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Coalition Formation of Microgrids with
Distributed Energy Resources and Energy

Storage in Energy Market
Jaber Valinejad, Student Member, IEEE, Mousa Marzband, Senior Member, IEEE, Mert Korkali, Senior

Member, IEEE, Yijun Xu, Member, IEEE, and Ameena Saad Al-Sumaiti, Member, IEEE

Abstract——Power grids include entities such as home-mi‐
crogrids (H-MGs), consumers, and retailers, each of which has
a unique and sometimes contradictory objective compared with
others while exchanging electricity and heat with other H-MGs.
Therefore, there is the need for a smart structure to handle the
new situation. This paper proposes a bilevel hierarchical struc‐
ture for designing and planning distributed energy resources
(DERs) and energy storage in H-MGs by considering the de‐
mand response (DR). In general, the upper-level structure is
based on H-MG generation competition to maximize their indi‐
vidual and/or group income in the process of forming a coali‐
tion with other H-MGs. The upper-level problem is decomposed
into a set of low-level market clearing problems. Both electrici‐
ty and heat markets are simultaneously modeled in this paper.
DERs, including wind turbines (WTs), combined heat and pow‐
er (CHP) systems, electric boilers (EBs), electric heat pumps
(EHPs), and electric energy storage systems, participate in the
electricity markets. In addition, CHP systems, gas boilers
(GBs), EBs, EHPs, solar thermal panels, and thermal energy
storage systems participate in the heat market. Results show
that the formation of a coalition among H-MGs present in one
grid will not only have a significant effect on programming and
regulating the value of the power generated by the generation
resources, but also impact the demand consumption and behav‐
ior of consumers participating in the DR program with a cheap‐
er market clearing price.

Index Terms——Microgrids, distributed energy resource (DER),
electricity market, heat market, demand response (DR), coali‐
tion formation, energy storage.

I. INTRODUCTION

IN recent years, there have been significant efforts to im‐
prove the technical and economic performance of smart

grids, with the presence of different players making deci‐
sions in these grids [1], [2]. Such a small-scale grid inside
the market environment permits energy exchange among dis‐
tributed energy resources (DERs) and home-microgrids (H-
MGs) through a pool market [3], [4]. In this market, the im‐
portance of the demand response (DR) in the energy manage‐
ment of microgrids is clear. Demand-side management
(DSM) topics are focused on energy consumption control at
the consumer side [5], [6]. Such energy control is coordinat‐
ed by electric utilities, companies, and enterprises without
controlling DERs [7]-[9]. When the latter is controlled, it is
defined as energy management [10], [11]. The DR consider‐
ing the energy optimization of heating ventilation and air
conditioning (HVAC) systems is considered in [12]-[14]. In
[12], the authors develop a price-responsive DR for HVAC
systems of buildings. They also consider DERs, including
photovoltaic (PV) generation and energy storage (ES).

The objective of this paper is first to propose a base
framework for the demand of consumers encompassing H-
MGs, and second, to determine profits that can be made
from independently operating H-MGs or in a coalitional
structure in a daily energy-hub market [15], [16]. Energy-
hub markets have been investigated in various models. In
[17], the authors propose a stochastic bilevel model for the
energy-hub market from the perspective of energy hub man‐
agers. In this paper, the energy-hub manager is modeled at
the first level, while the clients are modeled at the second
level. A mathematical program that uses an equilibrium con‐
straint framework to model the strategic behaviors of multi-
carrier energy systems is proposed in [18]. In [19], the au‐
thors provide an operation optimization model for electricity,
natural gas, and heat systems by considering DSM as well
as ES. In [20], the effects of individuals, sharing markets,
and aggregation in the energy-hub market are studied under
a stochastic scheme with probabilistic demand forecasts. In
[21], the authors propose a stochastic optimal bidding strate‐
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gy for an energy hub to benefit from day-ahead and real-
time markets. The uncertainty encompasses real-time market
prices, day-ahead market prices, as well as wind generation.
A three-level energy-hub framework is proposed in [22] to
model the effect of multiple energy suppliers and end-users.
The first level includes an electricity utility company and a
natural gas utility company; the second level includes multi‐
ple same-structured smart energy hubs; finally, the third lev‐
el includes multiple users. In this paper, the energy exchange
among H-MGs is formulated as a scheduling game, and com‐
petitive monopolies are modeled and simulated in a formulat‐
ed non-linear optimization problem [23], [24]. These monop‐
olies are based on three contradictory objectives: income
maximization of H-MGs and retailers, reduction of consum‐
er costs, and reduction of demand peak [25].

To satisfy objective functions, a bilevel hierarchical inter‐
active architecture (BL-HIA) algorithm on the condition of
reaching a maximum profit is proposed for both the consum‐
er and the power generator sides [26]-[28]. The optimum per‐
formance problem is presented for all DERs present in multi‐
ple H-MGs as a BL-HIA [29], [30]. The upper-level targets
maximize the profit of H-MGs through energy exchange
among H-MGs as well as between H-MGs and retailers to
achieve the central optimum performance of a decision-mak‐
er [30], [31]. By contrast, the lower level of the hierarchal
structure of the problem represents an equilibrium problem
that incorporates DSM to obtain the optimal performance of
multiple H-MGs [5], [10]. This way, while considering an in‐
dependent or a coalitional performance of all H-MGs, a cen‐
tral optimum performance decision-maker is included in an
upper-level decision-maker to obtain energy optimum ex‐
change among H-MGs and with retailers in an independent
and a coalitional performance to maximize the profit of H-
MGs [32] - [34]. The interaction between the two levels of
the hierarchal structure of the game is a factor in the search
for the optimal solution at both levels [8], [10], [35]. Consid‐
eration of the optimal scheduling of all H-MGs and DERs
that exist in them in multiple H-MGs requires solving mathe‐
matical programming with equilibrium constraints (MPECs)
that are equivalent to the bilevel problem [36]. This bilevel
problem can be considered as a multiple-leader-common-fol‐
lower game. The aim of implementing this game structure is
to find a final equilibrium point in which none of the H-
MGs or consumers can increase their profit by varying the
generation or consumption schedules. Furthermore, the BL-
HIA structure accounts for decisions resulting from the for‐
mation of a coalition among H-MGs to maximize the profit
as well as to exchange energy among them.

The contribution in this work can be summarized as fol‐
lows. First, the proposed BL-HIA structure is preferred over
the proposed structure in [37] as it is a multi-ownership
structure that permits the formation of a coalition among H-
MGs or explicitly increases the competition among H-MGs
and consumers, rather than an independent operation of H-
MGs. Second, the BL-HIA is adequate for modeling prob‐
lems with several leaders (i.e., H-MGs) having individual ob‐
jective functions when operating independently or in a coali‐
tional manner (upper-level problem). Such a game aims to

optimize several followers, i.e., consumers inserted in the bi‐
level structure. These models are related to situations where
actions and followers’ performances in BL-HIA have a sig‐
nificant effect on decisions made by leaders. This fact is re‐
lated to the case in which the profit of H-MGs (a leader) de‐
pends on the amount of energy that is supplied to the exist‐
ing consumers in a power grid (as a follower). The general
view of the hierarchical structure and optimization problems
is shown with the proposed model in Fig. 1, where UL:A...
LL:BC implies that the HMG A is modeled at the upper lev‐
el, while HMGs B and C are modeled at the lower level;
DERs encompass a set of distributed generation, electric,
and thermal ES systems; EMS stands for energy manage‐
ment system; CEMS stands for centralized energy manage‐
ment system. Third, a better strategy that maximizes consum‐
ers’ satisfaction in terms of demand-supply as well as the
profit of H-MGs is presented compared with a single-level
structure. Finally, the BL-HIA structure is solved by formu‐
lating an equivalent one-level model deploying the Karush-
Kuhn-Tucker (KKT) optimization conditions.

The innovations in this paper can be summarized as fol‐
lows:

1) Development of an optimum programming solution with‐
in H-MG generation as a BL-HIA structure.

2) Providing a multiple-leader-common-follower game that
indicates the effectiveness of the market competition in mul‐
tiple H-MGs by solving a BL-HIA structure.

3) Development of a new model for DSM.
4) Facilitating both DR resources and storage devices in

the market operation to achieve a comprehensive solution
that exploits all flexibilities.

5) Proposal for advanced electricity and heat markets for
active distribution networks based on game theory.

II. PROPOSED BL-HIA STRUCTURE

The problem encountered by H-MGs for an independent

Coalition
UL:A...L:BC
UL:B...LL:AC
UL:C...LL:AB
UL:AB...LL:C
UL:AC...LL:B
UL:BC...LL:A

Variable DERs, consumers,
load shifting of building

with higher priority

DER profit

Load shifting
profit

Profit maximization
of each H-MG

with higher priority

DER profit

Load shifting
profit

Profit maximization
of each H-MG

with lower priority

Upper level Lower levelVariable DERs, consumers,
H-MGs, load shifting with
lower priority, electricity

prices and market hourly heat

CEMS EMS

Fig. 1. Proposed BL-HIA structure illustrating a variety of coalition forma‐
tions among H-MGs.
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or a coalitional operation can be modeled as a bilevel struc‐
ture that is a decision-making problem, including several
agents that try to optimize their corresponding objective
functions on a connectable dependent set. In fact, an agent is
an object that can act as a DER or that is connected to other
units. The BL-HIA structure is shown in Fig. 2. The upper-
level problem focuses on maximizing the profit of H-MGs
having a higher priority of operating in an independent or a
coalitional operation on the condition that satisfies upper-lev‐
el constraints and a set of lower-level problems. H-MGs
with a higher priority of operation in the upper-level prob‐
lem are identified based on their price bids. Upper-level con‐
straints include limits on the quantity and supply bids of
DERs, the minimum accessible power capacity by the mar‐
ket regulator, and purchasing/selling quantities by H-MGs
and retailers. The lower-level problem states the market
clearing prices (MCPs) to maximize the profit of H-MGs
having lower priority of operation subject to meeting equilib‐
rium constraints for each H-MG, generation/consumption
limits, and the number of consumers participating in the
DSM program.

As shown in Fig. 2, the higher priority of H-MG opera‐
tion (in an independent or a coalitional operation) is defined
by the energy excess/shortage gap and the supply/demand
bid that permits a maximization of an expected profit. Maxi‐
mizing the profit of each H-MG is achieved by considering
that each agent in the lower-level problem shows an optimal
operation corresponding to the income of H-MGs with the
higher priority of operation based on the offered price. This
optimal operation includes an estimation of the demand sup‐
plied and shifted by each consumer in an independent or a
coalitional operation. It should be noted that the competition
among H-MGs with higher and lower priority (or competi‐
tor’s H-MGs) is explicitly modeled at the upper and lower
levels. It should also be noted that the upper-level and lower-

level problems shown in Fig. 2 are related to each other. In
other words, lower-level problems estimate the price and the
number of competitor H-MGs, which directly affect the prof‐
it of H-MGs inserted in the above problem. In other words,
decisions related to the formation of a coalition or that take
a bidding strategy by the competitor’s strategic H-MGs in
the upper-level problem also have a significant effect on the
MCP that results from the lower-level problem.

In the BL-HIA structure, the uncertainty of pool prices,
electric/thermal load demands, and purchasing/selling prices
of H-MGs are also considered. In [38] and [39], the authors
use a polynomial chaos method to consider uncertainties. In
addition, the proposed bilevel model has been simplified as
a one-level problem using the KKT method [40].

III. DECISION-MAKING PROCESS USING BL-HIA STRUCTURE

The decision-making process in the BL-HIA structure of
H-MGs, consumers, and retailers can be summarized as
shown in Fig. 3. At the beginning of the scheduling horizon,
each H-MG presents the necessary decisions on DSM for an
independent or a coalitional operation with other H-MGs.
Moreover, supply/demand bids are provided to the consum‐
ers during this horizon. These decisions are made consider‐
ing the uncertainties of future pool market prices, consum‐
ers’ load profiles, and supply bids of H-MGs of the competi‐
tor. The supply bids are a function of the cost of the DER in‐
stalled in the H-MG.

1) Consumers’ choice of energy provider: when each H-
MG offers a supply bid, consumers are to choose an H-MG
as an energy provider to their electric/thermal load during
the scheduling horizon. These decisions are made based on
reliable information on such prices, which are estimated con‐
sidering the uncertainties of pool prices and demand. For
modeling purposes, several sets of consumers are created by
grouping consumers with similar specifications responding
to offered prices of the H-MG.

2) Energy exchange by H-MGs in a pool market: after sta‐
bilizing the performance of H-MGs (an independent or a co‐
alitional operation) and setting supply and demand bids,
each H-MG can decide in each time interval of the schedul‐
ing horizon on the quantity (to/from other H-MGs in the
pool market) to supply the demand of their consumers.

Wind
speed

prediction

Power
generated

by WT

Solar
irradiance
prediction

Power
generated

by PV

Electricity
price

prediction

Load
forcasting

Modeling uncertainty using Taghochi method

DERs (maximizing profit)

Retailers
(maximizing

profit)

H-MGs with higher priority in
independent or coalitional

operation (maximizing profit)

Retailers
(maximizing

profit)

H-MGs with lower priority in
independent or coalitional

operation (maximizing profit)

Equilibrium
between upper
and lower level

Generation and
consumption resource

optimum offer

Upper
level

Lower
level

Fig. 2. BL-HIA structure.

Planning horizon

Selection of the upstream
grid or H-MGs for
coalition formation

and the selling prices
offered to the consumers

(H-MGs and retailers)

Prior to the
planning horizon

Selection of the DER for
the planning horizon

(H-MGs and consumers)

Pool trading decisions in each
period of the planning horizon

(H-MGs, consumers, and retailers)

…

Fig. 3. Decision-making process.
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IV. PROBLEM FORMULATION

The scheduling problem of H-MGs is formulated in a BL-
HIA structure. It should be noted that dual variables have been
separated by a comma after equality and inequality con‐
straints. This section briefly presents models deployed for load
shifting, and those representing the interaction among DER, H-
MGs, consumers, and retailers as well as the coalition among
H-MGs. Then, BL-HIA problem formulation is presented.

The consumers of H-MGs are considered to be responsive
loads, so they participate in DSM. Hence, we first provide
our DR model. In addition, because each H-MG consists of
a set of DERs, we offer the comprehensive model of wind
turbine (WT), CHP system, EB, EHP, GB, and solar thermal
panel (STP). In addition to DERs, H-MGs can include ES.
Therefore, we provide models for both electric ES and ther‐
mal energy storage (TES). The constraints related to electric
and thermal price bids are explained in the next step. Final‐
ly, we provide detailed explanations regarding independent
and coalitional operation of H-MGs.

A. DR Objective Function and Constraints

The responsive load demand (RLD) constraints describe
DR programs where consumers can reduce their consump‐
tion during certain time intervals and/or shift part of their
consumption to the next time intervals or before the main
time interval. The initial load demand value is defined as the
sum of the predicted power demand and the value of the
load participating in the RLD program in each H-MG. The
initial load demand value can be defined as the value of the
load shifting to time interval t and/or as the negative value
of the load shifting from this time to other time. The maxi‐
mum H-MG demand consumed in each time interval t is
equal to the sum of the initially expected demand and the
RLD+ value when the load is shifted to this time interval mi‐
nus the value of RLD-, where RLD+ is the amount of RLD
that goes from other time periods to time t and RLD- is the
amount of RLD that comes to other time period from time t.

The profit resulting from the participation of consumers in
DSM program is calculated from (1).

maxRDSM
i = 0.5∑

t′ = 1

T

P DSMe
it′w (λ͂MCP

tw - λ͂MCP
t′w ) (1)

P DSMe
itw = P͂ DSMe

itw +∑
t′

P DSMe
itt′w ′: γDSMe

itw (2)

∑
t® t′

P DSMe
itt′w ′ £ P͂ DSMe

itw :
-
η

DSMe

itw
"λ͂MCP

tw > λ͂MCP
t′w "P DSMe

itt′w ′ > 0 (3)

P DSMe
itt′w ′ > 0:-η

DSMe

itt′w (4)

P DSMe
itt′w ′ = 0:ηDSMe

itt′w "t = t′ (5)

where P DSMe
itw and P DSMe

it′w are the active power consumed by
the consumers at H-MG i at time t and t′ in scenario w, re‐
spectively; P͂ DSMe

itw is the predicted load power consumed by
the consumers in H-MG i at time t in scenario w; P DSMe

itt′w ′ is
the shifted load power from time interval t to time interval t′
at H-MG i in scenario w; λ͂MCP

tw and λ͂MCP
t′w are the values of pre‐

dicted MCP at time t and t′ in scenario w, respectively; and
T is the number of time periods.

Constraint (3) states that if the value of the demand shift‐
ed from time interval t to t′ is given when λ͂MCP

tw > λ͂MCP
t′w , this

value is not to exceed the predicted load value at t, i. e.,
P͂ DSMe

itw . Constraints (4) and (5) are set to ensure that the load
shifting is not defined for the same interval. The load shifted
from t to t′ is equivalent to the negative value of the demand
deducted from the predicted demand at t, as described by:

P DSMe
itt′w ′ =-P DSMe

itt′w ′:ηDSMe
itt′w ′ (6)

Figure 4 provides the presented model diagram for RLD
where P DSM+ e

itw is the positive DR (final demand increases)
and P DSM- e

itw is the negative DR (final demand decreases).
The proposed RLD model has been developed to join both
RLD and DERs in each H-MG. From the supply perspec‐
tive, each H-MG can use its DERs to generate power under
certain conditions to sell to other H-MGs and/or retailers
that are constrained by the value of its maximum generated
power and which is proportional to the price and gained
profit. In this way, H-MG can use its DERs at the power lev‐
el and specified price offer during each time interval. There‐
fore, the DERs of each H-MG can be planned in combina‐
tion with other DERs of other H-MGs by investigating the
constraints related to the value of the price bid of RLDs of
the same H-MG and other RLDs. With this method, it is as‐
sumed that H-MGs satisfy their load demand need while pre‐
senting a reward to consumers to reduce the consumed load
demand as well as the DER units for desirable production.
From the perspective of consumers, it is assumed that each
H-MG can manage its load demand as accumulated by gath‐
ering all existing loads in that H-MG. The proposed EMS es‐
timates the value of load shifting during each time interval
proportional to the load shifting cost for each shift possibili‐
ty and is also proportional to the profit obtained by the H-
MG. With this method, the H-MG operator minimizes the to‐
tal performance costs of the total daily programming and/or
the maximum total gained profit. Similar concepts can also
be generalized for coalition formation.

B. Objective Function and Constraints of DERs

1) Objective Function and Constraints of CHP System
The objective is to maximize the profit that can be made

through participation of CHP systems in the DSM program,
as in (7).

maxRCHP
ij =∑

t = 1

T

P CHPe
ijtw π CHPe

ijtw +P CHPh
ijtw π CHPh

ijtw -
P CHPh

ijtw

N CHPh
i

πFU (7)

-P
CHPe
ij

£P CHPe
ijtw £ -P

CHPe
ij : -η

CHPe

ijtw
-η

CHPe

ijtw (8)

Time
~

t1 t2 t3 t4 t5 t6 t7 t8 t24

Consumed
power

Pitw          ;DSM+,e Pitw          ;DSM�,e Pitw       ;DSM,e Pitw
DSM,e

Fig. 4 Model diagram for RLD.
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-P
CHPh
ij

£P CHPh
ijtw £ -P

CHPh
ij : -η

CHPh

ijtw
-η

CHPh

ijtw (9)

P CHPe
ijtw = ζ CHPe

ij ×FU CHP
tw + ζ CHPe

ij ′: γCHPe
ijtw (10)

P CHPh
ijtw =FU CHP

tw ·ζ CHPh
ij : γCHPh

ijtw (11)

where P CHPe
ijtw and P CHPh

ijtw are the electric power and thermal
power consumed by CHP system j at H-MG i at time t in
scenario w, respectively; π CHPe

ijtw and π CHPh
ijtw are the electric and

thermal selling price bids of CHP system j at H-MG i at
time t in scenario w, respectively; πFU is the offer price of
natural gas; N CHPh

i is the CHP fuel factor; -P
CHPe
ij

and
-
P

CHPe
ij

are the lower and upper limitations of P CHPe
ijtw , respectively;

-P
CHPh
ij

and
-
P

CHPh
ij are the lower and upper limitations of

P CHPh
ijtw , respectively; ζ CHPe

ij and ζ CHPe
ij ′ are the electrical effi‐

ciencies of the CHP system, and ζ CHPe
ij together with the

amount of fuel influences the amount of electricity produced
by CHP, and ζ CHPe

ij ′ directly influences the amount of elec‐
tricity produced by CHP by itself (not dependent on the
amount of fuel); ζ CHPh

ij is the thermal efficiency of CHP sys‐
tem; and FU CHP

tw is the fuel consumed by CHP system at
time t in scenario w.

Constraints (8) and (9) state upper and lower limits on the
power generated by the CHPs. Equations (10) and (11) de‐
scribe the power and heat generated by the CHPs as a func‐
tion of the system efficiency and fuel.
2) Objective Function and Constraints of WT

The profit resulting from the participation of WT in the
DSM program is calculated by (12).

maxRWT
ij =∑

t = 1

T

P WT
ijtw π

WT
ijtw (12)

0£P WT
ijtw £

-
P

WT

ij : -ζ
WTe

tw
-ζ

WTe

tw (13)

where P WT
ijtw is the power consumed by WT j at H-MG i at

time t in scenario w; πWT
ijtw is the selling price bid by WT j at

H-MG i at time t in scenario w; and
-
P

WT

ij is the maximum
power generated by WT j at H-MG i.

Constraint (13) and similar constraints for determining the
limit on DER resources state the programmed power genera‐
tion of controllable and non-controllable resources of DER.
Constraint (13) is related to the electric power of WT whose
maximum limit is a parameter having some degree of uncer‐
tainty.
3) Constraints of EB

The profit made by the participation of EB in the DSM
program is calculated by (14).

maxREB
ij =P EBh

ijtw π
EBh
ijtw -P EBe

ijtw π
EBe
ijtw (14)

P EBh
ijtw = ζ EB

ij P EBe
ijtw :ζ EBh

tw (15)

0£P EBh
ijtw £ -P

EBh
ij :-η

EBh

ijtw
-η

EBh

ijtw (16)

where P EBe
ijtw and P EBh

ijtw are the electric power and thermal pow‐
er consumed by EB, respectively; π EBe

ijtw and π EBh
ijtw are the elec‐

tric and thermal selling price bids of EB, respectively;
-
P

EBh
ij

is upper limitation of P EBh
ijtw ; and ζ EB

ij is the thermal efficiency
of EB.

Constraints (15) and (16) state the consumed amount of

electric power and the generated heat in the EB, respectively.
4) Objective Function and Constraints of EHP

The profit made by the participation of EHP in the DSM
program is calculated by (17).

maxREHP
ij =P EHPh

ijtw π EHPh
ijtw -P EHPe

ijtw π EHPe
ijtw (17)

P EHPh
ijtw =COPEHP·P EHPe

ijtw :γHPh
ijtw (18)

0£P EHPh
ijtw £ -P

EHPh
ijtw :-η

EHPh

ijtw
-η

EHPh

ijtw (19)

where P EHPe
ijtw and P EHPh

ijtw are the electric power and thermal
power consumed by EHP, respectively; π EHPe

ijtw and π EHPh
ijtw are

the electric and thermal selling price bids of EB, respective‐

ly;
-
P

EHPh
ij is the upper limitation of P EHPh

ijtw ; and COPEHP is the
coefficient of performance of EHP.

Equation (18) describes the relation between the con‐
sumed amount of electric and thermal power generated by
the thermal pump. In addition, (19) represents limits on the
thermal generation.
5) Objective Function and Constraints of GB

The profit made by the participation of GB in the DSM
program is calculated by (20).

maxRGB
ij =∑

t = 1

T ( )P GB
ijtwπ

GB
ijtw -

P GB
ijtw

N GB
ij

πFU (20)

0£P GB
ijtw £

-
P

GB

ij :-η
GBh

ijtw
-η

GBh

ijtw (21)

P GBh
ijtw =FU GB

tw ·ζ GBh
ij :γGBh

ijtw (22)

where P GB
ijtw is the power consumed by GB; π GB

ijtw is the selling
price bid by GB; N GB

ij is the GB fuel factor ; FU GB
tw is the fu‐

el consumed by GB; ζ GBh
ij is the thermal efficiency of GB;

-
P

GB

ij is the maximum power generated by GB; and P GBh
ijtw is

the thermal power consumed by EB.
Constraint (21) states the allowable limits on the heat gen‐

erated by the GB.
6) Objective Function and Constraints of STP

The profit made by the participation of STP in a DSM
program is calculated by (23).

maxRSTP
ij =∑

t = 1

T

P STP
ijtw π

STP
ijtw (23)

0£P STP
ijtw £ -P

STP

ij :-η
STPh

ijtw
-η

STPh

ijtw (24)

where P STP
ijtw is the power consumed by STP; π STP

ijtw is the sell‐

ing price bid by STP; and
-
P

STP

ij is the maximum power gener‐
ated by STP.

Constraint (24) states the allowable limits of heat genera‐
tion for the operation of an STP. Together with a WT, the
maximum limit of STP is also considered to be an uncertain‐
ty factor.

C. Objective Functions and Constraints of ES/TES

The profit realized by the participation of an ES/TES sys‐
tem in a DSM program is measured by (25).

maxRES/TES
ij =∑

t = 1

T

P ES/TES
ijtw π ES/TES

ijtw (25)
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-P
ES/TES

ij
£P ES/TES

ijtw £ -P
ES/TES

ij :-η
ES/TES

tw
-η

ES/TES

tw (26)

SOC ES/TES
ijtw = SOC ES/TES

ij(t - 1)w +
P ES/TES

ijtw

-
P

ES/TES

ij

:γES/TES
ijtw (27)

- -- ---SOC ES/TES

ij
£ SOC ES/TES

ijtw £ - -- ---
SOC

ES/TES

ij :-η
ES/TESSOC

ijtw
-η

ES/TESSOC

ijtw (28)

SOC ES/TES
ij(t - 1)w = SOC ES/TESini

ij :γES/TES
ijtw ′ (29)

SOC ES/TES
ij(t - 24)w = SOC ES/TESend

ij :γES/TES
ijw ″ (30)

where P ES/TES
ijtw is the power consumed by ES/TES; π ES/TES

ijtw is
the selling price bid by ES/TES; -P

ES/TES

ij
and

-
P

ES/TES

ij are the

minimum and maximum power generated by ES/TES, re‐
spectively; SOC ES/TES

ijtw is the value of state of charge (SOC) re‐
lated to ES/TES; SOC ES/TESini

ij and SOC ES/TESend
ij are the initial

and final values of SOC related to ES/TES, respectively;
and - -- ---SOC ES/TES

ij
and

- -- ---
SOC

ES/TES

ij are the minimum and maximum

values of SOC related to ES/TES, respectively.
The operation of ES/TES systems are represented by (26)-

(30). The operation of an ES/TES system is subject to gener‐
ation limits, as in (26), and the SOC limits, as in (27)-(30).
It should be noted that (28) states the charging/discharging
rate of the ES/TES system.

D. Bid Constraints of DER Price

0£ π Xe
ijtw £ λ͂MCPe

tw (31)

0£ π Yh
ijtw £ 2λ͂MCPe

tw (32)

where λ͂MCPe
tw is the value of predicted electric MCP at time t

in scenario w.
Constraints (31) and (32) are related to the electric and

thermal price bids governing the operation of DERs, where
X includes CHP, ES, and WT; Y consists of CHP, EB, EHP,
TES, GB, and STP. However, the value of the upper and
lower bounds can vary with respect to the system deployed.

E. Independent and Coalitional Operation of H-MGs

We assume that there are I H-MGs, so the first I' H-MGs
participate in the coalition formation to maximize their profit
together. Two scenarios are implemented to simulate the per‐
formance of the proposed BL-HIA structure. These scenarios
are described as follows.
1) Scenario 1

This scenario describes the independent operation of H-
MGs. A single-level algorithm is deployed to model this sce‐
nario, as further clarified by the independent operation of H-
MGs. Equation (33) gives the profit gained by selling energy
by retailer k to all H-MGs.

maxRRET
k =∑

t = 1

T∑
i = 1

n

(P e-
kitwπ

e-
kitw -P e-

kitwπ
e-
kitw) (33)

where P e-
kitw is electric power purchased by retailer k from H-

MG i; π e-
kitw is the supply bid for purchasing electric power

from H-MG i; and n is the number of H-MGs.
Equation (34) gives the profit obtained through the inde‐

pendent operation of the H-MGs (MGi). It is worth mention‐
ing that if a DER does not exist in an H-MG, it is not con‐
sidered in the respective objective function.

RMGi

=∑
t = 1

T∑
w= 1

W∑
j = 1

J

( P ES
ijtwπ

ES
ijtw +P WT

ijtw π
WT
ijtw +P STP

ijtw π
STP
ijtw +

P EHPh
ijtw π EHPh

ijtw +P TES
ijtw π

TES
ijtw +P EBh

ijtw π
EBh
ijtw -

P EBe
ijtw π

EBe
ijtw +P GB

ijtwπ
GB
ijtw +P CHPe

ijtw π CHPe
ijtw +

P CHPh
ijtw π CHPh

ijtw +P e-
imtwπ

e-
imtw +P e-

iktwπ
e-
iktw +

P h-
imtwπ

h-
imtw -P e+

imtwπ
e+
imtw +P e+

iktwπ
e+
iktw -P h+

imtwπ
h+
imtw)+RDSM

i

(34)

where P e-
iktw and P e+

iktw are the electric power purchased by H-
MG i from retailer k and the electric power sold from H-
MG i to retailer k, respectively; π e-

iktw and π e+
iktw are the supply

bid for electric power purchased by H-MG i from retailer k
and the supply bid for electric power sold from H-MG i to
retailer k, respectively; P h-

imtw and P h+
imtw are the thermal power

purchased by H-MG i from retailer k and the thermal power
sold from H-MG i to retailer k, respectively; π h-

imtw and π h+
imtw

are the supply bid for thermal power purchased by H-MG i
from retailer k and the supply bid for thermal power sold
from H-MG i to retailer k, respectively; W is the number of
the scenarios; and J is the number of DERs.
2) Scenario 2

This scenario describes a coalition among H-MGs taking
place at an upper level of the BL-HIA structure, which oper‐
ates independently at the other level. This scenario also in‐
vestigates the effect of the lower-level H-MGs forming a co‐
alition on changes in the strategy of independent operations
for the upper-level H-MG with a high priority. The mathe‐
matical model of this scenario is further clarified by the co‐
alitional operation of H-MGs, as shown in (35) and (36).
Equations (35) and (36) state the profit obtained through the
coalitional operation of H-MGs at an upper level or a lower
level.

maxRMGiMGm

=RMGi

@RMGm

(35)

maxRMGiMGmMGm′ =RMGi

@RMGm

@RMGm′ (36)

where @ represents the coalition among different H-MGs. In
addition, the coalitional scenario of {(MG1MG2...MGI′),
(MGI′ + 1MGI′ + 2...MGI)} indicates that the first part (MG1,
MG2,..., MGI′) is related to the objective function defined at
the upper level, and a second part (MGI′ + 1,MGI′ + 2,...,MGI) is
related to the coalition between H-MGs I' +1, I' +2, ..., I,
which is defined at a lower level.

V. MATHEMATICAL FORMULATION OF BL-HIA STRUCTURE

In the upper-level problem, each H-MG seeks to maxi‐
mize its profit. The objective function of each upper-level
problem states the income of each H-MG, with a higher-lev‐
el priority for different scenarios. These objective functions
that must be maximized have been defined as the sum of the
product of electric/thermal price offers and the electric/ther‐
mal power sold to consumers of each H-MG minus the cost
of operation of DERs.

The BL-HIA structure includes the upper-level problem
and a set of lower-level problems in each scenario w. It
should be noted that if an H-MG is considered at the upper
level, its constraints from (1)-(32) are considered at the up‐
per level; the same is true for the lower level. The upper-lev‐
el problem includes decision making regarding the possibili‐
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ty of forming a coalition among H-MGs and their supply
bids to achieve a higher profit. However, the quantity of
DER/consumer resources along the DSM program is includ‐
ed in the lower-level problem. It should be noted that all of
the power exchange among H-MGs and retailers’ decisions
are to be made on the upper-level problem. In comparison,
decision-making variables at the lower level include all of
the power generated using DER resources. The upper-level
objective function is considered after maximizing the income
of retailers or H-MGs in the case of independent operation,
or in the coalitional operations with other H-MGs (under-in‐
vestigated scenarios).

The income of H-MGs is defined as the product of the
proposed price offers for selling power to H-MGs and the
amount of power that is sold to them minus the product of
the power purchase price offer received from H-MGs and
the amount of power bought from other H-MGs.

A. Upper-level Problem

This subsection formulates the upper-level relationship.
The formulae expressing the DER relationship given in (1)-
(32) are applicable if the related DER is considered to be in
the upper level.
1) Objective Function

As previously stated, the objective functions of the upper-
level and lower-level problems may be in the form of (34)-
(36). Here, the profit obtained from the coalition or the inde‐
pendent operation of H-MGs with greater priority describes
the objective function of the upper-level problem. The upper-
level problem is to maximize the expected profit to be made
by each H-MG in the case of an individual or a group opera‐
tion as well as a retailer.
2) Upper-level Problem Constraints

Formulae (1) - (32) are applicable to H-MGs with higher
priority, so they participate in coalition formation. It is very
obvious when an H-MG with a higher priority does not in‐
clude any of the mentioned DERs. The corresponding con‐
straints of such DERs are to be excluded from the problem
formulation.

0£P e-
iktw £ η i P

e-
itw:
-
η

Gride

iktw
-η

Gride

iktw
(37)

0£P e+
iktw £ η i P

e+
itw:
-
η

Gride

iktw
-η

Gride

iktw
(38)

where P e-
itw and P e+

itw are the power transffred from H-MGs to
retailers and from retailers to H-MGs, respectively; and η i is
the power exchange setting factor.

Equations (38) and (39) show the allowable limits on pow‐
er exchange between retailers and H-MGs.

Each H-MG in the upper-level problem makes strategic
decisions as follows: ① decisions of DERs on the supply
bid at the lower level of the problem; ② price strategic of‐
fering decisions of consumers in an H-MG on price offers.

B. Lower-level Problem

Each lower-level problem aims to maximize the profit of
an individual H-MG or a group of H-MGs with a lower pri‐
ority over different scenarios. The objective of the lower-lev‐
el problem is to increase the profit of DERs. Thus, the aim
of CEMS is to reduce the operation cost given limitations
ruling over each of the players, i. e., H-MGs, retailers, and

consumers. Players in the BL-HIA structure declare the
amount of their generated power and supply bids offered to
the CEMS. After simulating the bilevel problem, the electric
and thermal energy prices, and the power provided by each
player are provided.
1) Objective Function

Considering the cases described in (34)-(36), the objective
function of the lower-level problem can be taken from the
numerator of the lower-level objective function.
2) Lower-level Problem Constraint for Load Shifting and
DERs

Equations (1) - (32), (37) and (38) are applied to each H-
MG with a lower priority. It is very obvious that if, for ex‐
ample, an H-MG with a lower priority has no CHP, then its
constraints must not be considered.

Equation (39) gives the equilibrium relation between the
generated and consumed electric power of H-MGs and the
electric power exchange with retailers. The MCP in the grid
is equal to the dual variable of (39).

P e-
iktw +P DSMe

itw - (P CHPe
ijtw +P WT

ijtw +P ES
ijtw -P EBe

ijtw -

P EHPe
ijtw +P e+

iktw)+∑
m= 1

n

P e+
imtw-∑

m= 1

n

P e+
imtw= 0:λe

tw (39)

Equation (40) gives the relation between the thermal gen‐
erated and consumed power. The thermal power price in the
dual-variable grid corresponds to (40).

P DSMh
itw -P CHPh

ijtw +P EBh
ijtw +P EHPh

ijtw +P TES
ijtw +P GB

ijtw +

P STP
ijtw +∑

m= 1

n

P h-
imtw -∑

m= 1

n

P h+
imtw = 0:λh

tw (40)

After the determination of price offers related to
electricity and heat, as well as the amount of electric and
thermal power generation and consumption of each player,
the profit made by each of the players is determined.

It should be noted that the electricity price or MCP is the
dual variable of the constraint related to power balance. In
this model, we assume that the prices of electricity generated
by all DERS, i.e., CHP, WT, and electric ES, are the same.
Thus, we only need one MCP or one dual variable of the
constraint related to the power balance at each time of the
day. Hence, we only need to consider one power balance
constraint for all H-MGs. Since we have only one power bal‐
ance constraint, there is no need to consider power flow in
this study. In the same way, we assume that the heating
price, which is the dual variable of the constraint related to
the heat balance, is the same for the heat generated for all
DERs, including CHP, GB, EHP, EB, and TES. Hence, we
only need to model one heat balance constraint for all H-
MGs at each time of the day. In summary, we use the model
for power and heat exchange regardless of whether the volt‐
age angle and magnitude are considered owing to the similar
energy hub price.

3) Application of KKT Conditions to Lower-level Problem

Since each of these lower-level problems is continuous
and convex, it may be shown by its specific constraints, in‐
cluding KKT conditions [40]. Using KKT conditions, the
constraints for an independent or a coalition operation of H-
MGs include the following cases:

1) Primal constraints (1)-(32).
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2) Equality constraints obtained from the derivative of a
Lagrange expression relative to lower-level variables.

3) Complementary constraints obtained based on lower-
level inequalities (3), (4), (8), (9), (13), (16), (19), (21), (24),
(26), (28), (31), (32), (37), and (38).

The application of KKT conditions to the lower-level
problem is provided in detail in the supplementary material.

VI. RESULTS AND DISCUSSION

The grid studied is shown in Fig. 5, where EDS stands for

electric distribution system; FDS stands for fuel distribution
system; E represents the electricity; and H represents the
heat. The ES systems installed in H-MGs (A and C) are for
storing excess electrical and thermal energy generation. The
capacity and the quantity of installed equipment in each H-
MG are shown in Table I. Profiles of the electric and ther‐
mal loads of the H-MGs and electricity prices for purchasing
and selling are shown in Fig. S1 in the Supplemental Material.
In addition, the shape of output power wave generated by WT
and STP is shown in Fig. S2 in the Supplemental Material.

According to the independent and coalitional operation of
H-MGs, we can define the following scenarios for the grid
under study.

1) Scenario 1 ({A}, {B}, {C}, {RET}): this scenario de‐
scribes the independent operation of H-MGs. A single-level
algorithm is deployed to model this scenario, as further clari‐
fied by the independent operation of H-MGs.

2) Scenario 2 ({A, {B, C}}, {{A, B}, C}, {{A, C}, B},
{B, {A, C}}, {{B, C}, A}, {C, {A, B}}): this scenario de‐
scribes a coalition among H-MGs taking place at a single
level of the BL-HIA structure and operating in an indepen‐

dent operation at the other level. The representation of such
a scenario can take the shape of ({A, BC}, {AB, C}, {AC,
B}, {B, AC}, {BC, A}, {C, {AB}}). This scenario also in‐
vestigates the effect of the lower-level H-MGs forming a co‐
alition on independently changing the strategy of operating
the upper-level H-MG with a high priority.

Equations (41) and (42) give the profit obtained through
the coalitional operation of H-MGs ({A}, {B}, {C}) at an
upper level or a lower level.

maxR{AB}
i =R{A}

i @R{B}
i (41)

maxR{ABC}
i =R{A}

i @R{B}
i @R{C}

i (42)

In addition, the coalitional scenario of ({B, AC}) means
that the first part (B) is related to the objective function de‐
fined at the upper level, and a second part (AC) is related to
a coalition between H-MGs A and C but is defined at a low‐
er level.

Equations (43)-(48) state the profit obtained from the co‐
alitional operation of H-MGs A, B, and C at an upper level
or a lower level. The right-hand side of these relations com‐
prises of two parts. The first part is related to the objective
function defined at the upper level, whereas the second part
is related to the objective function defined at the lower level.

maxR{ABC}
i =R{A}

i @R{BC}
i (43)

maxR{ABC}
i =R{AB}

i @R{C}
i (44)

maxR{ACB}
i =R{AC}

i @R{B}
i (45)

maxR{BAC}
i =R{B}

i @R{AC}
i (46)

CHP

ES WT

GB

EDS

EB TES

Direct thermal connection

H-MG A

H-MG C Community’s electricity grid

Exported
electricity

Delivered
electricity

FDS

E H

Gas Gas

E H

Delivered gas

Community system boundary

EMS A

CEMS

EMS C

Thermal and fuel connection

CHP

STP EHP

GB

H-MG B

E H

EMS B

Fig. 5. Grid under study.

TABLE I
CAPACITY AND QUANTITY OF EQUIPMENT INSTALLED IN EACH H-MG

Parameter

CHP

Electric output (kW)

Thermal output (kW)

Thermal output of EHP (kW)

Electric output of WT (kW)

Electric output of STP (kW)

Electric output of ES (kW)

TES (m3)

Thermal output of GB (kW)

Thermal output of EB (kW)

Value for each H-MG

H-MG A

-

142

104

-

50

-

-

-

2´150

-

H-MG B

-

207

140

700

-

600

500

-

2´150

-

H-MG C

-

-

-

-

-

-

-

4

-

2´100
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maxR{BCA}
i =R{BC}

i @R{A}
i (47)

maxR{CAB}
i =R{C}

i @R{AB}
i (48)

The load profiles of H-MGs A, B, and C are shown in
Figs. 6-8.

For the independent operation of H-MGs, most of RLDs
of H-MG A are shifted from the time intervals with higher
MCP to the time intervals with lower MCP. The amount of
load that is shifted forms a high share of the total load of H-
MGs. More specifically, 55% of the load is shifted from

time intervals with higher MCP to other time intervals with
lower MCP, with the aim to maximize the profit for H-MG
owners. By contrast, the energy consumption in such a fig‐
ure has reduced significantly when H-MGs operate in coali‐
tional structures. This energy consumption is the lowest
(21%) for the coalitional scenario of {B, AC}. The energy
consumption is at the lowest level (21%) when the coalition
scenario corresponds to {B, AC}. In addition, the reduction
in the degree of load shift results from a DSM program aim‐
ing at achieving a higher pay-off for consumers by consider‐
ing employing load shifting when the value of MCP is high,
along with the maximum use of H-MG A interval resources,
and effectively reducing the generation cost when load shift‐
ing is at a minimum level. Moreover, the load profile of H-
MGs in a coalition structure {A, BC} is the same as that of
the alternative coalition structure {AB, C} and does not
have a significant effect on the consumption level in H-MG
A. This trend is completely different from the case in H-MG
B. More specifically, during the independent operation of H-
MGs, the degree of load shifting in H-MG B is at a mini‐
mum level (almost 30% of the total load during 24 hours).
Therefore, the formation of a coalition among H-MGs would
increase consumers’ participation in the DR program, which
can reach almost 42% to 50%.

Such a reduction in the degree of load shifting is the re‐
sult of a DSM program for achieving higher pay-off for con‐
sumers by considering criteria such as load shifting when
the value of MCP is high, the maximum use of H-MG A in‐
terval resources, and also the reduction in generation costs in
the best way and with the least amount of load shifting has
taken place. Alternatively, the load profile of H-MGs in a co‐
alitional structure {A, BC} is the same as that of such H-
MGs in an alternative coalitional structure {AC, B}, and
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does not significantly affect the consumption nature in H-
MG A.

The least amount of load shifting is achieved when H-
MGs B and A form a coalition at the lower level of the BL-
HIA structure, while having the objective function at an up‐
per level of the structure aiming at maximizing the profit of
H-MG C. Furthermore, these conditions are comparable with
the {AC, B} coalition structure, having similar nature. Un‐
der the previous conditions, a substantial share of the excess
generation capacity is devoted to meeting H-MG C demand.
As a result, a negligible part of such energy has been allocat‐
ed for supplying responsive loads in H-MG B. It is impor‐
tant to clarify that in the case of H-MG C, in independent
operation conditions, the value of the total DR- is signifi‐
cantly greater than the value of the total DR+ . While ac‐
counting for only 17% of time intervals, H-MG C had expe‐
rienced a DR+ algorithm, and such a figure would reach
83% when the DR- is experienced. Such a trend in the DR
is comparable to the scenario of coalition structures, where
the degrees of the total load shifting with the value of DR+
total load during the daily performance, are close to each
other in terms of the value. The participation percentage of
consumers in H-MG C has improved significantly by form‐
ing a coalition between H-MGs B and A, reaching more
than 40% of the time. Only in the coalitional structure {B,
AC} can such value be a minimum (21%).

Furthermore, these conditions are also identical to that of
the coalitional structure {AC, B} and have a similar nature.
Under the previous conditions, a big share of the amount of
excess generation is spent supplying H-MG C demand.

It should be noted that for H-MG C, the value of the total
DR- in H-MGs under independent operation conditions is
much more than such a value when there is DR+ . Such a
trend in DR is quite similar to the scenario of coalitional
structures, where the total load shifting and the value of the
DR+ total load during the daily performance are close to
each other in terms of the value. The increasing trend of the
income of each H-MG during an independent and coalitional
performance with other H-MGs is shown in Fig. 9.

Based on this figure, each structure can be useful for one
H-MG, while it may have no benefit for other H-MGs. The
best structure, which may be useful for H-MG A, results
from the formation of a coalition between H-MG B and H-

MG C, excluding the participation of H-MG A in this coali‐
tion. These conditions may also be useful for H-MG B on
the condition of forming a coalition with H-MG C in a high‐
er priority of operation. For H-MG C, the highest income is
experienced when this H-MG forms a coalition with H-MG
A at an initial stage given that H-MG B works independent‐
ly. Under these conditions, the income of H-MG A is close
to the maximum value. For H-MG C, because of the lower
generated power, it is appropriate to form a coalition in all
cases with other H-MGs. In all cases in which H-MG C has
formed a coalition with other H-MGs, an increasing trend in
the income is observed. In comparison, when used indepen‐
dently, the income resulting from H-MG B is significantly
improved when compared with other configurations such as
coalition formation with other H-MGs. Furthermore, in some
cases, it is possible for coalition forming to have a detrimen‐
tal effect on the H-MGs that form part of the coalition.

It is also observed that the coalition between H-MG A and
H-MG B at the initial level leads to a significant reduction
in the income independently obtained by this H-MG. More‐
over, it is desirable to prevent H-MG A from forming a co‐
alition with H-MG B, and to negotiate with H-MG C to
form the coalition. In comparison, the income resulting from
the independent performance of H-MG B is also significant
compared to other cases, e.g., coalition formation with other
H-MGs, and in some cases it is harmful to form a coalition
to these H-MGs. For H-MG C , because of the small gener‐
ated power, it is appropriate to form a coalition in all cases
with other H-MGs. Figure 10 shows the values of the elec‐
tric and thermal MCP.
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Although the average value of the electrical MCP in the
case of independent operation of H-MG C is at its minimum
during the system’s daily performance, such values can be
significantly improved when investigated at individual time
intervals, i. e., one hour after forming a coalition among H-
MGs. In some of the time intervals, the formation of a coali‐
tion causes neither a degradation in the electric MCP, nor a
small increase in its value. Moreover, at certain intervals, its
value may not change significantly when a coalition exists
compared with the scenario where H-MGs work independent‐
ly. In about 54% of the times, the electric MCP value in the
coalition {A, BC} becomes more than its value in the combi‐
nation {A, BC}. That is why no differences are observed in
the values of the electric MCP for coalitions {A, BC}, {AC,
B}, {BC, A}, and {C, AB}. Furthermore, by changing the
structure from {A, BC} to {B, AC}, the MCP value is re‐
duced by about 33%.

Such an analysis is also applied to the thermal MCP for
the structures investigated. Finally, we can conclude from
the simulation results that the formation of a coalition
among H-MGs in one grid will not only have a significant
effect on programming and regulating the value of the pow‐
er generated by the generation resources, but also affect the
change in the demand consumption and the behavior of con‐
sumers participating in the DR program with a cheaper MCP.

VII. CONCLUSION

This paper presents an optimum development that com‐
bines the problem of the quantity of power generated in a de‐
regulated electricity market environment. A methodology is
presented to investigate the possibility of increasing the in‐
comes of H-MGs, consumers, and retailers in multiple H-
MGs. These performances of participants are properly mod‐
eled in the market environment. An H-MG programmer tries
to increase its income as long as it is freely negotiating ener‐
gy exchange with DERs and its consumers. It can also incor‐
porate on its agenda the potential of forming a coalition with
other H-MGs. The H-MGs seek to estimate the value of the
power generated by DERs and also supply/demand bids to
consumers. Meanwhile, the possibility of forming a coalition
among H-MGs to maximize the income in an independent or
a coalitional operation in a scheduling horizon is also investi‐
gated. In this way, the H-MGs encounter pool price uncer‐
tainties and the value of electric and thermal loads. Further‐
more, if the supply bid of one H-MG is not competitive
enough, consumers may choose another H-MG to supply
their demand. To investigate how the formation of a coali‐
tion among H-MGs can affect the market behavior and the
gained income of H-MGs, different scenarios are presented.
These scenarios are solved by employing a bilevel structure,
which can be transformed into one NLP problem. The pro‐
posed model not only presents solutions of higher-income
achievements of each H-MG in an independent or a coali‐
tional operation but also provides a higher income/lower
cost for each of the retailers/consumers relative to a single-
level model.

The BL-HIA structure presents an adequate framework for
modeling both the H-MG reaction for better participation in

the generation and the effect on the electricity price, as well
as increases in competition between H-MGs and retailers. In
the upper-level problem, H-MGs change their capacity to
maximize their income by predicting the behavior of other
competitors (H-MGs) resulting from the lower-level problem
and noting quantities and prices proposed by DERs and con‐
sumers. An optimum pricing strategy is implemented to en‐
able dynamic market behaviors related to H-MG decisions.
Furthermore, a daily generation schedule is presented. For a
selected case study, an infinite number of Nash equilibrium
values is observed for the case where no players tend to
change their pricing strategies unilaterally. In these obtained
equilibrium points, there is no change in the total expected
profit of all players, although it is distributed among them.

Simulation results show that by forming a coalition
among H-MGs, there may be changes in their profit, the de‐
mand value of the supplied load, and the generated power
of DER in those H-MGs. Furthermore, computational simula‐
tions show the convergence of the proposed model for solv‐
ing real problems and simultaneously presenting solutions to
increase the income of H-MGs and retailers, as well as to re‐
duce the MCP. The following results can be extracted from
the structure of the developed model:

1) The hierarchical structure of the bilevel model is suit‐
able for modeling the strategic behavior of each H-MG in re‐
action to the behavioral change and decision making of oth‐
er H-MGs and their supply bid. Furthermore, the proposed
structure can effectively encourage consumers to participate
in the electricity market, and affect their use of the DSM
program.

2) It has been shown that in addition to increasing the
profit of each player, the energy exchange among H-MGs
would have a significant impact on leveling the load and re‐
ducing consumers’ power consumption during the peak time.

3) Results show that the formation of a coalition among
H-MGs in one grid will not only have a significant effect on
programming and regulating the value of the power generat‐
ed by the generation resources, but also affect the changes in
the demand consumption and the behavior of consumers par‐
ticipating in the DR program with a cheaper MCP.
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