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I. INTRODUCTION 
Many problems arising in areas such as scheduling and 

production planning, location and distribution management, 
Internet routing, or bioinformatics are combinatorial 
optimization problems (COPs). COPs are fascinating because 
they are frequently simple to formulate yet extremely 
complex to solve, which is captured by the fact that many of 
them are NP-hard [1]. At the same time, this difficulty and 
their enormous practical importance have resulted in a large 
number of solution techniques for them. There are two 
algorithms for solving problems: exact and approximation 
algorithms. Exact algorithms are guaranteed to identify and 
verify an optimal solution and prove its optimality for every 
finite-size instance of a COP within an instance-dependent, 
finite run-time or show that no feasible solution exists. If 
optimal solutions cannot be computed quickly enough in 
practice, it is common to trade the guarantee of optimality for 
efficiency. The assurance of finding optimal solutions is 
sacrificed to get very good solutions by using approximate 
algorithms in a reasonable amount of time. 

As an exact approach, the integer programming (IP) 
methods and stochastic local search (SLS) algorithms as an 
approximation approach are two solution method classes that 
have had substantial success [2]. IP methods rely on the 
characteristic of the decision variables being integers. Some 
well-known IP methods are branch-and-bound, branch-and-
cut, branch-and-price, and dynamic programming. Exact 
methods for IP have the following advantages (i) proven 
optimal solutions can be obtained if the algorithm succeeds, 
(ii) valuable information on upper/lower bounds on the 

optimal solution can be obtained even if the algorithm is 
stopped before completion (IP methods can become 
approximate if we define a criterion for stopping them before 
solving the problem), and (iii) IP methods allow to provably 
prune parts of the search area in which optimal solutions 
cannot be found. A more advantage of IP methods is that 
research codes such as Minto [3] or GLPK [4] or powerful, 
general-purpose commercial tools such as CPLEX [5] or 
Xpress-MP [6], [7] are available. However, despite the 
known successes, exact methods have a few disadvantages. 
First, for many problems, the size of the practically solvable 
instances is rather limited. Even if an application is feasible, 
the variance of the computation times is typically very large 
when applied to different instances of the same size. Second, 
the memory consumption of exact algorithms can be very 
large and lead to early abortion. Thirdly, for many COPs, the 
best performing algorithms are problem-specific, and they 
require large development times by experts in integer 
programming. Finally, high-performing exact algorithms for 
one problem are often difficult to extend if some details of the 
problem formulation change. The state-of-the-art for exact 
algorithms is that for some NP-hard problems, very large 
instances can be solved fast, while for other problems, even 
small-size instances are out of reach. 

SLS is probably the most successful class of approximate 
algorithms. When applied to hard COPs, the local search 
yields high-quality solutions by iteratively applying small 
modifications to a solution in the hope of finding a better one. 
Embedded into higher-level guidance mechanisms, which are 
called (general-purpose) SLS methods [2] or, more 
commonly, metaheuristics, this method is very successful in 
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achieving near-optimal (maybe optimal) solutions to several 
difficult problems [2], [8], [9]. Examples of well-known 
general-purpose SLS methods (or metaheuristics) are 
simulated annealing, tabu search, memetic algorithms, ant 
colony optimization, or iterated local search [8]. Advantages 
of SLS algorithms are that (i) they are the best performing 
algorithms available for a variety of problems, (ii) they can 
examine a huge number of possible solutions in a short 
calculation time, (iii) they are often more easily adapted to 
slight variants of problems and are therefore more flexible, 
and (iv) they are typically easier to understand and implement 
by the common user than exact methods. However, local 
search-based algorithms have several disadvantages. Firstly, 
they cannot prove optimality and typically do not bound the 
quality of the solutions they return. Secondly, they typically 
cannot provably reduce the search space. Thirdly, they do not 
have well-defined stopping criteria (this is particularly true 
for metaheuristics). Finally, local search methods often have 
problems with highly constrained problems where feasible 
areas of the solution space are disconnected. Another problem 
that occurs in practice is that, with very few exceptions [10], 
[11], there are no efficient general-purpose local search 
solvers available. Hence, although one can typically develop 
an SLS algorithm of reasonable performance rather quickly, 
many applications of SLS algorithms can require 
considerable development and implementation efforts if very 
high performance is required.  

It is clear by now that IP and SLS approaches have their 
particular advantages and disadvantages and can be seen as 
complementary. Therefore, it appears to be a good idea to 
combine these two distinct techniques into more powerful 
algorithms. 

When considering optimization approaches that combine 
metaheuristics with mathematical programming techniques, 
the resulting hybrid system may either be of exact or heuristic 
nature.  Exact approaches are guaranteed to yield proven 
optimal solutions when given enough computation time. In 
contrast, heuristics only aim at finding reasonably good 
approximate solutions, usually in a more restricted time; 
performance guarantees are typically not provided. Most of 
the existing hybrid approaches are of a heuristic nature, and 
mathematical programming techniques are used to boost the 
performance of a metaheuristic. Exploiting solutions to 
exactly solvable relaxations of the original problem or 
searching large neighborhoods utilizing mathematical 
programming techniques are examples of such approaches. 

Also, there are several highly successful ways to exploit 
metaheuristic strategies for enhancing the performance of 
mathematical programming techniques, and often these 
methods retain their exactness.  

The first section will continue with a structural 
classification of strategies for combining metaheuristics and 
exact optimization techniques. In the second section, we 
discuss the metaheuristic approaches for routing problems. 
The last section is devoted to a general discussion and 
conclusion. 

II. STRUCTURAL MODEL FOR COMBINING METAHEURISTICS 
WITH EXACT APPROACH 

The techniques available for COPs can be divided into two 
main categories: exact and heuristic methods. For every 

instance of a COP, exact algorithms are guaranteed to locate 
and show an optimal solution. On the other hand, the run-time 
generally increases considerably with the size of the instance, 
and only small or moderately sized instances can be solved to 
verifiable optimality in practice. In this circumstance, the 
only possibility is to trade optimality for run-time, yielding 
heuristic algorithms for larger instances. In other words, the 
assurance of finding optimal solutions is sacrificed for the 
sake of obtaining suitable solutions in a short amount of time. 
Two separate heterogeneous streams, each from a distinct 
scientific community, were successful in solving COPs: 

Integer Programming (IP) is an exact approach coming 
from the operations research community and based on the 
concepts of linear programming [10]. Among the exact 
methods are dynamic programming, branch-and-bound 
(B&B), Lagrangian relaxation-based methods, and linear and 
integer programming-based methods, such as branch-and-
cut, branch-and-price, and branch-and-cut and-price [12], 
[13]. 

Local search with various extensions and separately 
developed variants, in the following called metaheuristics, as 
a heuristic approach. Metaheuristics include, among others, 
simulated annealing [14], [15], tabu search [16], [17], iterated 
local search [14], variable neighborhood search [18], [19], 
and various population-based models such as evolutionary 
algorithms [20], scatter search [21], [22], memetic algorithms 
[23], [24], and various estimation of distribution algorithms 
[25], [26]. 

In [27], the authors provide a more general classification 
of existing approaches combining exact and metaheuristic 
algorithms to combinatorial optimization that combines exact 
and metaheuristic algorithms, dividing them into two 
categories:  

Collaborative Combinations: The term "collaboration" 
refers to the fact that the algorithms share information but are 
not the same. Exact and heuristic algorithms can be run 
sequentially, intertwined, or in parallel.  

Integrative Combinations: By integration, it means that one 
technique is a subordinate embedded component of another 
technique. As a result, a distinct master algorithm can be an 
exact or a metaheuristic algorithm, and at least one integrated 
solution can be either an exact or a metaheuristic algorithm. 

[28], [29] present a similar classification of hybrid 
algorithms, further including constraint programming. The 
authors discern a decomposition scheme corresponding to the 
integrative combinations and a multiple search scheme 
corresponding to collaborative combinations. 

In another classification, [30], [31] classifies heuristics 
approaches into four categories and then shows how we can 
use mathematical programming in each. 

Construction heuristics: start from ‘‘scratch’’ and proceed 
through a set of steps, each of which adds a component to the 
solution until a complete (feasible) solution is generated. We 
also label such methods decomposition approaches since they 
effectively decompose a larger problem into a series of 
sequentially executed sub-problems.  

Improvement heuristics: start with a feasible solution and 
iteratively execute solution improving steps until some 
termination condition is met. 

Relaxation-based heuristics: It is often the case that while 
a problem may be very difficult, certain relaxation to that 
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problem may be efficiently solvable. The solution to a 
relaxation generates a bound on the value of a problem’s 
optimal solution, as such relaxations are often employed in 
exact mathematical programming approaches. Additionally, 
they can often serve as a basis for effective heuristics. Two 
general approaches are used. In one, the solution to relaxation 
is modified to generate a feasible solution to the problem of 
interest. The prototypical approach of this type probably 
involves rounding the solution to a linear programming 
relaxation of an integer program. The second class of 
relaxation-based approaches uses the dual information 
provided by the solution to the relaxation in a subsequently 
executing heuristic. 

Using mathematical programming algorithms to generate 
approximate solutions: An exact optimization algorithm 
terminates with an optimal solution and a proof of optimality. 
In many cases, a significant portion of the total solution time 
is spent proving that a solution found (quickly) is optimal. 
Another common scenario is that a lot of computing time is 
spent going from a ‘‘near optimal’’ solution to an optimal 
one. With this motivation, exact mathematical programming 
algorithms are modified to generate very well, but not 
necessarily optimal, solutions in many practical settings. This 
class of approaches is founded on the idea of solving the 
mathematical programming formulation in a ‘relaxed’ 
manner, i.e., by relaxing some attributes of the exact solution 
approach that increase solution time significantly. Premature 
stopping a branch-and-bound algorithm rounding of the 
relaxed solution and heuristic variable fixing are examples of 
this methodology. Also, the branch-and-price/column 
generation-based approaches belong to this class. 

The other survey on metaheuristics is the one done by [32], 
[33]. The categorization suggestion is different from the one 
adopted in [34]. The following classes will be discussed: 

1. set-covering/partitioning-based approaches, which 
correspond to the class of branch and- price/column 
generation-based approaches. 

2. Local branching approaches are based on the local 
branching scheme proposed in [35]. 

3. Decomposition approaches coincide with the first-class 
defined in [36]. 

 

III. MATHEURISTICS FOR VEHICLE ROUTING PROBLEM: A 
REVIEW 

Classify Metaheuristics for vehicle routing problems into 
three classes, which we state verbatim [37], [38] 

A. Decomposition Approaches 
Approaches to decomposition. In a decomposition 

technique, the problem is broken into smaller and simpler 
sub-problems, and each sub-problem is given its solution 
method. In metaheuristics, these sub-problems are solved 
through mathematical programming models to optimality or 
sub-optimality.  

B. Improvement Heuristics 
This type of metaheuristics uses mathematical 

programming models to improve a solution discovered via a 
different heuristic approach. They're popular because they 
can be employed with any heuristic to get a result that the 

mathematical programming model attempts to improve. 

C. Branch-and-Price/Column Generation-Based 
Approaches 
To solve routing problems, branch-and-price algorithms 

have been frequently and successfully applied. These 
algorithms use a set partitioning formulation, in which each 
feasible route is assigned to a binary or integer variable 
(column). The solution of the linear relaxation of the 
formulation is taken through column generation due to the 
exponential number of variables. The exact approach is 
adjusted in branch-and-price/column generation-based 
metaheuristics to speed up convergence, but the guarantee of 
optimality is lost. For example, the column generation phase 
is stopped prematurely. 

The following three sections are devoted to the description 
of these three classes. 

D. Decomposition Approaches 
Traditionally, heuristic methods, and metaheuristics, in 

particular, have been primal-only methods. They are usually 
quite effective in solving the given problem instances, and 
they terminate, providing the best feasible solution found 
during the allotted computation time. However, disregarding 
dual information implies some obvious drawbacks, first of 
all, not knowing the quality of the proposed solution, but also 
have found an optimal solution at the beginning of the search 
and having wasted CPU time ever since, having searched a 
big search space that could have been much reduced, or 
having disregarded important information that could have 
been very effective for constructing good solutions. Dual 
information is also tightly connected with the possibility of 
obtaining good lower bounds (referring, here and forward, to 
minimization problems), another element that is not a 
structural part of current metaheuristics. On the contrary, 
most mathematical programming literature dedicated to exact 
methods is strongly based on these elements for achieving the 
obtained results. There is nothing, though, that limits the 
effectiveness of dual/bounding procedures to exact methods. 
There are, in fact, wide research possibilities both in 
determining how to convert originally exact methods into 
efficient heuristics and in designing new, intrinsically 
heuristic techniques, which include dual information. 

There are many ways in which bounds can be derived. One 
of the most effective of these is decomposition techniques 
[39]. These are techniques primarily meant to exploit the 
possibility of identifying a sub-problem in the problem to 
solve and decompose the whole problem in a master problem 
and a sub-problem, which communicate via dual or dual-
related information. The sub-problems are handled and 
solved separately. Finally, a feasible solution for the original 
problem is obtained from the solutions to the sub-problems. 
In metaheuristics, one or all the sub-problems are solved 
through the exact solution of a mathematical programming 
formulation. There are three basic decomposition techniques: 
Lagrangean relaxation, Dantzig- Wolfe decomposition, and 
Bender’s decomposition. These techniques' popularity 
derives from their effectiveness in providing efficient bounds 
and from the observation that many real-world problems lead 
themselves to a decomposition. 

Unfortunately, despite their prolonged presence in the 
optimization literature, there is no clear-cut recipe for 

-
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determining which problems should be solved with 
decompositions and which are better solved by other means. 
Decomposition techniques are the foremost candidates for 
problems inherently structured as a master and different sub-
problem. Still, it is at times possible to effectively decompose 
the formulation of a problem that does not show such 
structure and enjoys advantages. Examples from the literature 
of effective usage of decomposition techniques (mainly 
Lagrangean) on single-structure problems include, e.g., set 
covering [40], [41], set partitioning [42]-[44] and crew 
scheduling [45]-[48]. 

Vehicle routing difficulties (VRPs), inventory routing 
problems (IRPs), production routing problems (PRPs), and 
location routing problems are all examples of this (LRPs). To 
solve these problems related to the class of decomposition 
techniques, various metaheuristics have been developed. 
Routing problems usually entail the following two basic 
considerations (along with other judgments specific to the 
application): the clustering of customers assigned to each 
vehicle and the sequencing of customers in vehicle routes. 
This feature makes it easy to adopt a cluster first-route second 
decomposition method, i.e., an approach in which consumers 
are assigned to vehicles first. Then a choice is made on how 
to route the customers allotted to each vehicle. 

One of the most used approaches for routing problems is 
the cluster first-route second approach [49], [50].  

The cluster first-route second strategy divides the two main 
decisions that characterize routing problems, i.e., namely, 
assigning customers to the vehicle and sequencing the 
consumers visited by each route. One of the first heuristic 
approaches for solving the conventional VRP was cluster 
first-route second. In the VRP, we are provided a set of 
customers with demand and a fleet of vehicles with sufficient 
capacity. The problem is to find a set of vehicle routes that 
will meet these customers' needs while also ensuring that each 
customer is only serviced once, and that the vehicle capacity 
is never exceeded. 

The fact that clustering of consumers may be handled 
through the solution of a MILP motivates a metaheuristic 
based on a cluster first-route second approach to solve the 
VRP. Instead, any heuristic available for solving the 
Traveling Salesman Problem can be used to manage 
consumer routing inside each route (TSP) [67]. 

The first authors who proposed a cluster first-route second 
metaheuristics for a routing problem, specifically for the 
VRP, are [51]. The seed customers are chosen heuristically in 
the initial step of the method, and an assignment problem is 
solved to optimality to allocate the other customers to the 
seed customers. Each seed customer represents a cluster of 
customers. Then, routes are generated by solving a TSP on 
each cluster. This approach can be used for a wide variety of 
routing problems. The scheme was later extended to solve the 
VRPTW in [52]. The author [53] proposes a decomposition 
approach for the VRP, similar to the one proposed in [36]. 
The routing problem is formulated as a capacitated 
concentrator location problem, guiding the algorithm 
(CCLP). The goal is to find seed points, calculate the cost of 
assigning each customer to each seed point and then solve a 
CCLP to find the clustering of customers. After obtaining the 
clusters, a TSP is solved on each cluster. The authors use the 
algorithm for the VRP, demonstrating that the heuristic 

performs well on both problems and often outperforms 
previous heuristics mentioned in the literature. The same 
authors use a similar approach to the VRPTW [54]. 

E. Improvement Heuristics  
Improvement heuristics are metaheuristics that combine a 

heuristic with the exact solution of a MILP model to improve 
the solution obtained by using the heuristic. There have been 
several approaches to combining the heuristic technique and 
the solution of a MILP model. This combination can go two 
ways, either using MILP to improve or design metaheuristics 
or using metaheuristics for improving known MILP 
techniques, even though the first of these two directions is by 
far more studied. 

When using MILP embedded into metaheuristics, the main 
possibility appears to be improving local search [40]. Local 
branching [60], where MILP is utilized to define a suitable 
neighborhood to be investigated exactly by a MILP solver, is 
a seminal work in this direction. Essentially, only several 
decision variables are left free, and the neighborhood is 
composed of all possible value combinations of these free 
variables. 

The idea of an exact exploration of a possibly exponential 
size neighborhood is at the heart of several other approaches. 
Very Large Neighborhood Search (VLNS) [41] is probably 
one of the most well-known. This method can be applied 
when defining neighborhood exploration as a combinatorial 
optimization problem itself. In this case, It could solve it 
quickly in this scenario, and it becomes possible for the full 
exploration of exponential neighborhoods. Complementary 
to this last is the corridor approach [61]-[63]. A would-be 
large exponential neighborhood is kept of manageable size by 
adding an exogenous constraint to the problem formulation 
so that the feasible region is reduced to a “corridor” around 
the current solution. 

Several methods build around the idea of solving MILP, 
the neighborhood exploration problem. They differ in the way 
the neighborhood is defined. For example, an unconventional 
way of defining it is proposed in the ‘dynasearch’ method 
[43], where the neighborhood is defined by the series of 
moves that can be performed at each iteration, and dynamic 
programming is used to find the best sequence of simple 
moves to use at each iteration. 

However, MILP contributed to metaheuristics along two 
other opposite lines: improving the effectiveness of well-
established metaheuristics and providing the structural basis 
for designing new metaheuristics. As for the first line, MILP 
hybrids are reported for most known metaheuristics: tabu 
search, variable neighborhood search, ant colony 
optimization, simulated annealing, genetic algorithms, scatter 
search, etc. Particularly appealing appear to be genetic 
algorithms, for which several different proposals were 
published, with special reference to how to optimize the 
crossover operator. As for the second line, the proposals are 
different, but they still have to settle and show how they 
compare to a broader range of problems other than those for 
which they were originally presented. One example is the so-
called Forward and Backward (F&B) approach [44] which 
implements a memory-based look ahead strategy based on the 
past search history. The method iterates a partial exploration 
of the solution space by generating a sequence of enumerative 

-
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trees of two types, called forward and backward trees. A 
partial solution of the forward tree has a bound on its 
completion cost derived from partial solutions of the 
backward tree and vice-versa. 

F. Branch and Price/Column Generation-Based 
Approaches 
Also, branch-and-price/column generation algorithms are 

commonly used to solve set partitioning formulations. 
Branch-and-price/column generation algorithms are 
commonly used to solve set partitioning formulations. 
Branch-and-price algorithms effectively solve a wide variety 
of routing problems, including some of the most well-known 
and classic ones, such as the VRP and VRPTW. They are 
currently the most widely used methodology. While the 
branch-and-price scheme is an exact successful method, and 
column generation is a component, it has been used to 
develop high-performing and efficient heuristic algorithms. 
Branch-and-price/column generation-based approaches are 
what we call heuristic approaches. They all have one thing in 
common: they build heuristic solutions utilizing branch-and-
price and/or column generation. However, several schemes 
described in the literature differ in terms of how columns are 
formed and/or employed to get a viable answer.  

In this article, the author [45] classified this approach into 
four classes: restricted master heuristics, heuristic branching 
approaches, and relaxation-based approaches. The Restricted 
Master Heuristic is one of the most widely utilized branch-
and-price/column generation-based algorithms. This strategy 
is usually used in conjunction with a branch-and-price 
approach. The set partitioning formulation is solved on a 
subset of the columns obtained by the pricing problem 
solution, resulting in a feasible solution. The restricted master 
heuristic is widely used in branch and- price approaches as it 
enables a quick improvement of bounds and thus a speedup 
of the exact solution procedure. Also, they can be used as 
heuristic algorithms to generate the columns. The column 
generation phase can be done in one of two ways: either using 
a heuristic that ignores the dual information provided by the 
restricted master problem solution or using a column 
generation algorithm that uses the dual information but only 
generates a limited number of columns. The majority of 
approaches fall within the first category. These systems are 
much easier to implement as they only require a heuristic 
strategy for column generation and a set partitioning model. 
We examine ways based on heuristic column generation first 
and then explain approaches based on the master problem's 
dual information. Heuristic branching approaches are branch-
and-price algorithms in which branching is performed 
heuristically to prune a high number of nodes of the branch-
and-bound tree and thus reach a good solution rapidly to 
speed up the convergence of the solution method. 

In column generation approaches and branch-and-price 
algorithms, it is important to have fast algorithms available 
for repeatedly solving the pricing sub-problem, i.e., 
identifying a variable (column) with negative reduced costs. 
For many hard problems, however, this sub-problem is also 
hard. Fast heuristics are, therefore, sometimes used for 
approaching the pricing problem. It's worth noting that 
pricing in a column with negative reduced costs is fine, even 
if it's not one with the minimum reduced costs. However, 

after column production, it is required to demonstrate that no 
additional column with negative reduced costs exists, i.e., the 
pricing problem must be solved precisely. Otherwise, there 
can be no quality assurances for the final solution of the full 
column generation or the branch-and-price algorithm, and 
they must be seen as heuristic methods only. Most heuristic 
approaches to pricing problems are built using relatively 
simple construction methods. So far, more advanced 
metaheuristics have been applied less frequently. 

Also, almost any effective B&B approach depends on 
some heuristic for deriving a promising initial solution, 
whose objective value is used as the original upper bound. 
Heuristics are also generally applied to some or all sub-
problems in the B&B tree, as previously mentioned, to 
generate new incumbent solutions and related enhanced 
upper bounds. Appropriate upper bounds are critical to 
keeping the B&B tree small. As a result, metaheuristics are 
frequently used for these objectives. However, the additional 
computational effort often does not pay off when performing 
a relatively expensive metaheuristic at each node of a large 
B&B tree in a straightforward, independent way. The 
metaheuristic's different calls may do more or less redundant 
searches in similar areas of the search space. It is therefore 
critical to carefully pick the B&B tree nodes for which the 
metaheuristic is applied, as well as the amount of effort put 
into each call. For example, [45] offers a chunking-based 
selection technique for determining whether a reactive tabu 
search is called at each node of the B&B tree. The chunking-
based strategy measures a distance between the current node 
and nodes investigated by the metaheuristic to bias the 
selection toward distant points. According to the reported 
computational results, introducing the metaheuristic 
enhances B&B performance. 

An optimal solution for a relaxation of the original problem 
typically shows where good or even ideal solutions might be 
found in the original problem's search area. As a result, 
solutions to relaxations are commonly used in (meta-) 
heuristics. 

Sometimes an optimal solution to relaxation can be 
repaired by a problem-specific procedure to make it feasible 
for the original problem and use it as a promising starting 
point for a subsequent metaheuristic (or exact) search. Linear 
programming (LP) relaxation is often used for this purpose, 
and only a simple rounding scheme is needed. For example, 
[46], [66] combines interior point methods and metaheuristics 
to solve the multidimensional knapsack problem (MKP). In 
the first step, an interior point method is performed with early 
termination. A population of different feasible candidate 
solutions is formed by rounding and applying multiple 
different ascent heuristics. A path-relinking/scatter search is 
performed using this collection of solutions as the beginning 
population. The obtained results indicate that the proposed 
combination is a promising research direction 

Besides initialization, optima of LP relaxations are often 
exploited to guide local improvement or repair infeasible 
candidate solutions. For example, in [47], the MKP is 
considered, and variables are sorted according to increasing 
LP values. A greedy repair mechanism considers the 
variables in this sequence, which removes items from the 
knapsack until all constraints are met. Items are considered in 
reverse order and included in the knapsack in a greedy 
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improvement approach as long as no constraint is violated. 
A more direct and constrained method of exploiting the 

optimal solution of an LP relaxation is as follows: 
Some of the decision variables with integer values in the 

LP-optimum are fixed, and the subsequent optimization only 
considers the remaining variables. Such approaches are 
sometimes also called core methods since the original 
problem is reduced and only its “hardcore” is further 
processed. The selection of the variables in the core is critical. 
Another example of exploiting the LP relaxation within 
metaheuristics is the hybrid tabu search algorithm [48]. 
Additional limits fix the total number of objects to be packed, 
reducing and parting the search space. By solving modified 
LP relaxations, bounds for these constraints can be found. 
Tabu search is done individually to each remaining section of 
the search space, beginning with a solution generated from 
the partial problem's LP relaxation. 

The approach has further been improved in [49], [65] by 
additional variable fixing. 

Other relaxations, in addition to the LP relaxation, are 
sometimes successfully used in conjunction with 
metaheuristics. The main approaches for putting together 
such combinations are similar. 

The relaxation-based approaches are characterized by the 
fact that a feasible solution to the problem is generated from 
the information provided by the optimal solution of a 
relaxation of the master problem. Column generation is used 
to solve relaxation. Once the relaxed solution is obtained, a 
heuristic procedure is used to generate a feasible solution to 
the problem. 

Overall, Branch-and-price/column generation-based 
metaheuristics are becoming more and more popular. This is 
due to the success of branch-and-price algorithms, which 
were created to solve routing problems precisely. The 
scientific community has amassed a vast knowledge of 
column generation methods, which is currently being applied 
to creating heuristic systems. Another benefit of branch-and-
price/column generation-based approaches is that they are 
adaptable to various problem characteristics. Most of the 
methods employ a set partitioning formulation and rely on 
heuristic approaches to generate columns.  

 

IV. CONCLUSION 
We have surveyed many examples where more powerful 

optimization systems were constructed by combining 
mathematical programming techniques and metaheuristics. 
Many very different ways exist for such hybridizations, 
classified them into several major methodological categories. 
And also brought some examples of using them in vehicle 
routing problems. The most traditional approach is to use 
some metaheuristics to provide high-quality incumbents and 
bounds to a B&B-based exact method. On the other hand, 
quickly solved relaxations or the primal-dual relationship are 
often used for guiding or narrowing the search in 
metaheuristics. A relatively new and highly promising stream 
is those methods in which B&B is modified in some way to 
follow the spirit of local search-based metaheuristics. A 
frequently and successfully applied approach is a large 
neighborhood search through ILP techniques. We come to 
solution merging approaches when expanding this concept to 

searching the neighborhood defined by the common and 
disjoint attributes of two or more parental solutions. 

Furthermore, highly promising hybrid approaches are 
those where metaheuristics are utilized within more complex 
branch-and-cut and branch and- price algorithms for cut 
separation and column generation, respectively. As 
previously stated, several of the literature's approaches can be 
classified into multiple methodological categories we've 
established. Although such hybrid systems have a lot of 
experience, determining which algorithms and types of 
combinations are the most promising for a new challenge can 
be difficult. 
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