
Self-organizing Coordination of Multi-Agent Microgrid Networks 

 

by 

Samantha Janko 

 

 

 

 

 

A Dissertation Presented in Partial Fulfillment  

of the Requirements for the Degree  

Doctor of Philosophy  

 

 

 

 

 

 

 

 

 

 

Approved October 2019 by the 

Graduate Supervisory Committee:  

 

Nathan Johnson, Chair 

Wenlong Zhang 

Wesley Herche 

 

 

 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY  

December 2019  



  i 

ABSTRACT  

   

This work introduces self-organizing techniques to reduce the complexity and 

burden of coordinating distributed energy resources (DERs) and microgrids that are rapidly 

increasing in scale globally. Technical and financial evaluations completed for power 

customers and for utilities identify how disruptions are occurring in conventional energy 

business models. Analyses completed for Chicago, Seattle, and Phoenix demonstrate site-

specific and generalizable findings. Results indicate that net metering had a significant 

effect on the optimal amount of solar photovoltaics (PV) for households to install and how 

utilities could recover lost revenue through increasing energy rates or monthly fees. 

System-wide ramp rate requirements also increased as solar PV penetration increased. 

These issues are resolved using a generalizable, scalable transactive energy framework for 

microgrids to enable coordination and automation of DERs and microgrids to ensure cost 

effective use of energy for all stakeholders. This technique is demonstrated on a 3-node 

and 9-node network of microgrid nodes with various amounts of load, solar, and storage. 

Results found that enabling trading could achieve cost savings for all individual nodes and 

for the network up to 5.4%. Trading behaviors are expressed using an exponential valuation 

curve that quantifies the reputation of trading partners using historical interactions between 

nodes for compatibility, familiarity, and acceptance of trades. The same 9-node network 

configuration is used with varying levels of connectivity, resulting in up to 71% cost 

savings for individual nodes and up to 13% cost savings for the network as a whole. The 

effect of a trading fee is also explored to understand how electricity utilities may gain 

revenue from electricity traded directly between customers. If a utility imposed a trading 

fee to recoup lost revenue then trading is financially infeasible for agents, but could be 
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feasible if only trying to recoup cost of distribution charges. These scientific findings 

conclude with a brief discussion of physical deployment opportunities. 
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CHAPTER 1 

INTRODUCTION 

 Motivation of Work 

The cost of distributed energy resources (DER) have been rapidly decreasing, 

including solar photovoltaics (PV), energy storage, combined heat and power, fuel cells, 

demand response, and other technologies. This has facilitated an increase in the number of 

installed assets each year, with the expected global capacity expected to approach 530 GW 

by 2026 (Navigant 2017). Individual assets and groups of assets can be configured to form 

small-scale power systems called microgrids that can operate independently (islanded) 

from a larger electric grid. Islanding allows microgrid owners to maintain reliable and 

resilient power in the event of a grid outage. Microgrids may also generate excess power 

to support nearby loads or the main grid. The latter is a new use-case for microgrids. 

Though they have existed for decades in the form of fossil-fuel generators supporting 

remote off-grid locations with prime power or on-grid critical loads with back-up power, 

they have only recently been used to export power back to the grid.   

Microgrids are currently being researched as a viable option to decrease power cost, 

reduce emissions, utilize energy resources more efficiently, and increase grid reliability 

(U.S. DOE Office of Energy n.d.; Parhizi et al. 2015; NREL 2016). Accomplishing these 

goals requires technical sophistication in microgrid controllers that provide control 

automation, consumer-side engagement, and communication between microgrid assets. 

Innovation is needed in advanced control algorithms that enable high-level coordination 

between multiple networked microgrid controllers to manage information transfer between 

microgrids and create a framework for a modernized grid with plug-and-play operability 
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of microgrids and DERs. Distributed control between microgrids enabled by the ecological 

principles of self-organization can improve coordination, facilitate expansion, and provide 

seamless integration to realize the full financial and technical benefits of microgrids for 

individual sites and the larger grid.  

 Value Proposition for Microgrids and DERs 

The driving factors behind DER growth have been a combination of technological 

improvements, decreasing cost of components, increasing efficiency as the market grows 

in scale, and policies encouraging adoption of renewables (Baker et al. 2014). Increasing 

attention has also been placed on the reduction of soft costs of DER installation such as 

labor, supply chain, permitting, financing, and various transaction costs which account for 

more than half of total installation cost (Friedman et al. 2013). Tax incentives, subsidies, 

and rebates offered by governments and utilities provide additional price reductions that 

further increase the value proposition of DERs for end-users (Baker et al. 2014). 

Improvements in financing of DERs including leasing models, better financing tools, and 

customer targeting will drive future growth by opening new customer segments and 

enabling better management of upfront costs. 

The growth in DER has disrupted traditional electricity business models. Local 

electricity generation and storage provides customers with a means of obtaining power 

another way and at a cheaper expense. However, the grid must continue to deliver 

functionality with a fixed cost even as the amount of energy sold to consumers decreases 

(Baker et al. 2014; Wood et al. 2016). This challenges conventional electricity markets as 

many small-scale competitors reduce load or push power back onto the grid. In an attempt 

to recover costs, utilities may raise rates and consequently more consumers may adopt 
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DERs, creating a “death spiral” that leads to the financial fall of the utility (Lacey 2014). 

Part of the challenge is that present utility regulation and business models are structured on 

capital-intensive purchases that require cost recovery through energy sales, rather than 

being financially rewarded using performance mechanisms that facilitate the adoption of 

DERs and grid stability with high amounts of DERs (Whited, Woolf, and Napoleon 2015).  

Some consumers install microgrids to achieve increased autonomy and reliability 

of critical loads in case of a grid outage (Hirsch, Parag, and Guerrero 2018). Utilities and 

other energy stakeholders must alter their strategy to align with these changes by 

modernizing grid infrastructure to more easily integrate DERs and microgrids, offering 

additional services to accommodate consumer expectations, and altering their market and 

regulation models to have more flexibility (Baker et al. 2016). Further, development of 

advanced control techniques for DERs and microgrids can help enable these new strategies 

by providing ancillary services to the grid, improving customer satisfaction by involving 

their preferences and increasing accessibility, and decreasing operational cost through 

coordination and participation in an energy market. This creates value propositions for 

several energy stakeholders:  

• Energy Utilities: Automated coordination of DERs and microgrids can reduce 

management responsibilities of the utility and allow for simpler integration of 

future assets. Additionally, advanced control can improve system reliability by 

providing seamless transition to alternate generation sources in the event of a 

contingency. It can also increase return-on-investment through reduced operation 

and maintenance costs. Improvements to customer satisfaction also occur through 

improved power quality and may result in cost savings passed to ratepayers.  
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• Energy System Developers: Integration of advanced controls in new and existing 

energy system technologies provides operational improvement and cost savings 

through better utilization of intermittent resources and increased system 

configuration flexibility. This allows developers to provide additional value to their 

customers and expand their portfolio by more easily scaling systems to include 

more DERs.  

• Energy System Owners and Operators: Advanced controls enabling 

participation of DERs and microgrids in energy markets or ancillary service 

markets create economic benefit for system owners. 

• Independent System Operators (ISO) and Regional Transmission 

Organizations (RTO):  Advanced controls enabling participation of DERs and 

microgrids in energy markets or ancillary service markets provide reliability and 

resiliency support to the grid. 

 Microgrid Control Concepts 

Existing power system and microgrid control strategies can be categorized as 

hierarchical controls, centralized and decentralized architectures, and internal microgrid 

asset coordination and microgrid network coordination. The following sections 

differentiate between these categorizations, specify the focus of this work, and analyze 

existing literature. 

1.3.1. Primary, Secondary, and Tertiary Control Levels 

Large-scale grid networks traditionally utilize a hierarchical frequency control 

structure consisting of primary, secondary, and tertiary control levels (see Figure 1.1). 

These control levels together at different response times to maintain stability in the power 
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grid following disturbances (NERC 2011). Primary control maintains balance between 

generation and load and stabilizes frequency after a disturbance, but may not return 

frequency to the nominal value for large disturbances. Governor control actions and load 

reduction methods are then utilized and respond within a few seconds. This control is often 

implemented autonomously using governor actions and load reduction (NERC 2011; 

Undrill 2018). Secondary control actions follow primary control and restore frequency to 

a nominal value through alteration of spinning reserve and non-spinning reserve operating 

set points. This occurs between 30 seconds and 15 minutes following a disturbance. This 

control can be automatic or manual and involves altering operating points of generating 

units (NERC 2011). Tertiary control is any action taken to get resources online and 

dispatched to handling present and future contingencies including changing operating set 

points, rescheduling or altering interchange, and load control. This occurs 10 or more 

minutes following a disturbance. This control is centralized and involves changing 

operating set points, rescheduling/altering interchange, and controlling load (NERC 2011). 

 
Figure 1.1: Hierarchical frequency control structure. Figure from (Eto et al. 2018). 
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These traditional hierarchical control structures have parallels to microgrid 

controls. However, microgrids often have additional functionalities such as islanding 

capability, coordinating distributed energy resource (DER), optimizing operation based on 

economics, resynchronization with the main grid, and controlling power exchange with the 

main grid (Bidram and Davoudi 2012). In microgrid controls, primary control stabilizes 

voltage and frequency, but also enables DER connection through power sharing and 

mitigates circulating currents. Additionally, in a small-scale microgrid, power quality can 

be an issue due to the small amount of available inertia to damper frequency changes, and 

therefore voltage-source inverters can be used to regulate frequency by simulating inertia 

characteristics (Olivares et al. 2018). Extensive technical literature can be found addressing 

primary microgrid control (Wang, Wu, and Zhang 2018; Xiang et al. 2016; Bendib et al. 

2017; Li, J. et al. 2016; Quesada et al. 2014; Mongkoltanatas, Riu, and Lepivert 2013; 

Raghami, Ameli, and Hamzeh 2013; Li et al. 2017; Wang et al. 2019; Vandoorn et al. 2013; 

Horhoianu 2018; He et al. 2017; Kahrobaeian and Mohamed 2015). Communication-based 

techniques such as concentrated control, master/slave control, and distributed control are 

used to achieve voltage regulation and power sharing (Han et al. 2016; Rokrok, Shafie-

khah; and Catalão 2018). Another primary control technique is droop control, which 

regulates frequency by adjusting active power and therefore does not require inter-unit 

communication. This allows for power sharing with less complexity (Han et al. 2016; 

Rokrok, Shafie-khah; and Catalão 2018). Secondary microgrid control typically occurs 

through an energy management system (EMS) within the microgrid. The EMS monitors 

voltage deviations to dispatch assets, and thereby maintains balance between supply and 
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loads to stabilize voltage levels within nominal ranges (Bidram and Davoudi 2012; 

Olivares et al. 2018). Control strategies such as real-time optimization and expert systems 

control enable the EMS to find optimal dispatch and unit commitment of distributed energy 

resources (Bui et al. 2017; Abass, Al-Awami, and Jamal 2016; Fossati et al. 2015). Tertiary 

control focuses on power exchange with the main grid during grid-tied operation as well 

as determining long-term, optimized set points for economic dispatch (Bidram and 

Davoudi 2012). Tertiary control coordinates internal assets and can schedule power sharing 

externally with other microgrids or the main grid (Caldognetto and Tenti 2014; Pashajavid 

et al. 2017a). Control strategies in this space such as gossiping algorithms, multi-agent 

control, and more recently value-based transactive energy have been utilized to create 

additional value through improved reliability, reduced cost, and more efficient use of 

renewables.  

1.3.2. Internal Microgrid Control and Microgrid Network Control 

Control schemes for a single microgrid and control of multiple microgrids can be 

difficult to distinguish because, at its core, a microgrid is simply a collection of DER assets 

and loads that can act as a single controllable entity and can isolate from the grid (Ton and 

Smith 2012). These single controllable entities can have common goals of supplying 

reliable power to loads in the event of a contingency, offering power at the lowest cost, and 

utilizing renewables efficiently, but each microgrid site has different critical loads, 

spinning and non-spinning reserve capacity, storage, and operational capabilities that make 

them unique.  

The uniqueness of each microgrid requires that design engineers and controls 

vendors consider the composition and architecture of the microgrid as well as specific 
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priorities of the microgrid owner and beneficiaries. Secondary and tertiary controls of the 

microgrid can be customized and adapted to address local needs and coordinate asset 

setpoints used in primary control (Bidram and Davoudi 2012). Techniques for coordinating 

assets internal to a microgrid has been a well-researched topic with key strategies including 

optimal dispatch, bidding, model predictive control, game theory, and AI-based techniques 

such as particle swarm optimization, artificial neural networks, fuzzy logic, and agent-

based control (Olivares et al. 2014; Bouzid et al. 2015; Lewis et al. 2013; Maknouninejad 

et al. 2012; Zhang et al. 2014; Ghanbarian et al. 2017; Jang and Kim 2017; Li et al. 2015; 

Lagorse, Simoes, and Miraoui 2009; Fossati et al. 2015; Al-Saedi et al. 2013). This research 

has made foundational steps in microgrid control but has only just begun to consider how 

to also coordinate the import and export of power from the main grid or other external 

sources. If other microgrids are within close proximity, it is a natural next question to 

consider how they might interact and coordinate towards common operational and 

environmental goals. Recent literature has described this as multi-microgrid coordination 

or microgrid network control. Microgrid networks can either be on-grid, where microgrids 

have a method (such as a transfer switch) to connect and disconnect from the main grid, or 

off-grid, where microgrids are isolated. There is far less literature available on multi-

microgrid networks than on internal microgrid control, with the minimal available research 

suggesting methods such as game theory, hierarchical optimization, and self-organization 

can improve financial and technical metrics for all members of the network (Pashajavid et 

al. 2017a; Rivera, Farid, and Youcef-Toumi 2014; Chakraborty, Nakamura, and Okabe 

2014; Mei et al. 2019; Du et al. 2018; Nikmehr, Najafi-Ravadanegh, and Khodaei 2017; 
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Kumrai et al. 2017, Zhang and Xu 2019; Lahon, Gupta, and Fernandez 2019; Jadhav, 

Patne, and Guerrero 2019).  

1.3.3. Centralized and Decentralized Architectures 

EMS and network-level microgrid controllers can be designed in centralized and 

decentralized architectures to provide tertiary control.  

In a centralized control scheme, one dedicated controller makes control action 

decisions and delegates those actions across nodes within the microgrid. A generic 

depiction of this control strategy is shown in Figure 1.2a. Nodes implement the issued 

control actions at the local level. Nodes also provide feedback to the central controller such 

as measurements, status, and local setpoints. The central controller therefore has complete 

knowledge of asset states and the entire system state to include in decision making and 

action delegation. All computational processing occurs inside of this dedicated controller 

node, and the control action commands are absolute (must be implemented). It has the 

advantage of being simple in comparison to more modern methods, but also one major 

disadvantage in that changes require a complete reconfiguration of the central control 

process (Dressler 2008). There is only one major point of failure in a centralized system, 

which makes maintenance simple. However, the entire system will be compromised if this 

point is faulted (Baran 1962). Centralized architectures are difficult to scale, but simple to 

develop. This makes them ideal for applications that do not require changes or evolution 

of architecture. 

A decentralized system architecture (see Figure 1.2b) uses controllers at each node 

to perform computational processing locally (Prabaharan et al. 2018; Olivares et al. 2014). 

No single node has complete information about the overall system state, though 



  10 

communication between neighboring nodes is possible. Local control action decisions are 

made based on local data and information collected from neighboring nodes (Olivares et 

al. 2014). A central bus node may be used to establish network communication and 

messaging between nodes. These features of decentralized control allow microgrids to be 

easily extendable, scalable, and have the unique ability to adapt in the event of a failure. If 

one node is faulted, the majority of the system can remain functional (Prabaharan et al. 

2018). Coordination is essential so a single asset doesn’t accidently cause disruptions in 

the network due to limited awareness of the node, but the system is more tolerant against 

individual control process failures.  

  

Figure 1.2a Figure 1.2b 

 

 

Figure 1.2: Centralized and decentralized control architectures. 

 

Centralized architectures encompass much of microgrid controls literature 

(Olivares, Canizares, and Kazerani 2014; Al-Mulla and Elsherbini 2014; Tsikalakis and 

Hatziargyriou 2008; Jaiswal and Ghose 2017; Ambia, Al-Durra, and Muyeen 2011; 

Hajimiragha and Zadeh 2013; Li, Liu, and Zhang 2016), but decentralized architectures 

have gained attention in recent years for their scalability and adaptability (Harmouch, 

Krami, Hmina 2018; He et al. 2017; Sonnenschein et al. 2015; Liu, Y. et al. 2018; Divshali, 

Choi, and Liang 2017). In a microgrid using a centralized control paradigm, each DER 
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asset in the system sends information about its status to a central microgrid controller. The 

central microgrid controller gathers information from all parts of the system, then makes 

asset dispatch and setpoint control decisions that it sends back to the assets. Microgrids 

with decentralized control mechanisms have smaller-scale asset controllers on each DER 

asset that utilize a communication network to share information with one another. The 

assets make control decisions based on the information they receive from other assets. To 

preserve privacy and reduce points of vulnerability, the amount of information shared 

between neighboring assets is usually limited (He and Wei 2016; Wang, Yang, and Wang 

2012).  

The previously described examples of centralized control in power systems 

literature have been utilized to both coordinate assets within a single microgrid (usually 

through an EMS) (Olivares, Canizares, and Kazerani 2014; Yang et al. 2016; Rezaei and 

Kalantar 2014) and coordinate power exchange between multiple microgrids (Zenginis et 

al. 2017; Daneshvar, Pesaran, and Mohammadi-ivatloo 2018; Esfahani et al. 2019; Mei et 

al. 2019). Decentralized control is also used for both internal microgrid control (Yu et al. 

2016; Mahmoud and Hussain 2015; Lou et al. 2017) and inter-microgrid network control 

(Du et al. 2018; Harmouch, Krami, and Hmina 2018; Wang et al. 2018; Mohamed et al. 

2017). These methodologies can be combined in several ways, as summarized in Figure 

1.3, with varying levels of implementation complexity for communication and hardware. 

These combined strategies are defined by the place in which control decisions are made 

and where information is shared. When centralized control is implemented within a 

microgrid, all microgrid assets send information to a central microgrid controller which 

then provides asset-level control decisions and setpoints back to the assets (Figures 1.3a 
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and 1.3b). When centralized control is implemented at the network level, the microgrid 

network controller handles communication and control decisions between the microgrids 

and the main grid system (Figures 1.3a and 1.3c). In decentralized internal microgrid 

control, microgrid assets can communicate directly with one another to coordinate their 

control actions and make decisions locally (Figures 1.3c and 1.3d). Decentralized control 

at the network level requires microgrids or microgrid assets to communicate and coordinate 

their control actions between microgrids and the main grid direction (Figures 1.3b and 

1.3d). Inclusion of decentralized control at both the network level and internal microgrid 

level is the most complex case. More communication pathways, a larger number of 

controllers, and advanced control algorithms are required to make this configuration 

possible, but this approach allows for the most flexibility using the plug-and-play capability 

of hardware and controls.  
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Figure 1.3: Control strategies combining centralized and decentralized control at the 

microgrid and microgrid network level. 
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 Transactive Energy 

Recent studies have identified transactive energy as a potential technique for 

managing dynamic balancing between supply and demand at the tertiary control level (The 

GridWise Architecture Council 2015). Transactive energy markets can prioritize both 

individual and global objectives to seek optimal results for the system. Energy, power, and 

ancillary services are traded within the network and value is assigned based on interaction 

between nodes. Transactive energy techniques have many applications (Holmberg et al. 

2016) including energy trading across neighboring microgrids (Chen and Hu 2016; 

Divshali, Choi, and Liang 2017; Marzband, et al. 2018), mitigating voltage fluctuations 

caused by high penetration renewables (Chassin et al. 2017), and managing motor start-up 

currents (e.g., air conditioning) (Behboodi et al. 2018). Coordination between multiple 

microgrids and their control actions has shown promise to reduce cost by improving DERs 

utilization through improved dispatching (Wu and Guan 2013; Khodaei 2015; Zenginis et 

al. 2017). This benefit is especially enticing for off-grid applications where operation costs 

can be high and fossil fuel reserves have limited availability (Daneshvar, Pesaran, and 

Mohammadi-ivatloo 2018; Prinsloo, Mammoli, and Dobson 2017).  

Physical demonstrations of transactive energy systems have been implemented 

across the world (Kok and Widergren 2016). Within the United States, a well-known 

example is the Olympic Peninsula Demonstration, which provided a transactive energy 

proof-of-concept between the years 2006-2007. Sponsored by the US Department of 

Energy, the network consisted of several controllable assets including demand response 

from 112 homes, five water pumps, and two diesel generators. A double-auction market 

technique was implemented on a five-minute timescale to coordinate real-time energy 



  15 

purchasing through energy market clearing prices. Generators and pumps would bid into 

the market based on operational costs and water-reservoir levels, respectively, while the 

residents of the households could specify price-response preferences through their personal 

demand-response interface. The project demonstrated how a transactive energy system 

could achieve multiple objectives including system peak load management and energy cost 

savings for all market participants (Hammerstorm 2007). Though this project included 

demand response and some distributed generation, it did not incorporate home-based solar 

PV and energy storage that could be used for additional grid services and a finer degree of 

control at individual nodes across the electrical network. Additionally, power trading 

between home systems was not permitted. The Pacific Northwest Smart Grid 

Demonstration was an additional project in the United States that involved collaboration 

between multiple rural electric co-ops, investor-owned utilities, municipal utilities, and 

public utilities (Battelle Memorial Institute 2015). The transactive system introduced in 

this project consisted of 27 nodes exchanging information on delivered cost of electricity 

and predicted energy to be exchanged on the next time horizon with neighboring nodes. 

The system demonstrated how distributed assets can coordinate and respond dynamically 

across large regions. A transactive energy instrument called PowerMatcher has been 

implemented on over 1000 households and industrial sites across the Netherlands and 

Denmark (Kok 2013; PowerMatchSuite Transactive Smart Energy 2017). PowerMatcher 

allows consumers to sell the operational flexibility of their owned devices (e.g., appliances, 

electric vehicles) to interested parties. The only data exchanged consisted of aggregated 

information on power levels and prices, which protects the privacy of the customer from 

sharing local-specific data. Multi-objective optimization has been demonstrated with 
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respect to two different subsystems: market operations and active distribution network 

management. Field implementations have shown results including scalability beyond 1 

million customers, distribution-level peak-load-reductions of 30-35%, and wind imbalance 

reduction of 80%.  

Though these transactive energy projects have successfully demonstrated 

techniques such as pricing-based control, distributed asset coordination, scalability, and 

multi-objective optimization, further scientific development and physical demonstration is 

needed of direct power exchange between nodes using decentralized control architectures. 

Sometimes called peer-to-peer trading, a few projects exist including Piclo (Piclo 2018) 

and Vandebron (Vandebron n.d.) that provide energy consumers the ability to choose 

exactly where their electricity comes from, community-based projects such as 

SonnenCommunity (SonnenCommunity 2018) that focus on a central pool of energy 

shared by all members, and blockchain-based project such as the Brooklyn Microgrid that 

has a functional peer-to-peer transaction mechanism secured through blockchain 

(Brooklyn Microgrid 2018). Figure 1.4 shows an example of these peer-to-peer 

transactions on a single neighborhood street in Brooklyn. However, these existing projects 

utilize a centralized virtual marketplace or controlling entity to ensure a balanced market 

within the system. These efforts provide evidence for more research needed in development 

and physical demonstration of decentralized control techniques for microgrid networks. 
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Figure 1.4: Peer-to-peer energy trading on the Brooklyn Microgrid. Figure from (Lilic 

2015). 

 

 Self-organizing Control Techniques for Microgrids and DERs 

Self-organization is the process by which complex behaviors of a system can 

emerge from the collective interactions of distributed agents in a network (see Figure 1.5). 

Common examples of self-organization come from nature and biology where organisms 

act independently, but their actions and interactions with fellow organisms create global 

coordination (Lakhtakia and Martin-Palma 2013). This can be seen in group navigation of 

a flock of birds or the construction of an ant nest. Replicating this type of behavior has 

proven useful in many fields including computer science (Yang, Cui, and Xiao 2013), 

robotics (Floreano et al. 2010), and material science (Diesendruck 2015). Electrical grid 

controls can similarly incorporate self-organizing principles to coordinate DER or 

microgrid nodes that make control action decisions for both the benefit of the individual 

node and the entire network.  
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Figure 1.5: Self-organizing coordination between subsystems. 

 

Several self-organizing control algorithm techniques for microgrid networks have 

been developed such as artificial neural networks for adaptive learning and forecasting 

(Chaouachi et al. 2013; Li et al. 2015), fuzzy-based logic for addressing forecasting 

uncertainties (Chaouachi et al. 2013), and multi-agent systems for distributing 

computations (Jiang 2006; Cossentino and Lodato 2011; Leng and Polmai n.d.; Dimeas 

and Hatziargyriou 2005; Oyarzabal et al. 2005; Zheng and Cai 2010; Logenthiran et al. 

2010; Olivares et al. 2014). Multi-agent systems are particularly useful frameworks that 

can increase system scalability, flexibility, autonomy, and resiliency. They can be 

implemented in a centralized or decentralized control architecture, with significant 

advantages such as lower computation time and increased robustness when decentralized 

(Sharma, Srinivasan, and Kumar 2016). Agents can aggregate with other agents and there 

is essentially no limit on the number of agents that can join a group. This degree of 

expandability is desirable for larger networks and integration of other self-organizing 

techniques such as machine learning, cluster analysis, and fuzzy logic. In addition, agents 
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can self-heal and recover from loss of resources and dynamically coordinate to respond to 

faults in the system (Rivera, Farid, and Youcef-Toumi 2014). Multi-agent systems have 

emerged as a prominent technique for implementing transactive energy systems (Prinsloo, 

Mammoli, and Dobson 2017; Liu, Y. et al. 2018; Madkour 2016; Rosa de Jesus 2018).  

Multi-agent frameworks are common in literature for implementing 

communication and interaction between microgrids. Each entity in the network can be 

represented by an agent or set of agents that interact to accomplish tasks (Pashajavid, 

Shahnia, and Ghosh 2017b; Prinsloo, Mammoli, and Dobson 2017; Li, Q. et al. 2016; Liu, 

Y. et al. 2018; Liu, W. et al. 2018; Wang et al. 2018; Harmouch, Krami, and Hmina 2018; 

Rivera, Farid, and Youcef-Toumi 2014). Agents interact in a competitive or cooperative 

environment that has parallels to game theory. Competitive games involve agents with 

opposing interests, while cooperative games involve strategic collaboration between agents 

with aligned interests (Colman 2014). The information shared between agents provides 

awareness to the agent on the state of the network and contributes to the decisions and 

strategies it makes locally. The amount and order in which information is received may 

change actions taken by the agent and therefore affect the outcome of the game. Agents are 

also capable of modifying their decision-making strategies and forming opinions about one 

another based on trends of past engagements. 

 Present Literature on State-of-Art Controls 

This dissertation advances best-in-practice microgrid control algorithms by 

incorporating self-organizing techniques to achieve automated coordination and decreased 

operational cost for microgrid assets. Literature review identified specific areas in need of 

future research including multi-microgrid networks, markets for inter-microgrid trading, 
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and how to formulate local control actions within the individual microgrids to also achieve 

global-level benefits. The work summarized in Chapters 3 and 4 of this dissertation suggest 

use of the architecture shown in Figure 1.3b, where internal asset coordination is handled 

by a centralized microgrid controller while coordination between microgrids remains 

completely decentralized. In this hierarchy, control decisions within a single microgrid are 

optimized using state information of all assets within that microgrid and the available 

power and price of power to be purchased from or sold to neighboring microgrids. Primary 

control at each asset maintains stability, secondary control manages assets within a 

microgrid as suggested by past work (Olivares et al. 2014; Hatziargyriou 2013), and tertiary 

control manages inter-microgrid trading across the network. As such, this work will remain 

focused on the tertiary level of control. 

A selection of 26 representative studies on tertiary-level methods for multi-

microgrid network coordination controls are displayed in Appendix A. Definitions for each 

category used to characterize the literature can be found in Tables 1.1 and 1.2. The works 

were limited to those published in the past 10 years (2009 – 2019). Some of the literature 

refers to microgrid networks in different terms such as microgrid communities or single 

controllable buildings within one microgrid, but they were selected based on their 

organization of DER assets into single controllable entities with points of common 

coupling to each other and/or the main grid. Some literature also studies the entire control 

structure containing elements of primary, secondary, and tertiary control. They were 

included in the list for the portion of their research that covers tertiary control.  
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Table 1.1: Characteristics of Study Methods 

Characteristic Definition Options 

Objective 

Goals of the work and benefits 

they are seeking to implement 

in the network. 

Various 

Control Techniques 
Major control techniques used 

to achieve objective. 
Various 

Internal Microgrid 

Control Modeled 

Whether or not the method 

included asset scheduling, 

physical asset modeling, and/or 

asset-level controllers inside the 

microgrid. 

Yes 

No 

Internal Microgrid 

Control Topology 

The control architecture used 

for internal microgrid control 

modeling. 

Centralized 

Decentralized 

Microgrid Network 

Control Topology 

The control architecture used 

for microgrid network 

modeling. 

Centralized 

Decentralized 

 

Table 1.2: Characteristics of Case Studies 

Characteristic Definition Options 

Network Architecture 
How nodes are connected in the 

case study. 

Abstract (Graph theory-

based) 

Arbitrary 

Modified or Exact Existing 

Systems 

Modified or Exact IEEE 

Test Cases 

Modified or Exact 

Benchmarking Test Cases 

(Other) 

Synthetically Generated 

Time Scale 
Smallest time increment 

simulated in case study. 
Various 

Grid 

Whether or not the case study 

included a connection to the 

main grid. 

Yes 

No 

Voltage Level 
Voltage level at which case 

study system is operating. 

Low 

Low/med 

Med 

Asset Types 
Types of assets included in the 

case study system. 

Electrical 

Electrical/thermal 

Max Node # 
Maximum number of nodes 

simulated in case study 
Various 
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The majority of studies implement decentralized techniques for microgrid network 

control and centralized control for internal asset control (see Figures 1.6 and 1.7). Agent-

based control techniques are common. This correlates with the architecture described in 

Figure 1.3b and often involves well-defined hierarchical control levels between assets and 

the larger network. Hybrid approaches with techniques from both centralized and 

decentralized paradigms were also present in several studies. 

 
Figure 1.6: Microgrid network control topologies utilized in selected literature. 

 

 
Figure 1.7: Internal microgrid control topologies utilized in selected literature. 
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Existing literature included minimal study and discussion of how network 

architecture and levels of connectivity effect simulated results. The network architecture 

types utilized in literature can be categorized in the following ways: 

• Abstract (Graph theory-based): Nodes are connected according to a classical, 

graph-theory based network configuration. These are generalizable and well-

understood. Example: Linear networks; fully-connected network. 

• Arbitrary: Nodes are connected in an arbitrary configuration with no reference 

to any synthetic, standardized, or existing configuration. Example: A figure 

and/or description provided with no reference. 

• Existing Systems: Nodes are modeled and connected based on the 

configuration of existing or future physical systems. Example: University 

campus electrical network; city electrical network. 

• Modified or Exact Benchmarking Test Cases (Other) – Nodes are connected 

according to a standardized benchmarking test case network developed by a 

group of energy industry professionals or energy authority. Pre-defined data 

sets are often available for these cases, though some literature modifies the test 

case to include different types of assets and data. Example: European Union 

Benchmark LV Microgrid Network. 

• Modified or Exact IEEE Test Cases – Nodes are connected according to a 

standardized test case network developed by industry professionals within the 

IEEE Distribution System Analysis Subcommittee to evaluate and benchmark 

power-flow algorithms. Pre-defined data sets are often available for these test 
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cases, though some literature modifies the test case to include different types of 

assets and data. Example: IEEE 13-bus Feeder; IEEE 123-bus Feeder. 

• Synthetically Generated (AI) – Nodes are connected in a configuration 

defined by a synthetically generated network. These synthetically generated 

networks are often created with artificial intelligence algorithms trained on 

existing or standardized network configurations. Example: Network created by 

AI algorithms trained on IEEE test cases. 

• Synthetically Generated (Random) – Nodes are connected in a randomly 

generated configuration. Example: Randomly selected distances and 

connections between nodes. 

IEEE and other benchmarking test cases have well-understood behavior given the 

use of measurements from real systems and repeated study by researchers. This makes it 

easier to compare to other network architecture types and algorithms, with findings that are 

easily generalizable to other applications within power/energy such as high-voltage 

transmission-level networks. Existing systems are comparable to other network 

architecture types and generalizable within the power/energy field since they are based on 

realistic, functioning systems. They have well-understood behavior since data often comes 

from measurement of a physical system but cannot be easily generalized to other 

applications. Since synthetically generated network configurations are a newly formed, 

unstudied systems, they have less well-understood behavior. Abstract (or graph theory-

based) networks also tend to have very well understood behavior due to the vast amount of 

study in graph theory over several decades (Chen 1971; Golumbic 1980; Leeuwen 1990; 

Ito 2008). They can be compared to networks in any field of application and to the other 
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network architecture types discussed here. Arbitrary architectures are usually designed in 

a generalizable network with a shared distribution feeder or complete-graph configuration, 

which can be comparable to other networks in the power/energy field but do not have the 

connectivity justified in any other way. 

A summary of the network architectures used in the selected literature set are shown 

in Figure 1.8. The majority (38%) used case studies with arbitrary architectures, while 15% 

used existing systems and 15% used either IEEE test cases or other benchmarking test 

cases. Synthetically generated networks based on machine learning of other networks were 

not found in any of the selected literature, but 15% used randomly generated synthetic 

networks. Only one piece of literature (Gregoratti and Matamoros 2015) used graph-theory 

based networks and considered several different topologies including ring, line, and fully-

connected networks. 

 
Figure 1.8: Microgrid network architectures utilized in selected literature. 
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The maximum number of nodes utilized in case studies is shown in Figure 1.9. 

Most case studies analyzed 10 nodes or less, though several did have more than 100 nodes 

(Wu and Guan 2013; Chakraborty, Nakamura, and Okabe 2014; Hammad, Farraj, and 

Kundur 2015a; Mei et al. 2019; Sadd, Han, and Poor 2011). Of the surveyed literature that 

analyzed a network larger than 10 nodes, 80% used synthetically generated network 

architectures and all used synthetically or randomly generated load data. It should be noted 

that due to the nature of randomization, some of these network configurations may have 

been unrealistic. This is especially true for those that randomly generated power demand 

in a wide range (i.e. 0-100 MW across five minutes), as it could create load profiles with 

large peaks and unrealistic or unmanageable transients if translated to a physical network.  

Figure 1.10 shows the minimum increment used for time steps within the case 

studies. The most common time step used was hourly, which is common for day-ahead 

energy asset scheduling. These results provide satisfactory high-level metrics on the 

benefits of the proposed approaches, however for them to be utilized in real-time operations 

they would require primary, secondary, and additional tertiary control mechanisms. It 

should also be noted that many of the surveyed literature did not specify the time step of 

their data in the text and could not be determined by the graphs provided. All literature was 

at the distribution network level and below (low or medium voltage).  
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Figure 1.9: Maximum number of nodes used in case studies of selected literature. 

 

 
Figure 1.10: Minimum time step used in case studies of selected literature. 
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in Chapter 4. Throughout the dissertation, specific attention is given to how individual 

node-level behaviors affect network-level behaviors and outcomes including economic 

metrics (e.g., levelized-cost-of-energy, maximum and minimum buying/selling prices) and 

behavioral metrics (e.g., number of successful negotiations, number of consistent trading 

groups). These control techniques are evaluated in a range of network configurations to 

maximize generalizability. Chapter 5 provides a discussion of scientific implications of the 

dissertation, followed by a brief discussion of physical deployment and future work. 

Below is a summary of each chapter: 

• Chapter 1: Introduction – An introduction to microgrid control concepts, self-

organizing control techniques, transactive energy, and the present state of the 

research space. Objectives of the dissertation research are identified, as well as a 

brief description of the work completed in Chapters 2, 3, and 4. 

• Chapter 2: Implications of High-penetration Renewables for Ratepayers and 

Utilities in the Residential Solar Photovoltaic (PV) Market – A journal article 

examining the combined effect electric rate structures and local environmental 

conditions have on optimal solar home system size, ratepayer financials, utility 

financials, and electric grid ramp rate requirements as the amount of installed solar 

PV increases. Analyses are conducted for three urban regions in the United States 

that provide both generalizable and site-specific findings. This article was 

published in Applied Energy in October 2016. Permissions by co-author visible in 

Appendix B. 

• Chapter 3: Scalable Multi-Agent Microgrid Negotiations for a Transactive Energy 

Market – A journal article introducing a generalizable method for negotiation and 
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energy trading between microgrids in a grid-connected network. Multi-agent 

techniques enable information sharing between nodes and scalability of the network 

architecture. Year-long simulations of 3-node and 9-node networks with varying 

local energy storage capacities are implemented to examine the impact on levelized 

cost of energy and trading behaviors. This article was published in Applied Energy 

in November 2018.  

• Chapter 4: Reputation-based Competitive Pricing Negotiation and Power Trading 

for Grid-Connected Microgrid Networks – A journal article describing how 

microgrids in a grid-connected network can be modeled as a competitive game of 

negotiations between agents to determine energy pricing with energy trades offered 

by each agent based on most utility (or payoff) for themselves. Negotiation 

strategies are affected by reputation, which considers the agent’s familiarity, 

success rate, and value attributed to other agents. Year-long 9-node networks with 

varying levels of connectivity are analyzed. This article will be submitted for 

publication January 2020.  

• Chapter 5: Discussion – Results from Chapters 2, 3, and 4 are discussed in 

aggregate. Trends in nodal and network behavior with respect to self-organizing 

control techniques are described. Implications to the energy industry are described 

and future research spaces are defined, including implementation of the control 

techniques described in Chapter 3 and Chapter 4 in hardware 
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CHAPTER 2 

IMPLICATIONS OF HIGH-PENETRATION RENEWABLES FOR RATEPAYERS 

AND UTILITIES IN THE RESIDENTIAL SOLAR PHOTOVOLTAIC (PV) MARKET 

Authored by Samantha A. Janko, Michael R. Arnold, & Nathan G. Johnson 

Published in Applied Energy Vol. 180 October 2016 

https://doi.org/10.1016/j.apenergy.2016.07.041 

Abstract 

Residential energy markets in the United States are undergoing rapid change with 

increasing amounts of solar photovoltaic (PV) systems installed each year. This study 

examines the combined effect of electric rate structures and local environmental forcings 

on optimal solar home system size, ratepayer financials, utility financials, and electric grid 

ramp rate requirements for three urban regions in the United States. Techno-economic 

analyses are completed for Chicago, Phoenix, and Seattle and the results contrasted to 

provide both generalizable findings and site-specific findings. Various net metering 

scenarios and time-of-use rate schedules are investigated to evaluate the optimal solar PV 

capacity and battery storage in a typical residential home for each locality. The net 

residential load profile is created for a single home using BEopt and then scaled to assess 

technical and economic impacts to the utility for a market segment of 10,000 homes 

modeled in HOMER. Emphasis is given to intraday load profiles, ramp rate requirements, 

peak capacity requirements, load factor, revenue loss, and revenue recuperation as a 

function of the number of ratepayers with solar PV. Increases in solar PV penetration 

reduced the annual system load factor by an equivalent percentage yet had little to no 

impact on peak power requirements. Ramp rate requirements were largest for Chicago in 
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October, Phoenix in July, and Seattle in January. Net metering on a monthly or annual basis 

had a negligible impact on optimal solar PV capacity, yet optimal solar PV capacity 

reduced by 20-50% if net metering was removed altogether. Technical and economic data 

are generated from simulations with solar penetration up to 100% of homes. For the 

scenario with 20% homes using solar PV, the utility would need a 16%, 24%, and 8% 

increase in time-of-use electricity rates ($/kWh) across all ratepayers to recover lost 

revenue in Chicago, Phoenix, and Seattle, respectively. The $15 monthly connection fee 

would need to increase by 94%, 228%, or 50% across the same cities if time-of-use 

electricity rates were to remain unchanged. Batteries were found to be cost-effective in 

simulations without net metering and at cost reductions of at least 55%. Batteries were not 

cost-effective—even if they were free—when net metering was in effect. As expected, 

Phoenix had the most favorable economic scenario for residential solar PV, primarily due 

to the high solar insolation.  

 Introduction 

Addressing the societal demand for low-carbon energy is an ongoing challenge that 

will persist for several decades. It has been suggested that a zero-carbon economy can be 

realized in the United States by 2050 through changes in technology, policy, economics, 

business models, and consumer behavior (Lovins 2013). Yet that year is far away, and 

much progress is needed. For now, the increasing amount of research and practice in 

reducing carbon emissions hint that a zero-carbon future may be possible (EIA 2014; Roosa 

and Jhaveri 2009; Damiani et al. 2011).  

The long-term vision for carbon-free energy has been pursued with research in 

renewables design and integration (Nemet et al. 2012; Purohit and Purohit 2010), grid 



  32 

stability at high levels of renewable penetration (Carrasco et al. 2006; Kempton and Tomić 

2005; Lund 2005; Yan et al. 2015; Lund and Münster 2003), building energy systems 

design and analysis (Nguyen et al. 2014; Wang et al. 2011; Salpakari and Lund 2016), 

energy efficiency in end-use devices (Abramson et al. 1990; Negrão and Hermes 2011; 

Finn et al. 2013), thermal energy storage to offset air conditioning loads (Ruddell et al. 

2014; Arteconi et al. 2012), and studies of the social, political, and economic implications 

of transitioning to a low-carbon future (Laird 2013; Miller and Richter 2014; Yun and 

Steemers 2011; Mills and Wiser 2015; Brouwer et al. 2016). The diversity of topics 

covered in the literature is an indication of the complexity and the challenges faced when 

integrating distributed energy resources (DER) from the individual circuit to the larger grid.  

Household solar photovoltaic (PV) systems have become increasingly common in 

the United States, with a current annual growth rate of 58% (SEIA 2014). Solar home 

systems commonly produce excess electricity during the daytime to displace grid purchases 

during off-sun hours. This excess electricity can be stored in batteries for later use, or 

credited to the customer through a feed-in tariff or net metering. Net metering is a billing 

agreement that allows customers to use the credited electricity at another time when solar 

PV generation is less than the household load. Net metering is a major factor in solar PV 

adoption (Darghouth et al. 2011). The ability to use the grid as a “zero cost lossless battery” 

is unquestionably an economic advantage for the consumer (ratepayer). A feed-in tariff is 

another form of billing agreement (Couture and Gagnon 2010). In a feed-in tariff billing 

agreement, the ratepayer is compensated monetarily for excess production, whereas in net 

metering the ratepayer receives kilowatt-hour energy credits by “rolling back the meter” 

during periods of excess production.  
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The technical and economic implications of small amounts of household solar PV 

are minimal to the utility, but at higher penetration levels, solar PV is expected to cause 

grid instability and disrupt utility business models (Denholm and Margolis 2007). A 

primary concern is managing the significant rise in electrical demand that occurs during 

the late afternoon when solar output declines and residential loads increase as people arrive 

home from work or school. This increases the ramp rate requirement from dispatchable 

generation as popularized in the “duck curve” or “duck chart” (California ISO 2013). 

Intermittency in renewables is another point of concern when noting that utilities must keep 

sufficient reserves (e.g., dispatchable generation, storage, and demand response) online to 

displace potential disruptions in solar PV power output caused by clouding or other effects 

(Denholm and Margolis 2007; Evans et al. 2016). These issues may become more prevalent 

over time as distributed solar PV capacity continues to increase.  

 Background 

A growing body of research has explored the technical and economic implications 

of high-penetration distributed residential solar PV (Cai et al. 2013; Darghouth et al. 2011; 

Katiraei and Aguero 2011; Liu et al. 2014; Mondol et al. 2009; Østergaard 2009; Pillai et 

al. 2014; Reichelstein and Yorston 2012). It is clear that the declining costs of solar 

modules have contributed to increases in the installed capacity of solar PV (EA 2008). 

Total hardware costs have dropped from $3.30 per watt to $1.83 per watt between 2010 

and 2012, with current module prices at under $1.00 per watt (Ardani 2014; Hernández-

Moro and Martínez-Duart 2012). Recent work is seeking to reduce costs further by 

targeting the “soft costs” of solar installation such as labor, supply chain, permitting, and 

transaction costs. Soft costs comprised approximately two-thirds of the total installed cost 
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of $5.22 per watt in 2012 (Ardani 2014). Additional reductions in cost to the end-user were 

available through tax incentives, subsidies, and rebates offered by governments and utilities 

(Mulder et al. 2013; Reichelstein and Yorston 2012). Leasing is also an attractive option 

that offers a no-money-down solution with low financing charges. Current systems can be 

leased on 20-year or 25-year agreements for as little as $3.00 per watt to the end-user after 

accounting for rebates, incentives, financing charges, and maintenance and warranty costs 

(DSIRE 2015; Liu et al. 2014; SolarCity 2015).  

The economic advantage of home solar is not universal for all ratepayers. An 

analysis of local electric rate structures must be performed to determine if solar PV reduces 

the levelized cost of electricity (LCOE) for the end-user vis-à-vis grid power alone (Cai et 

al. 2013; Mondol et al. 2009). Areas with higher costs of electricity and favorable 

distributed generation policies—such as Hawaii (USA), Germany, and Denmark—have 

experienced substantial increases in solar PV penetration whereas regions with lower 

electricity costs and more strict owner-side generation policies—such as fossil-fuel rich 

industrialized economies—have seen solar PV penetration grow at a slower rate (Anaya 

and Pollitt 2014; IEA 2014, 2015). Net metering has been suggested as one of the leading 

contributors to the growth of the residential solar PV market (Darghouth et al. 2011). Feed-

in tariffs have also contributed to solar PV adoption and often begin with a high feed-in 

tariff to spur the installation of solar and then reduce the tariff’s value over time as a way 

to slow down the rate of solar PV adoption (Mondol et al. 2009; Wand and Leuthold 2011; 

Wirth 2015).  

Electric utility business models will not be insolated from the rise in distributed 

solar PV. Instead, it has been surmised that solar PV consumers will have the strongest 
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effect on utility revenue (Pillai et al. 2014). According to a scoping study conducted by 

Lawrence Berkeley National Laboratory, a solar PV penetration rate reducing 10% of retail 

sales at a Northeast wires-only distribution utility was found to reduce the return on equity 

by 40% with a corresponding 15% reduction in achieved earnings and an average rate 

increase of 2.7% for ratepayers (Satchwell et al. 2014). This suggests that the loss of 

revenue from solar PV customers could be recouped through rate increases for all 

customers—solar and non-solar homes.  

Aside from revenue loss, uncontrolled renewables can create over-production 

issues within a region when thermal base-loading power plants need to operate at a 

minimum load or provide reserve capacity (Wirth 2015). In addition, fluctuations in solar 

PV output can cause disturbances in voltage and frequency that fatigue hardware and 

reduce equipment lifetime (Bhat et al. 2014; Kern et al. 1989; Patsalides et al. 2007; 

Sadineni et al. 2012). Further studies are needed to explore these and other challenges of 

high-penetration solar PV integration (Katiraei and Aguero 2011). Yet for now, it can be 

surmised that the unfolding of the residential solar PV market will not continue business 

as usual for utilities, customers, and technology providers. Modeling approaches and 

stakeholder engagement efforts that represent, contrast, and integrate the perspectives of 

various parties can facilitate energy planning decisions for mutual gain (Browne et al. 

2010; Løken 2007). 

This article contrasts the objectives of residential ratepayers and an electric utility 

by simulating the combined effect of electric rate structures and local environmental 

forcings on optimal home energy system size, ratepayer financials, and utility technical 

and financial factors. Analyses are completed of three urban cities (Chicago, Phoenix, and 
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Seattle) in the United States and then contrasted to provide both generalizable findings and 

site-specific findings. Various time-of-use pricing schedules are investigated, and the effect 

of net metering is evaluated to determine the optimal capacity of solar PV and battery 

storage in a typical residential home. The residential load profile is scaled to assess system-

wide technical and economic merits of interest to a utility at low-, medium-, and high-

penetration solar PV scenarios.  

 Methodological Approach 

A variety of models are available for evaluating changes in the residential solar PV 

market. These include elements of expansion planning for modeling system-wide effects 

of load growth and generation assets, and production cost modeling and economic dispatch 

for dispatching energy sources to deliver the least cost energy. In this analysis, two 

software packages were employed: Building Energy Optimization (BEopt) was used to 

simulate household load profiles for each study location (Christensen et al. 2006, U.S. 

Department of Energy 2014), and Hybrid Optimization Model for Electric Renewables 

(HOMER®) (Lambert et al. 2006) was used to aggregate and evaluate system-wide effect 

of solar PV on the net system load. Finally, sensitivity analyses were performed on 

hardware cost parameters, solar PV penetration, and utility electricity rates.  

BEopt, commonly used to evaluate whole-building energy savings, provides 

important information about a building, such as size and orientation, materials composition 

and structure, location, occupancy data, along with a library of technologies for lighting, 

heating, cooking, and other end-use energy needs. BEopt can be used to describe the costs 

and benefits of renewable energy options for new or existing residential homes (Anderson 

et al. 2006; Christensen et al. 2006). Building energy calculations are completed in an 
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underlying simulation engine, such as EnergyPlus (Crawley et al. 2001). The computed 

hourly time series data and aggregate energy use data are reported in BEopt’s graphical 

user interface.  

The HOMER software can be used for power system topology selection and sizing 

against uncertain constraints that are explored through sensitivity analyses on hardware 

cost, performance, resource availability, and other data used in economic feasibility studies 

(Fulzele and Dutt 2011; Hafez and Bhattacharya 2012; Roy et al. 2014). HOMER models 

a power system using chronological hourly simulations over a one-year period and 

quantifies the total cost of the power system over its multi-year lifespan. Although 

HOMER was developed primarily for off-grid micro-grid systems, the software can be 

used to simulate residential-scale grid-connected systems and model a simplified 

representation of the electric grid as a single circuit to calculate aggregate load and 

economic statistics (Johnson et al. 2011). The latter use case demonstrates the primary role 

of HOMER in this study.  

2.3.1. Electric Load Profile and Solar Irradiance Simulation 

A residential load profile (without renewables or batteries) was simulated for a 

household created in BEopt. The selection of a single, common home design subjected to 

local environmental forcings permits a more direct comparison of results, and therefore 

generalizable findings, across the case study locations for optimal solar home system size, 

ratepayer financials, utility financials, and electric grid ramp rate requirements as a 

function of electric rate structures.  

The two-story square home of 11.58 meters by 11.58 meters (38 feet by 38 feet) 

equates to a total of 221 square meters (2,388 square feet) after subtracting the garage space 
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of 7.62 meters by 6.10 meters (25 feet by 20 feet) on the first floor (Fig. 2.1). This home 

size is within 0.2% of the national average for the United States (U.S. Census Bureau 

2010a). Many of the standard industry values listed in the Building America House 

Simulation Protocols were chosen for simulation (Hendron and Engebrecht 2010). Points 

of deviation include: gas water heater, gas cooking range, electric clothes dryer, and 

spacing of 6.10 meters (20 feet) between neighboring households. The BEopt model can 

be reproduced using default values with edits to such values described as deviations from 

default settings.   

 
Figure 2.1: Household visualization in BEopt. 

 

The BEopt household model was run for three separate locations using BEopt’s 

predefined TMY2 solar and temperature profile data for Chicago, Phoenix, and Seattle 

(Christensen et al. 2006). These cities were chosen to provide dataset diversity in location, 

solar insolation, climate, and weather as shown in Fig. 2.2 and Table 2.1. The Chicago 

metropolitan area, home to 9.7 million people in the mid-western region of the United 

States, experiences colder winters relative to the other two cities. Seattle is further north in 

latitude, yet its proximity to the Pacific Ocean in the northwestern region of the country 

provides more consistent year-round temperatures and milder winters. The 3.7 million 

people living in the metropolitan area of Seattle have overcast skies for approximately one-
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quarter to one-third of the year, and consequently receive the least solar insolation of any 

city. Phoenix has a desert climate and is located in the southwestern United States. The 4.2 

million people in the Phoenix metropolitan area experience the greatest solar insolation 

and hottest temperatures of any study location (U.S. Department of Energy 2014; U.S. 

Census Bureau 2010b). Figure 3 summarizes the annual solar profile for all three cities in 

a heat map of all hours in a one-year period. 

 
Figure 2.2: Geographic data for case study locations (d-maps 2016). 

 

Table 2.1: Solar and Temperature Data for Case Study Locations (U.S. 

Department of Energy 2014) 

Location 

Average solar 

insolation 

(kWh/m2/day)  

Average daily 

temperature (°C) 

Average daily 

minimum 

temperature (°C) 

Average daily 

maximum 

temperature (°C) 

Chicago 3.83 10.0   4.8 14.9 

Phoenix 5.71 23.8 17.6 30.1 

Seattle 3.31 11.8   8.3 15.6 

 

Household energy use statistics are summarized in Table 2.2. It can be seen that 

Phoenix has a higher peak power demand and average load relative to Chicago and Seattle. 

This is principally caused by the increase in cooling loads in the warm desert climate. While 

households in Chicago and Seattle have similar total energy usage, Chicago experiences a 
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higher peak load. The minimum load is similar across all locations, suggesting that non-

cooling loads provide similar base load profiles across all regions. This is expected since 

the BEopt model input parameters were held constant for each study location. 

 
Figure 2.3: Hourly global horizontal solar radiation at study locations in BEopt. 

 

Table 2.2: Household Energy Use Summary 

Location Average (kW) Peak (kW) Min (kW) Total (kWh) 

Chicago 1.00 2.84 0.41   8,765 

Phoenix 1.57 5.29 0.44 13,750 

Seattle 0.90 2.09 0.41   7,887 

 

2.3.2. Household Solar PV System Sizing and Energy Costs 

Residential load (kW) and global horizontal irradiance (kW/m2) profiles from the 

BEopt building energy model were inputted into the HOMER economic model. HOMER 

includes algorithms to generate synthetic solar data. These algorithms were overridden 

using hourly data from BEopt to maintain consistency across the two modeling packages. 

The HOMER model can be reproduced by changing values listed herein away from default 

values loaded in HOMER.  
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The DC capacity of the solar array was selected to create a net-zero energy home 

on an annual basis—the solar array DC capacity was varied until the AC inverter output 

matched the household AC electricity use, thereby offsetting the total annual energy use 

for the home so that the net grid in/out was zero. Annual household energy use was taken 

from BEopt, PV capacity factor from HOMER, and the inverter efficiency assumed a 

constant 95% in Eq. 2.1. The maximum allowable PV array capacity was calculated to be 

7.57 kW for Chicago, 7.93 kW for Phoenix, and 7.68 kW for Seattle. Solar PV array 

capacities were similar despite higher loads in Phoenix since the city has a higher solar PV 

capacity factor.  

 𝑃𝑚𝑎𝑥 =
𝐸𝑡𝑜𝑡

𝐶𝐹×𝜂𝑖𝑛𝑣
 (2.1) 

𝑃𝑚𝑎𝑥 = maximum allowable PV array capacity (kW) 

 

𝐶𝐹 = capacity factor (%) 

 

𝐸𝑡𝑜𝑡 = total annual household energy use (kWh/yr) 

 

𝜂𝑖𝑛𝑣= inverter efficiency (%) 

 

 Net home energy profiles and energy costs were simulated for each study location 

using the following HOMER input parameters:  

• Solar PV—The array was mounted facing due south at a slope equivalent to the 

latitude in each study site to achieve maximum energy output over a one-year period. 

Shading and temperature effects were not considered. A conservative derating factor 

of 80% was selected to account for soiling and line loss, panel degradation, diodes 

and connections, and other discrepancies between the rated power output and 

installed power output (Deline et al. 2011; National Renewable Energy Laboratory 
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2016a). Rooftop array capacities were evaluated at 5% increments ranging from 0% 

to 100% of the maximum capacity permitted in each study site. Installed solar PV 

cost was assumed at $3.00 per watt after rebates and incentives (DSIRE 2015; 

SolarCity 2015). Annual operating and maintenance costs were 1% of the installed 

system capital cost. Replacement costs were ignored given that the PV system 

lifetime and simulation timeframe (20 years) were equivalent (National Renewable 

Energy Laboratory 2016b).  

• Inverter—The DC-to-AC conversion efficiency was assumed to be a constant 95% 

through a review of manufacturer specifications from common home solar inverters 

(ABB 2016; Fronius USA LLC 2016; SMA Solar Technology AG 2016). Inverter 

sizes were selected to be equivalent to solar PV sizes evaluated in each study site. 

The initial capital cost and replacement costs incurred for inverter failure were 

included in the $3.00 per watt cost of the solar home system.  

• Battery—A Surrette 4KS25P battery was used with a nominal 7.6 kWh capacity. 

Costs data included initial costs of $1,200, replacement costs of $800, and annual 

operation and maintenance costs of $40. The effects of battery cost on energy cost 

and optimal system topology were explored through sensitivity analyses. Battery 

replacement occurs after reaching a maximum energy throughput as calculated in 

Eq. 2.2. HOMER assumes the lifetime of the modeled battery is independent of 

cycle depth, and uses the annual energy throughput to estimate the battery lifetime, 

as in Eq. 2.3.  

 𝐸𝑙𝑖𝑓𝑒 = 𝐸𝑛𝑜𝑚
1

𝑚
∑ 𝑛𝑖𝑑𝑖

𝑚
𝑖=1  (2.2) 
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𝐸𝑛𝑜𝑚 = nominal capacity of battery (kWh) 

 

𝐸𝑙𝑖𝑓𝑒 = lifetime battery throughput (kWh) 

 

𝑚 = number of manufacturer data points for lifetime tests (%) 

 

𝑛𝑖 = manufacturer data on number of cycles till failure (-) 

 

𝑑𝑖 = manufacturer data on depth of discharge (%) 

 

 𝑡𝑙𝑖𝑓𝑒 =
𝐸𝑙𝑖𝑓𝑒

𝐸𝑎𝑛𝑛
 (2.3) 

𝐸𝑎𝑛𝑛 = annual battery throughput (kWh/yr) 

 

𝑡𝑙𝑖𝑓𝑒 = battery lifetime (yr) 

 

• Grid electricity price—Three time-of-use (TOU) rate schedules were selected as 

shown in Table 2.3. The price of electricity differed between summer months (June-

September) and non-summer months, with peak pricing between 1:00 PM and 7:00 

PM (weekdays only). Case 1 is the reference case with no intraday TOU price 

increase, Case 2 represents a 50% TOU increase, and Case 3 represents a 100% 

TOU increase. Rates in Table 2.3 include all taxes and fees. A grid connection fee 

of $15 per month was applied to all scenarios. Although HOMER is not able to 

evaluate grid price escalation over the simulated 20-year project lifetime, increases 

in grid price can be modeled implicitly using a negative annual real interest rate 

and by compensating for that formulation of the time-value of money when 

selecting equipment replacement costs encumbered over the system’s lifetime. This 

method allowed the study to consider grid rate increases, but did not accurately 

reflect the time value of money for other operating costs incurred. This was deemed 

an acceptable simplifying assumption given that operating and maintenance costs 
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for home energy equipment were negligible relative to grid purchases. A grid price 

escalation of 3.0% per annum was assumed and was based on the observed 3.2% 

per annum increase in the average retail price of electricity from 2002–2015 for 

residential customers in the United States. It is worth noting that the price of 

electricity increased 5.0% per annum and 1.7% per annum, between 2002–2008 

and 2009–2015, respectively, with a maximum annual increase of 10.1% and 

minimum annual increase of 0.3% over the observed period of 2002–2015 (EIA 

2016). It is assumed that future price volatility will be driven by global events, 

energy policy, the price of natural gas, and new technology. The average increase 

of 3.0% per annum was considered as representative of the multi-year historical 

data including such events and input into HOMER as a negative discount rate as 

discussed previously.  

Table 2.3: Grid Rate Structures ($/kWh) 

Rate period 
No TOU TOU 

Case 1 Case 2 Case 3 

Non-summer 0.12 0.12 0.12 

Summer off-peak 0.16 0.16 0.16 

Summer on-peak 0.16 0.24 0.32 

 

• Net metering—The effect of net metering policy was explored as follows: a) no net 

metering, b) net metering calculated on a monthly basis, and c) net metering 

calculated on an annual basis. A flat sell-back rate of $0.03/kWh was applied across 

all scenarios to reflect the sale of any net excess generation from the household PV 

array at the end of a net metering period. This rate approximates a typical wholesale 

electricity value in the United States (EIA 2015).  
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Optimal array capacities that produce least-cost energy for the consumer were 

evaluated using the LCOE formulation (Eq. 2.4) from HOMER, which discounts future 

energy use at the same rate as cash flow terms.  

 𝐿𝐶𝑂𝐸 =
∑

𝐶𝑡
(1+𝑖)𝑡

𝑛
𝑡=0

∑
𝐸𝑡

(1+𝑖)𝑡
𝑛
𝑡=1

  (2.4) 

𝐿𝐶𝑂𝐸 = levelized cost of energy ($/kWh)  

𝑡 = increment of time (yr) 

𝑛 = lifetime of the system (yr) 

𝑖 = discount rate (%) 

𝐶𝑡 = net cash flow in year t ($) 

𝐸𝑡 = useful energy provided in year t (kWh) 

 

2.3.3. Aggregate Utility-scale Effects 

Utility-scale effects of solar PV were investigated by calculating the net system-

wide load profile as a summation of 10,000 individual homes. The number of homes 

selected does not affect conclusions of the study achieved on a relative basis with respect 

to input parameters when noting the linear scaling in Eq. 2.1 and Eq. 2.5. Stated otherwise, 

the same relative findings emphasized in this comparative study can be achieved by 

simulating 100 homes or 500,000 homes. The quantity of 10,000 homes is a small subset 

of homes in each city, yet is large enough to illustrate 5–50 MW swings in utility net load 

that affect the output of committed assets and still sufficiently small to have no effect or 

minor effect on utility unit commitment decisions and transmission scheduling to a 

metropolitan area.  
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The net load profile was calculated for various levels of PV penetration using the 

affine combination given in Eq. 2.5. Households with solar PV used the maximum 

allowable solar PV capacity calculated from Eq. 1.  

 𝑃𝑢𝑡𝑖𝑙𝑖𝑡𝑦 = 𝑛ℎ[(1 − 𝛾)𝑃𝑟𝑒𝑠 + 𝛾𝑃𝑟𝑒𝑠,𝑃𝑉] (2.5) 

𝑃𝑢𝑡𝑖𝑙𝑖𝑡𝑦 = utility net power (kW) 

𝑃𝑟𝑒𝑠 = net power of a household without PV installed (kW) 

𝑃𝑟𝑒𝑠,𝑃𝑉 = net power of a household with PV installed (kW) 

𝑛ℎ = number of households simulated (-) 

𝛾 = residential PV adoption rate (%) 

 Results and Analysis 

Hourly time series data were generated for a one-year period in each simulation. 

Data was selected from January, April, July, and October to visualize effects to the net 

system load profile over various parts of the year.  

2.4.1. Utility Implications 

Implications of solar PV for utilities were first explored by examining the net 

system load profile and economic metrics for residential PV penetration rates of 0%, 5%, 

10%, 15%, 20%, and 25%. This utility-focused analysis assumed that ratepayers install 

sufficient solar PV to make their home net-zero.  

Simulation results for net load profiles exhibit “duck curve” behavior at higher 

solar PV penetrations that differ by location and season. Figure 2.4 shows the average 

daily load profile for selected months in the year with these findings easily identifiable 

based on location, time of day, and time of year. It can be seen that net load profiles 

overlap in the early and late hours of the day due to a lack of sunlight, as expected. The 
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effect of solar PV on the net profile is clearly the greatest in Phoenix, yet Phoenix 

displays no negative net load in July due to the high use of electric air conditioning units. 

Chicago and Seattle, conversely, experience the greatest drop in net load in July, given a 

reduced air conditioning load when compared to Phoenix. The minimum annual net load 

for Chicago and Seattle occurs in April and July, respectively, due to their slightly higher 

cooling load requirements in the summer. The minimum annual net load for Phoenix 

occurs in April due to its high solar insolation and relatively minimal cooling load, when 

compared to July at the same location. The dynamics of the net load profile clearly vary 

by season, indicating that a utility must adapt operational strategies throughout the year to 

handle additional ramp rate requirements. 

 
Figure 2.4: Grid load profiles at various solar PV penetration rates with net-zero solar 

PV capacity for the ratepayer. 
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Figure 2.4 depicts the time of day when the maximum ramp rate occurs. The 

maximum positive ramp rate occurred at 4:00 PM or 5:00 PM in almost all scenarios. 

Exceptions are Chicago and Seattle in April (7:00 PM) and Phoenix and Seattle in October 

(6:00 AM). The morning peak in October is smaller in magnitude than the evening peak, 

yet larger ramp rates occur in the morning. Table 4 summarizes the ramp rates 

quantitatively across various solar PV penetration rates and provides the percentage change 

compared to the no-solar (0% penetration) scenario. The largest ramp rates occurred during 

January (winter) for Chicago and Seattle for the no-solar reference case. This is considered 

an artifact of the simulated household load data with lighting loads turning on earlier in the 

day during the winter months. However, the no-solar reference case for Phoenix exhibited 

higher ramp rates in July (summer) when cooling loads are peaking.  

A clear trend exists between the maximum ramp rate and solar PV penetration 

rate—an increase in residential solar PV causes an increase in utility ramp rate 

requirements. An exception occurs during October when the ramp rate requirements 

decline and shift from morning to evening. These ramp rate reductions were minimal and 

only occurred for the 5% and 10% solar penetration scenarios in October of the months 

shown for Phoenix and Seattle. This behavior discontinued as solar PV penetration reached 

15% and exhibited positive changes in the maximum ramp rate.  

Ramp rates requirements over the year were affected differently by the solar PV 

penetration rate. The relative change in the ramp rate magnitude was greatest for Phoenix 

in January and greatest for Chicago and Seattle in July. This is an important finding for 

scheduling peaker plants that are not typically online and ready to provide power within 

existing grid networks with lower solar PV penetration rates. As expected, ramp rate 
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characteristics for Chicago and Seattle are fairly similar, on an average daily basis, using 

the household energy model evaluated in each location with similar environmental 

forcings. 

Table 2.4: Maximum System Ramp Rate Evaluated at Various Solar PV 

Penetration Rates with Net-zero Solar PV Capacity for the Ratepayer 

Month 

Homes 

with PV 

(%) 

Ramp Rate Magnitude [MW/h] (Change in Magnitude 

Relative to Reference Case of 0% Homes with Solar [%]) 

Chicago Phoenix Seattle 

January 

  0 4.57 (-)† 3.87 (-)‡ 4.41 (-)† 

  5 4.66 (2%)† 4.60 (19%)† 4.42 (0%)† 

10 4.75 (4%)† 5.96 (54%)† 4.44 (1%)† 

15 4.84 (6%)† 7.31 (89%)† 4.46 (1%)† 

20 4.93 (8%)† 8.66 (124%)† 4.53 (3%)** 

25 5.02 (10%)† 10.2 (159%)† 5.03 (14%)** 

April 

  0 2.42 (-)§ 3.02 (-)† 2.45 (-)§ 

  5 2.42 (0%)§ 3.81 (26%)† 2.45 (0%)§ 

10 2.77 (14%)† 4.61 (53%)† 2.56 (5%)† 

15 3.33 (38%)† 5.40 (79%)† 3.12 (28%)† 

20 3.89 (61%)† 6.20 (105%)† 3.69 (51%)† 

25 4.45 (84%)† 6.99 (132%)† 4.25 (74%)† 

July 

  0 1.93 (-)† 5.13 (-)† 1.74 (-)† 

  5 2.52 (31%)† 6.02 (17%)† 2.29 (32%)† 

10 3.12 (62%)† 6.91 (35%)† 2.85 (64%)† 

15 3.71 (92%)† 7.80 (52%)† 3.40 (96%)† 

20 4.30 (123%)† 8.69 (69%)† 3.96 (128%)† 

25 4.90 (154%)† 9.58 (87%)† 4.51 (160%)† 

October 

  0 2.99 (-)‡ 3.49 (-)* 2.95 (-)* 

  5 3.21 (7%)† 3.39 (-3%)* 2.83 (-4%)‡ 

10 3.86 (29%)† 3.28 (-6%)* 2.84 (-4%)‡ 

15 4.52 (51%)† 3.92 (12%)† 3.08 (5%)† 

20 5.18 (73%)† 4.60 (32%)** 3.34 (13%)† 

25 5.84 (95%)† 5.47 (57%)** 3.59 (22%)† 

 

       Note: Ramp rate time of day denoted by * 6:00 AM, ** 3:00 PM, † 4:00PM, ‡ 5:00PM, § 7:00PM 

 

0-49% 50-99% 100-149% 150%+ Negative 

 

Seasonal ramp rate values in Table 2.4 are complemented by additional metrics in 

Table 2.5 including the average system load, peak system load, minimum system load, 

maximum ramp rate, total energy usage, and load factor over the entire year. Increased PV 
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penetration had a strong effect on all metrics—except peak system load—across the study 

locations. Solar PV penetration had a negligible effect on peak system load in Seattle and 

exhibited a minor decrease in the peak load observed in Chicago and Phoenix. The relative 

change in the ramp rate was another point of departure across study locations. The change 

in ramp rate for Chicago and Seattle was approximately twice that of Phoenix. This 

suggests that Phoenix already exhibits high ramp rates due to existing peaks in the load 

profile—a point corroborated by the lower load factor (higher peak power relative to 

average power) across all simulations for Phoenix. These data provide further evidence 

that utilities may need to place more dispatchable resources online to accommodate higher 

ramp rate requirements caused by increases in distributed renewables. Such dispatchable 

generation could include peaker plants, storage, demand response, or other controllable 

assets.  

Table 2.5: Annual Technical Metrics at Various Solar PV Penetration Rates with Net-

zero Solar PV Capacity for the Ratepayer 

Location Metrics 
Solar PV Penetration (Change Relative to Reference Case of 0% Solar [%]) 

0% 5% 10% 15% 20% 25% 

Chicago 

Average (MW) 10.0 (-) 9.5 (-5%) 9.0 (-10%) 8.5 (-15%) 8.0 (-20%) 7.5 (-25%) 

Peak (MW) 28.4 (-) 28.0 (-1%) 27.6 (-3%) 27.2 (-4%) 26.8 (-6%) 26.5 (-7%) 

Min (MW) 4.1 (-) 1.4 (-65%) -1.3 (-132%) -4.1 (-199%) -6.8 (-266%) -9.6 (-333%) 

Total (GWh) 87.7 (-) 83.3 (-5%) 78.9 (-10%) 74.5 (-15%) 70.1 (-20%) 65.7 (-25%) 

Ramp Rate 

(MW/h) 
4.8 (-) 5.1 (6%) 5.6 (17%) 6.8 (41%) 9.0 (88%) 11.3 (134%) 

Load Factor 0.35 (-) 0.34 (-4%) 0.33 (-7%) 0.31 (-11%) 0.30 (-15%) 0.28 (-20%) 

Phoenix 

Average (MW) 15.7 (-) 14.9 (-5%) 14.1 (-10%) 13.3 (-15%) 12.6 (-20%) 11.8 (-25%) 

Peak (MW) 52.9 (-) 52.1 (-2%) 51.2 (-3%) 51.0 (-4%) 50.9 (-4%) 50.8 (-4%) 

Min (MW) 4.4 (-) 2.7 (-39%) -0.2 (-106%) -3.2 (-172%) -6.5 (-248%) -9.9 (-324%) 

Total (GWh) 137.5 (-) 130.6 (-5%) 123.7 (-10%) 116.9 (-15%) 110.0 (-20%) 103.1 (-25%) 

Ramp Rate 

(MW/h) 
7.3 (-) 8.4 (15%) 9.5 (30%) 10.5 (45%) 11.6 (60%) 12.7 (75%) 

Load Factor 0.30 (-) 0.29 (-4%) 0.30 (-7%) 0.26 (-12%) 0.25 (-17%) 0.23 (-22%) 

Seattle 

Average (MW) 9.0 (-) 8.6 (-5%) 8.1 (-10%) 7.7 (-15%) 7.2 (-20%) 6.8 (-25%) 

Peak (MW) 20.9 (-) 20.9 (0%) 20.9 (0%) 20.9 (0%) 20.9 (0%) 20.9 (0%) 

Min (MW) 4.1 (-) 1.3 (-67%) -1.5 (-136%) -4.3 (-206%) -7.2 (-275%) -10.0 (-344%) 

Total (GWh) 78.9 (-) 74.9 (-5%) 71.0 (-10%) 67.0 (-15%) 63.1 (-20%) 59.1 (-25%) 

Ramp Rate 

(MW/h) 
4.7 (-) 5.5 (18%) 7.2 (55%) 8.9 (92%) 10.6 (129%) 13.2 (184%) 

Load Factor 0.43 (-) 0.41 (-5%) 0.39 (-10%) 0.37 (-15%) 0.34 (-20%) 0.32 (-25%) 
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Table 2.6 provides financial metrics to consider alongside the technical metrics in 

Table 2.5. Changes in utility annual revenue are given for various solar PV penetration 

rates and TOU rate structures. Data in the table was selected for simulations using monthly 

net metering, common for residential net metering agreements. As expected, increases in 

PV penetration decrease utility revenue. Utility revenue dropped 0.88–1.04% for every 

one-percent increase in PV penetration. However, increases in the on-peak price of 

electricity had little to no effect on the relative change in utility revenue across solar PV 

penetration rates. The smaller change in utility revenue for Phoenix is explained by the 

greater amount of net-negative months in Phoenix relative to the other two cities—each 

additional kWh generated in net-negative months yields revenue loss equivalent to the sell-

back rate ($0.03/kWh) whereas in net-positive months an additional kWh of generation 

yields revenue loss equivalent to the TOU electric rate.  

Table 2.6: Annual Utility Revenue at Various Solar PV Penetration Rates with Net-zero 

Solar PV Capacity for the Ratepayer 

Location 
On-Peak Price 

($/kWh) 

Utility Revenue [$ 000,000/yr] (Change Relative to Reference Case of 0% Solar [%]) 

0% 5% 10% 15% 20% 25% 

Chicago 

0.16 13.4 (-) 12.8 (-4%) 12.2 (-9%) 11.6 (-13%) 11.0 (-18%) 10.4 (-22%) 

0.24 14.1 (-) 13.5 (-5%) 12.8 (-9%) 12.1 (-14%) 11.5 (-19%) 10.8 (-23%) 

0.32 14.8 (-) 14.1 (-5%)  13.4 (-10%) 12.6 (-15%) 11.9 (-20%) 11.2 (-24%) 

Phoenix 

0.16 21.2 (-) 20.2 (-4%) 19.3 (-9%) 18.4 (-13%) 17.5 (-17%) 16.5 (-22%) 

0.24 23.1 (-) 22.1 (-4%) 21.1 (-9%) 20.1 (-13%) 19.0 (-18%) 18.0 (-22%) 

0.32 25.1 (-) 24.0 (-4%) 22.9 (-9%) 21.7 (-13%) 20.6 (-18%) 19.5 (-22%) 

Seattle 

0.16 12.2 (-) 11.6 (-5%) 11.1 (-9%) 10.5 (-14%) 10.0 (-18%) 9.4 (-23%) 

0.24 12.6 (-) 12.0 (-5%) 11.4 (-10%) 10.8 (-15%) 10.2 (-19%) 9.5 (-24%) 

0.32 13.1 (-) 12.4 (-5%) 11.7 (-10%) 11.0 (-16%) 10.4 (-21%) 9.7 (-26%) 

 

2.4.2. Ratepayer Implications 

This analysis assumed that ratepayers are rational agents seeking to minimize their 

energy expenditures by selecting the least-cost energy source. The optimal home energy 

system provided the lowest LCOE for the ratepayer. Solar PV system capacities were 
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evaluated from 0% (no solar) to 100% (net-zero home) in 5% increments. The analysis was 

repeated under various net metering agreements (monthly, annually, none) and three TOU 

rate structures (Table 2.3). Figure 2.5 provides a graph of the LCOE for each simulation 

completed. The minima shown in Fig. 2.5—lowest LCOE for the ratepayer—are also given 

in Table 2.7. There is a clear difference in the optimal PV capacity by location and net 

metering policy.  

Larger solar home systems were economical in Phoenix due to excellent solar 

insolation. Optimal array sizes in Chicago and Seattle were smaller, with solar providing 

minimal financial benefit to the ratepayer in cases where there is no net metering.  

Simulations with net metering on a monthly or annual basis had the same effect on 

LCOE and hence the optimal solar array capacity, indicating that ratepayers can size their 

solar PV system regardless of whether net metering occurs on a monthly or annual 

timeframe. It is clear, however, that completely removing net metering reduces the optimal 

array capacity appreciably. Optimal array capacities reduced by 20–50% when net 

metering was removed because the value of excess solar is credited to the ratepayer at the 

comparatively low sell-back rate of $0.03/kWh. An interesting finding is that Phoenix had 

a relatively flat LCOE curve in the absence of net metering, suggesting that ratepayers 

could size a solar PV system with little consideration for the magnitude of financial gain 

or loss.  

Ratepayers can select the solar PV system size with minimal consideration for the 

specific TOU rate schedule when noting the minor effect of TOU peak rate on optimal 

array capacity. TOU pricing curves converge at higher PV capacities because solar PV 

costs contribute to a larger portion of total costs. 
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Figure 2.5: Levelized cost of energy for solar PV systems under various rate structures. 

 

An analysis of solar-storage systems indicated that batteries were not cost-effective 

under present grid rate structures and equipment prices. Figure 2.6 provides a graphical 

representation of the analysis showing the optimal system type—set of power system 

components with least cost energy—indicated by shaded regions on the sensitivity graph. 

TOU peak prices are shown on the y-axis and battery prices on the x-axis at 0% to 100% 

of battery cost. Batteries were only cost-effective in cases without net metering, at a high 

on-peak grid price, and at a greatly reduced battery cost (>55%). Batteries were never cost-

effective in cases when net metering was in effect (monthly or annually). This is expected 

since ratepayers can use the grid as a “zero cost lossless battery” under a net metering 
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agreement. Cycling grid power through a battery increases the cost of energy discharged 

(Eq. 2.6), suggesting that a battery may not be cost-effective for dispatch purposes even if 

the battery is free. In scenarios with higher on-peak grid prices, a battery can be useful for 

storing low-cost energy from off-peak times and discharging the energy during higher on-

peak times. Batteries had the most favorable business case in Phoenix because solar PV 

could not fully meet electricity loads during summer peak hours. However, the value of 

storage could increase if other ancillary benefits such as backup power or power quality 

control are considered and monetized. 

Table 2.7: Optimal Solar PV Array Capacities for the Ratepayer 

Location 
Peak Price 

($/kWh) 

Optimal PV Capacity [kW] (Relative to Net-

zero Home Solar PV Capacity [%]) 

No Net 

Metering 

Net Metering 

(Monthly/Annually) 

Chicago 

0.16 1.14 (15%)  4.54 (60%) 

0.24 1.51 (20%)  4.92 (65%) 

0.32 1.51 (20%)  4.92 (65%) 

Phoenix 

0.16 3.17 (40%)  7.14 (90%) 

0.24 3.97 (50%)    7.93 (100%) 

0.32 4.36 (55%)    7.93 (100%) 

Seattle 

0.16 0.77 (10%)  2.69 (35%) 

0.24 1.15 (15%)  2.69 (35%) 

0.32 1.15 (15%)  2.69 (35%) 

 

 𝐶𝑒,𝑜 =
𝐶𝑒,𝑖

𝜂𝑏𝑎𝑡𝜂𝑖𝑛𝑣𝜂𝑟𝑒𝑐
 (2.6) 

𝐶𝑒,𝑜 = cost of AC grid energy taken from the battery ($/kWh) 

𝐶𝑒, = cost of AC grid energy put into the battery ($/kWh) 

𝜂𝑏𝑎𝑡 = battery efficiency (%) 

𝜂𝑖𝑛𝑣 = inverter efficiency (%) 

𝜂𝑟𝑒𝑐 = rectifier efficiency (%) 
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Figure 2.6: Least-cost solar-storage power system configurations without net metering. 

 

2.4.3. Combined Analysis 

The utility analysis with net-zero homes was reevaluated using optimal solar array 

capacities for each study location. This scenario explores solar PV penetration rates up to 

100% by assuming the decision to install solar PV lies solely in the hands of the ratepayer. 

In specific terms, utilities and policy makers have no direct authority or control over 

ratepayer choice and therefore ratepayers have the freedom to install any amount of PV 

and batteries. A second assumption is that ratepayers make decisions to minimize energy 

expenditures when selecting home energy system size. The least-cost optimal solar PV 
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array capacities were used for the 0.24 $/kWh case—65% for Chicago, 100% for Phoenix, 

35% for Seattle. Batteries were not cost-effective and were therefore not considered. 

Monthly net metering was applied. 

The duck curves in Fig. 2.7 have similar profiles to those in Fig. 2.4, yet are more 

prominent at higher solar PV penetration rates. As expected, the duck curve behavior is 

more pronounced in areas with higher installed solar PV capacity—Phoenix, Chicago, and 

then Seattle. Ramp rate data by month is provided in Table 2.8. It is again noted that the 

largest ramp rates for Phoenix occur in January (winter), suggesting that high air 

conditioning loads in July (summer) offset the high solar insolation. The visible difference 

in Seattle’s net load profiles between January and July illustrates the discrepancy in solar 

insolation received between the winter and summer months, respectively. Chicago has the 

most consistent net load profile across the year with minimal difference in its peak and 

minimum loads in the observed months. Figure 2.8 summarizes these and other metrics for 

each location. Solar PV adoption rate had little effect on peak power yet produced a steady 

negative trend in the average power and hence the load factor. For Phoenix, the 100% solar 

PV adoption rate yielded a 100% reduction in the average power and load factor—making 

each equivalent to zero—because the optimal solar array capacity for Phoenix produced a 

net-zero energy home.  
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Figure 2.7: Grid load profiles at various solar PV penetration rates with optimal solar 

PV capacity for the ratepayer. 
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Table 2.8: Maximum System Ramp Rate Evaluated at Various Solar PV 

Penetration Rates with Optimal Solar PV Capacity for the Ratepayer 

Month 

Homes 

with PV 

(%) 

Ramp Rate Magnitude [MW/h] (Change in Magnitude 

Relative to Reference Case of 0% Homes with Solar [%]) 

Chicago Phoenix Seattle 

January 

    0 4.57 (-)† 3.87 (-)‡ 4.41 (-)† 

  20 4.80 (5%)† 8.66 (124%)† 4.43 (1%)† 

  40 5.04 (10%)† 14.08 (264%)† 4.45 (1%)† 

  60 5.70 (25%)** 19.49 (404%)† 4.63 (5%)** 

  80 6.73 (47%)** 24.90 (543%)† 5.33 (21%)** 

100 7.76 (70%)** 30.27 (682%)† 6.02 (37%)** 

April 

    0 2.42 (-)§ 3.02 (-)† 2.45 (-)§ 

  20 3.10 (29%)† 6.20 (105%)† 2.45 (0%)§ 

  40 4.56 (89%)† 9.38 (211%)† 3.01 (23%)† 

  60 6.02 (149%)† 12.70 (321%)** 3.80 (55%)† 

  80 7.48 (210%)† 16.22 (437%)** 4.59 (88%)† 

100 8.94 (270%)† 19.70 (553%)** 5.38 (120%)† 

July 

    0 1.93 (0%)† 5.13 (-)† 1.74 (-)† 

  20 3.47 (80%)† 8.70 (69%)† 2.52 (45%)† 

  40 5.02 (160%)† 12.26 (139%)† 3.29 (89%)† 

  60 6.56 (240%)† 15.82 (208%)† 4.07 (134%)† 

  80 8.10 (320%)† 19.38 (278%)† 4.85 (179%)† 

100 9.65 (400%)† 22.91 (346%)† 5.62 (224%)† 

October 

    0 2.99 (0%)‡ 3.50 (-)* 2.95 (-)* 

  20 4.26 (42%)† 4.61 (32%)** 2.84 (-4%)‡ 

  40 5.97 (100%)† 8.09 (131%)** 3.03 (3%)† 

  60 7.68 (157%)† 11.57 (231%)** 3.39 (15%)† 

  80 9.39 (214%)† 15.05 (330%)** 3.74 (27%)† 

100 11.10 (271%)† 18.50 (429%)** 4.09 (39%)† 

 

       Note: Ramp rate time of day denoted by * 6:00 AM, ** 3:00 PM, † 4:00PM, ‡ 5:00PM, § 7:00PM 

 

0-49% 50-99% 100-199% 200%+ Negative 
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Figure 2.8: Change in grid metrics at various solar PV penetration rates with optimal 

solar PV capacity for the ratepayer. 

 

Utility revenue loss summarized in Table 2.9 displays a fairly steady negative trend 

with respect to solar penetration for each location. This trend becomes weaker for Phoenix 

at higher solar PV penetration rates because the fixed monthly connection fee comprises a 

larger percentage of total annual revenue.  

Table 2.10 lists the requisite increase in electric rates to recover the revenue losses 

reported in Table 2.9. Rate increases were applied to all customers and applied evenly 

across each rate period (non-summer, summer off-peak, and summer on-peak). To take an 

example, if 20% of homes install solar PV under a 0.24 $/kWh peak power price, the utility 

would need a 16%, 24%, and 8% increase in rates across all ratepayers to recover lost 
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revenue in Chicago, Phoenix, and Seattle, respectively. These rises in electric rates were a 

quadratic function of the solar PV penetration rate because a kWh generated by the 

ratepayer has a doubling effect on utility revenue when net metering is in effect—one kWh 

of lost revenue plus one kWh credit to ratepayer per one kWh generated by home solar. It 

is important to note that these results only consider revenue loss and do not consider 

potential cost savings associated with a reduction in utility operating expenses.  

Table 2.11 shows results from a complementary analysis using the monthly 

connection fee to recover lost revenue. Showing results for the selected penetration rate of 

20%, a utility would need to increase the base connection fee of $15.00 per month to an 

average of $29.17, $49.17, and $22.50 per month for Chicago, Phoenix, and Seattle, 

respectively. Phoenix requires the greatest rise in the monthly connection fee based on the 

fact that homes in Phoenix have larger solar arrays relative to Chicago and Seattle. If the 

connection fee increase were applied to solar customers only, the resulting connection fee 

would equate to an average of $85.83, $185.83, and $52.50 per month for Chicago, 

Phoenix, and Seattle, respectively. Looking further at the Phoenix scenario with 20% solar 

PV market penetration, the utility would need to increase the connection fee by 228% for 

all customers or 1139% for solar customers, which is an average fee increase of 11.39% 

and 56.94% for each one-percent rise in solar PV penetration, respectively.  
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Table 2.9: Annual Utility Revenue at Various Solar PV penetration Rates with 

Optimal Solar PV Capacity for the Ratepayer 

Location 
On-Peak Price 

($/kWh) 

Utility Revenue [$ 000,000/yr] (Change Relative to Reference Case of 0% Solar [%]) 

0% 20% 40% 60% 80% 100% 

Chicago 

0.16 13.4 (-) 11.9 (-12%) 10.3 (-23%) 8.8 (-35%) 7.3 (-46%) 5.9 (-56%) 

0.24 14.1 (-) 12.4 (-12%) 10.7 (-24%) 9.0 (-37%) 7.3 (-48%) 5.9 (-58%) 

0.32 14.8 (-) 12.9 (-13%) 11.0 (-26%) 9.2 (-38%) 7.4 (-50%) 5.9 (-60%) 

Phoenix 

0.16 21.2 (-) 17.5 (-17%) 13.8 (-35%) 10.1 (-52%) 7.1 (-66%) 4.9 (-77%) 

0.24 23.1 (-) 19.0 (-18%) 14.9 (-36%) 10.9 (-53%) 7.4 (-68%) 5.0 (-78%) 

0.32 25.1 (-)  20.6 (-18%) 16.1 (-36%) 11.6 (-54%) 7.7 (-69%) 5.0 (-80%) 

Seattle 

0.16 12.2 (-)  11.4 (-6%) 10.6 (-13%) 9.8 (-19%) 9.1 (-25%) 8.3 (-32%) 

0.24 12.6 (-)  11.7 (-7%) 10.9 (-14%) 10.0 (-20%) 9.2 (-27%) 8.3 (-34%) 

0.32 13.1 (-)  12.1 (-7%) 11.2 (-15%) 10.2 (-22%) 9.3 (-29%) 8.3 (-36%) 

 

 

Table 2.10: Electric Rate Increase Required to Recover Utility Revenue Loss at 

Various Solar PV Penetration Rates with Optimal Solar PV Capacity for the Ratepayer 

(Reference case shown for 0.24 $/kWh summer on-peak price) 

Location 
Homes with 

PV (%) 

Rate 

Increase (%) 

Rate Price [$/kWh] Required to Recoup Revenue Loss 

Non-Summer Summer Off-Peak Summer On-Peak 

Chicago 

0 - 0.120 0.160 0.240 

20 16 0.139 0.186 0.278 

40 38 0.166 0.221 0.331 

60 72 0.206 0.275 0.413 

80 120 0.264 0.352 0.528 

100 192 0.350 0.497 0.701 

Phoenix 

0 - 0.120 0.160 0.240 

20 24 0.149 0.198 0.298 

40 63 0.196 0.261 0.391 

60 135 0.282 0.376 0.564 

80 268 0.442 0.589 0.883 

100 466 0.680 0.906 1.358 

Seattle 

0 - 0.120 0.160 0.240 

20 8 0.130 0.173 0.259 

40 19 0.143 0.190 0.286 

60 32 0.158 0.211 0.317 

80 47 0.176 0.235 0.353 

100 66 0.199 0.266 0.398 
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Table 2.11: Increase to Fixed Monthly Connection Fee to Recover Utility Revenue Loss at 

20% Solar PV Penetration for Homes with Optimal Solar PV Capacity for the Ratepayer 

 

Location 

 

On-Peak 

Price [$/kWh] 

Applied to All Customers Applied to Only Solar Customers 

Additional 

Fee [$/mo] 

Total Fee 

[$/mo] 

Relative 

Change [%] 

Additional 

Fee [$/mo] 

Total Fee 

[$/mo] 

Relative 

Change [%] 

Chicago 

0.16 12.50 27.50   83   62.50   77.50   417 

0.24 14.17 29.17   94   70.83   85.83   472 

0.32 15.83 30.83 106   79.17   94.17   528 

Phoenix 

0.16 30.83 45.83 206 154.17 169.17 1028 

0.24 34.17 49.17 228 170.83 185.83 1139 

0.32 37.50 52.50 250 187.50 202.50 1250 

Seattle 

0.16   6.67 21.67   44   33.33   48.33   222 

0.24   7.50 22.50   50   37.50   52.50   250 

0.32   8.33 23.33   56   41.67   56.67   278 
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 Discussion and Conclusions 

This study examined the implications of high penetration solar PV systems in the 

residential market across three cities in the United States by exploring the combined effect 

of electric rate structures and local environmental forcings on optimal solar home system 

size, ratepayer financials, utility financials, and net electric loads. The analyses first 

considered net-zero energy homes with solar capacities equated at 7.57 kW for Chicago, 

7.93 kW for Phoenix, and 7.68 kW for Seattle, with utility metric calculations that included 

ramp rate requirements, intraday load profiles, load factor, and revenue loss with solar PV 

penetration rates up to 25%. Retail electricity sales (kWh) dropped by approximately 1% 

for each 1% increase in solar PV penetration. This is comparable to the loss of sales 

reported in other studies and provides further evidence that new rate structures with 

revenue decoupling should be developed and piloted (Satchwell et al. 2014). This analysis 

was repeated for each location using the optimal array capacity that provided the minimum 

LCOE for the ratepayer with installed capacities of 4.92 kW for Chicago, 7.93 kW for 

Phoenix, and 2.69 kW for Seattle with solar PV penetration rates up to 100%. Some of the 

major findings include:  

• Net metering had a significant effect on the optimal amount of solar PV installed. 

Removing net metering decreased solar array capacities by 20–50% when selecting 

the optimal capacity by the lowest LCOE. Monthly and annual net metering 

simulations yielded the same optimal solar PV sizing.  

• Optimal solar PV array capacities were unchanged or increased slightly (0–15%) 

at higher TOU rates (50–100%). The optimal capacity may increase further if solar 
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panel orientation is not due south; other studies have reported economic gains of 

3–4% for panels facing 30 degrees west of due south (Sadineni et al. 2012).  

• Batteries were not cost-effective—even if they were free—when net metering was 

in effect. Batteries were found to be cost-effective in simulations without net 

metering and at cost reductions of at least 55%. This decrease in consumer purchase 

price could be achieved through subsidies that improve home storage economics. 

Findings corroborate other studies, i.e., the requisite size of subsidies to reach 

break-even will decrease as grid electricity prices increase (Mulder et al. 2013). 

Further, ancillary benefits of storage may improve economics beyond a pure 

consumer-focused analysis (Denholm and Margolis 2007; Evans et al. 2016).  

• Intraday load profiles with “duck curve” behavior were more prominent as solar 

PV penetration rates increased. The largest ramp rates for each location occurred in 

the late afternoon as solar insolation decreased and occupancy loads increased with 

residents returning home from work or school.  

• Increases in the solar PV penetration rate changed the time of year in which the 

maximum ramp rate was observed: July to January for Phoenix, January to October 

for Chicago, with no change for Seattle.  

• Utility revenue loss can be recovered by increasing the electricity rate ($/kWh) or 

the fixed monthly connection fee ($ per month). Taking Phoenix as an example 

with 20% solar penetration and 0.24 $/kWh peak power price, a utility would need 

to increase electricity rates by 24% or increase the fixed connection by 228% 

($15.00 per month to $49.17 per month) across all residential ratepayers to recoup 

lost revenue if 20% of homes in the region installed solar PV. The connection fee 
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would need to be raised by 1139% ($15.00 per month to $185.83 per month) if 

revenue was recovered from only the solar customers. Other revenue generation 

options include demand charges or energy-as-a-service business models.  

These site-specific findings emphasize the interplay between technical, economic, 

and policy considerations within the context of local environmental forcings, energy use 

behaviors, and grid rate structures. Pertinent generalizable findings to other study locations 

include:  

• Solar PV penetration had little effect on peak power draw.  

• There was little observed difference between monthly and annual net metering.  

• Net metering was shown to negate the cost-effectiveness of batteries under the 

modeled parameters. The grid can be effectively characterized as a “zero cost 

lossless battery” with both technical and economic advantages over battery storage 

if used for energy management alone.  

• Utilities may need to place more dispatchable resources online to accommodate 

higher ramp rate requirements caused by increases in distributed renewables. Such 

dispatchable generation could include peaker plants, storage, demand response, or 

other controllable assets. Generation units may need to operate at partial load to 

meet operating capacity and reserve requirements during periods of high solar 

insolation and thereby produce power at lower efficiency and higher emissions 

factors. 

• Demand response capabilities may serve a greater role in the residential energy 

market as system-wide operating reserve capacity requirements increase with 
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increases in renewables penetration. Demand response also offers a mechanism to 

reduce peak power draw at lower cost than on-site battery storage.  

Reaching a zero-carbon economy is a challenge that will require technology 

innovation, new policy approaches, alternative value propositions and rate agreements, 

new energy business models, and changes in consumer behavior. This study is one of many 

studies needed to explore that complex decision space, yet it is clear that a business-as-

usual approach to distributed solar PV will yield an untenable future for the utility on both 

technical and financial metrics. Unit commitment and power flow studies could extend this 

study using a generic generation fleet. Further opportunities for investigation include an 

analysis of utility-side emissions and economics from running nonrenewable generation at 

lower loads, evaluating the techno-economic performance of electric vehicles, developing 

load management scenarios to smooth residential load profiles, and evaluating the 

consumer-side and utility-side effects of alternative rate structures including tiered rate 

structures or shorter-duration net metering timeframes (e.g., daily or hourly). Those 

explorations will take additional computational functionality outside of that currently 

provided by HOMER or BEopt. Results and findings from this study can be reproduced in 

HOMER and BEopt using default values and updating the values of variables listed in 

Section 3.1 and 3.2 away from default settings.  

The provided methods can be applied to other locations using simulated or 

measured data. Model parameters in BEopt and HOMER can be updated to reflect various 

building designs, local environmental forcings, rate structures, and equipment costs to 

recreate and apply a simulated study of other locations around the world. Measured load 

and solar PV data can also be obtained for a single home or consumer segment to complete 
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a site-specific study of a real scenario. Such case studies are needed to better understand 

and guide the changing shape of the United States residential energy market.  
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Abstract 

Distributed energy resources are becoming increasingly common and forcing 

change in conventional energy markets with growing attention given to transactive energy 

networks that allow power trading between neighboring microgrids or distributed energy 

resources customers to supplement transactions with an electric utility. This study develops 

and evaluates a generalizable method for managing energy trading between microgrids in 

a grid-connected network through multi-agent techniques. The approach is demonstrated 

for a 3-node network and a 9-node network for a simulated year with hourly load and solar 

data for each unique microgrid agent. Results are compared against baseline networks 

without trading enabled to quantify a 3.6% and 5.4% reduction in the levelized cost of 

energy, respectively, with trading enabled for the 3-node and 9-node cases. Local energy 

storage capacities are varied to examine impact on the levelized cost of energy and trading 

behaviors. Results indicate that trading between microgrids reduces the levelized cost of 

energy for each individual node and the whole network, and that certain trends emerge 

between agents that allow some microgrids to operate at a lower cost than others. 
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Nomenclature 

Variable Units Description 

𝐿 kW Electrical load at current time step 

𝐿𝑛 kW Electrical load of microgrid node n at current time step 

𝑃𝑠 kW Solar production at current time step 

𝑆𝐷 kWh Dispatchable energy from storage at current time step 

𝑆𝐴 kWh Available storage for energy at current time step 

𝑆 kWh Total energy in storage at current time step 

𝑆𝑚𝑎𝑥  kWh Maximum storage capacity 

𝑆′ kWh Total energy in storage at current time step after accounting for local 

loads and generation 

𝐿𝑁 kW Net load at current time step 

𝐿𝑁
′  kW Net load at current time step after accounting for local loads, 

generation, and storage 

𝐿𝑁,𝑝 kW Net load of producer agent at current time step 

𝐿𝑁,𝑐 kW Net load of consumer agent at current time step 

∆𝑡 hour Time step increment 

𝜀 $/kWh Minimum difference in energy rate to permit trading between agents 

𝑅𝑔 $/kWh Grid electricity rate at current time step 

𝑅𝑖,𝑐 $/kWh Initial rate offer for consumer agent at current time step 

𝑃𝑖,𝑐 kW Initial power offer for consumer agent at current time step 

𝑉𝑐→𝑝 $/kWh 
Energy valuation from consumer agent to producer agent at current 

time step and bargaining session 

𝛽𝑐 - Convexity of consumer valuation curve 

𝑉𝑝→𝑐 $/kWh 
Energy valuation from producer agent to consumer agent at current 

time step and bargaining session 

𝛽𝑝 - Convexity of producer valuation curve 

𝑘 - Current bargaining session 

𝑘𝑚𝑎𝑥,𝑐 - Maximum number of bargaining sessions for consumer agent 

𝑘𝑚𝑎𝑥,𝑝 - Maximum number of bargaining sessions for producer agent 

𝑅𝑚𝑖𝑛,𝑐 $/kWh Minimum rate consumer agent will accept 

𝑅𝑚𝑎𝑥,𝑐 $/kWh Maximum rate consumer agent will accept 

𝑅𝑚𝑖𝑛,𝑝 $/kWh Minimum rate producer agent will accept 

𝑅𝑚𝑎𝑥,𝑝 $/kWh Maximum rate producer agent will accept 

𝐿𝐶𝑂𝐸 $/kWh Levelized cost of energy 

𝐶𝑛 $/kWh Cost of power for node n at current time step 

 

 Introduction 

Distributed energy resources (DERs) are becoming increasingly common with the 

global capacity of installed systems expected to increase from 132.4 GW to 528.4 GW 

between 2017 and 2026, respectively (Navigant 2017). This growth will force change in 

conventional energy markets as distributed solar photovoltaics (PV) and wind displace 

centralized generation and create financial challenges for electric utilities such as  disrupted 
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business models (Janko, Arnold, and Johnson 2016), politically-driven investment 

strategies (Institute for Energy Research 2014), and increased marginal costs of electricity 

(Goop, Odenberger, and Johnsson 2017), as well as technical challenges such as grid 

congestion (Goop, Odenberger, and Johnsson 2017), grid instability (Schmietendorf, 

Peinke, and Kamps 2017; Lam & Yeh 2014), overgeneration (Denholm, Clark, and 

O’Connell 2016), reduced power quality (Bank et al. 2013; Schmietendorf, Peinke, and 

Kamps 2017), and decreased reliability (Eber and Corbus 2013). These challenges increase 

when individual consumers become net energy producers over a year, with excess 

generation credited using feed-in tariffs ($) or net metering (kWh) (Arnette 2013). With 

net metering, consumers use the grid as a “zero cost lossless battery” for excess generation 

that can be used later in the day, month, or year to offset power purchases from the utility. 

This form of virtual storage is becoming less common, however, as utilities around the 

world reduce incentives as the solar PV market matures (Herbes et al. 2017). This trend in 

policy change has been demonstrated in both Germany and Arizona (Leepa and Unfried 

2013; Energy Monitor Worldwide 2016). Consumers are now looking to localized energy 

storage (Tesla 2018; LG Chem ESS Battery Division n.d.), load management, 

programmable thermostats, and other DER devices to manage energy expenditures (Shen, 

Jiang, and Li 2015), with uninterrupted power supplies and generators providing back-up 

power for critical load applications such as hospitals (Professional Services Close-up 

2012), military bases, and data centers (Kirchner 2012) that require high reliability if the 

main grid is compromised (Luo et al. 2015; Zachel 2013). A special case of these systems 

is known as a microgrid. The US Department of Energy and the Microgrid Exchange Group 

describe a microgrid as “a group of interconnected DERs and loads with clearly defined 
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electrical boundaries that act as a single controllable entity with respect to the grid” (Ton 

and Smith 2012). This is a useful, but expensive, solution to maintain reliability in the event 

of a grid outage. Microgrid owners and net energy producers have also begun seeking new 

value streams to offset costs of their microgrid asset base. One option is trading power 

between neighboring microgrids or DER customers with lower rates than the grid using an 

approach known as transactive energy. 

3.1.1. Transactive Energy 

The GridWise Architecture Council provides a general definition for transactive 

energy as an approach that assigns value to facilitate dynamic balancing between supply 

and demand across electrical infrastructure, typically between independent power 

producers (IPP) (GridWise Architecture Council 2015). This balance is achieved by trading 

energy, power, and ancillary services within the network, with the value of traded resources 

assigned through negotiation between nodes. Several techniques are available to determine 

value such as an organized market, self-optimization, tariffs, and bilateral contracts. 

Transactive energy markets seek optimal system-wide results by dynamically aligning 

individual and global objectives (Liu et al. 2017; Holmberg et al. 2016) for applications 

including scheduling energy management across adjacent microgrids, mitigating voltage 

fluctuations caused by high penetration renewables (Chassin et al. 2017), managing motor 

start-up currents (e.g., air conditioning) (Behboodi et al. 2018), and reducing the use of 

limited fossil fuel reserves in an islanded microgrid (Martínez Ceseña et al. 2018). A well-

known transactive energy pilot project was initiated in 2006 by GridWise for an installation 

on Olympic Peninsula, Washington, United States with sponsorship from the U.S. 

Department of Energy (Hammerstrom 2007). The network consisted of controllable assets 
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including residential demand response from 112 homes, five water pumps, and two diesel 

generators. Each home was equipped with an energy management system accessing real-

time data on grid prices updated every five minutes, with consumer demand response 

preferences to manage real-time energy purchases from the grid. Generators were 

controlled using price signals from an incentivizing shadow market. Water pumps bid into 

the market based on water-reservoir height. The project successfully demonstrated a 

transactive energy system containing both the technical network and financial market using 

technologies to manage bidding and load dispatch with consideration for wholesale energy 

costs, line congestion, and consumer needs. Though this project included demand response 

and some distributed generation, it did not incorporate home-based solar PV and energy 

storage that could provide additional grid services and a finer degree of control at 

individual nodes and across the electrical network. Additionally, power trading between 

home systems was not permitted. 

3.1.2. Microgrid Operation and Coordination 

Recent literature has demonstrated how microgrids can use transactive energy 

trading during real-time operations to achieve node-level and network-level benefits. 

Several studies have shown that coordination between multiple microgrids can reduce 

overall energy costs by improving DER utilization (Qu and Guan 2013; Khodaei 2015; 

Zenginis et al. 2017). A recent study by Yang and Hu explored this opportunity further by 

developing and comparing four operation decision models that demonstrated how total 

energy cost can be reduced for clusters of microgrids based on node-level or network-level 

economic minimization routines (Chen and Hu 2016). Moayedi and Davoudi (2016) 

expanded work beyond economic performance to show that power transfer and load 
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sharing between microgrids improves utilization of DERs across a network, improves 

reliability, and extends component lifespan. Further studies indicate that power exchange 

through coupled microgrids reduces node-level load shedding and network-level 

congestion in overloaded lines (Pashajavid, Shahnia, and Ghosh 2017; Shahnia, Bourbour, 

and Ghosh 2017). Power quality improvements have also been demonstrated using linear 

quadratic gaussian techniques for cooperative control of a simulated microgrid network 

(Minciardi and Sacile 2012). Microgrids can also support the main grid to self-heal and 

prepare for contingency events through reallocation of power and reconfiguration of 

network topology (Wu et al. 2018; Rivera, Farid, and Youcef-Toumi 2014). These benefits 

were achieved using control approaches for interconnected microgrids including bilevel 

model predictive control (Minciardi and Robba 2017), sequentially coordinated operation 

(Song et al. 2015), and robust optimization (Zhang et al. 2018). Similar approaches have 

been applied to optimize scheduling of energy assets within microgrids including mixed 

integer linear programming (Silvente et al. 2015), parametric mixed-integer linear 

programming (Umeozor and Trifkovic 2016), and receding horizon model predictive 

control (Holjevac et al. 2017). In recent work by Nikmehr, Najafi-Ravadenegh, and 

Khodaei (2017), a bi-level, stochastic optimization algorithm was used to achieve optimal 

asset scheduling in a network of microgrids over a one-day period. The energy 

management system used a combination of centralized and decentralized control that 

resulted in a 17.3% reduction in operating cost under a time-of-use pricing scenario. Other 

work by Rahmani-Andebili (2017; 2018) suggests a multi-time scale stochastic model 

predictive control technique for distributed energy scheduling of both energy resources and 
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deferrable appliances. This approach reduced weekly operation cost by a half when 

compared to a case without scheduling. 

3.1.3. Approaches to Transactive Energy 

Multi-agent control has emerged as a prominent technique for transactive energy 

trading due to its ability to increase system scalability, flexibility, autonomy, and resiliency 

(Divshali, Choi, and Liang 2017; Babar et al. 2018; Ghorbani, Rahmani, and Unland 2017; 

Jun et al. 2011). Logenthiran, Srinivasan, and Khambadkone (2011) proposed a multi-agent 

system to schedule energy resources within an islanded power network through three steps: 

(i) internal demand management, (ii) bidding to export power to the network, and (iii) 

rescheduling to meet total system demand. Network scheduling was accomplished through 

a wholesale energy market with centralized economic dispatch controlled by a market 

operator that provided a single market clearing price using the highest bid. This technique 

was tested on a simulated network of three microgrids and five loads to minimize operating 

cost, but were not tested with a grid connection or utility rate structures. Another approach 

to transactive energy focused on grid-connected microgrids and used agent-based trading 

and a priority index to rank customers to receive lower cost energy by participating in 

demand response (Nunna and Doolla 2012). A continuous double auction market strategy 

was used to determine power cost, which cleared one unit of goods per round. The 

theoretical framework was demonstrated on a simulated system of two microgrids 

containing two loads each. Though this work successfully reduced system peak and cost, 

it did not include consideration for local generation assets such as solar PV or energy 

storage assets. More recent work by Rivera, Farid, and Youcef-Toumi (2014) included 

storage in grid-connected microgrids and incorporated agent-based control for power grid 
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modeling and distributed decision-making techniques with a focus on transient stability 

and self-healing behaviors. The JAVA Agent Development Framework (JAVA-JADE) 

was used for multi-agent peer-to-peer messaging and MATLAB was used for simulating 

power transients. Microgrid interactions were autonomous and demonstrated how 

microgrids could be dispatched using local, decentralized control algorithms to benefit 

network-level objectives for grid stability and ancillary services. Further work is needed 

for transactive negotiation of power trading to support real-time operation. The 

decentralized nature of multi-agent control has also proven to be robust against 

communication failures through techniques such as consensus + innovation algorithms 

(Hug, Kar, and Wu 2015; Kar, Moura, and Ramanan 2012; Kar and Hug 2012) and 

diagonal quadratic approximation (Mohammadi, Mehrtash, and Kargarian 2018). In 

traditional centralized control schemas, sharing sensitive information and access rights to 

a central authority can leave the system vulnerable to cyber-attacks. Distributed techniques 

such as multi-agent control provide a means for coordination in large-scale systems while 

preserving the privacy of energy stakeholders (Mohammadi, Mehrtash, and Kargarian 

2018). 

3.1.4. Article Contributions and Organization 

This study develops and evaluates a generalizable method to manage energy trading 

using multi-agent techniques for microgrids in a grid-connected network. Economic 

transactions are simulated in time steps with each microgrid acting as its own negotiating 

agent within the energy market. Annual simulations are performed with datasets from 

existing and simulated buildings on an electrical network with a ring configuration to 

demonstrate the proposed technique and explore agent-level and network-level behaviors 
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for application to real distribution circuits. This work is differentiated from existing 

microgrid control and operation literature by focusing on transactive energy negotiations 

between sub-groups of microgrids as a means to lower the cost of energy for both 

individual nodes and the network.  

The major contributions of this work are summarized below. 

• A generalizable mathematical framework is introduced for handling economic 

transactions between microgrids using a multi-agent negotiation approach scalable 

to n-many agents. 

• Demonstration case studies are developed, simulated, and analyzed for a 3-node 

network and a 9-node network of heterogeneous microgrid nodes including 

different loads, solar, and storage.  

• Baseline data from a network that disallows trading is compared with a transactive 

network to quantify the financial value of energy trading for individual agents and 

the entire network.   

• Microgrid agent trading behaviors are identified and discussed with supporting data 

from a one-year techno-economic performance analysis. 

• Sensitivity analysis of storage sizing uncovers further trends in trading behavior 

with different outcomes observed due to agent load factor and renewables 

penetration. 

The remaining sections of the paper are organized as follows: Section 3.2 describes 

the theoretical approach and mathematical formulations, Section 3.3 discusses two case 

studies for simulation and comparison, Section 3.4 introduces and analyzes results, and 
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Section 3.5 concludes the paper with a summary of findings and a description of application 

opportunity spaces and future research extensions. 

  Methods 

Communication and negotiation between nodes is managed by a multi-agent 

framework where each microgrid is represented by a single agent in a transactive energy 

marketplace. Each agent has the same basic microgrid components, as shown in Fig. 3.1, 

but with different component capacities and load profiles to produce a heterogeneous set 

of agent characteristics. Electrical feeder architecture was limited to a grid-connected ring 

network, a standard circuit configuration for secondary power distribution (Naval Facilities 

Engineering Command 1990). Though several other electrical feeder architectures exist 

such as radial, parallel, and tie structures, the ring structure is a common distribution 

architecture used around the world to improve reliability (Glover, Sarma, and Overbye 

2012) and was selected to increase applicability to real networks. Abstract graph theory 

topologies such as wheel graphs and complete graphs were not considered. An example 3-

node case is shown in Fig. 3.2 with electrical and communication lines noted. The ring 

configuration shown be extended to any number of nodes. 

 
Figure 3.1: Microgrid agent configuration. 
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3-Node Network n-Node Network 

  

 
Figure 3.2: Scalability of simulated ring network for 3-node case (left) and n-node case 

(right). 

 

Negotiations and trading occur each time step following the processes described in 

Fig. 3.3. A microgrid agent first determines its own operational status as a consumer (needs 

power from neighbors or the grid) or a producer (wants to sell power to neighbors or the 

grid) based on its net load after applying local generation and storage to meet electrical 

loads. A net load of zero means the microgrid is in a neutral state and does not participate 

in trading for that time step. Next, agents share operational status with one another and 

form trading groups. Agents within each trading group then negotiate with one another 

until an energy price is accepted or until the maximum number of bargaining sessions is 

reached. After bargaining is complete, consumer agents with any remaining load purchase 

power from the grid at rates dictated by the utility rate structure. Producer agents with 

remaining excess generation sell power to the grid at the wholesale price of electricity in 

the absence of net metering or a higher feed-in tariff. This self-organizing distributed 

approach models each agent as an independent decision-making entity that ensures its own 
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loads are met and any excess generation is sold off before the end of each time step, in 

contrast to other approaches with centralized dispatch and an auction to set a market 

clearing price in a competitive environment. 

 
Figure 3.3: Microgrid agent processes within a time step. 

 

Several assumptions maintain the generality of this approach for managing energy trading 

in a simulated transactive market framework: 

1. Network topology remains the same throughout the time series simulation (no 

outages or switching). 

2. All microgrid nodes are on a single distribution network with no efficiency losses 

for power conversion or transfer between nodes. 

3. Capacity limits are ignored for distribution transformers and power lines.  

4. All loads must be met at the instant of power use (no dispatchable loads, deferrable 

loads, or load shedding). 
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5. Each microgrid is a rational financial agent that seeks to lower expenses by 

purchasing power at the lowest available price and selling at the highest possible 

price. 

6. There is no cost for utilizing local generation and storage. 

7. Each microgrid agent utilizes local generation and storage to meet its loads prior to 

seeking outside resources (interconnected microgrid or grid power). 

8. Each microgrid agent can be a consumer or a producer at any time step based on 

the microgrid’s instantaneous loads, generation, and storage.  

9. Any excess generation is first sent to local storage before the microgrid agent 

attempts to sell excess externally. 

10. Each microgrid uses the same electric utility rate structure.  

11. Microgrid agents do not have global information on network status. They only 

know the information they receive from neighboring microgrid agents.   

12. Storage charging and discharging is limited to a maximum 1C rate based on 

commonly available battery technologies (McLaren et al. 2016). 

13. Microgrid agents always attempt to trade with one another when they have 

neighbors with compatible operational statuses (a consumer and a producer).  

A Python script was developed to simulate microgrid agent transactions, manage 

communications between agents, and solve optimization routines. Input data includes 

hourly load and solar profiles, storage size, and bargaining parameters for each microgrid 

agent, and a rate structure for transactions with the utility. Additional input data includes 

the incidence matrix that defines network structure (agent connections); the incidence 

matrix can be modified to create various electrical circuit configurations other than the ring 
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network simulated in this study. Model parameters and all simulated data were saved in an 

SQL database for fast access. Several Python packages were utilized including osBrain 

0.4.4 for multi-agent programming, sqlite 3.22.0 for database management, and scipy 

0.19.0 for optimization (osBrain n.d.; SQLite n.d.; SciPy.org 2018). 

3.2.1. Microgrid Agents Determine Operational Status 

At each time step, each microgrid agent first identifies its operational status as a 

producer or consumer based on the net load calculation in Eq. 3.1 that expresses the 

difference between local loads and generation. If the net load is positive (𝐿𝑁 > 0), the agent 

attempts to discharge available storage to meet the load and recalculates the new battery 

state of charge and net load to be met by external purchases (Eqs. 3.2a1-3.2b2). If the net 

load is negative (𝐿𝑁 < 0), the agent has excess generation and attempts to charge its storage 

and recalculates the new battery state of charge and net load for potential external sale 

(Eqs. 3.3a1-3.3b2).  

 𝐿𝑁 = 𝐿 − 𝑃𝑠 (3.1) 

A positive net load indicates there is insufficient local generation, and the available 

battery storage for discharge is then calculated as 𝑆𝐷 = 𝑆 − 𝑆𝑚𝑖𝑛 to try meet this deficit. If 

storage cannot meet the load (𝑆𝐷/∆𝑡 < |𝐿𝑁|) then Eqs. 3.2a1 and 3.2a2 apply and if storage 

can meet the load (𝑆𝐷/∆𝑡 ≥ |𝐿𝑁|) then Eqs. 3.2b1 and 3.2b2 apply.  

 𝑆′ = 𝑆𝑚𝑖𝑛 and 𝐿𝑁
′ = 𝐿𝑁 − 𝑆𝐷/∆𝑡 (3.2a1 and 3.2a2) 

 𝑆′ = 𝑆 − 𝐿𝑁∆𝑡 and 𝐿𝑁
′ = 0 (3.2b1 and 3.2b2) 

A negative net load indicates there is excess local generation, and the available 

battery storage to accept energy is calculated as 𝑆𝐶 = 𝑆𝑚𝑎𝑥 − 𝑆. If storage cannot accept 
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all excess generation (𝑆𝐶/∆𝑡 < |𝐿𝑁|) then Eqs. 3.3a1 and 3.3a2 apply and if storage can 

accept excess generation (𝑆𝐶/∆𝑡 ≥ |𝐿𝑁|) then Eqs. 3.3b1 and 3.3b2 apply.  

 𝑆′ = 𝑆𝑚𝑎𝑥 and 𝐿𝑁
′ = 𝐿𝑁 + 𝑆𝐶/∆𝑡 (3.3a1 and 3.3a2) 

 𝑆′ = 𝑆 − 𝐿𝑁∆𝑡 and 𝐿𝑁
′ = 0 (3.3b1 and 3.3b2) 

An agent will act as a producer agent when the recalculated net load is negative 

(𝐿𝑁
′ < 0) and act as a consumer agent when the recalculated net load is positive (𝐿𝑁

′ > 0). 

The agent is in a neutral state if the recalculated net load is zero (𝐿𝑁
′ = 0) and the agent 

will not participate in bargaining while they are self-sufficient. 

3.2.2. Microgrid Agents Form Trading Groups 

Trading groups are formed as each agent sends its status (producer or consumer) 

and net load value to all neighboring, electrically connected agent nodes. Producer agents 

may group and negotiate with multiple consumer agents but each consumer agent may only 

negotiate with one producer. This divides the network into unique negotiating subgroups 

with bargaining managed as separate simulations independent of the larger network. 

Separate trading groups also reduce computational complexity and simulation time to reach 

network consensus by constraining negotiations to agents with direct physical connections. 

Physical limitations in the model are also better preserved by limiting trading between 

microgrid nodes on opposite sides of the ring network. If a consumer agent is connected to 

two producer agents, then the consumer agent chooses to group with the producer agent 

that has the largest amount of excess power to sell. This is a rational action because 

consumer agents want the highest probability of meeting all their load with power from 

other microgrids, given that trading may be cheaper than purchasing power from the main 



  89 

grid. Once the group is formed, producer agents are classified as group leaders and are 

responsible for beginning trading sessions with an initial offer. 

3.2.3. Microgrid Agents Bargain within Trading Group 

Bargaining between the producer agent and each consumer agent within a trading 

group is completed separately from one another. Consumer agents in a single trading group 

do not interact with one another and do not have the opportunity to actively compete against 

one another’s bids to the producer agent. Consumer agents also do not have knowledge of 

separate negotiations between the producer agent and other consumer agents. Producer 

agents must, however, have knowledge of all negotiations in a bargaining group to maintain 

conservation of energy laws by not selling the same power to two (or more) consumer 

agents. If more than one consumer agent reaches a negotiated price and requests all 

available power from the producer agent, then the producer sells power in such a way to 

maximize revenue. Bargaining is accomplished in two processes: making an initial offer 

and considering offers before making a counter offer. Both consumer agents and producer 

agents can choose to accept an offer, but the producer agent must make the final trading 

decision to conclude the bargaining process. 

Making initial offer: The producer agent makes an initial offer just below the grid price 

(Eq. 3.4) in an attempt to maximize revenue. An epsilon of 0.0001 $/kWh is the smallest 

increment in energy price across which transactions are made. The amount of power traded 

is limited by the total capacity available from the producer and the total load requested by 

a consumer (Eq. 3.5). The amount of power offered for trading will remain the same during 

the negotiation process until a consensus is reached by one or more agents and that power 
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is sold, or bargaining ends and the power is sold to the grid. This study models electricity 

price that changes during the day with time-of-use (TOU) utility rates. 

 𝑅𝑖,𝑐 = 𝑅𝑔 − 𝜀  (3.4) 

 𝑃𝑖,𝑐 = min(−𝐿𝑁,𝑝, 𝐿𝑁,𝑐)  (3.5) 

Considering offers and making counter offers: Consumer agents and producer agents 

consider an offer and decide to accept, reject, or make a counter offer (Winoto 2007). This 

decision is based on each agent’s unique valuation of energy that defines the maximum 

and minimum rate that the agent will accept for purchase and sale, respectively. The 

relationship between the high and low bound is a function of the maximum number of 

allowable bargaining sessions, the net load and electrical load of the agent, and the current 

grid purchase and sellback rates. The consumer agent valuation curve is modeled as a 

positive exponential function (Faratin, Sierra, and Jennings 1998) that represents 

willingness to negotiate (Eq. 3.6a). Producer agent valuation is modeled similarly but with 

a decreasing exponential curve (Eq. 3.7a). Each agent is assigned a maximum number of 

bargaining sessions to prevent negotiations from continuing indefinitely, at which point an 

agent decides to conduct business with the grid instead. The parameter 𝛼 expresses the 

exponential relationship between energy valuation and bargaining session at the current 

time step with the reservation value offered when the maximum number of bargaining 

sessions is reached (Eq. 3.6b and 3.7b). The parameter 𝛽 determines the convexity of the 

exponential curve. For consumer agents, 𝛽𝑐 is calculated as the ratio of the agent’s net load 

during the current time step to its electrical load in that time step (Eq. 3.6c). This 

demonstrates behavior that consumer agents are more inclined to make a deal when they 

can serve less of their load with local generation or storage as indicated by Fig. 3.4. For 



  91 

producer agents, 𝛽𝑝 is calculated as the ratio of the power offered to a consumer agent to 

the electrical load of the producer in that time step (Eq. 3.7c) with a different 𝛽𝑝 calculated 

for each consumer. This demonstrates behavior that producer agents are more inclined to 

make a deal with consumers that can purchase the most power (Fig. 3.5). Consumer and 

producer valuation curves are not static given that the net load or excess power, 

respectively, will be different each time step. This indicates that a single consumer or 

producer could exhibit any of the behaviors in Fig. 3.4 and 3.5. 

From consumer agent “c” to producer agent “p” 

 𝑉𝑐→𝑝(𝑘) = 𝑅𝑚𝑖𝑛,𝑐 + 𝛼𝑐(𝑘)(𝑅𝑚𝑎𝑥,𝑐 − 𝑅𝑚𝑖𝑛,𝑐)  (3.6a) 

 𝛼𝑐(𝑘) = 𝑒
(1−

min(𝑘,𝑘𝑚𝑎𝑥,𝑐)

𝑘𝑚𝑎𝑥,𝑐
)

𝛽𝑐
ln(𝜆𝑐)

 (3.6b) 

 𝛽𝑐 =
𝐿𝑁,𝑐

𝐿𝑐
 (3.6c) 

From producer agent “p” to consumer agent “c” 

 𝑉𝑝→𝑐(𝑘) = 𝑅𝑚𝑎𝑥,𝑝 − 𝛼𝑝(𝑘)(𝑅𝑚𝑎𝑥,𝑝 − 𝑅𝑚𝑖𝑛,𝑝) (3.7a) 

 𝛼𝑝(𝑘) = 𝑒
(1−

min(𝑘,𝑘𝑚𝑎𝑥,𝑝)

𝑘𝑚𝑎𝑥,𝑝
)

𝛽𝑝

ln(𝜆𝑝)
 (3.7b) 

 𝛽𝑝 =
𝑃𝑖,𝑐

𝐿𝑝
 (3.7c) 

Where: 

0 ≤ 𝛼(𝑘) ≤ 1 

𝛼(𝑘𝑚𝑎𝑥) = 1 

𝜆 = 𝛼(0) 
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Figure 3.4: Example consumer agent valuation curves with a grid purchase rate of 

$0.18/kWh, grid sellback rate of $0.03/kWh, and maximum of 12 bargaining sessions. 

 

 
Figure 3.5: Example producer agent valuation curves with a grid purchase rate of 

$0.18/kWh, grid sellback rate of $0.03/kWh, and maximum of 12 bargaining sessions. 

 

Each agent quantifies energy valuation from their unique valuation curve. This 

occurs for each agent, in each time step, and for the current bargaining session within that 

time step. A consumer agent accepts an offer that is less than or equal to its valuation. A 

producer agent accepts an offer that is greater than or equal to its valuation. Otherwise, the 

agent makes a counter offer or rejects the offer if the maximum number of bargaining 

sessions has been reached. Fig. 3.6 provides an illustrative example of the bargaining space 
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between two negotiating agents. The acceptable ranges for producer and consumer offers 

overlap after bargaining session 7 to provide a feasible set for negotiation. In general, an 

agent can offer any value within its acceptable set for a bargaining session. This work 

assumes the extreme case in which valuation in a bargaining session is equal to the 

valuation curve. Trading is therefore more likely to occur because it is easier for a consumer 

and producer to reach consensus and thus reduce overall network energy cost relative to 

the baseline case without trading.   

 
Figure 3.6: Example bargaining space with a grid purchase rate of $0.18/kWh, grid 

sellback rate of $0.03/kWh, and maximum of 12 bargaining sessions. Figure adapted 

from (Winoto 2007). 

 

Fig. 3.7 portrays the bargaining process between a producer agent and a consumer 

agent with the same valuation curves as Fig. 3.6. The producer agent sets an initial offer of 

$0.1799/kWh that is sent to the consumer agent for consideration in bargaining session 1. 

Since the offer is far above the consumer’s valuation, the consumer agent provides a 

counter offer equal to its own energy valuation. This negotiation continues until bargaining 

session 8 where the producer accepts the consumer’s offer of $0.055/kWh, which is higher 

than the producer’s valuation of $0.048/kWh. 
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Figure 3.7: Example showing offer progression during a negotiation with a grid 

purchase rate of $0.18/kWh, grid sellback rate of $0.03/kWh, and maximum of 12 

bargaining sessions. The offer is settled at bargaining session 8. 

 

For trading groups with more than one consumer, the producer first sells power to 

the consumer that most quickly agrees upon a negotiated price and then continues 

negotiations with other consumer(s) to sell any remaining power as demonstrated in Fig. 

3.8 for a two-consumer example. For instances in which both consumers agree upon a sale 

price in the same bargaining session, the producer sells all possible power at the highest 

negotiated rate first and sells any remaining power at the lower negotiated rate as 

demonstrated in Fig. 3.9 with Consumer 2 offering a higher price than Consumer 1. This 

is another characteristic of an agent’s behavior to maximize revenue. In the uncommon 

case where acceptance is reached by multiple consumer agents within the same bargaining 

session and at the same rate, the producer agent splits power between the consumer agents. 
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Figure 3.8: Example negotiation between a producer agent and two consumer agents 

with a grid purchase rate of $0.18/kWh, grid sellback rate of $0.03/kWh, and 

maximum of 12 bargaining sessions. The offer is settled with C1 at bargaining session 

9 and C2 at bargaining session 11. 

 

 
Figure 3.9: Example negotiation between a producer agent and two consumer agents 

with a grid purchase rate of $0.18/kWh, grid sellback rate of $0.03/kWh, and 

maximum of 12 bargaining sessions. The offer is settled at bargaining session 9. 

 

 Data Inputs 

Two ring networks were developed and simulated with results compared to 

demonstrate the generalizable mathematical approach. The 3-node network included a 

school, a neighborhood, and a commercial building. The 9-node network included the same 
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nodes from the 3-node network plus six additional nodes including three neighborhoods, 

three commercial buildings, an industrial building, a hospital, and a school. These networks 

are illustrated in Figs. 3.10 and 3.11, respectively, with load and generation statistics 

summarized in Tables 3.1 and 3.2. Average load for each node was summed to equate the 

network average load with the network peak load reported as the maximum coincident load 

observed in a single time step. Simulations were performed with varying amounts of 

storage at each microgrid node sized to meet peak load for durations of 0, 1, 2, 3, and 4 

hours. Batteries were modeled with a conservative 20% minimum state of charge for 

lithium-ion chemistries (Barkholtz et al. 2017). Negotiations within a single time step were 

completed out to a maximum of 12 bargaining sessions for each node and all time steps.  

Simulations were completed using hourly time step data, a common resolution for 

trading and dispatch studies in literature (Hobbs 1995; Lynch et al. 2013). Hourly load and 

solar data were sourced from existing physical systems or simulated data sources for one 

full year (8760 hourly time steps). Open access data were used to permit replication and 

extension of this research. Hourly loads and solar PV generation data for node 1 were 

sourced from recorded building data on the Arizona State University Polytechnic and 

Tempe campuses (Arizona State University Campus Metabolism 2018). Neighborhood 

data for nodes 2, 6, and 9 were generated from different individual household load and 

solar profiles selected from OpenEI and scaled linearly to create three distinct 

neighborhoods (OpenEI.org n.d.). The number of houses, solar PV penetration, and 

locations of each neighborhood were varied to increase network heterogeneity and better 

illustrate the bargaining and negotiation process. Commercial building load and solar data 

for node 3 were measured at the National Renewable Energy Laboratory Research and 
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Support Facility (OpenEI.org 2011). Building load data for nodes 4, 5, and 7 were 

simulations of a large hotel, large office building, and supermarket, respectively, available 

on OpenEI (OpenEi.org n.d.), and paired with solar PV data recorded from several solar-

covered parking structures on the ASU Tempe campus (Arizona State University Campus 

Metabolm 2018). Node 8 had simulated hospital building data with no solar PV. 

 
Figure 3.10: Example 3-node microgrid ring network. 

 

 
Figure 3.11: Example 9-node microgrid ring network. 
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Table 3.1: 3-Node Network Summary 

Parameter 
Microgrid Node 

1 2 3 Network 

Average Load (kW) 1109 885 268 2261 

Peak Load (kW) 1577 2637 1852 4239 

Solar Production (kWh/day) 13714 16433 2519 32666 

Load Factor (-) 0.703 0.336 0.145 0.534 

Renewables Fraction (-) 0.515 0.774 0.392 0.602 

 

Table 3.2: 9-Node Network Summary 

Parameter 
Microgrid Node 

1 2 3 4 5 6 7 8 9 Network 

Average Load (kW) 1109 885 268 310 873 820 209 1156 373 6003 

Peak Load (kW) 1577 2637 1852 501 1688 1863 403 1576 1244 10079 

Solar Production (kWh/day) 13714 16433 2519 1935 8849 29911 2260 0 2789 78410 

Load Factor (-) 0.703 0.336 0.145 0.619 0.517 0.440 0.518 0.734 0.300 0.596 

Renewables Fraction (-) 0.515 0.774 0.392 0.260 0.422 1.520 0.451 0.000 0.311 0.544 

 

Load and solar profiles for each microgrid affect grouping and bargaining behaviors 

between agents in the network. The neighborhood in node 6 produces more solar on 

average than is required to meet its load. This results in node 6 acting as a producer agent 

during most daylight hours, which directly affects trading for nodes 5 and 7 and indirectly 

affects the trading of nodes 4 and 8 because nodes 5 and 7 prefer to group with the producer 

agent that has the most excess generation to offer. Additionally, the hospital at node 8 has 

no local generation and is a consumer agent at all hours. By rank, nodes 8, 1, and 4 have 

the highest load factors and therefore have a more consistent or flatter load profile than 

other nodes in the network. Conversely, nodes 3, 9, and then 2 have the lowest load factors 

indicating that they tend to operate far lower than their annual peak power consumption.  

Transactions with the main grid were modeled using the TOU rate structure given 

in Table 3.3. The sellback rate is representative of the wholesale price of electricity on the 

grid (United States Energy Information Administration 2018), which is a common value to 

resell power back to the utility in the absence of net metering or a higher feed-in tariff. 

Peak hours are between 1PM and 8PM for every day in the year.  
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Table 3.3: Grid Rate Structure 

Price Structure Rate ($/kWh) 

Off-peak 0.09 

On-peak (1PM-8PM daily) 0.18 

Sellback Rate 0.03 

 

 Results 

A baseline case was simulated with grid-only transactions and compared against a 

second case with microgrid trading permitted. The primary metric for comparison was the 

levelized cost of energy (LCOE) evaluated for each node and the entire network. Node 

LCOE was evaluated for each day of the year as described in Eq. 3.8 with the annual LCOE 

evaluated similarly over all 8760 hours in the year. Network LCOE was calculated 

alongside node LCOE values to represent the average cost of all power transactions on the 

network for each day and the entire year. 

 

 𝐿𝐶𝑂𝐸 =
∑ 𝐶𝑛

𝑡=24
𝑡=1

∑ 𝐿𝑛
𝑡=24
𝑡=1

  (3.8) 

3.4.1. 3-Node Network 

Results in Table 3.5 and Fig. 3.12 show that network LCOE reduced with microgrid 

trading enabled when compared to the grid-only case. Individual results for each node in 

Table 3.5 show that the average daily cost of energy with trading enabled is 0.3% and 5.4% 

less than with grid-only transactions. Additionally, all nodes and the network benefited 

from a lower cost of energy as the amount of storage increased. This occurred because 

microgrids with storage could utilize their stored self-generated power at no cost rather 

than trading power with neighbors or interacting with the grid. If equipment costs or 

efficiency losses were assigned to dispatching local storage, the trend of decreasing LCOE 

in Fig. 3.12 would be less prominent and then vanish when storage costs become more 
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expensive than the cost of transactions with the grid or neighbors. Increasing storage size 

also narrows the difference in LCOE between grid-only and microgrid trading cases 

because trading occurrences reduce with increasing amounts of storage. Increasing storage 

size also permitted nodes 2 and 3 to store and sell power more often to node 1, thereby 

giving each node a profit (negative cost) in at least one day over the one-year period. 

 
Figure 3.12: Network LCOE for 3-node network with trading and grid-only cases for 

varying amounts of storage. 

 

Table 3.4: Average Daily Energy Cost ($/kWh) for 3-Node Network 

    Hours of Storage 

Node  0 1 2 3 4 

  Grid-

Only 

With 

Trading 

Grid-

Only 

With 

Trading 

Grid-

Only 

With 

Trading 

Grid-

Only 

With 

Trading 

Grid-

Only 

With 

Trading 

1 Min 0.033 0.031 0.025 0.024 0.020 0.018 0.017 0.016 0.014 0.012 

Max 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 

Range 0.091 0.093 0.099 0.100 0.104 0.106 0.107 0.108 0.110 0.112 

Average 0.066 0.064 0.060 0.059 0.055 0.055 0.052 0.052 0.051 0.051 

 Savings   2.7%   1.2%   0.9%   0.6%   0.3% 

2 Min 0.021 0.017 0.000 -0.003 -0.010 -0.013 -0.020 -0.023 -0.023 -0.027 

Max 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 

Range 0.093 0.097 0.114 0.117 0.124 0.127 0.134 0.137 0.137 0.141 

Average 0.061 0.058 0.044 0.043 0.033 0.031 0.026 0.025 0.022 0.021 

 Savings   5.2%   3.9%   4.3%   4.3%   3.6% 

3 Min 0.010 -0.007 -0.012 -0.024 -0.018 -0.027 -0.016 -0.025 -0.016 -0.025 

Max 0.126 0.118 0.126 0.119 0.126 0.119 0.126 0.119 0.126 0.119 

Range 0.115 0.125 0.138 0.143 0.144 0.146 0.142 0.144 0.142 0.144 

Average 0.067 0.064 0.055 0.053 0.053 0.051 0.052 0.051 0.052 0.051 

Savings    5.4%   3.5%   2.5%   1.9%   1.2% 

Network Min 0.036 0.034 0.022 0.021 0.015 0.015 0.007 0.007 0.005 0.005 

 Max 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 

 Range 0.080 0.082 0.094 0.095 0.100 0.100 0.109 0.109 0.111 0.111 

 Average 0.066 0.064 0.057 0.055 0.050 0.049 0.046 0.046 0.044 0.044 

 Savings   3.6%   2.1%   1.8%   1.4%   1.0% 
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Further examination into microgrid trading revealed trends in agent behaviors over 

the annual simulation. Fig. 3.13a summarizes the percentage of time steps resulting in grid-

only, neighbors-only, grid and neighbors, and no transactions for nodes without storage. 

Fig. 3.13b summarizes the same information with four hours of storage at each node. Grid 

and neighbor transactions indicate time steps in which a node purchased power from 

neighbors and the grid to meet local loads. Time steps with no transactions indicate that a 

node met its own load and stored any excess generation without external export. 

Without storage, nodes purchased power from only the grid in 83-86% time steps 

of the year. The remaining time steps were split between grid and neighbors transactions 

and neighbors-only transactions. There were minimal to no occurrences without any 

transactions because the node would need to exactly meet its load with local generation. 

Visual inspection of Fig. 3.13b indicates that nodes with storage had fewer transactions 

with the grid and fewer transactions between neighbors when compared to nodes without 

storage in Fig. 3.13a. Storage permitted a microgrid agent to more often serve its own load 

without importing or exporting power. This commonly occurred during daytime hours or 

shortly after sunset until storage was depleted. Results in Fig. 3.13b also show that the 

inclusion of storage increased the percentage of time steps with no transactions for node 2 

as compared to nodes 1 and 3. This was due to the relatively high renewables fraction and 

low load factor for node 2 (refer to Table 3.1) that permitted node 2 to remain independent 

from the network for a longer duration of the year. 
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Figure 3.13a: Transaction types by percentage for 3-node network with 0 hours of 

storage. 

 

 
Figure 3.13b: Transaction types by percentage for 3-node network with 4 hours of 

storage. 

 

Fig. 3.14 shows that the number of aggregate transactions between nodes decreased 

as storage was added because nodes were independent for a larger portion of the year. The 

proportion of unsuccessful transactions to successful transactions also dropped. 

Unsuccessful transactions were rejections by either the producer agent or consumer agent 

once the maximum number of bargaining sessions was reached, or when a producer agent 

sold all power to one of two consumer agents and rejected the second agent. After an 

unsuccessful transaction, the consumer agent would purchase power from the grid instead 

and result in a grid-only data point. If the unsuccessful transaction was caused by a rejection 

from the consumer agent, the producer agent would attempt to complete a transaction with 
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another consumer agent in its trading group or sell power to the grid. This could result in 

grid-only, grid and neighbors, or neighbors-only data points.  

 
Figure 3.14: Frequency of successful and unsuccessful transactions between 

neighboring nodes in a 3-node network. 

 

3.4.2. 9-Node Network 

Trading in the 9-node network also yields financial benefits when noting the 

observed reductions in LCOE in comparison to the grid-only case. Fig. 3.15 shows that the 

benefit of trading decreases, however, as storage increases and nodes become more self-

sufficient and trade less often. This finding is consistent with the 3-node case as observed 

in Fig. 3.12. The difference in the 9-node LCOE between microgrid trading and grid-only 

stays fairly consistent with increasing storage because nodes 5, 6, and 7 have almost the 

same number of neighbor transactions regardless of storage capacity. 
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Figure 3.15: Network LCOE for 9-node network with trading and grid-only cases for 

varying amounts of storage. 

 

Table 3.6 summarizes the average daily cost of energy for individual nodes within 

the 9-node network with Fig. 3.16a and Fig. 3.16b showing trading behavior with no 

storage and four hours of storage, respectively. Trading behavior is more complex in the 

9-node network with trends in LCOE not strictly consistent with increasing storage size. 

The daily average cost of energy for nodes 4, 5, 7, 8, and 9 decreases monotonically with 

storage, decreases monotonically for node 2 except for the case with 2 hours of storage, 

increases once storage is added to nodes 1 and 3 and then decreases thereafter, and has a 

rapidly increasing spread in LCOE for node 6 between the baseline case and trading case 

because that microgrid node has significant excess solar generation. The deficit of 

generation in nodes 5 and 7 and the abundance of generation in node 6 lead to frequent 

successful transactions due to larger βc and βp values in their valuation curves. As storage 

increased node 6 actually made a profit, on average, over the entire year. This is not 

typically permitted in a utility rate structure due to a minimum charge for interconnection 

fees, but the observed trend in financial savings still holds true when trading is enabled. 

This is a mutually beneficial interconnection that frequently saved cost for nodes 5 and 7 
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by avoiding the need to buy power at a higher cost from the grid, and node 6 made a larger 

profit from selling its excess generation at a higher rate than the wholesale rate. Another 

interesting artefact is that node 8 had exclusively grid-only transactions when storage was 

given to all nodes. This is because node 8 had no generation for storage or trading. This 

lack of generation and storage created a fairly flat valuation curve relative to other 

consumer agents, and therefore node 8 commonly lost negotiations with its potential 

trading partners, node 7 and node 9, because those partners were able to complete 

bargaining sooner with other consumer agents, node 6 and node 1, respectively. 
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Table 3.5: Average Daily Energy Cost ($/kWh) for 9-Node Network  
    Hours of Storage 

Node  0 1 2 3 4 

  Grid-

Only 

With 

Trading 

Grid-

Only 

With 

Trading 

Grid-

Only 

With 

Trading 

Grid-

Only 

With 

Trading 

Grid-

Only 

With 

Trading 

1 Min 0.033 0.025 0.025 0.014 0.020 0.010 0.017 0.006 0.014 0.003 

Max 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 

Range 0.091 0.099 0.099 0.110 0.104 0.114 0.107 0.118 0.110 0.121 

Average 0.066 0.066 0.060 0.059 0.055 0.054 0.052 0.052 0.051 0.051 

 Savings   0.5%   2.6%   1.7%   1.0%   0.8% 

2 Min 0.021 0.009 0.000 -0.012 -0.010 -0.021 -0.020 -0.031 -0.023 -0.034 

Max 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 

Range 0.093 0.105 0.114 0.126 0.124 0.135 0.134 0.145 0.137 0.148 

Average 0.061 0.054 0.044 0.042 0.033 0.031 0.026 0.025 0.022 0.021 

 Savings   11.8%   5.7%   5.9%   5.6%   4.3% 

3 Min 0.010 -0.008 -0.012 -0.030 -0.018 -0.030 -0.016 -0.028 -0.016 -0.027 

Max 0.126 0.129 0.126 0.119 0.126 0.119 0.126 0.119 0.126 0.119 

Range 0.115 0.138 0.138 0.149 0.144 0.149 0.142 0.147 0.142 0.146 

Average 0.067 0.068 0.055 0.052 0.053 0.051 0.052 0.051 0.052 0.051 

 Savings   -1.1%   5.6%   3.4%   2.4%   1.5% 

4 Min 0.071 0.062 0.059 0.059 0.048 0.048 0.046 0.046 0.046 0.046 

 Max 0.122 0.117 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 

 Range 0.051 0.055 0.063 0.063 0.074 0.074 0.076 0.076 0.076 0.076 

 Average 0.087 0.086 0.086 0.085 0.086 0.086 0.086 0.086 0.086 0.086 

  Savings   1.2%   1.0%   0.4%   0.2%   0.1% 

5 Min 0.021 0.019 0.000 0.000 -0.007 -0.007 -0.001 -0.001 0.003 0.003 

 Max 0.135 0.125 0.135 0.127 0.135 0.127 0.135 0.127 0.135 0.127 

 Range 0.114 0.106 0.135 0.128 0.142 0.134 0.136 0.128 0.132 0.125 

 Average 0.073 0.065 0.068 0.062 0.067 0.061 0.066 0.061 0.066 0.062 

  Savings   10.3%   9.0%   8.2%   7.6%   7.3% 

6 Min -0.012 -0.027 -0.027 -0.043 -0.034 -0.049 -0.040 -0.054 -0.048 -0.060 

 Max 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 

 Range 0.124 0.139 0.140 0.156 0.147 0.162 0.153 0.167 0.161 0.173 

 Average 0.033 0.023 0.021 0.013 0.012 0.005 0.006 -0.001 0.001 -0.006 

 Savings    28.2%   38.7%   62.2%   124.6%   866.2% 

7 Min 0.043 0.027 0.031 0.018 0.023 0.013 0.018 0.016 0.018 0.018 

 Max 0.132 0.125 0.132 0.125 0.132 0.125 0.132 0.125 0.132 0.125 

 Range 0.088 0.097 0.100 0.107 0.109 0.112 0.113 0.109 0.113 0.107 

 Average 0.070 0.067 0.065 0.064 0.064 0.063 0.064 0.063 0.064 0.064 

  Savings   4.8%   2.5%   1.3%   1.0%   0.9% 

8 Min 0.120 0.099 0.120 0.119 0.120 0.120 0.120 0.120 0.120 0.120 

 Max 0.127 0.126 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 

 Range 0.007 0.027 0.007 0.008 0.007 0.007 0.007 0.007 0.007 0.007 

 Average 0.123 0.121 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 

  Savings   1.2%   0.1%   0.0%   0.0%   0.0% 

9 Min 0.063 0.050 0.037 0.031 0.033 0.033 0.033 0.033 0.033 0.033 

 Max 0.124 0.123 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 

 Range 0.061 0.073 0.087 0.093 0.091 0.091 0.091 0.091 0.091 0.091 

 Average 0.091 0.083 0.082 0.081 0.081 0.081 0.081 0.081 0.081 0.081 

 Savings    8.7%   1.5%   0.6%   0.4%   0.3% 

Network Min 0.055 0.052 0.045 0.044 0.039 0.038 0.035 0.035 0.034 0.034 

 Max 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 

 Range 0.064 0.066 0.074 0.075 0.080 0.081 0.083 0.083 0.085 0.085 

 Average 0.077 0.073 0.071 0.068 0.067 0.065 0.065 0.063 0.063 0.061 

 Savings  5.4%  4.0%  3.5%  3.2%  3.0% 
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Figure 3.16a: Transaction types by percentage for 9-node network with 0 hours of 

storage. 

 

 
Figure 3.16b: Transaction types by percentage for 9-node network with 4 hours of 

storage. 

 

The number of total transactions (successful and unsuccessful) decreased as storage 

was added to the 9-node case, similar to the 3-node case. Fig. 3.17 describes this trend, 

with 15.8% of transactions between neighbors being unsuccessful with no storage 

compared to 6.2% with 4 hours of storage. The number of unsuccessful transactions in the 

9-node case was nearly constant for 2, 3, and 4 hours of storage, whereas in the 3-node 

case the number of unsuccessful transactions decreased to almost zero. This behavior 

emerged in the 9-node network because the number and type of transactions occurring 

between nodes 5, 6, and 7 remained consistent despite more storage being added to each 

node.  
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Figure 3.17: Frequency of successful and unsuccessful transactions between 

neighboring nodes in a 9-node network. 

 

 Conclusion 

Agent-based techniques were developed and applied to manage energy transactions 

between neighboring microgrids in a grid-connected network. The transactive energy 

approach was developed using a generic mathematical framework and demonstrated for 

ring networks comprised of 3 nodes and 9 nodes with each node having a unique hourly 

load and solar profile for a one-year period. Microgrid agents complete three major 

processes within each simulated time step: (i) determine operational status as a producer, 

consumer, or neutral node, (ii) form trading groups with other agents, and (iii) bargain with 

other agents in a trading group. Any excess generation or unmet load was sold to or 

purchased from the main grid, respectively. Power was purchased according to a time-of-

use rate structure with excess generation sold at the wholesale price of electricity. 

Negotiations between agents were modeled with exponential functions representing each 

node’s unique valuation of energy. Consumers were represented with positive exponential 

functions that increased in convexity (willingness to buy) based on how much load they 

could serve with local generation, while producers were represented with negative 

exponential functions that increased in convexity (willingness to sell) based on how much 
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power they could sell to each consumer. Negotiations were successful when both agents 

reached consensus on an offered rate, and unsuccessful when the maximum number of 

bargaining sessions was reached or a producer traded all power to another node in a trading 

group.  

Results from the transactive energy approach were compared to a baseline case that 

permitted grid-only transactions. Levelized cost of energy served as the primary metric of 

comparison. Secondary metrics included the type and frequency of agent transactions as 

well as the frequency of successful or unsuccessful bargaining attempts. A 3.6% and 5.4% 

decrease in network levelized cost of energy was observed in the 3-node and 9-node cases, 

respectively, when trading was enabled. Simulations were also completed with 1, 2, 3 and 

4 hours of energy storage at each node sized to meet the peak load. As the amount of storage 

increased, the difference in levelized cost of energy between the grid-only and microgrid 

trading cases decreased because microgrids used their stored self-generated power at no 

cost rather than trading externally. Some adjacent nodes maintained their trading 

relationship as storage increased, however. This occurred more often within trading groups 

that included an aggressive producer agent with a high renewables penetration and an 

aggressive consumer agent(s) with a low load factor. It was found that as more storage was 

introduced in the network, the number of transactions with the grid and/or neighbors 

decreased due to nodes serving their loads locally more often. Additionally, the number of 

unsuccessful transactions decreased as the amount of storage was increased, as shown in 

the 9-node case with 15.8% unsuccessful transactions with no storage and 6.2% with four 

hours of storage.  
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The described case studies were developed with a ring network structure 

reminiscent of the conventional electric grid. Energy and asset data from real buildings 

were used to demonstrate real engineering applications. As a growing number of 

distributed energy resources and microgrids are integrated into the larger grid, transactive 

energy strategies such as those described in this text have demonstrated potential to manage 

energy and financial trading in the increasingly complex energy market. Application spaces 

such as Hawaii’s Clean Energy Initiative (2018), California’s recent requirement for solar 

photovoltaic installation on all new residential homes (California Energy Commission 

2018), and Arizona’s agreement to incentivize behind-the-meter battery systems (Salt 

River Project 2018) demonstrate direct relevance to markets in the United States, and 

further application spaces globally are emerging given Germany’s Amendment of the 

Renewable Energy Sources Act that encourages wind resource installation (International 

Energy Agency 2017), Denmark’s goal to reach 50% renewable energy by 2030 (State of 

Green 2017), and China’s effort to increase renewables and curb emissions by 2030 

(Climate Nexus 2017). 

This work provided a generalized conceptual framework, mathematical 

expressions, and simulation methodology for use with any network configuration and any 

size of electrical network. The case study examples on ring networks can be expanded and 

contrasted with other types of configurations seen in real distribution networks, such as 

radial, parallel, or tie structures. Further, a more abstract comparison could be made by 

examining topologies from network theory including wheel and complete graphs. The 

inclusion of capacity constraints in distribution infrastructure and power flow modeling are 

planned extensions of this work that permit translation to larger systems. Additional studies 
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could expand financial and regulatory analyses to consider alternative electric rate 

agreements such as net metering, wheeling charges (trading charges) between microgrid 

agents, and demand charges. Research in forecasting and asset scheduling can be 

complemented by this work and integrated to improve short-term and real-time scheduling 

and trading as increasing amounts of distributed energy resources are installed on electric 

grids around the world.   
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CHAPTER 4 

REPUTATION-BASED COMPETITIVE PRICING NEGOTIATION AND POWER 

TRADING FOR GRID-CONNECTED MICROGRID NETWORKS 

Abstract 

The integration of renewables and microgrids into the modern electric grid has 

forced financial, technical, and policy change. Control strategies that enable energy trading 

between microgrids provide more effective use of distributed energy resources. This study 

presents a decentralized, autonomous control approach to manage energy transactions 

between neighboring nodes of a grid-connected microgrid network. Agents in the network 

form relationships, with interactions between agents described by quantifying their 

reputation using historical knowledge of familiarity, acceptance, and value between nodes. 

Methods are demonstrated on a network of 9 nodes with varying levels of network 

connectivity for a simulated year. Results indicate that certain relationships between nodes 

form that allow some microgrids to receive more reduction in operating cost than others. 

A baseline case with no trading is used to compare results, with nodes experiencing 

anywhere from 3% to 71% reduction in LCOE depending on which node pairs were 

connected in the network. Node pair connections with the most opportunities to trade 

throughout the year had a significant effect on the amount of excess renewables 

successfully traded in the network, and network configurations containing those pairs also 

resulted in the lowest grid load factors.  

 Introduction 

By the end of 2018, 92 countries, states, and provinces have established renewable 

energy targets for the electric power sector (Ren21 2019). This rapid growth in renewables 
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has been met with concerns about the intermittency of natural resources and subsequent 

effect on resource adequacy and power system stability. Additional control solutions are 

needed to handle power fluctuations and avoid cycling of large-scale power sources (MITei 

2011; Van den Bergh and Delarue 2015). One solution is implementing energy storage and 

ultracapacitors to counteract variability in renewables and provide reserve capacity 

(Johnsotone and Haščič 2012; Zerrahn, Schill, and Kemfert 2018; Solomon, Kammen, and 

Callaway 2014). It has also become increasingly common to combine energy storage and 

renewable power generation into a microgrid, creating an integrated set of distributed 

energy resources (DERs) that can meet local loads as an independent controllable entity 

that can isolate and reconnect to the grid. Microgrids provide additional reliability for 

powering critical loads and enable flexible operational strategies to accommodate future 

changes to system architecture. However, business model and regulation strategy 

uncertainties introduce limitations (Hirsch, Parag, and Guerrero 2018). As microgrid 

technology and policy develop, generalizable and scalable control strategies are needed to 

coordinate microgrid operation in conjunction with large-scale grid systems.  

Extensive research has been completed in the area of internal microgrid control and 

coordination of DERs. Techniques including transactive energy (Vaahedi et al. 2017; 

Akter, Mahmud, and Oo 2016; Ji, Zhang, and Cheng 2018), multi-agent control (Luo et al. 

2017; Kantamneni et al. 2015; Eddy, Gooi, and Chen 2015; Li, Q. et al. 2016; Kouluri and 

Pandey 2011; Aung et al. 2010; Cossentino et al. 2011), game theory (Mei and Kirtley 

2018; Sanjari and Gharehpetian 2014; Cintuglu, Martin, and Mohammed 2015; 

Maknouninejad et al. 2012; Ma et al. 2015; Chen et al. 2017), and model predictive control 

(Cominesi et al. 2018; Ghanbarian et al. 2017; Noroozi, Trip, and Geiselhart 2018; Zhang 
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et al. 2017) have shown simulated enhancements for economics, utilization of renewable 

resources, and reliability.  

A natural extension of this early research is in the development of methods to 

coordinate interactions between multiple neighboring microgrids to meet common 

objectives. Interactions between microgrids can produce power trading, improved 

forecasting through information sharing, and increased flexibility and adaption to support 

changing network needs (Wang and Huang 2016; Akter, Mahmud, and Oo 2017; Shahnia, 

Bourbour, and Ghosh 2017; Mei et al. 2019). Off-grid microgrid networks can especially 

benefit from these interactions, since microgrid entities can support neighboring loads to 

improve network reliability where there is no larger grid or slack bus to draw from. 

Research in off-grid interacting microgrids has included techniques such as transactive 

control and pricing schemes to facilitate scheduling based on user participation (Prinsloo, 

Mammoli, and Dobson 2017), two-level control with support from both local storage and 

neighboring microgrids (Pashajavid, Shahnia, and Ghosh 2017), agent-based networks 

with control laws derived from the communication network (Li, Q. et al. 2016), and 

coalition formation (Hammad, Farraj, and Kundur 2015a; Hammad, Farraj, and Kundur 

2015b). Simulation of these techniques were shown to achieve promising results such as 

improved network stability through overload detection and mitigation, improved pricing 

via demand-side management, and maintaining operation within voltage and frequency 

requirements (i.e. IEEE Standard 1547) (Pashajavid, Shahnia, and Ghosh 2017; Prinsloo, 

Mammoli, and Dobson 2017; Li, Q. et al. 2016). On-grid microgrids can benefit from this 

type of interaction as well with benefits including lowered cost of energy, better utilization 

of renewable energy resources, increased resilience, and increased operational flexibility 
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(Daneshvar, Pesaran, and Mohammadi-ivatloo 2018; Nikmehr, Najafi-Ravadanegh, and 

Khodaei 2017; Holjevac et al. 2017; Liu, Y. et al. 2018; Akter, Mahmud, and Oo 2017; Qu 

et al. 2018; Janko and Johnson 2018; Kumrai et al. 2017). Wang et. al. (2018) studied how 

a bi-level game model for an on-grid multi-microgrid network could be used to regulate 

voltage, with results showing an improvement in control speed and operating costs. In a 

paper by Wei et. al. (2014), coalition formation between on-grid microgrids enabled a 

reduction in average system power loss for each microgrid. This paper seeks to develop a 

scalable and generalizable approach to microgrid interaction and negotiation for on-grid 

microgrid applications.  

Past research in microgrid interaction and multi-microgrid network control can be 

categorized as centralized or decentralized computation strategies. Centralized control has 

produced promising results such as algorithms that determine optimal operation by 

minimizing multiple objectives (Kumrai et al. 2017; Wang et al. 2018). However, it does 

not easily scale to include new nodes and communication pathways without significant 

computational tradeoffs. Chakraborty, Nakamura, and Okabe (2014) demonstrated 

centralized control techniques applied to microgrid networks. The results described how 

microgrid coalitions could reduce line losses, but also demonstrated a quadratic increase in 

average execution time based on the number of microgrids in the system. Decentralized 

control, where computation and decision-making are localized for each controllable entity, 

has improved scalability and creates a more robust network with no single point of failure 

(Prabaharan et al. 2018). Decentralized systems such as those introduced in (Liu, Y. et al. 

2018; Wu et al. 2018; Harmouch, Krami, and Hmina 2018) distributed computational 

requirements across nodes, suggesting that they may be more practical for real-world 
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applications where hardware limitations are a contributing factor to successful operation. 

Combinations of centralized and decentralized strategies are also possible. For instance, 

Esfahani et. al. (2019) demonstrated a multi-level control technique that represented loads, 

energy storage, and generators as individual agents, with information passed to a local 

market agent and later to a general market agent that had information from all microgrids 

and the utility. This hierarchical structure created a three-level market framework for day-

ahead, hour-ahead, and real-time markets. The work proposed in this paper utilizes a 

decentralized algorithm approach to bring computation time to a minimum and achieve 

better scalability. 

Communication and interaction between microgrids are often implemented within 

a multi-agent framework, where each entity in the network can be represented by an agent 

or set of agents that interact to accomplish tasks (Pashajavid, Shahnia, and Ghosh 2017; 

Prinsloo, Mammoli, and Dobson 2017; Li, Q. et al. 2016; Liu Y. et al. 2018; Janko and 

Johnson 2018; Wang et a. 2018; Harmouch, Krami, and Hmina 2018; Rivera, Farid, and 

Youcef-Toumi 2014). Borrowing terminology from game theory, agent interaction can be 

modeled as cooperative or competitive games. Cooperative games involve strategic 

collaboration between players (or agents) with aligned interests, while competitive games 

involve agents with opposing interests (Colman 2014). Saad, Han, and Poor (2011) utilized 

a cooperative strategy for microgrid group formation that yielded up to a 31% reduction in 

distribution line power losses when compared to traditional power exchange with the grid. 

A competitive strategy demonstrated by W. Liu et al. (2018) simplified coordination and 

provided self-healing capabilities for microgrids while maintaining fairness in the network. 

Microgrids in the proposed work are considered independent power consuming and 
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producing entities with access to only local information or information provided to them 

by neighbors. Microgrids only have knowledge about and are concerned with their own 

objectives, which aligns best with competitive (or non-cooperative) game theory. 

Information shared with an agent provides insight on environment status and 

contributes to the decisions made locally. The amount and order in which information is 

shared between agents can also change actions taken by each agent as well as the outcome 

of the overall game. Further research is needed in information sharing and its specific effect 

on agent behavior and network-wide benefit. However, work in social e-commerce 

considering similar questions suggests that a dynamic replication model for knowledge 

sharing can be used to analyze behavioral evolution and network-level behaviors and 

outcomes (Jiang et al. 2014). Additionally, agents can be capable of learning from previous 

encounters with other agents and can change their decision-making strategy based on the 

outcomes of those encounters. By keeping track of historical interactions, agents can form 

opinions about one another based on trends that affect the way they will interact with that 

specific agent in the future. Past research in computer science and artificial intelligence has 

described this as an association coefficient or reputation score (Yu, Van Der Schaar, and 

Sayed 2015; Haque 2010; Mihailescu, Vasirani, and Ossowski 2011).  

Work presented in this paper extends past work (Janko and Johnson 2018) to model 

microgrid interactions as a competitive game of negotiations between agents to determine 

energy pricing with each agent seeking to minimize net expenses for themselves. 

Additionally, a reputation coefficient that considers an agent’s familiarity, success rate, and 

value attributed to other agents is introduced to analyze the behavioral adaptation and 

changes in network-level outcomes based on environmental and situational parameters. 
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This technique is outlined and verified with several realistic case studies. Unique 

contributions of this paper include: 

• Generalizable and scalable approach to microgrid price negotiation considering 

familiarity, acceptance, and value between nodes. 

• Modeling multi-agent microgrid power trading as a competitive marketplace in 

which historical interactions affect the reputation of a node and the strategy taken 

with that node. 

• Case studies demonstrating scalability and performance of the proposed method 

through network simulations with varying levels of connectivity. 

 Methods 

4.2.1. Microgrid Node and Network Topology 

Each microgrid interacting in the competitive network is modeled as a generic 

power system consisting of a production asset, storage asset, controller, and load to serve 

(see Fig. 4.1). Asset capacities and load profiles are varied to produce a heterogeneous set 

of participants in the network. At the beginning of the simulation, the network is configured 

in a pre-defined architecture of switches that enables microgrids to electrically connect to 

one another. Microgrid pairs connected by switches are called neighboring microgrids. 

Configurations of neighbors can range in complexity from a linear network to a completely 

connected network (see Fig. 4.2). The number of possible network configurations within 

an n-node network is 2
𝑛(𝑛−1)

2 . Communication and negotiation between nodes are managed 

within a multi-agent framework where each microgrid is represented as a single agent 

within the marketplace.  
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Figure 4.1: Generic microgrid topology. 

 

 
Figure 4.2: Range of network configurations possible for n-node network. 
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4.2.2. Multi-Microgrid Interactions and Negotiation 

Microgrid agents complete several processes within each time step as described in 

Fig. 4.3. Similar to prior work (Janko and Johnson 2018), each agent first determines its 

operational status as either a power consumer or a power producer by calculating its net 

load after considering the local loads, generation, and energy storage. If the net load is zero, 

the microgrid has a neutral status and its agent does not participate in the power trading 

marketplace for that time step. Each agent transmits its status to neighbors and determines 

which of the neighbors is a compatible trading partner for that time step. Consuming agents 

must trade with producers and producers must trade with consumers. Agents then negotiate 

the price of power (in $/kWh) with only the compatible neighbors until consensus is 

reached or the maximum number of negotiation steps is reached. After negotiation, agents 

complete power trades with neighbors in priority order of most utility to least utility. Any 

remaining excess generation from producer agents is sold to the grid at the wholesale price 

of electricity, and any unmet load of consumer agents is purchased from the grid at rates 

dictated by their utility rate structure. Each process is described in detail within the sections 

4.2.3 - 4.2.5. 

Simulation of the multi-agent microgrid network and negotiations between agents 

is managed within a Python script and an accompanying local SQL database for each agent. 

Input data includes hourly load and solar profiles, storage size, negotiation parameters for 

each microgrid agent, and a rate structure for transactions with the utility. An incidence 

matrix defines network structure (agent connections) and allows for easy modification of 

the electrical and communication architecture. Model parameters and all simulated data are 

saved in local SQL databases for fast access. Several Python packages were utilized 
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including osBrain 0.4.4 for multi-agent programming, sqlite 3.22.0 for database 

management, and PuLP 1.6.0 for optimization (osBrain n.d.; SQLite n.d.; Mitchell et al. 

2009). 

 
Figure 4.3: Process flow for an agent in one time step. 
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4.2.3. Status Determination and Finding Compatible Neighbors 

An agent can act as a producer (excess generation is available to sell) or a consumer 

(local load exceeds available local generation) in any time step based on local conditions 

for loads, production, and storage. This operational status governs which neighbors the 

microgrid is compatible with for trading. The equation set used to model and determine an 

agent’s status based on its locally available generation and storage can be found in Johnson 

and Janko (2018). 

Following status determination, each agent sends its status to neighboring agents 

and receives their statuses in turn. A subset 𝑛𝑖 of all agents neighboring agent i (𝑛𝑖 ⊆ 𝑁𝑖) 

is identified as compatible trading partners based on their opposing statuses. The agents in 

𝑛𝑖 and their net loads are saved to the local database for use in pricing negotiation. 

4.2.4. Negotiating Pricing 

Pricing negotiation is structured as a series of communications between agents with 

the option to accept, reject, or make a counter offer upon receipt of an offer from another 

agent. The decision to accept, reject, or counter offer is based on the agent’s unique 

valuation of energy, which is a function of current grid purchase and sellback rates, the 

relative net load and electrical load of both agents, the maximum number of allowable 

negotiation steps, and past experience with that agent. 

4.2.4.1.  Reputation Between Agents 

To account for past experiences in modeling negotiation behaviors between agent i 

and another generic agent j, this paper uses terminology and equation structure from Haque 

(2010) in their biologically inspired model of alliance formation between dolphins. The 

literature expresses amity between dolphins as the sum of coefficients representing the 
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familiarity of agent i with agent j and past rejections experienced by agent i from agent j. 

This paper formulates similar coefficients as ratios based on past interactions with other 

microgrid agents and introduces a new parameter, the value coefficient, that expressed the 

historical value of this relationship compared to main grid interaction. This value is 

different for a producer versus a consumer. Additionally, the rejection coefficient was 

modified to become the acceptance coefficient and represents successful trades between 

agent i from agent j. Three weight values (𝜔1, 𝜔2, 𝜔3) are applied to enable agents to set 

unique priorities for the coefficients. Summed together, these coefficients multiplied by 

their weights become the reputation coefficient Γ𝑖,𝑗(𝑡). This indicates agent i’s desire to 

trade with agent j (Eq. 4.1).  

Eq. 4.2 defines the familiarity coefficient 𝜙𝑖,𝑗(𝑡) as the ratio of time steps that agent 

i found agent j to be a compatible trading partner to the total time steps in the lifetime of 

agent i. A value of 𝜙𝑖,𝑗(𝑡) closer to 1 indicates two agents that have spent a larger 

percentage of their time together in negotiations. The acceptance coefficient 𝜇𝑖,𝑗(𝑡) is 

shown in Eq. 4.3 as the ratio of successful negotiations followed by successful committed 

trades between agent i and agent j to the total possible negotiations agent i could have had 

with agent j. The closer 𝜇𝑖,𝑗(𝑡) is to 1, the more likely agent i believes trading with agent j 

will be successful. The value coefficient 𝜁𝑖,𝑗(𝑡) is defined in Eq. 4.4a and 4.4b by 

comparing the average agreed upon price between agents i and j to the maximum possible 

value () that can be achieved by each agent. Since each agent seeks to find a lower price 

than interacting with the grid, the maximum value of  between two agents is the difference 

between the grid purchase price and grid sellback price at time t.  An epsilon 𝜀 of 0.0001 
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$/kWh is the smallest increment in energy price across which transactions are made and 

thus the grid rates the agent compares value to are adjusted by this amount. A trading fee 

𝐹 is also included to account for the grid access or interconnection fee associated with 

trading between microgrids. 

 𝛤𝑖,𝑗(𝑡) = 𝜔1𝜙𝑖,𝑗(𝑡) + 𝜔2𝜇𝑖,𝑗(𝑡) + 𝜔3𝜁𝑖,𝑗(𝑡) (4.1) 

Where: 

0 > 𝜙𝑖,𝑗(𝑡), 𝜌𝑖,𝑗(𝑡), 𝜁𝑖,𝑗(𝑡), 𝛤𝑖,𝑗(𝑡), 𝜔1, 𝜔2, 𝜔3 ≥ 1 

 𝜙𝑖,𝑗(𝑡) =
|𝜏𝑖,𝑗|

| 𝜏𝑡𝑜𝑡𝑎𝑙,𝑖|
 (4.2) 

 𝜇𝑖,𝑗(𝑡) =
|𝜏𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑,𝑖,𝑗|

|𝜏𝑖,𝑗|
 (4.3) 

For consumer agent i to producer agent j: 

 𝜁𝑐,𝑖,𝑗(𝑡) =
1

|𝜏𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙,𝑖,𝑗|
∑   

∆(𝑧)−(𝑅𝑖,𝑗(𝑧)−(𝑅𝑔,𝑠𝑒𝑙𝑙𝑏𝑎𝑐𝑘(𝑧)+𝜀+𝐹))

∆(𝑧)

|𝜏𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙,𝑖,𝑗|

𝑧  (4.4a) 

For a producer agent j to consumer agent i: 

 𝜁𝑝,𝑗,𝑖(𝑡) =
1

|𝜏𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙,𝑗,𝑖|
∑   

∆(𝑧)−((𝑅𝑔,𝑏𝑢𝑦(𝑧)−𝜖−𝐹)−𝑅𝑗,𝑖(𝑧))

∆(𝑧)

|𝜏𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙,𝑗,𝑖|

𝑧  (4.4b) 

Where: 

 ∆(𝑧) = (𝑅𝑔,𝑏𝑢𝑦(𝑧) − 𝜀 − 𝐹) − (𝑅𝑔,𝑠𝑒𝑙𝑙𝑏𝑎𝑐𝑘(𝑧) + 𝜀 + 𝐹) 

𝑧 ∈ 𝜏𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 

𝜀 = 0.0001 

The values of 𝛤𝑖,𝑗(𝑡) and each of its addends are time step dependent and can change 

value between two agents after each time step is complete. The values of 𝜙𝑖,𝑗(𝑡) and 𝜇𝑖,𝑗(𝑡) 

are always equivalent to each agent in a trading pair, 𝜙𝑖,𝑗(𝑡) = 𝜙𝑗,𝑖(𝑡) and 𝜇𝑖,𝑗(𝑡) =

𝜇𝑗,𝑖(𝑡), but 𝜁𝑖,𝑗(𝑡) will vary. Each coefficient has an initial value of 1 during the first time 
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step, indicating that the first set of negotiations are not based on historical interactions and 

all agents are equally interested in trading with each other.  

4.2.4.2.  Agent Valuation of Energy 

Consumer agent valuation is modeled as a time-dependent positive exponential 

curve (Faratin, Sierra, and Jennings 1998) that is bounded between the purchase price and 

sellback rate with the grid (Eq. 4.5a). These boundaries ensure pricing between agents is 

competitive to the grid. Producer agents are modeled with the same boundaries, but with a 

negative exponential curve (Eq. 4.6a). The exponential relationship between energy 

valuation and negotiation session of the current time step is expressed through parameter 

𝛼 (Eq. 4.5b and 4.6b). The convexity of the exponential curve is determined by parameter 

𝛽, which demonstrates trading behaviors based on situational parameters. For consumer 

agents, 𝛽𝑐 is defined as the ratio between the agent’s net load during the current time step 

and its electrical load in that time step (Eq. 4.5c). This creates the behavior that consumer 

agents are quicker to accept higher energy rates when they can serve less of their own load 

locally. The consumer is more willing to buy power at a higher cost, as long as it is less 

than the price of the main grid. For producer agents, 𝛽𝑝 is the ratio of maximum amount of 

power that can be sold to the other agent and the electrical load of the producer in that time 

step. This demonstrates the behavior that producer agents are quicker to sell energy at lower 

rates and to consumers that can buy the most power (Eq. 4.6c).  

These situational parameters vary between time steps and thus the valuation curves 

are also dynamic, allowing a single agent to exhibit any range of the behavioral curves 

described. Valuations at or after the negotiation step in which the two valuation curves 

cross will be the accepted price of energy between the two agents. The trading fee 𝐹 is split 
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between the producer and consumer involved in the trade and is incorporated into the 

minimum and maximum prices that a consumer or producer will accept in a given time 

step (Eq. 4.5d, 4.5e, 4.6d, and 4.6e). The effect of 𝛤𝑖,𝑗(𝑡) on energy valuation curves while 

all other equation parameters are held constant without trading fees is shown in Fig. 4.4a. 

The inclusion of a nonzero trading fee and its effect on 𝛤𝑖,𝑗(𝑡) is shown in Fig. 4.4b. The 

negotiation steps k shown in these figures occur within one time step t.  

For consumer agent i to producer agent j: 

 𝑉𝑖→𝑗(𝑡, 𝑘) = 𝑅𝑚𝑖𝑛,𝑖 + 𝛼𝑖(𝑘)𝛤𝑖,𝑗(𝑡)(𝑅𝑚𝑎𝑥,𝑖 − 𝑅𝑚𝑖𝑛,𝑖)  (4.5a) 

 𝛼𝑖(𝑘) = 𝑒
(1−

min(𝑘, 𝑘𝑚𝑎𝑥,𝑖)

𝑘𝑚𝑎𝑥,𝑖
)

𝛽𝑐,𝑖

ln(𝜆𝑖)
  (4.5b) 

 𝛽𝑐,𝑖 =
𝐿𝑁,𝑖

𝐿𝑖
  (4.5c) 

 𝑅𝑚𝑖𝑛,𝑖 = 𝑅𝑔,𝑠𝑒𝑙𝑙𝑏𝑎𝑐𝑘 + 𝜀 + 𝐹  (4.5d) 

 𝑅𝑚𝑎𝑥,𝑖 = 𝑅𝑔,𝑏𝑢𝑦 − 𝜀 − 𝐹  (4.5e) 

For producer agent j to consumer agent i: 

 𝑉𝑗→𝑖(𝑡, 𝑘) = 𝑅𝑚𝑎𝑥,𝑗 − 𝛼𝑗(𝑘)𝛤𝑗,𝑖(𝑡)(𝑅𝑚𝑎𝑥,𝑗 − 𝑅𝑚𝑖𝑛,𝑗)  (4.6a) 

 𝛼𝑗(𝑘) = 𝑒
(1−

min(𝑘, 𝑘𝑚𝑎𝑥,𝑗)

𝑘𝑚𝑎𝑥, 𝑗
)

𝛽𝑝,𝑗

ln(𝜆𝑗)
  (4.6b) 

 𝛽𝑝,𝑗 =
min (𝐿𝑁,𝑖,   𝐿𝑁,𝑗)

𝐿𝑗
  (4.6c) 

 𝑅𝑚𝑖𝑛,𝑗 = 𝑅𝑔,𝑠𝑒𝑙𝑙𝑏𝑎𝑐𝑘 + 𝜀 + 𝐹  (4.6d) 

 𝑅𝑚𝑎𝑥,𝑗 = 𝑅𝑔,𝑏𝑢𝑦 − 𝜀 −  (4.6e) 
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Where: 

0 ≤ 𝛼(𝑘) ≤ 1 

𝛼(𝑘𝑚𝑎𝑥) = 1 

𝛼(0) = 𝜆 

𝜀 = 0.0001 

 
Figure 4.4a: Effect of reputation coefficient on producer and consumer agent valuation 

curves without trading fee included. 

 

 
Figure 4.4b: Effect of reputation coefficient on producer and consumer agent valuation 

curves with trading fee included. 

  



  134 

4.2.5. Committing to Trade and Interacting with Main Grid 

Agents with successful pricing negotiations accept trading prices with agent i 

creating a subset �̅�𝑖 of the compatible agents 𝑛𝑖 ( �̅�𝑖 ⊆ 𝑛𝑖). If �̅�𝑖 ≠ ∅, the agent then 

prioritizes its net load to its trading partners in a way that maximizes profit. Initial offers 

are sent by the trading leaders (either consumers or producers, which can be selected at the 

beginning of the simulation) and consist of the maximum amount of power that can be 

offered to each agent. This is calculated as shown in Eq. 4.7 for consumer leaders and Eq. 

4.8 for producer leaders as the minimum between the sending agent net load and the 

receiving agent net load.  

For consumer leader agent i to producer agent j: 

 𝑃𝑜𝑓𝑓𝑒𝑟,𝑖,𝑗 = min (𝐿𝑁,𝑖, −𝐿𝑁,𝑗) (4.7) 

For producer leader agent j to consumer agent i: 

 𝑃𝑜𝑓𝑓𝑒𝑟,𝑗,𝑖 = min (−𝐿𝑁,𝑗, 𝐿𝑁,𝑖) (4.8) 

Non-leader agents wait until they have received initial offers from each of their 

compatible partners, then perform an optimization analysis to determine which offers to 

accept, which to reject, and which to modify. Eq. 4.9a, Eq. 4.9b, and Eq. 4.9c describes the 

objective function, constraints, and bounds a consumer uses to maximize profit from the 

offers provided by its compatible agents, and Eq. 4.10a, Eq. 4.10b, and Eq. 4.10c describe 

the same for a producer. If any results from the optimization function are equivalent to the 

offered values, the agent commits to the offer and both sending and receiving agents 

remove that power from the net load they are seeking to meet (Eq. 4.9d and 4.10d). This 

process repeats until either all agents have a net load of zero or no further trading is 
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possible. All leftover net load not met after this process is purchased or sold to the grid at 

the price dictated by the utility rate structure.  

For consumer agent i to producer agent j after initial offer sent: 

 minimize    ∑  𝑃𝑖,𝑗𝑅𝑎𝑐𝑐𝑒𝑝𝑡,𝑖,𝑗𝑗∈�̅� + 𝑃𝑖,𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑅𝑔,𝑏𝑢𝑦   (4.9a) 

 ∑  𝑃𝑖,𝑗 + 𝑃𝑖,𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑗∈�̅� =  𝐿𝑁,𝑖 (4.9b) 

 0𝑃𝑖,𝑗 ≥ min (𝐿𝑁,𝑖
′ , 𝐿𝑁,𝑗)   (4.9c) 

 𝐿𝑁,𝑖
′ = 𝐿𝑁,𝑖 − 𝑃𝑐𝑜𝑚𝑚𝑖𝑡,𝑖  (4.9d) 

 

For producer agent j to consumer agent i after initial offer sent: 

 minimize   − ∑  𝑃𝑗,𝑖𝑅𝑎𝑐𝑐𝑒𝑝𝑡,𝑗,𝑖𝑖∈�̅� + 𝑃𝑗,𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑅𝑔,𝑠𝑒𝑙𝑙𝑏𝑎𝑐𝑘  (4.10a) 

 ∑  𝑃𝑗,𝑖 + 𝑃𝑗,𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑅𝑔,𝑠𝑒𝑙𝑙𝑏𝑎𝑐𝑘𝑖∈�̅� =  −𝐿𝑁,𝑗
′  (4.10b) 

 0 ≥ 𝑃𝑖,𝑗 ≥ min (−𝐿𝑁,𝑗
′ , 𝐿𝑁,𝑖)  (4.10c) 

 𝐿𝑁,𝑗
′ = 𝐿𝑁,𝑗 + 𝑃𝑐𝑜𝑚𝑚𝑖𝑡,𝑗 (4.10d) 

Agents that committed power to trade with agent i form a subset �̿�𝑖 of the agents 

that had successful negotiations with agent i, (�̿�𝑖 ⊆ �̅�𝑖). 

 Case Study Data  

A 9-node network is used as a case study including a school, three neighborhoods, 

three commercial buildings, an industrial building, and a hospital. Simulations were 

completed with hourly load and solar generation data, gathered from existing physical 

systems or simulated data sources (Janko and Johnson 2018). A summary of these data is 

provided in Table 4.1.  
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Table 4.1: 9-Node Network Summary 

Parameter 
Microgrid Node 

1 2 3 4 5 6 7 8 9 Network 

Average Load (kW) 1109 885 268 310 873 820 209 1156 373 6003 

Peak Load (kW) 1577 2637 1852 501 1688 1863 403 1576 1244 10079 

Solar Production (kWh/day) 13714 16433 2519 1935 8849 29911 2260 0 2789 78410 

Load Factor (-) 0.703 0.336 0.145 0.619 0.517 0.440 0.518 0.734 0.300 0.596 

Renewables Fraction (-) 0.515 0.774 0.392 0.260 0.422 1.520 0.451 0.000 0.311 0.544 

 

The effect of network architecture on negotiations and power trading was 

examined. First, year-long simulations were completed with a fully connected network to 

determine node-to-node compatibility for trading, quantified by the number of 

opportunities each connection had for trading throughout the year. Next, connections were 

ranked by number of compatible time steps. Finally, simulations were run with no 

connections, and additional simulations were run with an increasing amount of connections 

that followed increased compatibility until reaching the fully connected network. Each 

microgrid and the percentage of its yearly time steps spent compatible with each other 

microgrid is shown in Table 4.2. Selected configurations for simulation are shown in Figure 

4.5. All nodes have a grid connection and all connections established between nodes 

contain a point of common coupling, a disconnect switch, and a communication line. To 

simplify network diagrams, a single-line was used to represent these components.  

  Table 4.2: Node Compatibility Percentage Over One Year 
      Node     

  1 2 3 4 5 6 7 8 9 

C
o

n
n

e
ct

io
n

 

1   10.8% 14.6% 15.3% 16.2% 14.5% 12.3% 23.3% 14.0% 
2 10.8%   20.3% 21.8% 21.2% 8.0% 16.2% 29.9% 15.8% 
3 14.6% 20.3%   16.6% 17.4% 20.6% 19.7% 19.3% 21.8% 
4 15.3% 21.8% 16.6%   9.9% 29.7% 10.7% 8.2% 13.1% 
5 16.2% 21.2% 17.4% 9.9%   27.6% 10.2% 10.2% 13.2% 
6 14.5% 8.0% 20.6% 29.7% 27.6%   24.1% 37.8% 23.8% 
7 12.3% 16.2% 19.7% 10.7% 10.2% 24.1%   13.7% 4.9% 
8 23.3% 29.9% 19.3% 8.2% 10.2% 37.8% 13.7%   14.0% 
9 14.0% 15.8% 21.8% 13.1% 13.2% 23.8% 4.9% 14.0%   

           

  Key 0.0% 5.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0% 
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0-Connection Network 1-Connection Network 2-Connection Network 

   
4-Connection Network 8-Connection Network 12-Connection Network 

   
24-Connection Network 36-Connection Network 

(Fully Connected) 

8-Connection Network 

(Ring) 

Figure 4.5: Selected network configurations for case studies. 

 

Figure 4.5 shows that the first connection added to the network was between node 

8 and node 6 because they had the most compatible time steps throughout the year (37.8%), 

and the next connection added was between node 8 and node 2 because they had the next-

most compatible timesteps (29.9%). This process was continued until all 36 connections 

were in place. Additionally, a ring network was simulated since it is a standard circuit 
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configuration in secondary power distribution networks (Naval Facilities Engineering 

Command 1990).  

A time-of-use (TOU) utility rate structure was used for each configuration, as 

described in Table 4.3. The sellback rate is representative of the wholesale price of 

electricity to the grid (United States Energy Information Administration 2018), which is a 

common value to resell power back to the utility when net metering or a higher feed-in 

tariff s not present. This rate structure was kept consistent to previous work (Janko and 

Johnson 2018) to permit direct comparison. A trading fee of $0.01/kWh for each participant 

in a trade was selected for simulation. 

Table 4.3: Grid Rate Structure 

Price Structure Rate ($/kWh) 

Off-peak 0.09 

On-peak (1PM-8PM daily) 0.18 

Sellback Rate 0.03 

 

 Metrics 

Levelized cost of energy (LCOE) for each node and the entire network was used as 

a comparison metric. The annual LCOE was evaluated over all 8760 hours in the year as 

described in Eq. 4.11. The network LCOE was calculated as the average cost of all power 

transactions on the network for the year.  

 𝐿𝐶𝑂𝐸 =
∑ 𝐶𝑛

𝑡=8760
𝑡=1

∑ 𝐿𝑛
𝑡=8760
𝑡=1

 (4.11) 

 

 

 Trading results for each node in each time step were categorized as Utility Only, 

Nodes Only, and Utility and Nodes. If a node purchased or sold power exclusively to the 

utility or other nodes, they were counted as Utility Only or Nodes Only time steps, 

respectively. If a node had to interact with the main grid at the end of a time step after 
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purchasing or selling to other nodes, that was counted as a Utility and Nodes time step. 

Time steps in which the amount of production equaled the amount of load were categorized 

as Self-sufficient, though this was a rare occurrence and not reflected in the results. 

 At the network level, the grid load factor was utilized to determine the effect of 

network trading on the utility. This was calculated as a ratio of the average load supplied 

by the grid over the year (kW) to the peak load of the year (kW). The amount of renewables 

traded to other nodes instead of sold to the grid was also evaluated to understand 

differences in local use of renewable generation across the network configurations 

examined. Relationships between nodes are further described utilizing the reputation 

coefficient. 

 Results 

The 0-Connection network shown in Figure 4.5 was simulated and used as a 

baseline to compare to the other cases where trading was enabled between various nodes. 

An analysis was conducted on each of the networks described in Figure 4.5 with evenly 

weighted familiarity, acceptance, and value coefficients to obtain generalized observations 

about nodal behavior.  

A high-level overview of how excess production was sold over the simulated year 

in each network configuration case is shown in Figure 4.6. Though the 12-Connection 

network had a slightly higher percentage of renewables sold to other nodes than any other 

case, the difference between the non-ring connection cases were within ± 10% of each 

another. This suggests that after the first connection was placed between two highly 

compatible nodes (nodes 6 and 8), increasing connections within the network had little 

effect on how much production remained within the network. This finding is further 
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supported by comparing the Ring and 8-Connection networks. Though they both had 8 

total connections, the Ring network did not contain as many highly compatible node 

parings and ended up with less than half the percentage of renewables sold to nodes when 

compared to the 8-Connection network. 

 
Figure 4.6: Percentage of excess renewables sold to nodes and the utility over the year 

for each network configuration. 

 

 Figure 4.7 displays the grid load factor decreasing as the number of connections 

increased. Network configurations with the lowest grid load factors correlate with 

configurations having a higher number of successful trades between nodes. This is logical 

since more trades completed between nodes means less load must be taken care of by the 

grid in any given time step. This reduces the average load supplied by the grid. 
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Figure 4.7: Grid load factor as connections are added to the network. 

 

A summary of the LCOE for each node and the network is shown in Figure 4.8 for the 1, 

2, 4, 8, 12, 24, and 36 connection cases. All network configurations resulted in a lower 

LCOE for the network compared to the 0-Connection network. Generally, the LCOE 

remained steady for nodes and the network as the number of connections was increased 

from 8 to 36. As nodes were added to the network in decreasing order of compatibility, 

nodes tended to stick with the same trading partner due to their familiarity coefficient being 

higher, and hence, the reputation coefficient was also higher between those nodes. This 

creates network behavior that shows only modest reduction in LCOE as connectivity is 

increased because the same trades were made between the same nodes even as additional 

nodes are added. There is no single configuration maximizing economic benefit for all 

nodes, though the network LCOE was minimized in the 12-Connection network due to this 

being the configuration with the most successful transactions between nodes overall. 

However, the network LCOE of all cases with at least one connection were within ± 4% of 

one another, a negligible difference for the network.  
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Figure 4.8: Node and network LCOE as connections are added to the network. 

 

An interesting behavior can be observed between the 0-, 1-, and 2-Connection 

networks for nodes 6, 2 and 8 as their connections were added. As mentioned previously, 

node 8 is an important player in the network, and when the connection between 6 and 8 

was first introduced the benefits of the relationship were immediately apparent. The LCOE 

for node 8 decreased by 18% and node 6 by 67% when compared to the 0-Connection 

network. When node 2 is introduced in the 2-Connection case, node 8 has an additional 

option for purchasing power and node 6 has a direct competitor though is unaware of it. 

Due to the convexity of the valuation curves, this first interaction between nodes 2, 6, and 

8 resulted in node 6 providing the lowest price. When power trade offers are sent by node 

6 and node 2 at these prices, node 8 selects node 6 and forms a relationship with that node 

that continues for the rest of the simulation. No trades are completed between node 8 and 

node 2 in any other network configuration due to the very strong reputation node 6 holds 

with node 8.  
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Competition has a significant effect on benefit experienced by each node in each 

configuration. This is illustrated by Figure 4.9 that shows a detailed view of the number of 

time steps each node spent in each trading type for a select number of cases. Node 7 was 

able to successfully trade in the 8-Connection network where it was connected to node 6. 

Though node 6 still prioritized trades with node 8, it had sufficient capacity to trade with 

two nodes and thus maintained a relationship with both. This was also true for the 12-

Connection network. However, when node 6 was connected to node 1 in the 24-Connection 

network, it began to choose node 1 over node 7. Node 7 was not able to compete with other 

options available to node 6, and its new connections to nodes 8, 2, and 3 were also 

ineffective. This resulted in node 7 being able to successfully trade in only a handful of 

time steps. Similar situations can be seen for other nodes such as node 4. Node 4 was unable 

to be competitive to trade with node 6 in the 8-Connection network, but was able to be 

competitive with node 2 when they were connected in the 12-Connection network. This 

continued in the 24-Connection network, but when node 2 was connected to node 1 in the 

36-Connection network, node 4 was unable to compete.  

Comparing the transaction types for the 8-Connection network and Ring network 

in Figure 4.9 also shows that although the number of connections were the same the benefit 

achieved by each node was significantly different. This was due to the lack of connection 

to preferred partners with high compatibility for some nodes in the Ring network, 

particularly those that are surrounding node 6 and node 2. This was particularly beneficial 

for nodes 5 and 7 who were able to be competitive when node 6 had less options of trading 

partners than the 8-Connection network case. Node 4 experienced no difference due to its 

location in the network. It had few opportunities to trade with nodes 3 and 5 due to low 
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compatibility, and when it did attempt to trade it was not competitive compared to nodes 2 

and 6 on the opposite sides of nodes 3 and 5. Node 9 experienced some disadvantages in 

the Ring network due to not being connected to node 6 and node 3 as it was in the 8-

Connection network where it traded successfully. 

 
   8-Connection Network    12-Connection Network 

  
   24-Connection Network    36-Connection Network 

  
Ring Network 

 

 
Figure 4.9: Transaction types by percentage of yearly time steps across network 

connectivity cases. 

 

A detailed view of the relationships between nodes in relation to the reputation 
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each other node in the specified network configuration is shown by the length of the line-

dot segments. By referencing Figures 4.4a and 4.4b, it can be seen that reputation 

coefficients below 0.25 have a low likelihood of valuation curves crossing and result in 

unsuccessful price negotiation with no possible trade. There are some situations when a 

node will continue to have a moderate reputation coefficient for another node even if no 

transactions are made. An example of this is node 7 in the 36-Connection network, which 

holds a reputation of 0.43 for node 6 and 0.45 for node 3. Node 6 and Node 3 also had 

relatively favorable reputation coefficients for node 7 at 0.41 and 0.45 respectively. 

However, both node 6 and node 3 had other prospects with higher reputation coefficients 

that made them more competitive. 
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1-Connection Network 2-Connection Network 4-Connection Network 

   

8-Connection Network 12-Connection Network 24-Connection Network 

   

36-Connection Network Ring Network 

   
Figure 4.10: Reputation coefficient for each node pair. 

 

Table 4.4 provides a comparison of revenue loss for the utility from trading for each 

scenario and the required trading fee to recover the full amount. Approximately 22-29% of 

total annual utility revenue was lost from allowing neighboring microgrids to trade. In 

several scenarios the trading fee needed to recover that lost revenue exceeded the difference 

between the grid buy and sell prices making the valuation curves impossible to evaluate. It 

is also important to note that the highest trading fees needed to recover lost revenue 
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correlate with the scenarios with the lowest number of successful trades (Ring connection). 

This is due to the utility needing a larger portion of each trade to recover its revenue when 

there were less trades made. 

Table 4.4: Utility Revenue and Trading Fee Needed to Recover Lost Revenue 

Scenario 
Utility 

Revenue 

Lost Revenue [% 

Relative to 0-

Connection] 

Trading Fee 

Value to Recover 

Lost Revenue 

0-Connection $4,890,130 - - 

1-Connection $3,600,192 $1,289,938 (26.38%) 0.1650 

2-Connection $3,600,175 $1,289,955 (26.38%) 0.1650 

4-Connection $3,600,127 $1,290,003 (26.38%) 0.1650 

8-Connection $3,566,503 $1,323,627 (27.07%) 0.1571 

12-Connection $3,492,385 $1,397,745 (28.58%) 0.1403 

24-Connection $3,520,301 $1,369,829 (28.01%) 0.1470 

36-Connection $3,505,033 $1,385,097 (28.32%) 0.1434 

Ring $3,801,585 $1,088,545 (22.26%) 0.2825 

 

 Conclusion 

This chapter outlined a generalizable and scalable approach to manage energy 

transactions between neighboring nodes of a grid-connected network of microgrids by 

quantifying familiarity, acceptance, and value between nodes. These characteristics were 

integrated through several coefficients that altered the convexity of valuation curves 

observed by each node. Larger coefficients indicated an increased willingness to trade, 

whereas lower coefficients resulted in less willingness and often resulted in unsuccessful 

trades. Considered together in a single formulation, these concepts effectively described 

the reputation between nodes.  

The generic mathematical framework was demonstrated on a network of 9 nodes 

configured with varying levels of connectivity (trading capability). The effects of network 
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connectivity on nodal trading behavior and economic benefit were analyzed through annual 

simulations. Configurations that included node pairs with high compatibility (based on 

number of time steps where they matched to trade) resulted in a larger amount of excess 

renewables sold between nodes when compared to configurations without. Configurations 

with the largest number of successful trades between nodes also resulted in the lowest grid 

load factors due to reduced average load served by the grid. No single network 

configuration resulted in maximizing economic benefit for all nodes, but the lowest 

network-level LCOE was achieved in the configuration with the largest number of 

successful transactions.  

Relationships between nodes were structured based on their compatibility and if the 

network contained connections that created competition between nodes. Since no node had 

knowledge its trading partners’ other connections, each series of negotiations was 

conducted independently without direct influence of competing entities. The lack of global 

knowledge of negotiations resulted in some network configurations where a node had few 

successful trades and the ones that were successful had little value. This resulted in a lower 

reputation coefficient and an inability to compete with other nodes later in the simulation.  

The utility experienced a loss of 22-29% of its revenue when trading was enabled 

depending on the number of connections in the network. If a trading fee was included for 

the energy traded ($/kWh), the fee would need to be $0.14/kWh – $0.28/kWh for the utility 

to recover lost revenue. This almost always exceeds the difference between the grid 

purchase and grid sell rates, and therefore imposing such a fee would making trading too 

expensive. This suggests that recovering the full retail value of each kWh not sold will 

hinder competition and increase network-level LCOE. A utility could instead seek to 
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recover a smaller value than full retail, such as the costs associated to using the distribution 

network for trading. The true cost of trading could become more detailed and accurate if 

considering locational marginal pricing, transmission and distribution losses, or congestion 

charges. It was also found that the utility needed a larger portion of each trade to recover 

its revenue when there were less trades made. This suggests that permitting even more 

trading and competition would decrease the amount of revenue sharing with the utility per 

trade. 

This work built on previous work to include abstract comparison between network 

topologies. Additional work can explore the effect of coefficients weights on agent 

behaviors and network-level outcomes. This may also suggest that coefficient weights be 

adjusted over time to allow nodes to update their strategies to become more competitive 

and adapt as their net load profiles change shape over a year. Research in differing rate 

structures between node types (residential, commercial, industrial) would also be beneficial 

to provide insight into nodal compatibility when the nodes have heterogeneous economic 

goals.  
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CHAPTER 5 

DISCUSSION 

The following provides a comparative discussion of findings from Chapters 2, 3, 

and 4 and suggests opportunities for future research.  

 Scientific Implications for the Research Community 

Chapter 2 examined the implications of high-penetration residential solar 

photovoltaic (PV) systems with case studies for three locations in the United States. Site-

specific and generalizable findings provided insight into how economic and technical 

metrics are affected by environmental forcings, solar PV system size, electric loads, total 

system-wide penetration of homes with solar PV, and utility rate structure. Analyses were 

completed from the perspective of both the utility and the ratepayer, providing a detailed 

picture of how ratepayers may experience financial changes as utilities attempt to alter their 

business models to recoup lost revenue from lower electricity sales. Each home in the study 

contained solar PV, a grid connection, and the option of energy storage. Storage was found 

to be cost-inefficient when net metering was in effect because, under net metering, the grid 

acted as a zero-cost lossless battery. Batteries were only cost effective without net metering 

and with a cost reduction of at least 55%. However, this study only considered a rate 

structure with energy charges and not demand charges. The comparative financials for 

batteries may have improved if demand charges were implemented and batteries could be 

dispatched for peak shaving. 

Chapter 2 uncovered a critical finding that utilities will need more generation 

resources to accommodate higher ramp rate requirements as more residential PV is placed 

on the grid. The highest ramp rates for each location analyzed in the study occurred in the 
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late afternoon as solar insolation decreased and occupancy loads increased, however, the 

maximum annual ramp rate was observed in different months of the year for each city due 

to differences in load and solar profiles. Dispatchable generation and/or storage will need 

to meet capacity and reserve requirements during times of high solar insolation and be 

available to dispatch in the afternoon as solar PV declines and load increases. Ramp rate 

requirements increased as solar PV penetration increased, which in turn would require 

utilities to have more dispatchable reserves providing spinning and non-spinning reserve. 

Some of that reserve will be provided by generation units operating at partial load, which 

means at lower efficiency and higher emissions factors. This assumes residential solar PV 

is uncontrolled and utilities are forced to take-on all generation. Advanced controls and 

coordination of distributed energy resources (DERs) can help mitigate this system-wide 

problem by allowing local resources to support nearby loads.  

The case study and analyses of Chapter 2 consisted of only residential loads. In 

most distribution systems, other load groups such as commercial, industrial, or public 

works also contribute to the aggregate peak load of the network. Coordination of power 

use and sharing between these entities can provide a more consistent system-wide net load 

profile throughout the day. For instance, a system with residential, commercial, and 

industrial loads may have a more consistent total load over the day and thus a higher load 

factor. Commercial and industrial buildings often have lower loads at the same time 

residences are experiencing high occupancy loads because occupants are leaving from 

work to return home. There is an opportunity to reduce peak net load, ramp rate 

requirements, and strain on the grid for the utility if residential, commercial, and industrial 

buildings all have local generation, storage, or controllable loads available. Strategies are 
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needed for managing these resources throughout the day, especially during times of 

occupancy transition from one area to another that result in high ramp rates. 

Coordination of DERs can be accomplished using several methodologies. 

Centralized strategies are common and simple to implement, but as the number of assets 

increase the associated increase in computation power and time needed to reach a solution 

may be prohibitive if handled completely by the central controller. Decentralized strategies 

are thus becoming increasingly common and are easily scalable, but they do require 

investment into complex hardware installation at each DER asset site. Some of these 

manageability and scalability challenges can be solved by enable a group of DER assets 

(e.g., a home, neighborhood, commercial building, or group of buildings with local 

generation and/or storage) to act as independently controllable entities or microgrids. These 

microgrids can then be connected into a distribution-level transactive energy network with 

the ability to share power based on their net load requirements. If self-organization 

strategies are applied to this framework, microgrids can self-manage local requirements as 

well as coordinate with one another. Self-organization keeps computation requirements 

minimal with simple rule sets, automates control decisions, and allows plug-and-play 

connection of additional microgrids for improved scalability. 

Chapter 3 described a generalizable method for managing a self-organizing, 

transactive energy network of microgrids with metrics assessed at the node-level and 

network-level. Each microgrid was represented by a single agent that participated in an 

energy marketplace and negotiated with neighboring agents to reach an acceptable energy 

price for selling power from producers to consumers. Microgrids could be either producers 

or consumers based on their net load at a time step, allowing a microgrid to be a consumer 
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or a producer depending on their own unique load profile at that time of day and year. 

Energy valuation was quantified by exponential functions unique to each producer and 

consumer pair and represented willingness to negotiate. Scalability of the method was 

demonstrated with a 3-node network and a 9-node network using data from real buildings. 

Results showed that trading between microgrids reduced the levelized cost of energy 

(LCOE) for all parties with respect to a baseline grid-only case that didn’t permit trading. 

Trading patterns emerged between certain agents that allowed some microgrids to operate 

at a lower cost than others. These patterns suggest that the combination of local loads and 

DERs in a microgrid have a certain level of compatibility with other microgrids that is 

exhibited by their frequency of trading, and upon closer inspection, can be inferred through 

characteristics such as renewables fraction, load factor, and amount of on-site battery 

storage. Increasing the amount of storage in each microgrid made trading less effective at 

lowering energy cost because the microgrids became more energy independent and traded 

less when batteries were included.  

Chapter 3 identified that certain agent pairs can create a lower node-level and 

network-level cost of energy, suggesting that the connectivity between nodes is important 

to overall network-level dynamics. Work in Chapter 3 used only ring network 

configurations, and produced a limited set of possible trading behaviors between agents 

because each agent was only connected to two adjacent neighbors. Chapter 4 expanded on 

this concept to permit additional network configurations, and allowed nodes to negotiate 

with more than their physically adjacent neighboring nodes. A competitive marketplace 

was developed to manage negotiations between n-many nodes in Chapter 4 to advance the 
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simpler trading formulation in Chapter 3. Additional methods and metrics were needed to 

improve understanding of compatibility and relationship formation between microgrids.  

Chapter 4 introduced concepts that describe the familiarity, acceptance, and value 

of relationships between agents to generate a quantitative representation of the “reputation” 

of one node to another node using data on the history of their interactions. The familiarity 

coefficient considered direct compatibility between nodes based on net load, the 

acceptance coefficient considered what percentage of all past interactions with an agent 

resulted in a successful trade, and the value coefficient represented how the node valued 

the results of agreed upon prices with an agent compared to grid prices. The reputation 

coefficient, ranging from 0 to 1, was integrated into the valuation equations from Chapter 

3 to adjust an agent’s strategy of negotiating with other microgrids. The reputation each 

node held with its trading partners affected whether they would reach an agreed-upon price 

and at what value. The resulting value directly affected whether the trade would be 

completed, since the microgrids were rational agents that tried to sell or purchase their 

power in order of which agents would maximize their revenue. A trading fee was included 

to account for the grid access or interconnection fee associated with trading between 

microgrids. Including this extra fee resulted in agents being less lenient in negotiations, 

since they needed to have cost savings equal to at least the amount of the fee compared to 

grid prices for a trade to be beneficial. The same agent-based framework, 9-node network, 

and rate structure as Chapter 3 were used with the exception of the trading fee. 

Chapter 4 presented results showing the effects of network configuration and 

connectivity on trading. No single network configuration resulted in maximum economic 

benefit for all nodes, but the configuration with the lowest network LCOE was also the 
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configuration with the largest number of successful transactions. As suggested by trading 

patterns identified in Chapter 3, connections between nodes of high compatibility had a 

significant effect on the amount of successful trades in the network and enabled certain 

nodes to operate at a lower cost. Increasing network connectivity had decreased marginal 

benefit for the entire network, though did result in LCOE reduction for certain nodes. A 

node's ability to operate at a lower cost was dependent on the number of connections its 

trading partners had and the competitiveness of its prices. Each node had knowledge only 

of its own connections, and therefore did not know how competitive its prices were. This 

resulted in certain network configurations in which the node had few successful 

transactions due to inability to adjust its strategy. Relationships were formed based on each 

node’s ability to be competitive in past interactions and were indicated by the node’s 

reputation coefficient value.  

Energy storage was not included in Chapter 4 simulations. When compared to 

results with no energy storage from Chapter 3 for the same network configuration, the 

addition of the reputation coefficient in Chapter 4 resulted in decreased LCOE for some 

nodes and increased LCOE for others. This was due to changes in convexity of the 

valuation curves between nodes, which resulted in agreements at higher or lower prices 

depending on reputation coefficient values. Modification of reputation coefficient weights 

based on the network configuration may be able to improve the economic benefit for each 

node more evenly and distribute benefit across the entire network. Additionally, including 

different rate structures for various node types (residential, commercial, and industrial) 

may incentivize trading at certain times of day and result in more successful trades between 



  162 

nodes that were not highly competitive in the cases studied where all nodes had the same 

rate structure. 

 Policy and Regulation of Transactive Energy 

The control techniques introduced in Chapters 3 and 4 focused on distribution 

networks. The trading between microgrids would not affect voltages above the substation 

level and nodes were limited to trading with other microgrids only within their same 

substation control area. Thus, any revenue recouped by the utility through trading fees 

would likely be allocated to the distribution service category for infrastructure operations 

and maintenance and administrative costs. Distribution service costs comprise 

approximately one-third of the average electricity price in the United States (about 

$0.0285/kWh for the year 2018) and are expected to increase by 24% by 2050 as 

infrastructure is upgraded and renewables are integrated (United States Energy Information 

Administration 2019). The trading fee included in Chapter 4 simulations was equal to a 

$0.01/kWh for each participant in a trade while still resulting in financial benefit for nodes. 

This could be increased to ensure the utility recovered the cost of distribution service. 

Energy policy and business models must change to permit full implementation of 

transactive energy markets and peer-to-peer trading. Regulated energy markets have a rigid 

service territory where independent power producers are not permitted to sell and trade 

power with each other. Since real-time pricing is a key operational parameter for 

transactive energy, transactive energy and energy trading fits better into deregulated energy 

markets with competitive retail markets in place. Within these competitive marketplaces, 

methods must be in place to allow prices to vary at each customer connection point. One 

suggested method involves the use of locational marginal pricing (Ghamkhari 2019; Orsini 
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et al. 2019). Presently used for transmission systems, locational marginal pricing 

determines the marginal cost of supplying power to a specific point on the grid system. A 

transactive energy market could transmit these cost signals at the distribution level so that 

each consumer uses the marginal value of electricity at their connection point to make 

purchasing choices in real-time (Orsini et al. 2019). This would allow consumption to be 

naturally encouraged and discouraged based on pricing signals. Building onto the concept 

of facilitate trading between distribution-level nodes as described in Chapters 3 and 4, these 

marginal values could be used as the upper bounds of the valuation curves to ensure trading 

is competitive with grid pricing.  

One intermediate step that can be taken towards implementing transactive energy 

markets involves testing strategies in regulatory sandboxes. This would enable 

demonstration of transactive energy technologies at manageable scales without affecting 

larger systems. Another intermediate step that can be taken towards implementation of 

these techniques involves developing technology to enable participation in distribution-

level markets for consumers and owners of DERs and microgrids. This is already being 

accomplished via development of software platforms but has not reached wide-spread 

adoption.  

 Turning Research into Physical Deployment 

A number of commercial products exist for centralized and decentralized microgrid 

asset coordination. General Electric (GE) offers a line of centralized microgrid control 

platforms with simple controllers at each asset for taking measurements and sending 

statuses to the central controller (GE 2019). GE identifies a variety of microgrid 

applications and case studies including military, campuses, industrial, smart city, islands, 
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and utility-scale systems. Contrasting with GE’s product line, ABB’s MGC600 renewable 

microgrid controller takes a decentralized approach with a specific controller for each type 

of asset that controls, monitors, and interfaces with that asset (ABB 2013). ABB provides 

controllers for diesel/gas generators, distribution feeders, solar PV, hydro generators, 

energy storage systems, wind turbines, single/multiple loads, and network connection. 

These assets communicate with a local area network and can be added easily to the 

network. Each asset controller has various functions for supervision of the asset including 

automatic reconnection, setpoint controls based on incoming information, and spinning 

reserve management. There are also several existing projects that demonstrate transactive 

energy and peer-to-peer energy trading in physical setups (Kok and Widergren 2016; 

Zhang et al. 2017) as detailed in Chapter 1. However, these projects require a centralized 

system for handling market balancing, which can be difficult to implement and scale. 

A completely decentralized control technique with microgrid nodes acting and 

coordinating as independent entities in a network has not been demonstrated with physical 

power system assets. For these scalable distribution-level microgrid networks to be 

feasible, microgrids must have a way to seamlessly integrate with one another and the 

existing main distribution grid. Plug-and-play primary and secondary controls can be used 

to automatically synchronize or desynchronize the microgrid with surrounding 

infrastructure, but physical constraints related to grid interconnection and coordination of 

each hierarchical control level must be considered. 

 Interconnection and Connectivity  

 IEEE Standard 1547-2018 (IEEE 2018a) provides guidelines for interconnecting 

and interfacing DERs with electric power systems through the point of common coupling. 
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According to this standard, all connected assets must meet requirements for voltage and 

frequency (based on the voltage level at the point of common coupling) and measurement 

accuracy for various parameters including active and reactive power. They must also have 

the control capability to reach cease-to-energize state in 2 seconds or less, limit active 

power, and execute mode or parameter changes with transitions in 30 seconds or less. 

Various requirements are also included for intentional and unintentional islanding, power 

quality, and response to abnormal conditions in the area around the electric power system. 

This standard states that performance requirements can be applied to multiple DER units 

within a single electric power system based on the aggregate rating of all DER units, and 

thus has applicability to microgrids and internal asset management.  

Recently, the 2030.7-2017 IEEE Standard for the Specification of Microgrid 

Controllers was created (IEEE 2018b) to describe control functions for a microgrid to 

seamlessly connect to and disconnect from the main distribution grid for exchanging power 

and supplying ancillary services. Standard 2030.7-2017 states that interconnection 

agreements between the grid-system operator and the microgrid owner/operator should be 

established to describe energy consumption/production of the microgrid and the power 

quality requirements to be met before connection. Internal determination of system state 

and dispatch of assets within the microgrid are executed according to a set of rules, with 

emergency dispatch orders outlined in the event of unplanned islanding. Similar 

interconnection agreements could be possible for interconnection between multiple 

microgrids and, if completed, would provide the framework for internal control actions to 

safely handle both planned and unplanned connections and disconnections. The microgrid 
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must meet the negotiated power amount and quality prior to closing the switch to enable 

power flow between the microgrids. 

 Coordinating Control and Communication Strategies 

Coordination and negotiation of power trading between microgrids and external 

entities is an advanced form of tertiary control that can be paired with lower-level 

secondary and primary control for executing trading decisions. Figure 5.1 is a modified 

version of a figure in IEEE 2030.7-2017, and is adapted here to illustrate how the proposed 

tertiary coordinating control functions in this dissertation could be paired with conventional 

secondary control. Secondary control actions such as supply-demand balance, state 

determination, and dispatch order formation operate in time steps of 5-30 min with 

information input from lower-level, primary functions (asset controls, instrumentation), 

higher-level, tertiary functions (optimization, forecasting, operator interface), and external 

interconnection functions (interchange, transactive energy markets). Primary internal 

controls at the asset-level such as load frequency control operate in time steps of 30 sec-5 

min, while tertiary functions such as dispatch optimization, forecasting, and asset 

scheduling operate in time steps of 30-60 min.  
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Figure 5.1: Connection of proposed tertiary control to primary and secondary control 

functions (adapted from IEEE 2018b). 

 

The proposed self-organizing control with external coordination to other 

microgrids operates on a similar timescale as other tertiary control functions. When 

connecting a new microgrid to the network, the microgrid must wait until the start of the 

next time period to ensure proper synchronization. This allows the network to complete all 

committed trades prior to engaging with the new microgrid. At the primary and secondary 

control level, the microgrid must prepare to sync with the microgrid network by ensuring 

that the voltage requirements are met at each point of common coupling as specified by 

IEEE 1547-2018 (IEEE 2018a). The microgrid must also ensure all nodes that will be 

directly connected to it are notified of the incoming connection. After being properly 

synched, each microgrid connected to the new node updates its functions to include the 

extra node and can engage in negotiation and power trading. This synchronization requires 
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the network operate on a common communication protocol or a data translator between 

assets using different protocols. Communication, monitoring, and control guidelines such 

as those defined by IEEE 2030.5-2018 (IEEE 2018d), IEEE 1815 (IEEE 2016), and IEC 

61850 (IEC 2009; IEC 2015; IEC 2018) can be utilized to ensure standardized mechanisms 

are in place for messaging, interfacing with SCADA systems, and exchanging data with 

web protocols.  

Proper testing of the new microgrid according to IEEE 2030.8 standards (IEEE 

2018c) prior to commercialization and commissioning would verify the microgrid 

controller meets expected performance metrics of other microgrids.  

 Future Work 

The studies in Chapters 2, 3, and 4 provided foundational scientific thought to the 

field of transactive energy and demonstrated areas for applied research leading to physical 

implementation. Results primarily focused on economic metrics to demonstrate the 

financial potential of microgrid networks that permit trading, utilize agents to manage 

trading, and implement a self-organizing framework that allows agents to dynamically 

reconfigure and exhibit different behaviors to optimize trading schemes. Physical 

constraints from power engineering were not included and left as future work, with 

examples including capacity constraints in distribution infrastructure, additional physical 

limitations of assets, and power flow modeling to determine feasibility in physical 

applications.  

Additional studies considering alternative rate agreements such as demand charges 

or tiered rate structures would expand understanding of system behavior under different 

regulatory strategies. Similarly, experimenting with different rate structures for each 
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microgrid customer and scale (residential, commercial, industrial) would help evaluate if 

microgrid capacity and ratepayer type affects trading and cost reduction. Residential rate 

structures tend to be either tiered or time-of-use, whereas commercial and industrial rate 

structures tend to include demand charges. Incorporating demand charges in the proposed 

methodology will require modification of the valuation curve boundaries and result in 

different trading behavior. For instance, seasonal effects on trading might become more 

apparent due to higher electrical loads for HVAC. Buying down the peak demand seen by 

the utility would result in a larger cost savings over the course of the month for entities 

with demand charges, making those entities more willing to accept a higher price for 

trading. 

Other areas for consideration are the amount and frequency of information shared 

between nodes. The cases studied in Chapters 3 and 4 only required sharing the net load 

with neighboring nodes, but inclusion of other parameters such as forecasted renewables 

capacity and various durations of asset scheduling plans may result in better coordination 

given that more information is known between nodes. In addition, the order in which nodes 

receive that information can affect their strategy and how they interact with them. 

However, information privacy and security can be a concern for transactive energy 

markets. Evaluation of performance of these algorithms with varying amounts of 

information shared would provide valuable insight into what is the least amount of 

information that can be shared to still obtain desired economic and technical benefits. 

Examples of how this might be evaluated are shown in Table 5.1 with additional 

comparisons between centralized and decentralized architectures. 
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Table 5.1: Proposed Approaches of Information Sharing Between Nodes 
Approach Description Diagram Variant Inputs/Outputs 

1 Centralized 

economic 

dispatch 

 

Information is 

shared directly 

with central 

entity, no inter-

microgrid 

communication. 

 

Comparison case 

with no requests 

and offering 

strategy. 

 
 

 

a 

Input: Optimal 

trade operations 

(from central 

command unit) 

Output: System 

state (to central 

command unit) 

2 Decentralized 

architecture 

 

Information 

related to local 

unit dispatch is 

shared between 

neighboring 

microgrids at the 

beginning of 

each time step to 

initiate trading. 

 

Requests are 

made based on 

knowledge of 

neighbor states. 

 
 

 

a 

Input: Max/min 

power levels 

Output: Power 

requests 

b 

Input: Unit 

dispatch lookup 

table 

Output: Power 

requests 

3 
Decentralized 

architecture 

 

Information 

related to 

requests for 

power 

sources/sinks 

initiates trading 

between 

microgrids. 

 

Requests are 

made without 

knowledge of 

neighbor states. 

 
 

 

a 

Input: Single 

point power 

request 

Output: Power 

price 

probabilities 

b 

Input: Multiple 

point power 

request 

Output: Power 

price 

probabilities  
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Approach #1 uses traditional centralized economic dispatch as a baseline 

comparison case. In this technique, information is shared directly (and privately) with a 

central control entity through a Supervisory Control and Data Acquisition (SCADA) 

system. Optimal trading operations between nodes are calculated inside the centralized 

control entity and sent back out to subsidiary microgrids and other assets. Dedicated 

fiberoptic lines or secure wireless communications (e.g., radio, satellite) transfer 

information between nodes and the centralized controller. This approach limits threat 

vectors from hackers by reducing the functionality of distributed assets, however, the 

centralized server contains all information and controls placing a single point of failure in 

the network if attacked. 

Approaches #2 and #3 implement a decentralized architecture in which each 

microgrid node has an independent agent that advocates for the microgrid in the energy 

trading marketplace. This creates a scalable network that can easily connect new 

microgrids on the fly. In Approach #2, information on local unit dispatch is shared with 

neighboring microgrids which then respond with an offer to buy or sell power. Thus, these 

offers are made with knowledge of neighboring microgrid states. Two variants of Approach 

#2 could be analyzed. Variant #2a shares less information (maximum and minimum net 

power levels only) and Variant #2b shares more information (a complete schedule of unit 

dispatch options in the microgrid). Comparison between these two variants could assess 

the extent to which information completeness affects optimum trading strategies. In 

Approach #3, microgrids first send requests for power generation or purchase and then 

neighboring microgrids respond with the probability of being able to provide power at the 

requested time and what it will cost. Requests from each microgrid are based on the internal 
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needs of the microgrid only and not on neighboring microgrid states, which is a departure 

from Approach #2 in which power requests were completed after knowing the status of 

neighboring microgrid states. Two variants of Approach #3 are introduced to explore how 

the number of power requests allowed for each microgrid may affect trading strategies. 

Variant #3a sends a single point power request (next time step) while Variant #3b allows 

for multiple point power requests (multiple time steps into the future). 

 Concluding Remarks 

Self-organizing strategies that enable plug-and-play capability between microgrids 

in a transactive energy network have numerous applications for islands, campuses, military 

bases, rural electrification, and residential communities with a common distribution 

network. As the number of DERs and microgrid systems installed globally continues to 

grow, solutions that consider energy as a system containing many technical, economic, and 

political/regulatory components are necessary to facilitate the transition from centralized 

grid infrastructure to a modern, bidirectional, and decentralized energy network. As these 

systems grow in complexity, it is increasingly important to consider how coordination and 

automation of energy assets be accomplished to ensure reliable energy and efficient use of 

renewable resources. Continued expansion and attention to this research space is critical 

for successful integration of DERs and microgrids that enable a future with more 

renewable, resilient, reliable, and cost-effective electricity.  
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Level 

Asset 
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12 Reduce grid 
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Yes Med  Electrical 3 
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Agent-based 
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multi-criteria 
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algorithm 

No N/A Centralized Arbitrary Not 

specif

ied 

No Low/ 
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emissions 
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Yes Centralized Centralized Arbitrary Not 
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ied 

Yes Low  Electrical 4 

18 Cost reduction Two-level 

hierarchical 

optimization, 

MILP 

Yes Centralized Centralized Modified or 

Exact Existing 

Systems 

Hour Yes Low  Electrical 5 

19 Reduced power 

losses 

Coalitional game 

theory, 

cooperative 

games, logical 

control 

No N/A Centralized/ 

Decentralized 

Synthetically 

Generated 

(Random) 

Not 

specif

ied 

Yes Low/ 

med  

Electrical 30 
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control, 

hierarchical 

control, naïve 
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control, ADMM 

Yes Centralized Decentralized Arbitrary ≤ 1 
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Coalitional game 

theory, 

cooperative 
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Exact IEEE Test 
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or Exact 

Benchmarking 

Test Cases 

(Other)  

Hour Yes Med  Electrical 6 
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Network 

Architecture 

Time 

Scale 

Grid Voltage 

Level 

Asset 

Types 

Max 
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22 Cost reduction, 

reduce power 

losses 

Coalitional game 

theory, 

cooperative 
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Exact IEEE 

Test Cases , 

Modified or 

Exact 

Benchmarking 

Test Cases 

(Other)  

Hour Yes Med  Electrical 6 

23 Cost reduction Distributed 

convex 

optimization, 

subgradient-based 

cost minimization 

algorithm 

No N/A Decentralized Abstract 

(Graph theory-

based)  

Not 

specif

ied 

No Low/ 

med  

Electrical 4 

24 Energy balance Aggregator, game 

theory, 

competitive 

games, logical 

control 

Yes Centralized Decentralized Not specified 15 

min 

Yes Low/ 

med  

Electrical 6 

25 Cost reduction, 

privacy 

preservation 

Distributed 

optimization, 

OPF, naïve 

auction algorithm 

Yes Centralized Decentralized Arbitrary Hour Yes Low/ 

med  

Electrical 2 

26 Cost reduction, 

stability, reliability 

Distributed model 

predictive control, 

stochastic model 

Yes Centralized Decentralized Not specified Hour Yes Low/ 

med  

Electrical 10 

 
23 Gregoratti, D., & Matamoros, J. (2015). Distributed Energy Trading: The Multiple-Microgrid Case. IEEE Transactions on Industrial Electronics, 62(4), 2551–2559.  
24 Jadhav, A. M., Patne, N. R., & Guerrero, J. M. (2019). A Novel Approach to Neighborhood Fair Energy Trading in a Distribution Network of Multiple Microgrid Clusters. IEEE Transactions on Industrial Electronics, 

66(2), 1520–1531.  
25 Kim, B., Bae, S., & Kim, H. (2017). Optimal energy scheduling and transaction mechanism for multiple microgrids. Energies, 10(4), 1–17 
26 Kou, P., Liang, D., & Gao, L. (2017). Distributed EMPC of multiple microgrids for coordinated stochastic energy management. Applied Energy, 185, 939–952. 

 

  



  

204 

APPENDIX B 

CO-AUTHOR APPROVAL OF USE 

  



  

205 

 

 

 

 

 

 

 

 

 

 

 

 


