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Abstract

Driven by environmental and energy security concerns, a large number of small-scale dis-

tributed energy resources (DERs) are increasingly being connected to the distribution

network. This helps to support a cost-effective transition to a lower-carbon energy system,

however, brings coordination challenges caused by variability and uncertainty of renewable

energy resources (RES). In this setting, local flexible demand (FD) and energy storage (ES)

technologies have attracted great interests due to their potential flexibility in mitigating

the generation and demand variability and improving the cost efficiency of low-carbon elec-

tricity systems. The combined effect of deregulation and digitalization inspired new ways

of exchanging electricity and providing management/services on the paradigm of peer-to-

peer (P2P) and transparent transactions. P2P energy trading enables direct energy trading

between prosumers, which incentivizes active participation of prosumer in the trading of

electricity in the distribution network, in the meantime, the efficient usage of FD and ES

owned by the prosumers also facilitates better local power and energy balance.

Though the promising P2P energy trading brings numerous advancements, the ex-

isting P2P mechanisms either fail to coordinate energy in a fully distributed way or are

unable to adequately incentivize prosumers to participate, preventing prosumers from ac-

cessing the highest achievable monetary benefits and/or suffering severely from the curse

of dimensionality. Therefore, this thesis aims at proposing three P2P energy trading en-

abling mechanisms in the aspect of fully distributed efficient balanced energy coordination
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through consensus-based algorithm and two incentivizing pricing and benefit distribution

mechanisms through cooperative game theory.

Distributed, consensus-based algorithms have emerged as a promising approach for

the coordination of DER due to their communication, computation, privacy and reliability

advantages over centralized approaches. However, state-of-the-art consensus-based algo-

rithms address the DER coordination problem in independent time periods and therefore

are inherently unable to capture the time-coupling operating characteristics of FD and

ES resources. This thesis demonstrates that state-of-the-art algorithms fail to converge

when these time-coupling characteristics are considered. In order to address this funda-

mental limitation, a novel consensus-based algorithm is proposed which includes additional

consensus variables. These variables express relative maximum power limits imposed on

the FD and ES resources which effectively mitigate the concentration of the FD and ES

responses at the same time periods and steer the consensual outcome to a feasible and op-

timal solution. The convergence and optimality of the proposed algorithm are theoretically

proven while case studies numerically demonstrate its convergence, optimality, robustness

to initialization and information loss, and plug-and-play adaptability.

Moreover, this thesis proposes two computationally efficient pricing and benefit

distribution mechanisms to construct a stable grand coalition of prosumers participating

in P2P trading, founded on cooperative game-theoretic principles. The first one involves

a benefit distribution scheme inspired by the core tâtonnement process while the second

involves a novel pricing mechanism based on the solution of single linear programming. The

performance of the proposed mechanisms is validated against state-of-the-art mechanisms

through numerous case studies using real-world data. The results demonstrate that the

proposed mechanisms exhibit superior computational performance than the nucleolus and

are superior to the rest of the examined mechanisms in incentivizing prosumers to remain

in the grand coalition.
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Nomenclature for Chapter 2 and Chapter 3

A. Indices and Sets

t ∈ T Index and set of time periods.

r ∈ R Index and set of iterations.

i, h ∈ I Index and set of distributed energy resources (DER).

h ∈ Ii Index and set of i’s neighboring DER.
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TFD
l ⊆ T Flexibility interval of FD l.

Ii Set of neighbors of DER i.

B. Parameters

τ Temporal resolution.
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lj Linear operating cost coefficient of DG j (£/kW).

qj Quadratic operating cost coefficient of DG j (£/kW2).

gj Maximum output limit of DG j (kW).
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C. Variables

grj,t Output of DG j at period t and iteration r (kW).

drl,t Demand of FD l at period t and iteration r (kW).

scrn,t Charging power of ES n at period t and iteration r (kW).

sdrn,t Discharging power of ES n at period t and iteration r (kW).

Er
n,t Energy level in ES n at period t and iteration r (kWh).

λr
i Vector of prices λri,t estimated by DER i at period t and iteration r

(£/kWh).
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eri Vector of power mismatches eri,t estimated by DER i at period t and iter-

ation r (kW).

αr
i Vector of relative FD power restrictions αr

i,t estimated by DER i at period

t and iteration r.

βr
i Vector of relative ES power restrictions βri,t estimated by DER i at period

t and iteration r.

λ̃r
h Vector of DER h’s power prices λ̃rh,t set by DER i with information loss

at period t and iteration r (£/kWh).

ẽrh Vector of DER h’s power mismatches ẽrh,t set by DER i with information

loss at period t and iteration r (kW).

α̃r
h Vector of DER h’s FD power restrictions α̃r

h,t set by DER i with informa-

tion loss at period t and iteration r.

β̃r
h Vector of DER h’s ES power restrictions β̃rh,t set by DER i at period t and

iteration r.

Nomenclature for Chapter 4 and Chapter 5

A. Indices and Sets

n ∈ N ,S Index and set of prosumers.

N c ⊂ N Subset of consumers.

N p ⊂ N Subset of producers.

t ∈ T Index and set of time periods.

k ∈ K Index and set of iterations.

B. Parameters

τ Temporal resolution.

λbt Energy import prices at period t (pence/kWh).
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λst Energy export prices at period t (pence/kWh).

gn,t Photovoltaic (PV) generation of prosumer n at period t (kW).

dn,t Inflexible demand of prosumer n at period t (kW).

sn Maximum charging and discharging limit of ES of prosumer n (kW).

En,0 Initial energy level of ES of prosumer n (kWh).

En Minimum energy limits of ES of prosumer n (kWh).

En Maximum energy limits of ES of prosumer n (kWh).

ηcn Charging efficiencies of ES of prosumer n.

ηdn Discharging efficiencies of ES of prosumer n.

C. Variables

scn,t Charging power of ES of prosumer n at period t (kW).

sdn,t Discharging power of ES of prosumer n at period t (kW).

En,t Energy level in ES of prosumer n at period t (kWh).

ln,t Net demand/generation of prosumer n at period t (kW).

λL,bt Local energy buy prices (pence/kWh).

λL,st Local energy buy prices (pence/kWh).
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Abbreviations

ADMM: Alternating Direction of Multipliers Method

BS: Bill Sharing

C-ADMM: Consensus-based ADMM

CCC: Committee on Climate Change

C+I: Consensus + Innovation

CT: Core Tâtonnment Algorithm

DER: Distributed Energy Resources

DG: Dispatchable Generator

DSR: Demand-Side Response

EB: Equal-split Benefit-sharing

EC: Equal-split Cost-sharing

EDP: Economic Dispatch Problem

ES: Energy Storage

EU: European Union

EV: Electric Vehicles

FBC: Flooding-Based Consensus

FD: Flexible Demand

FIT: Teed-in-Tariff

GB: Great Britain

GHG: Greenhouse Gases

GW: Gigawatt
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IG: Inflexible Generator

ID: Inflexible Demand

KKT Karush-Kuhn-Tucker

LP: Linear Programming

MMR: Mid-Market Rate

NB: Nash Bargining solution

P2P: Peer-to-Peer

PC: Proportional-split Cost-sharing

PV: Photovoltaic

RAM: Random-Access Memory

RES: Renewable Energy Sources

SG: Smart Grid

SP: Single-LP Pricing Algorithm (SP)

SV: Shapley Value

TOU: Time-of-Use

TSO: Transmission System Operator’s

UK: United Kingdom

V2G: Vehicle-to-Grid
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Chapter 1

Introduction

1.1 Context

Electricity systems worldwide are currently facing fundamental challenges, driven by the

combined effects of four "D"s, namely Decarbonization, Decentralization, Deregulation

and Digitalization. These phenomena appears disruptively and affects electrical power

systems strongly with different management, energy resources-mix, coordinating methods

and market models.

Figure 1.1 and Figure 1.2 illustrates the restructuring of electricity system and

markets under the combined effect of four "D"s. In the following sub-sections, the changes

and challenges associated with each of the four effects will be discussed. Then, the main

focus of the thesis, which is to introduce three energy coordination and pricing methods

to adapt the evolving energy markets and to enable the energy system change, will be

discussed.

1.1.1 Decarbonization of Energy System

In recent years, the continuously rising levels of greenhouse gases (GHG) emissions in the

atmosphere and the associated issues on environmental and climate change are drawing

increasing worldwide attentions. This trend poses detrimental threat to human health
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Figure 1.1: Traditional Power system [1]

Figure 1.2: Future Power system [1]

and well-being, and may lead major disruptions to the global economy [2]. In response to

that, significant initiatives have been taken by governments around the world to reduce

the GHG emissions in the coming decades. The European Union (EU) has set the 2020
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climate & energy package and 2030 climate & energy framework with the primary targets

of 20% and 40% cut in GHG emissions (from 1990 levels), respectively [3, 4].

Globally, energy systems are responsible for two-thirds of the total GHG emissions.

Thus, to support the ongoing and future climate targets, decarbonization of both gener-

ation and demand sides of energy systems appears as a continuous and persistent trend

throughout the world, mainly involving the large-scale integration of renewable energy

sources (RES) and the electrification of the heating and transport sectors. The Committee

on Climate Change (CCC) noted that the majority of emissions cuts so far have come

from a rapidly decarbonizing power sector, which saw emissions fall 65% from 2009 to

2019 [5]. In its advice to the UK Government on the sixth carbon budget, the CCC has

recommended to reach a fully decarbonizing electricity generation by 2035 [5].

Following the carbon budgets, the power sector worldwide is adapting by shifting

both electricity generation and demand towards a less carbon-intensive mix. Decarboniza-

tion of electricity generation will require significant and continued development in low-

carbon energy resources, among which, variable novel integrated RES such as solar, wind,

tide, wave, and geothermal heat, have played a vital role since they can provide low-carbon

electric energy at zero marginal costs [5]. The European Commission has taken on a legally

binding targets of 20% share of renewable energy in the EU member countries’ total energy

consumption by 2020 and a further target raising to 32% by 2030 [3, 4]. The UK govern-

ment has set a target to produce 30% of electricity from RES by 2020 and an increment

of this target is suggested in order to achieve the recent sixth carbon budget [6]. On the

demand side, the net zero emission target has accelerated the electrification of the heating

and transport sector, which mainly involves the large-scale integration of electric vehicles

and hybrid heat pumps. In its accelerated electrification and the GB electricity system

report to CCC [7], a target of up to 9 million electric and plug-in hybrid cars and vans by

2025, rising to 37 million by 2035; and up to 2 million heat pumps by 2025, rising to 15

million by 20351 has been suggested by Imperial College London.

Accordingly, a series of strategic plans are legislated by different countries in or-

der to adapt their economies and energy systems for renewable energy technologies. Over
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the past years, various financial mechanisms, including feed-in-tariff (FIT) or tendering

arrangements, renewable energy credits, net-metering programs and renewable tax exemp-

tions/reduction [8–16] are established to encourage RES integration.

1.1.2 Decentralization of Energy Systems

The numerous polices issued by world-wide counties to encourage decarbonization com-

bined with the rapid development of renewable energy technologies lead to the large-scale

penetration of RES into the distribution network. However, the high-level integration of

RES to the grid may also lead to concerns regarding stable and reliable operation of the

system.

On one hand, the flexibility for the continuous balance of demand and generation

is usually given by conventional large-scale fossil-fueled generating units. As fossil-fueled

generators becomes less favorable, the ability of the system to provide flexible responses

is greatly reduced, making it more dependent on variable energy resources for meeting

capacity needs. On the other hand, the majority of RES, especially wind and solar gen-

eration which constitute the dominant renewable energy technologies in the UK [17] - are

weather/climate dependent. Therefore, they are inherently characterized by high variabil-

ity and limited predictability and controllability. Specifically, the output of wind farms

varies according to wind pattern, wind speed, air density and so on [18–20], while that of

solar plants depends on solar irradiance [21,22]. These weather patterns can change quickly

within hours, and in the extreme cases of low wind or no sunshine the power output can be

zero [21,23,24], which challenges the cost-efficient balancing of energy demand and supply.

As a result, the future energy system will demand new resources and technologies

to the provision of system balancing and security services.

1.1.3 Flexibility in the Distribution Network

Following the decarbonization target, an increment in renewable generation installation

can be seen in order to replace the conventional fossil-fueled generation. The intermittent,

variable and non-dispatchable characteristics of RES together with the diminishing output
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and shorter operating hours of conventional large-scale fossil-fueled generators lead to the

reduced efficiency of system balancing. Therefore, a clear need emerges for enhancing

systems flexibility and ensuring the security of energy demand and supply. As thoroughly

discussed in [25], such flexibility could be provided through efficient integration of new

technologies including demand-side response (DSR), energy storage (ES), and cross-border

interconnection.

• DSR: DSR schemes have been broadly researched and adopted in both academia

and industry by decades. It allows the re-distribution of electricity consumption

across multiple timescales without significantly compromising the service quality de-

livered to consumers [26]. The implementation of DSR usually requires financially

incentivizing end users to consume electricity outside periods of peak demand. For

example by using time-of-use (TOU) tariffs, commonly adopted in Spain, Germany

and UK [27, 28], where energy prices are designed to be expensive during on-peak

periods and cheaper at off-peak periods [29,29]. In this way, customers can plan their

activities accordingly in order to save money.

• Distributed ES technologies: The recent advancements made in automotive and bat-

tery technologies gave rise to the rapid development and growing popularity of electric

vehicles (EV). In this setting, EV batteries, exhibiting an outstanding flexibility po-

tential, are widely used as a distributed level ES resources [30–33]. Specifically, it can

store electrical energy during time periods with high generation availability and inject

stored energy back into the grid in the event of energy shortage by its Vehicle-to-Grid

(V2G) capability. The flexibility given by ES’s inherent charging/discharging ability

improves local demand-supply balancing, decreases the network losses and avoids

reverse power flows.

• Cross-border interconnection: The interconnectors between electricity systems enable

large-scale sharing of surplus energy and ancillary service to neighboring markets

and provide access to resources in other countries [34, 35], improving the efficiency

of the energy markets between connected systems and ensuring greater flexibility.

Interconnections between the UK and neighboring countries have a total current
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capacity of 6 GW. Planned projects with 5 GW of capacity are expected to be

delivered in the early 2020s [5]. However, until the power systems in the rest of

Europe become fully decarbonized, there is uncertainty around the carbon intensity

of imported electricity.

Flexible resources and technologies are crucial for improving the cost-effectiveness

of low carbon electricity systems. It is obvious that flexible distributed energy resources

(DER) such as distributed generators, smart appliances, EVs, and ES units are emerging

at the local (distribution) network level provided by smaller end consumers. The increas-

ing number of consumers in the distribution network and the accompanying greater use of

DER imply a profound paradigm shift from a unidirectional model to a bidirectional one.

Therefore, there is a growing need for alternative mechanisms to enable active participa-

tion of those consumers in trading of electricity and various ancillary services, and novel

decentralized control approaches to coordinate the actions of potentially many millions of

distributed consumers.

1.1.4 Deregulation and Energy Market Transitions

As discussed in the previous sections, the emerging DER technologies have made great con-

tribution to the delivery of cost-effective decarbonization of electricity systems. Its growing

penetration has promoted a need to increase network observability and controllability in

order to take full advantage of DER presence in the network. In the meantime, the recent

advancements in communication, control, internet of things technologies and their great

application in the energy system also accelerated the transformation to a more digitized

energy system [36]. The concept of smart grid, aiming at ensuring system stablity, was

proposed, which enables the integration of DER in a large scale and the implementation of

various advanced control technologies [37–39] In this context, the passive electricity end-

users/consumers of the past are transformed to prosumers who can actively manage their

electricity consumption, generation and storage via smart meters and energy management

systems [40,41]; the energy market has been experiencing a transition which involves active

participation of prosumers and more efficient usage of their owned EDR [42].
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Under the current electricity market structure in most countries worldwide, small

domestic consumers/prosumers are served by a contracted electricity retailer since 1): in-

dividually, they have little impact on transmission system operations; and 2): the cost

and complexity of communication and transaction infrastructure that would be required

to integrate them into the transmission system operator’s (TSO) dispatch/settlement pro-

cedures may outweigh the potential benefits of their direct participation in the wholesale

market [43,44]. The retailer buys/sells energy from/to the wholesale market based on the

time-variable wholesale prices, and sells/buys energy to/from the prosumers based on a set

of less variable retail prices [45]. However, self-interested prosumers are only incentivized

to maximize their individual profits. If each prosumer independently optimizes its own

local energy usage, the collective benefits of distributed flexibilities are not maximized.

Therefore, innovative market schemes are required to deliver efficient energy coordination

and provide sufficient incentives for efficient utilization of DERs’ flexibilities.

The on-going deregulation effort of the electricity market has opened up new oppor-

tunities for the efficient coordination of distribution-level energy resources owned by the

prosumer. The emerging concept of the local energy market proposed recently has attracted

extensive interests in both academia and industry with the benefits of alleviating the op-

erational challenges brought by numerous DER and benefiting DER owners/prosumers by

reducing their energy bills. It aggregates small-scaled DER owners as a local community

and maximizes their economic benefits through flexible and efficient joint management of

DER. Apart from matching local flexibility with variable generation inside the community,

the local energy market also conducts energy exchange between the aggregated distribution

level consumers/prosumers and the upstream grid while addressing local network problems.

Beyond the coordination benefit, the local energy market paradigm offers significant value

to power systems by reducing net demand peaks/network losses, alleviating the need for

investments in upstream generation and transmission infrastructure, increasing network

efficiency and increasing energy security [46].



36

1.2 Motivation

In the emerging smart grid setting, a large proportion of these new generation, demand

and ES resources owned by small domestic electricity users are connected to the end of

the electricity distribution networks [47]. The local energy market appears as an approach,

which helps to manage the increasing number of DER while benefiting their owners through

promoting DER’s values and offering attractive financial profits. This paradigm change

has provided energy system with the much required flexibility to support the cost-effective

transition to the low-carbon energy future [47–49].

Peer-to-peer (P2P) energy trading, which enables direct energy trading among end

users and/or prosumers, has become one of the most popular and promising local energy

trading structure. Specifically, under the P2P trading paradigm, consumers with energy

deficiency can buy energy from prosumers with energy surplus at a relatively cheaper

price compared to the grid buy price, while prosumers with energy surplus can sell this

surplus to other consumers at a higher price compared to the grid sell price. Overall, P2P

trading promises significant economic benefits for both consumers and prosumers, a more

balanced local demand and generation, deferral or even avoidance of distribution network

reinforcements, and improves power system reliability.

In recent years, a rapid development can be seen in the area of P2P energy trading

across the globe with the desire to enable its successful deployment. A number of studies

have been carried out in the industry and academia from the perspectives of efficient bal-

anced energy coordination methods, incentivizing pricing mechanism, energy trading mech-

anism design, trading platmform design, network operation/voltage control on distribution-

level and information and communication infrastructure development [50–55,55–69].

This thesis aims at proposing three P2P energy trading enabling methods to achieve

effective coordination of distributed DER while satisfying economic and technical objec-

tives and constraints of individual participants or the whole system. Specifically, a fully

distributed consensus-based energy coordination algorithm and a computational efficient

pricing and benefit distribution mechanism for incentivizing stable P2P energy trading
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methods are proposed. The relevant research gap and motivations are discussed in the

following contents.

1.2.1 Fully Distributed Consensus-Based Energy Coordination with FD

ES Participation

Efficient balanced energy coordination methods in P2P energy trading usually assumes

prosumers to ally their interests to the whole community and social welfare is maximized.

Approaches investigated in previous works can be generally classified into centralized,

decentralized and distributed approaches.

The centralized coordination paradigm requires the DER to submit their techno-

economic parameters to a central coordinator who determines their dispatch by solving

a global optimization problem, usually known as economic dispatch problem (EDP). Al-

though centralized solutions theoretically yield optimal coordination solutions, they are

characterized by many practical limitations. Firstly, the transmission of the complex

techno-economic parameters of a large number of DER to the central coordinator im-

poses high communication requirements. Secondly, the central coordinator needs to solve

an optimization problem with a vast number of decision variables and constraints, imply-

ing poor computational scalability. Furthermore, DER owners are likely to raise privacy

concerns since they are not always willing to disclose private information. Finally, the

presence of a single point of failure creates reliability challenges.

In view of these practical limitations, alternative decentralized coordination ap-

proach such as price-based coordination, alternating direction of multipliers (ADMM),

consensus-based ADMM (C-ADMM) and consensus + innovation (C+I) algorithms were

proposed. Although, these decentralized approaches do not need the knowledge of the DER

operating parameters by a central entity, they are still in face of scalability and reliability

challenges due to the presence of a central coordinator.

In recent years, distributed coordination approaches have gained tremendous at-

tention since they completely avoid the need for a central coordinator. The coordination

process is based solely on the bilateral exchange of information among the DER and the
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EDP is solved in a distributed fashion; in other words, the DER exchange information

until they discover the optimal EDP solution. The most popular analytical framework

behind distributed coordination approaches is consensus-based algorithms , which aim at

achieving an agreement among DER regarding certain coordination quantities, referred to

as the consensus variables. In the vast majority of the relevant papers, electricity prices

constitute the consensus variables.

Previous work studies consensus-based coordination considering only small-scaled

distributed generation sources or price-elastic demands. However, the price elasticity of

the demand side is relatively small and a more promising flexibility potential involves

redistribution (shifting) of demand in time. In other words, instead of simply avoiding using

their loads at high price levels, consumers are more likely to shift the operation of their loads

from periods of higher prices to periods of lower prices. Therefore, load reduction during

certain periods is accompanied by a load recovery effect during preceding or succeeding

periods. The consensus-based algorithms proposed in previous papers address the EDP in

independent time periods and therefore are inherently unable to capture the time-shifting

flexibility of FD and distributed ES units.

1.2.2 Incentivizing Pricing and Benefit Distribution Mechanisms for Co-

operative P2P Energy Trading

As discussed in the previous section, to encourage the deployment of RES, the FiT schemes

have been put forward worldwide. However, it tends to pay prosumers less for excess

generation than the retail price for energy consumption due to the increasing penetration of

renewable generation. Under such pricing schemes, prosumers with ES units are motivated

to store excess generation and discharge later to flatten their peak demand [70]. However, if

each prosumer independently optimizes the ES operation (based on its individual demand

profile), the joint effect on the net demand profile from multiple ES owners becomes less

evident.

Alternatively, cooperative P2P energy trading constitutes a promising approach to

encourage the sharing of local flexibility with excess RES generation within a local en-
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ergy community [71,72], which optimizes the optimal schedule of DER and minimized the

energy cost from the perspectives of the whole community. Cooperative P2P energy trad-

ing enables coordinated use of complementary DERs, for example photovoltaic (PV) and

ES systems, and thus a more locally balanced energy supply and demand. This benefits

prosumers economically by enhancing their engagements in system operation by creating

a local identity and promoting social cooperation. It also reduces the upstream energy

exchange and network losses, deferring/avoiding distribution network reinforcements. Fur-

thermore, cooperative P2P trading enables aggregated grouping of small-scale electric loads

and renewable sources, reducing their inherent variability as well as increasing local uti-

lization of renewable energy. Recent studies have illustrated these benefits of cooperative

P2P energy trading [73–75].

However, encouraging prosumers to trade energy with one another cooperatively

and abstracting the role of the incumbent retailer is a challenging task. It, therefore, calls

for an adequate energy trading model which can efficiently manage the local trading among

prosumers and design monetary rewards that suitably motivate prosumers to cooperatively

participate in P2P trading irrespective of their roles (whether they are electricity buyers

or sellers) [76].

In recent years, a considerable amount of research efforts has been made in designing

such models. The research focus of existing literature can be broadly divided into three

categories including 1) price-based mechanisms, such as the mid-market rate (MMR) and

bill sharing (BS); 2) cost allocation mechanisms, such as the Nash bargaining solution

(NB), equal-split cost sharing (EC) and proportional-split cost sharing (PC); and 3) benefit

allocation mechanisms, such as the Shapley value (SV) and the nucleolus. However, the

above mechanisms for governing P2P energy trading either fail to suitably incentivize all

prosumers to participate in P2P trading or suffer severely from the curse of dimensionality

with their computational complexity increase exponentially with the number of prosumers.

As a result, developing an efficient yet computationally affordable trading and pricing

mechanism remains a significant challenge.



40

1.3 Objectives and Contributions

In this thesis, efforts are devoted to explore novel algorithms to enable successful P2P

energy trading. An efficient distributed consensus-based energy coordination algorithm

has been proposed with the participation of time-shiftable FD and ES in a smart grid.

Efficient pricing and benefit allocation mechanisms have been developed for incentivizing

stable cooperative P2P energy trading. The original contributions are further explored as

follows:

1.3.1 Contribution

Fully Distributed Consensus-Based Energy Coordination with FD ES Partici-

pation

• In order to address the fundamental limitation of previous work in neglecting the

time-coupling operating characteristics of FD and ES, this thesis incorporates for

the first time a generic representation of these characteristics in the problem of dis-

tributed, consensus-based DER coordination. The iterative process of the state-of-

the-art consensus-based algorithm in solving the multi time-period EDP is outlined.

• Theoretical analysis have been carried out in proving the convergence failure of the

state-of-the-art consensus-based algorithm with communication information loss. In

order to address this issue, suitable measures have been proposed which modify Steps

1 and 3 of the algorithm when information loss occurs. It is demonstrated that these

measures preserve the solution feasibility and optimality of the algorithm.

• A simple two-period example and case studies on a larger test system with a day-

ahead horizon and hourly resolution demonstrate that state-of-the-art consensus-

based algorithms fail to converge when these time-coupling characteristics are con-

sidered. This effect is shown to be driven by the discontinuities in the FD and

ES optimal responses and the resulting "lumpy" power shifts across different time

periods.
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• In order to address this fundamental limitation of state-of-the-art consensus-based

algorithms, an adjustable relative maximum power restriction on FD resources is

introduced, which effectively mitigates the concentration of the FD responses at the

same time periods and steers the consensus-based algorithm towards a feasible and

optimal/near-optimal EDP solution. A heuristic tuning method has been applied to

demonstrate the difficulty in finding suitable values of maximum power restriction,

as apart from the convergence of the algorithm the optimality of EDP solution also

need to be considered.

• To derive a more optimal solution, a novel consensus-based algorithm is proposed

which includes additional consensus variables. These variables express relative max-

imum power restrictions imposed on the FD and ES resources which effectively mit-

igate the concentration of the FD and ES responses at the same time periods and

steer the consensual outcome to a feasible and optimal solution of the EDP.

• The convergence and optimality of the proposed algorithm are theoretically proven

while case studies numerically demonstrate its convergence, optimality, robustness

to initialization and information loss, and plug-and-play adaptability.

1.3.2 Incentivizing Pricing and Benefit Distribution for Cooperative

P2P Energy Trading

• The P2P energy trading paradigm is modeled as a prosumer coalitional game with the

objective to construct a grand coalition and realize the highest achievable monetary

benefits for prosumers and the coalition as a whole by cooperatively optimizing the

operation of their ES units. The superaddivity and balancedness of this game are

rigorously proven.

• Two computationally efficient mechanisms are proposed to construct a stable grand

coalition of prosumers. The first one involves a benefit distribution scheme inspired

by the core tâtonnement process while the second involves a novel pricing mechanism

based on the solution of a single linear program.
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• The core of the prosumer coalition game is rigorously proved non-empty, and the

identified benefit distribution solutions under the proposed mechanisms are proven

to be in the core, which guarantees prosumers’ stable participation in P2P trading.

• The effectiveness and superior computational performance of the two proposed mech-

anisms are demonstrated by comparing them against eight state-of-the-art pricing,

cost sharing and benefit distribution mechanisms through numerous case studies us-

ing real-world system data. To the authors’ best knowledge, such a comprehensive

comparison among cooperative P2P trading mechanisms is performed for the first

time in the literature.

• Results demonstrate that the proposed P2P trading mechanisms are able to cooper-

atively optimize the operation of all ES in the grand coalition to minimize the total

coalitional energy costs. Prosumers benefit significantly from peak demand reduction

and increment in RES utilization, and are thus incentivized to share their excess RES

generation with their peers.

The primary objective of the proposed P2P energy trading enabling scheme is to

efficiently manage resources within local distribution networks by coordinating the actions

of clusters of prosumers. These clusters are assumed to be largely free from losses and

constraints, and thus, the current thesis does not delve into the discussion of network

losses and constraints. Nevertheless, this thesis acknowledges the challenge of network

losses and constraints and aims to address it as future work. This will involve improving the

proposed algorithm to integrate the distribution network constraints. Further discussion

can be found in Section 6.

1.3.3 Publication List

The scientific results achieved in this thesis gave rise to a significant number of publications

which are listed in the following.
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Chapter 2 and Chapter 3 are based on [25,77,78]:

• J. Li, Y. Ye, D. Papadaskalopoulos and G. Strbac, “Distributed Consensus-Based Co-
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Shiftable Flexible Demand. In2019 International Conference on Smart Energy Sys-
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Chapter 4 and Chapter 5 are based on [79–81]:

• J. Li, Y. Ye and G. Strbac, “Stabilizing peer-to-peer energy trading in prosumer

coalition through computational efficient pricing,” Electric Power Systems Research,
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and Benefit Distribution Mechanisms for Incentivizing Stable Peer-to-Peer Energy
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Additionally, research work in the context of this thesis has led to several

publications which are not included in this manuscript:

• Y. Ye, D. Qiu, J. Li, G. Strbac, “Multi-period and multi-spatial equilibrium analysis

in imperfect electricity markets: A novel multi-agent deep reinforcement learning

approach,” IEEE Access, 2019 Sep. 6;7:130515-29.
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1.4 Thesis outline

The remainder of this thesis is organized as follows

Chapter 2 in the first place conducts a comprehensive literature review on the

previously proposed centralized, distributed and decentralized coordination algorithms and

their application to energy managements in P2P energy trading. Accordingly, a clear

research gap is identified. In order to fill this knowledge gap, a multiple time horizon EDP

incorporating the time-coupling operating characteristics of FD and ES is formulated.

After outlining the state-of-the-art consensus-based algorithm, this chapter demonstrates

and analyzes its failure to converge to a feasible solution when considering information

losses during the communication process. A modification has been made in the first and

third step of the state-of-the-art consensus-based algorithm for addressing this issue.

Then, its convergence failure in solving EDP with the participation of FD and ES

is analyzed by considering a simple two-period example. This is shown to be driven by

the discontinuities in the FD and ES responses. A relative maximum power restriction

is introduced in the optimal demand response step of the algorithm, which effectively

mitigates the concentration of the FD/ES responses at the same time periods, enabling

the convergence of the algorithm.

However, determining suitable values for the relative maximum power restrictions

remains challenging since apart from convergence, the feasibility and optimality of EDP

solution need to be considered. An 8-DER example with a day-ahead horizon and hourly

resolution demonstrates this challenge by tuning the value of maximum power restriction

in a heuristic way.

In order to determine suitable values of the relative maximum power restrictions

and address the coordination challenge under the participation of FD and ES, a novel

consensus-based algorithms has been proposed in Chapter 3. It introduces additional

consensus variables, expressing relative maximum power restrictions imposed on the FD

and ES resources, which effectively mitigate the concentration effect of the FD and ES and

steer the consensual outcome to a feasible and optimal solution of the EDP. The theoretical
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analysis of Theorem 1 (convergence of the proposed algorithm) and Theorem 2 (optimality

of the proposed algorithm) were also performed in this Chapter. Finally, case studies

demonstrate the convergence, optimality, robustness to initialization and information loss,

superior performance compared to FBC and plug-and-play adaptbility of the proposed

algorithm.

Chapter 4 firstly conduct a comprehensive literature review regarding the existing

works modeling cooperative P2P energy trading. It then constructs a stable grand coalition

of prosumers participating in P2P trading, founded on cooperative game-theoretic princi-

ples. The examined prosumer cooperative game is superadditive, implying prosumers in

disjoint coalitions will always be incentivized to form bigger coalitions and eventually form

the grand coalition, and balanced, suggesting the existence of a stable benefit distribution

solution. Finally, it reviews in detail the state-of-the-art pricing, cost sharing and benefit

distribution mechanisms.

Chapter 5 details the proposed two computationally efficient mechanisms, which

construct a stable grand coalition of prosumers participating in P2P trading, founded

on cooperative game-theoretic principles. The first one involves a benefit distribution

scheme inspired by the core tâtonnement process while the second involves a novel pricing

mechanism based on the solution of a single linear program. The theoretical analysis

on the superadditivity and balancedness of the proposed prosumer coalitional Game as

well as the convergence of the proposed core tâtonnement algorithm were discussed. The

performance of the proposed mechanisms is validated against state-of-the-art mechanisms

through numerous case studies using real-world data. The results demonstrate that the

proposed mechanisms exhibit superior computational performance than the nucleolus and

are superior to the rest of the examined mechanisms in incentivizing prosumers to remain

in the grand coalition.

Chapter 6 concludes this thesis by summarizing and reviewing the main contribu-

tions of this research. Finally, some interesting topics are suggested for the future research.

Appendix A contains the operating parameters and test data for case studies used

in Chapter 3. A complete list of relevant references can be found in the Bibliography.
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Chapter 2

State-of-the-Art Energy

Management of Distributed Energy

Resources in P2P Energy Trading

2.1 Introduction

A fundamental feature of the emerging smart grid setting involves the integration of a large

number of small-scale distributed energy resources (DER), including various types of dis-

patchable generation (DG), flexible demand (FD), and energy storage (ES) in distribution

networks, with the overall objective of providing the much required flexibility to support

the cost-effective transition to the low-carbon energy future [47–49]. This paradigm change

combined with the development of advanced technologies facilitates the implementation of

local P2P energy trading markets, however, it complicates significantly the operation of the

system, as the effective coordination of such large number of DER to satisfy economic and

technical objectives and constraints of both individual DER and the system as a whole, is

highly challenging.

The following content of Chapter 2 is organized as: Section 2.2 reviews the existing

centralized/decentralized/distributed coordination approaches and identifies their limita-
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tions, respectively. Section 2.3 formulates the multi time-period coordination problem with

the participation of FD and ES. Finally, Section 2.4 outlines the state-of-the-art consensus-

based algorithm and theoretical analysis of its convergence failure under information loss

and the participation of DER with time-coupling characteristics.

2.2 Energy Coordination Approaches in a Smart Grid

Over the past decades, tremendous research interests of effective energy coordination for

the delivery of P2P energy trading can be seen. The approaches employed by previous

work can be generally classified into three main categories: centralized, decentralized and

distributed approaches.

Under the centralized coordination paradigm [82–86], the DER submit their eco-

nomic and technical parameters to a central coordinator and the latter determines their

optimal dispatch by centrally solving a global optimization problem, usually referred to

as the economic dispatch problem (EDP). Although such centralized approaches theoreti-

cally provide the optimal coordination solution from the system perspective, they exhibit

numerous practical limitations:

• High communication cost : the communication requirements and costs of centralized

control mechanisms are very high, since they involve transmission of the diverse and

complex operating parameters and constraints of a large number of DER to the

central coordinator;

• Poor computational scalability : under the centralized mechanism, the central coordi-

nator needs to solve an optimization problem with a vast number of decision variables

and constraints;

• Privacy concerns: they raise privacy concerns by the DER owners who are not gener-

ally willing to disclose private information (such as assets’ properties, cost functions

and demand patterns) and be directly controlled by external entities (i.e. the central

coordinator);
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• Reliability issues: they raise reliability concerns due to the presence of a single point

of failure (failure of the central coordinator is detrimental to the whole coordination

process);

• Low adaptability : the centralized mechanism are not generally efficient in achiev-

ing plug-and-play adaptability (ability to connect or disconnect any DER with-

out the need to re-engineer the whole coordination process) since any connec-

tion/disconnection of a DER device may require a system redesign.

In view of these challenges, alternative decentralized coordination approaches have

been proposed, which do not require knowledge of the DER operating parameters by

a central entity. The vast majority of these approaches adopt price-based coordination

architectures, involving a two-level iterative process [29,87–90] as show in Figure 2.1. At the

local level, individual DER determine their optimal responses to a set of given coordination

prices by independently solving their economic surplus maximization problems. At the

global level, the central coordinator updates these prices in order to drive DER responses

to the optimal solution of the EDP. Such price-based approaches significantly reduce the

communication requirements (since only price and response signals are exchanged) and the

computational burden for the central coordinator (as the latter performs a simpler prices’

update with respect to the complex optimization of all DER) and largely resolve privacy

concerns.

Figure 2.1: Information flow of price-based coordination algorithm.

The alternating direction of multipliers (ADMM) constitutes another decentralized
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approach which involves a three-step iterative process [91–93]:

• Step 1: the first step involves the solution of a centralized EDP by the central

coordinator, subject only to the demand-supply balance constraints of the system;

• Step 2: each DER updates individually its dispatch (as determined by the central

coordinator) to satisfy its local operating constraints;

• Step 3: the Lagrange multipliers associated with the dispatch consistency constraints

(ensuring consistency between the dispatch decisions determined by the central co-

ordinator and the DER) are updated.

The flowchart of ADMM algorithm and the information flow of its first step update is

shown in Figure 2.2.

(a) (b)

Figure 2.2: (a) The flowchart of ADMM algorithm. (b) Information flow of the first
step of ADMM algorithm.

Finally, the consensus + innovation (C+I) algorithm as shown in Figure 2.3 involves

dividing DER in smaller groups and allocating a group agent for each of the groups, which

handles the information exchange with the group’s DER and other neighboring group
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agents [94,95]. In the first step of the algorithm the group agent updates its estimation of

the coordination prices by using the neighboring group agents’ estimates and an innovation

term which depends on its group’s net demand; in the second step, the individual DER

of each group determine their optimal responses to the coordination prices estimated by

their group agent. All the above decentrlized coordination approaches are still prone to

scalability and reliability limitations due to the presence of a central coordinator -or group

agents in the case of the C+I algorithm- while the solution feasibility and optimality of

the latter algorithm are not guaranteed.

Figure 2.3: Information flow of C+I algorithm.

Distributed coordination approaches completely avoid the need for a central coordi-

nator, as the coordination process is based solely on the bilateral exchange of information

between the DER. Therefore, on top of communication, computational and privacy advan-

tages with respect to centralized approaches, they are resilient to a single point of failure

and efficient in achieving plug-and-play adaptability, and they are attracting continuously

increasing interest due to the emergence of direct electricity trading between small-scale

prosumers [72,96,97].

The most successful methodological framework behind such distributed approaches

is consensus-based algorithms [98–106], which aim at reaching an agreement among DER
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regarding certain quantities associated with the coordination problem, referred to as the

consensus variables; in the vast majority of the relevant papers, the consensus variables

are the electricity prices. The flooding-based consensus (FBC) algorithm proposed in [104]

constitutes a variation of consensus-based algorithms and involves an additional iterative

process which aims at providing to each DER complete knowledge of the consensus vari-

ables’ estimates of all other DER [104], entailing however massively higher communication

requirements. In [98,101,102,104–106] the set of controllable DER includes only generation

sources, while in [99,100,103] it also includes price-elastic demands.

Figure 2.4: The flowchart of C-ADMM algorithm.

Moreover, researchers in [107–109] propose consensus-based ADMM (C-ADMM)

algorithm, which combines consensus-based algorithm and ADMM algorithm, to tackle

the issue brought by the centrally operated optimization in the first step of ADMM. As

explained by the flowchart in Figure 2.4, the C-ADMM algorithm leads to two embedded

loops with ADMM at the outer loop and consensus-based algorithm at the inner loop. The

outer loop continues only if the inner loop converges, namely each iteration of the outer loop

might require the process of numerous inner loops, greatly increasing the computational
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effort. Therefore, the structure of this algorithm results in significant computational and

convergence complexities.

However, previously proposed consensus-based distributed approaches address the

EDP in independent time periods. As a result, they are inherently unable to deal with

the coordination of FD and ES, which exhibit distinct time-coupling operating character-

istics as they redistribute/shift energy in time. This temporal redistribution flexibility is

extremely valuable for the economic operation of the whole electricity system [110, 111],

and therefore should not be neglected in the development of distributed coordination ap-

proaches.

2.3 Formulation of EDP with FD and ES Participation

As discussed in the previous section, state-of-the-art consensus-based approaches formulate

the EDP in independent time periods and they do not consider the participation of FD

and ES DER. Therefore, in this section, we formulate an EDP that involves a multi-

period horizon and incorporates the time-coupling characteristics of FD and ES. Apart from

these DER, the following formulation includes dispatchable generators (DG) with quadratic

operating cost functions, inflexible generators (IG) which encapsulate non-dispatchable,

renewable generation resources (such as photovoltaics), and inflexible demands (ID) which

encapsulate inflexible loads (such as the majority of lighting loads).

Dispatchable Generator

The hourly operating cost function Cj,t of each DG j is modeled as a quadratic function

(2.1) and the operating constraints of DG include the maximum output limits (2.2).

Cj,t(gj,t) = ljgj,t + qj(gj,t)
2, ∀j ∈ J,∀t ∈ T, (2.1)

0 ≤ gj,t ≤ gj ,∀j ∈ J, ∀t ∈ T (2.2)
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Flexible Demand

Concerning FD, there is a wide consensus that the consumers’ flexibility in reducing their

overall energy requirements (i.e. their price elasticity) is generally very low [110]. Their

most promising flexibility potential is rather the redistribution/shifting of electricity de-

mand in time, as consumers generally need certain fixed levels of energy across certain

fixed temporal intervals for carrying out their various activities/processes. In other words,

instead of simply avoiding using their loads at high price levels, consumers are more likely

to shift the operation of their loads from periods of higher prices to periods of lower prices.

Therefore, load reduction during certain periods is accompanied by a load recovery effect

during preceding or succeeding periods. In order to capture this time-shifting flexibility, a

generic, technology-agnostic model is employed in this work:

τ ·
∑

t∈TFD
l

dl,t = EFD
l ,∀l ∈ L, (2.3)

0 ≤ dl,t ≤ dl,t,∀l ∈ L,∀t ∈ T (2.4)

According to this model, the electricity demand of an FD at each period can be flexibly

dispatched (without compromising the consumers’ satisfaction) as long as its total energy

consumption over a certain interval specified by the consumers is equal to the fixed energy

requirement desired by the consumers (2.3) and its maximum demand limits are satisfied

(2.4).

Energy Storage

A generic, technology-agnostic model is employed for the representation of the operat-

ing characteristic of ES, which includes energy balance constraints (2.5), minimum and

maximum energy and power limits (2.6)-(2.8) and the energy neutrality assumption for

out-of-horizon effects (2.9).

En,t = En,t−1 + τ · ηcnscn,t − τ · sdn,t/ηdn,∀n ∈ N, ∀t ∈ T, (2.5)
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En ≤ En,t ≤ En,∀n ∈ N, ∀t ∈ T, (2.6)

0 ≤ sdn,t ≤ sn, ∀n ∈ N, ∀t ∈ T, (2.7)

0 ≤ scn,t ≤ sn,∀n ∈ N, ∀t ∈ T, (2.8)

En,0 = En,|T |, ∀n ∈ N. (2.9)

Finally, the EDP is formulated as (2.1)-(2.11), which determines the optimal dis-

patch of dispatchable DER -including DG, FD and ES- so as to minimize the total cost

of the DER portfolio (2.10). This cost includes the operating costs of the DG, since the

operating costs of IG and ES are assumed negligible [112]. This problem is subject to the

demand-supply balance constraints (2.11) (the Lagrangian multipliers of which constitute

the trading prices), and the operating constraints of the dispatchable DER (2.2)-(2.9).

min
{gj,t,dl,t,scn,t,sdn,t,En,t}

∑
j,t
Ci,t(gj,t), (2.10)

s.t.:
∑

m
Dm,t +

∑
l
dl,t −

∑
j
gj,t −

∑
k
Gk,t −

∑
n
(sdn,t − scn,t) = 0 : λt,∀t ∈ T,

(2.11)

(2.2) − (2.9).

2.4 State-of-the-art Consensus-Based Algorithm

As discussed in Section 2.2, consensus-based algorithms solve the EDP through the iter-

ative, bilateral exchange of information between the DER until they reach an agreement

regarding certain consensus variables. In this work, driven by the approach adopted by the

vast majority of relevant papers, the consensus variables are the electricity prices. Each

DER estimates the values of these prices and determines its optimal response accordingly.

Furthermore, they update these estimates by exchanging information with their neigh-

boring DER, i.e. the DER with which they are connected through the communication

network. This network is represented by a communication matrix W = [Wi,h]I×I , each

element Wi,h of which represents the relative weight of the estimates transmitted by the

neighboring DER h in the estimates’ update of DER i. The derivation of W is provided
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below.

Graph Theory Notations

Let G = (V, E) be an undirected graph of order V modeling the communication network

among the DER, where V = {1, 2, . . . , V } and E = {(i, h) | i, h ∈ V} are the non-empty

vertex and finite edge set, respectively [113]. The edge (i, h) implies that DER i and

h can communicate with each other. The neighbor set of vertex i is denoted by Ii ≜

{h | (i, h) ∈ E}. A connected undirected communication network G, containing a path

from any DER i to any other DER h) [114], no self-circle and no multiple edges, is assumed

in this work.

Deviation of W

The Adjacency Matrix A = [Ai,h]V×V , associated with G = (V, E) is defined by (2.12).

The Laplacian Matrix L = [Li,h]V×V and communication weight matrix W = [Wi,h]V×V

associated with A are defined by (2.13) and (2.14), respectively.

Ai,h =


1 if h ∈ Ii

0 otherwise.
, (2.12)

Li,h =


∑V

h=1Ai,h, if i = h

−Ai,h, otherwise
, (2.13)

Wi,h =
| Li,h |∑V
h=1 | Li,h |

. (2.14)

It is obvious that W is a positive symmetric matrix with sums of entries of each

row and each column equal to ones. Therefore, W is a doubly stochastic matrix, satisfying

W1 = 1 and 1TW = 1T , where 1 is a column vector of ones. It should be noted that the

definition W in this work gives Wi,i = 1/2. However, it is worth noting that all properties

of the consensus-based algorithm remain valid under the condition that the matrix W

satisfies doubly stochasticity.
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Remark. In order to achieve convergence, the proposed consensus-based algorithm

requires the communication topology to be connected. If the communication topology is

not connected, the original system will be divided into several smaller sub-systems and

each subsystem will converge to its own solution.

2.4.1 Algorithm Outline

The state-of-the-art consensus algorithms [98–101, 104–106] involve a four-step iterative

process, which is outlined below (considering that the EDP addressed is the one expressed

by (2.1)-(2.11)).

Step 0: Initialization

The initial value of consensus variable λ0i,t, ∀i,∀t can be set to any admissible value as long

as (2.15)-(2.16) are satisfied. Note that λ0i,t, ∀i,∀t are only set to non-negative values as

they represent the prices estimated by each DER i.

0 ≤ λ0j,t ≤ 2qjgj + lj , ∀j ∈ J,∀t ∈ T, (2.15)

0 ≤ λ0i,t,∀i ∈ I\J,∀t ∈ T. (2.16)

DER i determines individually the initial values of its dispatch variables g0j,t, ∀j,∀t,

d0l,t,∀l,∀t, sc0n,t, sd0n,t,∀n,∀t based only on its own operating constraints (2.17)-(2.20),

and the initial energy level En,0,∀n in ES n are set according to its actual value within

the range (2.21):

0 ≤ g0j,t ≤ gj ,∀j ∈ J, ∀t ∈ T, (2.17)

0 ≤ d0l,t ≤ dl,t,∀l ∈ L,∀t ∈ T, (2.18)

0 ≤ sd0n,t ≤ sn, ∀n ∈ N, ∀t ∈ T, (2.19)

0 ≤ sc0n,t ≤ sn,∀n ∈ N, ∀t ∈ T, (2.20)

En ≤ E0
n,t ≤ En,∀n ∈ N, ∀t ∈ T, (2.21)
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The outputs and demands of non-dispatchable DER, including IG and ID, are unchanged

throughout the calculation process, therefore, their initial power dispatch are equal to their

fixed outputs and demands, respectively:

D0
m,t = Dm,t, (2.22)

G0
k,t = Gk,t. (2.23)

In order to preserve its solution feasibility and optimality, the consensus-based al-

gorithm requires the combination of the initial values of the DER dispatch variables and

the initial values of the power mismatch estimates to satisfy the demand-supply balance

constraints [98, 101,104], meaning:

∑
m

D0
m,t +

∑
l

d0l,t −
∑
j

g0j,t −
∑
k

G0
k,t −

∑
n

(sd0n,t − sc0n,t) =
∑
i

e0i,t, ∀t ∈ T. (2.24)

In order to perform the initialization process in a fully distributed manner (without the

need of central coordination) while satisfying equation (2.24), the initial values of the

power mismatch estimates of each DER i are set equal to the initial values of its respective

dispatch variables, according to equation (2.25) to (2.29).

e0j,t = −g0j,t,∀j ∈ J, ∀t ∈ T (2.25)

e0k,t = −G0
k,t, ∀k ∈ K,∀t ∈ T (2.26)

e0l,t = d0l,t,∀l ∈ L,∀t ∈ T (2.27)

e0m,t = D0
m,t,∀m ∈M,∀t ∈ T (2.28)

e0n,t = −(sd0n,t − sc0n,t),∀n ∈ N, ∀t ∈ T (2.29)

Step 1: Price update

At each iteration r, each DER i updates its price estimates based on its neighboring DER

estimates and a correction term which is proportional to its power mismatch estimates,

weighted by a learning gain constant ϵλ. The rationale behind this correction term lies

in micro-economic principles: when the overall demand is higher than the overall supply,
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i.e. the power mismatch is positive, the price should be increased, and vice versa. It

is noteworthy that the algorithm’s convergence speed is determined by the learning gain

constant, which is assumed to be the same for all DERs. However, it is not mandatory

that the learning gains for each DER be identical. The properties and results of the

consensus-based algorithm remain valid even when the learning gains are not uniform. The

selection and design of the learning gain constant in this study align with prior research

[98–103,105,106], which provides additional discussion on the topic.

λr+1
i,t =

∑
h∈I

Wi,hλ
r
h,t + ϵλeri,t, ∀i ∈ I, ∀t ∈ T. (2.30)

Step 2: Response optimization

Each dispatchable DER determines its optimal responses to its estimated electricity prices

by independently solving its economic surplus maximization problem. This problem cor-

responds to a production profit (given by the difference between revenue and operating

cost) maximization problem for each DG j (2.31), a payment minimization problem for

each FD l (2.32) and an arbitrage profit (given by the difference between its revenue when

discharging and its payment when charging) maximization problem for each ES n (2.33).

Non-dispatchable DER, including IG and ID, cannot change their outputs and demands

according to their estimated prices, or equivalently, their responses are equal to their fixed

outputs and demands, respectively (2.34)-(2.35).

gr+1
j,t = argmaxgj,t

∑
t∈T

[
λr+1
j,t gj,t −

(
ljgj,t + qj(gj,t)

2

)]
,∀j ∈ J

s.t. (2.2)

, (2.31)

dr+1
l,t = argmindl,t

∑
t∈T λ

r+1
l,t dl,t,∀l ∈ L,

s.t. (2.3)-(2.4)
, (2.32)

(
sdr+1

n,t , sc
r+1
n,t

Er+1
n,t

)
= argmaxsdn,t,scn,t,En,t

∑
t∈T λ

r+1
n,t (sdn,t − scn,t), ∀n ∈ N,

s.t. (2.5)-(2.9)

, (2.33)
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Gr+1
k,t = Gk,t, ∀k ∈ K,∀t ∈ T (2.34)

Dr+1
m,t = Dm,t, ∀m ∈M,∀t ∈ T. (2.35)

Step 3: Power mismatch update

Each DER i updates its power mismatch estimates based on its neighboring DER estimates

and a correction term which is given by the difference between its optimal responses at the

two most recent iterations (for IG and ID, this difference is zero by definition and therefore

is not included in (2.39)-(2.40)).

er+1
j,t =

∑
h∈I

Wj,he
r
h,t − gr+1

j,t + grj,t, ∀j ∈ J,∀t ∈ T, (2.36)

er+1
l,t =

∑
h∈I

Wl,he
r
h,t + dr+1

l,t − drl,t,∀l ∈ L,∀t ∈ T, (2.37)

er+1
n,t =

∑
h∈I

Wn,he
r
h,t − (sdr+1

n,t − scr+1
n,t ) + (sdrn,t − scrn,t),∀n ∈ N, ∀t ∈ T, (2.38)

er+1
k,t =

∑
h∈I

Wk,he
r
h,t,∀k ∈ K,∀t ∈ T, (2.39)

er+1
m,t =

∑
h∈I

Wm,he
r
h,t,∀m ∈M, ∀t ∈ T. (2.40)

Step 4: Termination check

The Euclidean norm of the differences in the price estimates between the two most recent

iterations and the Euclidean norm of the power mismatch estimates are calculated. If both

of these are lower than their pre-specified tolerances ελ and εe for all DER (2.41), the

algorithm terminates. Otherwise, the iteration counter increases by 1 and the algorithm

goes back to the first step.

∥λr
i − λr−1

i ∥2 ≤ ελ AND ∥eri ∥2 ≤ εe ∀i ∈ I. (2.41)

The proposed consensus-based algorithm achieves convergence with an optimal solution

within a few steps of iteration. In Section 3, detailed numerical case studies are pre-

sented, along with theoretical evidence that demonstrates the convergence of the proposed
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consensus-based algorithm and its optimality in finding a solution.

2.4.2 Modification under Communication Information Loss

In real-world applications, the underlying communication network is imperfect, implying

that communication failures or congestion may result in loss of some of the messages

exchanged by the DER [101]. Specifically, DER i may not receive at iteration r the

supposed messages from a subset Ĩr
i of its set of neighboring DER Ii. When information

sent from h ∈ Ĩr
i to i is lost during iteration r, we assume a list of estimated values

λ̃rh,t, ẽ
r
h,t,∀h ∈ Ĩr,∀t will be set by i, which may not be equal to the actual values λrh,t, e

r
h,t,∀t

of DER h ∈ Ĩr
i that DER i is supposed to receive at iteration r [101]. Such information

loss affects Steps 1 and 3 of the consensus-based algorithm where DER i utilizes price

estimates and power mismatch estimates of its neighboring DER, respectively.

Assume power mismatch estimation information sent from h ∈ Ĩr
i to DER i is lost

during iteration r and no actions are taken. DER i then sets some estimation of this value

ẽrh,t in the step 3 of its update. From equations (2.36)-(2.40) and the fact that matrix W

is doubly stochastic, we have:

∑
i∈I
er+1
i,t =

∑
i∈I

∑
h∈I

Wi,he
r
h,t −

∑
i∈I

∑
h∈Ĩr

i

Wi,he
r
h,t +

∑
i∈I

∑
h∈Ĩr

i

Wi,hẽ
r
h,t −

∑
i∈I

(pr+1
i,t − pri,t)

=
∑
h∈I

(erh,t − pr+1
i,t + pri,t)−

∑
i∈I

∑
h∈Ĩr

i

Wi,he
r
h,t +

∑
i∈I

∑
h∈Ĩr

i

Wi,hẽ
r
h,t,

,∀t ∈ T,

(2.42)

where pri,t is the ith entry of the |I|-dimensional vector pr
t = [grT

t ,−drT
t , srTt ,0T ,0T ]T with

gr
t ,d

r
t , s

r
t and 0 being vectors of grj,t, d

r
l,t, s

r
n,t and zeros, respectively. Using Corollary 1, we

have:

∑
i∈I
er+1
i,t =

∑
m∈M

Dm,t −
∑
k∈K

Gk,t −
∑
i∈I
pr+1
i,t −

∑
i∈I

∑
h∈Ĩr

i

(Wi,he
r
h,t −Wi,hẽ

r
h,t),

=
∑

m∈M
Dm,t −

∑
k∈K

Gk,t −
∑
j∈J

gr+1
j,t +

∑
l∈L
dr+1
l,t −

∑
n∈N

(sdr+1
n,t − scr+1

n,t )

−
∑
i∈I

∑
h∈Ĩr

i

(Wi,he
r
h,t −Wi,hẽ

r
h,t).

,∀t ∈ T.

(2.43)
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It is obvious that,
∑

m∈M
Dm,t−

∑
k∈K

Gk,t−
∑
j∈J

gr+1
j,t +

∑
l∈L
dr+1
l,t −

∑
n∈N

(sdr+1
n,t − scr+1

n,t ) equals the

actual power mismatch at iteration r and time period t, which is denoted by △ert . Then

we have: ∑
i∈I
er+1
i,t = △ert −

∑
i∈I

∑
h∈Ĩr

i

(Wi,he
r
h,t −Wi,hẽ

r
h,t), , ∀t ∈ T, (2.44)

which can be rephrased as:

△ert −
∑
i∈I

er+1
i,t =

∑
i∈I

∑
h∈Ĩr

i

(Wi,hẽ
r
h,t −Wi,he

r
h,t), , ∀t ∈ T. (2.45)

According to (3.43):

êi,t = lim
r→∞

eri,t = 0, ∀i ∈ I, ∀t ∈ T. (2.46)

Using (2.45) and (2.46):

lim
r→∞

△ert =
∑
i∈I

∑
h∈Ĩr

i

(Wi,hẽ
r
h,t −Wi,he

r
h,t) ̸= 0, ∀t ∈ T (2.47)

∑
m∈M

Dm,t −
∑
k∈K

Gk,t −
∑
j∈J

ĝj,t +
∑
l∈L

d̂l,t −
∑
n∈N

(ŝdn,t − ŝcn,t) ̸= 0, ,∀t ∈ T. (2.48)

where, ĝj,t∀j,∀t, d̂l,t, ∀l,∀t and ŝdn,t, ŝcn,t,∀n,∀t are the converged fixed points of the pro-

posed algorithm. Equation (2.48) indicates that the algorithm will eventually end with

energy imbalance between demand and supply when information fails to be transmitted

among agents at certain iterations. As a result, the converged solution are not feasible and

optimal.

In order to address this issue, suitable measures are proposed, which modify Steps 1

and 3 of the algorithm when information loss occurs. Regarding Step 1, when DER i fails

to receive at iteration r the supposed messages from its neighboring DER subset Ĩr
i , the

elements of the communication matrix employed by DER i for its price estimates’ update

are modified according to (2.49), and the price estimates’ update follows (2.50) instead of
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(2.30).

W̃i,h =


Wi,h +

∑
h̃∈Ĩr

i
Wi,h̃, h = i,

0, ∀h ∈ Ĩr
i ,

Wi,h, ∀h ∈ I\{{i} ∪ Ĩr
i }

∀i ∈ I, (2.49)

λr+1
i,t =

∑
h∈I

W̃i,hλ
r
h,t + ϵλeri,t, ∀i ∈ I, ∀t ∈ T. (2.50)

Regarding Step 3, when any DER i fails to receive supposed messages at iteration r,

then none of the DER updates its power mismatch estimates, implying that (2.36)-(2.40)

are replaced by (2.51).

er+1
i,t = eri,t, ∀i ∈ I, ∀t ∈ T. (2.51)

With such modifications, the algorithm will converge to the feasible and optimal solution

of DEP.

In the following content of this section, we prove that these measures preserve the

solution feasibility and optimality of the algorithm as long as the undirected communication

topology among DER is connected.

Proof. The correction in Step 1 ensures the correctness of the updating, as it sets the

weight associated with the lost information to be zero, and the row stochastic property of

the communication weight matrix is preserved.

For Step 3, if any of the estimated power mismatch being exchanged are lost, none

of the DER will update the power mismatch estimation. Therefore, the power mismatch

information which is stored in the summation of all local mismatch estimations (as shown

in (3.67)) will remain intact. Specifically, when information is sent successfully in the

following iteration r̃, based on (2.42), (2.46):

∑
i∈I
er̃i,t =

∑
i∈I

∑
h∈I

Wi,he
r
h,t −

∑
i∈I

(pr̃i,t − pri,t)

=
∑
h∈I

erh,t −
∑
i∈I

(pr̃i,t − pri,t),
, ∀t ∈ T, (2.52)

which can be rephrased as:
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∑
i∈I
er̃i,t =

∑
i∈I

(eri,t + pri,t)− pr̃i,t ,∀t ∈ T. (2.53)

Using Corollary 1 :

∑
i∈I

er̃i,t =
∑
m∈M

Dm,t −
∑
k∈K

Gk,t −
∑
i∈I

pr̃i,t,∀t ∈ T, (2.54)

Then:

△er̃t =
∑

m∈M
Dm,t −

∑
k∈K

Gk,t −
∑
j∈J

gr̃j,t +
∑
l∈L
dr̃l,t −

∑
n∈N

(sdr̃n,t − scr̃n,t)

=
∑
i∈I
er̃i,t

,∀t ∈ T, (2.55)

According to (3.43):

lim
r̃→∞

△er̃t =
∑

m∈M
Dm,t −

∑
k∈K

Gk,t −
∑
j∈J

ĝj,t +
∑
l∈L
d̂l,t −

∑
n∈N

(ŝdn,t − ŝcn,t)

= lim
r→∞

∑
i∈I
er̃i,t

= 0

, ∀t ∈ T. (2.56)

As such, the algorithm will converge to the feasible and optimal solution of DER. ■

2.4.3 Convergence Failure under FD and ES Participation

Previous relevant papers have demonstrated that this state-of-the-art consensus-based al-

gorithm converges after a finite number of iterations and the resulting EDP solution is

both feasible and optimal [98–106]. As discussed in Section 2.2 however, the EDP in these

papers does not consider the participation of FD and ES with time-coupling characteristics

and is formulated in independent time periods. This Section demonstrates that this algo-

rithm fails to converge when it is applied to the EDP (2.1)-(2.9) i.e. when the participation

of FD and ES with time-coupling characteristics is considered.

The fundamental reason behind this is associated with the mathematical properties

of the surplus maximization problems of FD and ES, solved in Step 2 of the algorithm.

Specifically, the objective functions (2.32) and (2.33) of these problems are linear and

thus not strictly convex [29, 89]. As a result, their optimal demand/supply responses are
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discontinuous functions of their price estimates. This can be demonstrated by considering

a simple example of an FD l, the flexibility interval TFD
l of which includes two time

periods t = 1 and t = 2, and its maximum demand limit is identical in these two periods

dl,1 = dl,2 = dl and satisfies the condition dl >
1
τ · EFD

l
2 (to ensure that it can obtain

its required energy over the two time periods). It can be easily deduced that its optimal

demand responses as a function of its price estimates at iteration r of the algorithm are:

drl,1(λ
r
l ) =


min(dl,

1
τ · EFD

l ) if λrl,1 < λrl,2

max( 1τ · EFD
l − dl, 0) if λrl,1 > λrl,2

(2.57)

drl,2(λ
r
l ) =


max( 1τ · EFD

l − dl, 0) if λrl,1 < λrl,2

min(dl,
1
τ · EFD

l ) if λrl,1 > λrl,2.

(2.58)

If for example El =100kWh, dl = 80kW and τ = 1h, then:

drl,1(λ
r
l ) =


80 if λrl,1 < λrl,2

20 if λrl,1 > λrl,2

(2.59)

drl,2(λ
r
l ) =


20 if λrl,1 < λrl,2

80 if λrl,1 > λrl,2.

(2.60)

These functions exhibit a discontinuity at the point λrl,1 = λrl,2. If λrl,1 is even

marginally lower than λrl,2, the FD will demand the largest possible proportion of EFD
l

at t = 1 and the smallest possible proportion at t = 2 in order to minimize its payment

(2.32); if λrl,1 is even marginally higher than λrl,2, the FD will do the exact opposite. In other

words, due to such discontinuities, the optimal responses of FD involve "lumpy" demand

shifts across different time periods when the sign of the relation between the respective

prices changes. Similar effects apply to the case of ES which will tend to concentrate their

charging and discharging actions at the periods with the lowest and highest price estimates,

respectively, in order to maximize its arbitrage profit (2.33) (a similar two-period example

for an ES can be conceived but it is omitted for brevity reasons).
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These "lumpy" demand/supply shifts constitute the reason why the state-of-the-art

consensus-based algorithm (2.24)-(2.41) fails to converge under the participation of FD and

ES in the EDP. This can be demonstrated by considering a simple two-period EDP example

which includes the following DER: 1) a DG j with lj = 0.5£/kW, qj = 0.005£/kW2 and

gj = 500kW; 2) an FD l with dl = 150kW and EFD
l = 150kWh; and 3) an ID m with

Dm,1 = 150kW, Dm,2 = 200kW. The state-of-the-art consensus-based algorithm employs a

communication matrix W , the diagonal elements of which are equal to 0.5 and off-diagonal

elements are equal to 0.25, a learning gain constant ϵλ = 0.0051£/kW2h, and termination

tolerances ελ = εe = 0.01kW.

(a) (b)

Figure 2.5: Iterative evolution of price estimates of DG and FD at (a) t = 1 and (b)
t = 2 under the state-of-the-art consensus-based algorithm.

(a) (b)

Figure 2.6: Iterative evolution of optimal responses of DG and FD at (a) t = 1 and
(b) t = 2 under the state-of-the-art consensus-based algorithm.

Figure 2.5 - Figure 2.7 illustrates the evolution of the price estimates, optimal

supply/demand responses and power mismatch estimates of the DG and the FD at the
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(a) (b)

Figure 2.7: Iterative evolution of mismatch estimates of DG and FD at (a) t = 1 and
(b) t = 2 under the state-of-the-art consensus-based algorithm.

two periods and across the algorithm’s iterations. It can be observed that the evolution of

all these variables exhibits an oscillatory behavior and the algorithm fails to converge; the

DG and the FD cannot reach a consensus on the prices and the power mismatch estimates

do not reach zero.

These effects are also demonstrated in Table 2.1 which presents the evolution of

these variables in iterations 23-25. The demand response of the FD shifts between t = 1

and t = 2 in a "lumpy" fashion, creating an oscillatory effect to all other variables.

Table 2.1: Evolution of price estimates, optimal responses and mismatch estimates of
DG and FD in iterations 23-25 of the state-of-the-art algorithm.

r 23 24 25

t 1 2 1 2 1 2

λrj,t (£/kWh) 2.967 3.061 2.565 3.457 2.960 3.057

λrl,t (£/kWh) 2.353 3.665 3.167 2.847 2.349 3.662

grj,t (kW) 246.70 256.11 206.52 295.70 246.01 255.73

drl,t (kW) 150 0 0 150 150 0

erj,t (kW) -42.98 42.78 42.76 -42.91 -42.93 42.81

erl,t (kW) 108.14 -109.45 -109.64 108.61 108.46 -109.27
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2.5 Summary

In this chapter, a broad literature review has been done regarding the existing balanced

coordination approaches applied for the delivery of successful P2P energy trading. The

centralized and decentralized coordination paradigms, including price-based coordination,

ADMM and C+I, although provide the optimal energy management decisions (i.e. the op-

timal solution of EDP) and the relevant energy trading prices, exhibit numerous practical

limitations, for example, high communication costs and computational requirements, reli-

ability concerns brought by single point of failure issues, privacy concerns put forward by

market participants and poor plug-and-play adaptability, due to the existence of a central

entity.

On the other hand, distributed coordination paradigms such as consensus-based

algorithms, do not need a central coordinator, the optimal EDP solution are agreed by

iterative and direct bilateral communication among market participants. However, the

majority of the current consensus-based algorithms solves EDP in independent time peri-

ods. Therefore, they are inherently unable to capture the flexibility potential of FD and

ES with time-coupling characteristics in settling local demand-supply balancing problems.

In order to fill this knowledge gap, a multiple time-period EDP is formulated

to incorporate the participation of FD and ES DER. After outlining the state-of-the-

art consensus-based algorithm, its associated fundamental limitations when solving the

formulated EDP are identified. Firstly, information loss during the iterative process of

consensus-based algorithms affects the price and power mismatch estimates steps. This

could lead to infeasible and non-optimal solutions and suitable measures have been pro-

posed to remediate the limitation by modifying the relevant steps. Apart from that, the

state-of-the-art consensus-based algorithm also fails to converge to the optimal solution of

EDP when involving the participation of FD and ES. To investigate the fundamental rea-

son, a two time-period example has been studied and demonstrates that the convergence

issue is caused by the "lumpy" demand/charge/discharge shifts of FD/ES responses across

different time periods.
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Chapter 3

Proposed Consensus-Based

Algorithm

Having compared the existing centralized, decentralized and distributed coordination ap-

proaches in Chapter 2, it is identified that these approaches either suffers from scalability

and reliability issues or fails to converge to the optimal and feasible solution of EDP with

the participation of FD and ES technologies. Therefore, the main focus of this chapter is

developing promising approaches and novel algorithms in addressing the above limitations.

Section 3.1 introduces relative maximum power restrictions in limiting the maxi-

mum power FD/ES can demand/charge/discharge. Then, its effectiveness and the related

challenge of determining suitable values of the relative maximum power restrictions (for

obtaining feasible and optimal/near-optimal EDP solutions) are investigated. To address

this challenge, Section 3.2 proposes a novel consensus-based algorithm with relative re-

strictions being introduced as additional consensus variables. Finally, Section 3 applies

the proposed consensus-based algorithm to case study examples and demonstrate its ef-

fectiveness in achieving consensus while maintaining the feasibility and optimality of EDP

solution.
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3.1 Introduction of Relative Maximum Power Restriction

As discussed in the previous chapter, the convergence failure of the state-of-the-art

consensus-based algorithm is driven by the "lumpy" power shifts of FD and ES across

different time periods. Therefore, a conceivable approach to address this challenge lies

in suppressing these "lumpy" power shifts by introducing a restriction on the maximum

power that FD and ES resources can demand/supply at each time period.

In realistic problems involving a large number of different FD and ES resources, the

determination of suitable maximum power restrictions for each of these resources becomes

a highly intractable task. This challenge is aggravated by the need to preserve fairness;

resources of similar characteristics should experience a similar maximum power restriction.

In order to deal with these practical challenges, the maximum power restriction is applied

on a relative basis. Specifically, the final maximum demand limit of each FD l at time

period t is given by its actual (technical) maximum demand limit dl,t multiplied by a

relative restriction αt ∈ (0, 1], which should be the same for all FD resources. In a similar

fashion, the final charging/ discharging power capacity of each ES n at time period t is

given by its actual power capacity sn multiplied by a relative restriction βt ∈ (0, 1], which

should be the same for all ES resources.

(a) (b)

Figure 3.1: Iterative evolution of price estimates of DG and FD at (a) t = 1 and (b)
t = 2 under the proposed consensus-based algorithm.

The effectiveness of this approach is demonstrated by considering the same two-

period EDP example of Section 2.4.3, but applying a relative restriction αt = 0.66,∀t
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(a) (b)

Figure 3.2: Iterative evolution of optimal responses of DG and FD at (a) t = 1 and
(b) t = 2 under the proposed consensus-based algorithm.

(a) (b)

Figure 3.3: Iterative evolution of mismatch estimates of DG and FD at (a) t = 1 and
(b) t = 2 under the proposed consensus-based algorithm.

to the FD; this implies that its maximum demand limit is reduced from dl,t =150kW to

αt ∗ dl,t =100kW. Figure 3.1 - Figure 3.3 illustrates the evolution of the price estimates,

optimal supply/demand responses and power mismatch estimates of the DG and the FD at

the two periods and across the algorithm’s iterations. It can be observed that the algorithm

converges after 20 iterations; the DG and the FD reach a consensus on the prices and the

power mismatch estimates converge to zero. Furthermore, the resulting EDP solution

(after convergence) is optimal, i.e. it is identical with the solution obtained by centrally

solving the EDP (2.1)-(2.9), as demonstrated in Table 3.1. Specifically, the resulting total

demand profile is flat (involving 250kW at each of the two periods); in combination with

the fact that the cost function of the DG is quadratic, this flat demand profile yields the
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lowest achievable total cost.

Table 3.1: Demand profile and total cost under different DER coordination ap-
proaches.

Total demand at
t = 1 (kW)

Total demand at
t = 2 (kW) Total cost (£)

Centralized 250 250 875

Consensus-based with
αt = 0.66, ∀t 250 250 875

However, determining suitable values for the relative maximum power restrictions

is not a straightforward task because apart from the convergence of the algorithm, the op-

timality of the resulting EDP solution needs to be considered. Specifically, the application

of very strict restrictions (i.e. a very low αt and βt) may limit excessively the available

flexibility of FD and ES to flatten the total demand profile and thus lead to inefficient

EDP solutions.

This challenge is further demonstrated by considering a multiple time-period EDP

example including 5 DG (indexed from 1 to 5) and 3 FD (indexed from 6 to 8) and applying

different values of αt,∀t. The operating parameters of the test system are presented in

Table 3.2. The examined DER coordination problem assumes a 24-hour horizon and hourly

resolution, and the profile of inflexible demand in this horizon is illustrated in Figure 3.4.

The communication network is illustrated in Figure 3.5 and the respective communication

matrix is:

W =



0.5 0 0.125 0.125 0 0.125 0.125 0

0 0.5 0 0.125 0.125 0 0.125 0.125

0.125 0 0.5 0 0.125 0.125 0 0.125

0.125 0.125 0 0.5 0 0.125 0.125 0

0 0.125 0.125 0 0.5 0 0.125 0.125

0.125 0 0.125 0.125 0 0.5 0 0.125

0.125 0.125 0 0.125 0.125 0 0.5 0

0 0.125 0.125 0 0.125 0.125 0 0.5



.
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The learning gain constant is ϵλ = 0.0008 £/kW2h and the termination tolerances are ελ =

εe =0.01kW. The state-of-the-art consensus-based algorithm is implemented in FICOTM

Xpress [115] on a computer with a 6-core 3.47 GHz Intel(R) Xeon(R) X5690 processor and

192 GB of RAM.

Table 3.2: DER Operating Parameters

DG lj (£/kW) qj(£/kW2) gj (kW) FD EFD
l (kWh) dl (kW) TFD

l

1 0.00142 7.2 700 6 250 200 [2-8]
2 0.00142 7.2 700 7 175 140 [2-8]
3 0.00194 7.85 300 8 165 100 [2-8]
4 0.00163 7.6 200
5 0.00482 7.97 100

Figure 3.4: Profile of inflexible demand.

The obtained results are presented in Table 3.3. The case of αt = 1 effectively

means that no restriction is imposed on FD and the proposed algorithm is equivalent to

the state-of-the-art algorithm; as a result, the algorithm does not converge for the reason

analyzed in Section 2.4.3. The same outcome is observed in the cases of αt = 0.9, αt = 0.8

and αt = 0.7; in these cases, the imposed restriction is not strict enough to mitigate the

concentration of FD responses at the lowest-priced periods and the algorithm still does not

converge.
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Figure 3.5: Communication topology of examined system.

Table 3.3: Results of proposed algorithm for different values of α.

αt,∀t Outcome Cost (£)
1 Not Converge N/A

0.9 Not Converge N/A
0.8 Not Converge N/A
0.7 Not Converge N/A
0.6 Converge 181198
0.5 Converge 181205
0.4 Converge 181220
0.3 Converge 181249
0.2 Infeasible N/A
0.1 Infeasible N/A

Centralized Cost (£) 181197

Figure 3.6 illustrates the evolution of the price estimates, optimal genera-

tion/demand responses and power mismatch estimates of four selected DER at t = 4

when αt = 1. It can be observed that the evolution of all these variables exhibits an oscil-

latory behavior; the DER cannot reach a consensus on the prices and the power mismatch

estimates do not reach zero (similar results can be obtained when αt varies from 0.9 to

0.7).

In the cases of αt varying between 0.6 and 0.3 however, the imposed restriction

mitigates effectively the concentration of FD responses at the lowest-priced periods and

the algorithm achieves convergence. This is demonstrated in Figure 3.7 which illustrates
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(a) (b)

(c) (d)

Figure 3.6: Iterative evolution of (a) price estimates, (b)-(c) optimal responses and
(d) mismatch estimates of different DER at t = 4 under the state-of-the-art consensus-
based algorithm.

the iterative evolution of the price estimates, optimal generation/demand responses and

power mismatch estimates of the DER at t = 4 in the case of αt = 0.6. It can observed

that the algorithm converges after 48 iterations; the DER reach a consensus on the prices

and the power mismatch estimates converge to zero (similar results can be obtained when

αt varies from 0.5 to 0.3).

However, it can be observed that as the imposed restriction becomes stricter (the

value of αt reduces), the available flexibility of FD to flatten the total demand profile is

limited and the obtained solution becomes less cost-efficient (Table 3.3). This is demon-

strated in Figure 3.7 which presents the profile of the total demand in the system at hours

1 − 8 under the proposed algorithm with different values of αt as well as the benchmark

centralized EDP solution. In the case of αt = 1 the algorithm does not converge but the

demand profile of iteration 50 is presented; it can be observed that the demand profile
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(a) (b)

(c) (d)

Figure 3.7: Iterative evolution of (a) price estimates, (b)-(c) optimal responses and
(d) mismatch estimates of different DER at t = 4 under the proposed consensus-based
algorithm with αt = 0.6.

exhibits a new peak at t = 4 since the response of FD is concentrated at this low-priced

hour due to the absence of a maximum power restriction. On the other hand, in the case of

a very strict restriction (αt = 0.3), the FD is restricted so much that the demand profile is

not sufficiently flattened. Application of αt = 0.6 effectively balances the trade-off between

the two effects described before and yields a flatter demand profile which is actually very

close to the profile of the optimal (centralized) EDP solution.

Finally, it should be noted that in the cases of αt = 0.2 and αt = 0.1 the imposed

restriction is so strict that leads to solution infeasibility (Table 3.3). Specifically, the

payment minimization problem of some FD (solved in Step 2 of the algorithm) becomes

infeasible as they cannot obtain their required energy over their flexibility interval.

In conclusion, determining suitable values for the relative maximum power re-

strictions lies in effectively balancing the trade-off between achieving convergence of the
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Figure 3.8: Profile of total demand under centralized solution and proposed consensus-
based algorithm with different values of αt.

consensus-based algorithm and producing an efficient EDP solution. In the examined ex-

ample, the suitable value of maximum power restriction is tuned in a heuristic manner,

by trying out a number of alternative discrete values. Since this heuristic approach may

not be suitable in practical applications, and is not generally able to determine the exact

optimal solution of the coordination problem, a more analytical method is developed and

detailed in the next section.

3.2 Proposed Consensus-Based Algorithm

3.2.1 Algorithm Formulation

In order to determine suitable values for the relative maximum power restrictions αt and

βt, following the logic of consensus-based algorithms, these relative restrictions constitute

additional consensus variables in the algorithm proposed in this paper. In other words,

apart from the price estimates, the DER bilaterally exchange estimates of these relative

restrictions until they reach an agreement regarding both prices and relative restrictions.

Specifically, the proposed algorithm involves the following changes in the state-of-the-art
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algorithm:

Step 0 Initialization

Apart from the rest of the variables (initialized based on the required assumptions discussed

in Section 2.4.1 and Section 2.4.2), the relative restrictions estimated by each DER i are

initialized as (3.1)-(3.2), implying that the algorithm starts from a state where maximum

power restrictions are not applied to the FD and ES resources.

α0
i,t = 1,∀i ∈ I, ∀t ∈ T, (3.1)

β0i,t = 1,∀i ∈ I, ∀t ∈ T (3.2)

Step 1 Price and restriction update

At each iteration r ∈ R, apart from its price estimates, each DER i updates its relative

restriction estimates based on its neighboring DER estimates (3.3)-(3.6). The αr
l,t and

βrn,t estimates of each FD l and ES n, respectively, also include a negative correction term

which is proportional to its absolute power mismatch estimates, weighted by learning gain

constants ϵα and ϵβ , respectively. The rationale behind this correction term is that larger

absolute power mismatches (positive or negative) indicate that the algorithm is further

away from convergence and therefore a stricter restriction (i.e. a lower αt and βt) should

be imposed on FD and ES to suppress their "lumpy" power shifts and steer the algorithm

to convergence.

αr+1
l,t = max(0,

∑
h∈I

Wl,hα
r
h,t − ϵα|erl,t|),∀l ∈ L,∀t ∈ T (3.3)

βr+1
n,t = max(0,

∑
h∈I

Wn,hβ
r
h,t − ϵβ|ern,t|), ∀n ∈ N, ∀t ∈ T (3.4)

αr+1
i,t = max(0,

∑
h∈I

Wi,hα
r
h,t),∀i ∈ I\L,∀t ∈ T (3.5)

βr+1
i,t = max(0,

∑
h∈I

Wi,hβ
r
h,t),∀i ∈ I\N,∀t ∈ T. (3.6)
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Similar to the selection of the learning gain constraint for ϵλ, the learning gain constants

ϵα and ϵβ are assumed to be uniform across all DERs [98–103, 105, 106]. The design of

ϵα and ϵβ requires a tradeoff between convergence speed and power restriction validity,

where a small value may lead to slow convergence, while a large value can achieve faster

convergence but may result in negative power restrictions.

Following the logic of the measures presented in Section 2.4.2, to deal with the

implications of information loss due to communication network imperfections, when DER

i fails to receive at iteration r the supposed messages from its neighboring DER subset Ĩri ,

the elements of the communication matrix employed by DER i for its relative restriction

estimates’ update are modified according to (2.49), and W is substituted by W̃ in (3.3)-

(3.6).

Step 2 Response optimization

The economic surplus maximization problems of FD and ES are modified to account for

the introduction of the relative restrictions in the coordination problem. Specifically, in

the payment minimization problem of each FD l the constraints (2.4) are replaced by

constraints (3.7), and in the arbitrage profit maximization problem of each ES n the

constraints (2.7)-(2.8) are replaced by constraints (3.8)-(3.9).

0 ≤ dl,t ≤ αr
l,t ∗ dl,t,∀l ∈ L,∀t ∈ T (3.7)

0 ≤ sdn,t ≤ βrn,t ∗ sn, ∀n ∈ N, ∀t ∈ T (3.8)

0 ≤ scn,t ≤ βrn,t ∗ sn,∀n ∈ N, ∀t ∈ T. (3.9)

3.2.2 Theoretical Analysis

Beyond the numerical demonstration of the convergence and solution optimality of the

proposed consensus-based algorithm through the following case studies Section 3.3, we

theoretically prove these properties through the two theorems below.
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Theorem 1 : If the communication network is strongly connected and the learning

gains ϵλ, ϵα, ϵβ are small enough, then the proposed algorithm converges to a fixed point.

That is, the consensus variables λi,t, αi,t, βi,t as well as the power mismatches ei,t, ∀i,∀t

converge to a fixed point λ̂t, α̂t, β̂t and êt,∀t, respectively.

For clarity reasons, this proof of Theorem 1 is divided into two parts: the first

one neglects the inequality constraints of the DER, while the second one takes them into

account.

Proof of Theorem 1: Proof without Consideration of DER Inequality Con-

straints

Proof. Let λt,αt,βt and et,∀t ∈ T be the |I|-dimensional column vectors of λi,t, αi,t, βi,t

and ei,t. Then the update rules of the proposed algorithm can be expressed as:

λr+1
t = Wλr

t + ϵλIλe
r
t , (3.10)

αr+1
t = Wαr

t + ϵαIαe
r
t , (3.11)

βr+1
t = Wβr

t + ϵβIβe
r
t , (3.12)

er+1
t = Wert + ur

t , (3.13)

Iλ = [Iλi,h]|I|×|I| is an identity matrix, and Iα = [Iαi,h]|I|×|I| and Iβ = [Iβi,h]|I|×|I|

are diagonal matrices, where:

Iαi,i =


−1 if eri,t > 0, ∀i ∈ L

1 if eri,t < 0, ∀i ∈ L

0 ∀i ∈ I\L,

(3.14)

Iβi,i =


−1 if eri,t > 0, ∀i ∈ N

1 if eri,t < 0, ∀i ∈ N

0 ∀i ∈ I\N.

(3.15)

ur
t is the |I|-dimensional vector of the correction terms uri,t associated with the
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power mismatch updates:

uri,t =



−gr+1
j,t + grj,t ∀i ∈ J

dr+1
l,t − drl,t ∀i ∈ L

−sr+1
n,t + srn,t ∀i ∈ N,

0 ∀i ∈ K ∪M,

(3.16)

where srn,t = sdrn,t−scrn,t. Then, neglecting the DER inequality constraints, these correction

terms can be expressed as a nonlinear feedback derived from the second step of the proposed

algorithm as ((3.18) and (3.19) are derived from the augmented Lagrangian functions of

problems (2c) and (2d), respectively):

urj,t = − argmax
gj,t

∑
t

[
λr+1
j,t gj,t − Cj(gj,t)

]
+ argmax

gj,t

∑
t

[
λrj,tgj,t − Cj(gj,t)

]
(3.17)

url,t = argmin
dl,t,νl

∑
t

[
λr+1
l,t dl,t + Ul(dl,t, νl)

]
− argmin

dl,t,νl

∑
t

[
λrl,tdl,t + Ul(dl,t, νl)

]
(3.18)

urn,t = − argmin
sn,t,πn

∑
t

[
λr+1
n,t sn,t+Un(sn,t, πn)

]
+argmin

sn,t,πn

∑
t

[
λrn,tsn,t+Un(sn,t, πn)

]
(3.19)

urm,t = urk,t = 0, ∀m,∀k. (3.20)

where Cj(gj,t) = ljgj,t+qj(gj,t)
2 is the cost function of DG j and Ul(dl,t, νl) and Un(sn,t, πn)

are defined by (3.21) and (3.22), where νl, ∀l and πn,∀n are the Lagrangian multipliers

associated with the FD and ES equality constraints (for the ES, a single constraint ex-

pressing the combination of constraints 2.5 and 2.9 is considered), and ρ ∈ (0, ρ), ρ > 0 is

a pre-specified penalty parameter [116]. It should be noted that the convex nature of the

objective function that has been defined ensures that the Lagrangian multipliers, as well

as the power operating variables, are uniquely determined.

Ul(dl,t, νl) = νl(E
FD
l −

∑
t∈TFD

l

dl,tτ) +
1

ρ
||EFD

l −
∑

t∈TFD
l

dl,tτ ||22 (3.21)

Un(sn,t, πn) = πn(
∑
t

sdn,t/η
d
n − ηcn

∑
t

scn,t) +
1

ρ
||
∑
t

sdn,t/η
d
n − ηcn

∑
t

scn,t||22 (3.22)



82

By defining d∗l,t=argmin
∑

t

[
λrl,tdl,t + Ul(dl,t, νl)

]
,∀l,∀t we can obtain:

λrl,t +
∂Ul(dl,t, νl)

∂dl,t

∣∣∣∣∣
d∗l,t

= 0, ∀l,∀t. (3.23)

Then (3.24) and (3.25) can be derived from (3.18), where △λri,t = λr+1
i,t − λri,t, ∀i,∀t,∀r.

d∗l,t + url,t = argmin
dl,t,νl

∑
t

[
(λrl,t +△λrl,t)dl,t + Ul(dl,t, νl)

]
, (3.24)

λrl,t +△λrl,t +
∂Ul(dl,t, νl)

∂dl,t

∣∣∣∣∣
d∗l,t+ur

l,t

= 0. (3.25)

In order to analyze the dynamics around the fixed point [99], we write the first order Taylor

expansion for dU(dl,t,νl)
ddl,t

at d∗l,t + url,t as:

∂Ul(dl,t, νl)

∂dl,t

∣∣∣∣∣
d∗l,t

+
∂2Ul(dl,t, νl)

∂2dl,t

∣∣∣∣∣
d∗l,t

× url,t. (3.26)

From the combination of (3.23), (3.25) and (3.26) we obtain:

url,t = −
(∂2Ul(dl,t, νl)

∂2dl,t

∣∣∣∣∣
d∗l,t

)−1
△λrl,t = −ρ

2
△λrl,t, ∀l,∀t. (3.27)

Similar equations are derived for DG j and ES n:

urj,t = −
(∂2Cj(gj,t)

∂2gj,t

∣∣∣∣∣
g∗j,t

)−1
△λj,t = −2qj△λrj,t,∀j,∀t. (3.28)

urn,t = −
(∂2Un(sn,t, πn)

∂2(sn,t)

∣∣∣∣∣
s∗n,t

)−1
△λn,t = −ρ

2
△λrn,t, ∀n, ∀t. (3.29)

By combining previous equations, ur
t can be expressed in a compact matrix form

as:

ur
t = H

(
(I −W )λr

t − ϵλIλe
r
t

)
, (3.30)

where H = [Hi,h]I×I is a diagonal matrix defined as:
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Hi,i =


2qj ∀i ∈ J

ρ/2 ∀i ∈ L ∪N

0 ∀i ∈M ∪K.

(3.31)

Combining (3.10)-(3.13) and (3.30), we can express the proposed algorithm in the

compact matrix form (3.32), where zr
t = [λrT

t ,αrT
t ,βrT

t , erTt ]T denotes the vector of vari-

ables updated through the iterations and B̃ denotes the system matrix, defined by (B24).

zr+1 = B̃zr. (3.32)

B̃ =


W 0 0 ϵλIλ

0 W 0 ϵαIα

0 0 W ϵβIβ

H(I −W ) 0 0 W − ϵλH

 . (B24)

B̃ can be regarded as the perturbation of matrix B, according to equation (3.33), where

B and △ are defined by (3.34) and (3.35), and ϵ = [ϵλ, ϵα, ϵβ, ϵλ] with ϵλ, ϵα, ϵβ being

vectors with all their elements being equal to ϵλ, ϵα, ϵβ , respectively.

B̃(ϵ) = B + ϵ△, (3.33)

B =


W 0 0 0

0 W 0 0

0 0 W 0

H(I −W ) 0 0 W

 , (3.34)

△ =


0 0 0 Iλ

0 0 0 Iα

0 0 0 Iβ

0 0 0 −H

 . (3.35)

Before explicitly analyzing the convergence property of (3.32), a proposition from

matrix perturbation theory [117, 118] is introduced. An eigenvalue of a matrix is charac-

terized semi-simple if its algebraic multiplicity is equal to its geometric multiplicity [119].
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Proposition 1 : Consider an |I| × |I| matrix B̃(ϵ), which depends smoothly on the

parameter ϵ. Fix I ′ ∈ [1, |I|], let σ1 =, · · · ,= σI′ be a semi-simple eigenvalue of B̃(0),

with linear independent right and left eigenvectors x1, · · · ,xI′ and y1, · · · ,yI′ , such that

Y TX = I, where X = [x1, · · · ,xI′ ], Y T = [yT
1 , · · · ,yT

I′ ]
T and I is an identity matrix.

Consider a small ϵ > 0, and denote by σi(ϵ) the eigenvalues of B̃(ϵ) corresponding to

σi, ∀i ∈ [1, I ′]. Then the derivatives dσi(ϵ)
dϵ |ϵ=0 exist, and they are the eigenvalues of the

following I ′ × I ′ matrix:


yT
1
˙̃Bx1 · · · yT

1
˙̃BxI′

...
...

yT
I′

˙̃Bx1 · · · yT
I′

˙̃BxI′

 ,where ˙̃B =
dB̃(ϵ)

dϵ

∣∣∣
ϵ=0

. (3.36)

We now study the eigenvalues of the system matrix B̃ based on those of B. We

arrange the eigenvalues of B̃ in a decreasing order (σ1(ϵ) ≥ σ2(ϵ) ≥ · · · ≥ σi(ϵ) ≥ · · · ).

Firstly, we prove that the first four eigenvalues of B̃, correlating to the semi-simple eigen-

value σ1 = σ2 = σ3 = σ4 of B, satisfy 1 = σ1(ϵ) = σ2(ϵ) = σ3(ϵ) > |σ4(ϵ)|, and then we

prove that the remaining eigenvalues satisfy 1 > |σ5(ϵ)| ≥ · · · ≥ |σi(ϵ)| ≥ · · · , ∀i ∈ [5, 4I],

where | · | is the modulus of the eigenvalue. That is:

1 = σ1(ϵ) = σ2(ϵ) = σ3(ϵ) > |σ4(ϵ)| ≥ · · · ≥ |σi(ϵ)| ≥ · · · . (3.37)

Since B is a lower block triangular diagonal matrix, then its eigenvalues are the eigenvalues

of matrices on the diagonal, i.e., W . W is irreducible because G is strongly connected.

Thus, 1 is a simple eigenvalue of W and the other eigenvalues have modulus smaller than

1. As a result, σ1 = σ2 = σ3 = σ4 is the semi-simple repeated eigenvalue of B and the

remaining eigenvalues lie in the open unit disk on the complex plane. Construct vectors

x1,x2,x3,x4 and y1,y2,y3,y4 as follows:

X =
[
x1 x2 x3 x4

]
=



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 −η
I 1


, (3.38)
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where η =
∑

i∈I Hi,i, 0 and 1 are vectors of ones and zeros with size I, and

Y T =



yT
1

yT
2

yT
3

yT
4


=



1
I1

TH 0 0 1
I1

T

0 0 1
I1

T 0

0 1
I1

T 0 0

1
I1

T 0 0 0


. (3.39)

These vectors are the four linear independent right and left eigenvectors of B associated

with σ1 = σ2 = σ3 = σ4 = 1 and they satisfy Y TX = I. Based on Proposition 1, the

following stand:

∂σi(ϵ)

∂ϵ
= 0, ∀i ∈ {1, 2, 3} (3.40)

∂σ4(ϵ)

∂ϵ
= −η

I
1T1 = −η. (3.41)

Equation (3.40) implies that the eigenvalues σ1(ϵ), σ2(ϵ) and σ3(ϵ) of B̃(ϵ) do not change

with ϵ and σ1(ϵ) = σ2(ϵ) = σ3(ϵ) = 1. Based on (3.41) and since η =
∑

i∈I Hi,i > 0,

by increasing ϵ from zero, σ4(ϵ) moves within the open unit disk on the complex plane.

Let θ1 be the upper bound of ϵ such that when ϵ < θ1, |σ4(ϵ)| < 1. According to

Bauer-Fike theorem [120], the perturbation of the remaining eigenvalues of B̃(ϵ) from

those of B are continuous functions of matrix entries, and there exists a small θ2 such

that for all 0 < ϵ < θ2, σi(B) < 1,∀i ∈ {5, · · · , 4I) [98, 99, 101, 105]. Now, by choosing

0 < ϵ < ϵ = min(θ1,θ2) we can assure that the eigenvalues of B̃(ϵ) lie in the open unit

disk on the complex plane except σi(ϵ),∀i ∈ {1, 2, 3}, thus (3.37) holds.

We now prove the convergence of the proposed algorithm. Based on equation (3.32)

and the difference equation theory [121], the response of the system can be written as:

[
zr
t

]
= (B̃(ϵ))rz0

t = a1σ1(ϵ)
rv1 + · · ·+ aiσi(ϵ)

rvi + · · · , (3.42)

where z0
t = [λ0T

t ,α0T
t ,β0T

t , e0Tt ]T is the initial condition of zt, ai = v−1z0
t are constant

coefficients, v = [v1,v2, · · · ,v4I ] and vi are the eigenvectors of the system. It can be

verified that v1 = [1T 0 0 0]T , v2 = [0 1 0 0]T and v3 = [0 0 1 0]T are eigenvectors

of system matrix B̃ associated with σ1(ϵ) = σ2(ϵ) = σ3(ϵ) = 1. Since all the remaining

eigenvalues are within the open unit disk limr→∞(σi(ϵ))
r = 0, ∀i ∈ [4, 4I] [98, 105], we
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have:

as r → ∞,


λr

αr

βr

er

 converges to span


1

1

1

0

 . (3.43)

This means that the algorithm converges to a fixed point, i.e. λi,t → λ̂t, αi,t →

α̂t, βi,t→ β̂t, ei,t→ êt=0,∀i,∀t. The proof is complete. ■

Proof of Theorem 1: Proof with Consideration of DER Inequality Constraints

Proof. The conditions
∑

t∈TFD dl,tτ >E
FD
l ,∀l and 0<

∑
mDm,t+

∑
l dl,t−

∑
kGk,t+

∑
n sn,t<∑

j gj ,∀t are necessary for the feasibility of problem (1a)-(1j). Considering the DER in-

equality constraints according to the analysis in [98,99,105] , if grj,t, d
r
l,t or srn,t is saturated,

the diagonal matrix H will change to H̃, defined by (3.44), and there is at least one

H̃i,i ̸= 0 based on the above necessary conditions.

H̃i,i =


0 if grj,t, d

r
l,t, or srn,t is saturated

Hi,i otherwise.
(3.44)

Following a similar eigenvalue perturbation analysis as in Section 3.2.2 above, when ϵλ, ϵα

and ϵβ are sufficiently small, the same convergence conclusion of (3.43) is obtained. The

proof is complete. ■

Theorem 2 : Assuming that a feasible solution exists for the centralized EDP in the

absence of power restrictions, if the proposed algorithm converges to a fixed point, then

that fixed point coincides with the optimal solution of the centralized EDP.

Let λ̂, α̂, β̂, ê and ĝ, d̂, ŝd, ŝc, Ê be the column vectors of the fixed points

λ̂t, α̂t, β̂t, êt and ĝt, d̂t, ŝdt, ŝct, Êt of the proposed algorithm. Since the objective func-

tion (1a) of the EDP is strictly convex, [ĝ d̂ ŝd ŝc Ê]T is the unique optimal solution

of the EDP if there are Lagrangian multipliers λt, ∀t (associated with constraints (2.11)),

µ
j,t
, µj,t, ∀j,∀t (associated with constraints (2.2)), νl,∀l (associated with constraints (2.3)),

ξ
l,t
, ξl,t, ∀l,∀t (associated with constraints (2.4)), πn,∀n (associated with the combination
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of constraints (2.5) and (2.9), as explained in Section 2.3), ϕ
n,t
, ϕn,t,∀n,∀t (associated with

constraints (2.6)), χ
n,t
, χn,t,∀n,∀t (associated with constraints (2.7)) and ψ

n,t
, ψn,t,∀n,∀t

(associated with constraints (2.8)) such that the following Karush-Kuhn-Tucker (KKT)

optimality conditions of the EDP are satisfied.

∂Cj(gj,t)/∂gj,t|ĝj,t − λt − µ
j,t

+ µj,t = 0,∀j,∀t (3.45)

λt − νl − ξ
l,t

+ ξl,t = 0,∀l,∀t (3.46)

−λt + πn−χn,t
+χn,t=0,∀n,∀t (3.47)

λt − πn−ψn,t
+ψn,t=0,∀n,∀t (3.48)∑

m
Dm,t +

∑
l
d̂l,t −

∑
j
ĝj,t −

∑
k
Gk,t −

∑
n
(ŝdn,t − ŝcn,t) = 0,∀t, (3.49)

EFD
l −

∑
t∈TFD

l

d̂l,t = 0, ∀l (3.50)∑
t
ŝdn,t/η

d
n − ηcn

∑
t
ŝcn,t = 0, ∀n (3.51)

0 ≤ ĝj,t ≤ gj , ∀j,∀t (3.52)

µ
j,t
(−ĝj,t) = 0, µ

j,t
≥ 0,∀j,∀t (3.53)

µj,t(ĝj,t − gj) = 0, µj,t ≥ 0, ∀j,∀t (3.54)

0 ≤ d̂l,t ≤ dl,t, ∀l,∀t (3.55)

ξ
l,t
(−d̂l,t) = 0, ξ

l,t
≥ 0,∀l,∀t (3.56)

ξl,t(d̂l,t − dl,t) = 0, ξl,t ≥ 0, ∀l,∀t (3.57)

0 ≤ ŝdn,t ≤ sn,∀n,∀t (3.58)

χ
n,t

(−ŝdn,t) = 0, χ
n,t

≥ 0,∀n,∀t (3.59)

χn,t(ŝdn,t − sn) = 0, χn,t ≥ 0,∀n,∀t, (3.60)

0 ≤ ŝcn,t ≤ sn, ∀n, ∀t (3.61)

ψ
n,t

(−ŝcn,t) = 0, ψ
n,t

≥ 0,∀n,∀t (3.62)

ψn,t(ŝcn,t − sn) = 0, ψn,t ≥ 0,∀n,∀t, (3.63)

0 ≤ Ên,t ≤ En,∀n,∀t (3.64)
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ϕ
n,t

(−Ên,t) = 0, ϕ
n,t

≥ 0,∀n,∀t (3.65)

ϕn,t(Ên,t − En) = 0, ϕn,t ≥ 0,∀n,∀t. (3.66)

Proof of Theorem 2

Proof. From equations (2.36)-(2.40) and the fact that matrix W is doubly stochastic, we

have:
1Ter+1

t = 1TWert − 1T [pr+1
t − pr

t ]

⇒ 1T [pr+1
t + er+1

t ] = 1T [pr
t +Wert ]

= 1T [pr
t + ert ]

= · · · = 1T [p0
t + e0t ], ∀t.

(3.67)

where pr
t = [grT

t ,−drT
t , srTt ,0T ,0T ]T is an I-dimensional vector of pri,t with gr

t ,d
r
t , s

r
t

and 0 being vectors of grj,t, d
r
l,t, s

r
n,t and zeros, respectively. p0

t = [g0T
t ,−d0T

t , (sd0
t −

sc0t )
T ,0T ,0T ]T is the initialization of pr

t .

Equation (3.67) implies that
∑

i(p
r
i,t+ e

r
i,t),∀t are constant for all r. Assuming that

the initialization of the algorithm follows (3.68), then the following corollary is obtained.

∑
i e

0
i,t +

∑
i p

0
i,t =

∑
mDm,t −

∑
kGk,t, ∀t.

⇒
∑

i e
0
i,t +

∑
j g

0
j,t −

∑
l d

0
l,t +

∑
n(sd

0
n,t − sc0n,t)

=
∑

mDm,t −
∑

kGk,t, ∀t.

(3.68)

Corollary 1 :
∑

i e
r
i,t =

∑
mDm,t−

∑
kGk,t−

∑
i p

r
i,t =

∑
mDm,t−

∑
kGk,t−

∑
j g

r
j,t+∑

l d
r
l,t −

∑
n(sd

r
n,t − scrn,t), ∀t. This equation means that the sum of the power mismatch

estimates of all DER i is equal to the actual power mismatch at each time period.

When the algorithm converges, ei,t → êt, ∀i,∀t. Since êt = 0,∀t, according to

Corollary 1, the actual power mismatch at each time period t equals zero. Thus, the

obtained fixed point satisfies the demand-supply balance constraints (3.49).

According to the second step of the algorithm, the fixed point ĝj,t is the optimal

solution of (2.31), thus:

0 ≤ ĝj,t ≤ gj , ∀j,∀t. (3.69)
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Let g∗j,t be the optimal solution of (2.31) when the inequality constraints (2.2) are neglected.

Concerning the KKT optimality conditions (3.45), (3.52)-(3.54) related to each DG j ∈ J ,

three possibilities arise:

1) 0 < g∗j,t < gj : In this case, ĝj,t = g∗j,t and ∂Cj(gj,t)
gj,t

|ĝj,t − λ̂t = 0. From (3.45), by

taking λt = λ̂t, µj,t = µj,t = 0 (3.45), (3.52)-(3.54) are satisfied.

2) g∗j,t ≤ 0: In this case, ĝj,t = 0 ≥ g∗j,t and ∂Cj(gj,t)
gj,t

|ĝj,t − λ̂t ≥ 0. From (3.45), by taking

λt = λ̂t, µj,t = 0 and µ
j,t

=
∂Cj(gj,t)

gj,t
|ĝj,t − λ̂t (3.45), (3.52)-(3.54) are satisfied.

3) gj,t ≤ g∗j,t: In this case, ĝj,t = gj,t ≤ g∗j,t and ∂Cj(gj,t)
gj,t

|ĝj,t − λ̂t ≤ 0. From (3.45),

by taking λt = λ̂t, µj,t = 0 and µj,t = −∂Cj(gj,t)
gj,t

|ĝj,t + λ̂t (3.45), (3.52)-(3.54) are

satisfied.

According to the second step of the algorithm, the fixed point d̂l,t is the optimal

solution of (2.32), thus:

EFD
l −

∑
t∈TFD

l

d̂l,t = 0, ∀l (3.70)

0 ≤ d̂l,t ≤ α̂t ∗ dl,t, ∀l,∀t (3.71)

implying that (3.50) is satisfied.

Let d∗l,t be the optimal solution of (2.32) when the constraints are replaced by (2.3).

Concerning the remaining (apart from (3.50)) KKT optimality conditions (3.46), (3.55)-

(3.57) related to each FD l ∈ L, three possibilities arise:

1) 0 < d∗l,t < α̂t ∗dl,t ≤ dl,t: In this case, d̂l,t = d∗l,t. From (3.46), by taking λt = νl = λ̂t,

ξ
l,t

= ξl,t = 0 (3.46), (3.55)-(3.57) are satisfied.

2) d∗l,t ≤ 0: In this case, d̂l,t = 0 ≥ d∗l,t. From (3.46), by taking λt = νl = λ̂t,

ξl,t = ξ
l,t

= 0 (3.46), (3.55)-(3.57) are satisfied.

3) α̂t ∗ dl,t ≤ d∗l,t ≤ dl,t or dl,t ≤ d∗l,t: In this case, d̂l,t = α̂t ∗ dl,t ≤ d∗l,t. From (3.46), by

taking λt = νl = λ̂t, ξl,t = ξl,t = 0 (3.46), (3.55)-(3.57) are satisfied.

According to the second step of the algorithm, the fixed point (ŝdn,t, ŝcn,t, Ên,t) is
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the optimal solution of (2.33), thus:

0 ≤ ŝdn,t ≤ β̂t ∗ sn,∀n,∀t (3.72)

0 ≤ ŝcn,t ≤ β̂t ∗ sn, ∀n, ∀t (3.73)

En ≤ Ên,t ≤ En, ∀n, ∀t (3.74)∑
t
sdn,t/η

d
n − ηcn

∑
t
scn,t = 0,∀n, (3.75)

implying that (3.51) is satisfied.

Let (sd∗n,t, sc
∗
n,t, E

∗
n,t) be the optimal solution of (2.33) when the constraints are

replaced by (2.5) and (2.9). Concerning the remaining (apart from (3.51)) KKT optimality

conditions (3.47)-(3.48), (3.58)-(3.66) related to each ES n ∈ N , the following possibilities

arise:

1) 0 < sd∗n,t(sc
∗
n,t) < β̂t ∗ sn ≤ sn: In this case, ŝdn,t(ŝcn,t) = sd∗n,t(sc

∗
n,t). From

(3.47) ((3.48)), by taking λt = πn = λ̂t, χn,t
= χn,t = 0 (ψ

n,t
= ψn,t = 0) (3.47),

(3.58)-(3.60) ((3.48), (3.61)-(3.63)) are satisfied.

2) sd∗n,t(sc∗n,t) ≤ 0: In this case, ŝdn,t(ŝcn,t) = 0 > sd∗n,t(sc
∗
n,t). From (3.47) ((3.48)), by

taking λt = πn = λ̂t, χn,t
= χn,t = 0 (ψ

n,t
= ψn,t = 0) (3.47), (3.58)-(3.60) ((3.48),

(3.61)-(3.63)) are satisfied.

3) β̂t ∗ sn < sd∗n,t(sc
∗
n,t) ≤ sn or sn < sd∗n,t(sc

∗
n,t): In this case, ŝdn,t(ŝcn,t) = β̂t ∗ sn <

sd∗n,t(sc
∗
n,t). From (3.47) ((3.48)), by taking λt = πn = λ̂t and χ

n,t
= χn,t = 0

(ψ
n,t

= ψn,t = 0) (3.47), (3.58)-(3.60) ((3.48), (3.61)-(3.63)) are satisfied.

4) 0 < E∗
n,t < En: In this case, Ên,t = E∗

n,t. By taking ϕ
n,t

= ϕn,t = 0 (3.64)-(3.66) are

satisfied.

5) E∗
n,t ≤ 0: In this case, Ên,t = 0 ≥ E∗

n,t. By taking ϕ
n,t

= ϕn,t = 0 (3.64)-(3.66) are

satisfied.

6) En ≤ E∗
n,t: In this case, Ên,t = En ≤ E∗

n,t. By taking ϕ
n,t

= ϕn,t = 0 (3.64)-(3.66)

are satisfied.

Therefore, there are λt, ∀t, µj,t, µj,t,∀j,∀t, νl,∀l, ξl,t, ξl,t, ∀l,∀t, πn,∀n, ϕ
n,t
, ϕn,t,∀n,∀t,

χ
n,t
, χn,t,∀n,∀t and ψ

n,t
, ψn,t,∀n,∀t such that the KKT optimality conditions of the EDP
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are satisfied and thus the fixed point of the proposed algorithm is the optimal solution of

the EDP. The proof is complete. ■

3.3 Case Studies

3.3.1 Test Data and Implementation

Case studies are carried out on a test system including 14 DG (indexed from 1 to 14),

4 IG (indexed from 15 to 18), 4 FD (indexed from 19 to 22), 4 ID (indexed from 23 to

26), and 4 ES units (indexed from 27 to 30). The operating parameters of these DER are

provided in the Appendix A. The examined DER coordination problem assumes a 24-hour

horizon and hourly resolution. The maximum number of neighboring DER of each DER

i is 4 and the employed communication matrix W ∈R30×30 is included in the Appendix

A. The learning gain constants are ϵλ = 0.0005£/kW2h, ϵα = ϵβ = 0.00031kW−1, and the

termination tolerances are ελ=εe = 0.001kW. The initialization values are provided in the

appendix and are further discussed in Section 3.3.4.

The state-of-the-art and the proposed consensus-based algorithms have been imple-

mented in FICOTM Xpress on a computer with a 6-core 3.47 GHz Intel(R) Xeon(R) X5690

processor and 192 GB of RAM.

3.3.2 Convergence Failure of State-of-the-art Consensus-Based Algo-

rithm

The aim of the first study lies in validating the conclusion of Section 2.4.3 i.e. that the

state-of-the-art consensus-based algorithm fails to converge when FD and ES resources

participate in the DER coordination problem, by applying this algorithm in the examined

test system. Figure 3.3.2 illustrates the iterative evolution of the price estimates, optimal

supply/demand responses and power mismatch estimates of five selected DER (one from

each of the five considered types of DER, i.e. a DG, an IG, a FD, an ID, and an ES) at

t = 4.

In a similar fashion with the results of the simple two-period example of Sec-
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(a) (b)

(c)

Figure 3.9: Iterative evolution of (a) price estimates, (b) optimal responses and (c)
mismatch estimates of different DER at t = 4 under the state-of-the art consensus-
based algorithm.

tion 2.4.3, it can be observed that the evolution of all these variables (apart from the

responses of IG and ID, which are fixed by definition) exhibits an oscillatory behavior. As

a result, the algorithm fails to converge; the DER cannot reach a consensus on the prices

and the power mismatch estimates do not reach zero. As discussed in Section 2.4.3, this

convergence failure is driven by the discontinuities in the FD and ES optimal responses

and the resulting "lumpy" power shifts across different time periods.

3.3.3 Performance of Proposed Consensus-Based Algorithm

The aim of the second study lies in demonstrating the convergence and solution optimality

of the proposed consensus-based algorithm (Section 3.2), by applying this algorithm in the

examined test system. Figure 3.10 illustrates the iterative evolution of the price estimates,

relative FD and ES power restriction estimates, optimal supply/demand responses and
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power mismatch estimates of the same five DER at t = 4. It can be observed that the

(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Iterative evolution of (a) price estimates, (b) FD power restriction esti-
mates, (c) ES power restriction estimates, (d) optimal responses, (e) mismatch esti-
mates of different DER at t = 4 under the proposed consensus-based algorithm and
(f) total cost deviation between the proposed consensus-based algorithm and the cen-
tralized solution.

algorithm converges after 64 iterations. The DER reach a consensus on the price (λ4 =

7.7£/kWh) and the relative FD and ES power restrictions ( α4 = 0.38 and β4 = 0.3),

and the power mismatch estimates converge to zero. Compared to the simple two-period,

three-DER example of Section 2.4.3, the number of required iterations has increased by a
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factor of 64/20 = 3.2, despite the fact that the number of time periods has increased by

a factor of 24/2 = 12 and the number of DER has increased by a factor of 30/3 = 10,

demonstrating the good scalability of the proposed algorithm.

Furthermore, the resulting EDP solution (after convergence) is optimal, i.e. it is

identical with the solution obtained by centrally solving the EDP (2.1)-(2.9). This is

demonstrated through Figure 3.10 (f) which presents the iterative evolution of the total

cost deviation between the proposed algorithm and the centralized solution. It can be

observed that this deviation is gradually reduced through the iterations and reaches zero

after the proposed algorithm converges (after 64 iterations).

As discussed in Section 3.1, the proposed consensus-based algorithm resolves the

convergence failure of the state-of-the-art algorithm by mitigating the concentration of

the FD and ES responses at the lowest-priced and highest-priced periods, through the

application of relative maximum power restrictions on FD and ES resources. This is

demonstrated through Figure 3.11 and Figure 3.12 which present the dispatch profiles

of FD22 and ES30 under the state-of-the-art consensus-based algorithm (this algorithm

fails to converge but the dispatch profiles at iteration 100 are presented), the proposed

consensus-based algorithm (after convergence), and the centralized solution.

Under the state-of-the-art algorithm, the dispatch of FD22 is concentrated at the

two hours with the lowest price estimates within its flexibility interval TFD
22 = [1, 6], i.e.

hours 4 and 5 (Figure 3.11). Furthermore, the charging dispatch of ES30 is concentrated

at the hour with the lowest price estimate in the day, i.e. hour 4, and its discharging

dispatch is concentrated at the hour with the highest price estimate in the day, i.e. hour

18 ( Figure 3.12). On the other hand, under the proposed algorithm, the dispatch profiles

of FD22 and ES30 are smoother as they spread across a larger number of hours because

of the application of maximum power restrictions. Specifically, the dispatch of FD22 is

spread across hours 3-6 as a result of the application of the FD power restrictions αt, and

the charging/discharging dispatch of ES30 is spread across hours 3-5/17-19 as a result of

the application of the ES power restrictions βt. Going further, these dispatch profiles are

identical with the respective profiles of the centralized solution, which demonstrates that
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Figure 3.11: Dispatch profile of FD22 under different DER coordination approaches.

Figure 3.12: Dispatch profile of ES30 under different DER coordination approaches
(positive values indicate charging and negative values indicate discharging).
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the proposed algorithm discovers suitable values of the relative maximum power restrictions

in order to reach the optimal EDP solution (as also demonstrated by Figure 3.10 (f)).

3.3.4 Robustness to Initialization

As discussed in Section 2.4.1 and Section 3.2, the proposed consensus-based algorithm

involves certain initialization requirements. Assuming that these basic requirements are

satisfied, the objective of this section lies in quantitatively investigating the robustness of

the proposed algorithm to different initialization values. In this context, we have tested

four different scenarios regarding the initialization of the (dispatchable) DER dispatch

variables (Table 3.4).

Table 3.4: Number of required iterations of the proposed algorithm for different
initialization scenarios.

Scenario g0j,t, ∀j,∀t d0l,t,∀l,∀t
(sc0n,t, sd

0
n,t),

∀n, ∀t
Number of
iterations

A 0 0 (0,0) 69

B gj dl,t (sn,sn) 60

C 1
2gj

1
2dl,t (12sn,12sn) 66

D rand([0, gj ]) rand([0, dl,t])
(rand([0, sn]),
rand([0, sn]))

64

In scenarios A, B and C, the dispatch variables are initialized to their lowest admis-

sible values, their highest admissible values, and the average values within their admissible

range, respectively; in scenario D, which constitutes the initialization scenario examined

in Section 3.3.3, the dispatch variables are initialized to random values within their ad-

missible range. Regarding the rest of the algorithm’s variables, the dispatch variables of

IG, the dispatch variables of ID, and the price estimates are initialized based on equations
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(3.76), (3.77), and (3.78), respectively.

G0
k,t = Gk,t,∀k, ∀t, (3.76)

D0
m,t = Dm,t, ∀m,∀t, (3.77)

λ0i,t =


2qig

0
j,t + li ∀i ∈ J, ∀t

0 ∀i ∈ I\J, ∀t
(3.78)

Figure 3.13: Iterative evolution of actual power mismatch at t = 4 between the pro-
posed consensus-based algorithm and the centralized solution, under different initial-
ization conditions.

The last column of Table 3.4 presents the number of required iterations for con-

vergence and Figure 3.13 - Figure 3.14 present the iterative evolution of the actual power

mismatch at t = 4 and the total cost deviation between the proposed algorithm and the

centralized solution, under each of the four initialization scenarios. These results demon-

strate that the proposed algorithm converges to the optimal solution for all initialization

scenarios, and the number of required iterations is relatively constant.
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Figure 3.14: Iterative evolution of total cost deviation between the proposed
consensus-based algorithm and the centralized solution, under different initialization
conditions.

3.3.5 Robustness to Information Loss

As discussed in Section 2.4.2 and Section 3.2, the proposed algorithm includes certain

measures to deal with the implications of information loss due to communication network

imperfections. The objective of this section lies in quantitatively analyzing the robustness

of the proposed algorithm against information loss, by assuming that such loss between

two DER i and h occurs with a given probability p. For each iteration r and couple of DER

(i, h) an independent random number within the range [0, 1] is generated; if this number

is lower than or equal to p, the information sent from DER i fails to be received by DER

h at iteration r.

Figure 3.15 and Figure 3.16 present the iterative evolution of the actual power

mismatch at t = 4 and the total cost deviation between the proposed algorithm and

the centralized solution, under two different information loss scenarios with p = 5% and

p = 15%. These results demonstrate that the proposed algorithm converges to the optimal

solution for both scenarios, and the number of required iterations increases only to a small
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Figure 3.15: Iterative evolution of actual power mismatch at t = 4 between the pro-
posed consensus-based algorithm and the centralized solution, under different infor-
mation loss scenarios.

Figure 3.16: Iterative evolution of total cost deviation between the proposed
consensus-based algorithm and the centralized solution, under different information
loss scenarios.
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extent when the level of information loss is higher (68 iterations in the scenario with p = 5%

and 73 iterations in the scenario with p = 15%, compared to 64 iterations in the scenario

without information loss presented in Section 3.3.3).

3.3.6 Comparison with FBC Algorithm

As discussed in Section 2.2, FBC algorithm solves EDP by adding an additional flooding-

based iterative process in every iteration of the consensus algorithm. This additional

process allows each DER transmits its own and received estimates to its neighbors until

every DER agent in the network has a complete list of the estimates of all other agents.

Following the same logic of the proposed algorithm, a variant of FBC can be proposed

in addressing the same coordination issue. In this section, we first formulate the FBC

algorithm in solving the examined EDP with additional consensus variables. Then, a nu-

merical comparison is carried out in comparing its the convergence speed with the proposed

algorithm.

Specifically, in the flooding-based iterative process, at each consensus iteration r,

each DER i initially broadcasts the pair (IDi,Xi) to its neighbors, where IDi is the identity

number of each DER and Xi = [λr−1
i ,αr−1

i ,βr−1
i , er−1

i ] with λr−1
i ∈ RT , αr−1

i ∈ RT ,

βr−1
i ∈ RT , er−1

i ∈ RT being vectors of λr−1
i,t , αr−1

i,t , βr−1
i,t , er−1

i,t , respectively. Then DER

i keeps forwarding any new pairs it receives iteratively. In the end, each DER i will have

a complete list of consensus variables and power mismatch estimated by other DER. The

flooding-based process is summarized in Algorithm 1.

Then, each DER i follows the same iterative process as the proposed algorithm,

but calculates the price estimates and power mismatch estimates at iteration with the full

knowledge of the rest DER’s estimates. The entries of communication matrix W is set

as Wi,i = 1/2 and Wi,h = 1/(2(|I| − 1)),∀i, h ∈ I, where |I| is the cardinality of set I.

The FBC algorithm enables each DER have full knowledge of all other DERs’ consensus

variables estimates and power mismatch estimates. However, this necessitates a dedicated

iterative process to enable massive information/data transfer in the whole population of

DER.
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Algorithm 1 Flooding-based Process
1: Neighbor set Ii,∀i, initial pair (IDi,Xi), ∀i
2: Each node has the complete list of all other nodes’ values, total number of iterations
q. q = 0 listi = {IDi} storei = {Xi} exchangei = {(IDi,Xi)} receivei = ∅

3: if exchangei ̸= ∅,∀i then
4: q = q + 1
5: for i ∈ I do
6: if exchangei ̸= ∅ then
7: Send exchangei to neighbors h ∈ Ii exchangei = ∅
8: end if
9: receivei = pairs received from neighbors

10: for {(IDh,Xh)} ∈ receivei do
11: if IDh /∈ listi then
12: listi = listi ∪ {IDh} storei = storei ∪ {Xh} exchangei = exchangei ∪

{(IDh,Xh)}
13: end if
14: end for
15: end for
16: end if

Table 3.5 compares the total number of steps and the total amount of informa-

tion/data (the single value of price/power mismatch estimate is counted as one information

unit) transferred when FBC and the proposed algorithm converge under different commu-

nication topologies. The information need to be exchanged are λi,t, αi,t, βi,t, ei,t,∀i,∀t.

Table 3.5: Comparison of the FBC and proposed consensus-based algorithms.

Communication convergence steps total information exchanged
Topology FBC Proposed FBC Proposed

Star 198 129 11,024,640 371,520
Ring 1,056 65 11,404,800 187,200
Line 1,980 74 11,024,640 213,120

Random 1 858 67 12,545,280 192,960
Random 2 330 64 22,809,600 184,320

It can be observed from Table 3.5 that the information required to be transferred

using FBC is greatly larger than the information required to be transferred using the pro-

posed algorithm. Moreover, the FBC algorithm requires 66 steps to converge even after the

flooding-based process, which is slower than the proposed consensus-based algorithm under

Ring and Random 2 (the topology used throughout Section 3.3) topologies. This indicates

that updating consensus variables estimates and power mismatch estimates by using full
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knowledge of all other agents’ estimates does not necessarily accelerate the convergence

speed of the proposed consensus-based algorithm. Therefore, the additional flooding-based

iterative process increases greatly the computational burden and at the same time decreases

the efficiency of the proposed consensus-based algorithm.

3.3.7 Plug-and-Play Adaptability

As discussed in Section 2.2, an important feature desired for a DER coordination ap-

proach is plug-and-play adaptability. This feature implies the ability of the coordination

approach to efficiently sustain its feasibility and optimality properties despite the potential

disconnection (plug-off) of existing DER and/or the connection (plug-in) of new DER. The

objective of this section lies in quantitatively investigating the plug-and-play adaptability

of the proposed consensus-based algorithm, by assuming that after the convergence of the

algorithm to the (optimal) solution of Section 3.3.3, the following sequential plug-off/plug-

in events take place: A) plug-off ES21 and ES22, B) plug-off FD18 and plug-in DG31 and

DG32, and C) plug-in FD33 and FD34.

Each of these events results in a pre-defined change of the communication matrix

W ; the communication matrix after each event as well as the parameters of the new DER

DG31, DG32, FD33 and FD34 are provided in Table A.7 to Table A.10 in Appendix A.

Note that a global rest process is done for the relative maximum power restrictions when

each event takes place, i.e. αi,t = 1 and βi,t = 1,∀i,∀t. In line with the spirit of plug-and-

play adaptability, the learning gain constants ϵλ, ϵα, ϵβ are not changed after each event,

and the values of the prices, dispatch and mismatches estimated by each DER are not

re-initialized after each event.

Fig. 3.17 presents the iterative evolution of the price estimates, relative FD and ES

power restriction estimates and power mismatch estimates of five selected DER (including

the new DG31 and FD33 which are plugged-in) at t = 4. It can be observed that the

proposed algorithm manages to converge after every plug-off/plug-in event, despite some

initial fluctuations, and the number of required iterations for convergence is relatively

constant (specifically, 49, 51 and 55 iterations after event A, B and C, respectively). Fur-
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(a) (b)

(c) (d)

Figure 3.17: Iterative evolution of (a) price estimates, (b) FD power restriction es-
timates, (c) ES power restriction estimates, and (d) mismatch estimates of different
DER at t = 4 under the proposed consensus-based algorithm and the assumed plug-
off/plug-in events.

thermore, Figure 3.18 presents the iterative evolution of the total cost deviation between

the proposed algorithm and the centralized solution. It can be observed that this deviation

always reaches zero when the proposed algorithm converges, implying that the proposed

algorithm manages to determine the optimal solution after every plug-off/plug-in event.

The algorithm achieves that by suitably adapting the relative maximum power

restrictions after each event (Fig. 8 (b) and (c)). After event A, the consented αt and βt are

increased because plugging-off ES resources reduces the available temporal redistribution

flexibility in the DER portfolio and the resulting "lumpy" power shifts, implying that less

strict restrictions should be imposed on FD and ES resources to reach an efficient solution.

The same happens after event B which involves plugging-off FD. After event C on the

other hand, the consented αt and βt are reduced because new FD resources are plugged-in.
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Figure 3.18: Iterative evolution of total cost deviation between the proposed
consensus-based algorithm and the centralized solution.

3.4 Summary

In this chapter, a relative maximum power restriction is introduced to prevent FD/ES con-

centrating their demanding/charging/discharging actions and avoid the associated "lumpy"

power shift across different time periods. Considering the same two time-period EDP exam-

ple of Section 2.4.3, the consensus-based algorithm converges within finite steps of iteration

when applying this approach.

However, determining suitable values of the maximum power restrictions is challeng-

ing. The multi-period 8-DER example in Section 3.1 verifies that the algorithm fails to

converge when the restrictions are too relaxed as the concentration of FD/ES responses are

not sufficiently improved. However, as the restrictions become too strict, the algorithm will

lead to infeasible solutions since some FD may not be able to demand the require energy

over their flexibility interval. In the cases of converging results, as the values of maxi-

mum power restrictions becomes more stricter, the available flexibility are more limited,

resulting inefficient EDP solutions.
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Inspired by the logic of consensus algorithms, a novel consensus-based coordination

algorithm has been proposed. It adds relative power restrictions as consensus variables

and the suitable values are agreed through iterative updates by DER owners. The op-

timality and convergence of the proposed algorithm are verified by theoretical analysis

provided in Section 3.2.2. Numerical case studies are carried out to investigate its perfor-

mance from perspectives of effectiveness, robustness to initialization and information loss,

computational complexity compared to FBC and plug-and-play adaptability.

In conclusion, this chapter addresses emerging DER coordination challenges by

proposing a consensus-based algorithm. It enables local P2P trading incorporating the

participation of FD and ES flexibilities and determines optimal energy management deci-

sions and energy trading prices in a fully distributed manner. In the following two chapters,

two alternative incentivizing pricing and benefit allocation methods for P2P energy trading

will be introduced.
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Chapter 4

Cooperative Game Theoretic P2P

Energy Trading Market

4.1 Introduction

In recent years, governments across the world have taken significant initiatives towards the

decarbonization of energy systems targeted to address environmental and climate change

concerns [122]. Alongside which, significant techno-economic challenges emerges primarily

associated with the costly balancing of renewable generation and the increase of demand

peaks. Aiming at tackling these challenges, a large-scale deployment of distributed en-

ergy resources (DER) has been witnessed, including distributed renewable energy sources

(RES) and energy storage (ES) units in distribution networks. This enables delivery of

the required flexibility to support the cost-effective transition to the low-carbon energy

future [73, 74]. This also enhances consumers’ ability to harness the energy and turns

them to prosumers who can actively manage their consumption, generation and storage of

energy [73, 75]. To this end, maintaining secure and economic supply-demand balance in

the face of variable loads and intermittent RES is of vital importance for the security and

reliability of the power system [123,124].

Under the current electricity market structure in most countries worldwide, small
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domestic consumers/prosumers are served by a contracted electricity retailer which

buys/sells energy from/to the wholesale market based on the time-variable wholesale prices,

and sells/buys energy to/from the prosumers based on a set of less variable retail prices [45].

As demonstrated in [125], driven by the profit maximization objective of the retailers, the

retail prices offered for selling energy to the prosumers are generally higher than the prices

offered for buying energy from them. In this context, active prosumers owning ES units

are motivated to self-consume their RES production by storing it during periods of low de-

mand/high RES output through ES charging, and consuming it during periods of high de-

mand/low RES output through ES discharging. However, if each prosumer independently

optimizes its ES operation (based on its individual demand and RES output profiles), the

collective benefits of ES flexibility are not maximized.

To this end, cooperative peer-to-peer (P2P) energy trading has recently emerged as a

new and promising market paradigm, enabling a more beneficial use of the prosumers’ RES

production and ES flexibility within a cooperative local energy community, by enabling

direct and autonomous energy trading between the prosumers and limiting their energy

dependency on the incumbent retailer [72,73,75,76,126–128].

However, encouraging prosumers to trade energy with one another cooperatively and

bypassing the incumbent retailer is a highly challenging task. It calls for suitable energy

trading mechanisms which can efficiently manage the local energy transactions and design

monetary rewards that adequately incentivize prosumers to participate in P2P trading in

a cooperative fashion, irrespectively of whether they act as electricity buyers or sellers at

different time periods [76].

The rest of the chapter is organized as follows: Section 4.2 reviews the state-of-the-

art literature on cooperative P2P energy trading markets and identifies the research gap.

Section 4.3 formulates the prosumer energy model and establishes the coalitional energy

management scheme based on cooperative game-theoretic principles. Section 4.4 details the

current pricing, cost-sharing and benefit distributions for cooperative P2P energy trading.
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4.2 Literature Review

In recent years, significant research efforts have been expended in developing cooperative

P2P energy trading mechanisms. The research focus of the existing literature can be

broadly divided into three categories. In the first category [70, 129–131], P2P trading

is managed by identifying a set of local trading prices. These include the mid-market

rate (MMR) [129, 130] and bill sharing (BS) [70, 131] pricing schemes. However, none of

these works considers the participation of prosumers owning ES units, rendering them less

relevant for analyzing P2P trading considering the flexibility value of ES to mitigate supply-

demand imbalances in the face of intermittent RES and variable loads. Furthermore, both

pricing schemes may not be able to suitably incentivize prosumers to participate in P2P

trading, hindering successful adoption of P2P trading among prosumers.

Mechanisms in the second category manage P2P trading by allocating the total

trading costs to the participants based on a pre-specified sharing scheme. In [132], the Nash

bargaining solution (NB) [133] is applied to manage energy cooperation in a microgrid.

Authors in [134] employed the cost-sharing mechanisms developed in [135] for sharing

economies, including equal-split cost sharing (EC), proportional-split cost sharing (PC)

and NB, and investigated their applications in P2P energy sharing. In [134], a maximum

of two prosumers is allowed to form a local energy coalition for energy sharing. However,

since the total cost savings of prosumers grows higher with the size of the coalition (this

refers to as the superadditive property of a prosumer coalitional game, as later proven in

Section 4.4), this restriction of the maximum number of prosumers per coalition prohibits

the opportunity of prosumers to form the grand energy coalition (formed by the whole

population of prosumers) and access the highest cost savings. As such, these cost sharing

mechanisms may fail to guarantee a satisfactory economic outcome for all participating

prosumers.

In the third category [136–139], instead of sharing the coalitional energy cost among

prosumers, the focus is to distribute the monetary benefits of P2P trading to prosumers and

thus incentivize them to form the grand coalition. Using cooperative game theory, alloca-

tion mechanisms based on the Shapley value (SV) [136,137] and the nucleolus [138,139] are
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introduced. However, SV cannot always guarantee a stabilizing benefit distribution that

ensures no prosumers can benefit more by leaving the grand coalition to form smaller coali-

tions. The nucleolus exhibits superior performance with respect to the SV in financially

incentivizing prosumers. However, the computation of nucleolus suffers severely from the

curse of dimensionality as its computational complexity increases exponentially with the

number of prosumers [138]. As a result, developing efficient yet computationally affordable

P2P trading mechanisms remains a significant challenge.

4.3 Formulation of Cooperative P2P Energy Trading as a

Prosumer Coalitional Game

4.3.1 Conventional vs. P2P Energy Trading Paradigms

As discussed in Section 4.2, under the conventional energy trading paradigm, individual

prosumers trade independently with their contracted electricity retailer, based on a set

of offered energy import and export prices. However, when each prosumer optimizes the

operation of its ES unit independently, according to its own demand and RES output

profiles, the collective benefits of ES flexibility are not maximized. As a result, prosumers

are motivated to share their surplus generation directly with their neighbors to seek higher

revenues, as prescribed by the P2P energy trading paradigm. In this context, prosumers

can first share their generation and consumption internally within an energy coalition and

settle the remaining energy deficit or surplus with the retailer.

However, the successful establishment of prosumer participation in P2P energy trad-

ing faces two key challenges: 1) how to optimally schedule the ES units of prosumers and 2)

how to design appropriate monetary incentives, which exhibit the prosumer-centric prop-

erty, according to which it is always beneficial for prosumers to cooperate and trade energy

among themselves [140]. To address those challenges, a P2P energy trading paradigm is

pursued which:

• optimizes cooperatively the charging and discharging schedules of prosumers’ ES
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units by minimizing the total energy cost of all prosumers participating in P2P

trading. This coordinates the energy sharing activities among prosumers as well as

determines the energy excess/deficit to be sold to/bought from the retailer if the

local supply cannot balance the demand completely;

• determines the greatest energy cost saving that is available to be distributed to the

participating prosumers and subsequently identifies a set of local trading prices and a

benefit distribution scheme that adequately maintain prosumers’ stable participation

in P2P trading.

4.3.2 Prosumer Energy Model

Considering a set of N prosumers, each prosumer n is assumed to have no more than

one ES unit and one photovoltaic (PV) system. Following the approach adopted in [141],

a generic, technology-agnostic model is employed for the representation of the technical

characteristics of the ES unit which is mathematically formulated as:

En,t = En,t−1 + ηcns
c
n,tτ + sdn,tτ/η

d
n, ∀n, ∀t, (4.1)

En ≤ En,t ≤ En, ∀n, ∀t, (4.2)

0 ≤ scn,t ≤ sn,∀n,∀t, (4.3)

−sn ≤ sdn,t ≤ 0, ∀n, ∀t, (4.4)

En,0 = En,T ,∀n. (4.5)

Constraint (4.1) expresses the energy balance in ES considering charging and discharging

losses. Constraints (4.2)-(4.4) represent the minimum and maximum energy and power

limits. A daily periodic continuation is assumed for the operation of ES to avoid the out-

of-horizon effects by setting equal energy content at the start and the end of the horizon

(4.5). Furthermore, given that the charging and discharging efficiencies are strictly less

than one, the optimal scheduling of ES automatically satisfies scn,tsdn,t = 0, ∀t,∀n, namely

the ES system cannot charge and discharge simultaneously, as proved in [142].

The net demand (positive)/generation (negative) ln,t of prosumer n can then be
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expressed as (4.6), where gn,t and scn,t, sdn,t equal zero for prosumers without a PV system

or an ES unit. At each time period t, prosumer n either acts as a consumer with net

demand ln,t > 0 or a producer with net generation ln,t ≤ 0. The sets of the consumers and

producers are defined in (4.7) and (4.8), where N c ∩N p = ∅,N c ∪N p = N .

ln,t = dn,t + gn,t + scn,t + sdn,t,∀n,∀t, (4.6)

N c := {n ∈ N : ln,t > 0}, (4.7)

N p := {n ∈ N : ln,t ≤ 0}. (4.8)

4.3.3 Coalitional Energy Cost and Value Function

The coalitional game is applied in [70, 129–131, 136–139] as a P2P trading modeling tech-

nique. The concept of energy coalition is introduced, where prosumers in the same coalition

will operate their ES units cooperatively to minimize the total energy cost of the coali-

tion. We consider an N -prosumer coalitional game where a total number of 2N distinct

coalitions can be formed (we denote 2N as the set of all coalitions). The grand coalition,

denoted by N , is constructed when all the prosumers take part in P2P energy trading.

Any coalitions formed with the absence of any prosumers are called sub-coalitions and the

coalition containing a single prosumer is called a singleton coalition.

We denote the import and export prices offered by the contracted electricity retailer

at each time period t as λbt and λst , respectively. As explained in Section 4.2, the export

price is set to be lower than the import price, i.e. λbt > λst ,∀t. For each coalition S ⊆ N ,

the total energy cost TC(S), is defined as the sum of prosumers’ energy costs when trading

with the retailer in the event of energy imbalance within S:

TC(S) =
∑
t∈T

(
λbt

[∑
n∈S

ln,t

]+
+ λst

[∑
n∈S

ln,t

]−)
, (4.9)

where operators [·]+/− = max /min{·, 0} indicate taking the maximum/minimum value

between · and 0. The coalitional energy cost is then defined as the minimum total energy

cost achievable through optimizing the operation of all ES units within coalition S, sub-
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jecting to their operational constraints. We formulate this optimization problem as (4.10)

with its optimal solutions being denoted as l∗n,t, E∗
n,t, s

c∗
n,t and sd∗n,t, ∀n,∀t. The minimum

energy cost of a singleton coalition C({n}), where prosumer n independently manages the

operation of its ES unit and individually trades with the retailer at the offered import and

export prices, is called the singleton cost.

C(S) = min
V

TC(S),

s.t. (1).

where V := {l,E, sc, sd}

(4.10)

Using cooperative game theory, we define the value function v(S) : 2N → R and

v(∅) = 0 to represent the value of a coalition. In the examined problem, this function

quantifies the energy cost saving which is expressed as the difference between the sum of

the singleton costs for all the prosumers in S and the coalitional energy cost of S:

v(S) =
∑
n∈S

C({n})− C(S), ∀S ⊆ N . (4.11)

Definition 1 (Superadditivity [143]): The value function of a cooperative game

(N , v), is said to be superadditive when the value of a union of disjoint coalitions is no

less than the sum of the coalitions’ separate values. That is to say, for any two disjoint

coalitions, the following inequality holds:

v(Si ∪ Sj) ≥ v(Si) + v(Sj), ∀Si ∩ Sj = ∅. (4.12)

Theorem 3 : The examined prosumer cooperative game (N , v) with value function

defined by (4.11) is superadditive.

The proof of Theorem 3 can be found Section 4.4.

This implies that prosumers in disjoint coalitions will always be incentivized to

form bigger coalitions and eventually form the grand coalition, since the value of the grand

coalition is always higher or equal than the sum of the values of all disjoint coalitions, that
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is:

v(N ) = v(S1∪, ...,∪Si) ≥ v(S1) + ...+ v(Si),∀Si ∈ 2N . (4.13)

Consequently, the value of the grand coalition v(N ) represents the highest monetary benefit

that is accessible to the N participating prosumers.

4.3.4 Core of the Prosumer Coalitional Game

Define r ∈ RN as the benefit distribution vector associated with the grand coalition, whose

element rn represents the benefit distributed to prosumer n ∈ N . For any distribution so-

lution r, let rS =
∑

n∈S rn, ∀S ⊆ N be the total benefit that r allocates to the participants

in coalition S. r is said to be feasible for the grand coalition when it meets the criteria of

collective rationality, which indicates that the value of the grand coalition must be com-

pletely allocated to the N prosumers, i.e. rN = v(N ). Let RN indicate the set of all

feasible distributions for the grand coalition N :

RN := {r ∈ RN |rN = v(N )}. (4.14)

A feasible distribution r is blocked by coalition S when rS < v(S) and a tendency

emerges for some dissatisfied prosumers to break off from the grand coalition and form a

smaller sub-coalition since they may receive a higher benefit than that from r, and the

considered distribution r is thus said to be unstable. To quantify the dissatisfaction level

of coalition S with respect to r, the concept of excess e(S, r) ∈ R2N is introduced. It is

defined as the difference between energy cost saving of a coalition S and the total allocated

benefits for participants in S received from r:

e(S, r) = v(S)− rS , ∀S ⊆ N . (4.15)

To this end, the core is defined as a set of stable distribution solutions that is feasible for

the grand coalition and cannot be blocked by any sub-coalitions:

C :=

{
r ∈ RN |rN = v(N ), rS ≥ v(S), ∀S ⊂ N

}
. (4.16)
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From (4.15)-(4.16), it is evident that a feasible solution r is in the core if and only

if excesses of all sub-coalitions with respect to r are negative or zero. Furthermore, it

can be observed in (4.16) that the distribution solutions in the core satisfy the criteria of

individual rationality which requires the distribution to any prosumer n to be at least the

amount prosumer n can attain on his own, i.e. r{n} = rn ≥ v({n}),∀n ∈ N . Since the

value function represents the energy cost saving associated with a coalition as defined in

(4.11), v({n}) = 0, ∀n ∈ N .

Not all games have non-empty cores, meaning no matter how v(N ) is allocated,

there will always be one or more dissatisfied sub-coalitions. We examine an important

class of cooperative games with non-empty cores, namely balanced games [144,145].

Given a coalition S, define the vector 1S ∈ RN with its nth elements 1Sn = 1 if i ∈ S,

and 1Sn = 0 otherwise. A set of numbers αS ∈ [0, 1],∀S ∈ 2N is a balanced collection of

weights if
∑

S∈2N αS1Sn = 1, ∀n ∈ N .

Definition 2 (Balanced game [145]): A coalitional game (N , v) is said to be balanced

if for every balanced collection of weights:

∑
S∈2N

αSv(S) ≤ v(N ). (4.17)

Theorem 4 : The examined prosumer cooperative game (N , v) is balanced.

The proof of Theorem 4 is provided in the following Section.

4.4 Proof of Superadditivity and Balancedness of the Pro-

posed Prosumer Coalitional Game

4.4.1 Preliminary Coalitional Operations

Recall that N is the grand coalition, and the set of all possible coalitions is defined as the

power set 2N of N . For any coalition S ⊆ N , it satisfies S ∈ 2N .

For any matrix X ∈ RR×N := [x1,x2, · · · ,xN ], where xn ∈ RR×1,∀n ∈
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{1, 2, · · · , N} is a column vector, the following operations are defined using coalition su-

perscripts: where Si ∈ 2N , and ai ≥ 1, indexed by i = 1, 2, ..., 2N .

4.4.2 Coalition Scaling

aiX
Si = ai[x11

Si
1 ,x21

Si
2 , · · · ,xN1Si

N ]

= [aix11
Si
1 , aix21

Si
2 , · · · , aixN1Si

N ]
(4.18)

For any coalition Si, index each member of Si by an unique j ∈ [1, 2, . . . , N ]. Define 1Si
j

as the jth element of vector 1Si
i , it equals 1 only when j is a member of coalition Si.

1Si
j =


1 if j ∈ Si

0 otherwise,
(4.19)

When ai = 1,Si = S, there is:

XS = [x11
S
1 ,x21

S
2 , · · · ,xN1SN ]. (4.20)

For a special case where ai = 1,Si = N , because 1Nn = 1, ∀n, there is

XN = [x11
N
1 ,x21

N
2 , · · · ,xN1NN ] = [x1,x2, · · · ,xN ]. (4.21)

4.4.3 Coalition Summation

∑2N

i=1aiX
Si =

∑2N

i=1[aix11
Si
1 , aix21

Si
2 , · · · , aixN1Si

N ]

= [
∑2N

i=1aix11
Si
1 ,
∑2N

i=1aix21
Si
2 , · · · ,

∑2N

i=1aixN1Si
N ],

(4.22)

For a special case when ai =


1, Si = S or T

0, otherwise,
with any disjoint coalitions S ∩ T = ∅,

there is:

1Sn + 1Tn = 1S∪Tn , (4.23)
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and:
XS+T = XS +XT

= [x1(1
S
1 + 1T1 ),x2(1

S
2 + 1T2 ), · · · ,xN1(1

S
N + 1TN )]

= [x11
S∪T
1 ,x21

S∪T
2 , · · · ,xN1S∪TN ]

= XS∪T ,

(4.24)

4.4.4 Preliminary Coalitional Notations

Let ln, en, s
c
n, s

d
n,λ

b,λs ∈ RT be the T -dimensional column vectors of ln,t, en,t, scn,t, sdn,t,

λbt , λst . Then we construct the following matrices of decision variables and parameters with

1 be a column vector of ones:

L ∈ RT×N := [l1, l1, · · · , ln]

E ∈ RT×N := [e1, e2, · · · , en]

Sc ∈ RT×N := [sc1, s
c
2, · · · , scn]

Sd ∈ RT×N := [sd1, s
d
2, · · · , sdn]

E ∈ RT×N := [e11
T , e21

T , · · · , en1T ]

E ∈ RT×N := [e11
T , e21

T , · · · , en1T ]

S ∈ RT×N := [s11
T , s21

T , · · · , sn1T ]

ηc ∈ RN×N := diag(ηc1, ηc2, · · · , ηcn)

ηd ∈ RN×N := diag(1/ηd1 , 1/ηd2 , · · · , 1/ηdn)

Using (4.18), we have the above matrices for each prosumer energy coalition S ∈ 2N

defined as LS , ES , ScS , SdS , ES , ES and S
S with ai = 1,∀i ∈ 2N . According to the

definition of the indicator function (4.19), the nth column of LS , ES , ScS , SdS , ES , ES

and S
S equals zero when prosumer n does not participate in S.

Define the decision variable set of the prosumer cooperative game for coalition S as

V S := {LS ,ES ,ScS ,SdS}. Then the total energy cost for a coalition S defined by (4.9)

can be expressed by:

TC(S) = TCS(V
S) = (λb)⊤[LS1]++(λs)⊤[LS1]−. (4.25)

The operational constraint set of the ES unit for coalition S can be expressed in the
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coalitional matrix form as:

ES ≤ ES ≤ E
S
, (A.7)

0S ≤ ScS ≤ S
S
, (A.8)

−S
S ≤ SdS ≤ 0S , (A.9)

1⊤(ScSηc + SdSηd) = 0, (A.10)

where 0S ∈ RT×N := [01S1 ,01
S
2 , · · · ,01SN ] with 0 represents a column vector of zeros and

constraint (A.10) expresses the combination of constraints (4.1) and (4.5). We define an

indicator function g with respect to V S as:

g(V S ,ES ,E
S
,S

S
) =


1 if (A.7)-(A.10) are satisfied

0 otherwise,
(4.26)

Lemma 1: For a scalar a ≥ 0, we have TCS(aV
S) = aTCS(V

S).

Proof. According to the definition of total energy cost for coalition S, we scale V S by a

factor of a ≥ 0 and have:

TCS(aV
S) = (λb)⊤[aLS1]+ + (λs)⊤[aLS1]−

= a(λb)⊤[LS1]+ + a(λs)⊤[LS1]−

= a
(
(λb)⊤[LS1]+ + (λs)⊤[LS1]−

)
= aTCS(V

S).

(4.27)

The proof is complete. ■

Lemma 2: The total energy cost function is convex and the following inequality

holds, where Si ∩ Sj = ∅, ∀Si,Sj ∈ 2N are any disjoint coalitions:

TCSi(V
Si) + TCSj (V

Sj )

2
≥ TCSi+Sj

(
V Si+Sj

2

)
. (4.28)

Proof. Using (4.25) and given functions [·]+/− = max /min{·, 0} are convex with
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[LSi ]+/−+[LSj ]+/−

2 ≥

[
LSi+Sj

2

]+/−

, we have:

TCSi
(V Si )+TCSj

(V Sj )

2

=
(λb)⊤

(
[LSi1]++[LSj1]+

)
+(λs)⊤

(
[LSi1]−+[LSj1]−

)
2

= (λb)⊤

(
[LSi1]++[LSj1]+

)
2 + (λs)⊤

(
[LSi1]−+[LSj1]−

)
2

≥ (λb)⊤
[
LSi+Sj

2

]+
+ (λs)⊤

[
LSi+Sj

2

]−
= TCSi+Sj (

V Si+Sj

2 )

(4.29)

The proof is complete. ■

Lemma 3: Given g(V S ,ES ,E
S
,S

S
) = 1 and any scalar a > 0, we have

g(aV S , aES , aE
S
, aS

S
) = 1.

Proof. The operating constrains of ES units for coalition S are satisfied when g(V S ,

ES ,E
S
,S

S
) = 1. Since constraints (A.7)-(A.10) are linear, we scale them by a factor

of a > 0 and have:

aES ≤ aES ≤ aE
S
, (4.30)

0S ≤ aScS ≤ aS
S
, (4.31)

−aSS ≤ aSdS ≤ 0S , (4.32)

1⊤(aScSηc + aSdSηd) = 0, (4.33)

Thus, g(aV S , aES , aE
S
, aS

S
) = 1. The proof is complete. ■

To this end, for a clearer demonstration, we have redefined the notations and coali-

tional operations for the investigated prosumer cooperative game related functions, vari-

ables and parameters. Then the coalitional energy cost for each coalition S ∈ 2N defined

by (4.10) can be written in the following format as:

C(S) := min
V S

TCS(V
S), s.t. g(V S,ES,E

S
,S

S
)=1

= min
V S∈GS

TCS(V
S),

(4.34)



120

where GS := {V S |g(V S ,ES ,E
S
,S

S
) = 1} is the feasible set of the decision variable V S .

Let V S∗ be the optimal solution of the optimization problem (4.34), then we have:

C(S) = TCS(V
S∗
), (4.35)

TCS(V
S∗
) ≤ TCS(V

S),∀V S ∈ GS . (4.36)

Lemma 4: For coalition S ∈ 2N and scalar a ≥ 0 the following equality holds:

C(aS) = aC(S). (4.37)

Proof. According to the coalitional energy cost defined by (4.34), when a = 0, we have:

C(aS) =C(0S)

= min
V S

TC0S(V
0S)s.t.g(V 0S,E0S,E

0S
,S

0S
)=1.

(4.38)

Then, based on coalition scaling operation (4.18), (4.38) can be written as:

C(aS) = C(0S)

= min
V S

TC0S(0V
S)s.t.g(0V S, 0ES, 0E

S
, 0S

S
)=1.

= TC0S(0) = 0 = 0C(S) = aC(S).

(4.39)

When a > 0, according to (4.34) and (4.35), we have:

C(aS) := TCaS(V
aS∗), (4.40)

g(V aS∗
,EaS ,E

aS
,S

aS
) = 1. (4.41)

Then, using Lemma 3 with scalar 1
a > 0 and coalition scaling operation (4.18) we have:

g( 1aV
aS∗

, 1aE
aS , 1aE

aS
, 1aS

aS
)

= g( 1aV
aS∗

,ES ,E
S
,S

S
)

= 1.

(4.42)
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Hence, 1
aV

aS∗ belongs to GS . Then, using Lemma 1 and based on (4.34)-(4.36) we have:

C(S) = TCS(V
S∗
) ≤ TCS(

1
aV

aS∗
)

= 1
aTCS(V

aS∗
)

= 1
aC(aS),

(4.43)

⇒ aC(S) ≤ C(aS),∀a > 0. (4.44)

Constructing C(S) = C
(
1
a(aS)

)
, where 1

a > 0, and based on (4.44), we have:

C(S) = C
(1
a
(aS)

)
≥ 1

a
C(aS), (4.45)

⇒ aC(S) ≥ C(aS). (4.46)

Combining (4.39), (4.44) and (4.46) we have:

C(aS) = aC(S), ∀a ≥ 0. (4.47)

The proof is complete. ■

4.4.5 Proof of Superadditivity

Proof. Given any two disjoint coalitions Si ∩ Sj = ∅,∀Si,Sj ∈ 2N , using (4.35), Lemma 1

and Lemma 2 we have:

C(Si) + C(Sj) = TCSi(V
S∗
i ) + TCSj (V

S∗
j )

≥ 2

(
TCS∗

i +S∗
j

(
V Si+Sj

2

))
= TCSi+Sj (V

S∗
i +S∗

j )

(4.48)

Using coalition summation operation (4.24), we construct the indicator function of

coalition Si + Sj and its corresponding feasible set as g(V Si+Sj ,ESi+Sj ,E
S+Sj ,S

S+Sj ) =

1 and GSi+Sj , respectively. Given that g(V S∗
i ,ESi ,E

Si ,S
Si) = 1 and g(V S∗

i ,ESi ,

E
Si ,S

Si) = 1, we have V S∗
i +S∗

j ∈ GSi+Sj .
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Based on (4.36) we have:

TCSi+Sj (V
S∗
i +S∗

j ) ≥ TCSi+Sj (V
(Si+Sj)

∗
)

= C(Si + Sj).
(4.49)

Combining equations (4.48) and (4.49) the following inequalities holds:

C(Si) + C(Sj) ≥ C(Si + Sj) (4.50)

−(C(Si) + C(Sj)) ≤ −C(Si + Sj) (4.51)

Adding
∑

n∈Si
C({n}) +

∑
n∈Sj

C({n}) to both sides of (4.51) and based on definition of

characteristic function of the prosumer cooperative game (N , v), we prove that:

∑
n∈Si

C({n}) +
∑

n∈Sj

C({n})− (C(Si) + C(Sj))

≤
∑
n∈Si

C({n}) +
∑

n∈Sj

C({n})− C(Si + Sj)
(4.52)

⇒
(∑
n∈Si

C({n})−C(Si)
)
+
(∑
n∈Sj

C({n})−C(Sj)
)

≤
∑

n∈Si∪Sj

C({n})− C(Si ∪ Sj)
(4.53)

⇒ v(Si) + v(Sj) ≤ v(Si ∪ Sj). (4.54)

The proof is complete. ■

4.4.6 Proof of a Balanced Game

Proof. According to the definition of the characteristic function of game (N , v), the value

of the grand coalition equals:

v(N ) =
∑
n∈N

C({n})− C(N ). (4.55)

Given any balanced collection of weights αS , where
∑

S∈2N αS1Sn = 1, ∀n ∈ N , we
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have: ∑
S∈2N

αSv(S)=
∑

S∈2N
αS
(∑
n∈S

C({n})− C(S)
)

=
∑
n∈N

∑
S∈2N

αS1SnC({n})−
∑

S∈2N
αSC(S)

=
∑
n∈N

C({n})−
∑

S∈2N
αSC(S).

(4.56)

Therefore, according to the definition of a balanced game and combining (4.55) and

(4.56), the examined prosumer cooperative game is balanced when:

C(N ) ≤
∑
S∈2N

αSC(S). (4.57)

Given αS ∈ [0, 1] is non-negative, using Lemma 4 and (4.50), the right-hand side of

(4.57) can be written as:

∑
S∈2N

αSC(S) =
∑

S∈2N
C(αSS)

≥ C(
∑

S∈2N
αSS)

= min
V α∈Gα

TCα(V
α)

(4.58)

where α =
∑

S∈2NαSS.

Since coalition S can be represented by a union of singleton coalitions {n},∀n ∈ S,

using coalition summation operation (4.22) and (4.24), V α can be written as:

V α =V

∑
S∈2N

αSS
= V

∑
S∈2N

αS ∪
n∈S

{n}

=V

∑
S∈2N

αS ∑
n∈S

{n}
= V

∑
S∈2N

αS ∑
n∈N

1Sn{n}

=V

∑
n∈N

∑
S∈2N

αS1Sn{n}
= V

∑
n∈N

{n}
= V

∪
n∈N

{n}

=V N .

(4.59)

Similarly, Gα := GN .

Then combining (4.58) and (4.59), we have:

∑
S∈2N

αSC(S) ≥ min
V N∈GN

TCN (V N ) = C(N ). (4.60)
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Therefore, inequality (4.57) is proven, and the examined prosumer cooperative game is

balanced. The proof is complete. ■

4.5 State-of-the-art Mechanisms for P2P Energy Trading

4.5.1 Pricing Mechanisms

Under the P2P energy trading paradigm described in Section 4.3, prosumers first locally

share their generation and consumption and then settle the remaining electricity deficit

or surplus with the retailer. In this context, pricing mechanisms manage P2P trading by

identifying a set of buy and sell prices for the prosumers to trade locally. Two commonly

employed mechanisms are introduced: mid-market rate (MMR) [129,130] and bill sharing

(BS) [70,131].

Denote the net demand Pnc
t and net generation Png

t of the grand coalition and its

remaining electricity deficit (positive) and surplus (negative) P re
t at time period t as:

Pnc
t =

∑
n∈N c

ln,t, (4.61)

Png
t =

∑
n∈N p

ln,t, (4.62)

P re
t =

∑
n∈N

ln,t,∀t. (4.63)

The MMR method sets the local buy and sell prices as the average of the retail

import and export prices λmid
t , calculated by (4.64), with some adjustments on the basis

of the difference between the net demand and generation of the prosumer coalition. More

specifically, at time period t:

• If the total demand of the grand coalition matches its total generation (i.e. P re
t = 0),

then the local buy and sell prices are set equal to λmid
t .

λmid
t =

(λbt + λst )

2
, (4.64)
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• In case of net demand (i.e. P re
t > 0) of the coalition, the deficit electricity will be

bought from the retailer at its import price λbt . Since λbt > λmid
t , an extra payment

of the amount λbtP re
t will be made and the overall payment is proportionally shared

among prosumers according to their net demand ln,t. In this case, prosumers will be

paid at λmid
t but pay at a higher local buy price λL,bt calculated by (4.65).

λL,bt =

(
λmid
t |Png

t |+ λbtP
re
t

)
Pnc
t

, (4.65)

• In case of net generation (i.e. P re
t ≤ 0), the surplus electricity is sold to the retailer

at its export price λst . Since λst < λmid
t , a revenue shortfall of the amount λst |P re

t | will

emerge and the overall shortfall is proportionally shared among prosumers according

to their net generation |ln,t|. In this case, the prosumers will pay at λmid
t but be paid

at a lower local sell price λL,st calculated by (4.66).

λL,st =

(
λmid
t Pnc

t + λst |P re
t |
)

|Png
t |

. (4.66)

The BS method distributes the total coalitional deficit electricity consumption pay-

ment
∑

t∈T λ
b
t [P

re
t ]+ or surplus electricity generation revenue

∑
t∈T λ

s
t |[P re

t ]−| to individual

prosumers according to the proportion of their net energy demand or energy generation in

those of the whole community on a pro rata basis. As such, the local buy and sell prices

are determined as:

λL,bt =

∑
t∈T λ

b
t [P

re
t ]+∑

t∈T P
nc
t

,∀t, (4.67)

λL,st =

∑
t∈T λ

s
t |[P re

t ]−|∑
t∈T |Png

t |
,∀t. (4.68)

Under MMR and BS, the energy cost of prosumer n can be calculated by summing

up its payments (when l∗n,t > 0) and revenues (when l∗n,t < 0) over the considered time

horizon as:

C(·)
n =

∑
t∈T

(
λL,bt [l∗n,t]

+ + λL,st [l∗n,t]
−
)
, ∀n ∈ N . (4.69)
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where (·) is substituted by MMR and BS, respectively. The benefit distributed to prosumer

n under MMR and BS is then expressed as the difference between its singleton cost and

C
(·)
n .

r(·)n = C({n})− C(·)
n , ∀n ∈ N . (4.70)

As opposed to MMR, the BS prices may fail to incentivize prosumers to participate

in P2P energy sharing. For example, in some markets the export price is fixed for all time

periods of the day (i.e. λst = λs,∀t). As a result, equation (4.68) can be rewritten as

(4.71). Since |[P re
t ]−| ≤ |Png

t |, ∀t, the local sell price λL,st will be lower than the export

price λs, which means that prosumers acting as electricity sellers will carry a revenue deficit

if participating in the P2P sharing.

λL,st = λs

(∑
t∈T |[P re

t ]−|∑
t∈T |Png

t |

)
,∀t. (4.71)

Furthermore, although the implementation of MMR and BS pricing schemes merits

simplicity, the resultant reward distribution solutions are not guaranteed to be in the core

of the prosumer coalitional game, as demonstrated in Section 5.3.

4.5.2 Cost-Sharing Mechanisms

This type of mechanisms enables sharing the coalitional cost C(S) among the prosumers in

coalition S based on some pre-defined sharing schemes. In [134], sub-coalitions for energy

sharing formed by a maximum of two prosumers is considered. As discussed in Section 4.4,

our investigated N -prosumer coalitional game (N , v) is superadditive. In other words,

the total cost savings of prosumers grows higher with the size of the formed coalition.

Therefore, the restriction of the maximum number of prosumers per coalition precludes

the opportunity of prosumers to form the grand coalition and access the highest benefits.

Consequently, to perform a fair comparison between the P2P trading mechanisms, we

apply the cost-sharing mechanisms for sharing the grand coalitional cost C(N ) among the

N participants. Three mechanisms employed in [133,134] including equal-split cost sharing

(EC), proportional-split cost sharing (PC), and a bargaining-based cost-sharing method are
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introduced.

The EC scheme splits C(N ) equally among all prosumers while the PC scheme splits

C(N ) according to the prosumers’ singleton costs. The energy cost of prosumer n under

EC and PC is expressed as (4.72) and (4.73), respectively. Then, the corresponding benefit

distribution of prosumer n under EC and PC is defined in (4.74), where (·) is substituted

by EC and PC, respectively.

CEC
n = C(N )/N,∀n ∈ N , (4.72)

CPC
n = C(N )

(
C({n})∑

n∈N C({n})

)
, ∀n ∈ N , (4.73)

r(·)n = C({n})− C(·)
n , ∀n ∈ N . (4.74)

The problem of cost-sharing can also be formulated as a bargaining game with a

feasible benefit distribution vector r ∈ RN and a disagreement point where each prosumer

n pays its singleton cost. This is formulated as the optimization problem (22) which

aims at minimizing the product of the benefit distributions of all prosumers (4.75) and is

subject to (4.76) which evaluates r and (4.77) which guarantees that the grand coalitional

cost C(N ) is fully shared among the N prosumers. The Nash bargaining solution (NB)

constitutes the optimal solution of (22) which comprises the cost sharing CNB
n and the

benefit distribution rNB
n of prosumer n.

max
{C,r}

N∏
n=1

rn (4.75)

s.t.: rn = C({n})− Cn, ∀n ∈ N , (4.76)∑
n∈N

Cn = C(N ). (4.77)

4.5.3 Benefit Distribution Mechanisms

Instead of sharing cost among the prosumers, this type of mechanisms directly distributes

the (highest) total cost saving of the grand coalition v(N ) to the N prosumers. The

equal-split benefit sharing (EB) [134] and two well-known distribution mechanisms for co-
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operative games including Shapley value (SV) [136, 137] and nucleolus [138, 139] solutions

are introduced.

The EB scheme distributes v(N ) equally to all prosumers:

rEB
n = v(N )/N,∀n ∈ N . (4.78)

It has been shown in [134] that the EB solution is equivalent to NB solution for the

considered prosumer coalitional game.

The SV [146] prescribes a unique distribution rSVn = ϕn(N , v) of v(N ) to each

prosumer, which is defined as:

ϕn(N , v) =
∑

S⊆N\{n}

|S|!(|N | − |S| − 1)!

|N |!

(
v(S ∪ {n})− v(S)

)
, (24)

where |S| denotes the cardinality of (i.e. the number of prosumers in) coalition (S) and

v(S ∪{n})− v(S) represents the marginal contribution of prosumer n to coalition S ∪{n}.

The weight associated with the marginal contribution is the probability that prosumer n

joins S∪{n} right after prosumers in S. The SV expresses the average marginal contribution

of prosumer n, averaged over all the different permutations in which the grand coalition can

be constructed from the empty coalition ∅. In other words, the SV rewards each prosumer

by its marginal contribution to each coalition; the more prosumers contribute the more

benefit they receive. However, as demonstrated in [138], for a game with a non-empty core,

the SV solution does not always belong to the core, as also demonstrated in Section 5.3.

The nucleolus [147] is targeted to locate a unique distribution for the cooperative

game (N , v). For the considered coalitional game, let θ(r) ∈ R2N−2 denote the vector

whose entries representing the excesses of all coalitions (excluding the empty coalition ∅

and the grand coalition N ) are arranged in a non-increasing order, i.e. the value of the ith

entry is always larger than or equal to that of the jth entry when i ≤ j:

θ(r)i ≥ θ(r)j , ∀i ≤ j. (4.79)
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Two feasible benefit distribution vectors r and h are said to be ordered lexicograph-

ically, i.e. r ≤l h, if θ(r)1 < θ(h)1 or θ(r)i = θ(h)i for 1 ≤ i < j and θ(r)j < θ(h)j

for a certain j. Then the nucleolus is defined as a feasible distribution that minimizes

θ(r),∀r ∈ RN in the lexicographic ordering:

rNu := {rNu ∈ RN |rNu ≤l r, ∀r ∈ RN }. (4.80)

The existence of the nucleolus is guaranteed. However, the computation of the

nucleolus necessitates the solution of O(2N ) linear programming (LP) problems iteratively.

Specifically, the problem of finding the nucleolus can be formulated as a sequence of LPs

(i.e. LP1, LP2, · · · , LPj , · · · ) as follows:

• Iteration 1 involves solving LP1 which minimizes the largest excess for all sub-

coalitions by searching through all feasible distribution solutions, as formulated by

(4.81).

LP1 := min
r∈RN ,e

{e|v(S)− rS ≤ e,∀S ⊂ N}. (4.81)

Let (r1, e1) be the optimal solution of LP1 and E1 be a set of coalitions such that

the inequality constraint v(S) − r1S ≤ e1 is binding. It is possible to have multiple

optimal solutions of r1 such that e1 is the minimal largest excess of all sub-coalitions

with respect to these distribution solutions; we define the set collecting all optimal

distribution solutions as R1.

• Subsequently, at iteration j ≥ 2, suppose LPj−1 obtains a tuple

⟨rj−1, ej−1, Ej−1,Rj−1⟩. To find the unique distribution in the core, the LPj

as defined in (4.82) is solved repeatedly:

LPj := min
r∈RN ,e

{ e|v(S)− rS = ei, ∀S ∈ E i, ∀i ∈ {1, · · · , j − 1},

v(S)−rS ≤ e,∀S ∈ 2N \Hj−1},
(4.82)

where Hj−1 = ∪i∈{1,··· ,j−1}E i.

This iterative process terminates when the values of all entries of θ(rj) are determined,
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or a unique optimal solution rj is obtained, which is the nucleolus, i.e. rNu = rj . For

a game with a non-empty core (e1 ≤ 0), the nucleolus rNu always lies in the core [148].

However, in the worst case, where entries of θ(rj) are nonidentical or the cardinality of set

Rj is larger than 1 until j = 2N − 2, the iterative process requires the solution of 2N − 2

LPs [149,150]. Namely, the computational complexity of computing the nucleolus increases

exponentially with the number of prosumers, prohibiting its application in a game with a

large number of prosumers.

4.6 Summary

Previously proposed pricing, cost sharing and benefit distribution mechanisms for man-

aging P2P trading either fail to incentivizing sustainable P2P trading among prosumers

or is encumbered by significant computational burden. To overcome these challenges, in

this chapter, the cooperative P2P energy trading has been formulated as a prosumer coali-

tional game, where prosumers construct a grand coalition and the coalitional energy cost

is minimized by optimizing ES charging and discharging schedules of all prosumers col-

laboratively. The value of each energy coalition is defined as energy cost savings, which

equals the sum of minimum individual energy cost and the minimum coalitional energy

cost, and need to be allocated to prosumers adequately to incentivize their participation.

The investigated coalitional game is supperadditive and balanced, naming the value of a

union of disjoint coalitions is always greater or equal to the sum of their independent values

and there exist a benefit distribution solution that stabilizes the formation of the grand

energy coalition. Therefore, the remaining challenge in finding benefit allocation solutions

in the core is the main topic discussed in the next chapter.
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Chapter 5

Proposed Pricing and Benefit

Distribution Mechanisms

Having introduced the state-of-the-art pricing, cost sharing and benefit distribution mech-

anisms in the previous chapter, this chapter concludes that these mechanisms either fail to

adequately incentivize prosumers to stay in the grand coalition, prevent prosumers from

accessing the highest monetary benefits achievable in the grand coalition, or suffer severely

from the curse of dimensionality. To address these limitations, two computationally effi-

cient mechanisms are proposed in this chapter: the first one involves a benefit distribution

scheme inspired by the core tâtonnement process, and the second one involves a novel

pricing mechanism based on the solution of a single linear programming (LP).

The remainder of this chapter is organized as follows. Section 5.1 and Section

5.2 introduces the proposed Core Tâtonnement benefit algorithm and Single-LP pricing

algorithm, respectively. The performance of the proposed algorithm is demonstrated in

Section 5.3 by comparing it against the state-of-the-art mechanisms through numerous case

studies in a real-world scenario. The local demand-supply balancing and RES absorption

advantages brought by the formation of grand energy coalition is also validated.
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5.1 Core Tâtonnment Algorithm (CT)

5.1.1 Algorithm Outline

The CT algorithm aims at computing a stable benefit distribution solution such that

no sub-coalitions can block that distribution. Denote er as the greatest excess searched

through all sub-coalitions S ⊂ N with respect to r, given by (5.1). Then, we have e(S, r) ≤

0,∀S ⊂ N and r ∈ C as long as er ≤ 0. Denote Dr ∈ 2N as the set of coalitions S∗
r that

block the distribution solution r with the greatest excess er, given by (5.2).

er = max e(S, r),∀S ⊂ N , (5.1)

S∗
r = argmax

S⊂N
e(S, r). (5.2)

The CT algorithm is outlined in Algorithm 2. It starts by initializing a benefit

distribution vector r0 ∈ RN feasible for the grand coalition r0 ∈ RN . At iteration k ≥ 1,

the algorithm identifies the greatest excess erk−1 of all sub-coalitions and the set Drk−1

associated with the current distribution vector rk−1. If erk−1 ≤ 0, it implies that the

current distribution rk−1 is not blocked by any sub-coalitions, and thus rk−1 is in the

core. If erk−1 > 0, we select a coalition Sk−1 in Drk−1 , and an amount of benefit equal to

the excess erk−1 is transferred from the prosumers in N\Sk−1 to the prosumers in Sk−1,

and this leads to the update of the benefit distribution rk−1
n for different prosumers (as

described in steps 9 and 10 of Algorithm 2). It can be observed that the gains and losses

are shared equally among the prosumers in Sk−1 and N\Sk−1.

Beyond numerically demonstrating the ability of the proposed CT algorithm to

successfully find a core distribution solution through the case studies (in Section 5.3), we

theoretically prove that the algorithm finds a unique stable distribution solution which be-

longs to the core, and the largest excess of all sub-coalitions with respect to the distribution

solution equals zero, through the following theorem.

Theorem 3 : For a cooperative game (N , v) with a non-empty core, given any initial

distribution vector feasible for the grand coalition r0 ∈ RN , the process rk,∀k = 0, 1, 2, . . .
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Algorithm 2 Core Tâtonnement Algorithm
1: Initialization: set k = 0, select r0 ∈ RN , and calculate v(S),∀S ⊆ N using (4.11).
2: for k ≥ 1 do
3: Calculate e(S, rk), erk−1 and Drk−1 using (4.15), (5.1), and (5.2), respectively.
4: if erk−1 ≤ 0 i.e. rk−1 ∈ C then
5: Set rCT = rk−1

6: Break.
7: else
8: Select a coalition Sk−1 in Drk−1 and compute:
9: rkn=r

k−1
n +

e
rk−1

|Sk−1| ,∀n ∈ Sk−1

10: rkn=r
k−1
n − e

rk−1

|N |−|Sk−1| , ∀n ∈ N\Sk−1

11: end if
12: end for

defined recursively by Algorithm 2 converges to a unique stable solution rCT in the core

with erCT being equal to zero.

5.1.2 Proof of Convergence of the Core Tâtonnement Algorithm

Regard reward distribution vector r as points in RN with r = (r1, r2, · · · , rN ) be its

Cartesian coordinates. Define RS := {r ∈ RN |rS =
∑

n∈Srn = v(S)} be the set of

distribution vectors that are feasible for coalition S and FS := RS ∩ RN be the set of

distribution vector that are feasible for both S and the grand coalition. It is evident that

e(S, r) = 0, ∀r ∈ RS . We regard RS and FS as a hyperplane with dimension N − 1

and N − 2, respectively. Define HS := {r ∈ RN |e(S, r) ≤ 0} ∩ RN be the set of feasible

distribution vectors that S cannot block. Then the core can be expressed as C = ∩S⊂NHS .

We regard HS and C as a (N − 1)-dimensional half-plane and a polytope, respectively.

Combining Step 9 and Step 10 of update process of CT, we define uS(r) : PN → FS

as a function that takes points in PN to its projection on FS as:

uS(r
k+1
n ) =


rkn +

e
rk

|Sk| , ∀n ∈ Sk

rkn − e
rk

|N |−|Sk| , ∀n ∈ N\Sk.

(5.3)

Then, for any k ≥ 0 and rk /∈ C, coalition Sk ∈ Drk is chosen such that rk+1 = uSk(rk).

Lemma 5: For the CT process rk,∀k ≥ 0 and given any point c ∈ C, the distance
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between rk and c is greater than that between rk+1 and c, i.e. d(rk, c) ≥ d(rk+1, c).

Proof. If rk ∈ C, then rk+1 = rk and d(rk, c) = d(rk+1, c). If rk /∈ C, then rk+1 =

uSk(rk) ∈ FSk with Sk ∈ Drk and erk > 0. The square of distance from rk to c is

calculated by:

d(rk, c)2 = d(rk+1, c)2 + d(rk+1, rk)2

+
∑
n∈N

2(cn − rk+1
n )(rk+1

n − rkn).
(5.4)

According to (5.3), d(rk+1, rk)2 =
N(e

rk
)2

|Sk|(N−|Sk|) > 0 Therefore, d(rk, c) ≥ d(rk+1, c)

when
∑

n∈N2(cn − rk+1
n )(rk+1

n − rkn) ≥ 0.

Given c ∈ C and rk+1 ∈ FSk , we have:

cN =
∑
n∈N

cn = rk+1
N =

∑
n∈N

rk+1
n = v(N ), (5.5)

cSk =
∑
n∈Sk

cn ≥ v(Sk), rk+1
Sk =

∑
n∈Sk

rk+1
n = v(Sk), (5.6)

and:
cN\Sk =

∑
n∈N\Sk

cn

=
∑
n∈N

cn −
∑

n∈Sk

cn

≤
∑
n∈N

rk+1
n −

∑
n∈Sk

rk+1
n

=
∑

n∈N\Sk

rk+1
n = rk+1

N\Sk

(5.7)

According to (5.5)-(5.7), it is evident that cSk ≥ rk+1
Sk and cN\Sk ≤ rk+1

N\Sk . Thus:

∑
n∈N

2(cn − rk+1
n )(rk+1

n − rkn)

= 2
e
rk

|Sk|(
∑

n∈Sk

cn −
∑

n∈Sk

rk+1
n )− 2

e
rk

|N |−|Sk|(
∑

n∈N\Sk

cn −
∑

n∈N\Sk

rk+1
n )

= 2
e
rk

|Sk|(cSk − rk+1
Sk )− 2

e
rk

|N |−|Sk|(cN\Sk − rk+1
N\Sk)

(5.8)

is non-negative and d(rk, c) ≥ d(rk+1, c). The proof is complete. ■
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Proof of Theorem 3

Proof. Let L := {r ∈ Rn|r = limk→∞ rk} be the set of the limit points as the process

rk, ∀k = 0, 1, 2, . . . defined by Algorithm 1 converges. Given a point c ∈ C, using Lemma

5, we have d(rk, c) ≤ d(r0, c),∀k ≥ 0. Therefore, the set of values of the process rk,∀k =

0, 1, 2, . . . is bounded in RN and the distance between c and any limit point of the process,

defined by (5.9), is well-defined.

lc = lim
k→∞

d(rk, c). (5.9)

Let p ∈ L be a limit point of the process rk, ∀k = 0, 1, 2, . . . and S ∈ Dp be (one of) the

coalition that has the largest excess ep respect to p.

If r belongs to the core, then, rCT = p ∈ C and the process rk,∀k = 0, 1, 2, . . .

converges to the core.

Assume p does not belong to the core, then, use function uS (defined by (5.3)), we

obtains q = uS(p) with q ∈ L be another limit point of the process when k → ∞. It is

obvious that q ∈ FS and e(S, q) = 0. Since both p and q belong to the set L, using (5.9),

we have:

d(p, c) = d(q, c) = lim
k→∞

d(rk, c) = lc. (5.10)

Using (5.4), the following is obtained:

d(p, c)2 = d(q, c)2 + d(q,p)2

+
∑
n∈N

2(cn − qn)(qn − pn),

l2c = l2c + d(q,p)2 +
∑
n∈N

2(cn − qn)(qn − pn),

(5.11)

⇒ d(q,p)2 =
∑
n∈N

2(cn − qn)(pn − qn) ≥ 0. (5.12)

Given c ∈ C and q ∈ FS , according to equation (5.5)-(5.7) we have cS ≥ qS and

cN\S ≤ qN\S . Thus:
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∑
n∈N

2(cn − qn)(pn − qn)

= −2
ep
|S|(

∑
n∈S

cn −
∑
n∈S

qn) + 2
ep

|N |−|S|(
∑

n∈N\S
cn −

∑
n∈N\S

qn)

= −2
ep
|S|(cS − qS) + 2

ep
|N |−|S|(cN\S − qN\S)

(5.13)

is non-positive. Using (5.12) and (5.13), it is evident that d(q,p) = 0. Therefore, p = q

with ep = e(S, q) = 0 and the limit point of the process is unique.

Then, according to the definition of er (equation (28) in the paper):

ep = lim
k→∞

max
S⊂N

e(S, rk)

= max
S⊂N

e(S,p)

= 0

(5.14)

Thus, e(S,p) ≤ 0,∀S ⊂ N , which implies that no sub-coalition can block p and rCT = p

is in the core of (N , v). The proof is complete. ■

It can be concluded that the CT algorithm shares the most desirable property of

the nucleolus which guarantees finding a stable benefit distribution solution in the core of

the prosumer coalitional game. At the same time, compared to the iterative algorithm of

computing the nucleolus, the CT algorithm exhibits higher computational efficiency since

it does not involve the solution of any optimization problems.

5.2 Single-LP Pricing Algorithm (SP)

The SP algorithm aims at pursuing a stable benefit distribution solution and at the same

time overcoming the computational challenge associated with the nucleolus solution, by

identifying a set of local buy and sell prices through the solution of a single LP, which is

formulated as follows:

e∗rP = min
{λL,b,λL,s,r,er ,}

er (5.15)
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s.t.: rn=C({n})−
∑
t∈T

(
λL,bt [l∗n,t]

++λL,st [l∗n,t]
−
)
,∀n, (5.16)

rN − v(N ) = 0, (5.17)

v(S)− rS ≤ er, ∀S ⊂ N ,S ≠ ∅, (5.18)

er ≤ 0, (5.19)

λst ≤ λL,st ≤ λL,bt ≤ λbt ,∀t. (5.20)

The objective function (5.15) minimizes the largest excess er of all coalitions (excluding

the empty coalition ∅) by searching through all feasible distribution solutions. Constraint

(5.16) evaluates the benefit distribution rn of each prosumer n as the difference between its

singleton cost and the minimum cost achieved by trading locally within the grand coalition

at the proposed local buy and sell prices (λL,b and λL,s). Constraint (5.17) ensures the

distribution vector is feasible for the grand coalition. Constraint (5.18) sets er as the

greatest excess of all sub-coalitions and constraint (5.19) ensures the non-positivity of er.

Constraint (5.20) ensures that the local buy and sell prices are between the retailer’s import

and export prices, as such prosumers are incentivized to remain in the grand coalition

irrespective of their trading activities (buying or selling).

Let (rP , e∗
rP ) be the optimal solution of (5.15). It is clear that the feasible distri-

bution rP achieving the minimum e∗
rP is both collectively and individually rational. From

(5.18) and (5.19), it suffices to see v(S) −
∑

n∈S r
P
n ≤ e∗

rP ≤ 0,∀S ⊂ N ,S ≠ ∅. This

suggests that the obtained distribution vector rP has non-positive excesses for all sub-

coalitions and belongs to the core of (N , v), therefore, it guarantees that no prosumer has

any incentives to exit the grand coalition.

It can be observed that the solution process of problem (5.15) relaxes the require-

ment of computing the unique and lexicographically minimal benefit solution as required

in the solution procedure of the nucleolus presented in Section 4.5.3 (which, in the extreme

case, necessitates iteratively computing the values of 2N − 2 excesses for all sub-coalitions

in a decreasing order). On the contrary, the SP algorithm is more computationally efficient

as it only involves the solution of a single LP (5.15), which aims at minimizing the greatest
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excess of all sub-coalitions and constraining it to be non-positive, which in turn guaran-

tees the negativity of excesses of the rest sub-coalitions. In summary, the SP algorithm

preserves the most desirable property of the nucleolus and at the same time overcomes its

significant computational challenges.

5.3 Case Studies

5.3.1 Test System and Implementation

In this section, we validate the performance of the proposed P2P energy trading mech-

anisms in a real-world scenario, using domestic demand data published by a UK smart

grid demonstration project, the Consumer-Led Network Revolution [151], and PV genera-

tion data simulated by PVWatts® Calculator [152] using a 4kW residential system located

in London Gatwick, UK. We demonstrate the effectiveness of the proposed CT and SP

algorithms in sustaining stable participation of prosumers in P2P trading, by comparing

them against state-of-the-art pricing, cost sharing and benefit distribution mechanisms

Section 4.5. We assume a daily trading horizon with an hourly resolution. The ES system

of each prosumer n has a maximum energy limit within the range En ∈ [7, 14] kWh, a min-

imum energy limit of En = 0.1En, a charging and discharging limit of sn = 0.4En/τ and a

charging and discharging efficiency of ηcn = ηdn = 0.95. The retail import price follows the

UK Economy 7 residential rate plan (7 pence/kWh for 12am-7am and 14.71 pence/kWh

for 7am-12am [153]), and the retail export price is set at the UK feed-in-tariff (FiT), being

fixed at 4.03 pence/kWh at all time periods [154]. Although all data derived from [37]-[40]

are publicly available, for the sake of clarity we have included the specific data employed

in the case studies in a supplementary document uploaded in Zenodo [155].

All the examined algorithms are implemented in FICOTM Xpress [156] on a com-

puter with a 6-core 3.47 GHz Intel(R) Xeon(R) X5690 processor and 192 GB of RAM.
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5.3.2 Performance Evaluation

The aim of this section lies in evaluating the performance of the proposed CT and SP

algorithms in financially incentivizing prosumers not to defect from the grand coalition, by

comparing them against eight state-of-the-art mechanisms (i.e. MMR, BS, EC, PC, NB,

EB1, SV, and nucleolus). To facilitate our analysis, we examine a 4-prosumer coalitional

game where prosumers 1 and 3 own PV systems and prosumers 3 and 4 own ES units.

(a) (b)

Figure 5.1: Iterative evolution of (a) benefit allocation of the total energy cost saving
to the 4 prosumers and (b) the largest excess of the proposed algorithm.

Figure 5.1 illustrates the iterative evolution of benefit allocation to the four pro-

sumers as well as the largest excess of the proposed algorithm. It can be observed that the

proposed algorithm converges after 3 iterations, which exhibits a fast convergence speed.

The greatest excess under the proposed algorithm (erCT = 0 (pence)) is non-positive but

those of MMR (erMMR = 34.75 (pence)) and BS (erBS = 147.84 (pence)) are both positive.

This means the proposed core tâtonnement algorithm converges to an allocation solution in

the core of the examined coalitional game, however, both MMR and BS result in unstable

benefit allocation solutions.

Figure 5.2 illustrates the distribution of the total monetary benefit of the grand

coalition to each of the four prosumers under the proposed and state-of-the-art mechanisms.

It can be observed that all four prosumers receive positive benefits under EB, SV, the

nucleolus and the proposed CT and SP mechanisms. On the other hand, prosumer 1

1As discussed in Section 4.5, the solutions of EB and NB are equivalent for the considered prosumer
coalitional game [134], therefore we only implement the EB mechanism for performance benchmarking.
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Figure 5.2: Distribution of the total monetary benefit of the grand coalition to each
of the prosumers under the proposed and state-of-the-art mechanisms.

under BS and EC; prosumer 3 under BS, EC and PC; and prosumer 4 under MMR receive

negative benefit distributions. This suggests that the energy cost of those prosumers will

be lower when trading independently with the retailer than when engaging in P2P energy

trading under these mechanisms.

Figure 5.3 illustrates the excesses of all 2N −2 = 14 coalitions (excluding the empty

set and the grand coalition2) of the examined 4-prosumer coalitional game with respect to

the benefit distribution solutions of the proposed and state-of-the-art mechanisms. It can

be observed that the excess of every sub-coalition is negative under the nucleolus and the

benefit distribution of the proposed CT and SP algorithms, meaning that all prosumers

are adequately incentivized to remain in the grand coalition rather than forming smaller

sub-coalitions. In other words, these benefit distribution solutions lie in the core of the

examined coalitional game. On the other hand, the excesses of at least 2 sub-coalitions

with respect to the benefit distribution solutions of the rest six state-of-the-art mechanisms

are greater than zero, suggesting that prosumers breaking off from the grand coalition to

2Driven by the feasibility requirement of the benefit distribution, i.e. rN = v(N ), the excess of the
grand coalition is zero, i.e. e(N , r)=v(N )−rN =0.
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Figure 5.3: Excesses of all sub-coalitions with respect to the benefit distribution
solution under the proposed and state-of-the-art mechanisms for the examined 4-
prosumer coalitional game.



142

form sub-coalitions can achieve higher benefits, resulting in unstable benefit allocations.

5.3.3 Comparison of Pricing Mechanisms

Figure 5.4 (a)-(c) compares the hourly local buy and sell prices obtained by MMR, BS

and the proposed SP algorithm, respectively, against the grid import and export prices. It

is evident from Figure 5.4 (a) and Figure 5.4 (c) that the local prices obtained by MMR

and the proposed SP algorithm are within the grid import and export price ranges. Under

such prices, prosumers are willing to trade internally among themselves first, because of the

more attractive local prices and the guarantee of the same volume of energy transactions

as directly interacting with the external retailer. On the other hand, the local BS sell

prices are lower than the retailer export prices (Figure 5.4 (b)). The reason behind this is

explained in Section 4.2. As a result, prosumers acting as electricity sellers will experience a

revenue deficit when participating in P2P energy sharing which is particularly problematic

for prosumers who have abundant local generation.

5.3.4 Local Demand-Supply Balancing and RES Absorption

The aim of this section lies in comparing the local demand-supply balancing and RES

absorption effects associated with the conventional and the proposed P2P energy trading

mechanisms. We examine a 20-prosumer coalitional game where 10 ES units and 10 PV

systems are randomly assigned to prosumers. Figure 5.5 illustrates the net demand (pos-

itive)/generation (negative) of the 20-prosumer coalition while Figure 5.6 illustrates the

aggregate ES charging (positive) and discharging (negative) schedules, for three different

cases:

1) a case without operating any ES units (blue curves);

2) a case where each prosumer independently manages the operation of its ES unit to

minimize its own energy cost (red curves);

3) a case where prosumers cooperatively manage the operation of their ES units to

minimize the total coalitional energy cost (green curves).
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Figure 5.4: Comparison of hourly local buy and sell prices under the MMR, BS,
proposed SP algorithm and the grid import and export prices.
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Figure 5.5: Net demand/generation of the 20-prosumer coalition without ES (blue
curve), with independent ES operation (green curve), and with cooperative ES oper-
ation (red curve).

Figure 5.6: The aggregate ES charging and discharging schedule of the 20-prosumer
coalition with independent (green curve) and cooperative (red curve) ES operations.
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It can be observed that under cooperative ES operation, the abundant PV gener-

ation during mid-day periods is largely absorbed and stored in the ES and is discharged

during periods characterized by high electrical demand and none/low PV production, re-

sulting in a cooperative ES schedule which almost mirrors the net demand profile. This

coordinated use of complementary DERs significantly reduces the peak demand and con-

tributes to a much more locally balanced demand and supply compared to independent

ES operation. Furthermore, it is evident that under the proposed benefit distribution and

pricing mechanisms, prosumers are properly incentivized to share their surplus PV gen-

eration directly with their neighbors, establishing successful P2P energy sharing among

prosumers, as opposed to independent ES operation, where prosumers inject their excess

PV generation to the grid at an unattractive price.

5.3.5 Benefit Distribution Stability against Number of Prosumers

The greatest excess represents the worst-case excess determined over all possible sub-

coalitions with respect to the benefit distribution solution. Given a benefit distribution

vector r ∈ RN , a positive value of the greatest excess implies that there is at least one sub-

coalition S ⊂ N whose total benefit distribution received from r is less than the benefit

this sub-coalition can achieve by itself. As a result, a tendency emerges for prosumers in

S to leave N and form a sub-coalition; in this case the considered benefit distribution r is

said to be unstable. On the other hand, a non-positive value of the greatest excess (which

by definition suggests that the excesses of all sub-coalitions are non-positive) implies that

all prosumers are incentivized to remain in the grand coalition; in this case r is said to be

stable. It therefore suffices to analyze only the greatest excess under different mechanisms

to study their stability.

Table 5.1 illustrates the greatest excess of the proposed and state-of-the-art mech-

anisms as the number of prosumers N grows larger. We assume that each prosumer has

a 50% chance to take the ownership of a PV system or an ES unit. It can be observed

that the nucleolus and the proposed CT and SP mechanisms always guarantee the great-

est excess to be non-positive regardless of the number of prosumers, suggesting that their
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Table 5.1: Greatest excess (in pence) under the proposed and state-of-the-art mech-
anisms for different numbers of prosumers

N 4 8 12 16 20
MMR 52.03 17.73 59.15 121.17 115.90

BS 100.31 111.38 156.41 142.88 175.31
SV 11.44 -2.39 11.23 16.58 9.18

Nucleolus -1.27 -6.98 -3.61 -15.28 -7.41
EC 162.42 124.8 177.67 192.69 215.1
PC 20.89 53.6 62.37 65.75 73.83
EB 40.28 14.14 54.7 44.8 50.88
CT 0 0 0 0 0
SP -1.27 -6.98 -3.61 -15.28 -7.41

benefit distribution schemes are stable. It should be noted that the nucleolus and the

proposed SP mechanism always achieve the same value of greatest excess for the following

reason. As discussed in Section 4.5.3, the problem of finding the nucleolus is formulated

as a sequence of LPs, where each LPj minimizes the jth greatest excess (i.e. the jth entry

of vector θ(r)). Therefore, the obtained nucleolus achieves the lexicographically minimal

value of all excesses including the greatest excess. On the other hand, the SP mechanism

aims at minimizing the greatest excess of all sub-coalitions (which coincides with the ob-

jective of LP1) and constraining it to be non-positive. Consequently, the nucleolus and SP

mechanisms achieve the same value of greatest excess.

On the other hand, the greatest excesses are almost all positive under the rest

six state-of-the-art mechanisms, demonstrating that the benefit distribution under these

mechanisms may not be in the core of the examined prosumer coalitional game, and thus,

breaking off from the grand coalition to form smaller sub-coalitions is always more beneficial

for some prosumers.

5.3.6 Computational Performance against Number of Prosumers

Table 5.2 compares the computational performance of the proposed and state-of-the-art

mechanisms by presenting the total computational time (the number of iterations for the

nucleolus (i.e. the number of LPs solved) and CT mechanisms to reach convergence are

indicated in parentheses) for an increasing number of prosumers.
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Table 5.2: Total computational time (in seconds) of the proposed and state-of-the-art
mechanisms

N 4 8 12 16 20
MMR 0.08 0.09 0.1 0.1 0.09

BS 0.08 0.08 0.08 0.1 0.1
SV 0.1 0.1 0.09 0.1 0.1

Nucleolus 1.25 16.8 167.15 1,334 14,584
(Iterations) (6) (88) (1,143) (6,401) (70,002)

EC 0.1 0.1 0.09 0.1 0.1
PC 0.09 0.08 0.09 0.09 0.1
EB 0.09 0.1 0.08 0.08 0.09
CT 0.12 0.1 0.13 0.13 0.13

(Iterations) (5) (3) (10) (8) (13)
SP 0.19 0.21 0.19 0.22 0.22

It can be observed that the total computational time (as well as the required number

of iterations) for determining the nucleolus increases exponentially with the number of

prosumers. As mentioned in Section 4.5.3, this is because the computation of the nucleolus

requires the solution of O(2N ) LPs (e.g. a total number of 70,002 LPs have been solved

in the case of 20 prosumers). Such massive computational burden largely restricts the

adoption of the nucleolus scheme in P2P trading despite that it always belongs to the core.

On the other hand, although the other six state-of-the-art mechanisms feature

lighter computational burden, their distribution solutions may not suitably incentivize

prosumers’ stable participation in the grand coalition (Section 5.3.2 and Section 5.3.5).

Compared to the iterative algorithm of computing the nucleolus, the CT algorithm is

clearly more computationally efficient in terms of the total computational time and the

required number of iterations to reach convergence (since it does not involve solving any

optimization problems). In addition, the SP algorithm exhibits similar computational

superiority as it requires only to solve a single LP regardless of the number of prosumers.

5.4 Summary

In this chapter, a core tâtonnement benefit distribution algorithm and a SP pricing al-

gorithm have been propose. The CT algorithm computes an allocation solution through
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iterative process and converges with theoretical guarantees while the SP algorithm iden-

tifies the local trading prices by the solution of a single LP, then the financial savings

of each prosumer is calculated accordingly. Both algorithms are capable of identifying

a stable distribution of the total cost savings to prosumers and guarantees that none of

them can benefit with higher cost savings by exiting the grand coalition to join smaller

sub-coalitions.

Case studies have been conducted using real-world system data and the results

have demonstrated that under the proposed P2P trading and pricing mechanism, the

collaborative operation of prosumers’ ES units contributes to a more locally balanced

demand and supply compared to independent ES operation and enables the excess RES

generation to be efficiently shared within the grand coalition. The value of the proposed

benefit allocation and pricing algorithm have been investigated by comparing it against

state-of-the-art mechanisms. Results have demonstrated that the proposed algorithms are

superior to MMR, BS, EC, PC, EB and SV in financially incentivizing prosumers to stay

in the grand coalition and also exhibits a more favorable computational performance than

nucleolus.
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Chapter 6

Conclusions and Future Work

6.1 Summary of Thesis Achievements

Electricity systems worldwide are currently facing fundamental challenges, driven by the

combined effects of four "D"s. In the context of addressing the environmental and energy

security concerns caused by carbon dioxide emissions, strong initiatives arise towards the

decarbonization of energy system with numerous polices being issued by the governments

of world-wide counties. The decarbonization agenda takes place through a transition away

from centralized fossil fuel power generation towards renewable energy power generation

and electrification of transport and heat sectors of the demand side.

Policies together with the decreasing costs in sustainable power production and stor-

age utilities make local self-usage power production increasingly attractive. However, such

initiatives introduce significant challenges to the stable and reliable operation of electricity

systems as the weather and climate driven renewable energy sources are characterized by

a significant spatial and temporal variability.

On the other hand, active end-user participation and rising demand at the distribu-

tion level promoted the needs of a more decentralized energy supply especially. Therefore,

the decentralization is occurring with the increasing integration of small-scaled distributed

energy resources (DERs), such as rooftop solar photovoltaics (PV), wind turbines to pro-
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vide the decentralized generation/production as well as flexible loads (including the electric

vehicles, smart appliances) and energy storage units/batteries to provide the required flex-

ibility in the distribution network.

The rapid proliferation of small-scale DER owned by small domestic electricity users,

known as prosumers, in the distribution network implies a profound paradigm shift from

a unidirectional model to a bidirectional one. The on-going deregulation effort of the elec-

tricity market also opened up new opportunities for the prosumers. The emerging local

energy market offers the possibilities to buy and sell energy between prosumers, which

lead to more efficient usage of their owned DERs. In the meantime, the development of

smart technologies accelerates the transformation to a more digitized energy system. The

combined effect of deregulation and digitalization inspires new ways of exchanging electric-

ity and providing management/services on the paradigm of peer-to-peer and transparent

transactions.

Though the promising P2P energy trading brings numerous advancements, the ex-

isting P2P mechanisms either fail to coordinate energy in a fully distributed way or are

unable to adequately incentivize prosumers to participate, prevent prosumers from access-

ing the highest achievable monetary benefits and/or suffering severely from the curse of

dimensionality. Therefore, this thesis aims at proposing three P2P energy trading en-

abling mechanisms in the aspect of fully distributed efficient balanced energy coordination

through consensus-based algorithm and two incentivizing pricing and benefit distribution

mechanisms through cooperative game theory.

6.1.1 Fully Distributed Consensus-Based Energy Coordination with FD

ES Participation

Traditional, centralized approaches for coordinating flexible demand in electricity markets

are subject to communication and computational scalability limitations and raise privacy

concerns for consumers who are generally reluctant to disclose private information and

allow direct control by an external entity. In light of these challenges, distributed coordi-

nation approaches, based on dynamic pricing principles, have attracted significant interest
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because these approaches drive demand responses based on time-differentiated prices with-

out requiring centralized knowledge of the flexible loads’ specific operating parameters

Although consensus-based algorithms have been proposed in recent literature to

overcome the practical limitations of centralized DER coordination approaches, they are

inherently unable to capture the time-coupling operating characteristics of FD and ES

as they address the coordination problem in independent time periods. This thesis has

incorporated for the first time a generic representation of FD and ES in the problem of

consensus-based coordination and demonstrated that state-of-the-art algorithms fail to

converge when these time-coupling characteristics are considered. This effect is shown to

be driven by the discontinuities in the FD and ES optimal responses and the resulting

"lumpy" power shifts across different time periods.

In order to address this fundamental limitation, this thesis has proposed a novel

consensus-based algorithm which includes additional consensus variables. These variables

express relative maximum power restrictions imposed on the FD and ES resources which

effectively mitigate the concentration of the FD and ES responses at the same time peri-

ods. Both theoretical analysis and numerical case studies prove and demonstrate that the

proposed algorithm not only converges but also yields the optimal coordination solution.

Furthermore, the proposed algorithm is demonstrated to exhibit robustness to different

initialization values and information loss caused by communication network imperfections,

as well as excellent plug-and-play adaptability.

6.1.2 Incentivizing Pricing and Benefit Distribution Mechanisms for Co-

operative P2P Energy Trading

Although different pricing, cost sharing and benefit distribution mechanisms have been

proposed in the literature to realize the potential of P2P energy trading, they either fail

to adequately incentivize prosumers to participate, prevent prosumers from accessing the

highest achievable monetary benefits, or suffer severely from the curse of dimensionality.

To address these limitations, this thesis has proposed two computationally efficient

mechanisms to construct a stable grand coalition of prosumers and optimize cooperatively
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the operation of their ES units, founded on cooperative game-theoretic principles. The

first one involves a benefit distribution scheme inspired by the core tâtonnement process

while the second involves a novel pricing mechanism based on the solution of a single LP.

Case studies have been conducted using real-world data and the results have demon-

strated that under the proposed P2P trading mechanisms, the collaborative operation of

prosumers’ ES units contributes to a more locally balanced demand and supply compared

to independent ES operation and enables the excess RES generation to be efficiently shared

within the grand coalition. The value of the proposed CT and SP mechanisms has been

demonstrated by comparing them against eight state-of-the-art mechanisms. Results have

demonstrated that the proposed mechanisms exhibit superior computational performance

than the nucleolus and are superior to the rest of the mechanisms in financially incentivizing

prosumers to remain in the grand coalition.

6.2 Future Work

Future work aims at extending the presented work towards the following directions:

1) The examined P2P energy trading and coordination problems do not include op-

erating cost components in the modeling representation of ES and FD resources,

adopting the same approach with a large number of relevant papers in the literature.

Recent research has highlighted the significance of such operating cost components,

including the degradation cost of ES resources and the consumers’ disutility costs as-

sociated with demand shifting of FD resources, although numerous diverse models of

these cost components have been proposed without a wide consensus, mainly due to

the diversity of existing ES and FD technologies, the high physical complexity of ES

degradation mechanisms, and the ambiguities in characterizing human consumers’

demand preferences. In this setting, future work aims at incorporating alternative

models of these cost components in the examined DER coordination problem and in-

vestigating the resulting performance of the the proposed consensus-based algorithms

as well as the incentivizing Single-LP pricing algorithm and benefit distribution CT
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algorithm. Moreover, some emerging flexible demand technologies, such as smart

electric appliances and electric vehicles, will be included in the model in order to

explore their benefits for the local community.

2) The proposed three algorithms as well as all consensus-based algorithms and in-

centivizing pricing and benefit distribution algorithms under grand coalition in the

existing literature [70, 98–106, 129–131, 133, 134, 134, 136–139] neglect the complex

power flow constraints of the electricity distribution network connecting the DER.

Future work aims at addressing this challenge and enhancing the proposed algorithm

to incorporate the distribution network constraints.

3) The proposed algorithm as well as existing consensus-based algorithms and P2P en-

ergy trading mechanisms are deterministic, neglecting uncertainties associated with

renewable generation and demand profiles. The optimal energy scheduling is calcu-

lated based on the assumption of complete knowledge on the operational model and

the parameters of DER, as well as the accurate prediction of uncertain parameters,

such as renewable generation output and demand. However, this assumption is not

realistic. Therefore, the stochastic nature of local RES and demand will be factored

in the model in order to explore the value of P2P trading in addressing the economic

impacts of this stochasticity for the local community, and potentially use machine

learning or reinforcement learning based methods to solve the problem.
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Appendix A

Operating Parameters and Test Data

for Case Studies in Chapter 3

Table A.1: Operating parameters of dispatchable generators (DG) indexed from 1 to
14 and from 31 to 32.

Index lj (kW) qj (£/kW2) ḡj (kW)
1 0.00142 7.3 350
2 0.00155 7.4 250
3 0.00208 7.8 260
4 0.00255 7.95 200
5 0.00293 8.2 150
6 0.00341 9.17 80
7 0.00175 7.6 200
8 0.00195 8.26 150
9 0.00211 8.32 120
10 0.00179 7.66 220
11 0.00197 7.29 110
12 0.00237 8.45 100
13 0.00274 8.5 80
14 0.004 9.27 70
31 0.00242 7.3 300
32 0.00282 8.1 200
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Table A.2: The Output Gk,t of inflexible generators (IG) indexed from 15 to 18 (kW).

Gk,t

Time
Index 15 16 17 18

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0.55706 0.4811566667 0.9715066667 0.48251
6 3.782193333 3.726123333 4.916683333 4.621026667
7 9.491463333 9.37755 15.24331667 13.39128
8 16.26594667 16.14391333 26.66216 28.84970667
9 22.86568667 22.61875 33.28530333 45.58449
10 11.04406333 10.98678 29.21011333 58.18262333
11 12.62167667 12.56259667 33.93490333 67.28547
12 13.52878333 36.67601 36.35279667 71.49027667
13 13.52845667 35.54065667 13.79707 71.23426333
14 12.81529667 42.37167667 12.95466667 67.74287333
15 29.85705333 43.22908333 11.50214333 59.4104
16 23.81621667 24.53838333 9.39162 48.0424
17 17.41348 17.51206333 6.922556667 32.59510333
18 10.68741333 10.79029 14.44531667 17.20208
19 4.753186667 4.744856667 6.67156 6.327953333
20 0.86583 0.8702166667 1.570123333 1.471026667
21 0 0 0 0
22 0 0 0 0
23 0 0 0 0
24 0 0 0 0

Table A.3: The flexibility interval TFD
l and energy requirements EFD

l of flexible de-
mand (FD) indexed from 19 to 22 and from 33 to 34.

Index TFD
l EFD

l (KWh)
19 [9,16] 200
20 [9,16] 220
21 [1,6]∪[22,24] 250
22 [1,6]∪[22,24] 260
33 [1,6]∪[22,24] 260
34 [1,6]∪[22,24] 300
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Table A.4: The maximum demand limit d̄l,t of flexible demand (FD) indexed from 19
to 22 and from 33 to 34 (kW).

d̄l,t

Time
Index 19 20 21 22 33 34

1 0 0 180 220 220 220
2 0 0 180 220 220 220
3 0 0 180 220 220 220
4 0 0 180 220 220 220
5 0 0 180 220 220 220
6 0 0 180 220 220 220
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 80 85 0 0 0 0
10 80 85 0 0 0 0
11 80 85 0 0 0 0
12 80 85 0 0 0 0
13 80 85 0 0 0 0
14 80 85 0 0 0 0
15 80 85 0 0 0 0
16 80 85 0 0 0 0
17 0 0 0 0 0 0
18 0 0 0 0 0 0
19 0 0 0 0 0 0
20 0 0 0 0 0 0
21 0 0 0 0 0 0
22 0 0 180 220 220 220
23 0 0 180 220 220 220
24 0 0 180 220 220 220



158

Table A.5: The Demand Dm,t of inflexible demand (ID) indexed from 23 to 26 (kW).

Dm,t

Time
Index 23 24 25 26

1 61 81.33333333 162.6666667 183
2 62 82.66666667 165.3333333 186
3 28 37.33333333 74.66666667 84
4 12 16 32 36
5 7 9.333333333 18.66666667 21
6 15 20 40 45
7 68 90.66666667 181.3333333 204
8 118 157.3333333 314.6666667 354
9 117 156 312 351
10 105 140 280 315
11 103 137.3333333 274.6666667 309
12 100.1 133.4666667 266.9333333 300.3
13 95 126.6666667 253.3333333 285
14 99 132 264 297
15 111.4 148.5333333 297.0666667 334.2
16 138.8 185.0666667 370.1333333 416.4
17 213 284 568 639
18 244 325.3333333 650.6666667 732
19 220 293.3333333 586.6666667 660
20 178 237.3333333 474.6666667 534
21 142.9 190.5333333 381.0666667 428.7
22 109 145.3333333 290.6666667 327
23 91 121.3333333 242.6666667 273
24 88.5 118 236 265.5

Table A.6: The operating parameters of energy storage (ES) units indexed from 27
to 30.

Index 27 28 29 30
S̄n (kW) 80 150 300 500
Ēn (kWh) 200 220 600 800
En (kWh) 50 50 200 200
En,0 (kWh) 50 50 200 200
ηcn 0.95 0.95 0.95 0.95
ηdn 0.95 0.95 0.95 0.95
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Table A.11: Initial demand of FD l indexed from 19 to 22 and from 33 to 34 at time
period t (kW).

d0l,t

Time
Index 19 20 21 22 33 34

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 0 0 0 0 0
15 0 0 0 0 0 0
16 0 0 0 0 0 0
17 0 0 0 0 0 0
18 0 0 0 0 0 0
19 0 0 0 0 0 0
20 0 0 0 0 0 0
21 0 0 0 0 0 0
22 0 0 0 0 0 0
23 0 0 0 0 0 0
24 0 0 0 0 0 0
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Table A.12: Initial charging power of ES n indexed from 27 to 30 at time period t
(kW).

sc0n,t

Time
Index 27 28 29 30

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0
16 0 0 0 0
17 0 0 0 0
18 0 0 0 0
19 0 0 0 0
20 0 0 0 0
21 0 0 0 0
22 0 0 0 0
23 0 0 0 0
24 0 0 0 0
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Table A.13: Initial discharging power of ES n indexed from 27 to 30 at time period t
(kW).

sd0n,t

Time
Index 27 28 29 30

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0
16 0 0 0 0
17 0 0 0 0
18 0 0 0 0
19 0 0 0 0
20 0 0 0 0
21 0 0 0 0
22 0 0 0 0
23 0 0 0 0
24 0 0 0 0
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