a vertex u ∈ V0(T) with
pairwise distinct children v0, v1, . . . , vk, vk+1 such that it holds x1 ∈ L(T(v0)), yk ∈
L(T(vk+1)) and, for all 1 ≤ i ≤ k, we have x′i , y′i ∈ L(T(vi)). Since xi+1 = y′i and
x′i+1 = yi by definition of hourglass chains, it is an easy task to verify that for all
edges e = ab ∈ F the vertices a and b are located below distinct children of u and
thus, lcaT(a, b) = u for all such edges. As argued in the proof of Lemma 6.9, we have
σ(L(T(v0))) ∩ σ(L(T(v1))) 6= ∅. The latter arguments together with Lemma 6.3
imply that every edge in F is u-fp.

Figs. 50 and 55 furthermore show that hourglass chains identify false-
positive edges that are not associated with quartets in the BMG: The BMG
in Fig. 50(A) has the u-fp edge xy, and the BMG in Fig. 55(B) contains the u-fp
edges x1y2, x1z′ and x′1z′. A careful investigation shows that these edges are
either not even part of an induced P4 (such as xy in Fig. 50 and x′1z′ in Fig. 55),
or at least not identifiable as u-fp via good, bad or ugly quartets according to
Props. 6.2, 6.3 and 6.4, as it is the case for x1y2 and x1z′ in Fig. 55.

The observation that there are false-positive edges which are not associated
with quartets limits the use of cograph editing in the context of orthology
detection, at least in the case of gene trees with polytomies: On one hand, an
RBMG can be a cograph and still contain u-fp edges and, on the other hand,
there are examples where deletion of the u-fp edge identified by quartets (and
thus, by induced P4s) is not sufficient to arrive at a cograph, see Fig. 55.

6.4.3 Four-Colored P4s

Geiß et al. [104, Thm. 8] established that the RBMG (G, σ) is a co-RBMG,
i.e., a cograph, if and only if every subgraph induced on three colors is a
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Fig. 55. The (non-binary) tree (T, σ) in Panel (A) explains the BMG (~G, σ) in Panel
(B), which contains several induced P4s and an hourglass chain of length k = 2 with
right tail z′. Edges that are not (T, σ)-fp (and thus not u-fp) are shown as thick lines.
Thin edges correspond to those that can be identified as u-fp by the subgraphs in
(E–H), where they are highlighted in red. (C) The graph after deletion of all edges
that can be identified by good, bad and ugly quartets according to Props. 6.2, 6.3,
and 6.4. Note that it contains the induced P4s 〈y′1x′1z′y2〉 and 〈y′1x′1z′x1〉, which
were not induced subgraphs of the original BMG in (B). Its symmetric part (H, σ)
differs from NH(~G, σ) (cf. Def. 6.11) since it still contains u-fp edges. (D) The BMG
after deletion of all u-fp edges. Its symmetric part, comprising the thick edges, is
NH(~G, σ). (E) The two good quartets. (F) The single bad quartet. (G) Examples for
ugly quartets that cover the remaining u-fp edges that are identifiable via quartets.
Panel (H) shows the BMG (~G, σ) in a different layout that highlights the hourglass
chain with right tail z′. All edges that are u-fp according to Prop. 6.8 are in red. To
identify the u-fp edges in (~G, σ), only the subgraphs in Panel (E), (G) and (H) are
necessary (cf. Def. 6.10 and Thm. 6.5).

cograph. Therefore, if (G, σ) contains an induced 4-colored P4, it also contains
an induced 3-colored P4. For hourglass-free BMGs (~G, σ) it is clear that a 4-
colored P4 always overlaps with a 3-colored P4: In this case NH(~G, σ) is
obtained by deleting middle edges of good quartets and first edges of ugly
quartets. Since NH(~G, σ) is a cograph, there is no P4 left, and thus at least
one edge of any 4-colored P4 was among the deleted edges. It is natural to
ask whether this is true for BMGs in general. Fig. 56 shows that good and
ugly quartets are not sufficient on their own: there are 4-colored P4s that do
not overlap with the middle edge of a good quartet or the first edge of an
ugly quartet. On the other hand, it is clear that at least one of its edges is u-fp.
This does not imply, however, that the u-fp edges in a 4-colored P4 are also
edges of 3-colored P4s.

Still, in the context of cograph-editing approaches, it is of interest whether
the 3-colored P4s are sufficient. In the following, we provide an affirmative
answer.
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Fig. 56. The symmetric part of the BMG (~G, σ) contains the 4-colored induced P4
〈abcd〉. None of its edges is the middle edge of a good quartet or the first edge of an
ugly quartet. According to Lemma 6.24, there is the bad quartet 〈abcad〉 that contains
as first edge the edge ab.

Lemma 6.24. Let (~G, σ) be a BMG and P a 4-colored induced P4 in the symmetric
part of (~G, σ). Then at least one of the edges of P is either the middle edge of some
good quartet or the first edge of a bad or ugly quartet in (~G, σ).

Proof. Let (T, σ) be an arbitrary tree that explains (~G, σ) and suppose that P := 〈abcd〉
is a 4-colored induced P4 in the symmetric part (G, σ).

If one of the edges ab, bc, or cd of P is the middle edge of some good quartet
or the first edge of some ugly quartet, then we are done. Hence, we assume in the
following that this is not the case and show that at least one of the edges of P is the
first edge in a bad quartet.

By contraposition of Prop. 6.5, we have S∩(a, b) = ∅, S∩(b, c) = ∅ and S∩(c, d) =
∅. We set v := lcaT(b, c) with children vb, vc ∈ childT(v) such that b �T vb and
c �T vc, and w := lcaT(a, b) with children wa, wb ∈ childT(w) such that a �T wa
and b �T wb. Note, that v, vb, w, and wb are pairwise comparable, since they are all
ancestors of b.

We show that w = v. Assume, for contradiction, that (i) w ≺T v or (ii) v ≺T
w. In Case (i), we have wa ≺T w �T vb and thus, σ(a) ∈ σ(L(T(vb))). Hence,
as S∩(b, c) = ∅, it must hold that σ(a) /∈ σ(L(T(vc))) and σ(c) /∈ σ(L(T(vb))).
Lemma 4.4 implies ac ∈ E(G). But then P is not an induced P4; a contradiction. In
Case (ii), we have vc �T v �T wb and thus, σ(c) ∈ σ(L(T(wb))). Since S∩(a, b) = ∅
we thus have σ(c) /∈ σ(L(T(wa))) and σ(a) /∈ σ(L(T(wb))). By Lemma 4.4, ac ∈ E(G);
again a contradiction. Thus w = v. Analogous arguments can be used to establish
lcaT(c, d) = v. We therefore have v = lcaT(a, b) = lcaT(b, c) = lcaT(c, d). In the
following vx denotes the child of v with x �T vx for x ∈ {a, b, c, d}. Note, va 6= vb,
vb 6= vc and vc 6= vd.

We next show that va, vb, vc, and vd are pairwise distinct. Fist, assume for con-
tradiction that va = vc. Together with S∩(c, d) = ∅, this assumption implies that
σ(a) /∈ σ(L(T(vd))) and σ(d) /∈ σ(L(T(vc))). By Lemma 4.4, ad ∈ E(G), contradict-
ing the assumption that P is an induced P4. Hence, va 6= vc. By symmetry of P,
we can use similar arguments to conclude that vb 6= vd. Finally, assume for contra-
diction that va = vd. Then, σ(d) ∈ σ(L(T(va))). Hence, S∩(a, b) = ∅ implies that
σ(d) /∈ σ(L(T(vb))) and σ(b) /∈ σ(L(T(vd))). Again Lemma 4.4 implies bd ∈ E(G); a
contradiction. In summary, va, vb, vc, and vd must be pairwise distinct.

We claim σ(c) ∈ σ(L(T(va))). Since ad /∈ E(G) and lcaT(a, d) = v, Lemma 4.4
implies that σ(a) ∈ σ(L(T(vd))) or σ(d) ∈ σ(L(T(va))). By symmetry of P, we can
w.l.o.g. assume that σ(a) ∈ σ(L(T(vd))) and thus, there is a vertex ad ∈ L(T(vd))
with σ(ad) = σ(a). In this case, S∩(c, d) = ∅ implies that σ(a) /∈ σ(L(T(vc))). This
together with ac /∈ E(G) and Lemma 4.4 implies that σ(c) ∈ σ(L(T(va))).
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We claim σ(d) ∈ σ(L(T(va))). We assume for contradiction that this is not the case
and show that this implies the existence of an ugly quartet 〈cdc′a′〉 containing cd as
its first edge, which leads to a contradiction to our initial assumption that none of the
edges in P is the first, resp., middle edge of an ugly, resp., good quartet. To see this,
note that σ(a), σ(c) ∈ σ(L(T(va))) and Lemma 4.3 imply that there is an edge a′c′ for
two vertices a′, c′ ≺T va with σ(a′) = σ(a) and σ(c′) = σ(c). Since σ(a) = σ(a′) and
lcaT(a′, c′) �T va ≺T v = lcaT(a′, c), we have a′c /∈ E(G). Since σ(ad) = σ(a′) and
lcaT(ad, d) �T vd ≺T v = lcaT(a′, d), we have a′d /∈ E(G). Now, S∩(c, d) implies that
σ(c) /∈ σ(L(T(vd))). This and σ(d) /∈ σ(L(T(va))) together with Lemma 4.4 implies
that there is an edge c′d ∈ E(G). Thus, we obtain the ugly quartet 〈cdc′a′〉 and hence,
the desired contradiction. Therefore, σ(d) ∈ σ(L(T(va))). Because of S∩(a, b) = ∅
we also have σ(d) /∈ σ(L(T(vb))).

Since σ(d) ∈ σ(L(T(va))), there is a vertex da �T va with σ(da) = σ(d). Moreover,
σ(b) /∈ σ(L(T(va)) and σ(d) /∈ σ(L(T(vb))) together with Lemma 4.4 implies that
bda ∈ E(G). Furthermore, σ(c) ∈ σ(L(T(va))) and Lemma 4.4 imply that cda /∈ E(G).
Now, S∩(c, d) = ∅ implies σ(d) /∈ σ(L(T(vc))) and therefore, lcaT(c, da) = v �T
lcaT(c, d′) for all d′ ∈ L[σ(d)]. Hence, (c, da) ∈ E(~G).

In summary, 〈dcbda〉 is an induced P4 in G. By [104, Lemma 32], every such in-
duced P4 forms either a good, bad, or ugly quartet in (~G, σ) and, since (c, da) ∈ E(~G),
we can conclude that 〈dcbda〉 is a bad quartet with first edge cd, which completes the
proof.

Lemma 6.24 is a somewhat stronger result than Thm. 8 in [104] that, more-
over, emphasizes the connection between the structure of an RBMG (G, σ)

and the u-fp edges in a corresponding BMG (~G, σ) (cf. Prop. 6.3 and Cor. 6.3).
In particular, it immediately implies

Corollary 6.7. [104, Thm. 8] Let (G, σ) be an RBMG. Then, (G, σ) is a cograph if
and only if all subgraphs induced by three colors are cographs.

Proof. If (G, σ) is a cograph, then all its induced subgraphs are also cographs [57].
Conversely, if (G, σ) is not a cograph, then it contains at least one induced P4. By
Lemma 6.24, (G, σ) cannot contain only 4-colored P4s and therefore the restriction to
at least one combination of three colors contains a P4 and is thus not a cograph.

It is important to recall in this context, however, that the deletion of all
u-fp-edges identified by quartets does not necessarily lead to a cograph (see
Fig. 55(C) for an example). Hence, the quartets alone therefore cannot pro-
vide a complete algorithm for correcting an RBMG to an orthology graph.
However, it would be interesting to compare the deletion of all u-fp edges in
(G, σ) with finding a (minimal) edge-deletion set to obtain a cograph. These
two problems are clearly distinct: The simplest example is the BMG (~G, σ)

in Fig. 50(A): its symmetric part G is already a cograph but (~G, σ) contains
the hug-edge xy, which must be deleted. Despite its practical use [133, 184],
this observation relegates cograph editing [136, 197, 319] to the status of a
heuristic approximation for the purpose of orthology detection.

6.5 simulation results

We illustrate the potential impact of our mathematical results discussed in the
previous sections with the help of simulated data. To this end, we focus on
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Fig. 57. Average relative abundance of the different types of hug-edges and unde-
tectable false positives in the BMGs of simulated evolutionary scenarios. We dis-
tinguish hug-edges in good and ugly quartets as well as hug-edges appearing only
in hourglass chains (orange). In the simulations, the fraction of u-fp edges that are
first edges of bad quartets is too small too be visible and therefore not shown here.
The undetectable false positives correspond to complementary gene losses without
surviving witnesses of the duplication event. Species trees are binary, while gene
trees contain multifurcations. The number of offsprings is modeled as 2 + k, where
k is drawn from a Poisson distribution with parameter λ. For λ = 0, the gene trees
are binary. In the experiments, we observed that on average 62.4% of the 25000 sim-
ulated BMGs do not contain any false-positive edge (cf. Fig. 58). Those instances
are included in the computation of the fraction |F|/|E(G)| (percentage above the
bars). However, for the computation of all other values only scenarios that contain
false-positives are considered.

the accuracy of the inferred orthology graph assuming that the best matches
are accurate. Of course, this is only one of several components in complete
orthology detection pipeline, which would also need to consider the genome
annotation, pairwise alignments of genes or predicted protein sequences, and
the conversion of sequence similarities into best match data. The latter step
has been investigated in considerable detail by Stadler et al. [293]. Here,
we start from simulated evolutionary scenarios and extract the BMG directly
from the ground truth using the simulation library AsymmeTree, see [293] and
Sec. 3.4.

We simulate pairs of dated species trees S and dated, event-labeled (“ob-
servable”) gene trees (T, t, σ). In particular, we consider non-binary gene
trees. This is important here since, by Lemma 4.15, hourglasses cannot ap-
pear in BMGs that are explained by a binary tree. Recall from Sec. 3.4 that
the amount of non-binary duplication events in the gene tree is regulated by a
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Fig. 58. False discovery rates computed as proportion of fp among all edges averaged
over all scenarios with given number of duplications and losses. Left: RBMGs (G, σ),
i.e., |F|/|E(G)|. Middle: edited RBMG (Ggood, σ) with all middle edges of good
quartets removed, i.e., |F \ UM|/|E(Ggood)|. Right: no-hug graphs NH(~G, σ), i.e.,
|F\U|/|E(NH)|. Scenarios with more than 80 duplication-loss events are not shown.

parameter λ > 0 of a Poisson distribution from which the additional number
of offspring genes is drawn. The simulated data set of evolutionary scenarios
comprises (binary) species trees with 10 to 30 species (drawn uniformly). The
time difference between the planted root and the leaves of S is set to unity.
The duplication and loss rates in the gene trees are drawn i.i.d. from the uni-
form distribution on the interval [0.5, 1.5). Multifurcating gene trees were
produced for λ = {0.0, 0.5, 1.0, 1.5, 2.0}. In total, we generated 5000 scenarios
for each choice of λ. Since the true scenarios, and thus the true gene tree T,
the true BMG ~G, and the corresponding RBMG G are known, we can also
determine the set

F := {xy | xy ∈ E(G) and t(lcaT(x, y)) = �} . (40)

of false-positive edges. From the BMG, we compute the set U of u-fp edges
as well as the subsets UM and UU of u-fp edges that are middle edges of a
good or first edges of an ugly quartet, respectively. Note that in general we
have UM ∩ UU 6= ∅. We only discuss the results for binary species trees in
some detail, since species trees with polytomies yield qualitatively similar
results. We observe that the relative abundance of u-fp edges in good and
ugly quartets increases moderately for larger p.

First, we note that, consistent with [103, 293], the fraction |F|/|E(G)| of
false positive orthology assignments is small in our data set, on the order of
3%. This indicates that, in real-life data, the main source of errors is likely
the accurate determination of best matches from sequence data rather than
false-positive edges contained in the BMG. Considering the fraction |U|/|F|
of u-fp edges in Fig. 57, we find that even in the most adverse case of all
gene trees being binary, the BMG identifies more than three-quarters of F.
It may be surprising at first glance that the problem becomes easier with
increasing λ and barely 6% of the false positives escape discovery. A likely
explanation is that multifurcations increase the likelihood that an inner vertex
has two surviving lineages that serve as witnesses of the event; in addition,
multifurcations increase the vertex degree in the BMG, so that in principle
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more information is available to resolve the tree structure. It is also interesting
to note that UU \ UM is small, i.e., there are few cases of first edges in an ugly
quartet that are not also middle edges in a good quartet. The fraction of u-fp
edges that appear only as first edges of bad quartets is even smaller; only
2-3% of the u-fp edges associated with hourglass chains, i.e., less than 0.15%
of all u-fp edges are of this type. The overwhelming majority of u-fp edges
associated with quartets thus appear (also) as middle edges of good quartets.
This observation provides an explanation for the excellent performance of
removing the UM-edges proposed in [103]. In particular in the case of binary
trees, which was considered by Geiß et al. [103], there is only a small number
of other u-fp edges, which are completely covered by UU . Fig. 58 visualizes the
appearance of false-positive edges depending on the number of duplication
and loss events. Not surprisingly, F is enriched in scenarios with a large
number of losses compared to the duplications, and depleted when losses
are rare. In fact, in the absence of losses, the RBMG equals the orthology
graph, i.e., F = ∅ [103, Thm. 4]. Removal of UM, already reduced the false
positives considerably.

6.6 summary

We have shown in this chapter how all unambiguously false-positive orthol-
ogy assignments can be identified in polynomial time provided that all best
matches are known and that we only consider HGT-free scenarios, i.e., those
that can be formalized with the reconciliation map in Def. 6.1. In particular,
we have provided several characterizations for u-fp edges in terms of underly-
ing subgraphs and refinements of trees. Since the best match graph contains
only false positives, we have obtained a characterization of all unambiguously
incorrect orthology assignments. These results emphasize that BMGs should
be considered as the first step in graph-based orthology detection methods
rather than RBMGs.

Simulations showed that the majority of false positives comprises middle
edges of good quartets, while u-fp edges that appear only as first edges of
an ugly quartet are rare. Not surprisingly, the hourglass-related u-fp edges
become important in gene trees with many multifurcations. They do not
appear in scenarios derived from binary gene trees. For the theory developed
here, it makes no difference whether polytomies in the gene tree appear as
genuine features, or whether limited accuracy of the approximation from
underlying sequence data produced the equivalent of a soft polytomy in the
BMG.

The augmented tree (A(T∗), σ) of an LRT (T∗, σ) is the tree that admits
an event labeling such that all inner vertices with subtrees that have overlap-
ping colors are designated as duplications while all inner vertices with color-
disjoint subtrees are designated as speciations. The tree (A(T∗), σ) therefore
does not contain “non-apparent duplications” in the sense of [183], i.e., dupli-
cation vertices with species-disjoint subtrees. This is an interesting connection
linking the literature concerned with polytomy refinement in given gene trees
[46, 183] with best match graphs.
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7
L AT E R - D I V E R G E N C E - T I M E ( L D T ) G R A P H S

Horizontal gene transfer (HGT) laterally introduces foreign ge-
netic material into a genome. The phenomenon is particularly fre-
quent in prokaryotes [224, 291] but also contributed to shaping eu-

karyotic genomes [6, 152, 167, 192, 215, 267], see also Sec. 3.2. HGT may be
additive, in which case its effect is similar to gene duplications, or lead to
the replacement of a vertically inherited homolog. From a phylogenetic per-
spective, HGT leads to an incongruence of gene trees and species trees, thus
complicating the analysis of gene family histories.

In Sec. 3.3.4, both parametric and phylogenetic methods for HGT inference
have been discussed briefly. The subclass of implicit (or indirect) phylogenetic
methods use unexpectedly small or large distances between genes as indica-
tors of HGT. More precisely, consider a family of homologous genes in a set of
species and plot the phylogenetic distance of pairs of most similar homologs
as a function of the phylogenetic distances between the species in which they
reside. Since distances between orthologous genes can be expected to be ap-
proximately proportional to the distances between the species, orthologous
pairs fall onto a regression line that defines equal divergence time for the last
common ancestor of corresponding gene and species pairs. The gene pairs
with “later divergence times”, i.e., those that are more closely related than
expected from their species, fall below the regression line [229]. Kanhere
and Vingron [162] complemented this idea with a statistical test based on the
Cook distance to identify xenologous pairs in a statistically sound manner.
For the mathematical analysis, we assume that we can perfectly identify all
pairs of genes a and b that are more closely related than expected from the
phylogenetic distance of their respective genomes. Naturally, this defines a
graph (G, σ), whose vertices x (the genes) are colored by the species σ(x) in
which they appear. Here, we are interested in two questions:

(1) What are the mathematical properties that characterize these “later-
divergence-time” (LDT) graphs?

(2) What kind of information about HGT events, the gene and species tree,
and the reconciliation map between them is contained implicitly in an
LDT graph?

These questions are also motivated by a series of recent investigations of the
mathematical structure of orthology and the (reciprocal) best match relation,
see e.g. [102, 104, 132, 180] and the previous chapters, as well as the xenology
relation sensu Fitch [101, 131, 135]. Each of these relations satisfies stringent
mathematical conditions that – at least in principle – can be used to correct
empirical estimates and thus serve as a potential means of noise reduction,
see [133, 293] and Chapter 5.
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Previous work following this paradigm, including our findings in Chap-
ter 6, has largely been confined to duplication-loss (DL) scenarios, excluding
horizontal transfer. As shown in [130], it is possible to partition a gene set
into HGT-free classes separated by HGTs. Within each class, the reconstruc-
tion problems then simplify to the much easier DL scenarios. In particular,
therefore, the theory developed in Chapter 6 can be applied. It is of utmost
interest, therefore, to find robust methods to infer this partition directly from
(dis)similarity data. In this and the next chapter, we explore the usefulness
and limitations of LDT graphs for this purpose.

This chapter is organized as follows. We first introduce in Sec. 7.1 relaxed
scenarios, a very general framework to describe evolutionary scenarios that
emphasizes time consistency of reconciliation rather than particular types of
evolutionary events. In Secs. 7.2–7.4, LDT graphs are defined formally and
characterized as those properly colored cographs for which a set of accom-
panying rooted triples is consistent (Thm. 7.3). The proof is constructive and
provides a method (Alg. 7) to compute a relaxed scenario for a given LDT
graph. Least resolved trees for LDT graphs are studied in Sec. 7.5. In Sec. 7.6,
we will briefly consider the situation that later-divergence-time information
is fraught with experimental errors. The results in this chapter appeared pre-
viously in [265].

7.1 relaxed reconciliation maps

In Sec. 6.1, we have already introduced a reconciliation map for duplication-
loss scenarios, of which we made extensive use to investigate the interdepen-
dencies of orthology and (reciprocal) best matches. However, these results are
no longer valid if horizontal gene transfers are considered as possible events
that have shaped the histories of gene families.

A spectrum of different mathematical frameworks have been proposed in
the literature that account for horizontal transfers [24, 81, 82, 103, 108, 228].
In comparison with formalizations of duplication-loss scenarios, their design
is usually more complex. To a large extent, this is because, in the presence
of HGT, the relationships of gene trees T and species trees S are not only
constrained by local conditions corresponding to the admissible local evolu-
tionary events (duplication, speciation, gene loss, and HGT) but also by the
global condition that the HGT events only occur between co-existing species
branches and, thus, must be time-consistent in this sense, i.e., they must ad-
mit a temporal order on the species tree vertices [107, 212, 316].

Tofigh et al. [316] and Bansal et al. [24] define “Duplication-Transfer-Loss”
(DTL) scenarios in terms of a vertex-only map γ : V(T) → V(S). The axiom
set of DTL-scenarios alone does not guarantee time-consistency of a reconcil-
iation. In particular, it was shown in [316] that finding most parsimonious
DTL-scenarios is NP-hard. A definition of a DTL-like class of scenarios in
terms of a reconciliation map µ : V(T) → V(S) ∪ E(S) was analyzed by Nøj-
gaard et al. [228]. For binary trees, the two definitions are equivalent; for
non-binary trees, however, the DTL-scenarios are a proper subset, see [228,
Fig. 1] for an example. Moreover, Nøjgaard et al. [228] characterize time-
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consistent reconciliation maps in terms of a certain auxiliary graph on the
union of the vertices V(S) ∪V(T) being a directed acyclic graph (DAG).

The H-trees introduced by Górecki [108], see also [110], formalize evolu-
tionary scenarios in a very different manner. H-trees comprise binary trees B
which can be seen as event-labeled gene trees with leaves denoting both sur-
viving genes and loss events, a set of species labels I , a set of “transfers” H, a
map A which determines the location of the transfers in the species trees (rep-
resented by pairs of subsets of I), and finally, a so-called dependency relation
on H. The latter establishes the time-consistency constraint as a direct part
of the framework. More precisely, Górecki [108] shows that this guarantees
the existence of a species graph, i.e., a subdivision of a binary species tree
endowed with a set of HGT edges between the single-child vertices which,
loosely speaking, do not cross. Subdivisions of the species tree have e.g. also
been used by Doyon et al. [81] as a means of ensuring time consistency.

Several other mathematical frameworks have been used in the literature to
specify evolutionary scenarios. Examples include maps g : V(S′) → 2V(T)

from a suitable subdivision S′ of the species tree S to the gene tree as used
by Hallett and Lagergren [123], and associations of edges, i.e., subsets of
E(T)× E(S), as proposed by Wieseke et al. [330].

In order to capture time consistency from the outset and to establish the
mathematical framework, we consider here trees with explicit timing infor-
mation [212].

Definition 7.1 (Time Map). The map τT : V(T)→ R is a time map for a tree T if
x ≺T y implies τT(x) < τT(y) for all x, y ∈ V(T).

It is important to note that only qualitative, relative timing information will
be used in practice, i.e., we will never need the actual value of time maps but
only information on whether an event pre-dates, post-dates, or is concurrent
with another. Def. 7.1 ensures that the ancestor relation �T and the timing of
the vertices are not in conflict. For later reference, we provide the following
simple result.

Lemma 7.1. Given a tree T, a time map τT for T satisfying τT(x) = τ0(x) with
arbitrary choices of τ0(x) for all x ∈ L(T) can be constructed in linear time.

Proof. We traverse T in postorder. If x is a leaf, we set τT(x) = τ0(x), and otherwise
compute t := maxu∈childT(x) τT(u) and set τT(x) = t′ with an arbitrary value t′ > t.
Clearly the total effort is O(|V(T)|+ |E(T)|), and thus also linear in the number of
leaves L(T).

Lemma 7.1 will be useful for the construction of time maps as it, in partic-
ular, allows us to put τT(x) = τT(y) for all x, y ∈ L(T).

Definition 7.2 (Time Consistency). Let T and S be two trees. A map µ : V(T)→
V(S) ∪ E(S) is called time-consistent if there are time maps τT for T and τS for S
satisfying the following conditions for all u ∈ V(T):

(C1) If µ(u) ∈ V(S), then τT(u) = τS(µ(u)).

(C2) Else, if µ(u) = xy ∈ E(S), then τS(y) < τT(u) < τS(x).
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Conditions (C1) and (C2) ensure that the reconciliation map µ preserves
time in the following sense: If vertex u of the gene tree is mapped to a vertex
µ(u) = v in the species tree, then u and v receive the same time stamp by
Condition (C1). If u is mapped to an edge µ(u) = xy, then the time stamp
of u falls within the time range [τS(x), τS(y)] of the edge xy in the species
tree. The following definition of reconciliation is designed (1) to be general
enough to encompass the notions of reconciliation that have been studied in
the literature, and (2) to separate the mapping between gene tree and species
tree from specific types of events. Event types such as duplication or horizon-
tal transfer therefore are considered here as a matter of interpreting scenarios,
not as part of their definition.

Definition 7.3 (Relaxed Reconciliation Map). Let T and S be two planted trees
with leaf sets L(T) and L(S), respectively and let σ : L(T) → L(S) be a map. A
map µ : V(T) → V(S) ∪ E(S) is a relaxed reconciliation map for (T, S, σ) if the
following conditions are satisfied:

(G0) Root Constraint. µ(x) = 0S if and only if x = 0T.

(G1) Leaf Constraint. µ(x) = σ(x) if and only if x ∈ L(T).

(G2) Time Consistency Constraint. The map µ is time-consistent for some time
maps τT for T and τS for S.

Condition (G0) is used to map the respective planted roots. (G1) ensures
that genes are mapped to the species in which they reside. (G2) enforces time
consistency. The reconciliation maps most commonly used in the literature,
see e.g. [24, 316], usually not only satisfy (G0)–(G2) but also impose additional
conditions. We therefore call the map µ defined here “relaxed”.

Definition 7.4 (Relaxed Scenario). The 6-tuple S = (T, S, σ, µ, τT, τS) is a re-
laxed scenario if µ is a relaxed reconciliation map for (T, S, σ) that satisfies (G2)
w.r.t. the time maps τT and τS.

By definition, relaxed reconciliation maps are time-consistent. Moreover,
τT(x) = τS(σ(x)) holds for all x ∈ L(T) by Def. 7.2(C1) and Def. 7.3(G1,G2).
In the following, we will refer to the map σ : L(T)→ L(S) as the coloring of S.

7.2 ldt graphs and µ-free scenarios

In the absence of horizontal gene transfer, the last common ancestor of two
species A and B should mark the latest possible time point at which two genes
a and b residing in σ(a) = A and σ(b) = B, respectively, may have diverged.
Situations in which this constraint is violated are therefore indicative of HGT.
To address this issue in some more detail, we next define “µ-free scenarios”
that eventually will lead us to the class of “LDT graphs” that contain all
information about genes that diverged after the species in which they reside.

Definition 7.5 (µ-free scenario). Let T and S be planted trees, σ : L(T) → L(S)
be a map, and τT and τS be time maps of T and S, respectively, such that τT(x) =

τS(σ(x)) for all x ∈ L(T). Then, T = (T, S, σ, τT, τS) is called a µ-free scenario.
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This definition of a scenario without a reconciliation map µ is mainly a tech-
nical convenience that simplifies the arguments in various proofs by avoiding
the construction of a reconciliation map. It is motivated by the observation
that the “later-divergence-time” of two genes in comparison with their species
is independent from any such µ. Every relaxed scenario S = (T, S, σ, µ, τT, τS)

implies an underlying µ-free scenario T = (T, S, σ, τT, τS). Statements proved
for µ-free scenarios therefore also hold for relaxed scenarios. Note that, by
Lemma 7.1, given the time map τS, one can easily construct a time map τT

such that τT(x) = τS(σ(x)) for all x ∈ L(T). In particular, when constructing
relaxed scenarios explicitly, we may simply choose τT(u) = 0 and τS(x) = 0
as common time for all leaves u ∈ L(T) and x ∈ L(S). Although not all µ-
free scenarios admit a reconciliation map and thus can be turned into relaxed
scenarios, Lemma 7.2 below implies that for every µ-free scenario T there is a
relaxed scenario with possibly slightly distorted time maps that encodes the
same LDT graph as T.

Definition 7.6 (LDT graph). For a µ-free scenario T = (T, S, σ, τT, τS), we define
G<(T) = G<(T, S, σ, τT, τS) = (V, E) as the graph with vertex set V := L(T) and
edge set

E := {ab | a, b ∈ L(T), τT(lcaT(a, b)) < τS(lcaS(σ(a), σ(b))).}

A vertex-colored graph (G, σ) is a later-divergence-time graph (LDT graph), if
there is a µ-free scenario T = (T, S, σ, τT, τS) such that G = G<(T). In this case, we
say that T explains (G, σ).

It is easy to see that the edge set of G<(T) defines an undirected graph and
that two genes a and b form an edge if the divergence time of a and b is
strictly less than the divergence time of the underlying species σ(a) and σ(b).
Moreover, there are no edges of the form aa, since τT(lcaT(a, a)) = τT(a) =

τS(σ(a)) = τS(lcaS(σ(a), σ(a))). Hence, G<(T) is a simple graph.
By definition, every relaxed scenario S = (T, S, σ, µ, τT, τS) satisfies τT(x) =

τS(σ(x)) all x ∈ L(T). Therefore, removing µ from S yields a µ-free scenario
T = (T, S, σ, τT, τS). Thus, we will use the following simplified notation.

Definition 7.7. We put G<(S) := G<(T, S, σ, τT, τS) for a given relaxed scenario
S = (T, S, σ, µ, τT, τS) and the underlying µ-free scenario (T, S, σ, τT, τS) and say,
by slight abuse of notation, that S explains (G<(S), σ).

The next two results show that the existence of a reconciliation map µ does
not impose additional constraints on LDT graphs.

Lemma 7.2. For every µ-free scenario T = (T, S, σ, τT, τS), there is a relaxed sce-
nario S = (T, S, σ, µ, τ̃T, τ̃S) for T, S and σ such that (G<(T), σ) = (G<(S), σ).

Proof. Let T = (T, S, σ, τT , τS) be a µ-free scenario. In order to construct a relaxed
scenario S = (T, S, σ, µ, τ̃T , τ̃S) that satisfies G<(S) = G<(T), we start with a time
map τ̃T for T satisfying τ̃T(0T) = max(τT(0T), τS(0S)) and τ̃T(v) = τT(v) for all v ∈
V(T) \ {0T}. Correspondingly, we introduce a time map τ̃S for S such that τ̃S(0S) =
max(τT(0T), τS(0S)) and τ̃S(v) = τS(v) for all v ∈ V(S) \ {0S}. By construction, we
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have tmax,T := max{τT(v) | v ∈ V(T)} = τT(0T) = τS(0S). Moreover, we have
tmin,S := min{τS(v) | v ∈ V(S)} ≤ min{τT(v) | v ∈ V(T)} =: tmin,T . To see this, we
can choose x ∈ V(T) such that τT(v) = tmin,T . By the definition of time maps and
minimality of τT(v), the vertex x must be a leaf. Hence, since T is a µ-free scenario,
we have τT(x) = τS(σ(x)) with X := σ(x) ∈ L(S) ⊂ V(S). Therefore, it must hold
that tmin,S ≤ tmin,T . We now define P := {p ∈ V(S) ∪ E(S) | X �S p}, i.e., the
set of all vertices and edges on the unique path in S from 0S to the leaf X. Since
τS(X) = tmin,T < tmax,T = τS(0S), we find, for each v ∈ V(T), either a vertex u ∈ P
such that τT(v) = τS(u) or an edge uw ∈ P such that τS(w) < τT(v) < τS(u). Hence,
we can specify the reconciliation map µ by defining, for every v ∈ V(T),

µ(v) :=





0S if v = 0T ,

σ(v) if v ∈ L(T),

u if there is some vertex u ∈ P with τT(v) = τS(u),

uw if there is some edge uw ∈ P with τS(w) < τT(v) < τS(u).

For each v ∈ V0(T), exactly one of the two alternatives for P applies, hence µ is
well-defined. It is now an easy task to verify that all conditions in Definitions 7.2
and 7.3 are satisfied for S = (T, S, σ, µ, τ̃T , τ̃S) by construction. Hence, by Def. 7.4, S
is a relaxed scenario.

It remains to show that G<(T) = G<(S). Let a, b ∈ L(T) be arbitrary. Clearly, nei-
ther lcaT(a, b) nor lcaS(σ(a), σ(b)) equals the planted root 0T or 0S, respectively. Since
we have only changed the timing of the roots 0T or 0S, we obtain ab ∈ E(G<(S)) if and
only if τ̃T(lcaT(a, b)) = τT(lcaT(a, b)) < τ̃S(lcaS(σ(a), σ(b))) = τS(lcaS(σ(a), σ(b))) if
and only if ab ∈ E(G<(T)), which completes the proof.

Theorem 7.1. (G, σ) is an LDT graph if and only if there is a relaxed scenario
S = (T, S, σ, µ, τT, τS) such that (G, σ) = (G<(S), σ).

Proof. By definition, (G, σ) is an LDT graph for every relaxed scenario S with coloring
σ that satisfies (G, σ) = (G<(S), σ). Now suppose that (G, σ) is an LDT graph. By
definition, there is a µ-free scenario T = (T, S, σ, τT , τS) such that (G, σ) = (G<(T), σ).
By Lemma 7.2, there is a relaxed scenario S = (T, S, σ, µ, τ̃T , τ̃S) for T, S and σ such
that (G, σ) = (G<(S), σ).

Remark 7.1. From here on, we omit the explicit reference to Lemma 7.2 and Thm. 7.1
and assume that the reader is aware of the fact that every LDT graph is explained by
some relaxed scenario S and that for every µ-free scenario T = (T, S, σ, τT, τS), there
is a relaxed scenario S for T, S and σ such that (G<(T), σ) = (G<(S), σ).

We now derive some simple properties of µ-free and relaxed scenarios. It
may be surprising at first glance that “the speciation nodes”, i.e., vertices
u ∈ V0(T) with µ(u) ∈ V(S) do not play a special role in determining LDT
graphs.

Lemma 7.3. For every relaxed scenario S = (T, S, σ, µ, τT, τS) there exists a relaxed
scenario S̃ = (T, S, σ, µ̃, τ̃T, τS) such that G<(S̃) = G<(S) and for all distinct x, y ∈
L(T) with xy /∈ E(G<(S)) holds τ̃T(lcaT(x, y)) > τS(lcaS(σ(x), σ(y))).
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Fig. 59. Top row: A relaxed scenario S = (T, S, σ, µ, τT , τS) (left) with its LDT graph
(G<(S), σ) (right). The reconciliation map µ is shown implicitly by the embedding
of the gene tree T into the species tree S. The times τT and τS are indicated by
the position on the vertical axis, i.e., if a vertex x is drawn higher than a vertex
y, this implies τT(y) < τT(x). In subsequent, figures we will not show the time
maps explicitly. Bottom row: Another relaxed scenario S′ = (T′, S′, σ′, µ′, τ′T , τ′S)
with a connected LDT graph (G<(S

′), σ′). As we shall see, connectedness of an LDT
graph depends on the relative timing of the roots of the gene and species tree (cf.
Lemma 7.11).

Proof. For the relaxed scenario S = (T, S, σ, µ, τT , τS) we write V0(S) := V(S) \
(L(S) ∪ {0S}) and define

DS := {|τS(y)− τS(x)| : x, y ∈ V(S), τS(x) 6= τS(y)},
DT := {|τT(y)− τT(x)| : x, y ∈ V(T), τT(x) 6= τT(y)}, and

DTS := {|τT(x)− τS(y)| : x ∈ V(T), y ∈ V(S), τT(x) 6= τS(y)}.

We have DS 6= ∅ and DT 6= ∅ since we do not consider empty trees, and thus, at
least the “planted” edges 0SρS and 0TρT always exist. By construction, all values in
DT , DS, and DTS are strictly positive. Now define

ε :=
1
2

min(DST ∪ DS ∪ DT).

Since DS and DT are not empty, ε is well-defined and, by construction, ε > 0. Next
we set, for all v ∈ V(T),

τ̃T(v) :=





τT(v) + ε, if v ∈ V0(T)

τT(v), otherwise,

µ̃(v) :=




parS(x)x, if µ(v) = x ∈ V0(S)

µ(v), otherwise.

Claim 7.1.1. S̃ := (T, S, σ, µ̃, τ̃T , τS) is a relaxed scenario.
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Proof of Claim: By construction, if µ(v) ∈ (L(S)∪ {0S}) and thus, µ(v) /∈ V0(S), µ(v)
and µ̃(v) coincide. Therefore, (G0) and (G1) are trivially satisfied for µ̃. In order to
show (G2), we first note that τ̃T(v) = τT(v) = τS(σ(v)) holds for all v ∈ L(T) by
Def. 7.2.

We next argue that τ̃T is a time map. To this end, let x, y ∈ V(T) with x ≺T y. Hence,
τT(x) < τT(y) and, in particular, τT(y)− τT(x) ≥ 2ε. Assume for contradiction that
τ̃T(x) ≥ τ̃T(y). This implies τ̃T(x) = τT(x) + ε and τ̃T(y) = τT(y), since τT(x) <
τT(y) and ε > 0 always implies τT(x) + ε < τT(y) + ε and τT(x) < τT(y) + ε.
Therefore, τ̃T(y)− τ̃T(x) = τT(y)− (τT(x) + ε) ≥ ε > 0 and thus, τ̃T(y) > τ̃T(x); a
contradiction.

We continue with showing that the two time maps τ̃T and τS are time-consistent
w.r.t. S̃. To see that Condition (C1) is satisfied, observe that, by construction, µ̃(v) ∈
V(S) does hold only in case µ(v) /∈ E(S) ∪V0(S) and thus, µ(v) ∈ L(S) ∪ {0S}. In
this case, µ̃(v) = µ(v) and since µ(v) satisfies (G1) we have v ∈ L(T) ∪ {0T}. Thus,
v /∈ V0(T) and, therefore, τ̃T(v) = τT(v) = τS(µ(v)). Therefore, Condition (C1) is
satisfied.

Now consider Condition (C2). As argued above, µ̃(v) ∈ E(S) holds for all v ∈
V0(T) = V(T) \ (L(T) ∪ {0T}). By construction, τ̃T(v) = τT(v) + ε. There are two
cases: µ(v) = x ∈ V0(S), or µ(v) = yx ∈ E(S) with y = parS(x). The following
arguments hold for both cases: We have µ̃(v) = yx ∈ E(S). Moreover, τS(x) ≤
τT(v) < τ̃T(v) since τT and τS satisfy (C1) and (C2). Furthermore, τT(v) < τS(y)
and, by construction, τS(y)− τT(v) ≥ 2ε. This immediately implies that τS(y) ≥
τT(v) + 2ε = τ̃T(v) + ε > τ̃T(v). In summary, τS(x) < τ̃T(v) < τS(y) whenever
µ̃(v) = yx ∈ E(S). Therefore, Condition (C2) is satisfied for S̃. �

Claim 7.1.2. E(G<(S)) ⊆ E(G<(S̃)).

Proof of Claim: Let xy be an edge in G<(S) and thus x 6= y, and set vT := lcaT(x, y)
and vS := lcaS(σ(x), σ(y)). By definition, we have τT(vT) < τS(vS). Therefore, we
have τS(vS)− τT(vT) ∈ DTS and, hence, τS(vS)− τT(vT) ≥ 2ε. Since x 6= y, vT =
lcaT(x, y) is an inner vertex of T. By construction, therefore, τ̃T(vT) = τT(vT) + ε.
The latter arguments together with the fact that τS remains unchanged imply that
τS(vS)− τ̃T(vT) ≥ ε > 0, and thus, τ̃T(vT) < τS(vS). Therefore, we conclude that
xy is an edge in G<(S̃). �

It remains to show

Claim 7.1.3. For all distinct x, y ∈ L(T) with xy /∈ E(G<(S)), we have τ̃T(lcaT(x, y)) >
τS(lcaS(σ(x), σ(y))).

Proof of Claim: Suppose xy /∈ E(G<(S)) for two distinct x, y ∈ L(T), and set vT :=
lcaT(x, y) and vS := lcaS(σ(x), σ(y)). By definition, this implies τT(vT) ≥ τS(vS).
Since x 6= y, we clearly have that vT = lcaT(x, y) is an inner vertex of T, and hence,
τ̃T(vT) = τT(vT) + ε. The latter two argument together with ε > 0 and the fact that
τS remains unchanged imply that τ̃T(vT) > τS(vS). �

In particular, therefore, xy /∈ E(G<(S)) implies that xy /∈ E(G<(S̃)) and therefore,
E(G<(S̃)) ⊆ E(G<(S)). Together with Claim 7.1.2 and the fact that both G<(S) and
G<(S̃) have vertex set L(T), we conclude that G<(S) = G<(S̃), which completes the
proof.

Since the relaxed scenario S̃ = (T, S, σ, µ̃, τ̃T, τS) as constructed in the proof
of Lemma 7.3 satisfies µ̃(v) /∈ V0(S) we obtain
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Fig. 60. Left a relaxed scenario S = (T, S, σ, µ, τT , τS) with corresponding graph
(G<(S), σ) (right). For (G<(S), σ) there is no relaxed scenario S̃ = (T, S, σ, µ̃, τ̃T , τS)
such that G<(S̃) = G<(S) and for all distinct x, y ∈ L(T) with xy /∈ E(G<(S)) it holds
that µ̃(lcaT(x, y)) �S lcaS(σ(x), σ(y)), see Example 7.1.

Corollary 7.1. For every relaxed scenario S = (T, S, σ, µ, τT, τS), there exists a
relaxed scenario S̃ = (T, S, σ, µ̃, τ̃T, τS) such that G<(S̃) = G<(S) and µ̃(v) /∈
V0(S) for all v ∈ V(T).

Lemma 7.3, however, does not imply that one can always find a re-
laxed scenario with a reconciliation map µ̃ for given trees T and S sat-
isfying µ̃(lcaT(x, y)) �S lcaS(σ(x), σ(y)) for all distinct x, y ∈ L(T) with
xy /∈ E(G<(S)), as shown in Example 7.1.

Example 7.1. Consider the LDT graph (G<(S), σ) with corresponding relaxed sce-
nario S as shown in Fig. 60. Note first that v = lcaT(a, b) = lcaT(c, d) and ab, cd /∈
E(G<). To satisfy both µ̃(v) �S lcaS(σ(a), σ(b)) and µ̃(v) �S lcaS(σ(c), σ(d)),
we clearly need that µ̃(v) �S ρS, and thus τ̃T(v) ≥ τ̃S(ρS). However, ad′ ∈ E(G<)

and lcaT(a, d′) = u imply that τ̃T(u) < τS(σ(a), σ(d)) = τS(ρS). Hence, we ob-
tain τ̃T(u) < τS(ρS) ≤ τ̃T(v); a contradiction to uv ∈ E(T) and τ̃T being a time
map for T. Therefore, there is no relaxed scenario S̃ = (T, S, σ, µ̃, τ̃T, τS) such that
G<(S̃) = G<(S) and such that µ̃(lcaT(x, y)) �S lcaS(σ(x), σ(y)) for all distinct
x, y ∈ L(T) with xy /∈ E(G<(S)).

For the special case that the graph under consideration has no edges we
have

Lemma 7.4. For an edgeless graph G and for any choice of T and S with L(T) =

V(G) and σ(L(T)) = L(S) there is a relaxed scenario S = (T, S, σ, µ, τT, τS) that
satisfies G = G<(S).

Proof. Given T and S we construct a relaxed scenario as follows. Let τS be an arbi-
trary time map on S. Then we can choose τT such that τS(ρS) < τT(u) < τS(0S)
for all u ∈ V0(T). Each leaf u ∈ L(T) then has a parent in T located above the last
common ancestor ρS of all species in which case G<(S) is edgeless.

Lemma 7.4 is reminiscent of the fact that for DL-only scenarios any given
gene tree T can be reconciled with an arbitrary species tree as long as
σ(L(T)) = L(S) [103, 115].

7.3 properties of ldt graphs

We continue by deriving several interesting characteristics LDT graphs.
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Proposition 7.1. Every LDT graph (G, σ) is properly colored.

Proof. Let T = (T, S, σ, τT , τS) be a µ-free scenario such that (G, σ) = (G<(T), σ)
and recall that every µ-free scenario satisfies τT(x) = τS(σ(x)) for all x ∈ L(T)
with σ(x) ∈ L(S). Let a, b ∈ L(T) be distinct and suppose that σ(a) = σ(b) = A.
Since a and b are distinct we have a, b ≺T lcaT(a, b) and hence, by Def. 7.1, τT(a) <
τT(lcaT(a, b)). This implies that τT(a) = τS(A) = τS(lcaS(A, A)) < τT(lcaT(a, b)).
Therefore, ab /∈ E(G). Consequently, ab ∈ E(G) implies σ(a) 6= σ(b), which com-
pletes the proof.

Extending earlier work of Dekker (1986), Bryant and Steel (1995) derived
conditions under which two triples r1, r2 imply a third triple r3 that must be
displayed by any tree that displays r1, r2. In particular, we make frequent use
of the following

Lemma 7.5. If a tree T displays xy|z and zw|y then T displays xy|w and zw|x. In
particular T|{x,y,z,w} = ((x, y), (z, w)) (in Newick format).

As we shall see below, LDT graphs (G, σ) contain detailed information
about both the underlying gene trees T and species trees S for all µ-scenarios
that explain (G, σ), and thus by Lemma 7.2 and Thm. 7.1 also about every
relaxed scenario S satisfying G = G<(S). This information is encoded in the
form of certain rooted triples that can be retrieved directly from local features
in the colored graphs (G, σ).

Definition 7.8. For a graph G = (L, E), we define the set of triples on L as

T(G) := {xy|z : x, y, z ∈ L are pairwise distinct, xy ∈ E, xz, yz /∈ E} .

If G is endowed with a coloring σ : L→ M we also define a set of color triples

S(G, σ) := {σ(x)σ(y)|σ(z) : x, y, z ∈ L, σ(x), σ(y), σ(z) are pairwise

distinct, xz, yz ∈ E, xy /∈ E}.

Lemma 7.6. If a graph (G, σ) is an LDT graph, then S(G, σ) is consistent and S
displays S(G, σ) for every µ-free scenario T = (T, S, σ, τT, τS) that explains (G, σ).

Proof. Suppose that (G = (L, E), σ) is an LDT graph and let T = (T, S, σ, τT , τS) be
a µ-free scenario that explains (G, σ). In order to show that S(G, σ) is consistent it
suffices to show that S displays every triple in S(G, σ).

Let AB|C ∈ S(G, σ). By definition, A, B, C are pairwise distinct and there must
be vertices a, b, c ∈ L with σ(a) = A, σ(b) = B, and σ(c) = C such that ab /∈ E
and bc, ac ∈ E. First, ab /∈ E and bc, ac ∈ E imply τT(lcaT(a, b)) ≥ τS(lcaS(A, B)),
τT(lcaT(b, c)) < τS(lcaS(B, C)), and τT(lcaT(a, c)) < τS(lcaS(A, C)). Moreover, for
any three vertices a, b, c in T it holds that 1 ≤ |{lcaT(a, b), lcaT(a, c), lcaT(b, c)}| ≤ 2.

Therefore we have to consider the following four cases: (1) u := lcaT(a, b) =
lcaT(b, c) = lcaT(a, c), (2) u := lcaT(a, b) = lcaT(a, c) 6= lcaT(b, c) and (3) u :=
lcaT(a, b) = lcaT(b, c) 6= lcaT(a, c), (4) lcaT(a, b) 6= u := lcaT(b, c) = lcaT(a, c).
Note, for any three vertices x, y, z in T, lcaT(x, y) 6= lcaT(x, z) = lcaT(y, z) im-
plies that lcaT(x, y) ≺T lcaT(x, z) = lcaT(y, z). In Cases (1) and (2), we find
τS(lcaS(A, C)) > τT(u) ≥ τS(lcaS(A, B)). Together with the fact that lcaS(A, C) and
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lcaS(A, B) are comparable in S, this implies that AB|C is displayed by S. In Case
(3), we obtain τS(lcaS(B, C)) > τT(u) ≥ τS(lcaS(A, B)) and, by analogous arguments,
AB|C is displayed by S. Finally, in Case (4), the tree T displays the triple ab|c. Thus,
τS(lcaS(A, B)) ≤ τT(lcaT(a, b)) < τT(u) < τS(lcaS(A, C)). Again, AB|C is displayed
by S.

The next lemma shows that induced K2 +K1 (the disjoint union of a K2 and
a K1) subgraphs in LDT graphs imply triples that must be displayed by the
gene tree T.

Lemma 7.7. If (G, σ) is an LDT graph, then T(G) is consistent and T displays
T(G) for every µ-free scenario T = (T, S, σ, τT, τS) that explains (G, σ).

Proof. Suppose that (G = (L, E), σ) is an LDT graph and let T = (T, S, σ, τT , τS) be
a µ-free scenario that explains (G, σ). In order to show that T(G) is consistent it
suffices to show that T displays every triple in T(G, σ).

Let ab|c ∈ T(G). By definition, a, b, c ∈ L(T) are distinct, and ab ∈ E and ac, bc 6∈ E.
Since ab ∈ E, we have A := σ(a) 6= σ(b) =: B by Prop. 7.1.

There are two cases, either σ(c) ∈ {A, B} or not. Suppose first that w.l.o.g. σ(c) =
A. In this case, ab ∈ E and bc /∈ E together imply τT(lcaT(a, b)) < τS(lcaS(A, B)) ≤
τT(lcaT(b, c)). This and the fact that lcaT(a, b) and lcaT(b, c) are comparable in T
implies that T displays ab|c.

Suppose now that σ(c) = C /∈ {A, B}. We now consider the four possible topolo-
gies of S′ = S|ABC: (1) S′ is a star, (2) S′ = AB|C, (3) S′ = AC|B, and (4) S′ = BC|A.

In Cases (1), (2) and (4), we have τS(lcaS(A, B)) ≤ τS(lcaS(A, C)), where equality
holds only in Cases (1) and (4). This together with ab ∈ E and ac /∈ E implies
τT(lcaT(a, b)) < τS(lcaS(A, B)) ≤ τS(lcaS(A, C)) ≤ τT(lcaT(a, c)). This and the fact
that lcaT(a, b) and lcaT(a, c) are comparable in T implies that T displays ab|c. In
Case (3), ab ∈ E and bc /∈ E imply τT(lcaT(a, b)) < τS(lcaS(A, B)) = τS(lcaS(B, C)) ≤
τT(lcaT(b, c)). By analogous arguments as before, T displays ab|c.

We note, finally, that the Aho graph of the triple set [T(G), L] in a sense
recapitulates G. More precisely, we have:

Proposition 7.2. Let (G = (L, E), σ) be a vertex-colored graph. If for all edges
xy ∈ E there is a vertex z such that xz, yz /∈ E (and thus, in particular, in case that
G is disconnected), then [T(G), L] = G.

Proof. Clearly, the vertex sets of [T(G), L] and G are the same, that is, L. Let xy ∈ E
and thus, we have x 6= y. There is a vertex z 6= x, y in G with xz, yz /∈ E if and only
if xy|z ∈ T(G) and thus, if and only if xy is an edge in [T(G), L] = G.

Definition 7.9. For a vertex-colored graph (G, σ), we will use the shorter notation
x1 − x2 − · · · − xn and X1 − X2 − · · · − Xn for a path Pn that is induced by the
vertices {xi | 1 ≤ i ≤ n} with colors σ(xi) = Xi, 1 ≤ i ≤ n and edges xixi+1,
1 ≤ i ≤ n− 1.

The next results shows that LDT graphs cannot contain induced P4s.

Lemma 7.8. Every LDT graph (G, σ) is a properly colored cograph.

Proof. Let T = (T, S, σ, τT , τS) be a µ-free scenario that explains (G, σ). By Prop. 7.1,
(G, σ) is properly colored. To show that G = (L, E) is a cograph it suffices to show
that G does not contain an induced path on four vertices (cf. Prop. 2.6). Hence,
assume for contradiction that G contains an induced P4.
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First we observe that for each edge ab in this P4 it holds that σ(a) 6= σ(b) since,
otherwise, by Prop. 7.1, ab /∈ E. Based on possible colorings of the P4 w.r.t. σ and up
to symmetry, we have to consider four cases: (1) A− B− C− D, (2) A− B− C− A,
(3) A− B− A− C and (4) A− B− A− B.

In Case (1) the P4 is of the form a − b − c − d with σ(a) = A, σ(b) = B,
σ(c) = C, σ(d) = D. By Lemma 7.6, the species tree S must display both AC|B
and BD|C. Hence, by Lemma 7.5, S|ABCD = ((A, C), (B, D)) in Newick format. Let
x := lcaS(A, B, C, D) = ρS|ABCD

. Note, x “separates” A and C from B and D. Now,
ab ∈ E and ad /∈ E implies that τT(lcaT(a, b)) < τS(x) ≤ τT(lcaT(a, d)). This and the
fact that lcaT(a, b) and lcaT(a, d) are comparable in T implies that T displays ab|d.
Similarly, cd ∈ E and ad /∈ E implies that T displays cd|a is displayed by T. By
Lemma 7.5, T|abcd = ((a, b), (c, d)). Let y := lcaT(a, b, c, d) = ρT|abcd

. Now, bc ∈ E,
lcaT(b, c) = y, and lcaS(B, C) = x implies τT(y) < τS(x). This and lcaT(a, d) = y
and lcaS(A, D) = x imply that ad ∈ E, and thus a, b, c, d do not induce a P4 in G; a
contradiction.

Case (2) can be directly excluded, since Lemma 7.6 implies that, in this case, S
must display AC|B and AB|C; a contradiction.

Now consider Case (3), that is, the P4 is of the form a − b − a′ − c with σ(a) =
σ(a′) = A, σ(b) = B and σ(c) = C. By Lemma 7.6, the species tree S must display
BC|A and thus x := lcaS(A, B) = lcaS(A, C). Since ab ∈ E and ac /∈ E we observe
τT(lcaT(a, b)) < τS(x) ≤ lcaT(a, c) and, as in Case (1) we infer that T displays ab|c.
By similar arguments, a′c ∈ E and ac /∈ E implies that T displays a′c|a. By Lemma
7.5, T|abcd = ((a, b), (a′, c)) and thus, y := lcaT(a′, b) = lcaT(a, c) and a′b ∈ E implies
that τT(y) < τS(x). Since y = lcaT(a, c) and τT(y) < τS(x) = τS(lcaS(A, C)), we can
conclude that ac ∈ E. Hence, a, b, c, d do not induce a P4 in G; a contradiction.

In Case (4) the P4 is of the form a− b− a′ − b′ with σ(a) = σ(a′) = A and σ(b) =
σ(b′) = B. Now, ab, a′b′ ∈ E and ab′ /∈ E imply that τT(lcaT(a, b)), τT(lcaT(a′, b′)) <
τS(lcaS(A, B)) ≤ τT(lcaT(a, b′)). Hence, by similar arguments as above, T must dis-
play ab|b′ and a′b′|a. By Lemma 7.5, Tabcd = ((a, b), (a′, b′)) and thus, y := lcaT(a′b) =
lcaT(a, b′). However, a′b /∈ E implies that τT(y) < τS(lcaS(A, B)); a contradiction to
τS(lcaS(A, B)) ≤ τT(lcaT(a, b′)).

The converse of Lemma 7.8 is not true is in general. To see this, consider
the properly-colored cograph (G, σ) with vertex set V(G) = {a, a′, b, b′, c, c′},
edges ab, bc, a′b′, a′c′ and coloring σ(a) = σ(a′) = A, σ(b) = σ(b′) = B, and
σ(c) = σ(c′) = C with A, B, C being pairwise distinct. In this case, S(G, σ)

contains the triples AC|B and BC|A. By Lemma 7.6, the tree S in every µ-
free scenario T = (T, S, σ, τT, τS) or relaxed scenario S = (T, S, σ, µ, τT, τS)

explaining (G, σ) displays AC|B and BC|A. Since no such scenario can exist,
(G, σ) is not an LDT graph.

7.4 recognition and characterization of ldt graphs

In order to design an algorithm for the recognition of LDT graphs, we will
consider partitions of the vertex set of a given input graph (G = (L, E), σ).
To construct suitable partitions, we start with the connected components of
G. The coloring σ : L → M imposes additional constraints. We capture these
with the help of binary relations that are defined in terms of partitions C of
the color set M and employ them to further refine the partition of G.
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Definition 7.10. Let (G = (L, E), σ) be a graph with coloring σ : L → M. Let C
be a partition of M, and C ′ be the set of connected components of G. We define the
following binary relation R(G, σ, C) by setting

(x, y) ∈ R(G, σ, C) ⇐⇒ x, y ∈ L, σ(x), σ(y) ∈ C for some C ∈ C, and

x, y ∈ C′ for some C′ ∈ C ′.

By construction, two vertices x, y ∈ L are in relation R(G, σ, C) whenever
they are in the same connected component of G and their colors σ(x), σ(y)
are contained in the same set of the partition of M. The following result
shows that the relation R := R(G, σ, C) is an equivalence relation and every
equivalence class of R is contained in some connected component of G. In
particular, each connected component of G is the disjoint union of R-classes.

Lemma 7.9. Let (G = (L, E), σ) be a graph with coloring σ : L → M and C
be a partition of M. Then, R := R(G, σ, C) is an equivalence relation and every
equivalence class of R, or short R-class, is contained in some connected component
of G. In particular, each connected component of G is the disjoint union of R-classes.

Proof. It is easy to see that R is reflexive and symmetric. Moreover, xy, yz ∈ R

implies that σ(x), σ(y), σ(z) must be contained in the same set of the partition C, and
x, y, z must be contained in the same connected component of G. Therefore, xy ∈ R

and thus, R is transitive. In summary, R is an equivalence relation.
We continue with showing that every R-class K is entirely contained in some con-

nected component of G. Clearly, there is a connected component C of G such that
C ∩ K 6= ∅. Assume, for contradiction, that K 6⊆ C. Hence, G must be discon-
nected and, in particular, there is a second connected component C′ of G such that
C′ ∩ K 6= ∅. Hence, there is a pair xy ∈ K such that x ∈ C ∩ K and y ∈ C′ ∩ K. But
then x and y are in different connected components of G violating the definition of R;
a contradiction. Hence, every R-class is entirely contained in some connected com-
ponent of G. This and the fact the R-classes are disjoint implies that each connected
component of G is the disjoint union of R-classes.

The following partition of the leaf sets of subtrees of a tree S rooted at some
vertex u ∈ V(S) will be useful:

If u is not a leaf, then CS(u) := {L(S(v)) | v ∈ childS(u)}
and, otherwise, CS(u) := {{u}}.

One easily verifies that, in both cases, CS(u) yields a valid partition of the leaf
set L(S(u)). Recall that σ|L′,M′ : L′ → M′ was defined as the “submap” of σ

with L′ ⊆ L and σ(L′) ⊆ M′ ⊆ M.

Lemma 7.10. Let (G = (L, E), σ) be a properly colored cograph. Suppose that
the triple set S(G, σ) is consistent and let S be a tree on M that displays S(G, σ).
Moreover, let L′ ⊆ L and u ∈ V(S) such that σ(L′) ⊆ L(S(u)). Finally, set
R := R(G[L′], σ|L′,L(S(u)), CS(u)).
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Then, for all distinct R-classes K and K′, either xy ∈ E for all x ∈ K and y ∈ K′, or
xy /∈ E for all x ∈ K and y ∈ K′. In particular, for x ∈ K and y ∈ K′, it holds that

xy ∈ E ⇐⇒ K, K′ are contained in the same connected component of G[L′].

Proof. Let σ : L → M and put S = S(G, σ). Since S is a consistent triple set on M,
there is a tree S on M that displays S. Moreover, the condition σ(L′) ⊆ L(S(u)) ⊆ M
together with the fact that CS(u) is a partition of L(S(u)) ensures that R is well-
defined.

Now suppose that K and K′ are distinct R-classes. As a consequence of Lemma 7.9,
we have exactly the two cases: either (i) K and K′ are contained in the same connected
component C of G[L′] or (ii) K ⊆ C and K′ ⊆ C′ for distinct components C and C′ of
G[L′].

Case (i). Assume, for contradiction, that there are two vertices x ∈ K and y ∈ K′

with xy /∈ E. Note that C ⊆ L′ and thus, G[C] is an induced subgraph of G[L′]. By
Prop. 2.6, both induced subgraphs G[L′] and G[C] are cographs. Now we can again
apply Prop. 2.6 to conclude that diam(G[C]) ≤ 2. Hence, there is a vertex z ∈ C such
that xz, zy ∈ E. Since x and y are in distinct classes of R but in the same connected
component C of G[L′], σ(x) and σ(y) must lie in distinct sets of CS(u). In particular,
it must hold that σ(x) 6= σ(y). The fact that G[L′] is properly colored together with
xz, yz ∈ E implies that σ(z) 6= σ(x), σ(y). By definition and since G[L′] is an induced
subgraph of G, we obtain that σ(x)σ(y)|σ(z) ∈ S. In particular, σ(x)σ(y)|σ(z) is
displayed by S. Since σ(x) and σ(y) lie in distinct sets of CS(u), u must be an inner
vertex, and we have σ(x) ∈ L(S(v)) and σ(y) ∈ L(S(v′)) for distinct v, v′ ∈ childS(u).
In particular, it must hold that lcaS(σ(x), σ(y)) = u. Moreover, z ∈ C ⊆ L′ and
σ(L′) ⊆ L(S(u)) imply that σ(z) ∈ L(S(u)). Taken together, the latter two arguments
imply that S cannot display the triple σ(x)σ(y)|σ(z); a contradiction.

Case (ii). By assumption, the R-classes K and K′ are in distinct connected compo-
nents of G[L′], which immediately implies xy /∈ E for all x ∈ K, y ∈ K′.

In summary, either xy ∈ E for all x ∈ K and y ∈ K′, or xy /∈ E for all x ∈ K and
y ∈ K′. Moreover, Case (i) establishes the if -direction and Case (ii) establishes, by
means of contraposition, the only-if -direction of the final statement.

Lemma 7.10 suggests a recursive strategy to construct a relaxed scenario
S = (T, S, σ, µ, τT, τS) for a given properly-colored cograph (G, σ), which is
illustrated in Fig. 61. The starting point is a species tree S displaying all the
triples in S(G, σ) that are required by Lemma 7.6. We show below that there
are no further constraints on S and thus we may choose S = Aho(S(G, σ), L)
and endow it with an arbitrary time map τS. Given (S, τS), we construct
(T, τT) in top-down order. In order to reduce the complexity of the presenta-
tion and to make the algorithm more compact and readable, we will not dis-
tinguish the cases in which (G, σ) is connected or disconnected, nor whether
a connected component is a superset of one or more R-classes. The tree T
therefore will not be phylogenetic in general. We shall see, however, that this
issue can be alleviated by simply suppressing all inner vertices with a single
child.

The root uT is placed above ρS to ensure that no two vertices from distinct
connected components of G will be connected by an edge in G<(S). The
vertices vT representing the connected components C of G are each placed
within an edge of S below ρS. W.l.o.g., the edges ρSvS are chosen such that
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Fig. 61. Visualization of Alg. 7. (A) The case uS is a leaf (cf. Line 8). (B)-(E) The case
uS is an inner vertex (cf. Line 12). (B) The subgraph of (G, σ) induced by L′. (C) The
local topology of the species tree S yields CS(uS) = {{A, B, . . . }, {C, D, . . . }}. Note
that L(S(uS)) may contain colors that are not present in σ(L′) (not shown). (D) The
equivalence classes of R := R(G[L′], σ|L′ ,L(S(u)), CS(uS)). (E) The vertex uT and the
vertices vT are created in this recursion step. The vertices wK corresponding to the
R-classes K are created in the next-deeper steps. Note that some vertices have only
a single child, and thus get suppressed in Line 25.

the colors of the corresponding connected component C and the colors in
L(S(vS)) overlap. Next we compute the relation R := R(G, σ, CS(ρS)) and
determine, for each connected component C, the R-classes K that are a subset
of C. For each of them, a child wK is appended to the tree vertex vT. The
subtree T(wK) will have leaf set L(T(wK)) = K. Since R is defined on CS(ρS)

in this first step, G(S) will have all edges between vertices that are in the
same connected component C but in distinct R-classes (cf. Lemma 7.10). The
definition of R also implies that we always find a vertex vS ∈ childS(ρS) such
that σ(K) ⊆ L(S(vS)) (more detailed arguments for this are given in the
proof of Claim 7.2.1 in the proof of Thm. 7.2 below). Thus we can place wK

into this edge ρSvS, and proceed recursively on the R-classes L′ := K, the
induced subgraphs G[L′] and their corresponding vertices vS ∈ V(S), which
then serve as the root of the species trees. More precisely, we identify wK with
the root u′T created in the “next-deeper” recursion step. Since we alternate
between vertices uT for which no edges between vertices of distinct subtrees
exist, and vertices vT for which all such edges exist, we can label the vertices
uT with “0” and the vertices vT with “1” and obtain a cotree for the cograph
G.

This recursive procedure is described more formally in Alg. 7 which also
describes the constructions of an appropriate time map τT for T and a recon-
ciliation map µ. We note that we find it convenient to use as trivial case in the
recursion the situation in which the current root uS of the species tree is a leaf
rather than the condition |L′| = 1. In this manner we avoid the distinction
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Algorithm 7: Construction of a relaxed scenario S for a properly col-
ored cograph (G, σ) with consistent triple set S(G, σ).

Input: A cograph (G = (L, E), σ) with proper coloring σ : L→ M and
consistent triple set S(G, σ).

Output: A relaxed scenario S = (T, S, σ, µ, τT , τS) explaining (G, σ).

1 S← tree on M displaying S(G, σ) with planted root 0S
2 τS ← time map for S satisfying τS(x) = 0 for all x ∈ L(S)
3 ε← 1

3 min{τS(y)− τS(x) | yx ∈ E(S)}
4 initialize empty maps µ, τT

5 Function BuildGeneTree(L′, uS)

6 create a vertex uT
7 τT(uT)← τS(uS) + ε and µ(uT)← parS(uS)uS
8 if uS is a leaf then
9 foreach x ∈ L′ do
10 connect x as a child of uT
11 τT(x)← 0 and µ(x)← σ(x)

12 else
13 R← R(G[L′], σ|L′ ,L(S(uS))

, CS(uS))

14 foreach connected component C of G[L′] do
15 create a vertex vT
16 connect vT as a child of uT
17 choose v∗S ∈ childS(uS) such that σ(C) ∩ L(S(v∗S)) 6= ∅
18 τT(vT)← τS(uS)− ε and µ(vT)← uSv∗S
19 foreach R-class K such that K ⊆ C do
20 identify vS ∈ childS(uS) such that σ(K) ⊆ L(S(vS))
21 wK ← BuildGeneTree(K, vS)

22 connect wK as a child of vT

23 return uT

24 T′ ← tree with root BuildGeneTree(L, ρS)

25 T ← T′ with (i) a planted root 0T added, and (ii) all inner degree-2 vertices
(except 0T) suppressed

26 τT(0T)← τS(0S) and µ(0T)← 0S
27 return (T, S, σ, µ|V(T), τT|V(T), τS)

between the cases uS ∈ L(S) and uS /∈ L(S) in the else-condition starting in
Line 12. This results in a shorter presentation at the expense of more inner
vertices that need to be suppressed at the end in order to obtain the final tree
T. We proceed by proving the correctness of Alg. 7.

Theorem 7.2. Let (G, σ) be a properly colored cograph, and assume that the triple set
S(M, G) is consistent. Then Alg. 7 returns a relaxed scenario S = (T, S, σ, µ, τT, τS)

such that G<(S) = G in polynomial time.

Proof. Let σ : L → M and put S := S(G, σ). By a slight abuse of notation, we will
simply write µ and τT also for restrictions to subsets of V(T). Observe first that due
to Line 7, the algorithm continues only if (G, σ) is a properly colored cograph and
S is consistent, and returns a tuple S = (T, S, σ, µ, τT , τS) in this case. In particular,
a tree S on M that displays S exists, and can e.g. be constructed using BUILD (Line
1). By Lemma 7.1, we can always construct a time map τS for S satisfying τS(x) = 0
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for all x ∈ L(S) (Line 2). By definition, τS(y) > τS(x) must hold for every edge
yx ∈ E(S), and thus, we obtain ε > 0 in Line 3. Moreover, the recursive function
BuildGeneTree maintains the following invariant:

Claim 7.2.1. In every recursion step of the function BuildGeneTree, we have σ(L′) ⊆
L(S(uS)).

Proof of Claim: Since S (with root ρS) is a tree on M by construction and thus
L(S(ρS)) = M, the statement holds for the top-level recursion step on L and ρS.
Now assume that the statement holds for an arbitrary step on L′ and uS. If uS
is a leaf, there are no deeper recursion steps. Thus assume that uS is an inner
vertex. Recall that CS(uS) is a partition of L(S(uS)) (by construction), and that
R = R(G[L′], σ|L′ ,L(S(u)), CS(uS)) is an equivalence relation (by Lemma 7.9). This
together with the definition of R and σ(L′) ⊆ L(S(uS)), implies that there is a child
vS ∈ childS(uS) such that σ(K) ⊆ L(S(vS)) for all R-classes K. In particular, there-
fore, the statement is true for all recursive calls on K and vS in Line 21. Repeating
this argument top-down along the recursion hierarchy proves the claim. �

Note, that we are in the else-condition in Line 13 only if uS is not a leaf. Therefore
and as a consequence of Claim 7.2.1 and by similar arguments as in its proof, there
is a vertex v∗S ∈ childS(uS) such that σ(C) ∩ L(S(v∗S)) 6= ∅ for every connected com-
ponent C of G[L′] in Line 17, and a vertex vS ∈ childS(uS) such that σ(K) ⊆ L(S(vS))
for every R-class K in Line 20. Moreover, parS(uS) is always defined since we have
uS = ρS and thus parS(uS) = 0S in the top-level recursion step, and recursively call
the function BuildGeneTree on vertices vS such that vS ≺S uS.

In summary, all assignments are well-defined in every recursion step. It is easy
to verify that the algorithm terminates since, in each recursion step, we either have
that uS is a leaf, or we recurse on vertices vS that lie strictly below uS. We argue that
the resulting tree T′ is a not necessarily phylogenetic tree on L by observing that, in
each step, each x ∈ L′ is either attached to the tree as a leaf if uS is a leaf, or, since
R forms a partition of L′ by Lemma 7.9, passed down to a recursion step on K for
some R-class K. Nevertheless, T′ is turned into a phylogenetic tree T by suppression
of degree-two vertices in Line 25. Finally, µ(x) and τT(x) are assigned for all vertices
x ∈ L(T′) = L in Line 11, and for all newly created inner vertices in Lines 7 and 18.

Recall that τS is a valid time map satisfying τS(x) = 0 for all x ∈ L(S) by construc-
tion. Before we continue to show that S is a relaxed scenario, we first show that the
conditions for time maps and time consistency are satisfied for (T′, τT , S, τS, µ):

Claim 7.2.2. For all x, y ∈ V(T′) with x ≺T′ y, we have τT(x) < τT(y). Moreover, for all
x ∈ V(T′), the following statements are true:

(i) if µ(x) ∈ V(S), then τT(x) = τS(µ(x)), and

(ii) if µ(x) = ab ∈ E(S), then τS(b) < τT(x) < τS(a).

Proof of Claim: Recall that we always write an edge uv of a tree T such that v ≺T u.
For the first part of the statement, it suffices to show that τT(x) < τT(y) holds for
every edge yx ∈ E(T′), and thus to consider all vertices x 6= ρT′ in T′ and their
unique parent, which will be denoted by y in the following. Likewise, we have to
consider all vertices x ∈ V(T′) including the root to show the second statement.
The root ρT′ of T′ corresponds to the vertex uT created in Line 6 in the top-level
recursion step on L and ρS. Hence, we have µ(ρT′) = parS(ρS)ρS = 0SρS ∈ E(S)
and τT(ρT′) = τS(ρS) + ε (cf. Line 7). Therefore, we have to show (ii). Since ε > 0, it
holds that τS(ρS) < τT(ρT′). Moreover, τS(0S)− τS(ρS) ≥ 3ε holds by construction,
and thus τS(0S) − (τT(ρT′) − ε) ≥ 3ε and τS(0S) − τT(ρT′) ≥ 2ε, which together
with ε > 0 implies τT(ρT′) < τS(0S).
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We now consider the remaining vertices x ∈ V(T′) \ {ρT′}. Every such vertex x is
introduced into T′ in some recursion step on L′ and uS in one of the Lines 6, 10, 15

or 21. There are exactly the following three cases: (a) x ∈ L(T′) is a leaf attached to
some inner vertex uT in Line 10, (b) x = vT as created in Line 15, and (c) x = wT as
assigned in Line 21. Note that if x = uT as created in Line 6, then uT is either the
root of T′, or equals a vertex wT as assigned in Line 21 in the “parental” recursion
step.

In Case (a), we have that x ∈ L(T′) is a leaf and attached to some inner vertex
y = uT . Since uS must be a leaf in this case, and thus τS(uS) = 0, we have τT(y) =
0+ ε = ε and τT(x) = 0 (cf. Lines 7 and 11). Since ε > 0, this implies τT(x) < τT(y).
Moreover, we have µ(x) = σ(x) ∈ L(S) ⊂ V(S) (cf. Line 11), and thus have to show
Subcase (i). Since uS is a leaf and σ(L′) ⊆ L(S(uS)), we conclude σ(x) = uS. Thus
we obtain τT(x) = 0 = τS(uS) = τS(µ(x)).

In Case (b), we have x = vT as created in Line 15, and x is attached as a child to some
vertex y = uT created in the same recursion step. Thus, we have τT(y) = τS(uS) + ε
and τT(x) = τS(uS) − ε (cf. Lines 7 and 18). Therefore and since ε > 0, it holds
τT(x) < τT(y). Moreover, we have µ(x) = uSv∗S ∈ E(S) for some v∗S ∈ childS(uS).
Hence, we have to show Subcase (ii). By a similar calculation as before, ε > 0,
τS(uS)− τS(v∗S) ≥ 3ε and τT(x) = τS(uS)− ε imply τS(v∗S) < τT(x) < τS(uS).

In Case (c), x = wT as assigned in Line 21 is equal to uT as created in Line 6 in
some next-deeper recursion step with u′S ∈ childS(uS). Thus, we have τT(x) =
τS(u′S) + ε and µ(x) = uSu′S ∈ E(S) (cf. Line 7). Moreover, x is attached as a child
of some vertex y = vT as created in Line 15. Thus, we have τT(y) = τS(uS) − ε.
By construction and since uSu′S ∈ E(S), we have τS(uS)− τS(u′S) ≥ 3ε. Therefore,
(τT(y) + ε) − (τT(x) − ε) ≥ 3ε and thus τT(y) − τT(x) ≥ ε. This together with
ε > 0 implies τT(x) < τT(y). Moreover, since µ(x) = uSu′S ∈ E(S) for some
u′S ∈ childS(uS), we have to show Subcase (ii). By a similar calculation as before,
ε > 0, τS(uS)− τS(u′S) ≥ 3ε and τT(x) = τS(u′S) + ε imply τS(u′S) < τT(x) < τS(uS).
�

Claim 7.2.3. S = (T, S, σ, µ, τT , τS) is a relaxed scenario.

Proof of Claim: The tree T is obtained from T′ by first adding a planted root 0T (and
connecting it to the original root) and then suppressing all inner vertices except 0T
that have only a single child in Line 25. In particular, T is a planted phylogenetic
tree by construction. The root constraint (G0) µ(x) = 0S if and only if x = 0T also
holds by construction (cf. Line 26). Since we clearly have not contracted any outer
edges yx, i.e. with x ∈ L(T′), we conclude that L(T′) = L(T) = L. As argued before,
we have τT(x) = 0 and µ(x) = σ(x) whenever x ∈ L(T′) = L(T) (cf. Line 11). Since
all other vertices are either 0T or mapped by µ to some edge of S (cf. Lines 26, 7

and 18), the leaf constraint (G1) µ(x) = σ(x) is satisfied if and only if x ∈ L(T).

By construction, we have V(T) \ {0T} ⊆ V(T′). Moreover, suppression of vertices
clearly preserves the �T-relation between all vertices x, y ∈ V(T) \ {0T}. Together
with Claim 7.2.2, this implies τT(x) < τT(y) for all vertices x, y ∈ V(T) \ {0T}
with x ≺T y. For the single child ρT of 0T in T, we have τT(ρT) ≤ τS(ρS) + ε
where equality holds if the root of T′ was not suppressed and thus is equal to ρT .
Moreover, τT(0T) = τS(0S) and τS(0S)− τS(ρS) ≥ 3ε hold by construction. Taken
together the latter two arguments imply that τT(ρT) < τT(0T). In particular, we
obtain τT(x) < τT(y) for all vertices x, y ∈ V(T) with x ≺T y. Hence, τT is a time
map for T, which, moreover, satisfies τT(x) = 0 for all x ∈ L(T).

To show that S = (T, S, σ, µ, τT , τS) is a relaxed scenario, it remains to show that
µ is time-consistent with the time maps τT and τS. In case x ∈ L(T) ⊂ V(T), we
have µ(x) = σ(x) ∈ L(S) ⊂ V(S) and thus τT(x) = 0 = τS(σ(x)) = τS(µ(x)). For
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0T , we have τT(0T) = τS(0S) = τS(µ(0T)). The latter two arguments imply that
all vertices x ∈ L(T) ∪ {0T} satisfy (C1) in the Def. 7.2. The remaining vertices of
T are all vertices of T′ as well. In particular, they are all inner vertices that are
mapped to some edge of S (cf. Lines 7 and 18). The latter two arguments together
with Claim 7.2.2 imply that, for all vertices x ∈ V(T) \ (L(T) ∪ {0T}), we have
µ(x) = ab ∈ E(S) and τS(b) < τT(x) < τS(a). Therefore, every such vertex satisfies
(C2) in Def. 7.2. It follows that the time consistency constraint (G2) is also satisfied,
and thus S is a relaxed scenario. �

Claim 7.2.4. Every vertex v ∈ V0(T) was either created in Line 6 or in Line 15. In
particular, it holds for all x, y ∈ L(T) with lcaT(x, y) = v:

(1) If v was created in Line 6, then xy /∈ E(G) and xy /∈ E(G<(S)).

(2) If v was created in Line 15, then xy ∈ E(G) and xy ∈ E(G<(S)).

Furthermore, G is a cograph with cotree (T, t) where t(v) = 0 if v was created in Line 6 and
t(v) = 1, otherwise.

Proof of Claim: Since T is phylogenetic, every vertex v ∈ V0(T) is the last common
ancestor of two leaves x, y ∈ L := L(T). Let v ∈ V0(T) be arbitrary and choose
arbitrary leaves x, y ∈ L such that lcaT(x, y) = v. Since v ∈ V0(T), the leaves x and
y must be distinct.

Note that v /∈ L(T) ∪ {0T}, and thus, v is also an inner vertex in T′. Therefore, we
have exactly the two cases (1) v = uT is created in Line 6, and (2) v = vT is created
in Line 15. Similar as before, the case that v = wK is assigned in Line 21 is covered
by Case (a), since, in this case, wK is created in a deeper recursion step.

We consider the recursion step on L′ and uS, in which v was created. Clearly, it must
hold that x, y ∈ L′. Before we continue, set R := R(G[L′], σ|L′ ,L(S(u)), CS(uS)) as in
Line 13. Note, since S is a relaxed scenario, the graph (G<(S), σ) is well-defined.

For Statement (1), suppose that v = uT was created in Line 6. Hence, we have
the two cases (i) the vertex uS of S in this recursion step is a leaf, and (ii) uS is
an inner vertex. In Case (i), we have L(S(uS)) = {uS}. Together with Claim 7.2.1
and σ(x), σ(y) ∈ σ(L′), this implies σ(x) = σ(x) = uS. By assumption, (G, σ) is
properly colored. By Prop. 7.1 (G<(S), σ) must be properly colored as well. Hence,
we conclude that xy /∈ E(G) and xy /∈ E(G<(S)), respectively. In Case (ii), uS is
not a leaf. Therefore, lcaT(x, y) = v = uT is only possible if x and y lie in distinct
connected components of G[L′]. This immediately implies xy /∈ E(G). Moreover, we
have σ(x), σ(y) ∈ L(S(uS)) and thus lcaS(σ(x), σ(y)) �S uS. Since τS is a time map
for S, it follows that τS(lcaS(σ(x), σ(y))) ≤ τS(uS). Together with τT(uT) = τS(uS)+
ε (cf. Line 7) and ε > 0, this implies τS(lcaS(σ(x), σ(y))) < τT(v) = τT(lcaT(x, y)).
Hence, xy /∈ E(G<(S)).

For Statement (2), suppose that v = vT was created in Line 15. Therefore,
lcaT(x, y) = v = vT is only possible if x and y lie in the same connected com-
ponents of G[L′] but in distinct R-classes. Now, we can apply Lemma 7.10 to
conclude that xy ∈ E(G). Moreover, the fact that x and y lie in the same con-
nected component of G[L′] but in distinct R-classes implies that σ(x) and σ(y) lie
in distinct sets of CS(uS). Hence, there are distinct vS, v′S ∈ childS(u) such that
σ(x) �S vS and σ(y) �S v′S. In particular, lcaS(σ(x), σ(y)) = uS. In Line 18, we
assign τT(lcaT(x, y)) = τT(vT) = τS(uS)− ε. Together with ε > 0, the latter two ar-
guments imply τT(lcaT(x, y)) < τS(uS) = τS(lcaS(σ(x), σ(y))). Therefore, we have
xy ∈ E(G<(S)).

By the latter arguments, the cotree (T, t) as defined above is well-defined and, for
all v ∈ V0(T), we have t(v) = 1 if and only if xy ∈ E(G) for all x, y ∈ L with
lcaT(x, y) = v. Hence, (T, t) is a cotree for G. �
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Claim 7.2.5. The relaxed scenario S satisfies G<(S) = G.

Proof of Claim: Since L(T) = L, the two undirected graphs G<(S) and G have the
same vertex set. By Claim 7.2.4, we have, for all distinct x, y ∈ L, either xy /∈ E(G)
and xy /∈ E(G<(S)), or xy ∈ E(G) and xy ∈ E(G<(S)). �

Together, Claims 7.2.3 and 7.2.5 imply that Alg. 7 returns a relaxed scenario S =
(T, S, σ, µ, τT , τS) such that G<(S) = G.

To see that Alg. 7 runs in polynomial time, we first note that the function
BuildGeneTree() operates in polynomial time. This is clear for the setup and the
if part. The construction of R in the else part involves the computation of connected
components and the evaluation of Def. 7.10, both of which can be achieved in polyno-
mial time. This is also true for the comparisons of color classes required to identify
v∗S and vS. Since the sets K in recursive calls of BuildGeneTree() form a partition of
L′, and the vS are children of uS in S and the depth of the recursion is bounded by
O(|L(S)|), the total effort remains polynomial.

As a consequence of Lemma 7.6 and 7.8, and the fact that Alg. 7 returns a
relaxed scenario S for a given properly colored cograph with consistent triple
set S(G, σ), we obtain

Theorem 7.3. A graph (G, σ) is an LDT graph if and only if it is a properly colored
cograph and S(G, σ) is consistent.

Proof. By Lemma 7.6 and 7.8, if (G, σ) is an LDT graph, then it is a properly colored
cograph and S(G, σ) is consistent. Now suppose that (G, σ) is a properly colored
cograph and S(G, σ) is consistent. Then, by Thm. 7.2, Alg. 7 outputs a relaxed
scenario S = (T, S, σ, µ, τT , τS) such that G<(S) = G. By definition, this in particular
implies that (G, σ) is an LDT graph.

Thm. 7.3 has two consequences that are of immediate interest:

Corollary 7.2. LDT graphs can be recognized in polynomial time.

Proof. Cographs can be recognized in linear time [58], the proper coloring can be
verified in linear time, the triple set S(G, σ) contains not more than |V(G)| · |E(G)|
triples and can be constructed in O(|V(G)| · |E(G)|) time, and consistency of S(G, σ)
can be checked in O(min(|S| log2 |V(G)|, |S|+ |V(G)|2 ln |V(G)|)) time [158].

Corollary 7.3. The property of being an LDT graph is hereditary, that is, if (G, σ)

is an LDT graph then each of its vertex induced subgraphs is an LDT graph.

Proof. Let (G = (V, E), σ) be an LDT graph. It suffices to show that (G− x, σ|V\{x})
is an LDT graph, where G − x is obtained from G by removing x ∈ V and all its
incident edges. By Prop. 2.6, G− x is a cograph that clearly remains properly colored.
Moreover, every induced path on three vertices in G− x is also an induced path on
three vertices in G. This implies that if xy|z ∈ S′ = S(G − x, σ|V\{x}), then xy|z ∈
S(G, σ). Hence, S′ ⊆ S(G, σ). By Thm. 7.3, S(G, σ) is consistent. Hence, any tree
that displays all triples in S(G, σ), in particular, displays all triples in S′. Therefore,
S′ is consistent. In summary, (G− x, σ|V\{x}) is a properly colored cograph and S′

is consistent. By Thm. 7.3 it is an LDT graph.

The relaxed scenarios S explaining an LDT graph (G, σ) are far from be-
ing unique. In fact, we can choose from a large set of trees (S, τS) that is
determined only by the triple set S(G, σ):
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Fig. 62. A relaxed scenario S (A) with gene tree T (B) and its associated graph
(G<(S), σ) (C). The discriminating cotree TG< (S) (D) is not displayed by T.

Corollary 7.4. If (G = (L, E), σ) is an LDT graph with coloring σ : L → M,
then for all planted trees S on M that display S(G, σ) there is a relaxed scenario
S = (T, S, σ, µ, τT, τS) that contains σ and S and that explains (G, σ).

Proof. If (G, σ) is an LDT graph, then the species tree S assigned in Line 1 in Alg. 7

is an arbitrary tree on M displaying S(G, σ).

As shown by the next result, for every LDT graph (G, σ), there is a relaxed
scenario S = (T, S, σ, µ, τT, τS) explaining (G, σ) such that T displays the dis-
criminating cotree TG of G.

Corollary 7.5. If (G, σ) is an LDT graph, then there exists a relaxed scenario S =

(T, S, σ, µ, τT, τS) explaining (G, σ) such that T displays the discriminating cotree
TG of G.

Proof. Suppose that (G, σ) is an LDT graph. By Thm. 7.3, (G, σ) must be a properly
colored cograph and S(G, σ) is comparable. Hence, Thm. 7.2 implies that Alg. 7

constructs a relaxed scenario S = (T, S, σ, µ, τT , τS) explaining (G, σ). In particular,
the tree T together with labeling t as specified in Claim 7.2.4 is a cotree for G. Since
the unique discriminating cotree (TG, t̂) of G is obtained from any other cotree by
contraction of edges in T, the tree T must display TG.

Although, Cor. 7.5 implies that there is always a relaxed scenario S where
the tree T displays the discriminating cotree TG of G = G(S), this is not true
for all relaxed scenarios S with G = G(S). Fig. 62 shows a relaxed scenario
S′ = (T′, S′, σ, µ′, τ′T, τ′S) with G = G(S′) for which T′ does not display TG.

Cor. 7.5 enables us to relate connectedness of LDT graphs to properties of
the relaxed scenarios by which it can be explained.

Lemma 7.11. An LDT graph (G = (L, E), σ) with |L| > 1 is connected if and only
if for every relaxed scenario S = (T, S, σ, µ, τT, τS) that explains (G, σ), we have
τT(ρT) < τS(lcaS(σ(L))).

Proof. By contraposition, suppose first that there is a relaxed scenario S =
(T, S, σ, µ, τT , τS) that explains (G, σ) such that τT(ρT) ≥ τS(lcaS(σ(L))). Since
|L(T)| = |L| > 1, the root ρT is not a leaf. To show that G is disconnected we consider
two distinct children v, w ∈ childT(ρT) of the root and leaves x ∈ L(T(v)) and y ∈
L(T(w)) and verify that x and y cannot be adjacent in G. If σ(x) = σ(y), then xy /∈ E
since (G, σ) is properly colored (cf. Lemma 7.8). Hence, suppose that σ(x) 6= σ(y).
By construction, lcaT(x, y) = ρT and thus, by assumption, τT(lcaT(x, y)) = τT(ρT) ≥
τS(lcaS(σ(L))). Now lcaS(σ(L)) �S lcaS(σ(x), σ(y)) implies that τS(lcaS(σ(L))) ≥
τS(lcaS(σ(x), σ(y))) and thus, τT(lcaT(x, y)) ≥ τS(lcaS(σ(x), σ(y))). Hence, xy /∈ E.
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Consequently, for all distinct children v, w ∈ childT(ρT), none of the vertices in
L(T(v)) are adjacent to any of the vertices in L(T(w)) and thus, G is disconnected.

Conversely, suppose that G is disconnected. We consider Alg. 7 with input
(G, σ). By Thms. 7.2 and 7.3, the algorithm constructs a relaxed scenario S =
(T, S, σ, µ, τT , τS) that explains (G, σ). Consider the top-level recursion step on L
and ρS. Since G is disconnected, the vertex uT created in Line 6 of this step equals
the root ρT of the final tree T. To see this, assume first that ρS is a leaf. Then, we at-
tach the |L| > 1 elements in L as leaves to uT (cf. Line 10). Now assume that ρS is not
a leaf. Since G[L] = G has at least two components, we attach at least two vertices vT
created in Line 15 to uT . Hence uT is not suppressed in Line 25 and thus ρT = uT . By
construction, therefore, we have τT(ρT) = τT(uT) = τS(uS)+ ε = τS(ρS)+ ε for some
ε > 0. From σ(ρS) �S lcaS(σ(L)) and the definition of time maps, we obtain τS(ρS) ≥
τS(lcaS(σ(L))). Therefore, we have τT(ρT) ≥ τS(lcaS(σ(L))) + ε > τS(lcaS(σ(L))),
which completes the proof. Therefore, we have shown so-far that if all relaxed sce-
narios S = (T, S, σ, µ, τT , τS) that explain (G, σ) satisfy τT(ρT) ≤ τS(lcaS(σ(L))), then
(G, σ) must be connected. However, τT(ρT) = τS(lcaS(σ(L))) cannot occur, since we
can reuse the same arguments as in the beginning of this proof to show that, in this
case, G is disconnected.

7.5 least resolved trees for ldt graphs

As we have seen e.g. in Cor. 7.4, there are in general many trees S and T
forming relaxed scenarios S that explain a given LDT graph (G, σ). This begs
the question to what extent these trees are determined by “representatives”.
For S, we have seen that S always displays S(G, σ), suggesting to consider
the role of S = Aho(S(G, σ), M), where M is the codomain of σ. This tree
is least resolved in the sense that there is no relaxed scenario explaining the
LDT graph (G, σ) with a tree S′ that is obtained from S by edge-contractions.
The latter is due to the fact that any edge contraction in Aho(S(G, σ), M)

yields a tree S′ that does not display S(G, σ) any more [159]. By Prop. 7.6,
none of the relaxed scenarios containing S′ explain the LDT graph (G, σ).

Definition 7.11. Let S = (T, S, σ, µ, τT, τS) be a relaxed scenario explaining the
LDT graph (G, σ). The planted tree T is least resolved for (G, σ) if no relaxed
scenario (T′, S′, σ′, µ′, τ′T, τ′S) with T′ < T explains (G, σ).

In other words, T is least resolved for (G, σ) if no relaxed scenario with a
gene tree T′ obtained from T by a series of edge contractions explains (G, σ).

The examples in Fig. 63 show that LDT graphs are in general not accom-
panied by unique least resolved trees. In the top row, relaxed scenarios with
different least resolved gene trees T and the same least resolved species tree
S explain the LDT graph (G, σ). In the example below, two distinct least
resolved species trees exist for a given least-resolved gene tree.

The example in Fig. 64 shows, furthermore, that the unique discriminating
cotree TG of an LDT graph (G, σ) is not always “sufficiently resolved”. To
see this, assume that the graph (G, σ) in the example can be explained by
a relaxed scenario S = (T, S, σ, µ, τT, τS) such that T = TG. First consider
the connected component consisting of a, b, c, d. Since lcaT(a, b) �T lcaT(c, d),
ab ∈ E(G) and cd /∈ E(G), we have τS(lcaS(σ(a), σ(b))) > τT(lcaT(a, b)) >

τT(lcaT(c, d)) ≥ τS(lcaS(σ(c), σ(d))). By similar arguments, the second con-
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Fig. 63. Examples of LDT graphs (G, σ) with multiple least resolved trees. Top row:
No unique least resolved gene tree. For both trees, contraction of the single inner
edge leads to a loss of the gene triple ab|c ∈ T(G) (cf. Lemma 7.7). The species tree
is also least resolved since contraction of its single inner edge leads to loss of the
species triples σ(a)σ(c)|σ(d), σ(b)σ(c)|σ(d) ∈ S(G, σ) (cf. Lemma 7.6). Bottom row:
No unique least resolved species tree. Both trees display the two necessary triples
AB|E, CD|E ∈ S(G, σ), and are again least resolved w.r.t. these triples. The gene
trees are also least resolved since contraction of either of its two inner edges leads
e.g. to loss of one of the triples ae|c, ce′|a ∈ T(G).

nected component implies τS(lcaS(σ(c), σ(d))) > τS(lcaS(σ(a), σ(b))); a con-
tradiction. These examples emphasize that LDT graphs constrain the relaxed
scenarios, but are far from determining them.

7.6 ldt graph editing

Putative LDT graphs (G, σ) can be estimated directly from sequence
(dis)similarity data. The most direct approach was introduced by Novichkov
et al. [229], where, for (reciprocally) most similar genes x and y from two
distinct species σ(x) = A and σ(x) = B, dissimilarities δ(x, y) between genes
and dissimilarities ∆(A, B) of the underlying species are compared under the
assumption of a (gene family specific) clock-rate r, i.e., the expectation that
orthologous gene pairs satisfy δ(x, y) ≈ r∆(A, B). In this setting, xy ∈ E(G)

if δ(x, y) < r∆(A, B) at some level of statistical significance. The rate assump-
tion can be relaxed to consider rank-order statistics. For fixed x, differences
in the orders of δ(x, y) and ∆(σ(x), σ(y)) assessed by rank-order correlation
measures have been used to identify x as HGT candidate e.g. [55, 186]. An
interesting variation on the theme is described by Sevillya et al. [274], who
use relative synteny rather than sequence similarity for the same purpose. A
more detailed account on estimating (G, σ) will be given elsewhere.

Empirical estimates of LDT graphs from sequence data are expected to
suffer from noise and hence to violate the conditions of Thm. 7.3. It is of
interest, therefore, to consider the problem of correcting an empirical estimate
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Fig. 64. Example of an LDT graph (G, σ) in Panel B that is explained by the relaxed
scenario shown in Panel A. Here, (G, σ) cannot be explained by a relaxed scenario
S = (T, S, σ, µ, τT , τS) such that T is the unique discriminating cotree (shown in panel
C) for the cograph G, see Panel D and the text for further explanations.

(G, σ) to the closest LDT graph. We therefore briefly investigate the usual
three edge modification problems for graphs: completion only considers the
insertion of edges, for deletion edges may only be removed, while solutions to
the editing problem allow both insertions and deletions, see e.g. [39].

Problem 7.1 (LDT-Graph-Modification (LDT-M)).
Input: A colored graph (G = (V, E), σ) and an integer k.

Question: Is there a subset F ⊆ (V
2) such that |F| ≤ k and (G� F, σ)

is an LDT graph where � ∈ {4,+,−}?
We write LDT-E, LDT-C, LDT-D for the editing, completion, and deletion

version of LDT-M. By virtue of Thm. 7.3, the LDT-M is closely related to
the problem of finding a consistent subset R ⊆ S(GR, σ) with maximum
cardinality. The corresponding decision problem, MaxRTC, is known to be
NP-complete [157, Thm. 1].

NP-completeness of LDT-M be shown by reduction from

Problem 7.2 (Maximum Rooted Triple Consistency (MaxRTC)).
Input: A set of (rooted) triples R and an integer k.

Question: Is there a consistent subset R∗ ⊆ R such that |R∗| ≥ |R| − k?

Theorem 7.4. [157, Thm. 1] MaxRTC is NP-complete.

Theorem 7.5. LDT-M is NP-complete.

Proof. Since LDT graphs can be recognized in polynomial time (cf. Cor. 7.2), a given
solution can be verified in polynomial time. Thus, LDT-M is contained in NP.

We now show NP-hardness by reduction from MaxRTC. Let (R, k) be an instance
of this problem, i.e., R is a set of triples and k is a non-negative integer. We construct
a colored graph (GR = (L, E), σ) as follows: For each triple ri = xy|z ∈ R, we
add three vertices xi, yi, zi, two edges xizi and yizi, and put σ(xi) = x, σ(yi) = y and
σ(zi) = z. Hence, (GR, σ) is properly colored and the disjoint union of paths on three
vertices P3. In particular, therefore, (GR, σ) does not contain an induced P4, and is
therefore a properly colored cograph (cf. Prop. 2.6). By definition and construction,
we have R = S(GR, σ).

First assume that MaxRTC with input (R, k) has a yes-answer. In this case let
R∗ ⊆ R be a consistent subset such that |R∗| ≥ |R| − k. For each of the triples
ri = xy|z ∈ R \ R∗, we add the edge xiyi to GR or remove the edge xizi from GR

for LDT-E/C and LDT-D, respectively, to obtain the graph G∗. In both cases, we

216



eliminate the corresponding triple xy|z from S(G∗, σ). By construction, therefore,
we observe that S(G∗, σ) = R∗ is consistent. Moreover, since we have never added
edges between distinct P3s, all connected components of G∗ are of size at most three.
Therefore, G∗ does not contain an induced P4, and thus remains a cograph. By
Thm. 7.3, the latter arguments imply that (G∗, σ) is an LDT graph. Since (G∗, σ) was
obtained from (GR, σ) by using |R \ R∗| ≤ k edge modifications, we conclude that
LDT-M with input (GR, σ, k) has a yes-answer.

For the converse, suppose that LDT-M with input (GR, σ, k) has a yes-answer with
a solution (G∗ := G � F, σ), i.e., (G∗, σ) is an LDT graph and |F| ≤ k. By Thm. 7.3,
S(G∗, σ) is consistent. Let R∗ be the subset of R = S(GR, σ) containing all triples
of R for which the corresponding induced P3 in GR remains unmodified and thus,
is still an induced P3 in G∗. By construction, we have R∗ ⊆ S(G∗, σ). Hence, R∗ is
consistent. Moreover, since |F| ≤ k, at most k of the vertex-disjoint P3s have been
modified. Therefore, we conclude that |R∗| ≥ |R| − k.

In summary, LDT-M is NP-hard.

We note that the NP-hardness of the LDT-M problem can also be estab-
lished by a reduction from Cograph Editing/Completion/Deletion, all of
which are NP-complete as well [85, 197]. Consider an instance (G, k) of one
of the cograph modification problems and color all vertices in G differently
to obtain an instance (G, σ, k) of the corresponding LDT-M problem. NP-
hardness follows directly from the observation that G� F is a cograph if and
only if (G � F, σ) is an LDT graph for any F ⊆ (V(G)

2 ) and � ∈ {4,+,−}.
To see this, note that (G � F, σ) is trivially properly colored, and consider a
cotree (T, t) for a cograph G� F. We can replace every leaf l ∈ L(T) = V(G)

by its color σ(l). The resulting cotree (T′, t) is well-defined since every color
appears exactly once. Now consider a triple σ(a)σ(b)|σ(c) ∈ S(G� F, σ), i.e.,
a− c− b is an induced P3 in G � F. Full enumeration of all possible triples
on {a, b, c} and the possibilities for the t-labelings of their two inner vertices
shows that T must display the triple ab|c. By construction, therefore, T′ dis-
plays the triple σ(a)σ(b)|σ(c). Since this is true for any triple in S(G� F, σ),
the latter set must be consistent. By Thm. 7.3, (G � F, σ) is an LDT graph.
Conversely, G � F is a cograph for every LDT graph (G � F, σ). Hence, the
“hardness” of the LDT-M problem lies in both conditions of the LDT graph
characterization: the cograph property and consistency of the species triples.

7.7 summary

In this chapter, we have introduced later-divergence-time (LDT) graphs as
a model capturing the subset of horizontal transfer detectable through the
pairs of genes that have diverged later than their respective species. Within
the setting of relaxed scenarios, LDT graphs (G, σ) are exactly the properly
colored cographs with a consistent triple set S(G, σ) (Thm. 7.3). A scenario
that explains a given LDT graph can be constructed in polynomial time using
Alg. 7. We have seen that LDT graphs are not associated with unique least
resolved gene or species trees as part of their explaining scenarios (Fig. 63).
Moreover, all three modification problems for LDT graphs are NP-complete
(Thm. 7.5).
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8
F R O M L D T G R A P H S T O X E N O L O G Y

Later-divergence-time graphs and their mathematical properties in
the framework of relaxed scenarios have been studied in the previ-
ous chapter. They contain the information about which pairs of genes

diverged more recently than the respective species (or genomes) in which
they reside. However, for practical applications, it would be of more valuable
interest to infer whether the path connecting two genes in the gene tree con-
tains a horizontal gene transfer, i.e., whether they are xenologs. Therefore,
we now turn to the following question: How much information about HGT
events and the xenology relation is contained in LDT graphs?

To this end, Sec. 8.1 formally defines HGT events and “rs-Fitch graphs”, i.e.,
vertex-colored graph representations of xenology relations that are feasible in
the relaxed scenario framework. In Sec. 8.2, we show that every edge in a LDT
graph corresponds to a pair of xenologs (Thm. 8.1), and characterize those
LDT graphs that already capture all HGT events. In addition, we provide
a characterization of rs-Fitch graphs in terms of their coloring in Sec. 8.3.
These properties can be verified in polynomial time. In order to provide an
avenue for understanding rs-Fitch graphs and their explaining scenarios, we
study least resolved trees of Fitch graphs (being a superclass with a somewhat
simpler structure) in Sec. 8.4. Since LDT graphs do not usually capture all
HGT events, we discuss in Sec. 8.5 several ways to obtain a plausible set
of HGT candidates from LDT graphs. In Sec. 8.6, we finally address the
question above with the help of simulations of evolutionary scenarios with a
wide range of duplication, loss, and HGT event rates. Like the previous one,
this chapter is also based on [265].

8.1 hgt-labeled trees and rs-fitch graphs

As alluded to in the last chapter, LDT graphs are intimately related with
horizontal gene transfer. To formalize this connection, we first define transfer
edges. These will then be used to encode Walter Fitch’s concept of xenologous
gene pairs [61, 91] as a binary relation, and thus, the edge set of a graph.

Definition 8.1. Let S = (T, S, σ, µ, τT, τS) be a relaxed scenario. An edge uv in T
is a transfer edge if µ(u) and µ(v) are incomparable in S. The HGT-labeling of
T in S is the edge labeling λS : E(T) → {0, 1} with λ(e) = 1 if and only if e is a
transfer edge.

The vertex u in T thus corresponds to an HGT event, with v denoting the
subsequent event, which now takes place in the “recipient” branch of the
species tree. Note that λS is completely determined by S. In general, for a
given a gene tree T, HGT events correspond to a labeling or coloring of the
edges of T.
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Definition 8.2 (Fitch graph). Let (T, λ) be a tree T together with a map
λ : E(T) → {0, 1}. The Fitch graph z(T, λ) = (V, E) has vertex set V := L(T)
and edge set

E := {xy | x, y ∈ L, the unique path connecting x and y in T

contains an edge e with λ(e) = 1.}

By definition, Fitch graphs of 0/1-edge-labeled trees are loopless and undi-
rected. We call edges e of (T, λ) with label λ(e) = 1 also 1-edges and, other-
wise, 0-edges.

Remark 8.1. Fitch graphs as defined here have been termed undirected Fitch graphs
[135], in contrast to the notion of the directed Fitch graphs of 0/1-edge-labeled trees
studied e.g. in [101, 131].

Proposition 8.1. [135, 344] The following statements are equivalent.

1. G is the Fitch graph of a 0/1-edge-labeled tree.

2. G is a complete multipartite graph.

3. G does not contain a K2 + K1 as an induced subgraph.

A natural connection between LDT graphs and complete multipartite
graphs is suggested by the definition of triple sets T(G), since each forbidden
induced subgraph K2 + K1 of a complete multipartite graphs corresponds to
a triple in an LDT graph. More precisely, we have:

Lemma 8.1. (G, σ) is a properly colored complete multipartite if and only if it is
properly colored and T(G) = ∅.

Proof. The equivalence between the statements can be seen by observing that G is a
complete multipartite graph if and only if G does not contain an induced K2 + K1 (cf.
Prop. 8.1). By definition of T(G), this is the case if and only if T(G) = ∅.

Definition 8.3 (rs-Fitch graph). Let S = (T, S, σ, µ, τT, τS) be a relaxed scenario
with HGT-labeling λS. We call the vertex colored graph (z(S), σ) := (z(T, λS), σ)

the Fitch graph of the relaxed scenario S.
A vertex colored graph (G, σ) is a relaxed scenario Fitch graph (rs-Fitch graph)
if there is a relaxed scenario S = (T, S, σ, µ, τT, τS) such that G = z(S).

Fig. 65 shows that rs-Fitch graphs are not necessarily properly colored. A
subtle difficulty arises from the fact that Fitch graphs of 0/1-edge-labeled
trees are defined without a reference to the vertex coloring σ, while the rs-
Fitch graph is vertex-colored. This together with Prop. 8.1 implies

Observation 8.1. If (G, σ) is an rs-Fitch graph, then G is a complete multipartite
graph.
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Fig. 65. (A) The relaxed scenario S = (T, S, σ, µ, τT , τS) as already shown in Fig. 59.
(B) A 0/1-edge-labeled tree (T, λ) satisfying λ = λS. (C) The corresponding Fitch
graph z(T, λ) drawn in a layout that emphasizes the property that z(T, λ) is a
complete multipartite graph. Independent sets are circled. (D) An alternative layout
as in Fig. 59 (top row) that emphasizes the relationship G<(S) ⊆ z(S) = z(T, λ) (cf.
Thm. 8.1 below). Edges that are not present in G<(S) are drawn as dashed lines.

The “converse” of Obs. 8.1 is not true in general, as we shall see in Thm. 8.3
below. If, however, the coloring σ can be chosen arbitrarily, then every com-
plete multipartite graph G can be turned into an rs-Fitch graph (G, σ) as
shown in Prop. 8.2.

Proposition 8.2. If G is a complete multipartite graph, then there exists a relaxed
scenario S = (T, S, σ, µ, τT, τS) such that (G, σ) is an rs-Fitch graph.

Proof. Let G be a complete multipartite graph and set L := V(G) and R := E(G). If
R = ∅, then the relaxed scenario S constructed in the proof of Lemma 7.4 shows
that E(G) = E(z(S)) = ∅. Hence, we assume that R 6= ∅ and explicitly construct a
relaxed scenario S = (T, S, σ, µ, τT , τS) such that (G, σ) is an rs-Fitch graph.

We start by specifying the coloring σ : L → M. Since G is a complete multipartite
graph it is determined by its independent sets I1, . . . , Ik, which form a partition of
L. We set M := {1, 2, . . . , k} and color every x ∈ Ij with color σ(x) = j, 1 ≤ j ≤ k.
By construction, (G, σ) is properly colored, and σ(x) = σ(y) whenever xy /∈ R, i.e.,
whenever x and y lie in the same independent set. Therefore, we have S(G, σ) = ∅.
Let S be the planted star tree with leaf set L(S) = {1, . . . , k} = M and childS(ρS) = M.
Since R 6= ∅, we have k ≥ 2, and thus, ρS has at least two children and is, therefore,
phylogenetic. We choose the time map τS by putting τS(0S) = 2, τS(ρS) = 1 and
τS(x) = 0 for all x ∈ L(S).

Finally, we construct the planted phylogenetic tree T with planted root 0T and root
ρT as follows: Vertex ρT has k children u1, . . . , uk. If Ij = {xj} consists of a single
element, then we put uj := xj as a leaf or T, and otherwise, vertex uj has exactly |Ij|
children where childT(uj) = Ij. Now label, for all i ∈ {2, . . . , k}, the edge ρTui with
“1”, and all other edges with “0”. Since k ≥ 2, the tree T is also phylogenetic by
construction.

We specify the time map τT and the reconciliation map µ by defining, for every
v ∈ V(T),

τT(v) :=





2 = τS(0S)

0

1/2

1/4

µ(v) :=





0S if v = 0T ,

σ(v) if v ∈ L(T),

ρS1 if v = ρT , and

ρSi if v = ui 6∈ L(T), 1 ≤ i ≤ k.

With the help of Fig. 66, it is now easy to verify that (i) τT is a time map for T,
(ii) the reconciliation map µ is time-consistent, and (iii) λS = λ. In summary, S =
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Fig. 66. Construction in the proof of Prop. 8.2.

(T, S, σ, µ, τT , τS) is a relaxed scenario, and (G, σ) = (z(S), σ) is an rs-Fitch graph.

Although every complete multipartite graph can be colored in such a way
that it becomes an rs-Fitch graph (cf. Prop. 8.2), there are colored, complete
multipartite graphs (G, σ) that are not rs-Fitch graphs, i.e., that do not derive
from a relaxed scenario (cf. Thm. 8.3). We summarize this discussion in the
following

Observation 8.2. There are (planted) 0/1-edge labeled trees (T, λ) and colorings
σ : L(T) → M such that there is no relaxed scenario S = (T, S, σ, µ, τT, τS) with
λ = λS.

A subtle – but important – observation is that trees (T, λ) with coloring σ

for which Obs. 8.2 applies may still encode an rs-Fitch graph (z(T, λ), σ), see
Example 8.1 and Fig. 67. The latter is due to the fact that z(T, λ) = z(T′, λ′)
may be possible for a different tree (T′, λ′) for which there is a relaxed sce-
nario S′ = (T′, S, σ, µ, τT, τS) with λ′ = λS. In this case, (z(T, λ), σ) =

(z(S′), σ) is an rs-Fitch graph.

Example 8.1. Consider the planted edge-labeled tree (T, λ) shown in Fig. 67 with
leaf set L = {a, b, b′, c, d}, together with a coloring σ where σ(b) = σ(b′) and
σ(a), σ(b), σ(c), σ(d) are pairwise distinct.
Assume, for contradiction, that there is a relaxed scenario S = (T, S, σ, µ, τT, τS)

with (T, λ) = (T, λS). Hence, µ(v) and µ(b) = σ(b) as well as µ(u) and µ(b′) =
σ(b) must be comparable in S. Therefore, µ(u) and µ(v) must both be comparable
to σ(b) and thus, they are located on the path from ρS to σ(b). But this implies
that µ(u) and µ(v) are comparable in S; a contradiction, since then λS(u, v) = 0 6=
λ(u, v) = 1.

8.2 ldt graphs and rs-fitch graphs

We proceed to investigate to what extent an LDT graph provides information
about an rs-Fitch graph. As we shall see in Thm. 8.2, there is indeed a close
connection between rs-Fitch graphs and LDT graphs. We start with a useful
relation between the edges of rs-Fitch graphs and the reconciliation maps µ

of their relaxed scenarios.
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Fig. 67. 0/1-edge-labeled tree (T, λ) for which no relaxed scenario exists such that
(T, λ) = (T, λS) (see Example 8.1). Red edges indicates 1-labeled edges. Neverthe-
less, for z := z(T, λ), there is an alternative tree (T′, λ′) for which a relaxed scenario
S = (T′, S, σ, µ, τT , τS) exists (right) such that z = z(T′, λ′) = z(S).

Lemma 8.2. Let z(S) be an rs-Fitch graph for some relaxed scenario S. Then,
ab /∈ E(z(S)) implies that lcaS(σ(a), σ(b)) �S µ(lcaT(a, b)).

Proof. Assume first that ab /∈ E(z(S)) and denote by Pxy the unique path in T that
connects the two vertices x and y. Clearly, u := lcaT(a, b) is contained in Pab, and this
path Pab can be subdivided into the two paths Pu,a and Pu,b that have only vertex u
in common. Since ab /∈ E(z(S)), none of the edges vw along the path Pab in T is a
transfer edge, and thus, the images µ(v) and µ(w) are comparable in S. This implies
that the images of any two vertices along the path Pu,a as well as the images of any
two vertices along Pu,b are comparable. In particular, therefore, µ(u) is comparable
with both µ(a) = σ(a) =: A and µ(b) = σ(b) =: B, where we may have A = B.
Together with the fact that A and B are leaves in S, this implies that µ(u) is an
ancestor of A and B. Since lcaS(A, B) is the “last” vertex that is an ancestor of both
A and B, we have lcaS(A, B) �S µ(u).

The next result shows that a subset of transfer edges can be inferred imme-
diately from LDT graphs:

Theorem 8.1. If (G, σ) is an LDT graph, then G ⊆ z(S) for all relaxed scenarios S
that explain (G, σ).

Proof. Let S = (T, S, σ, µ, τT , τS) be a relaxed scenario that explains (G, σ), i.e., G =
G<(S). By definition, V(G) = V(z(S)) = L(T). Hence it remains to show that
E(G) ⊆ E(z(S)). To this end, consider ab ∈ E(G) and assume, for contradiction,
that ab /∈ E(z(S)). Let A := σ(a) and B := σ(b). By Lemma 8.2, lcaS(A, B) �S
µ(lcaT(a, b)). But then, by Def. 7.1 and 7.2, τS(lcaS(A, B)) ≤ τS(lcaT(a, b)), implying
ab /∈ E(G), a contradiction.

Since we only have that xy is an edge in z(S) if the path connecting x and
y in the tree T of S contains a transfer edge, Thm. 8.1 immediately implies

Corollary 8.1. For every relaxed scenario S = (T, S, σ, µ, τT, τS) without transfer
edges, it holds that E(G<(S)) = ∅.

Thm. 8.1 provides the formal justification for indirect phylogenetic ap-
proaches to HGT inference that are based on the work of Lawrence and
Hartl [186], Clarke et al. [55], and Novichkov et al. [229] by showing that
xy ∈ E(G<(S)) can be explained only by HGT, irrespective of how complex
the true biological scenario might have been. However, it does not cover
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Fig. 68. Two relaxed scenarios S1 and S2 with the same rs-Fitch graph z = z(S1) =
z(S2) (right) and different LDT graphs G<(S1) 6= z and G<(S2) = z.

all HGT events. Fig. 68 shows that there are relaxed scenarios S for which
G<(S) 6= z(S) even though z(S) is properly colored. Moreover, it is possible
that an rs-Fitch graph (G, σ) contains edges xy ∈ E(G) with σ(x) = σ(y). In
particular, therefore, an rs-Fitch graph is not always an LDT graph.

It is natural, therefore, to ask whether for every properly colored Fitch
graph there is a relaxed scenario S such that G<(S) = z(S). An affirmative
answer is provided by

Theorem 8.2. The following statements are equivalent.

1. (G, σ) is a properly colored complete multipartite graph.

2. There is a relaxed scenario S = (T, S, σ, µ, τT, τS) with coloring σ such that
G = G<(S) = z(S).

3. (G, σ) is complete multipartite and an LDT graph.

4. (G, σ) is properly colored and an rs-Fitch graph.

In particular, for every properly colored complete multipartite graph (G, σ) the triple
set S(G, σ) is consistent.

Proof. (1) implies (2). We assume that (G, σ) is a properly colored multipartite graph
and set L := V(G) and E := E(G). If E = ∅, then the relaxed scenario S con-
structed in the proof of Lemma 7.4 satisfies G = G<(S) = z(S), i.e., the graphs are
edgeless. Hence, we assume that E 6= ∅ and explicitly construct a relaxed scenario
S = (T, S, σ, µ, τT , τS) such that G = G<(S) = z(S).

The graph (G, σ) is properly colored and complete multipartite by assumption.
Let I1, . . . , Ik denote the independent sets of G. Since E 6= ∅, we have k > 1. Since
all x ∈ Ii are adjacent to all y ∈ Ij, i 6= j and (G, σ) is properly colored, it must hold

that σ(Ii) ∩ σ(Ij) = ∅. For a fixed i let v1
i , . . . v|Ii |

i denote the elements in Ii.
We first start with the construction of the species tree S. First we add a planted

root 0S with child ρS. Vertex ρS has children w1, . . . , wk where each wj corresponds
to one Ij. Note, σ : L → M may not be surjective, in which case we would add one
additional child x to ρS for each color x ∈ M \ σ(L).

If |σ(Ij)| = 1, then we identify the single color x ∈ σ(Ij) with wj. Otherwise, i.e.,
if |σ(Ij)| > 1, vertex wj has as children the set childS(wj) = σ(Ij) which are leaves
in S. See Fig. 69 for an illustrative example. Now we can choose the time map τS
for S such τS(0S) = 3, τS(ρS) = 2, τS(x) = 0 for all x ∈ L(S) and τS(x) = 1 for all
x ∈ V0(S) \ {ρS}.
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Fig. 69. Construction of the relaxed scenario S in the proof of Thm. 8.2.

We now construct T as follows. The tree T has planted root 0T with child ρT .
Vertex ρT has k children u1, . . . , uk where each uj corresponds to one Ij. Vertex uj is
a leaf if |Ij| = 1, and, otherwise, has exactly |Ij| children that are uniquely identified
with the elements in Ij.

We now define the time map τT and reconciliation map µ for v ∈ V(T):

τT(v) :=





3 = τS(0S)

0

1.5

1.25

µ(v) :=





0S if v = 0T ,

σ(v) if v ∈ L(T),

ρSw1 if v = ρT , and

ρSwi if v = ui 6∈ L(T), 1 ≤ i ≤ k.

With the help of Fig. 69, it is now easy to verify that (i) τT is a time map for T, and
that (ii) the reconciliation map µ is time-consistent. In summary, the constructed
S = (T, S, σ, µ, τT , τS) is a relaxed scenario.

We continue with showing that E = E(G<(S)) = E(z(S)). To this end, let a, b ∈ L
be two vertices. Note, ab ∈ E if and only if a ∈ Ii and b ∈ Ij for distinct i, j ∈ [k] :=
{1, 2, . . . , k}.

First assume that ab ∈ E and thus, a ∈ Ii and b ∈ Ij for distinct i, j ∈ [k]. By
construction, a �T ui 6= uj �T b with lcaT(ui, uj) = ρT . In particular, we have
parT(ui) = parT(uj) = ρT and the path from a to b contains the two edges ρTui
and ρTuj. By construction, we have µ(ρT) = ρSw1) and for all 1 ≤ l ≤ k, µ(ul) =
σ(ul) = wl if ul is a leaf, and µ(ul) = ρSwl otherwise. These two arguments imply
that µ(ρT) and µ(ul) are comparable if and only if ul = u1. Now, since ui 6= uj, they
cannot both be equal to u1 and thus, at least one of the edges ρTui and ρTuj is a
transfer edge. Hence, ab ∈ E(z(S)). By construction, ab ∈ E implies lcaT(a, b) = ρT .
Hence, we have µ(lcaT(a, b)) = µ(ρT) = ρSw1 ≺S ρS = lcaS(σ(a), σ(b)), and thus
ab ∈ E(G<(S)).

Now assume that ab /∈ E, and thus, a, b ∈ Ii for some i ∈ [k]. It clearly suffices
to consider the case a 6= b, and thus, a, b ∈ childT(ui) and ui /∈ L(T) holds by con-
struction. In particular, the path between a and b only consists of the edges uia and
uib. Moreover, we have σ(a), σ(b) �S wi and µ(ui) = ρSwi. Hence, none of the
edges uia and uib is a transfer edge, and ab /∈ E(z(S)). We have µ(lcaT(a, b)) =
ρSwi �T wi �T lcaS(σ(a), σ(b)), and thus τT(lcaT(a, b)) > τS(lcaS(σ(a), σ(b))).
Hence, ab /∈ E(G<(S)).

In summary, ab ∈ E if and only if ab ∈ E(z(S)) if and only if ab ∈ E(G<(S)), and
consequently, G = G<(S) = z(S).
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(2) implies (1). Thus, suppose that there is a relaxed scenario S = (T, S, σ, µ, τT , τS)
such that G = G<(S) = z(S). Prop. 7.1 implies that (G, σ) = (G<(S), σ) is properly
colored. Moreover, (G, σ) = (z(S), σ) is an rs-Fitch graph and thus, by Obs. 8.1, G is
complete multipartite.

Statements (1) and (2) together with Prop. 8.1 imply (3). Conversely, if (3) is
satisfied then Prop. 7.1 implies that (G, σ) is properly colored. This and the fact
that G is complete multipartite implies (1). Therefore, Statements (1), (2) and (3) are
equivalent.

Furthermore, (4) implies (1) by Obs. 8.1. Conversely, (G, σ) in Statement (2) is an
rs-Fitch graph and an LDT graph. Hence it is properly colored by Prop. 7.1. Thus (2)
implies (4).

Statement (3), in particular, implies that every properly colored complete multi-
partite (G, σ) is an LDT graph and, thus, there is a relaxed scenario S such that
G = G<(S). Now, we can apply Lemma 7.6 to conclude that S(G, σ) is consistent,
which completes the proof.

Corollary 8.2. A colored graph (G, σ) is an LDT graph and an rs-Fitch graph if and
only if (G, σ) is a properly colored complete multipartite graph (and thus, a properly
colored Fitch graph for some 0/1-edge-labeled tree).

Proof. If (G, σ) is an rs-Fitch graph then, by Obs. 8.1, G is a complete multipar-
tite graph. Moreover, since (G, σ) is an LDT graph, (G, σ) is properly colored (cf.
Prop. 7.1). Conversely, if (G, σ) is a properly colored complete multipartite graph
it is, by Thm. 8.2(2), an rs-Fitch graph and an LDT graph. Now the equivalence
between Statements (1) and (3) in Thm. 8.2 shows that (G, σ) is an LDT graph.

Corollary 8.3. Let (G, σ) be a vertex-colored graph. If T(G) = ∅ and S(G, σ) is
not consistent, then G is a complete multipartite graph (and thus, a Fitch graph for
some 0/1-edge-labeled tree), but σ is not a proper vertex coloring of G.

Proof. By definition, if T(G) = ∅, then G cannot contain an induced K2 + K1. By
Prop. 8.1, G is a Fitch graph. Contraposition of the last statement in Thm. 8.2 and G
being a Fitch graph for some (T, λ) implies that σ is not a proper vertex coloring of
G.

Relaxed scenarios for which (z(S), σ) is properly colored do not admit two
members of the same gene family that are separated by an HGT event. While
restrictive, such models are not altogether unrealistic. Proper coloring of
(z(S), σ) is, in particular, the case if every horizontal transfer is replacing, i.e.,
if the original copy is effectively overwritten by homologous recombination
[315], see also [52] for a detailed case study in Streptococcus. As a consequence
of Thm. 8.2, LDT graphs are sufficient to describe replacing HGT. However,
the incidence rate of replacing HGT decreases exponentially with phyloge-
netic distance between source and target [331], and additive HGT becomes
the dominant mechanism between phylogenetically distant organisms. Still,
replacing HGTs may also be the result of additive HGT followed by a loss of
the (functionally redundant) vertically inherited gene.

8.3 rs-fitch graphs with general colorings

In scenarios with additive HGT, the rs-Fitch graph is no longer properly col-
ored and no-longer coincides with the LDT graph. Since not every vertex-
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colored complete multipartite graph (G, σ) is an rs-Fitch graph (cf. Thm. 8.3),
we ask whether an LDT graph (G, σ) that is not itself already an rs-Fitch
graph imposes constraints on the rs-Fitch graphs (z(S), σ) that derive from
relaxed scenarios S that explain (G, σ). As a first step towards this goal, we
aim to characterize rs-Fitch graphs, i.e., to understand the conditions imposed
by the existence of an underlying relaxed scenario S on the compatibility of
the collection of independent sets I of G and the coloring σ. As we shall
see, these conditions can be explained in terms of an auxiliary graph that we
introduce in a very general setting:

Definition 8.4. Let L be a set, σ : L → M a map and I = {I1, . . . , Ik} a set
of subsets of L. Then the graph Az(σ, I) has vertex set M and edges xy if and
only if x 6= y and x, y ∈ σ(I′) for some I′ ∈ I . We define an edge labeling
` : E(Az(σ, I))→ 2I such that `(e) := {I ∈ I | ∃x, y ∈ I s.t. σ(x)σ(y) = e}.

By construction Az(σ, I ′) is a subgraph of Az(σ, I) whenever I ′ ⊆ I . The
labeling of an edge e records the sets I ∈ I that imply the presence of the
edge. As it turns out, rs-Fitch graphs are characterized by the structure of
their auxiliary graphs Az as shown in the next

Theorem 8.3. A graph (G, σ) is an rs-Fitch graph if and only if (i) it is complete
multipartite with independent sets I = {I1, . . . , Ik}, and (ii) if k > 1, there is an
independent set I′ ∈ I such that Az(σ, I \ {I′}) is disconnected.

Proof. Let G = (L, E) be a graph with coloring σ : L → M. Suppose first that G
satisfies (i) and (ii). To show that (G, σ) is an rs-Fitch graph, we will construct a
relaxed scenario S = (T, S, σ, µ, τT , τS) such that G = z(S). If k = 1, or equivalently
E = ∅, then the relaxed scenario S constructed in the proof of Lemma 7.4 satisfies
G = z(S), i.e., both graphs are edgeless. Now assume that k > 1 and thus, E 6= ∅.
Hence, we can choose an independent set I′ ∈ I such that A′z := Az(σ, I \ {I′}) is
disconnected. Note that I \ {I′} is non-empty since k > 1. Moreover, since A′z is
a disconnected graph on the color set M, there is a connected component C of A′z
such that (M \ C) ∩ σ(I′) 6= ∅. Hence M1 := M \ C and M2 := C form a bipartition
of M such that neither M1 nor M2 are empty sets.

We continue by showing that every I ∈ I \ {I′} satisfies either σ(I) ⊆ M1 or
σ(I) ⊆ M2. To see this, assume, for contradiction, that there are colors A ∈ σ(I)∩M1
and B ∈ σ(I) ∩ M2 for some I ∈ I \ {I′}. Thus, B ∈ C and, by definition, AB ∈
E(A′z). Therefore, A and B must lie in the connected component C; a contradiction.
Therefore, we can partition I \ {I′} into I1 := {I ∈ I \ {I′} | σ(I) ⊆ M1} and
I2 := {I ∈ I \ {I′} | σ(I) ⊆ M2}. Note that one of the sets I1 and I2, but not both
of them, may be empty. This may be the case, for instance, if σ is not surjective.

Now, we construct a relaxed scenario S = (T, S, σ, µ, τT , τS) such that G = z(S).
We first define the species tree S as the planted tree where ρS (i.e. the single child of
0S) hast two children w1 and w2. If |M1| = 1, we identify w1 with the single element
in M1, and otherwise, we set childS(w1) = L(S(w1)) := M1. We proceed analogously
for w2 and M2. Thus, S is phylogenetic by construction. We choose the time map
τS by putting τS(0S) = 2, τS(ρS) = 1, τS(w1) = τS(w2) = 0.5 and τS(x) = 0 for all
x ∈ L(S). This completes the construction of S and τS.

We proceed with the construction of the gene tree T, its time map τT and the
reconciliation map µ. This tree T has leaf set L, planted root 0T , and root ρT . We set
µ(0T) = 0S and τT(0T) = τS(0S) = 2, and moreover µ(x) = σ(x) and τT(x) = 0 for
all x ∈ L.
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For each Ij ∈ I \ {I′}, we add a vertex uj. We will later specify how these vertices
are connected (via paths) to ρT . If |Ij| = 1, uj becomes a leaf of T that is identified
with the unique element in Ij. Otherwise, we add exactly |Ij| children to uj, each of
which is identified with one of the elements in Ij. If uj is a leaf, we already defined
µ(uj) = σ(uj) and τT(uj) = 0.

Otherwise, we set τT(uj) = 0.6 and µ(uj) = ρSw1 if Ij ∈ I1 and µ(uj) = ρSw2
if Ij ∈ I2. Recall that M1 ∩ σ(I′) 6= ∅. However, both M2 ∩ σ(I′) 6= ∅ and M2 ∩
σ(I′) = ∅ are possible. The latter case appears e.g. whenever Az(σ, I) was already
disconnected. To connect the vertices uj to ρT , we distinguish the three mutually
exclusive cases:
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Fig. 70. Illustration of the relaxed scenario constructed in the if -direction of the proof
of Thm. 8.3. For Cases (a) and (c), only the situation in which a vertex u′ and u′′,
resp., is necessary is shown. Otherwise, the single element in I′, I′1 or I′2 would be a
child of the root ρT . Moreover, the vertices uj are drawn under the assumption that
|Ij| > 1. Otherwise, there are identified with the single leaf in Ij.

Case (a): M2 ∩ σ(I′) = ∅ and I1 6= ∅.
We set µ(ρT) = ρSw2 and τT(ρT) = 0.9. We attach all uj that correspond to elements
Ij ∈ I1 as children of ρT . If |I′| > 1 or I2 6= ∅, we create a vertex u′ to which all
elements in I′ and all uj such that Ij ∈ I2 are attached as children, attach u′ as a
child of ρT , and set µ(u′) = ρSw1 and τT(u′) = 0.75. Otherwise, we simply attach
the single element x′ in I′ as a child of ρT . Clearly, the so constructed tree T is
phylogenetic. Note that the edges ρTuj with Ij ∈ I1 as well as the edges u′uj with
Ij ∈ I2 are transfer edges. Together with ρTu′ or ρTx, respectively, these are the only
transfer edges.
Case (b): M2 ∩ σ(I′) = ∅ and I1 = ∅.
By the arguments above, the latter implies I2 6= ∅. Hence, we can set µ(ρT) = ρSw1
and τT(ρT) = 0.9 and attach all elements of I′ as well as the vertices uj corresponding
to the independent sets Ij ∈ I2 = I \ {I′} as children of ρT . Since |I′| ≥ 1 and I2 ≥ 1,
the tree T obtained in this manner is again phylogenetic. Moreover, note that the
transfer edges are exactly the edges ρTuj.
Case (c): M2 ∩ σ(I′) 6= ∅.
In this case, the sets I′1 := {x ∈ I′ | σ(x) ∈ M1} and I′2 := {x ∈ I′ | σ(x) ∈ M2}
must be non-empty. We set µ(ρT) = 0TρT and τT(ρT) = 1.5. If |I′1| > 1 or I2 6= ∅,
we create a vertex u′ to which all elements in I′1 and all uj such that Ij ∈ I2 are
attached as children, and set µ(u′) = ρSw1 and τT(u′) = 0.75. Otherwise, we simply
attach the single element in I′1 as a child of ρT . For the “other side”, we proceed
analogously: If |I′2| > 1 or I1 6= ∅, we create a vertex u′′ to which all elements in
I′2 and all uj such that Ij ∈ I1 are attached as children, and set µ(u′) = ρSw2 and
τT(u′′) = 0.75. Otherwise, we simply attach the single element in I′2 as a child of ρT .
By construction, the so constructed tree is again phylogenetic. Moreover, the transfer
edges are exactly the edges u′uj and u′′uj.

228



Using Fig. 70, one can easily verify that, in all three Cases (a)-(c), the reconciliation
map µ is time-consistent with τT and τS. Thus, S is a relaxed scenario. Moreover,
Fig. 70 together with the fact that σ(I) ⊆ M1 holds for all I ∈ I1, and σ(I) ⊆ M2
holds for all I ∈ I2, shows that G = z(S) in all three cases. Hence, (G, σ) is an
rs-Fitch graph.

For the only-if -direction, assume that (G = (V, E), σ) is an rs-Fitch graph. Hence,
there exists a relaxed scenario S = (T, S, σ, µ, τT , τS) such that G = z(S). By Obs. 8.1
and Prop. 8.1, (G, σ) is a complete multipartite graph that is determined by its set of
independent sets I = {I1, . . . , Ik}. Hence, Condition (i) is satisfied.

Now assume, for contradiction, that Condition (ii) is violated. Thus k ≥ 2 and
there is no independent set I′ ∈ C such that Az(σ, I \ {I′}) is disconnected. If
|M| = 1, then the species tree S only consists of the planted root 0S and the root
ρS, which in this case is identified with the single element in M. Clearly, all vertices
and edges are comparable in such a tree S, and hence, there is no transfer edges in
S, implying E = ∅ and thus |I| = 1; a contradiction to k ≥ 2.

Thus we have |M| ≥ 2 and the root ρS of the species tree S has at least two
children. Since Az(σ, I \ {I′}) is connected for every I′ ∈ C, the graph Az(σ, I) is
also connected. Since each color appears at most once as a leaf of S, σ(L(S(v1))) ∩
σ(L(S(v2))) = ∅ holds for any two distinct children v1, v2 ∈ childS(ρS). These three
assertions, together with the definition of the auxiliary graph Az(σ, I), imply that
there are two distinct colors A, B ∈ M such that AB is an edge in Az(σ, I), A �S v1
and B ≺S v2 for distinct children v1, v2 ∈ childS(ρS). By definition of Az(σ, I)
there is an independent set I′ ∈ I containing a vertex a ∈ I′ with σ(a) = A and
a vertex b ∈ I′ with σ(b) = B. Since a and b lie in the same independent set, we
have ab /∈ E. By Lemma 8.2, µ(lcaT(a, b)) �S lcaS(A, B) = ρS. Since, by assumption,
Az(σ, I \ {I′}) is also connected, we find two distinct colors C and D (not necessarily
distinct from A and B) such that CD is an edge in Az(σ, I), C �S v3 and D ≺S v4
for distinct children v3, v4 ∈ childS(ρS) (but not necessarily distinct from v1 and v2),
and in particular, an independent set I′′ ∈ I \ {I′} containing a vertex c ∈ I′′ with
σ(c) = C and a vertex d ∈ I′′ with σ(d) = D. By construction, I′ 6= I′′, and thus,
all edges between I′ and I′′ exist in G, in particular the edges ac, ad, bc, bd. Since
c, d ∈ I′′, we have cd /∈ E and thus, by Lemma 8.2, µ(lcaT(c, d)) �S lcaS(C, D) = ρS.

We now consider the unique path P in T that connects lcaT(a, b) and lcaT(c, d).
Since µ is time-consistent and µ(lcaT(a, b)), µ(lcaT(c, d)) �S ρS, we conclude that, for
every edge uv along this path P, we have µ(u), µ(v) �S ρS and thus µ(u), µ(v) ∈
{ρS, 0SρS}. But then, µ(u) and µ(v) are comparable in S. Therefore, P does not
contain any transfer edge. Since ab /∈ E, the path connecting a and lcaT(a, b) does
not contain any transfer edges. Likewise, cd /∈ E implies that the path connecting c
and lcaT(c, d) does not contain any transfer edges. Thus, the path connecting a and
c also does not contain any transfer edge, which implies that ac /∈ E(z(S)) = E; a
contradiction since a and c belong to two distinct independent sets.

Hence, we conclude that for k > 1 there exists an independent set I′ ∈ C such that
Az(σ, I \ {I′}) is disconnected.

As a consequence of Thm. 8.3, we obtain

Corollary 8.4. rs-Fitch graphs can be recognized in polynomial time.

Proof. Every rs-Fitch graph (G, σ) must be complete multipartite, which can be veri-
fied in polynomial time. In this case, the set of independent sets I = {I1, . . . , Ik} of
G can also be determined and the graph Az(σ, I) can be constructed in polynomial
time. Finally, we need to find an independent set I′ ∈ I , such that Az(σ, I \ {I′}) is
disconnected. Clearly, checking whether Az(σ, I \ {I′}) is disconnected can be done
in polynomial time and since there are at most |V(G)| independent sets in I , finding
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an independent set I′ such that Az(σ, I \ {I′}) is disconnected (if one exists) can be
done in polynomial time as well.

Corollary 8.5. Let (G, σ) be a complete multipartite graph with coloring
σ : V(G) → M and set of independent sets I . Then, (G, σ) is an rs-Fitch graph
if and only if Az(σ, I) is disconnected or there is a cut Q ⊆ E(Az(σ, I)) such that
all edges e ∈ Q have the same label `(e) = {I} for some I ∈ I .

Proof. If Az(σ, I) is disconnected, then Az(σ, I \ {I}) remains disconnected for all
I ∈ I and, by Thm. 8.3, (G, σ) is an rs-Fitch graph.

If there is a cut Q ⊆ E(Az(σ, I)) such that all edges e ∈ Q have the same la-
bel `(e) = {I} for some I ∈ I , then, by definition, E(Az(σ, I \ {I})) ⊆ E′ :=
E(Az(σ, I)) \ Q. Since Q is a cut in Az(σ, I), the resulting graph A′z = (M, E′) is
disconnected. By the latter arguments, Az(σ, I \ {I}) is a subgraph of A′z, and thus,
disconnected as well. By Thm. 8.3, (G, σ) is an rs-Fitch graph.

Conversely, if (G, σ) is an rs-Fitch graph, then Thm. 8.3 implies that Az(σ, I \ {I})
is disconnected for some I ∈ I . If Az(σ, I) was already disconnected, then there
is nothing to show. Hence assume that Az(σ, I) = (M, E) is connected and let
Az(σ, I \ {I}) = (M, E′). Moreover, let F ⊆ E be the subset of edges e ∈ E with
I ∈ `(e). Note, F contains all edges of E that have potentially been removed from
E to obtain E′. However, all edges e = xy in F with |`(e)| > 1 must remain in
Az(σ, I \ {I}), since there is another independent set I′ ∈ `(e) \ {I} such that x, y ∈
σ(I′). Hence, only those edges e in F for which |`(e)| = 1 are removed from E. Hence,
there is a cut Q ⊆ F ⊆ E such that all edges e ∈ Q have the same label `(e) = {I} for
some I ∈ I .

Corollary 8.6. If (G, σ) with coloring σ : V(G) → M is an rs-Fitch graph then
there are no two disjoint independent sets I and I′ of G with σ(I) = σ(I′) = M.

Proof. Let I be the set of independent sets of G. If |I| = 1, there is nothing to show
and thus, we assume that |I| > 1. Assume, for contradiction, that there are two
distinct independent sets I, I′ ∈ I such that σ(I) = σ(I′) = M. For every I′′ ∈ I , the
set I \ {I′′} clearly contains at least one of the two sets I and I′, both of which contain
all colors in M. Therefore, Az(σ, I \ {I′′}) is the complete graph by construction and,
thus, connected for every I′′ ∈ I . This together with Thm. 8.3 implies that (G, σ) is
not an rs-Fitch graph; a contradiction.

Corollary 8.7. Every complete multipartite graph (G, σ) with a vertex coloring
σ : V(G)→ M that is not surjective is an rs-Fitch graph.

Proof. If σ : V(G) → M is not surjective, then Az(σ, I) is disconnected, where I
denotes the set of independent sets of G. Hence, if k > 1, then Az(σ, I \ {I})
remains disconnected for all I ∈ I . By Thm. 8.3, (G, σ) is an rs-Fitch graph.

Cor. 8.7 may seem surprising since it implies that the property of being an
rs-Fitch graph can depend on species (colors M) for which we have no genes
L in the data. The reason is that an additional lineage in the species tree
provides a place to “park” interior vertices in the gene tree from which HGT-
edges can emanate that could not always be accommodated within lineages
that have survivors – where they may force additional HGT edges.

Corollary 8.8. Every Fitch graph (G, σ) that contains an independent set I and a
vertex x ∈ I with σ(x) /∈ σ(I′) for all other independent sets I′ 6= I, is an rs-Fitch
graph.
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Fig. 71. Shown are three distinct relaxed scenarios S, S′ and S′′ with corresponding
rs-Fitch graphs. Here σ′ = σ|{a,a′} and σ′′ = σ|{a,a′},{A} (cf. Def. 2.1). Putting (G, σ) =
(z(S), σ), one can observe that (G[{a, a′}], σ′) = (z(S′), σ′) is an rs-Fitch graph. In
contrast, σ′′ is restricted to the “observable” part of species (consisting of A alone),
and (G[{a, a′}], σ′′) is not an rs-Fitch graph, see text for further details.

Proof. Let I denote the set of independent sets of G. If there is an independent
set I ∈ I that contains a vertex x ∈ I with σ(x) /∈ σ(I′) for all other independent
sets I′ 6= I, then the vertex σ(x) in Az(σ, I \ {I}) is an isolated vertex and thus,
Az(σ, I \ {I}) is disconnected. By Thm. 8.3, (G, σ) is an rs-Fitch graph.

As for LDT graphs, the property of being an rs-Fitch graph is hereditary.

Corollary 8.9. If (G = (L, E), σ) is an rs-Fitch graph, then the colored vertex
induced subgraph (G[W], σ|W) is an rs-Fitch graph for all non-empty subsets W ⊆ L.

Proof. It suffices to show the statement for W = L \ {x} for an arbitrary vertex x ∈ L.
If G = (L, E) is edgeless, then G[W] is edgeless and thus, by Thm. 8.3, an rs-Fitch
graph.

Thus, assume that E 6= ∅ and thus, for the set I of independent sets of G it holds
that |I| > 1. Since G does not contain an induced K2 + K1, it is easy to see that G[W]
cannot contain an induced K2 + K1 and thus, G[W] is a complete multipartite graph.
Hence, Thm. 8.3(i) is satisfied. Moreover, if for the set I ′ of independent sets of G[W]
it holds that |I ′| = 1 then, Thm. 8.3 already shows that (G[W], σ|W) is an rs-Fitch
graph.

Thus, assume that |I ′| > 1. Now compare the labeling ` of the edges in Az =
Az(σ, I) and the labeling `′ of the edges in A′z = Az(σ|W , I ′). Note, Az and A′z
have still the same vertex set M. Let I ∈ I with x ∈ I. For all vertices y ∈ I with
σ(x) 6= σ(y), we have an edge e = σ(x)σ(y) in Az and I ∈ `(e). Consequently, for all
edges e of Az that are present in A′z we have `′(e) ⊆ `(e). In particular, A′z cannot
have edges that are not present in Az, since we reduced for one independent set the
size by one. Therefore, A′z is a subgraph of Az.

By Thm. 8.3, there is an independent set I′ ∈ I , not necessarily distinct from
I, such that Az(σ, I \ {I′}) is disconnected. If I′ = {x}, then I ′ = I \ {I′} and
A′z = Az must be disconnected as well. Otherwise, A′z ⊆ Az and similar arguments
as above show that Az(σ, I ′ \ {I′}) ⊆ Az(σ, I \ {I′}). Therefore, in both of the latter
cases, Az(σ, I ′ \ {I′}) is disconnected and Thm. 8.3 implies that (G[W], σ|W) is an
rs-Fitch graph.

Note, however, that Cor. 8.9 is not satisfied if we restrict the codomain of
σ to the observable part of colors, i.e., if we consider σ|W,σ(W) : W → σ(W)

instead of σ|W : W → M, even if σ is surjective. To see this consider the ver-
tex colored graph (G, σ) with V(G) = {a, a′, b}, E(G) = {aa′, ab, a′b} and
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σ : V(G) → M = {A, B} where σ(a) = σ(a′) = A 6= σ(b) = B. A pos-
sible relaxed scenario S for (G, σ) is shown in Fig. 71(A). The deletion of
b yields W = V(G) \ {b} = {a, a′} and the graph (G[W], σ|W) for which
S′ with HGT-labeling λS′ as in Fig. 71(B) is a relaxed scenario that satis-
fies G[W] = z(T, λS′). However, if we restrict the codomain of σ to obtain
σ|W,{A} : {a, a′} → σ(W) = {A}, then there is no relaxed scenario S for which
G[W] = z(T, λS), since there is only a single species tree S on L(S) = {A}
(Fig. 71(C)) that consists of the single edge 0T A and thus, µ(v) and µ(a) as
well as µ(v) and µ(a′) must be comparable in this scenario.

8.4 least resolved trees for fitch graphs

It is important to note that the characterization of rs-Fitch graphs in Thm. 8.3
does not provide us with a characterization of rs-Fitch graphs that share a
common relaxed scenario with a given LDT graph. As a potential avenue to
address this problem, we investigate the structure of least-resolved trees for
Fitch graphs as possible source of additional constraints.

All trees considered in this section are rooted and phylogenetic but not planted
unless stated differently. This is no loss of generality, since we are interested in
Fitch-least-resolved trees, which are never planted because the edge incident
with the planted root can be contracted without affecting the paths between
the leaves.

Definition 8.5. The edge-labeled tree (T, λ) is Fitch-least-resolved w.r.t. z(T, λ),
if for all trees T′ 6= T that are displayed by T and every labeling λ′ of T′ it holds that
z(T, λ) 6= z(T′, λ′).

Definition 8.6. Let (T, λ) be an edge-labeled tree and let e = xy ∈ E(T) be an
inner edge. The tree (T/e, λ/e) with L(T/e) = L(T), is obtained by contraction of
the edge e in T and by keeping the edge labels of all non-contracted edges.

Note, if e is an inner edge of a phylogenetic tree T, then the tree T/e is again
phylogenetic.

Definition 8.7. An edge e in (T, λ) is relevantly-labeled in (T, λ) if, for the tree
(T, λ′) with λ′( f ) = λ( f ) for all f ∈ E(T) \ {e} and λ′(e) 6= λ(e), it holds that
z(T, λ) 6= z(T, λ′).

Lemma 8.3. An outer 0-edge e = vx in (T, λ) is relevantly-labeled in (T, λ) if
and only if zx /∈ E(z(T, λ)) for some z ∈ L(T) \ {x}.
Proof. Assume that e = vx is a relevantly-labeled outer 0-edge. Hence, for (T, λ′)
with λ′( f ) = λ( f ) for all f ∈ E(T) \ {e} and λ′(e) = 1, it holds that z(T, λ) 6=
z(T, λ′). Since we only changed the label of the outer edge vx, it still holds that
yy′ ∈ E(z(T, λ′)) if and only if yy′ ∈ E(z(T, λ)) for all distinct y, y′ ∈ L(T) \ {x}.
Moreover, since λ′(e) = 1 and e = vx is an outer edge, we have xz ∈ E(z(T, λ′)) for
all z ∈ L(T) \ {x}. Thus, z(T, λ) 6= z(T, λ′) implies that xz /∈ E(z(T, λ)) for at least
one z ∈ L(T) \ {x}.

Now, suppose that zx /∈ E(z(T, λ)) for some z ∈ L(T) \ {x}. Clearly, this implies
that the outer edges e = vx and f = wz must be 0-edges and changing one of them
to a 1-edge would imply that xz becomes an edge in the Fitch graph. Hence, e is
relevantly-labeled in (T, λ).
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Lemma 8.4. For every tree (T, λ) and every inner 0-edge e of T, it holds z(T, λ) =

z(T/e, λ/e).

Proof. Suppose that (T, λ) contains an inner 0-edge e = uv. The contraction of this
edge does not change the number of 1-edges along the paths connecting any two
leaves. It affects the least common ancestor of x and y, if lcaT(x, y) = u or lcaT(x, y) =
v. In either case, however, the number of 1-edges between lcaT(x, y) and the leaves x
and y remains unchanged. Hence, we have z(T, λ) = z(T/e, λ/e).

Lemma 8.5. If (T, λ) is a Fitch-least-resolved tree w.r.t. z(T, λ), then it does neither
contain inner 0-edges nor inner 1-edges that are not relevantly-labeled.

Proof. Suppose first, by contraposition, that (T, λ) contains an inner 0-edge e = uv.
By Lemma 8.4, z(T, λ) = z(T/e, λ/e), and thus, (T, λ) is not Fitch-least-resolved.

Assume now, by contraposition, that (T, λ) contains an inner 1-edge e that is not
relevantly-labeled. Hence, we can put λ′(e) = 0 and λ( f ) = λ( f ′) for all f ∈
E(T) \ {e} and obtain z(T, λ) = z(T, λ′). Since (T, λ′) contains an inner 0-edge, it
cannot be Fitch-least-resolved. Therefore and by definition, (T, λ) cannot be Fitch-
least-resolved as well.

The converse of Lemma 8.5 is, however, not always satisfied. To see this,
consider the Fitch graph G ' K3 with vertices x, y and z. Now, consider the
tree (T, λ) where T is the triple xy|z, the two outer edges incident to y and
z are 0-edges while the remaining two edges in T are 1-edges. It is easy to
verify that G = z(T, λ). In particular, the inner edge e is relevantly-labeled,
since if λ′(e) = 0 we would have yz /∈ E(z(T, λ′)). However, (T, λ) is not
Fitch-least-resolved w.r.t. G, since the star tree T′ on the three leaves x, y, z is
displayed by T, and the labeling λ′ with λ′(e) = 1 for all e ∈ E(T′) provides
a tree (T′, λ′) with G = z(T′, λ′).

Lemma 8.6. A tree (T, λ) is a Fitch-least-resolved tree w.r.t. z(T, λ) if and only if
z(T, λ) 6= z(T/e, λ′) holds for all labelings λ′ of T/e and all inner edges e in T.

Proof. Let (T, λ) be an edge-labeled tree. Suppose first that (T, λ) is Fitch-least-
resolved w.r.t. z(T, λ). For every inner edge e in T, the tree T/e 6= T is displayed by
T. By definition of Fitch-least-resolved trees, we have z(T, λ) 6= z(T/e, λ′) for every
labeling λ′ of T/e.

For the converse, assume, for contraposition, that (T, λ) is not Fitch-least-resolved
w.r.t. z(T, λ). Hence, there is a tree (T′, λ′) such that T′ 6= T is displayed by T
and z(T, λ) = z(T′, λ′). Clearly, T and T′ must have the same leaf set. Therefore
and since T′ < T, the tree T′ can be obtained from T by a sequence of contrac-
tions of inner edges e1, . . . , e` (in this order) where ` ≥ 1. If ` = 1, then we have
T′ = T/e1 and, by assumption, z(T, λ) = z(T/e1 , λ′). Thus, we are done. Now
assume ` ≥ 2. We consider the tree (T/e1 , λ′′) where λ′′( f ) = λ′( f ) if f ∈ E(T′)
and λ′′( f ) = 0 otherwise. Hence, (T′, λ′) can be obtained from (T/e1 , λ′′) by step-
wise contraction of the 0-edges e2, . . . , e`, and by keeping the labeling of λ′′ for the
remaining edges in each step. Hence, we can repeatedly apply Lemma 8.4 to con-
clude that z(T/e1 , λ′′) = z(T′, λ′). Together with z(T, λ) = z(T′, λ′), we obtain
z(T, λ) = z(T/e1 , λ′′), which completes the proof.

As a consequence of Lemma 8.6, it suffices to show that z(T, λ) =

z(T/e, λ′) for some inner edge e ∈ E(T) and some labeling λ′ for T/e to
show that (T, λ) is not Fitch-least-resolved tree w.r.t. z(T, λ). The next re-
sult characterizes Fitch-least-resolved trees and is very similar to the results
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for “directed” Fitch graphs of 0/1-edge-labeled trees (cf. Lemma 11(1,3) in
[101]). However, we note that we defined Fitch-least-resolved in terms of all
possible labelings λ′ for trees T′ displayed by T, whereas Geiß et al. [101] call
(T, λ) least-resolved whenever (T/e, λ/e) results in a (directed) Fitch graph
that differs from the one provided by (T, λ) for every e ∈ E(T).

Theorem 8.4. Let G be a Fitch graph, and (T, λ) be a tree such that G = z(T, λ).
If all independent sets of G are of size one (except possibly for one independent set),
then (T, λ) is Fitch-least-resolved for G if and only if it is a star tree.
If G has at least two independent sets of size at least two, then (T, λ) is Fitch-least-
resolved for G if and only if

(a) every inner edge of (T, λ) is a 1-edge,

(b) for every inner vertex v ∈ V0(T) there are (at least) two relevantly-labeled
outer 0-edges vx, vy in (T, λ)

In particular, if distinct x, y ∈ L(T) are in the same independent set of G, then
they have the same parent in T and parT(x)x, parT(x)y are relevantly-labeled outer
0-edges.

Proof. Suppose that every independent set of G is of size one (except possibly for
one). Let (T, λ) be the star tree where λ(ρTv) = 1 if and only if v is the single
element in an independent set of size one. It is now a simple exercise to verify that
G = z(T, λ). Since (T, λ) is a star tree, it is clearly Fitch-least-resolved. The converse
follows immediately from this construction together with fact that the star tree is
displayed by all trees with leaf set V(G). In the following we assume that G contains
at least two independent sets of size at least two.

First suppose that (T, λ) is Fitch-least resolved w.r.t. z(T, λ). By Lemma 8.5, Con-
dition (a) is satisfied. We continue with showing that Condition (b) is satisfied. In
particular, we show first that every inner vertex v ∈ V0(T) is incident to at least one
relevantly-labeled outer 0-edge. To this end, assume, for contradiction, that (T, λ)
contains an inner vertex v ∈ V0(T) for which this property is not satisfied.

That is, v is either (i) incident to 1-edges only (incl. λ(parT(v)v) = 1 in case v 6= ρT
by Condition (a)) or (ii) there is an outer 0-edge vx that is not relevantly-labeled.
In Case (i), we put λ′ = λ. In Case (ii), we obtain a new labeling λ′ by changing
the label of every outer 0-edge vx with x ∈ childT(v) ∩ L(T) to “1” while keeping
the labels of all other edges. This does not affect the Fitch graph, since every such
0-edge is not relevantly-labeled, and thus, zx ∈ E(z(T, λ)) for all z ∈ L(T) \ {x} by
Lemma 8.3. Hence, for both Cases (i) and (ii), for the labeling λ′ all outer edges vx
with x ∈ childT(v) ∩ L(T) are labeled as 1-edges, v is incident to 1-edges only (by
Condition (a)) and z(T, λ) = z(T, λ′). We thus have xy ∈ E(z(T, λ′)) = E(z(T, λ))
for all x ∈ L(T(v)) and y ∈ L(T) \ L(T(v)). Now, if v 6= ρT let e = uv := parT(v)v.
Otherwise, if v = ρT then let e = vu for some inner vertex u ∈ childT(v). Note, such
an inner edge ρTu exists since G contains at least two independent sets of size at least
two and T is not a star tree as shown above. Now consider the tree (T/e, λ′/e), and
denote by w the vertex obtained by contraction of the inner edge e. By construction,
every path in T/e connecting any x ∈ L(T(v)) and y ∈ L(T) \ L(T(v)) must contain
some 1-edge ww′ with w′ ∈ childT/e(w) = childT(v) implying xy ∈ E(z(T/e, λ′/e)).
Moreover, the edge contraction does not affect whether or not the path between any
vertices within L(T(v)) or within L(T) \ L(T(v)) contains a 1-edge. Hence, z(T, λ) =
z(T, λ′) = z(T/e, λ′/e), and (T, λ) is not Fitch-least-resolved; a contradiction. In
summary, every inner vertex v must be incident to at least one relevantly-labeled
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outer 0-edge vx. By Lemma 8.3, vx is a relevantly-labeled outer 0-edge if and only
if there is a vertex z ∈ L(T) \ {x} such that zx /∈ E(z(T, λ)). By Condition (a), all
inner edges in (T, λ) are 1-edges, and thus, there is only one place where the leaf
z can be located in T, namely as a leaf adjacent to v. In particular, the outer edge
vz is a relevantly-labeled 0-edge, since zx /∈ E(z(T, λ)). Therefore, Condition (b) is
satisfied for every inner vertex v of T.

The latter arguments also show that all distinct vertices x, y ∈ L(T) that are con-
tained in the same independent set must have the same parent. Clearly, parT(x)x,
parT(x)y must be outer 0-edges, since otherwise xy ∈ E(z(T, λ)). Hence, the final
statement of the theorem is satisfied.

Now let (T, λ) be such that Conditions (a) and (b) are satisfied. First observe
that none of the outer edges can be contracted without changing L(T). Now let
e = uv be an inner edge. By Condition (a), e is a 1-edge. Moreover, by Condition
(b), vertex u and v are both incident to at least two relevantly-labeled outer 0-edges.
Hence, there are outer 0-edges ux, ux′, vy, vy′ with pairwise distinct leaves x, x′, y, y′

in T. Since uv is a 1-edge, we have xy, xy′, x′y, x′y′ ∈ E(z(T, λ)). Moreover, we have
xx′, yy′ /∈ E(z(T, λ)). Now consider the tree (T/e, λ′) with an arbitrary labeling λ′

and denote by w the vertex obtained by contraction of the inner edge uv. In this
tree, x, x′, y, y′ all have the same parent w. If λ′(wx) = 1 or λ′(wy) = 1, we have
xx′ ∈ z(T/e, λ′) or yy′ ∈ E(z(T/e, λ′)), respectively. If λ′(wx) = 0 and λ′(wy) = 0,
we have xy /∈ E(z(T/e, λ′)). Hence, it holds z(T/e, λ′) 6= z(T, λ) in both cases. Since
the inner edge e and λ′ were chosen arbitrarily, we can apply Lemma 8.6 to conclude
that (T, λ) is Fitch-least-resolved.

As a consequence of Thm. 8.4, Fitch-least-resolved trees can be constructed
in polynomial time. To be more precise, if a Fitch graph G contains only inde-
pendent sets of size one (except possibly for one), we can construct a star tree
T with edge labeling λ as specified in the proof of Thm. 8.4 to obtain the 0/1-
edge labeled tree (T, λ) that is Fitch-least-resolved w.r.t. G. This construction
can be done in O(|V(G)|) time.

Now, assume that G has at least two independent sets of size at least two.
Let I be the set of independent sets of G and I1, . . . , Ik ∈ I , k ≥ 2 be all
independent sets of size at least two. We now construct a tree (T, λ) with
root ρT as follows: First we add k vertices v1 = ρT and v2, . . . , vk, and add
inner edges ei = vivi+1 with label λ(ei) = 1, 1 ≤ i ≤ k − 1. Each vertex
vi gets as children the leaves in Ii, 1 ≤ i ≤ k and all these additional outer
edges obtain label “0”. Finally, all elements in the remaining independent sets
I \ {I1, . . . , Ik} are of size one and are connected as leaves via outer 1-edges
to the root v1 = ρT. It is an easy exercise to verify that T is a phylogenetic
tree and that z(T, λ) = G. In particular, Thm. 8.4 implies that (T, λ) is Fitch-
least-resolved w.r.t. G. This construction can be done in O(|V(G)|) time. We
summarize this discussion as

Proposition 8.3. For a given Fitch graph G, a Fitch-least-resolved tree can be con-
structed in O(|V(G)|) time.

Fitch-least-resolved trees, however, are only of very limited use for the con-
struction of relaxed scenarios S = (T, S, σ, µ, τT, τS) from an underlying Fitch
graph. First note that we would need to consider planted versions of Fitch-
least-resolved trees, i.e., Fitch-least-resolved trees to which a planted root is
added, since otherwise, such trees cannot be part of an explaining scenario,
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Fig. 72. An rs-Fitch graph (G, σ) and a possible relaxed scenario S = (T, S, σ, µ, τT , τS)
with G = z(T, λS). For the planted versions (T1, λ1) and (T2, λ2) of the Fitch-least-
resolved trees of (G, σ) there is no relaxed scenario S such that (Ti, λi) = (Ti, λS),
i ∈ {1, 2}. Red edges indicate 1-labeled (i.e., transfer) edges. See Example 8.2 for
further details.

which is defined in terms of planted trees. Even though (G, σ) is an rs-Fitch
graph, Example 8.2 shows that it is possible that there is no relaxed scenario
S = (T, S, σ, µ, τT, τS) with HGT-labeling λS such that (T, λ) = (T, λS) for the
planted version (T, λ) of any of its Fitch-least-resolved trees.

Example 8.2. Consider the rs-Fitch graph (G, σ) with V(G) = {a, b, b′, c},
E(G) = {ab′, ac, bb′, bc} and surjective coloring σ such that σ(a) = A, σ(b) =

σ(b′) = B, σ(c) = C and A, B, C are pairwise distinct. The rs-Fitch graph (G, σ),
a Fitch tree (T, λ) and relaxed scenario S with (T, λ) = (T, λS) as well as the
planted versions (T1, λ1) and (T2, λ2) of its two Fitch-least-resolved trees are shown
in Fig. 72.

Fitch-least-resolved trees for (G, σ) must contain an inner 1-edge, since G has two
independent sets of size two and by Thm. 8.4. Thus, it is easy to verify that there are
no other Fitch-least-resolved trees for (G, σ).

By Lemma 8.2, we obtain lcaS(A, B) �S µ(lcaTi(a, b)) and lcaS(B, C) �S
µ(lcaTi(b

′, c)), i ∈ {1, 2}, for both (planted versions of the) Fitch-least-resolved trees.
However, for all of the possible species trees on three leaves A, B, C, this implies that
the images µ(lcaTi(a, b)) and µ(lcaTi(b

′, c)) are the single inner edge or the edge
0TρT in S. Therefore, µ(lcaTi(a, b)) and µ(lcaTi(b

′, c)) are always comparable in S.
Hence, for all possible relaxed scenarios S, we have λS(e) = 0 for the single inner
edge e, whereas λi(e) = 1 in Ti, i ∈ {1, 2}. This implies that there is no relaxed
scenario S with (Ti, λi) = (Ti, λS), i ∈ {1, 2}.

A slightly different mathematical question is left open here. Regarding
0/1-edge labeled (planted) trees (T, λ), it would be of interest to know
whether there is always a relaxed scenario S = (T, S, σ, µ, τT, τS) such that
(T, λ) = (T, λS′) for a suitable choice of σ. Elaborating on Thm. 8.2, it would
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be interesting to characterize the leaf colorings σ for (T, λ) such that there is
a relaxed scenario S with z(T, λ) = z(S).

8.5 editing problems

8.5.1 Editing Colored Graphs to rs-Fitch Graphs

Even through at present it remains unclear whether rs-Fitch graphs can be es-
timated directly, the corresponding graph modification problems are at least
of theoretical interest.

Problem 8.1 (rs-Fitch Graph Modification (rsF-M)).
Input: A colored graph (G = (V, E), σ) and an integer k.

Question: Is there a subset F ⊆ (V
2) such that |F| ≤ k and (G� F, σ)

is an rs-Fitch graph where � ∈ {4,+,−}?

Since rs-Fitch graphs are complete multipartite graphs, their complements
are disjoint unions of complete graphs. The problems rsF-M are thus closely
related the cluster graph modification problems. Both Cluster Deletion

and Cluster Editing are NP-complete, while Cluster Completion is poly-
nomial (by completing each connected component to a clique, i.e., computing
the transitive closure) [275]. We obtain

Theorem 8.5. rsF-C and rsF-E are NP-complete.

Proof. Since rs-Fitch graphs can be recognized in polynomial time, a given solution
can be verified as being a yes- or no-answer in polynomial time. Thus, rsF-C/E is in
NP.

Consider an arbitrary graph G and an integer k. We construct an instance (G, σ, k)
of rsF-C/E by coloring all vertices distinctly. Then condition (ii) in Thm. 8.3 is always
satisfied. To see this, we note that for k > 1 there are no edges between colors in the
auxiliary graph Az(σ, I) such that their corresponding unique vertices are in distinct
independent sets I, I′ ∈ I . The problem therefore reduces to completion/editing of
(G, σ) to a complete multipartite graph, which is equivalent to a complementary
deletion/editing of the complement of (G, k) to a disjoint union of cliques, i.e., a
cluster graph. Both Cluster Deletion and Cluster Editing are NP-hard [275].

Although Cluster Completion is polynomial (it is solved by computing
the transitive closure, i.e., by completing every connected component to a
clique), rsF-D remains open: Consider a colored complete multipartite graph
(G, σ) that is not an rs-Fitch graph. Then solving Cluster Completion on
the complement returns (G, σ), which by construction is not a solution to
rsF-D.

8.5.2 Editing LDT Graphs to Fitch Graphs

In Sec. 7.6, we briefly described how LDT graphs may be estimated. In con-
trast, it seems much more difficult to infer a Fitch graph (z, σ) directly from
data. To our knowledge, no method for this purpose has been proposed in
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Fig. 73. Two relaxed scenarios with T displaying the triple a′b|a and explaining the
same graph (G, σ).

the literature. However, (z, σ) is of much more direct practical interest be-
cause the independent sets of z determine the maximal HGT-free subsets of
genes, which could be analyzed separately by better-understood techniques.
In this section, we therefore focus on the aspects of (z, σ) that are not cap-
tured by LDT graphs (G, σ). In the light of the previous sections, these are
in particular non-replacing HGTs, i.e., HGTs that result in genes x and y in
the same species σ(x) = σ(y). In this case, (z, σ) is no longer properly col-
ored and thus G 6= z. To get a better intuition on this case consider three
genes a, a′, and b with σ(a) = σ(a′) 6= σ(b) with ab /∈ E(G) and a′b ∈ E(G).
By Lemma 7.7, the gene tree T of any explaining relaxed scenario displays
the triple a′b|a. Fig. 73 shows two relaxed scenarios with a single HGT that
explain this situation: In the first, we have aa′ ∈ E(z), while the other im-
plies aa′ /∈ E(z). Neither scenario is a priori less plausible than the other.
Although the frequency of true homologous replacement via crossover de-
creases exponentially with the phylogenetic distance of donor and acceptor
species [331], additive HGT with subsequent loss of one copy is an entirely
plausible scenario.

A pragmatic approach to approximate (z, σ) is therefore to consider the
step from an LDT graph (G, σ) to (z, σ) as a graph modification problem.
First we note that Alg. 7 explicitly produces a relaxed scenario S and thus im-
plies a corresponding gene tree TS with HGT-labeling λS, and thus an rs-Fitch
graph (z(S), σ). However, Alg. 7 was designed primarily as proof device. It
produces neither a unique relaxed scenario nor necessarily the most plausible
or a most parsimonious one. Furthermore, both the LDT graph (G, σ) and
the desired rs-Fitch graph (z, σ) are consistent with a potentially very large
number of relaxed scenarios. It thus appears preferable to altogether avoid
the explicit construction of relaxed scenarios at this stage.

Since every LDT graph (G, σ) is explained by some S, it is also a spanning
subgraph of the corresponding rs-Fitch graph (z(S), σ). The step from an
LDT graph (G, σ) to an rs-Fitch graph (z, σ) can therefore be viewed as an
edge-completion problem. The simplest variation of the problem is

Problem 8.2 (Fitch graph completion). Given an LDT graph (G, σ), find a mini-
mum cardinality set Q of possible edges such that (G + Q, σ) is a complete multipar-
tite graph.

A close inspection of Problem 8.2 shows that the coloring is irrelevant in
this version, and the actual problem to be solved is the problem Complete
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Multipartite Graph Completion with a cograph as input. We next show
that this task can be performed in linear time. The key idea is to consider
the complementary problem, i.e., the problem of deleting a minimum set of
edges from the complementary cograph G such that the end result is a disjoint
union of complete graphs. This is known as Cluster Deletion problem [275],
and is known to have a greedy solution for cographs [98].

Lemma 8.7. There is a linear-time algorithm to solve Problem 8.2 for every cograph
G.

Proof. Instead of inserting in the cograph G the minimum number of edges neces-
sary to reach a complete multipartite graph, we consider the equivalent problem of
deleting a minimal set Q of edges from its complement G, which is also a cograph,
to obtain the complement of a complete multipartite graph, i.e., the disjoint union of
complete graphs. This problem is known as the Cluster Deletion problem [275],
which is known to have an polynomial-time solution for cographs [98]: A greedy
maximum clique partition of G is obtained by recursively removing a maximum
clique K from G, see also [77]. For cographs, the greedy maximum clique partitions
are the solutions of the Cluster Deletion problem [98, Thm. 1]. The Maximum

Clique problem on cographs can be solved in linear time using the co-tree of G [57],
which can also be obtained in linear time [57].

An efficient algorithm to solve the Cluster Deletion problem for
cographs can be devised by making use of the recursive construction of a
cograph along its discriminating cotree (T, t), see Eq. (2). Denote by P(u) the
optimal clique partition of the cograph implied by the subtree T(u) of the
discriminating cotree (T, t). We think of P(u) := [Q1(u), Q2(u), . . . ] as an or-
dered list, such that |Qi(u)| ≥ |Qj(u)| if i < j. It will be convenient to assume
that the list contains an arbitrary number of empty sets acting as an identity
element for the join and disjoint union operation. With this convention, the
optimal clique partitions P(u) satisfy the recursion

P(u) =





⋃

v∈childT(u)

P(v) if t(u) = 0


 ⋃

v∈childT(u)

Qi(v)
∣∣∣ i = 1, 2, . . .


 if t(u) = 1

[{u}, ∅, . . . ] if u is a leaf

(41)

for all u ∈ V(T). In the first case, where t(u) = 0, we assume that the
union operation to obtain P(u) = [Q1(u), Q2(u), . . . ] maintains the property
|Qi(u)| ≥ |Qj(u)| if i < j. In an implementation, this can e.g. be achieved
using k-way merging where k = |childT(u)|.

To see that the recursion is correct, it suffices to recall that the greedy clique
partition is optimal for cographs as input [98] and to observe the following
simple properties of cliques in cographs [57]: (i) a largest clique in a disjoint
union of graphs is also a largest clique in any of its components. The optimal
clique partition of a disjoint union of graphs is, therefore, the union of the
optimal clique partitions of the constituent connected components. (ii) For
a join of two or more graphs Gi, each maximum size clique Q is the join of
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Fig. 74. Upper panel: a relaxed scenario S with LDT graph (G<(S), σ) and rs-Fitch
graph (z(S), σ). There are two minimum edge completion sets that yield the com-
plete multipartite graphs (z1, σ) and (z2, σ) (lower part). By Thm. 8.3, (z2, σ) is not
an rs-Fitch graph. The graph (z1, σ) is an rs-Fitch graph for the relaxed scenario S′.
However, G<(S) 6= G<(S

′) for all relaxed scenarios S′ with (z(S′), σ) = (z1, σ). To
see this, note that the gene tree T = ((a, b), (a′, b′)) in S is uniquely determined by
application of Lemma 7.5 and 7.7. Assume that there is any edge-labeling λ such
that z(T, λ) = z1. The none-edges in z1 imply that along the two paths from a to
a′ and b to b′ there is no transfer edge, that is, there cannot be any transfer edge in
T; a contradiction.

a maximum size clique of each constituent. The next largest clique disjoint
from Q = Oi Qi is, thus, the join of a largest cliques disjoint from Qi in each
constituent graph Gi. Thus a greedy clique partition of G is obtained by size
ordering the clique partitions of Gi and joining the k-largest cliques from each.

The recursive construction of P(ρT) operates directly on the discriminating
cotree (T, t) of the cograph G. For each node u, the effort is proportional
to |L(T(u))| log(deg(u)) for the deg(u)-wise merge sort step if t(u) = 0 and
proportional to |L(T(u))| for the merging of the k-th largest clusters for t(u) =
1. Using ∑u deg(u)|L(T(u))| ≤ |L(T)|∑u deg(u) ≤ |L(T)|2|E(T)| together
with |E(T)| = |V(T)| − 1 and |V(T)| ≤ 2|L(T)| − 1 (cf. [133, Lemma 1]), we
obtain ∑u deg(u)|L(T(u))| ∈ O(|L(T)|2) = O(|V(G)|2), that is, a quadratic
upper bound on the running time.

In order to complete a given LDT graph (G, σ) to a Fitch graph, i.e., a com-
plete multipartite graph, we can thus apply the recursive procedure in Eq. (41)
to the discriminating cotree (T, t) of G. This yields a partition P(ρT) of V(G)

which corresponds to the independent sets of the complete multipartite graph
z, and thus defines a solution Q := E(z) \ E(G) for Problem 8.2.

All maximum clique partitions of a cograph G have the same sequence of
cluster sizes [98, Thm. 1]. However, they are not unique as partitions of the
vertex set V(G). Thus the minimal editing set Q that needs to be inserted
into a cograph to reach a complete multipartite graphs will not be unique in
general.
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Fig. 75. The LDT graph (G<(S), σ) for the relaxed scenario S has a unique minimum
edge completion set (as determined by full enumeration), resulting in the complete
multipartite graph (z1, σ). However, Thm. 8.3 implies that (z1, σ) is not rs-Fitch
graph. An edge completion set with more edges must be used to obtain an rs-Fitch
graph, for instance (z2, σ), which is explained by the relaxed scenario S′.

However, an optimal solution to Problem 8.2 with input (G, σ) does not
necessarily yield an rs-Fitch graph or an rs-Fitch graph (z(S), σ) such that
G = G<(S), see Fig. 74. In particular, there are LDT graphs (G, σ) for which
more edges need to be added to obtain an rs-Fitch graph than the minimum
required to obtain a complete multipartite graph, see Fig. 75.

A more relevant problems for our purposes, therefore is

Problem 8.3 (rs-Fitch graph completion). Given an LDT graph (G, σ) find a
minimum cardinality set Q of possible edges such that (G + Q, σ) is an rs-Fitch
graph.

The following, stronger version is what we ideally would like to solve:

Problem 8.4 (strong rs-Fitch graph completion). Given an LDT graph (G, σ)

find a minimum cardinality set Q of possible edges such that (z := G + Q, σ) is
an rs-Fitch graph and there is a common scenario S, i.e., S satisfies G = G<(S) and
z = z(S).

The computational complexity of Problems 8.3 and 8.4 is unknown. We
conjecture, however, that the decision versions of both problems are NP-hard.
In contrast to the application of graph modification problems to correct possi-
ble errors in the originally estimated data, the minimization of inserted edges
into an LDT graph lacks a direct biological interpretation. Instead, most-
parsimonious solutions in terms of evolutionary events are usually of interest
in biology. In our framework, this translates to

Problem 8.5 (Min Transfer Completion). Let (G, σ) be an LDT graph and S be the
set of all relaxed scenarios S with G = G<(S). Find a relaxed scenario S′ ∈ S that has
a minimal number of transfer edges among all elements in S and the corresponding
rs-Fitch graph z(S′).

One way to address this problem might be as follows: Find edge-
completion sets for the given LDT graph (G, σ) that minimize the number
of independent sets in the resulting rs-Fitch graph (z := G + Q, σ). The in-
tuition behind this idea is that, in this case, the number of pairs within the
individual independent sets is maximized and thus, we get a maximized set
of gene pairs without transfer along their connecting path in the gene tree.
It remains an open question whether this idea always yields a solution for
Problem 8.5.
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8.6 simulation results

Evolutionary scenarios covering a wide range of HGT frequencies were gen-
erated with the simulation library AsymmeTree [293]. As described in Sec. 3.4,
the tool generates a planted species tree S with time map τS. A constant-rate
birth-death process then generates a “true” gene tree (T̃, τ̃T), i.e., a tree that
still contains leaves corresponding to losses, with additional branching events
producing copies at inner vertex u of S propagating to each descendant lin-
eage of u. To model HGT events, a recipient branch of S is selected at random.
The simulation is event-based in the sense that each node of the true gene tree
other than the planted root is one of speciation, gene duplication, horizontal
gene transfer, gene loss, or a surviving gene. Here, the lost as well as the
surviving genes form the leaf set of T̃.

We used the following parameter settings for AsymmeTree: Planted species
trees with a number of leaves between 10 and 50 (randomly drawn in each
scenario) were generated using the Innovation Model [168] and equipped
with a time map as described in [293]. Multifurcations were introduced into
the species tree by contraction of inner edges with a common probability
p = 0.2 per edge. Gene trees therefore are also not binary in general. We
used multifurcations to model the effects of limited phylogenetic resolution.
Duplication and HGT events, however, always result in bifurcations in the
gene tree T̃ (i.e., the parameter λ was set to zero). To avoid empty LDT and
Fitch graphs, losses were constrained in a such way that at least one gene per
gene tree survives. We considered different combinations of duplication, loss,
and HGT event rates (indicated on the horizontal axis in Figs. 76–78). For
each combination of event rates, we simulated 1000 scenarios per event rate
combination. Fig. 76 summarizes basic statistics of the simulated data sets.

The simulation also determines the set of surviving genes L ⊆ L(T̃), the
reconciliation map µ̃ : V(T̃) → V(S) ∪ E(S) and the coloring σ : L → L(S)
representing the species in which each surviving gene resides. From the true
tree T̃, the observable gene tree T = T̃|L is obtained by recursively removing
leaves that correspond to loss events, i.e. L(T̃) \ L, and suppressing inner ver-
tices with a single child and setting τT(x) = τ̃T(x) and µ(x) = µ̃(x) for all
x ∈ V(T). This defines a relaxed scenario S = (T, S, σ, µ, τT, τS). From the sce-
nario S, we can immediately determine the associated HGT map λS, the Fitch
graph z(S), and the LDT graph G<(S). We also consider S̃ = (T̃, S, σ, µ̃, τ̃T, τS)

which, from a formal point of view, is not a relaxed scenario, see Fig. 77. In
this example, the gene-species association σ : L → L(S) is not a map for the
entire leaf set L(T̃). Still, we can define the true LDT graph G<(S̃) and the
true Fitch graph z(S̃) of S̃ in the same way as LDT graphs using Defs. 7.6, 7.7,
and 8.3, respectively. Note that this does not guarantee that every true Fitch
graph is also an rs-Fitch graph. The example in Fig. 77 shows, furthermore,
that z(S̃)[L] 6= z(S) is possible. For the LDT graphs, on the other hand, we
have G<(S) = G<(S̃) because S̃ and S are based on the same time maps.

The distinction between the true graph z(S̃)[L] and the rs-Fitch graph
z(S) is closely related to the definition of transfer edges. So far, we only
took into account transfer edges uv in the (observable) gene trees T, for
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Fig. 76. Top panel: Distribution of the numbers of species (i.e. species tree leaves),
species thereof that contain at least one surviving genes, surviving genes in total
(non-loss leaves in the gene trees), loss events (loss leaves), and horizontal transfer
events (inner vertices that are HGT events). Bottom panel: Mean and standard devi-
ation of these quantities. The numbers in the legend indicate the mean and standard
deviation taken over all event rate combinations. The tuples on the horizontal axis
give the rates for duplication, loss, and horizontal transfer.

which u and v are mapped to incomparable vertices or edges of the species
trees S (cf. Def. 8.1). Thus, given the knowledge of the relaxed scenario
S = (T, S, σ, µ, τT, τS), these transfer edges are in that sense “visible”. How-
ever, given S̃ = (T̃, S, σ, µ̃, τ̃T, τS), which still contains all loss branches, it is
possible that a non-transfer edge in T corresponds to a path in T̃ which con-
tains a transfer edge w.r.t. S̃, i.e., some edge uv ∈ E(T̃) such that µ̃(u) and
µ̃(v) are incomparable in S. In particular, this is the case whenever a gene
is transferred into some recipient branch followed by a back-transfer into the
original branch and a loss in the recipient branch (see Fig. 77, right). Fig. 77

shows that, in the majority of the simulated scenarios, the HGT information
is preserved in the observable data. In fact, z(S) = z(S̃)[L] in 86.7% of the
simulated scenarios. Occasionally, however, we also encounter scenarios in
which large fractions of the xenologous pairs are hidden from inference by
the LDT-based approach.

Note that the same issue arises in the restriction of a scenario to a subset
L′ of leaves of T and to a subset M′ of leaves of S, which is well-defined as
long as σ(L′) ⊆ M′. One can also define a corresponding restriction of the
reconciliation map µ. Most importantly, the deletion of some leaves of T may
leave inner vertices in T with only a single child, which are then suppressed
to recover a phylogenetic tree. This replaces paths in T by single edges and
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Fig. 77. Left: Fraction of “visible” transfer edges among the “true” transfer edges in
T in the simulated scenarios, i.e., the edges that correspond to a path in T̃ containing
at least one transfer edge w.r.t. S̃ (see also the explanation in the text). The tuples
on the horizontal axis give the rates for duplication, loss, and horizontal transfer.
Since E := E(z(S)) ⊆ Ẽ := E(z(S̃)[L(T)]), we also show the ratio |E|/|Ẽ|. Right:
A relaxed scenario S = (T, S, σ, µ, τT , τS) with an “invisible” transfer edge ua′ (as
determined by the knowledge of S̃ = (T̃, S, σ, µ̃, τ̃T , τS)). In this example we have
z(S̃)[L(T) = {a, a′}] 6= z(S).

thus affects the definition of the HGT map λS since a path in T that contains
two adjacent vertices u1, u2 with incomparable images µ(u1) and µ(u2) may
be replaced by an edge with comparable end points in the restricted scenario
S′. This means that HGT events may become invisible, and thus z(S′) is
not necessarily an induced subgraph of z(S), but a subgraph that may lack
additional edges. Note that this is in contrast to the assumptions made in
the analysis of (directed) Fitch graphs of 0/1-edge-labeled graphs [101, 131],
where the information on horizontal transfers is inherited upon restriction of
(T, λ).

In the following, we will only be concerned with estimating a Fitch graph
z(S), i.e., the graph resulting from the “visible” transfer edges. These were
edgeless in about 17.7% of the observable scenarios S (all parameter combina-
tions taken into account). In these cases the LDT and thus also the inferred
Fitch graphs are edgeless. These scenarios were excluded from further analy-
sis.

We first ask how well the LDT graph G<(S) approximates the Fitch graph
z(S). As shown in Fig. 78, the recall is limited. Over a broad range of pa-
rameters, the LDT graph contains about a third of the xenologous pairs. This
begs the question whether the solution of the editing Problem 8.2, obtained
using the exact recursive algorithm in Eq. (41), leads to a substantial improve-
ment. We find that recall indeed increases substantially, at very moderate
levels of false positives. The editing approach achieves a median precision of
well above 90% in most cases and a median recall of at least 60%, it provides
results that are at the very least encouraging. We find that minimal edge
completion (Problem 8.2) already yields an rs-Fitch graph in the vast majority
of cases (99.8%, scenarios of all parameter combinations taken into account),
even if we restrict the color set to M′ := σ(L) (instead of L(S)) and thus force
surjectivity of the coloring σ. We note that the original LDT graph and the
minimal edge completion may not always be explained by a common relaxed
scenario. This suggests that it will be worthwhile to consider the more diffi-
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Fig. 78. Xenologs inferred from LDT graphs. Only observable scenarios S whose
LDT graph (G<(S), σ) contains at least one edge are included (82.3% of all scenarios).
The tuples on the horizontal axis give the rates for duplication, loss, and horizontal
transfer. Top panel: Recall. Fraction of edges in z(S) represented in G<(S) (light
blue). As an alternative, the fraction of edges in a “minimum edge completion”
(m.e.c.) to the “closest” complete multipartite graph is shown in dark blue. We
observe a substantial increase in the fraction of inferred edges. The Fitch graph
z(S′) obtained from the relaxed scenario S′ produced by Alg. 7 with input (G<(S), σ)
yields an even better recall (light green). Second panel: Increase in the number of
correctly inferred edges relative to the LDT graph G<(S). Third panel: Precision. In
contrast to LDT graphs, which by Thm. 8.1 cannot contain false positive edges, this
is not the case for the estimated Fitch graphs obtained as m.e.c. and by Alg. 7. While
false positive edges are typically rare, occasionally very poor estimates are observed.
Bottom panel: Accuracy.
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cult editing problems for rs-Fitch graphs with a relaxed scenario S that at the
same time explains the LDT graph.

Alg. 7 provides a means to obtain an rs-Fitch graph satisfying the latter con-
straint but without giving any guarantees for optimality in terms of a minimal
edge completion. An implementation is available in the current release of the
AsymmeTree package. For the rs-Fitch graphs z(S′) of the relaxed scenarios S′

constructed by Alg. 7 with (G<(S), σ) as input, we observe another moderate
increase of recall when compared with the minimal edge completion results.
This comes, however, at the expense of a loss in precision. This is not sur-
prising, since z(S′) by construction contains at least as many edges as any
minimal edge completion of G<(S). Therefore, the number of both true posi-
tive and false positive edges in z(S′) can be expected to be higher, resulting
in a higher recall and lower precision, respectively.

The recall is given by TP/(TP + FN), and |E(z(S))| = TP + FN in terms
of true positives TP and false negatives FN. Moreover, G<(S) is a sub-
graph of the Fitch graphs zm.e.c. and z(S′) inferred with editing or with
Alg. 7, respectively. The ratio |E(z(S)) ∩ E(z∗)|/|E(z(S) ∩ E(G<(S)))| with
z∗ ∈ {zm.e.c.,z(S′)} therefore directly measures the increase in the number
of correctly predicted xenologous pairs relative to the LDT. It is equivalent
to the ratio of the respective recalls. By construction, the ratio is always ≥ 1.
This is summarized as the second panel in Fig. 78.

8.7 summary

In this chapter, we have formalized HGT events in the context of relaxed sce-
narios by introducing HGT labelings (Def. 8.1) and rs-Fitch graphs (Def. 8.3).
By Thm. 8.1, the LDT graph of a scenario is always a subgraph of its rs-
Fitch graph. We further showed that LDT graphs describe a sufficient set of
HGT events if and only if they are complete multipartite graphs (Thm. 8.2).
This corresponds to scenarios in which all HGT events are replacing. Other-
wise, additional HGT events exist that separate genes from the same species.
To better understand these, we investigated scenario-derived rs-Fitch graphs
and characterized them in Thm. 8.3 as those complete multipartite graphs
that satisfy an additional constraint on the coloring (expressed in terms of an
auxiliary graph). Although the information contained in LDT graphs is not
sufficient to unambiguously determine the missing HGT edges, we arrive at
an efficiently solvable graph editing problem from which a “best guess” can
be obtained. To our knowledge, this is the first detailed mathematical inves-
tigation into the power and limitation of an implicit phylogenetic method for
HGT inference.

We complement the theoretical findings with simulated scenarios, for
which we find that LDT graphs cover roughly a third of xenologous pairs,
while a simple greedy graph editing scheme can more than double the recall
at moderate false positive rates. This greedy approach already yields a me-
dian accuracy of 89%, and in 99.8% of the cases produces biologically feasible
solutions in the sense that the inferred graphs are rs-Fitch graphs.
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9
C O N C L U S I O N

Graphs appear naturally in computational biology as a means of rep-
resenting answers to yes/no questions in pairwise comparisons of
gene family members. Methods following this paradigm are often

considered to be more robust than e.g. gene tree reconstruction methods
which require that evolution approximately followed a well-behaved Markov
process [15, 133, 293]. Moreover, under the assumption that genes evolve in
a tree-like manner, the graphs resulting from certain yes/no questions often
satisfy specific mathematical properties [101, 102, 132, 180]. This, in turn, pro-
vides an avenue for the correction of initial graph estimates from real-life data
which, due to noise and measurement errors, cannot be expected to perfectly
meet the constraints in general.

This work focused on best match graphs (BMGs) and later-divergence-time
(LDT) graphs, as well as their close relationship with orthology and xenology,
respectively, being two well-known modes of homology.

Best match graphs are centered around the question of whether a gene b
in species B is at least as closely related to a gene a from species A as any
other gene from B. BMGs and their symmetric parts, the RBMGs, have been
introduced and studied earlier in [102, 104], and revisited in this work. This
has led to a number of interesting novel insights. In particular, we derived a
corrected and at the same time simplified characterization of BMGs in terms
of informative triples and the BUILD algorithm. Taking into account the set of
forbidden triples gives an alternative characterization that avoids the explicit
construction of a tree, and, therefore, has proven useful for ILP formulations
of BMG modification problems. Not surprisingly, all of these problems are
NP-complete in general, even if the input digraph has only two colors or
if we constrain the editing result to be explainable by a fully resolved tree.
Such binary-explainable BMGs (beBMGs) have not received much attention be-
fore. Here, we characterized them in terms of a forbidden induced subgraph
– the hourglass – and gave a near-cubic algorithm for the construction of their
unique binary-resolvable tree (BRT). Similarly, a fast algorithm for the recogni-
tion of 2-colored BMGs and the construction of their least resolved trees (LRT)
was developed.

Orthology can be estimated without the necessity for a gene and species
tree reconciliation using best matches as an intermediate step. Consequently,
there are two main sources of error in such an inference pipeline. The first
is the estimation of valid BMGs from sequence similarity or distance data.
While some systematic errors can be largely avoided using outgroup genes
[293], we addressed the question of how to deal with the residual amount
of error by means of arc modification problems. To this end, we explored
several heuristic approaches to BMG editing. Simulation results suggest that,
for moderate levels of noise, the underlying tree structure is preserved in a
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perturbed BMG enabling correction heuristics to produce good approxima-
tions of the unknown “true” BMG. The second problem is the reconstruction
of the orthology graph from a BMG. While it is not possible to logically guar-
antee that reciprocal best matches are indeed orthologs, we showed that, for
duplication-loss scenarios, all unambiguous false positives can be identified
in polynomial time. This extends previous findings [75, 103] and can be
achieved with the augmented tree which is a special refinement of the LRT.
However, even though one obtains a unique orthology graph in this way, the
latter may not be biologically feasible in the sense of [130, 140], i.e., there is
no pair of gene and species tree that admits a reconciliation explaining the
orthology graph. In this case, there is clear evidence for additional false pos-
itives which cannot be unambiguously identified with the knowledge of the
BMG alone.

The relationship of best matches and orthology is less clear in the presence
of HGT and presumably does not admit any mathematical guarantees in this
case. For the application of the results above, it is therefore of interest to iden-
tify maximal HGT-free groups of genes, i.e., such that there is no pair among
them, whose connecting path in the gene tree contains a horizontal trans-
fer. These groups are exactly the (maximal) independent sets of the so-called
Fitch graphs, whose edges correspond to pairs of xenologous genes. Once
the HGT-free groups have been identified, they can be analyzed separately in
the simpler duplication-loss framework, see also [130].

To this end, we conducted an in-depth mathematical investigation of the
combinatorial constraints arising in implicit phylogenetic methods for HGT
inference. More precisely, we introduced the LDT graph which connects two
genes with an edge precisely if they diverged later than the respective species
in which they reside. In the very general framework of relaxed scenarios, LDT
graphs can be characterized as those properly-colored cographs for which a
certain set of species triples is consistent. Moreover, in accordance with the
main idea of implicit HGT detection, the LDT graph is always a subgraph
of the so-called rs-Fitch graph of a relaxed scenario, i.e., all edges in an LDT
graph correspond to pairs of xenologs.

From a data analysis point of view, LDT graphs appear to be an attractive
avenue to infer HGT in practice. While existing methods to estimate them
from (dis)similarity data can certainly be improved, it is possible to use their
cograph structure to correct the initial estimate in the same way as orthology
data [133]. Although the LDT graph modification problems are NP-complete,
it does not appear too difficult to modify efficient cograph editing heuristics
[59, 136] to accommodate the additional coloring constraints.

Several alternative routes could then be followed to obtain Fitch graphs
from LDT graphs. The most straightforward way is to elaborate on the editing
problems briefly discussed in Sec. 8.5. A natural question arising in this con-
text is whether there are non-LDT edges that are shared by all minimal com-
pletion sets and whether these “obligatory Fitch-edges” can be determined
efficiently. A natural alternative is to modify Alg. 7 to incorporate some form
of a cost function to favor the construction of biologically plausible scenarios.
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In a very different approach, one might also consider using LDT graphs as
constraints in probabilistic models to reconstruct scenarios, see e.g. [170, 283].

LDT graphs by themselves clearly do not contain sufficient information to
completely determine a relaxed scenario. Additional information, e.g. a BMG
will certainly be required. Another unresolved question is whether the result-
ing HGT-free subtrees can be combined into a complete scenario using only
relational information such as best match data. One way to tackle this is to
employ the techniques used by Lafond and Hellmuth [181] to characterize
the conditions under which a fully event-labeled gene tree can be reconciled
with unknown species trees. These not only resulted in a polynomial-time
algorithm but also establish additional constraints on the HGT-free subtrees.
An alternative, albeit mathematically less appealing, approach is to adapt
classical phylogenetic methods to accommodate the HGT-free subtrees as
constraints. We suspect that best match data can supply further, stringent
constraints for this task.

Given that a BMG and a Fitch graph have been estimated independently,
one could ask whether there is a common scenario or at least a common leaf-
colored, 0/1-edge-labeled tree (T, λ, σ) that explains them. For binary trees,
this problem has been solved in an upcoming contribution [138]. Therein, it
is characterized when a tree T (or a refinement T∗ thereof) and a partition
P of its leaf set are compatible, i.e., whether there is a subset H ⊆ E(T) (or
H ⊆ E(T∗)) of edges whose removal in the tree exactly induces the partition
P of the leaf set. In particular, this can be decided in linear time. Hence,
one can construct the BRT (T, σ) of a beBMG (~G, σ), and check whether some
refinement T∗ of T and the partition P given by the independent sets of a
Fitch graph are compatible. Since every refinement (T∗, σ) of the BRT again
explains (~G, σ), a common gene tree (T∗, λ, σ) can be obtained by setting
λ(e) = 1 if and only if e ∈ H. Intriguingly, the results in [138] also suggest
that, in some cases, it is possible to obtain a “direction” of the HGT in the
sense of directed Fitch graph [101, 131] given that a BMG (and thus an LRT
or BRT) is supplied.

Alternative approaches to directed Fitch graph inference may exploit the
fact that LDT graphs are not the only conceivable type of accessible xenology
information. A large class of methods is designed to assess whether a single
gene is a xenolog, i.e., whether there is evidence that it has been horizontally
inserted into the genome under consideration. Parametric methods e.g. eval-
uate nucleotide composition patterns to detect foreign genes. In particular,
the recipient species is clear in this case. Such predictions have already been
combined with implicit phylogenetic evidence for HGT using Bayesian meth-
ods [254]. It remains an open question how this information can be utilized
in conjunction with LDT graphs to provide not only additional constraints to
infer rs-Fitch graphs but also the desired directional information.

The notion of relaxed reconciliation maps used here appears to be at least as
general as alternatives that have been explored in the literature. It avoids the
concurrent definition of event types and thus allows situations that may be
excluded in a more restrictive setting. For example, relaxed scenarios may
have two or more vertically inherited genes x and y in the same species with
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u := lcaT(x, y) mapping to a vertex of the species trees. In the usual inter-
pretation, u corresponds to a speciation event (by virtue of µ(u) ∈ V0(S));
on the other hand, the descendants x and y constitute paralogs in most in-
terpretations. Such scenarios are explicitly excluded e.g. in [293]. Lemma 7.3
suggests that relaxed scenarios are sufficiently flexible to make it possible to
replace a scenario S that is “forbidden” in response to such inconsistent inter-
pretations of events by an “allowed” scenario S′ with the same leaf coloring
σ such that G<(S) = G<(S

′). Whether this is indeed true, or whether a more
restrictive definition of reconciliation imposes additional constraints for LDT
graphs will of course need to be checked in each case.

We have discussed horizontal transfers which are invisible due to losses or
restrictions of scenarios to subsets of leaves in Sec. 8.6. This issue is a special
case of the more general problem with the observability of events. Concep-
tually, we assume that evolution followed a true scenario comprising discrete
events (speciations, duplications, horizontal transfer, gene losses, and possi-
bly other events such as hybridization which were not considered here). In
computer simulations, of course, we know this true scenario, as well as all
event types. Gene loss not only renders some leaves invisible but also erases
the evidence of all subtrees without surviving leaves. Removal of these ver-
tices in general results in a non-phylogenetic gene tree that contains inner
vertices with a single child. In the absence of horizontal transfer, this causes
little problems and the unobservable vertices can simply be suppressed, see also
[140]. The situation is more complicated with HGT. In [228], an HGT-vertex
is deemed observable if it has both a horizontally and a vertically inherited
descendant. This type of “vertex-centered” notion of xenology is explored
further in [134]. In our present setting, the scenario retains an HGT edge by
virtue of consecutive vertices in T with incomparable µ-images, irrespective of
whether an HGT vertex is retained. We suspect that these different points of
view can be unified only when gene losses are represented explicitly or when
gene and species trees are not required to be phylogenetic (with single-child
vertices implicating losses). Either extension of the theory, however, requires
a more systematic understanding of which losses need to be represented and
what evidence can be acquired to “observe” them.

A closely related issue concerns the notion of orthology in relaxed scenar-
ios. Pragmatically, one would define two genes x and y to be orthologs if
µ(lcaT(x, y)) ∈ V0(S), i.e., if x and y are the product of a speciation event.
Lemma 7.3 implies that there always is a scenario without any orthologs that
explains a given LDT graph (G, σ). In particular, therefore, (G, σ) makes
no implications on orthology. Conversely, however, orthology information is
available and additional information on HGT might become available. In a
situation akin to Fig. 73 (with the ancestral duplication moved down to the
speciation), knowing that a and b are orthologs in the more restrictive sense
that µ(lcaT(a, b)) = lcaS(σ(a), σ(b)) excludes the r.h.s. scenario and implies
that a′ is the horizontally inherited child, and therefore also that a and a′ are
xenologs. This connection of orthology and xenology is also the subject of
ongoing research.
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In summary, we have obtained characterizations of BMGs, LDT graphs,
and rs-Fitch graphs, and investigated their theoretical potential for the recon-
struction of the orthology and xenology relation. Still, many open questions
and avenues for future research remain. Even though the simulation results
are promising, the applicability of the findings to real-life data has yet to be
assessed. From a theoretical perspective, we have marked out novel possi-
bilities for the reconstruction of gene family histories from relational data.
Complementarily, we have found a number of limitations of the frameworks
considered here. It will be interesting to further explore what kind of mod-
els are required to resolve the remaining ambiguities, whether this can be
achieved on the basis of pairwise comparisons, and, most importantly, what
needs to be measured to obtain the necessary information.
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