352 research outputs found

    Microgrids & District Energy: Pathways To Sustainable Urban Development

    Get PDF
    A microgrid is an energy system specifically designed to meet some of the energy needs of a group of buildings, a campus, or an entire community. It can include local facilities that generate electricity, heating, and/or cooling; store energy; distribute the energy generated; and manage energy consumption intelligently and in real time. Microgrids enable economies of scale that facilitate local production of energy in ways that can advance cost reduction, sustainability, economic development, and resilience goals. As they often involve multiple stakeholders, and may encompass numerous distinct property boundaries, municipal involvement is often a key factor for successful implementation. This report provides an introduction to microgrid concepts, identifies the benefits and most common road blocks to implementation, and discusses proactive steps municipalities can take to advance economically viable and environmentally superior microgrids. It also offers advocacy suggestions for municipal leaders and officials to pursue at the state and regional level. The contents are targeted to municipal government staff but anyone looking for introductory material on microgrids should find it useful

    Coalition Formation of Microgrids with Distributed Energy Resources and Energy Storage in Energy Market

    Get PDF
    Power grids include entities such as home-microgrids (H-MGs), consumers, and retailers, each of which has a unique and sometimes contradictory objective compared with others while exchanging electricity and heat with other H-MGs. Therefore, there is the need for a smart structure to handle the new situation. This paper proposes a bilevel hierarchical structure for designing and planning distributed energy resources (DERs) and energy storage in H-MGs by considering the demand response (DR). In general, the upper-level structure is based on H-MG generation competition to maximize their individual and/or group income in the process of forming a coalition with other H-MGs. The upper-level problem is decomposed into a set of low-level market clearing problems. Both electricity and heat markets are simultaneously modeled in this paper. DERs, including wind turbines (WTs), combined heat and power (CHP) systems, electric boilers (EBs), electric heat pumps (EHPs), and electric energy storage systems, participate in the electricity markets. In addition, CHP systems, gas boilers (GBs), EBs, EHPs, solar thermal panels, and thermal energy storage systems participate in the heat market. Results show that the formation of a coalition among H-MGs present in one grid will not only have a significant effect on programming and regulating the value of the power generated by the generation resources, but also impact the demand consumption and behavior of consumers participating in the DR program with a cheaper market clearing price

    Decision Support for Negotiations among Microgrids Using a Multiagent Architecture

    Get PDF
    [EN] This paper presents a decision support model for negotiation portfolio optimization considering the participation of players in local markets (at the microgrid level) and in external markets, namely in regional markets, wholesale negotiations and negotiations of bilateral agreements. A local internal market model for microgrids is defined, and the connection between interconnected microgrids is based on nodal pricing to enable negotiations between nearby microgrids. The market environment considering the local market setting and the interaction between integrated microgrids is modeled using a multi-agent approach. Several multi-agent systems are used to model the electricity market environment, the interaction between small players at a microgrid scale, and to accommodate the decision support features. The integration of the proposed models in this multi-agent society and interaction between these distinct specific multi-agent systems enables modeling the system as a whole and thus testing and validating the impact of the method in the outcomes of the involved players. Results show that considering the several negotiation opportunities as complementary and making use of the most appropriate markets depending on the expected prices at each moment allows players to achieve more profitable results

    Realizing the potential of distributed energy resources and peer-to-peer trading through consensus-based coordination and cooperative game theory

    Get PDF
    Driven by environmental and energy security concerns, a large number of small-scale distributed energy resources (DERs) are increasingly being connected to the distribution network. This helps to support a cost-effective transition to a lower-carbon energy system, however, brings coordination challenges caused by variability and uncertainty of renewable energy resources (RES). In this setting, local flexible demand (FD) and energy storage (ES) technologies have attracted great interests due to their potential flexibility in mitigating the generation and demand variability and improving the cost efficiency of low-carbon electricity systems. The combined effect of deregulation and digitalization inspired new ways of exchanging electricity and providing management/services on the paradigm of peer-to-peer (P2P) and transparent transactions. P2P energy trading enables direct energy trading between prosumers, which incentivizes active participation of prosumer in the trading of electricity in the distribution network, in the meantime, the efficient usage of FD and ES owned by the prosumers also facilitates better local power and energy balance. Though the promising P2P energy trading brings numerous advancements, the existing P2P mechanisms either fail to coordinate energy in a fully distributed way or are unable to adequately incentivize prosumers to participate, preventing prosumers from accessing the highest achievable monetary benefits and/or suffering severely from the curse of dimensionality. Therefore, this thesis aims at proposing three P2P energy trading enabling mechanisms in the aspect of fully distributed efficient balanced energy coordination through consensus-based algorithm and two incentivizing pricing and benefit distribution mechanisms through cooperative game theory. Distributed, consensus-based algorithms have emerged as a promising approach for the coordination of DER due to their communication, computation, privacy and reliability advantages over centralized approaches. However, state-of-the-art consensus-based algorithms address the DER coordination problem in independent time periods and therefore are inherently unable to capture the time-coupling operating characteristics of FD and ES resources. This thesis demonstrates that state-of-the-art algorithms fail to converge when these time-coupling characteristics are considered. In order to address this fundamental limitation, a novel consensus-based algorithm is proposed which includes additional consensus variables. These variables express relative maximum power limits imposed on the FD and ES resources which effectively mitigate the concentration of the FD and ES responses at the same time periods and steer the consensual outcome to a feasible and optimal solution. The convergence and optimality of the proposed algorithm are theoretically proven while case studies numerically demonstrate its convergence, optimality, robustness to initialization and information loss, and plug-and-play adaptability. Moreover, this thesis proposes two computationally efficient pricing and benefit distribution mechanisms to construct a stable grand coalition of prosumers participating in P2P trading, founded on cooperative game-theoretic principles. The first one involves a benefit distribution scheme inspired by the core tatonnement process while the second involves a novel pricing mechanism based on the solution of single linear programming. The performance of the proposed mechanisms is validated against state-of-the-art mechanisms through numerous case studies using real-world data. The results demonstrate that the proposed mechanisms exhibit superior computational performance than the nucleolus and are superior to the rest of the examined mechanisms in incentivizing prosumers to remain in the grand coalition.Open Acces

    Location Awareness in Multi-Agent Control of Distributed Energy Resources

    Get PDF
    The integration of Distributed Energy Resource (DER) technologies such as heat pumps, electric vehicles and small-scale generation into the electricity grid at the household level is limited by technical constraints. This work argues that location is an important aspect for the control and integration of DER and that network topology can inferred without the use of a centralised network model. It addresses DER integration challenges by presenting a novel approach that uses a decentralised multi-agent system where equipment controllers learn and use their location within the low-voltage section of the power system. Models of electrical networks exhibiting technical constraints were developed. Through theoretical analysis and real network data collection, various sources of location data were identified and new geographical and electrical techniques were developed for deriving network topology using Global Positioning System (GPS) and 24-hour voltage logs. The multi-agent system paradigm and societal structures were examined as an approach to a multi-stakeholder domain and congregations were used as an aid to decentralisation in a non-hierarchical, non-market-based approach. Through formal description of the agent attitude INTEND2, the novel technique of Intention Transfer was applied to an agent congregation to provide an opt-in, collaborative system. Test facilities for multi-agent systems were developed and culminated in a new embedded controller test platform that integrated a real-time dynamic electrical network simulator to provide a full-feedback system integrated with control hardware. Finally, a multi-agent control system was developed and implemented that used location data in providing demand-side response to a voltage excursion, with the goals of improving power quality, reducing generator disconnections, and deferring network reinforcement. The resulting communicating and self-organising energy agent community, as demonstrated on a unique hardware-in-the-loop platform, provides an application model and test facility to inspire agent-based, location-aware smart grid applications across the power systems domain

    Self-organizing Coordination of Multi-Agent Microgrid Networks

    Get PDF
    abstract: This work introduces self-organizing techniques to reduce the complexity and burden of coordinating distributed energy resources (DERs) and microgrids that are rapidly increasing in scale globally. Technical and financial evaluations completed for power customers and for utilities identify how disruptions are occurring in conventional energy business models. Analyses completed for Chicago, Seattle, and Phoenix demonstrate site-specific and generalizable findings. Results indicate that net metering had a significant effect on the optimal amount of solar photovoltaics (PV) for households to install and how utilities could recover lost revenue through increasing energy rates or monthly fees. System-wide ramp rate requirements also increased as solar PV penetration increased. These issues are resolved using a generalizable, scalable transactive energy framework for microgrids to enable coordination and automation of DERs and microgrids to ensure cost effective use of energy for all stakeholders. This technique is demonstrated on a 3-node and 9-node network of microgrid nodes with various amounts of load, solar, and storage. Results found that enabling trading could achieve cost savings for all individual nodes and for the network up to 5.4%. Trading behaviors are expressed using an exponential valuation curve that quantifies the reputation of trading partners using historical interactions between nodes for compatibility, familiarity, and acceptance of trades. The same 9-node network configuration is used with varying levels of connectivity, resulting in up to 71% cost savings for individual nodes and up to 13% cost savings for the network as a whole. The effect of a trading fee is also explored to understand how electricity utilities may gain revenue from electricity traded directly between customers. If a utility imposed a trading fee to recoup lost revenue then trading is financially infeasible for agents, but could be feasible if only trying to recoup cost of distribution charges. These scientific findings conclude with a brief discussion of physical deployment opportunities.Dissertation/ThesisDoctoral Dissertation Systems Engineering 201

    Generation expansion planning in electricity market considering uncertainty in load demand and presence of strategic GENCOs

    Get PDF
    This paper presents a new framework to study the generation capacity expansion in a multi-stage horizon in the presence of strategic generation companies (GENCOs). The proposed three-level model is a pool-based network-constrained electricity market that is presented under uncertainty in the predicted load demand modeled by the discrete Markov model. The first level includes decisions related to investment aimed to maximize the total profit of all GENCOs in the planning horizon, while the second level entails decisions related to investment aimed at maximizing the total profit of each GENCO. The third level consists of maximizing social welfare where the power market is cleared. The three-level optimization problem is converted to a one-level problem through an auxiliary mixed integer linear programming (MILP) using primal–dual transformation and Karush–Kuhn–Tucker (KKT) conditions. The efficiency of the proposed framework is examined on MAZANDARAN regional electric company (MREC) transmission network – a part of the Iranian interconnected power system. Simulation results confirm that the proposed framework could be a useful tool for analyzing the behaviour of investment in electricity markets in the presence of strategic GENCOs

    Efficient Coordinated Power Distribution on Private Infrastructure

    Get PDF
    Current power distribution network design makes it attractive for agents to generate their own power (distributed generation) and to construct private infrastructure (e.g., distribution lines) to exchange power without using the main public grid. We show that such private transactions may increase overall network load because of increased transmission distances, thus increasing resistive losses. We present a coordination scheme for the centralized control of private infrastructure that satisfies participation constraints and budget balance. Experiments show that our scheme reduces distribution losses by 4-5 % when there are only a constant number of private lines and by 55%-60 % when the number of private lines is proportional to the number of agents
    • …
    corecore