1,582 research outputs found

    Algorithmic and Statistical Perspectives on Large-Scale Data Analysis

    Full text link
    In recent years, ideas from statistics and scientific computing have begun to interact in increasingly sophisticated and fruitful ways with ideas from computer science and the theory of algorithms to aid in the development of improved worst-case algorithms that are useful for large-scale scientific and Internet data analysis problems. In this chapter, I will describe two recent examples---one having to do with selecting good columns or features from a (DNA Single Nucleotide Polymorphism) data matrix, and the other having to do with selecting good clusters or communities from a data graph (representing a social or information network)---that drew on ideas from both areas and that may serve as a model for exploiting complementary algorithmic and statistical perspectives in order to solve applied large-scale data analysis problems.Comment: 33 pages. To appear in Uwe Naumann and Olaf Schenk, editors, "Combinatorial Scientific Computing," Chapman and Hall/CRC Press, 201

    A Literature Review On Combining Heuristics and Exact Algorithms in Combinatorial Optimization

    Get PDF
    There are several approaches for solving hard optimization problems. Mathematical programming techniques such as (integer) linear programming-based methods and metaheuristic approaches are two extremely effective streams for combinatorial problems. Different research streams, more or less in isolation from one another, created these two. Only several years ago, many scholars noticed the advantages and enormous potential of building hybrids of combining mathematical programming methodologies and metaheuristics. In reality, many problems can be solved much better by exploiting synergies between these approaches than by “pure” classical algorithms. The key question is how to integrate mathematical programming methods and metaheuristics to achieve such benefits. This paper reviews existing techniques for such combinations and provides examples of using them for vehicle routing problems

    Railway crew capacity planning problem with connectivity of schedules

    Get PDF
    We study a tactical level crew capacity planning problem in railways which determines the minimum required crew size in a region while both feasibility and connectivity of schedules are maintained. We present alternative mathematical formulations which depend on network representations of the problem. A path-based formulation in the form of a set-covering problem along with a column-and-row generation algorithm is proposed. An arc-based formulation of the problem is solved with a commercial linear programming solver. The computational study illustrates the effect of schedule connectivity on crew capacity decisions and shows that arc-based formulation is a viable approach

    A strong preemptive relaxation for weighted tardiness and earliness/tardiness problems on unrelated parallel machines

    Get PDF
    Research on due date oriented objectives in the parallel machine environment is at best scarce compared to objectives such as minimizing the makespan or the completion time related performance measures. Moreover, almost all existing work in this area is focused on the identical parallel machine environment. In this study, we leverage on our previous work on the single machine total weighted tardiness (TWT) and total weighted earliness/tardiness (TWET) problems and develop a new preemptive relaxation for the TWT and TWET problems on a bank of unrelated parallel machines. The key contribution of this paper is devising a computationally effective Benders decomposition algorithm for solving the preemptive relaxation formulated as a mixed integer linear program. The optimal solution of the preemptive relaxation provides a tight lower bound. Moreover, it offers a near-optimal partition of the jobs to the machines, and then we exploit recent advances in solving the non-preemptive single machine TWT and TWET problems for constructing non-preemptive solutions of high quality to the original problem. We demonstrate the effectiveness of our approach with instances up to 5 machines and 200 jobs

    A strong preemptive relaxation for weighted tardiness and earliness/tardiness problems on unrelated parallel machines

    Get PDF
    Research on due date-oriented objectives in the parallel machine environment is at best scarce compared to objectives such as minimizing the makespan or the completion time-related performance measures. Moreover, almost all existing work in this area is focused on the identical parallel machine environment. In this study, we leverage on our previous work on the single machine total weighted tardiness (TWT) and total weighted earliness/tardiness (TWET) problems and develop a new preemptive relaxation for both problems on a bank of unrelated parallel machines. The key contribution of this paper is devising a computationally effective Benders decomposition algorithm to solve the preemptive relaxation formulated as a mixed-integer linear program. The optimal solution of the preemptive relaxation provides a tight lower bound. Moreover, it offers a near-optimal partition of the jobs to the machines. We then exploit recent advances in solving the nonpreemptive single-machine TWT and TWET problems for constructing nonpreemptive solutions of high quality to the original problem. We demonstrate the effectiveness of our approach with instances of up to five machines and 200 jobs

    Network optimization in railway transport planning

    Get PDF
    This work is dealing with train timetabling problem. In the first chapter, one can find an introduction to network flows which is needed for understanding deeper concepts later on. Namely, basic graph theory definitions are stated as well as core problems like the minimum cost flow and shortest path problem. Furthermore, two equivalent representations of network flows are described, including some useful properties connected to each of them. At the end of the chapter, linear programming and simplex method are introduced into some detail. In the second chapter more complex theory is introduced. At the beginning, multi-commodity flow problem is stated and few solutions approaches are briefly described. Once we settled for one of them, the rest of the chapter is dealing with Lagrangian relaxation and column generation techniques. Since column generation is the main result needed for solving our problem, some finer results, like determining lower and upper bounds, are stated. In the last, third chapter, one can find a model for representing train timetabling problem for a single line network. That model was introduced by Valentina Cacchiani in her Ph.D. thesis. In this work, periodicity of timetable is assumed because it makes computations way quicker, as well as it has some other benefits. At the end, one can find an algorithm based on column generation technique for solving introduced model. That algorithm is based on 6 steps, and after reading this work, one should be able to fully understand each of them.Ovaj rad bavi se problemom rasporeda vožnje u željezničkom prometu. U prvom poglavlju nalazi se uvod u mrežne tokove koji je potreban za razumijevanje naprednijih koncepata. Konkretno, iskazane su osnovne definicije teorije grafova kao i neki temeljni problemi poput problema najjeftinijeg toka i problema najkraćeg puta. Nadalje, opisana su dva ekvivalenta prikaza mrežnih tokova, uključujući neka korisna svojstva za svaki od njih. Na kraju poglavlja, linearno programiranje i simpleks metoda, objašnjeni su na razini razumijevanja. U drugom poglavlju nalazi se naprednija teorija koja se nadovezuje na prvo poglavlje. Na početku poglavlja prikazan je problem više dobara, kao i nekoliko pristupa rješavanju navedenog problema. Nakon što smo se odlučili za jedan od pristupa, ostatak poglavlja bavi se Lagrangeovom relaksacijom i metodom generacije stupaca. Kako je upravo metoda generacije stupaca najvažniji rezultat za rješavanje našega problema, napredniji rezultati vezani uz određivanje donjih i gornjih granica su detaljno objasnjeni. U posljednjem, trećem poglavlju, nalazi se model za prikazivanje problema rasporeda vožnje za mreže s jednom tračnicom. Navedeni model prvi puta je predstavljen u doktorskom radu Valentine Cacchiani. U ovom radu također pretpostavljamo periodičnost rasporeda vožnje kako bismo, između ostalih, ostvarili prednost poput bržeg vremena računanja. Na kraju rada nalazi se algoritam, temeljen na metodi generacije stupaca, za rješavanje predstavljenog modela. Navedeni algoritam sastoji se od 6 koraka, od kojih je svaki detaljno opisan u ovome radu

    Optimal Trees

    Get PDF
    Not Availabl

    Models and algorithms for the capacitated location-routing problem

    Get PDF
    Le problème de localisation-routage avec capacités (PLRC) apparaît comme un problème clé dans la conception de réseaux de distribution de marchandises. Il généralisele problème de localisation avec capacités (PLC) ainsi que le problème de tournées de véhicules à multiples dépôts (PTVMD), le premier en ajoutant des décisions liées au routage et le deuxième en ajoutant des décisions liées à la localisation des dépôts. Dans cette thèse on dévelope des outils pour résoudre le PLRC à l’aide de la programmation mathématique. Dans le chapitre 3, on introduit trois nouveaux modèles pour le PLRC basés sur des flots de véhicules et des flots de commodités, et on montre comment ceux-ci dominent, en termes de la qualité de la borne inférieure, la formulation originale à deux indices [19]. Des nouvelles inégalités valides ont été dévelopées et ajoutées aux modèles, de même que des inégalités connues. De nouveaux algorithmes de séparation ont aussi été dévelopés qui dans la plupart de cas généralisent ceux trouvés dans la litterature. Les résultats numériques montrent que ces modèles de flot sont en fait utiles pour résoudre des instances de petite à moyenne taille. Dans le chapitre 4, on présente une nouvelle méthode de génération de colonnes basée sur une formulation de partition d’ensemble. Le sous-problème consiste en un problème de plus court chemin avec capacités (PCCC). En particulier, on utilise une relaxation de ce problème dans laquelle il est possible de produire des routes avec des cycles de longueur trois ou plus. Ceci est complété par des nouvelles coupes qui permettent de réduire encore davantage le saut d’intégralité en même temps que de défavoriser l’apparition de cycles dans les routes. Ces résultats suggèrent que cette méthode fournit la meilleure méthode exacte pour le PLRC. Dans le chapitre 5, on introduit une nouvelle méthode heuristique pour le PLRC. Premièrement, on démarre une méthode randomisée de type GRASP pour trouver un premier ensemble de solutions de bonne qualité. Les solutions de cet ensemble sont alors combinées de façon à les améliorer. Finalement, on démarre une méthode de type détruir et réparer basée sur la résolution d’un nouveau modèle de localisation et réaffectation qui généralise le problème de réaffectaction [48].The capacitated location-routing problem (CLRP) arises as a key problem in the design of distribution networks. It generalizes both the capacitated facility location problem (CFLP) and the multiple depot vehicle routing problem (MDVRP), the first by considering additional routing decisions and the second by adding the location decision variables. In this thesis we use different mathematical programming tools to develop and specialize new models and algorithms for solving the CLRP. In Chapter 3, three new models are presented for the CLRP based on vehicle-flow and commodity-flow formulations, all of which are shown to dominate, in terms of the linear relaxation lower bound, the original two-index vehicle-flow formulation [19]. Known valid inequalities are complemented with some new ones and included using separation algorithms that in many cases generalize extisting ones found in the literature. Computational experiments suggest that flow models can be efficient for dealing with small or medium size instances of the CLRP (50 customers or less). In Chapter 4, a new branch-and-cut-and-price exact algorithm is introduced for the CLRP based on a set-partitioning formulation. The pricing problem is a shortest path problem with resource constraints (SPPRC). In particular, we consider a relaxation of such problem in which routes are allowed to contain cycles of length three or more. This is complemented with the development of new valid inequalities that are shown to be effective for closing the optimality gap as well as to restrict the appearance of cycles. Computational experience supports the fact that this method is now the best exact method for the CLRP. In Chapter 5, we introduce a new metaheuristic with the aim of finding good quality solutions in short or moderate computing times. First, a bundle of good solutions is generated with the help of a greedy randomized adaptive search procedure (GRASP). Following this, a blending procedure is applied with the aim of producing a better upper bound as a combination of all the others in the bundle. An iterative destroy-and-repair method is then applied using a location-reallocation model that generalizes the reallocation model due to de Franceschi et al. [48]

    Thirty years of heterogeneous vehicle routing

    No full text
    It has been around thirty years since the heterogeneous vehicle routing problem was introduced, and significant progress has since been made on this problem and its variants. The aim of this survey paper is to classify and review the literature on heterogeneous vehicle routing problems. The paper also presents a comparative analysis of the metaheuristic algorithms that have been proposed for these problems
    corecore