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Abstract: This paper presents a decision support model for negotiation portfolio optimization
considering the participation of players in local markets (at the microgrid level) and in external
markets, namely in regional markets, wholesale negotiations and negotiations of bilateral agreements.
A local internal market model for microgrids is defined, and the connection between interconnected
microgrids is based on nodal pricing to enable negotiations between nearby microgrids. The market
environment considering the local market setting and the interaction between integrated microgrids is
modeled using a multi-agent approach. Several multi-agent systems are used to model the electricity
market environment, the interaction between small players at a microgrid scale, and to accommodate
the decision support features. The integration of the proposed models in this multi-agent society
and interaction between these distinct specific multi-agent systems enables modeling the system as
a whole and thus testing and validating the impact of the method in the outcomes of the involved
players. Results show that considering the several negotiation opportunities as complementary and
making use of the most appropriate markets depending on the expected prices at each moment
allows players to achieve more profitable results.

Keywords: local electricity markets; microgrids; multiagent systems; smart grids; transactive energy

1. Introduction

Microgrids are distributed power networks that are electrically connected to the power grid
at the distribution level and have clear electrical boundaries. Thus microgrids are seen from the
system viewpoint as single controllable entities acting as aggregated generators or loads [1]. The lower
operating costs of the grid drive the microgrid central controller (MGCC) to cooperate with other
interconnected microgrids [2]. Reaching efficient synchronization between the grid and microgrids is
crucial for short-term operation of integrated microgrids.

It is expected that in future power grids influenced with the deployment of smart grid technologies,
the main building blocks of the network are microgrids that are interconnected with each other,
as well as the upstream network. For instance, the electricity grid of a district can be seen as a
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microgrid. The concept of transactive energy allows the transaction of energy among these networks.
Transactive energy is used by the GridWise Architecture Council’s Framework to refer to a combination
of economic and control techniques used to balance the generation and consumption within a power
grid while considering the grid constraints [3,4].

1.1. Objectives

This paper aims at analyzing the interaction between the local entities of a microgrid and
the coordination among integrated microgrids as a complementary transaction opportunity to the
wholesale market. In order to potentiate the implementation of microgrids, we need the models that
clearly define and characterize the behavior of participants in the market environment, where players
search for short-term and long-term financial benefits. The operation of inter-connected microgrids
is represented as a transactive energy system, which encompasses agents [5]. The transactive energy
system framework for interconnected microgrids allows the transaction of energy between neighbor
microgrids and between these microgrids and other players in the power system. The transactive
signals between the agents existing in the interconnected microgrids are economic value signals,
such as price or incentives.

The evolution of the power system towards a transactive energy system, making use of the
already made investment in smart grids and microgrids [6], forces the involved players to adapt to the
new reality and seek new ways to potentiate their investments in such a competitive and constantly
changing environment. Decision support and simulation solutions become increasingly important in
this domain [7], with optimization models and multi-agent systems (MAS) as some of the most widely
needed approaches.

1.2. Related Work

MAS are suitable for modeling the interactions between players with heterogeneous characteristics
and capabilities. For this reason, MAS have become promising solutions to study and explore different
types market models and associated negotiation strategies. E-commerce is a timely example in which
much relevant work has been proposed. For example, in [8], a stable multilateral automated negotiation
model is proposed to enable the matching process in a two-sided e-marketplace. With this purpose,
this approach proposes two optimization models, one with the goal of reaching an effective balance
among the proposal value of issues and the other maximizing social welfare. Several negotiation
policies, customer’s tactics and coalition tools are proposed in [9] as services in e-marketplaces.
MAS are applied as means to model the e-market architecture. The work presented in [10] studies how
negotiation efficiency is affected by the varying bidding strategies of a costumer. With this purpose,
this work proposes several competitive bidding strategies for many-to-many supplier negotiation
process. In [11] a constraint model for negotiations is proposed, directed to the resolution of scheduling
and supply planning problems. These problems are modeled through inter-agent fuzzy constraints.

The developments in MAS approaches have created the basis for a suitable modeling of microgrids’
operation in short-term markets [1,12]. These approaches represent loosely connected networks of
interacting distributed intelligent hardware and software agents [1,13]. MAS approaches are also very
useful to model smart grids, as they enable representing the decision-making process of different
entities. The MAS approach proposed in this work is used to model neighbor microgrids operation in
a multi-market setting.

Different MAS approach are proposed in [2] to deal with microgrids’ centralized control and
management. A laboratorial case study is experimented in [14] to test the practical implementation of
integrated microgrids. This work validates control and reliability models for DG and energy storage
systems. The short-term operation of a microgrid containing DGs and storage units is modeled in [15],
and it has been noted that the storage units are more profitable when the MGCC plans to increase the
share of intermittent units. Microgrids attain more benefits from resource sharing among electrically
interconnected microgrids [12]. A hierarchical control model is used in [1,12] to manage the optimal
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scheduling of generation and the energy transactions between integrated microgrids and the power
grid. A market model dealing with DR exchange based on MAS technology is proposed in [16].

The aggregate performance of microgrids is optimized with the control algorithms proposed
in [17]. This work aims at achieving the optimal scheduling of both energy demand and thermal
comfort. Two scheduling layers are developed for the optimal operation of interconnected microgrids
in [18]. In the proposed hierarchical energy management system, operation scheduling within the
microgrid is done by local energy management system and a community energy management system
is responsible for the optimal planning of the interconnected microgrid. Coordination among the
microgrids is the responsibility of this top layer.

Work done in [5] addresses the microgrid operation, considering the integration with the upstream
network under the transactive energy concept. Homes with advanced energy management systems
can participate in transactive energy system, namely by receiving price signals and power profile
forecasts with nodes at higher levels [19,20] discusses the importance of integration DSO, aggregators
into wholesale market and bulk power using a transactive energy framework to face the operational
and business challenges arisen from variability of DERs in distribution systems. The operational
challenges of integrating DSO, DGs and microgrids with AC and/or DC distribution systems has been
addressed in [5]. The hourly interactions between microgrids is defined with a coalitional game theory
model in [21]. The optimal coalition is obtained by reaching an equilibrium state. The main assumption
in this model is the existence of cooperative microgrids. The optimality in this problem is achieved by
minimizing the power loss and avoiding interaction with the upstream distribution network.

In [22] authors have proposed an approach that considers three different levels of negotiation.
The first level refers to the internal dispatch of each microgrid. The two remaining levels refer to the
external negotiations with players outside the microgrid. These players refer to neighbor microgrid
and electricity market agents. The external market is a distribution system market, which is operated
by the DSO. In this previous work, the three levels are considered as sequential and complementary, i.e.,
firstly each microgrid performs its internal dispatch, then neighbor microgrids negotiate directly with
each other in order to look for advantageous deals before participating in the external market to fulfil
their consumption needs or sell the surplus generation. This approach as proven to be advantageous
for the microgrids as it enables them to profit from the participation in the three negotiation levels.

1.3. Contributions

In this paper, a decision support model is introduced with the objective of enabling players to
optimize their negotiations by selecting best market opportunities to participate in each moment,
considering the expected outcomes in each of the markets. This model is extended from the work
presented in [23], which addresses the optimization of wholesale electricity market negotiations.
The new model introduced in this paper is now able to consider negotiations at the local level as
complementary to those at the wholesale level. Thus, the several negotiation levels are no longer
considered as sequential as in [22], rather as complementary and/or alternative depending on the
expected negotiation prices at each time. In this way, players may choose to negotiate the full amount
in a certain market if it is expected to generate a more profitable outcome in a certain moment, or,
on the contrary, negotiate partial amounts in different negotiation opportunities if this is expected
to be more economically advantageous. The internal operation of the microgrids is now approached
as a local (internal) microgrid market, and nodal pricing in distribution network (microgrid) is used
as a basis for interaction between interconnected microgrids. Nodal pricing in the distribution level
is an effective means to manage the consumption. It can produce the value signals that are used in
transactive energy systems for agents’ negotiation. These signals show the dynamically varying needs
of the agents [24]. In [25], it is concluded that the DG units have higher revenues under nodal pricing
and contribute more to reduced line losses. The method used to derive nodal prices in a distribution
network is similar to obtaining them at the transmission level [25].
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Moreover, the modeling of microgrids interaction with the market is conducted with a MAS
approach. In specific, the decision support model for market participation portfolio is integrated in
Adaptive Decision Support for Electricity Markets Negotiations (AiD-EM) [26], a decision support
MAS for electricity market negotiations. Multi-Agent Simulator for Electricity Markets (MASCEM) [27]
is used to study and simulate the actual market transactions. Finally, Multi-Agent Smart Grid Platform
(MASGriP) [28], is used to simulate the players in a microgrid/smart grid environment. The integration
of the proposed models in these MAS and the communication between the different systems enables
simulating the entire system from the small players inside the microgrids to the large players in the
wholesale market, while using the required decision support capabilities to evaluate the impact of
their decisions on their different types of interactions. Figure 1 shows a general overview of the
proposed approach.
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Figure 1. General overview of the proposed methodology.

Figure 1 shows that the proposed approach can be applied to multiple combinations of
electricity market models, which the objective of optimizing a certain player’s participation in these
complementary market opportunities. The considered market models include the microgrids’ internal
(local) market model, which is proposed in Section 2.1; the negotiation among microgrid, presented
in Section 2.2; and several market models that are typically part of the wholesale market, such
as the day-ahead spot market, bilateral contract negotiations and intraday markets, as described in
Section 2.3. The historic log of prices established in each of the different markets is used by the proposed
model to forecast or estimate the expected price to be achieved in each of the markets depending on
the negotiated amount, as explained in Section 3. The expected prices in each market are used by
optimization model proposed in Section 3.1 to optimize the support player’s participation in the several
markets. The optimization model results in the set of volumes that the player should sell and/or buy
in each of the considered market opportunities. These recommendations are used by the player to,
later on, perform the actual negotiations in each market. The simulation of the different market models
is performed using a multi-agent approach, which is described in Section 3.2. The decision support
components are also integrated in the MAS model, enabling the market participating players to benefit
from this aid to improve their outcomes from market participation.

In summary, the main original contributions of this work are:

• The definition of a local market setting for internal microgrids management. This local market
model is extended from the preliminary work initially presented in [22]. The extension from the
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model of [22] includes the improvement of the optimal power flow formulation and the detail of
the market model formulation;

• The introduction of a negotiation portfolio optimization model for decision support in negotiations
in local and wholesale markets;

• The modeling of the integrated microgrids in the market environment using a MAS approach.

After this introductory section, Section 2 focuses on the operation of interconnected microgrids,
including the specification of the considered internal (local) microgrid market and an overview of
the complementary external negotiation opportunities. Section 3 presents the proposed negotiation
portfolio model, which includes the mathematical formulation of the decision support model, and a
description of the integration of the proposed models in the MAS simulation framework. Section 4
presents the case studies that evaluate the advantages of using the proposed model. Finally, Section 5
presents the most relevant conclusions of this work.

2. Operation of Interconnected Microgrids

Microgrids facilitate the integration and management of DG units by providing the means to
guarantee a reliable operation of the small portion of the grid. Energy storage units can also be
integrated in microgrids to ease the management of large amounts of variable DG. Microgrids are
usually connected to the main upstream grid in a point of common coupling (PCC). It is thereby seen
from the main system as a controllable independent subsystem [29]. These operation characteristics
are why the future power system is usually seen as a group of interconnected microgrids, where each
microgrid can be limited to a district. Thus, under this scheme it is unlikely that large blackouts can
threaten the power grid as they are doing now. On the other hand, the small size of microgrids makes
the operation more challenging, with physical implications on the power system performance [30].

The MGCCs are at the top level of microgrids’ control and management structure and coordinates
the operation between the commercial aggregators (CAs), virtual power players (VPPs) and the utility
grid. MGCC are responsible for optimizing the microgrid operation, regarding voltage and frequency
levels. MGCC decisions are crucial both when the microgrid is connected to the main grid, as also when
the microgrid is operating in isolated mode [31]. In the proposed model, the responsible administrative
entity for demand side management is the CAs. They can offer elastic demand bids or flexibility to
the MGCC. CAs in a microgrid aggregate the demand of end-users and have the flexibility to accept
DR commands from the MGCC. The market participation and operation of neighbor microgrids is
designed by means of three negotiation models: (i) an internal market considering the bids of the
players located inside the local network, with regard to the network constraints; (ii) the negotiations
among neighbor microgrids; and (iii) the participation in wholesale electricity markets.

2.1. Microgrids’ Internal (Local) Market

In the internal market of each microgrid the MGCC clears the market while satisfying the network
constraints. This market is for the VPPs and CAs to submit their offers and bids with regard to the
internal market particular rules and policies. The CAs submit price-responsive demand bids at each
bus for price elastic loads and inelastic demand bids for the loads that accept energy at any cost.
The supply offer and demand bid curves at the buses with more than one serving VPPs or CAs are
aggregated before the market clearing procedure. Load and generation dispatch for the involved
players is calculated. From the market clearing results the LMPs at the different buses.

Congestion management is formulated as maximization of social welfare subject to power balance
and line congestion constraints [32]. The objective of the MGCC for internal market clearing would be
to maximize the social welfare in the microgrid Equation (1), subject to the power flow constraints [33].
Maximizing the social welfare causes the maximization of consumers’ benefits and minimization of
suppliers’ generation cost [32]. In (1), Cb is the aggregated generation cost function of the VPPs at each
bus and Bb(·) is the aggregated consumption benefit function of the CAs at each bus. The expected
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cost and benefit function of the interconnected microgrids at the joint buses are also aggregated with
these functions. pLoad,t

b is the aggregated load at buses and pDG,t
b is the aggregated of the DGs at bus b.

Equations (2) and (3) show how these variables are calculated. pt
g is the active power generation of DG

g and pt
l is the active demand required by load l [34]:

Maximize ∑
t∈T

∑
b∈Bi

Bb(pLoad,t
b )− Cb(pDG,t

b ) (1)

pDG,t
b = ∑

g∈Ωb
g

pt
g ∀t ∈ T, ∀b ∈ Bi (2)

pLoad,t
b = ∑

l∈Ωb
l

pt
l ∀t ∈ T, ∀b ∈ Bi (3)

The power balance constraint required by the DC-Optimal Power Flow (OPF) at all buses of
the microgrid is shown in Equation (4). Constraint in Equation (5) enforces the lower and upper
bus voltage limitations. Generation of each DG unit and the consumption of each load is limited by
Equations (6) and (7).

pDG,t
b − pLoad,t

b = ∑
c∈Bi

1
xbc

(
δt

b − δt
c
)

∀t ∈ T, ∀b ∈ Bi (4)

δMin
b ≤ δt

b ≤ δMax
b ∀t ∈ T, ∀b ∈ Bi (5)

PMin
g ≤ pt

g ≤ PMax
g ∀t ∈ T, ∀g (6)

PMin
l ≤ pt

l ≤ PMax
l ∀t ∈ T, ∀l (7)

Congestion of the lines have a critical impact on determining the price of electricity. The operator
has to clear the market at the bus level when there is congestion in the system [35]. The market clearing
price at the bus level is known as LMPs. LMPs can be calculated using either DC Optimal Power Flow
(OPF) or full AC OPF [36]. Despite the high precision of the AC OPF model in calculating the economic
signals, its linear approximation, i.e., the DC OPF model is generally preferred to that by the market
operators due to the convergence issues of the AC OPF [36]. LMP is the marginal increase in the total
system cost due to one unit increase in the active power consumption at each bus [36]. The hourly
LMP for the real power at each bus is the Lagrange multiplier associated with the real power balance
constraints at that bus in the OPF model [33,35]. It is the dual variable for the equality constraint at
that bus [35]. The lossless DC OPF is widely used by the market operators to provide economic signals
for market participants [36].

2.2. Negotiation among MGCCs

Neighbour microgrids can also negotiate with each other, helping to share resources locally,
and also by seeking opportunities for deals at more attractive prices than the wholesale market.
These negotiations mean that each MGCC should analyse the market to forecast the expected market
prices for the following time periods. This value can be used as reference for the analysis of the
possible deals to be negotiated. When offers from nearby MGCCs are more attractive than the
predicted market prices, the MGCCs may decide to transact some power among them, obtaining better
deals than they would have if negotiated the entire amount in the market. In addition to the market
analysis, MGCCs should also apply negotiation strategies to try and reach advantageous deals with
their neighbours.
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2.3. Wholesale Electricity Market

The power and energy sector has been changing significantly. Currently, most countries have
their own market or participate jointly with other countries in a regional markets [37]. Each electricity
market is typically formed by several market models, most commonly: day-ahead spot, intraday
or balancing market and bilateral contracts model. The differences between them lie under their
rules, objectives and how they operate. The day-ahead spot market aims to negotiate energy for the
following day, the intraday/balancing market allows players to negotiate almost in real-time in order
to adjust their needs and compensate possible forecast errors. Both these market types are usually
operated by means of double auctions, where buyers and sellers submit their purchase and sale bids,
and from which results a unique market price for each negotiation period, which set the price for all
the transactions made in that market in the corresponding period. Negotiation by means of bilateral
contracts consists on trading power directly with other entities, usually for a large time horizon [38].

The spot market is where most of the energy is usually transacted. It also promotes
competitiveness, as it is more likely to be able to sell in this market when the sale bids are lower,
which gets more buyers to compete in the bidding. This process contributes to lowering the selling
prices through competitiveness.

3. Proposed Negotiation Portfolio Optimization Model

The proposed decision support methodology aims at providing the best investment profile for a
market player, considering different market opportunities, including negotiations in local markets.
The amount of power that each supported player should negotiate in each available market type in
order to maximize its profits, takes into account the prices that are expected to be achieved in each
market, in different contexts. The expected prices in each market at each time period are used by an
optimization process that has the objective of maximizing the outcomes of players when participating
in the market, through the optimization of players’ market participation portfolios. This model is
presented in Section 3.1.

The decision support model is integrated in a multi-agent framework composed by different
MAS, which are specific for distinct purposes, namely electricity market negotiations, microgrid and
smart grid modelling, and decision support for players’ negotiations, as presented in Section 3.2.

3.1. Mathematical Formulation

Considering the expected available power of a market player for each period of each day,
the amount to be negotiated in each market type is optimized to get the maximum income that
can be achieved. The inputs are:

• the weekday, referred as d in Equation (6);
• the number of days, Nday;
• the negotiation period, referred as p;
• the number of periods, Nper;
• a boolean variable for each distinct market or negotiation platform, indicating if this player can

enter it to sell: AsellM1...NumM;
• a boolean variable for each session of the balancing market, indicating if this player is allowed to

buy in each of them: AbuyS1...NumS;
• M1, M2, . . . , NumM are the considered markets;
• S1, S2, . . . , NumS are the considered balancing market sessions;

The outputs are:

• SpowM1...NumM representing the amount of power to sell in each market;
• BpowS1...NumS representing the amount of power to buy in each session of the balancing market;
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In this formulation psM,d,p is the expected price for the selling of power, and pbS,d,p the expected
price for buying. The formulation of the proposed model for multiple markets participation is presented
in (8):

f (SpowM...NumS , BpowS1...NumS) = Max


NumM

∑
M=M1

(
SpowM,d,p × psM,d,p × AsellM

)
−

NumS
∑

S=S1

(
BpowS × psS,d,p × AbuyS

)


∀d ∈ Nday, ∀p ∈ Nper, AsellM ∈ {0, 1}, Abuy ∈ {0, 1}

psM,d,p = Value(d, p, SpowM, M)

psS,d,p = Value(d, p, BpowS, S)

(8)

The Value function returns the expected value of the power for each particular period of each day,
and for each market. Market prices forecasting is performed using an artificial neural network [39].
In some markets, the price also depends on the power amount to trade. When a player tries to establish
a bilateral contract, the deals may be highly dependent on the amount of power that is being negotiated.
The same fact is verified in other markets, even if not in such a clear way. So, this prediction takes
that in consideration too, by applying fuzzy logic on the absolute amount of the power, to classify
it in one of the categories defined by a clustering mechanism, which groups the ranges of amounts
that present similar prices in each market [40]. The correspondent price is obtained through the Data
matrix, which stores all the prices. The value function is expressed in (9):

Value(day, per, Pow, Market) = Data( f uzzy(pow), day, per, Market) (9)

This formulation has some constraints that are dependent on the individual characteristics and
requirements of each particular market. Other constraints that must be taken into consideration are the
ones imposed by the complex conditions that each player can present. These constraints are formulated
depending on the set of conditions that the player presents, that also depend on each market that
it enters.

The main constraint, which is applied to every situation, is expressed in (10), to impose that
the total power reserved to be sold in the set of all markets is never higher than the total expected
production (TEP) of the player, plus the bought power along all sessions of the balancing market:

NumM

∑
M=M1

SpowM ≤ TEP +
NumS

∑
S=S1

BpowS (10)

Variables Abuy and Asell are Boolean variables that indicate if the player is “allowed to buy or
sell” in each session of each market, i.e., if the participation as a seller or as a buyer is permitted.
A reference example is the balancing market, where a player that is registered as seller, is able to buy,
and vice-versa; also, in bilateral contracts, and in local market negotiations, there is no restriction,
meaning that any player is able to buy or sell power. However, there is no restriction that obligates a
player to do so; it just indicates if the player is able to do it if desired.

This optimization process allows us to:

• Play with the possibility of negotiating in different market opportunities depending on the
expected prices at each moment, considering the negotiation amount;

• Play with the possibility of negotiating with neighbor players in search for advantageous deals,
thus avoiding the need to negotiate solely in regional or wholesale markets;

• Play with the possibility to negotiate with different players in the bilateral contracts, and so
having the chance to get higher or lower prices, depending on the circumstances;
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• Play with the chance to wait for the later sessions of the balancing market to provide higher
amounts of energy, if it is expected for the price to go up;

• Play with the possibility for sellers to buy and buyers to sell in the balancing market, to get good
business opportunities: using arbitrage opportunities, buying extra energy when the prices are
expected to be lower, and then selling it later when the prices go up; or if the prices show the
opposite tendency, offer more energy than the player actually expects to produce, to get greater
profit, and then buy that difference in the expected lower prices opportunities.

3.2. Multi-Agent Architecture

3.2.1. AiD-EM

The proposed negotiation portfolio optimization model is integrated in AiD-EM [23], a multi-agent
decision support system that enables electricity market players to use the available data in an
intelligent and adaptive way in order to cope with the multiple challenges that arise from electricity
markets’ participation.

AiD-EM uses real market data, data derived from past and current simulations, and external
sources data (e.g., weather conditions such as wind speed, solar intensity and temperature; or raw
materials prices, among other) to support the decision making process. Decisions are modelled
specifically for each different market negotiation type, namely the negotiation of bilateral and forward
contracts, and participation in auction based markets, such as the day-ahead spot market and balancing
markets. The multi-agent approach of AiD-EM facilitates the interactions between the different
components and also the communication with external agents, such as the market players themselves,
which make use of the decision support. Figure 2 presents the multi-agent architecture of AiD-EM,
including the portfolio optimization model.
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As shown by Figure 2, the AiD-EM manager agent is the main entity of the system, detaining the
responsibility of providing the connection with the MASCEM electricity market simulator through
the direct interaction with the supported market player(s). When several market players require the
decision support of AiD-EM simultaneously, multiple AiD-EM manager agent instances are created,
so that each supported market player has its own manager agent, with the sole responsibility of
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handling the player’s decision making process. For this, the AiD-EM manager agent executes the
portfolio optimization methodology, presented in Section 3.1, in order to decide whether and when the
supported market player should participate in each market type. Once the objectives for each market
participation are defined, Adaptive Learning Strategic Bidding System (ALBidS) [26] is used to support
the negotiations in auction based markets, e.g., spot, balancing and intraday markets. Complementarily,
when the negotiation by means of bilateral negotiations is also envisaged, the Decision Support for
Energy Contracts Negotiation (DECON) system is used [41].

The connection to MASCEM enables testing and validating the developed decision support
methodologies under realistic simulation conditions, taking advantage on the enhanced simulation
capabilities of MASCEM and on the interactions between the involved players.

3.2.2. MASCEM

MASCEM [42] is a MAS-based simulator for electricity markets. MASCEM supports the most
common market models: namely the day-ahead spot market, intraday markets, bilateral contracts,
forward markets and ancillary services. MASCEM also supports the definition of alternative
specifications for the market mechanisms, e.g., the definition of block and flexible orders and
specification of complex conditions. MASCEM includes the exact market models of several real market
operators, namely those of the Iberian electricity market—MIBEL, central European market—EPEX,
and northern European market—Nord Pool.

Simulation scenarios in MASCEM are automatically defined, using the Realistic Scenario
Generator (RealScen) [43]. RealScen gathers real data online, comprising market data, including
submitted proposals; accepted proposals and established market prices; proposals details; execution
of physical bilateral contracts; statement outages, accumulated by unit type and technology; among
others. Simulation scenarios are thereby created by combining the real market data with data from
simulations. These scenarios may represent what has occurred exactly in a certain market in a specific
day, or they may concern different configurations, aiming at experimenting the impact of players’
behaviour under alternative defined scenarios.

3.2.3. MASGriP

MASGriP enables simulating the microgrid, smart grid and involved players [28]. MASGriP
combines fully simulated agents and agents that interact with real hardware. Simulations with this
thereby may include both real infrastructures and simulated agents, enabling the experimentation of a
large set of situations and models (Energy Resource Management (ERM) algorithms, demand response
(DR) models, negotiation procedures, among many other) in a realistic simulation environment [44].

MASGriP’s simulated agents reflect the real world, including some operators, such as the
distribution system operator (DSO) and the independent system operator (ISO). However, the majority
of players represents energy resources, such as several types of consumers (e.g., industrial, commercial,
residential), different types of producers (e.g., wind farms, solar plants, cogeneration units), EVs with
vehicle-to-grid capabilities, among others. Aggregators present an important role in the future power
system management and operation. Some examples of the considered aggregators are: virtual power
players (VPPs) [45], which can aggregate any other resource, including other aggregators; curtailment
service providers (CSPs) [46], which aggregate consumers that participate in DR programs; smart grid
and microgrid operators, which manage the players that are contained in a specific area. These players
introduce a higher level of complexity in the system management.

MASGriP’s interaction with MASCEM and with AiD-EM creates an enhanced modelling and
simulation framework that facilitates the study of a large diversity of scenarios, providing the means
for analysing the interactions between different players of very distinct natures, and assessing the
impact of alternative types of management and negotiation.
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4. Case Studies

Using the integrated multi-agent society, composed by the three MAS, some simulations are
executed with the aim of validating the proposed methodology and assessing the impact of using the
proposed model for decision support of migrogrid negotiations in a competitive market environment.
The first case study shows the detailed results achieved in a specific negotiation period, in order to
facilitate the understanding of the benefits that methodology actually brings for the negotiating players.
The second case study shows the comparison of the results achieved using the proposed methodology
against those achieved in previous work [22].

4.1. Case Study 1

This case shows an illustrative example of the results that can be achieved using the proposed
methodology, considering the expected negotiation prices in a single negotiation period.

In order to define a realistic scenario, five market models are considered, thereby enabling the
supported market player to sell and buy in all of them. The considered markets are the day-ahead spot
market, bilateral contract negotiations, the intraday (or balancing) market, and a microgrid level local
market. The balancing market is divided into different sessions. In the day-ahead spot market the
player (acting as seller) is only allowed to sell electricity, while in the other market types the player can
either buy or sell depending on the expected prices. Limits have also been imposed on the possible
amount of negotiation in each market. In this case, it is only possible to buy up to 1 MWh in each
market in each period of negotiation, which makes a total of 4 MWh purchased. It is possible to sell
power on any market, and it can be transacted as a whole or in instalments. The player has 1 MWh of
own production for sale.

In this problem, it has also been imposed that in each session of the balancing market, the player
can only either sell or buy in each period. In bilateral contracts and in local market negotiation, it is
possible to both sell and purchase in the same period (by negotiating with different players).

Since the optimization requires real market data, so that it can be used to support players’ decisions
in a realistic environment, it is necessary that the electricity prices are provided. The real electricity
market prices data, concerning the day-ahead spot market, the intraday market, and bilateral contracts
have been extracted from website of the Iberian electricity market operator—MIBEL [47]. Local market
prices are based on the results of previous studies [45].

Figure 3 shows the variation of electricity prices in the different considered market types,
depending on the traded amount. This representation allows explaining how the optimization
model behaves.
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As can be seen from Figure 3, some markets (day-ahead spot and balancing market sessions)
present a unique market price for this hour, regardless of the amount that the supported player
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negotiates. On the other hand, in bilateral contracts and local markets, prices are variable with the
negotiated amount. The Smart-Grid (local market) is assumed as a bilateral contract based market
among local energy community players; for this reason, the variation of prices depending on the
negotiated amount is also visible, similarly to regular bilateral contract negotiations. The expected
result is that the optimization allocates the sales to markets and amounts where the price is higher and
purchases when the price is lower. Table 1 shows the scheduling of sales and purchases made in the
different markets, as result of the proposed optimization process.

Table 1. Scheduling of sales and purchases in the different markets.

Spot Market Bilateral Balancing 1 Balancing 2 Local Market

Sales (MWh) 1.478 1.150 0 0 0.846
Purchases (MWh) 0 0.475 1.000 1.000 0

By matching Table 1 and Figure 3 it is possible to explain the functioning of the proposed
methodology for the considered period. As expected, the model presents a solution with the purchased
energy in the cheapest markets and sales in the most profitable. As the total energy that can be bought
in each market is 1 MWh, the maximum amount is bought in the balancing sessions (lower prices), and
also a purchase of 0.475 MWh in bilateral contracts. The sale is set to the local markets in 0.846 MWh,
1.150 MWh in bilateral contracts and 1.478 MWh in the spot market.

4.2. Case Study 2

This case study demonstrates the advantages of the proposed approach by comparing its results
with those of previous work [22]. Three levels of negotiation are simulated (internal/local microgrid
market, negotiations among neighbor microgrids, and participation in the external market); and the
results are validated with real electricity markets data. Real data of the Iberian Electricity Market
Operator (MIBEL) [47], namely for the day 19 July 2013 is used in this case. In the previous work,
the three negotiation levels are approached as sequential, i.e., firstly the local microgrid market takes
place, then the neighbor microgrids negotiate with each other, and finally the microgrids participate
in the external market in order to fulfill their needs or sell surplus power. On the other hand, in this
work the proposed decision support model is used to optimize the negotiation amount that should be
invested in each market opportunity, with the goal of improving the negotiation results of the players.
The microgrids of the test system (Figure 4) are assumed to have control, measurement and sensing
devices with two-way communication structure where the smart operation is guaranteed with the
dynamic responding of the agents. It is assumed that the whole system is operating at 25 kV. The loads
and generation units are distributed among the three MGCCs, as shown in Table 2.

From Table 2 it is visible that MGCC 2 is the microgrid that contains the larger amount of
generation. In the clearing of the local market, MGCC consider the expected demand and supply
bids from the grid and from the microgrids connected at the joint buses. The MGCC determines the
LMPs at the different buses based on these expected bids and on the bids placed by the players located
within the microgrid. The LMP values in the connection buses of the three considered microgrids,
resulting from the internal microgrid market are presented in Figure 5.
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Table 2. Overview of generation units in the considered integrated microgrids.

Generators Min Real Power Output (PU) Max Real Power Output (PU) Bus MGCC

gen1 0.00 0.20 1 1
gen2 0.01 0.23 4 1
gen3 0.00 0.24 6 1
gen4 0.06 0.15 7 1
gen5 0.01 0.29 8 1
gen6 0.00 0.20 9 2
gen7 0.01 0.23 10 2
gen8 0.00 0.24 11 2
gen9 0.06 0.15 12 2

gen10 0.01 0.29 13 2
gen11 0.00 0.30 14 2
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Table 2. Cont.

Generators Min Real Power Output (PU) Max Real Power Output (PU) Bus MGCC

gen12 0.00 0.40 15 2
gen13 0.00 0.15 16 3
gen14 0.01 0.20 17 3
gen15 0.00 0.10 18 3
gen16 0.06 0.12 19 3
gen17 0.01 0.14 20 3

From Figure 5 it is visible that the LMPs of the connection buses of the three microgrids present
rather variable values. The LMPs represent the minimum sale price or the maximum purchase price
when negotiating with the connected microgrids.

After the microgrids’ internal dispatch each microgrid may have surplus generation power,
which may be sold, or a lack of supply that needs to be purchased. The situation regarding the three
considered microgrids in this case study is:

• MGCC 1: Has power to sell in hours 1 to 7, 23 and 24;
• MGCC 2: Has extra generation in all hours of the day;
• MGCC 3: Sells from hours 1 to 7, and needs to buys on the remaining hours of the simulated day.

Considering these results from the internal microgrid markets, in the previous work, the microgrids
negotiate with each other in order to achieve advantageous deals. Figure 6 presents the profits achieved
in the second level of negotiation.
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From Figure 6 it is visible that the three MGCCs were able to negotiate some of the available
amount directly with each other in some hours of the day. MGCC 2 sells in some hours of the day,
and MGCC 1 and MGCC 3 mostly buy (thus the negative profits). The transactions set in this level are,
however, not enough to fulfil all the needs from the three MGCC, therefore the microgrids need to
participate in the third negotiation level—the external market. Figure 7 presents the profits achieved
by the three microgrids in the external market.
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Figure 7. Profits achieved by the three MGCC in the third level of negotiations.

From Figure 7 once can see that the three microgrids were able to negotiate the remainder of the
power to fulfil their needs. MGCC 2 mostly sells in the hours that it has not been able to sell before,
in the second negotiation level. MGCC 1 and MGCC 3 sell and buy to complement the agreements
from level 2.

On the other hand, when using the proposed approach, the three negotiation levels are no longer
seen as sequential, rather, the several market opportunities are considered as both complementary and
alternative depending on the expected prices in each market, i.e., the proposed methodology suggests
in which markets should the players negotiate at each time. Following the rules of the MIBEL market,
the considered market is composed by the following market types [47]:

• Day-ahead spot market;
• Intraday (or balancing) market;
• Negotiation of bilateral contracts.

Adding the local negotiations between neighbour microgrids to these market opportunities, and
using the expected market prices from the considered simulation day, the results shown in Figure 8 are
achieved for the negotiations of MGCC 1.
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Figure 8 shows that, similarly to the previous study, when using the proposed methodology as
decision support to plan the negotiations, MGCC 1 still considers the negotiation with the neighbour
microgrids as advantageous in some periods of the considered simulation day, namely to purchase
some amount of power. The day-ahead wholesale market is the main market where sales are scheduled.
Bilateral contracts are also used in the first periods of the day to purchase some extra amount of power
at lower prices, which can be sold in the day-ahead spot market at higher prices, thus increasing the
profits of MGCC 1. The same occurs with MGCC 2, as can be seen by Figure 9.
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As can be seen from Figure 9, some opportunities of achieving power at low prices are used by
MGCC 2 to purchase (mainly through bilateral contracts), so that higher profits can be achieved by
selling that amount plus the generation surplus amount of this microgrid, mainly in the day-ahead spot
market, and during some periods in the intraday market as well. The local negotiation with neighbour
MGCC is used as complementary selling place during some hours of the day. The negotiation with
neighbour MGCC is the main investment of MGCC 3, as displayed by Figure 10.
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As discussed previously, MGCC 3 is the microgrid that needs the larger amount of power from
external players to the microgrid. For this reason, three distinct opportunities are used during the day
to purchase the required amount of power at the best prices, namely bilateral contracts, the negotiation
with neighbor MGCCs, and the intraday market. The day-ahead spot market is, similarly to the other
MGCCs, the chosen marketplace to sell (due to the higher expected prices).

Figure 11 presents the comparison of the profits that are achieved by each of the three MGCCs
in the total of the 24 h of the considered simulation day, when using the proposed methodology,
and when not using it (from the previous study [22]).
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Figure 11. Total profits of the three considered MGCCs.

From Figure 11 it is visible that using the proposed methodology allows the three MGCCs to
increase their profits. MGCC 1 had negative profits (costs) when not using the proposed methodology
(a value of −€73.98), which is turned into profit when using the proposed methodology to choose
the negotiation opportunities that are most suitable at each moment (profit of approximately €60.39).
MGCC 2, due to the larger amount of generation in this microgrid, was able to generate a fair amount
of profits even when not using the proposed approach. However, when using the proposed method,
when choose the negotiation opportunities appropriately, the profits increase from €2890.1 to €3799.74.
Finally, MGCC 3 is not able to turn the costs into profits, as MGCC 1, due to its greater need to purchase
in order to fulfil the needs of its loads; but it still is able to decrease the costs by making a proper
scheduling of its purchases and sales. The costs are reduced from −€362.44 to −€278.68.

5. Conclusions

This paper proposes a decision support methodology to help electricity market players in
optimizing their negotiation investments. The proposed model considers the complementarity between
different electricity markets, contrarily to the traditional approach of sequential of alternative market
opportunities. A local market model for internal microgrids negotiation is presented and extended
from previous work. Negotiation among different microgrids is also considered as complementary
market opportunity to wholesale market models. The modeling and simulation of the diverse market
models is performed using a MAS approach and the proposed negotiation portfolio optimization
model for decision support in negotiations in local and wholesale markets is also integrated in the
MAS model in order to facilitate the decision-making process.

Results show that by using the proposed methodology, the different market negotiation
opportunities can be used as complementary, providing microgrid operators with the chance of
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looking for the better deals. By using the available market opportunities in an optimized way, taking
into account the expected transaction prices in each market at each moment, players are able to increase
their profits or decrease their costs when compared to approaches in which the markets are considered
as sequential or alternative to each other.

The promising results achieved by the proposed approach suggest that further improvements
should be experimented. One possible research path is the exploration of alternative local market
models that can be implemented in a complementary way to current wholesale market models.
Another interesting research direction is the exploration of ways for players (especially small players)
to aggregate and form coalitions that may be advantageous for them to increase market power and be
able to participate in markets in each they cannot participate due to their limited negotiation volume
or network constraints.
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Nomenclature

Indices
t Time periods.
b Buses.
d Days.
l Loads.
M Markets.
Nday Number of days.
Nper Number of periods.
Asell Allowed to sell
Abuy Allowed to buy
p Periods.
g Distributed generation (DG) units.
i Microgrids.
S Sessions.
Parameters
PMin/Max

g Minimum/maximum power generation of DG g (kW).
PMin/Max

l Minimum/maximum power consumption of load l (kW).
xcb Series inductive reactance of the line connected between buses c-b.
δMin/Max

b Minimum/maximum bus voltage.
Variables
pg Active power generation of DG g (kW).
pl Active power consumption of load l (kW).
δb Bus voltage angle.
Spow Power to sell.
Bpow Power to buy.
Sets
T Set of time periods in the scheduling horizon.
Bi Set of buses in microgrid i.
Ωb

g Set of DGs connected to bus b.
Ωb

l Set of loads connected to bus b.
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