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ABSTRACT

RUNWAY OPERATIONS MANAGEMENT: MODELS,
ENHANCEMENTS, AND DECOMPOSITION

TECHNIQUES

MAY 2014

FARBOD FARHADI

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ahmed Ghoniem

Air traffic loads have been on the rise over the last several decades and are ex-

pected to double, and possibly triple in some regions, over the coming decade. With

the advent of larger aircraft and ever-increasing air traffic loads, aviation authori-

ties are continually pressured to examine capacity expansions and to adopt better

strategies for capacity utilization. However, this growth in air traffic volumes has

not been accompanied by adequate capacity expansions in the air transport infras-

tructure. It is, therefore, predicted that flight delays costing multi-billion dollars will

continue to negatively impact airline companies and consumers. In airport operations

management, runways constitute a scarce resource and a key bottleneck that impacts

system-wide capacity (Idris et al. 1999). Throughout the three essays that form this

dissertation, enhanced optimization models and effective decomposition techniques

are proposed for runway operations management, while taking into consideration

safety and practical constraints that govern access to runways.
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Essay One proposes a three-faceted approach for runway capacity management,

based on the runway configuration, a chosen aircraft assignment/sequencing policy,

and an aircraft separation standard as typically enforced by aviation authorities. With

the objective of minimizing a fuel burn cost function, we propose optimization-based

heuristics that are grounded in a classical mixed-integer programming formulation.

By slightly altering the FCFS sequence, the proposed optimization-based heuristics

not only preserve fairness among aircraft, but also consistently produce excellent

(optimal or near optimal) solutions. Using real data and alternative runway settings,

our computational study examines the transition from the (Old) Doha International

Airport to the New Doha International Airport in light of our proposed optimization

methodology.

Essay Two examines aircraft sequencing problems over multiple runways under

mixed mode operations. To curtail the computational effort associated with clas-

sical mixed-integer formulations for aircraft sequencing problems, valid inequalities,

preprocessing routines and symmetry-defeating hierarchical constraints are proposed.

These enhancements yield computational savings over a base mixed-integer formula-

tion when solved via branch-and-bound/cut techniques that are embedded in com-

mercial optimization solvers such as CPLEX. To further enhance its computational

tractability, the problem is alternatively reformulated as a set partitioning model

(with a convexity constraint) that prompts the development of a specialized column

generation approach. The latter is accelerated by incorporating several algorithmic

features, including an interior point dual stabilization scheme (Rousseau et al. 2007),

a complementary column generation routine (Ghoniem and Sherali, 2009), and a

dynamic lower bounding feature. Empirical results using a set of computationally

challenging simulated instances demonstrate the effectiveness and the relative merits

of the strengthened mixed-integer formulation and the accelerated column generation

approach.
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Essay Three presents an effective dynamic programming algorithm for solving

Elementary Shortest Path Problems with Resource Constraints (ESPPRC). This is

particularly beneficial, because the ESPPRC structure arises in the column gener-

ation pricing subproblem which, in turn, causes computational challenges as noted

in Essay Two. Extending the work by Feillet et al. (2004), the proposed algorithm

dynamically constructs optimal aircraft schedules based on the shortest path between

operations while enforcing time-window restrictions and consecutive as well as non-

consecutive minimum separation times between aircraft. Using the aircraft separation

standard by the Federal Aviation Administration (FAA), our computational study re-

ports very promising results, whereby the proposed dynamic programming approach

greatly outperforms the solution of the subproblem as a mixed-integer programming

formulation using commercial solvers such as CPLEX and paves the way for devel-

oping effective branch-and-price algorithms for multiple-runway aircraft sequencing

problems.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Since the first powered airplane flight in 1903, aviation has been instrumental, at

times of war or peace, to the growth of economies worldwide and to the creation of

international markets supported by global supply chains. It has brought a revolution

to the notion of travel, whether for business or leisure. Ever-increasing demand trends

and the advent of new flight patterns due to the introduction of new and long-haul

aircraft models require aviation authorities to permanently seek efficient procedures

to better manage extant and newly built aviation infrastructures. In this chapter, we

provide an overview of air transportation systems in general and runway operations

management in particular. Section 1.1 briefly highlights key milestones in the history

of modern aviation in the United States, the role of aviation in enabling economic

growth and the challenges it faces with ever-increasing air traffic loads, and important

components of air transport infrastructure and operations. In the latter, runways

constitute a scarce resource that largely constrains airport capacity and operations.

Section 1.2 provides a brief literature review on runway operations management,

spanning modeling approaches, solution techniques, and runway performance metrics.

Section 1.3 summarizes the organization of the proposal.

1.1. Air Transportation System

Civil aviation involves the management of the following activities and complex

systems: Air transport including commercial carriage by air, non-commercial flights

(e.g., private airplanes), commercial non-transport (e.g., aerial crop dusting and sur-
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veying); air infrastructure (e.g., airports and air navigation facilities); and manufac-

turing (e.g., aircraft, engines, and avionics). Air transport is the most important

constituent of civil aviation. In Subsection 1.1.1, we first briefly overview the key ele-

ments of the history of modern aviation in the United States. In Subsection 1.1.2, we

discuss the role of air transport in enabling economies worldwide. In Subsection 1.1.3,

we present air transport infrastructure and operations, and highlight the importance

of the runway, a scarce resource that conditions the overall systemic performance and

capacity of an airport.

1.1.1 Brief Historic Note

In the early years of the twentieth century, operating an airplane was considered

risky, or at least adventurous, and aviation development was sparked in Europe by

a race to acquire air weapons before and during World War I. It grew in the United

States as well, but its use continued to be relatively limited until 1925 when the Air

Mail Act allowed the Post Office to contract with private airlines to deliver mail. This

act, in turn, encouraged the development of the airline industry, further accelerated

by the Air Commerce Act in 1926 which authorized the Secretary of Commerce power

to establish airways, certify aircraft, license pilots, and issue and enforce air traffic

regulations. The first commercial airlines, including Pan American, Western Air

Express and Ford Transport Service, began to operate and were joined in the following

decades by many other airlines, such as United and American Airlines. In 1978,

the U.S. Congress passed the Airline Deregulation Act which removed governmental

control over commercial air fares, routes, and schedules, thereby enabling free market

competition in commercial aviation. Air safety regulations continued, however, to

be enforced by the Federal Aviation Administration. New airlines emerged into the

market and many new routes connected cities directly. The number of costumers

increased and fares dropped. Over the last decades, in the era of globalisation, air

2



traffic volumes have been steadily growing, prompted by new technologies, business

opportunities, and prospects of prosperity in developing countries.

During the second half of the twentieth century, the advent of commercial air-

craft and the development of local airports enabled not only industries and private

businesses but also local communities to access air transportation services. At the

turn of the millennium, the annual air traffic was in excess of 1.63 billion passengers

who boarded scheduled flights on domestic and international routes (ICAO, Circular

292-AT/124). This was 181 times greater than the total number of passengers in

1945 (9 million passengers). In the United States alone, during peak air travel times,

there are over 5,000 airplanes in the sky every hour (www.flightradar24.com). This

translates to approximately 50,000 aircraft operating in our skies each day. According

to Airports Council International (ACI), there were about 77 million aircraft move-

ments worldwide in 2011. Airline scheduled services alone carried about 5,440 million

passengers and moved over 90 million tons of freight and mail. Air traffic volumes

are expecting to continue to rise: The total number of passengers is predicted to

exceed 12 billion people in domestic and international flights and freight is estimated

to reach 225 million tons by 2031 (ACI, Global Traffic Forecast, 2011).

1.1.2 Role in Global Economy and Future Challenges

Air transport can play a prominent role in the vitality of a region and its economy.

It has been recognized as an important element of intermodal logistics in global

supply chains and as a crucial service for individuals, corporations, and governments.

Reflecting about the benefits of an air transport system, and how its unavailability

can significantly inhibit a region’s economic potential, Wells (1992) noted that:

A community’s lack of an airport can be as detrimental to its devel-
opment as being bypassed by the railroads a century ago, or left off the
highway map 50 years ago. (Wells, 1992)

3



Some benefits of air transport for a region include, but are not limited to, the

following four aspects:

1. Air transport facilitates the integration of a region into a national, and possibly

global, economy. It enables better access to fast growing markets and suppliers

and facilitates interactions between industries and businesses.

2. Further, it can attract new businesses to a region, be it for tourism, manufac-

turing, or service activities. This, in turn, can stimulate a local economy and

support its growth.

3. Air transport also enables the creation of a web of local, auxiliary business ac-

tivities driven by the presence of an airport. For example, this can be beneficial

for air cargo, airlines, ground transportation, hotels, or local restaurants.

4. The convenience of having an airport in relatively close proximity to a city

typically has a positive impact on real state value.

The economic impacts of air transport can be divided into three categories. Direct

impacts account for the effects on industries that directly depend on civil aviation,

such as travel and tourism. Indirect impacts reflect the impacts on other related

industries in the supply chain of civil aviation, such as aerospace manufacturers.

Induced impacts refer to the overall benefit to an economy as the income generated

by civil aviation gets re-invested in the growth and betterment of services for a local

community. In 2000, the total impact of civil aviation in United States was over

900 billion dollars with an associated 11 million jobs, representing 9% of the United

States gross domestic product (GDO). Of this economic impact, commercial aviation

contributed 88%, whereas 12% are attributed to general aviation. In 2009, civil

aviation contributed 1.3 trillion dollars to the economy of the United States which

constituted 5.2% of the GDP.
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In a study conducted by International Air Transport Association (IATA), the rela-

tionship between a country’s level of connectivity to global air transport networks and

its level of productivity and economic growth has been investigated. The study was

performed across 48 countries, including both developed and developing economies,

and over a ten-year period, from 1996 to 2005. One of the findings suggested that an

investment of 1,805 million Canadian dollars at Vancouver airport was estimated to

have led to a 5.4% increase in the overall connectivity of Canada, raising Canada’s

national productivity by 0.04%. It was also revealed that such improvements implied

an annual increase in Canadian GDP by 348 million Canadian dollars (an annual

economic rate of return of 19.3%) that can fully payback the investment within five

to six years.

Air transport has grown over the last decades due to technological progress, capital

intensive investments, and the increasing demand for air travel and freight services.

In 2012, there were over forty-three thousand airports worldwide, with over fifteen

thousand airports operating in the United States only. According to the Federal

Aviation Administration (FAA), the total number of commercial airline fleet in the

United States (including regional carriers) is estimated at over seven thousand aircraft

at the end of 2011.

Despite all of the extant infrastructure worldwide, air transport systems are often

facing congestion and some have reached their design capacity. For example, in 2011,

the average delay per delayed flight is reported to be 29 minutes for arrival traffic

and 28 minutes for departure traffic in European airports (EUROCONTROL, 2011).

Moreover, air traffic is predicted to double, and even triple, in some areas of the world

over the coming decades. In a 2009 survey conducted by the European Organization

for the Safety of Air Navigation (EUROCONTROL), it has been suggested that to

deal with the increasing scarcity of air transport system resources (e.g., slots, fre-
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quencies), air transportation systems should adopt an integrated network congestion

management approach.

Many investments and development programs are under investigation or imple-

mentation in order to improve and adapt aviation infrastructure in face of worldwide

growing demands. Europe is implementing a new system for its Air Traffic Manage-

ment (ATM) called Single European Sky ATM Research (SESAR). This collaborative

project aims at entirely integrating the European airspace and its ATM by year 2020,

and is intended to meet future airspace capacity and safety requirements. The United

States has also supported a program called the Next Generation Air Transportation

System (NextGen). This establishes a new National Airspace System that will be im-

plemented throughout the United States in stages between 2012 and 2025. NextGen

proposes to transform the United States ATC system from a ground-based system to a

satellite-based system which would shorten air routes and reduce flight times and fuel

burn, thereby reducing traffic delays and increasing airspace capacity. Such programs

and future initiatives will continue to seek new strategies for capacity management

and improvement in order to efficiently respond to rising air traffic volumes.

1.1.3 Infrastructure and Operations

Operations in the air transportation system can be categorized into ground opera-

tions, which typically take place in airports, and airborne operations, which occur in

the airspace. Managing these operations require the collaboration of three entities,

namely, airlines, airports, and air traffic controllers, depending on which phase of a

flight an aircraft is. As depicted in Figure 1.1, ground operations include stationary,

push back, taxiing and idling states, whereas airborne operations follow a take-off and

comprise climb, cruise, descent, final approach, and landing states. Stationary and

idling are two ground states where an aircraft does not move, with engines turned off

or on, respectively. Push back is the phase where aircraft departs from its designated

6



Figure 1.1: Air Traffic Controllers and Phases of a Flight

gate. Taxiing is the phase of the flight where an aircraft traverses taxiways to reach

its assigned runway. In a takeoff phase, an aircraft accelerates and transitions from

ground motion to flying over the runway. In the climb phase of a flight, an aircraft

ascends to greater altitudes (typically 30,000 ft or 10 km), before it can travel in

a safe and economic way. In the cruise phase of a flight, the aircraft travel at a

nearly constant speed and under most fuel efficient settings. In the descent phase,

an aircraft gradually decreases its altitude in preparation of landing, which brings an

aircraft back to the ground by accessing an available runway.

Air traffic controllers are in charge of managing aircraft operations, be it for

commercial or private flights. Air Traffic Control (ATC) is a system that monitors and

coordinates aircraft’s air and ground operations in order to direct aircraft departures

and landings. It also ensures that air traffic flows smoothly with minimal delays. ATC

is enforced by several ground-based controllers who direct aircraft on the ground and

through controlled airspace. The primary purpose of ATC systems worldwide is to

prevent collisions, organize and expedite the flow of traffic, and provide information

and other support for pilots. In some countries, ATC also plays a security or defensive

role, or is operated by the military.

ATC in the United States is run by the FAA. As depicted in Figure 1.2, the United

States airspace is divided into 23 main zones (centers), each of which is further divided
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Figure 1.2: United States Air Traffic Control Zones

into sectors. Within each zone, certain areas of the airspace, of about 50 miles in

diameter, are monitored by TRACON (Terminal Radar Approach CONtrol). Within

each TRACON, there could be several airports, each controlling its airspace within

a 5-mile radius. The TRACON controllers direct aircraft that are transitioning from

their en-route phase to the approach phase into a destination airport located within

the TRACON’s airspace. An Air traffic control tower (ATCT) is located at every

airport that handles all takeoff, landing, and ground traffic. The transition between

ATCT, TRACON, and En-route Control Centers is also depicted in Figure 1.1.

To ensure air traffic safety and prevent collision, ATC enforces separation rules,

which requires every aircraft to maintain a minimum volume of empty space around

it at all times. At an airport, this translates as a minimum safety separation time

that must separate two consecutive runway operations, which will depend on the

operation type (departure/landing) and the respective sizes of the leading and fol-
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lowing aircraft. Many aircraft also have collision avoidance systems, which provide

additional safety support. In many countries, ATC provides services to all private,

military, and commercial aircraft. The instructions provided by ATC to the pilots

depend on the type of flight and the position of the aircraft in the airspace. Beyond

instructions, it is incumbent upon the pilot in command to ultimately ensure safe

operations of the aircraft and to react to emergencies or perceived dangers.

1.2. Literature on Runway Operations Management

There exist several research streams in the rich body of literature on air trans-

portation, including: (i) ground operations problems related to gate assignment, air-

craft sequencing over runways, or maintenance scheduling; and (ii) air-side operations

problems pertaining to flight routing and scheduling, airspace planning, and final de-

scent strategies. Prominent amongst ground operations, runway scheduling problems

are particularly important, as runways constitute a key bottleneck that conditions

downstream airport-wide operations (Idris et al., 1998). This dissertation focuses on

investigating efficient strategies for improved runway capacity utilization. As a pream-

ble, this section reviews the relevant literature on runway operations management.

Subsection 1.2.1 reviews classical, static or dynamic, modeling approaches for runway

operations. Subsection 1.2.2 summarizes exact and heuristic solution techniques that

are commonly employed to address runway scheduling problems. In Subsection 1.2.3,

we briefly discuss performance metrics pertinent to runway operations. At the begin-

ning of each subsequent chapter, a relevant, more detailed review of the literature is

presented.

1.2.1 Modeling Approaches

Several studies consider a static environment where for a given set of aircraft, with

known information on each aircraft (e.g. operation type, its target time for runway

9



access, etc.), the decision-maker seeks to sequence aircraft in a fashion that yields a

best schedule with respect to a chosen objective function. Luenberger (1998) offered

a modeling approach for the static aircraft sequencing problem based on the classic

traveling salesman problem (TSP). In this analogy, an aircraft plays the role of a city

in the TSP problem and separation times between runway operations serve as inter-

city distances. Beasley et al. (2000) introduced a mixed-integer program (MIP) with

disjunctive constraints to model aircraft landings over a single or multiple runways. A

decade later, and although the benchmark instances provided in Beasley et al. (2000)

do not pose any computational difficulty to recent versions of commercial solvers and

modern computers, the MIP in Beasley et al. (2000) is a classical benchmark model

for aircraft sequencing problems. Brentnall (2006) proposed a machine scheduling

model with sequence dependent setup times where each job corresponds to a landing

aircraft and each machine with a limited capacity represents a runway. Bianco et

al. (2006) also introduced a static model for scheduling landings and takeoffs in the

terminal area.

Runway operations can be modeled under a dynamic environment such as a queu-

ing system or a rolling horizon framework. In this setting, the set of aircraft is

dynamically updated over time with new operations and more-up-to-date informa-

tion on individual aircraft. Pujet et al. (1999) proposed a dynamic queuing model

for aircraft departure problems, whereas Idris (2001) developed an analytical queuing

framework for departure process dynamics. Hu and Chen (2005) also considered a

dynamic aircraft landing problem and used an approach based on receding horizon

control. Bauerle et al. (2007) modeled the landing problem as a special queuing

system where costumers and service times represent incoming aircraft and aircraft

separation times, respectively.
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1.2.2 Solution Techniques

Bennell et al. (2011) provide an excellent survey of solution techniques for run-

way scheduling problems, spanning a broad spectrum of exact and heuristic meth-

ods. Exact solution techniques largely employ Branch-and-Bound (B&B) algorithms

or dynamic programming (DP) approaches, whereas heuristic techniques comprise

constructive type heuristics (e.g., tour construction and improvement schemes) and

metaheuristics (e.g., genetic algorithms, simulated annealing, tabu search, etc.).

Exact solution approaches most employ a B&B algorithm and solve moderately-

sized problem instances. Brinton (1992) proposed one of the early works that use B&B

algorithms for aircraft arrival scheduling, followed by Abela et al. (1993) who devised

a specialized B&B algorithm. Beasley et al. (2000) also relied on B&B algorithms

to address a proposed MIP model. Wen et al. (2005) considered the MIP model

by Beasley et al. (2000) for which they proposed a column generation approach. A

wide range of other studies investigate the usefulness of exact algorithms for runway

management problems. However, heuristic methods have received a great deal of

attention due to the computational difficulty exact solution methods experience for

large problem instances and, sometimes, even for certain moderately-sized instances.

Dear and Sherif (1991) present an enumerative heuristic for the static and dynamic

case of aircraft landing problem. Anagnostakis and Clarke (2002) proposed a two-

stage heuristic algorithm for solving a runway operation planning problem. Pinol and

Beasley (2006) devised two population-based heuristics, namely, a scatter search and

a bionomic algorithm, which are tested on publicly available benchmark instances in-

volving up to five hundred aircraft and five runways. Atkin et al. (2004) also proposed

a metaheuristic that addresses aircraft departure sequencing with practical physical

constraints based on London Heathrow Airport. Many papers employed a specialized

genetic algorithm, including Stevens (1995), Ciesielski and Scerri (1997), and Capri
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and Ignaccolo (2004). Bencheikh et al. (2009) and Randall (2002) presented an ant

colony optimization methodology for aircraft landing problem.

1.2.3 Performance Metrics

Many different parties are involved in an air transportation system, be it air-

lines, airports, governments, air traffic controllers, or aviation regulators. As noted

in Bennell et al. (2011), depending on the specific interest of the decision-maker, al-

ternative objectives may be considered. Therefore, the problem of managing runway

operations may require the consideration of multiple, possibly conflicting, objectives

which can help reveal attractive trade-offs for the decision-maker. Some of the key

considerations related to runway management include the following aspects:

(a) At an Airport level:

• Workload of ground staff

• Aircraft maintenance schedule

• Gate utilization

(b) From an airline’s viewpoint:

• Operating costs (mainly fuel burn and crew cost)

• Total passenger delays

• Tail assignment (assigning aircraft to flights)

• Flight routing schedules

(c) From an air traffic controller’s viewpoint:

• Safety of operations

• Runway throughput
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• Airspace capacity

• Fairness among operations

• Managing taxi routes

• Arrival/departure delay

(d) From a regulatory and governmental viewpoint:

• Safety of residential areas in the region

• Environmental effects (noise and air pollution).

A variety of objectives have been considered in the literature. Psaraftis (1978)

examined runway throughput maximization; an objective function that continues to

receive attention in the literature, as in the study by Anagnostakis and Clarke (2002).

This objective may be detrimental to certain other considerations such as fairness

amongst aircraft. Brentnall (2006) and Beasley et al. (2000) adopted a more airline-

centric objective that minimizes a total weighted aircraft earliness and tardiness based

on estimated aircraft target times. Likewise, Pinol and Beasley (2006) examined two

earliness/tardiness-related objectives: (i) A nonlinear objective that maximizes the

difference between the squared earliness and the squared tardiness of aircraft, thereby

encouraging early landings; and (ii) Another (linearizable) objective that minimizes

the total weighted earliness and tardiness, which penalizes any positive or negative

deviation from aircraft target landing times. Another nonlinear objective is utilized

by Atkin et al. (2007) for minimizing deviations from target departure times. Abela et

al. (1993) employed an objective function that minimizes the cost associated with an

aircraft speeding up or holding. In more recent studies more elaborate objectives have

been utilized. Fuel costs are included in a study by Lee and Balakrishnan (2008) and

are compared against aircraft delay and runway throughput considerations. Sölveling

et al. (2011) proposed a multi-faceted objective that involves cost of fuel, passenger
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and crew, emissions and noise. Boysen and Fliedner (2011) examined aircraft landing

scheduling problems with a focus on balancing the workload of ground staff at an

airport. In this proposal, multiple objectives are considered based on the problem

statement and scope that is introduced in each of the subsequent chapters.

1.3. Organization of Dissertation

This dissertation is organized as follows. Chapter 2 presents an empirical study

on runway capacity management strategies. Departing from a large body of liter-

ature that focuses – at an operational level – on building runway schedules, this

chapter proposes a three-faceted approach to analyze runway capacity management.

In particular, consideration is given to the physical configuration of runways, runway

scheduling strategies (i.e. runway assignment and aircraft sequencing schemes), and

runway safety regulations. The relative merits and the impacts of alternative settings

on aircraft fuel burn cost and average delay are examined using real data acquired

from Doha International Airport in Qatar.

Chapter 3 examines aircraft sequencing problems over multiple runways using op-

timization models that are enhanced via valid inequalities, preprocessing routines, and

symmetry-defeating hierarchical constraints. To further enhance the computational

tractability of this class of problems, this work proposes a set partitioning model

reformulation of the problem that prompts the development of a column generation

algorithm. This decomposition technique is further accelerated by incorporating an

interior point dual stabilization scheme, a complementary column generation routine,

and a dynamic lower bounding feature.

Chapter 4 presents an effective dynamic programming algorithm for solving Ele-

mentary Shortest Path Problems with Resource Constraints (ESPPRC), a structure

that arises in the column generation pricing subproblem discussed in Chapter 3.

Extending the work by Feillet et al. (2004), the proposed algorithm dynamically
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constructs optimal aircraft schedules based on the shortest path between operations

while enforcing time-window restrictions and consecutive as well as non-consecutive

minimum separation times between aircraft. Using the aircraft separation standard

by the Federal Aviation Administration (FAA), our computational study reports very

promising results, whereby the proposed dynamic programming approach greatly out-

performs the solution of the subproblem as a mixed-integer programming formulation.

This paves the way for developing effective branch-and-price algorithms for this class

of problems.

Chapter 5 concludes the dissertation by summarizing our findings and directions

for future research.
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CHAPTER 2

RUNWAY CAPACITY MANAGEMENT – AN
EMPIRICAL STUDY WITH APPLICATION TO DOHA

INTERNATIONAL AIRPORT

This chapter examines a three-faceted approach for runway capacity management,

based on the runway configuration, a chosen sequencing policy, and an aircraft sepa-

ration standard. In this context, we propose optimization-based heuristics that yield

optimal or near-optimal schedules and assess their benefits under alternative runway

settings. This integrated approach is applied, in collaboration with Qatar Civil Avi-

ation Authority, to investigating the transition from the (Old) Doha International

Airport to the New Doha International Airport. Our computational study of alterna-

tive runway settings uses optimization methodology along with tailored preprocessing

routines.

2.1. Introduction

In recent years, new flight patterns – facilitated by the advent of larger aircraft

– and ever-increasing air traffic loads have required airlines and airports to seek new

frontiers in operations efficiency. In 2012, Airports Council International (ACI) re-

ported over 6 billion passengers in domestic and international flights worldwide. By

2025, it is anticipated that this figure will increase by at least 50%, with over 9 bil-

lion passengers in global air traffic. The growing air traffic trends necessitate the

construction of new airports, major capacity expansions at busy airports, a com-

mensurate adjustment of aviation infrastructure, and the identification of operational
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Year Passenger % Increase Cargo (Kg) % Increase Aircraft movement % Increase

2007 9,459,812 - 247,163,753 - 65,373 -

2008 12,272,505 29.7 409,462,811 65.7 90,713 38.8

2009 13,113,224 6.9 522,920,986 27.7 101,941 12.4

2010 15,724,027 19.9 699,941,401 33.9 118,751 16.5

2011 18,108,521 15.2 795,558,797 13.7 136,768 15.2

2012 21,163,382 16.9 826,669,094 3.9 155,671 13.8

Table 2.1: Air Traffic Volumes at Doha International Airport (www.dohaairport.com)

policies and managerial directives that best avail of existing capacity. In particu-

lar, airports are faced with persistent challenges related to runway scheduling, a key

bottlneck in the air transport system.

The Middle East is serving as a hub for global trade and transport and has wit-

nessed rapid air traffic growth over the last years. According to the International

Civil Aviation Organization (ICAO), international air traffic amounts to nearly 60%

of the total passenger traffic, 10% of which occurs in the Middle East. In this con-

text, the United Arab Emirates and Qatar are making large investments in aviation

infrastructure and host two major airlines, Emirates and Qatar Airways. In 2012,

Doha International Airport (DOH) ranked 25th in international passenger traffic and

experienced the second largest growth of 19%, after Istanbul with 25%, over the pre-

vious year. Table 2.1 further summarizes the 2007-2012 traffic at DOH, reflecting

sustained growth rates in passenger, cargo, and aircraft movements over the last few

years.

DOH currently operates with a single runway (see Figure 2.1a), one of the longest

at civil airports with a length of 4,570 meters. It employs an FCFS policy for aircraft

sequencing and the ICAO aircraft safety separation standard. The main terminal at

DOH has been expanded several times over the last years in order to accommodate

sharply increasing air traffic loads (see Table 2.1). In 2008, the airport witnessed

a 38.8% growth in aircraft movement and ranked amongst the 100 busiest airports

worldwide. Further, DOH was the world’s 27th busiest airport by cargo traffic in
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(a) (Old) Doha International Airport (b) New Doha International Airport

Figure 2.1: Layout of the “Old” and the New Doha International Airports

2010, with over 15 million passengers. To manage the growing air traffic and to better

prepare the country for hosting the Qatar 2022 FIFA World Cup and the Qatar 2030

Strategic Vision, the New Doha International Airport, to be officially called Hamad

International Airport (HIA), was constructed as a distinct, new facility with two

parallel independent runways. It is expected to replace the single-runway DOH in

a near future. The first phase of HIA is planned for inauguration with one runway

offering a capacity of 29 million passengers. It is designed to ultimately operate with

two parallel independent runways, as depicted in Figure 2.1b, and a capacity of up to

50 million passengers, two million tons of cargo, and 320,000 aircraft landings/take-

offs per year upon its completion in 2015.

This study is motivated by our collaboration with the Qatar Civil Aviation Au-

thority and the transition from the single-runway DOH to the HIA with two paral-

lel runways in 2013. In particular, our work is predicated on the notion that run-

way capacity should be analyzed in light of three primary factors: (i) The runway

physical configuration and operating mode (segregated vs. mixed); (ii) The adopted

aircraft scheduling policy which spans heuristics, metaheuristics, and optimization

approaches; and (iii) The specific standard adopted for aircraft separation standards.

Two of the main commonly used standards that we examine in this chapter are stip-

ulated by the Federal Aviation Administration (FAA) and the International Civil

Aviation Organization (ICAO).
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The remainder of the chapter is organized as follows. Section 2.2 positions the

present work in the context of the extensive literature on aircraft sequencing problems.

Section 2.3 presents an optimization model for runway scheduling, which is enhanced

via preprocessing routines. We also propose heuristics that are grounded in the

optimization model and the FCFS sequencing policy. In Section 2.4, we discuss data

related to runway operations at in Doha and present our computational results for

alternative runway settings using the proposed solution methodology and heuristic

approaches. Section 2.5 concludes the chapter with a summary of our findings and

directions for future research.

2.2. Literature Review

At an operational level, runway scheduling problems seek to determine effective

aircraft schedules over one or multiple runways using pertinent cost objectives or

performance criteria. There exists a large body of literature on aircraft sequencing

approaches that is grounded in seminal works on machine scheduling. Bennell et

al. (2011) offer an excellent survey of runway scheduling problems, covering mod-

eling approaches, solution techniques, and performance criteria. Popular solution

techniques for runway scheduling problems include dynamic programming, branch-

and-bound/cut algorithms, and a broad spectrum of constructive/greedy heuristics

and metaheuristics. Most studies tend to focus on either departure or arrival aircraft

sequencing, in isolation, with a few exceptions that consider mixed-mode operations.

Noting the similarity between aircraft sequencing problems and machine schedul-

ing problems with sequence-dependent set up times and time-windows for the comple-

tion of jobs, Ernst et al. (1999) proposed an optimization model that is tackled using

a heuristic based on branch-and-bound algorithms. In a similar spirit, Beasley et al.

(2000) proposed a disjunctive mixed-integer program (MIP) for single and multiple-

runway aircraft sequencing problems which is widely used in the literature. Further,
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Ghoniem et al. (2013) presented an asymmetric traveling salesman problem-based

(ATSP) model for combined arrival-departure aircraft sequencing problems over a

single runway. The computational tractability of this formulation was significantly

enhanced using valid inequalities and preprocessing routines.

A few studies in the literature address runway operations management with appli-

cation to specific airports. Using landing time intervals at Logan Airport, Venkatakr-

ishnan et al. (1993) demonstrated that aircraft sequences that outperform those

identified by controllers could be constructed, thereby reducing flight delays by up to

30%. Idris et al. (1999) examined the interaction between key elements of an airport

system, including runways, taxiways, ramps, and gates. Focusing on aircraft depar-

tures at Logan Airport, the authors concluded that runways constitute the principal

bottleneck in the flow of airport operations and their management significantly im-

pacts system-wide efficiency. Also, motivated by an application to London Heathrow

Airport, Beasley et al. (2001) proposed a metaheuristic to improve the sequencing

of landing aircraft. Atkin et al. (2008) developed a metaheuristic approach for the

sequencing of departing aircraft as a decision support tool for runway controllers at

Heathrow airport.

Key stakeholders in aircraft operations management include the airport, airlines,

and governmental authorities (Bennell et al., 2011). Depending on the planner’s in-

terest, different performance criteria and objective functions can be considered for

runway scheduling. For instance, minimizing the makespan, or equivalently maximiz-

ing the runway throughput, optimizes the start-time of the last aircraft to access the

runway and is viewed as an airport-driven target. This performance criterion can,

however, be detrimental to the mean aircraft delay (Lee and Balakrishnan, 2008), an

objective that is more important to airlines and passengers. Beasley et al. (2000) and

Ernst et al. (1999) employ an objective function that minimizes the total aircraft earli-

ness and tardiness, measured as the weighted deviation from target landing/departure
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Figure 2.2: Key Factors Related to Runway Capacity

times. Such objective functions are advantageous to airlines and passengers, but also

contribute to smoothing airport-wide operations. Recent studies increasingly use di-

rect monetary costs related to fuel burn (Lee and Balakrishnan, 2008; Sölveling et

al., 2011), passenger delays, or crew costs (Sölveling et al., 2011).

Whereas most studies in the literature focus on a specific exact or heuristic solu-

tion approach to the aircraft sequencing problem, the present chapter adopts a more

integrated approach. As depicted in Figure 2.2, we examine the combined effect of the

following three factors on runway capacity utilization and operations management:

(i) a specific runway configuration, including the physical layout of runways and their

operation mode (mixed or segregated); (ii) a heuristic or optimized aircraft scheduling

policy; and (iii) an aircraft separation standard. The runway performance under al-

ternative settings is assessed using optimization methodology, MIP-based heuristics,

and data from DOH.

2.3. Optimization Model and Heuristic Approaches

Central to our evaluation of alternative runway settings is the use of an MIP

model that is introduced in Subsection 2.3.1. In Subsection 2.3.2, we discuss tailored
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valid inequalities and preprocessing routines for the MIP model which are devel-

oped to enhance the computational tractability of the model. In Subsection 2.3.3,

optimization-based heuristics, grounded in the MIP model, are proposed with the

objective of producing high quality schedules that are close in structure to the FCFS

sequence that is widely used at airports.

2.3.1 Mixed-Integer Program

We consider a set of J aircraft arrivals and departures to be scheduled over a

set of N parallel independent runways during a particular planning horizon. Each

aircraft j ∈ J is characterized by the following attributes: (i) its operation type Oj

(Departure/Arrival); (ii) its weight class (Heavy, Large, or Small); (iii) a ready-time

rj and a due date dj which enforce a time-window over which aircraft j should access

a runway and start its operation; and (iv) a fuel burn cost, wj, which depends on

its operation type and weight class. We denote by pj1j2 the minimum separation

time between a leading aircraft j1 and a following aircraft j2, which depends on their

operation types and weight classes and is numerically specified by a chosen standard

(ICAO or FAA) as discussed in Section 2.4.1.

An assignment binary variable zij is introduced; it equals 1 if and only if aircraft

j ∈ J is assigned to runway i ∈ N . We also introduce a sequencing binary variable

yj1j2 to determine the relative order of a pair of aircraft j1 and j2 if they are assigned

to the same runway. The continuous decision variable, tj, establishes the time at

which aircraft j accesses its assigned runway.

Given specific input parameters as described above, the Runway Capacity Man-

agement problem is formulated as the following 0-1 MIP, which we refer to as RCM:
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RCM: Minimize
∑
j∈J

wj(tj − rj) (2.1a)

∑
i∈N

zij = 1, ∀j ∈ J (2.1b)

rj ≤ tj ≤ dj, ∀j ∈ J (2.1c)

tj2 ≥ tj1 + pj1j2 −M(1− yj1j2), ∀j1 ∈ J, j2 ∈ J, j1 6= j2 (2.1d)

yj1j2 + yj2j1 ≥ zij1 + zij2 − 1, ∀i ∈ N, j1 ∈ J, j2 ∈ J, j1 < j2 (2.1e)

y, z binary. (2.1f)

The objective function (2.1a), where the term
∑
j∈J

wjrj is a constant, minimizes the

total fuel cost resulting from the deviation of aircraft start-times from their respective

ready-times. We refer to this metric in the objective function as the total excess fuel

cost ; if all start-times equal their associated ready-times in a given schedule, then

no excess fuel cost is incurred. Constraint (2.1b) assigns every aircraft to exactly

one runway. Ready-time and due date restrictions are enforced in Constraint (2.1c).

The disjunctive constraint (2.1d) introduces a minimum separation time between any

pair of aircraft, whether consecutive or not, that are assigned to the same runway. It

involves a sufficiently large scalar M , which we validly set to M ≡ dj1 − rj2 + pj1j2 .

Constraint (2.1e) guarantees that precedence between any pair of aircraft must be

established if they are assigned to the same runway. Constraint (2.1f) specifies binary

restrictions on decision variables.

Model RCM, in the spirit of the model in Beasley et al. (2000), can be used to

evaluate the potential of alternative runway configurations, sequencing policies, and

aircraft separation standards. The key modeling distinction is that we eliminate an

auxiliary variable that is explicitly introduced in Beasley et al. (2000) to establish

whether or not a pair of aircraft is assigned to the same runway, which results in a

model size reduction in RCM. Although Model RCM is stated for a multiple-runway
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configuration, it can be adjusted for a single-runway configuration by relaxing Con-

straints (2.1b) and (2.1e) and eliminating the z-variables.

2.3.2 Preprocessing Routines

We develop preprocessing routines with the objective of fixing the relative order

of certain aircraft, without loss of optimality, and, therefore, enhancing the compu-

tational tractability of Model RCM. Such preprocessing routines can be identified by

analyzing input parameters related to aircraft and separation times. For example,

Constraint (2.2) states that if the preceding of aircraft j2 to aircraft j1 would cause

the latter to violate its due date, then this relative order should be precluded to

ensure feasibility:

yj2j1 = 0, ∀j1 ∈ J, j2 ∈ J, j1 6= j2, rj2 + pj2j1 > dj1 . (2.2)

Constraint (2.3) considers two equivalent aircraft that have the same fuel cost

wj1 = wj2 , which implies that they have the same operation type (both are arrivals

or departures) and weight class (both are Heavy, Large or Small), and where one of

the aircraft has an earlier time-window. From an aircraft separation point of view,

both aircraft in Constraint (2.3) are equivalent and, therefore, the earlier aircraft can

be required not to follow the later one, without loss of optimality.

yj2j1 = 0, ∀j1 ∈ J, j2 ∈ J, j1 6= j2, rj1 < rj2 , dj1 ≤ dj2 , wj1 = wj2 . (2.3)

Constraint (2.4) considers a similar situation, but caters for the special case where

the two aircraft have identical time windows. It is conceivable to require the lower-

indexed aircraft not to follow the higher-indexed one, without loss of optimality:

yj2j1 = 0, ∀j1 ∈ J, j2 ∈ J, j1 < j2, rj1 = rj2 , dj1 = dj2 , wj1 = wj2 . (2.4)
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There could be additional cases where a pair of aircraft j1 and j2 are not equivalent,

but they introduce the same separation times (i.e. pj1k = pj2k and pkj1 = pkj2 , for any

aircraft k, which we simply represent as pj1,∗ = pj2,∗ and p∗,j1 = p∗,j2). Constraint

(2.5) identifies aircraft with such symmetric separation times and requires, without

loss of optimality, the aircraft with an earlier time-window and heavier fuel cost not

to follow the other aircraft:

yj2j1 = 0, ∀j1 ∈ J, j2 ∈ J, j1 6= j2, rj1 ≤ rj2 , dj1 ≤ dj2 , pj1,∗ = pj2,∗, p∗,j1 = p∗,j2 , wj1 > wj2 .

(2.5)

2.3.3 Optimization-based Heuristics

We propose in this section two optimization-based heuristics that are grounded in

the use of the MIP model RCM and the FCFS sequencing policy. The overarching

objective here is to develop heuristics that yield optimal or near-optimal solutions,

while largely preserving the structure of the FCFS sequence (for practical reasons

and in order to maintain fairness among aircraft). We shall, therefore, use the global

optimal schedule produced by Model RCM and the FCFS schedule as two benchmarks

for comparison with the proposed MIP-based heuristics, as delineated next.

a) FCFS sequencing policy with segregated-mode runways (FCFS-SEG). This

base policy reflects the sequencing strategy that the New Doha International

Airport a priori plans to use. Considering segregated runways, either dedicated

to departures or arrivals, aircraft on a given runway are sequenced in the non-

decreasing order of their ready-times. If the problem involves two runways, one

is dedicated to the arrivals and the other to departures. If multiple runways are

devoted to the same operation type, e.g. departures, there is a need to both

assign aircraft to suitable runways and to sequence them using FCFS over the

same runway. FCFS-SEG can be implemented using Model RCM. To this end,
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we consider Nd and Na, the subsets of runways dedicated exclusively for de-

partures and arrivals, respectively, along with Jd and Ja, the subset of aircraft

departures and arrivals, respectively. We then enforce the following restrictions

in Model RCM:

zij = 0, ∀i ∈ Nd, j ∈ Ja (2.6)

zij = 0, ∀i ∈ Na, j ∈ Jd (2.7)

tj1 ≤ tj2 , ∀j1 ∈ J, j2 ∈ J, j1 6= j2|rj1 < rj2 and Oj1 = Oj2 . (2.8)

b) Heuristic 1 – FCFS sequencing policy with mixed-mode runways (FCFS-

MIX). In contrast with FCFS-SEG, runways operate in a mixed mode, allowing

arrivals and departures to share runways. This proposed heuristic ranks aircraft

based on their ready-times and iteratively assigns aircraft to the first available

runway. Under this strategy, all aircraft assignments follow the FCFS order and

no aircraft is allowed to overtake an earlier aircraft in the sequence. FCFS-MIX

can be implemented by appending the following restrictions to Model RCM:

tj1 ≤ tj2 , ∀j1 ∈ J, j2 ∈ J, j1 6= j2|rj1 < rj2 . (2.9)

c) Heuristic 2 – FCFS sequencing policy with optimized assignment (FCFS-

OPT). Under this proposed heuristic, the assignment of aircraft to runways is

optimized with the restriction that no aircraft can overtake another aircraft in

its queue (i.e. aircraft of the same operation type, whether arrival or depar-

ture). However, an aircraft is allowed to overtake other aircraft of the opposite

operation type if deemed pertinent from a cost reduction point of view. For

example, an arriving aircraft can overtake a departure aircraft with an earlier

time-window. Consequently, the FCFS order applies only within each queue of

26



Figure 2.3: Example on scheduling settings

arrival and departure aircraft, but not across the two queues. The heuristic en-

ables an optimized interweaving of both queues and can be implemented using

Model RCM by enforcing the following constraint:

yj2j1 = 0, ∀j1 ∈ J, j2 ∈ J, j1 6= j2|rj1 < rj2 and Oj1 = Oj2 . (2.10)

d) Optimal Schedule (OPT): We also consider the setting where the assignment

and sequencing of aircraft are optimized, independently from any FCFS con-

siderations, using Model RCM. Although this setting does not make provision

for fairness amongst aircraft, we use it as a benchmark for the best possible

performance under a given runway/data input setting.

Figure 2.3 provides an illustrative example with six aircraft sequenced over a single

runway and highlights aircraft position shifts from one sequencing policy to another.

The FCFS policy provides a base sequence for a combination of arrivals and departures

and different aircraft weight classes. In this single-runway example, the FCFS-MIX

heuristic does not alter the FCFS sequence. Under the FCFS-OPT heuristic, the

FCFS order is preserved within the arrival and departure queues but not across the

two queues. For example, arriving aircraft 6 is moved to the third position, overtaking

departing aircraft 3, 4, and 5, with the implication that this decision produces a

better solution. Under the optimal schedule, the FCFS order may be violated within
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and across arrival and departure queues. For example, departing aircraft 5 precedes

departing aircraft 3 and 4, although the latter have earlier ready-times.

2.4. Computational Study and Key Findings

Our study is anchored in the analysis of data on Doha International Airport

that we obtained from Qatar Civil Aviation Authority in 2011. We analyzed aircraft

movement patterns using SAS 9.3 and implemented all heuristic and optimization

approaches using AMPL/CPLEX 12.4 on a desktop with Windows 7 professional

64-bit operating system, an Intel Core i7-2600 CPU with 3.40 GHz, and 12 GB

RAM. Subsection 2.4.1 discusses the data and the aircraft separation standards we

considered in the study. Subsection 2.4.2 reports our results and key findings with

regard to the proposed runway capacity management model and heuristic methods.

2.4.1 Data Analysis

Our study is grounded in air traffic and aircraft movement projections in antic-

ipation of increasing loads that HIA would have to handle. There are about 685

operations per day in typical data instances which are examined using our proposed

solution approaches. This corresponding to nearly 80% of the HIA expected nominal

capacity after the completion of its final construction phase, i.e. about 857 opera-

tions/day or 320,000 operations/year. The alternative runway settings (runway con-

figuration, scheduling policy, and separation times) are encapsulated in Model RCM

with the objective of minimizing the total excess fuel cost. Aircraft fuel consumption

(see Appendix A) is adapted from fuel burn data in Cook et al. (2004). For each

aircraft model, we employ an average fuel burn (gal/min) associated with its ground

or final approach operations. We used jet fuel costs based on recent IATA data on

fuel prices (3.132 USD/gal in the Middle East and Africa on March 1, 2013). In
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Figure 2.4: Projected Aircraft Movements in Doha

our post-solution analysis, we also record the total delay incurred under each runway

setting.

Figure 2.4 depicts typical aircraft movements in our Doha-based dataset, where

aircraft operations are categorized into Arrivals and Departures and where the total

aircraft movements are represented. In about 50% of the day, 30 operations or more

take place in a time-window of one hour. The combined number of departures and

landings peaks to over 45 operations, potentially causing delays and requiring careful

planning. Figures 2.5a and 2.5b provide a higher level of detail by depicting the

number of aircraft arrivals and departures, separately, while categorizing aircraft by

their weight classes (Heavy, Large, and Small).

In our Doha dataset, aircraft are predominantly heavy and large (39% H, 55% L

and 6% S). Our analysis indicates that the inter-operation time (time lapse between

the occurrence of two operations on the runway) ranges from 80 seconds to 6 min-

utes during different hours of the day, with a two-minute inter-operation time at an

average. This is indicative of non-uniform air traffic operations throughout the day

at DOH, as is typical of international airports. Doha faces heavier air traffic activity

during three main time-windows of the day. As far as arrivals are concerned, busier

activity takes place around hours 3, 15, and 20 GMT – Doha time being GMT +

3:00. In contrast, congested hours for departures are around hours 5, 17, and 22
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(a) Arrivals (b) Departures

Figure 2.5: Projected Aircraft Patterns for Doha International Airport

GMT. There is approximately a three-hour difference between the busier hours for

arrivals and departures that is reflective of common aircraft layovers at airports, as

an arriving aircraft gets serviced and ready to depart again. Small aircraft are less

present at DOH and have milder peaks of activity. It is worth noting that if air-

craft operations were uniformly distributed throughout the day with a two-minute

inter-operation time, then even a single runway would accommodate 720 aircraft. In

practice, the capacity of the runways at Doha does not seem to be reached most of

the day. However, certain time-windows of the day are particularly congested, require

careful planning, and cause excess fuel and delay costs.

Aviation authorities enforce aircraft separation times between runway operations

in order to obviate the dangers of wake turbulence. The magnitude of these sepa-

ration times depends on the weight class of the leading/following aircraft and their

operations types (landing or departure). Such separation times are typically asym-

metric, due to the higher vulnerability of smaller aircraft to air turbulence. There

exist different safety separation time standards, each resulting in a specific runway

capacity utilization and airline fuel cost. We consider two different standards in our

study, namely, the ICAO standard (currently adopted at DOH) and the one enforced
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Departure → Departure Case Departure → Arrival Case
Leading \ Following Heavy Large Small Leading \ Following Heavy Large Small

Heavy 90 120 120 Heavy 60 60 60
Large 60 60 60 Large 60 60 60
Small 60 60 60 Small 60 60 60

Arrival → Departure Case Arrival → Arrival Case
Leading \ Following Heavy Large Small Leading \ Following Heavy Large Small

Heavy 75 75 75 Heavy 96 157 196
Large 75 75 75 Large 60 69 131
Small 75 75 75 Small 60 69 82

Table 2.2: Aircraft separation times (in seconds) following the FAA standard

by the FAA at airports in the United States and contrast their effects on runway

operations if employed in Doha.

The ICAO standard classifies aircraft along three main weight classes (Heavy,

Medium, and Light) based on their maximum takeoff weight (MTOW). It requires a

minimum separation of 2 minutes between any pair of operation for any weight class

unless a light landing follows a heavy or medium landing, in which case a 3-minute

minimum separation time must be enforced. Likewise, FAA categorizes aircraft into

similar weight classes (Heavy, Large, and Small). However, it introduces different

separations based on minimum distances (in nautical miles) in compliance with the

Instrument Flight Rules (IFR) that have to be maintained between aircraft opera-

tions. These nautical distances can be converted to minimum separation times in

seconds assuming nominal aircraft speeds as in De Neufville and Odoni (2003), and

are summarized in Table 2.2 (Lee, 2008) for different cases of Arrival/Departure con-

sidering runway occupancy times for different aircraft weight classes.

In addition to being asymmetric, the FAA separation times do not always satisfy

the triangle inequality. In certain cases, the separation of consecutive aircraft is

not sufficient to properly separate certain nonconsecutive aircraft in the sequence,

as illustrated in Figure 2.6. In this example, the separation times of 60 seconds

and 75 seconds between the consecutive operations do not introduce the 196 seconds

necessary to separate the first and third operations. The need to separate all pairs of
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Figure 2.6: Non-triangular separation times in FAA standard

aircraft that share the same runway, whether consecutive or not, is readily enforced

in Model RCM with the y-variables and the disjunctive Constraint (2.1d).

2.4.2 Results and Findings

Our empirical results are summarized in Tables 2.3 and 2.4 using alternative run-

way settings under ICAO and FAA separation time standards, respectively. Column 1

provides hourly time-windows of airport operations in Greenwich Mean Time (GMT).

Columns 2-6 report the total excess fuel cost in US dollar (USD). An objective value

of 0 reflects that all aircraft start at their ready-times and there are no deviations

that result in added fuel costs. Column 2 reports fuel costs for a single runway setting

(or closely parallel runways) operating under an FCFS sequencing policy, as currently

implemented in DOH. Columns 3-6 report results for a setting with two parallel in-

dependent runways, as planned for HIA, under the three scheduling heuristic policies

FCFS-SEG, FCFS-MIX, and FCFS-OPT and an optimal schedule (OPT).

Our proposed heuristic FCFS-OPT yields notable improvements in reducing the

excess fuel cost over FCFS-SEG and FCFS-MIX, and provides near-optimal solutions

that are very comparable to the optimal schedules produced by OPT. An exami-

nation of the solutions produced by FCFS-OPT and OPT approaches reveals the

following: Although FCFS-OPT forces aircraft on the same runway to follow an

FCFS order within the same stream of operations (departure/landing), it optimizes

aircraft-runway assignments in a way that yields overall optimal or near-optimal so-

lutions when compared to OPT results. It also optimizes the interweaving of the
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Window Single runway Two runways
(GMT) FCFS FCFS-SEG FCFS-MIX FCFS-OPT OPT
0-1 0 0 0 0 0
1-2 206 206 69 69 69
2-3 34,355 16,816 4,513 3,849 3,849
3-4 126,516 29,878 852 754 754
4-5 145,979 13,864 2,391 1,886 1,886
5-6 235,131 33,901 2,289 2,206 2,206
6-7 205,463 15,954 2,047 1,228 1,228
7-8 142,652 938 3 3 3
8-9 129,623 1,352 219 219 219
9-10 55,666 1,234 172 172 172
10-11 26,327 317 162 162 162
11-12 16,867 1,020 206 206 206
12-13 4,020 1,336 716 716 716
13-14 4,803 1,683 523 304 304
14-15 12,321 5,632 2,908 2,183 1,963
15-16 16,920 5,724 1,606 1,547 1,547
16-17 121,249 36,369 4,196 3,319 3,319
17-18 112,657 2,028 746 646 646
18-19 187,234 6,155 2,046 1,890 1,890
19-20 295,523 21,057 4,582 3,977 3,977
20-21 448,154 21,083 3,509 3,005 3,005
21-22 344,028 15,071 4,225 3,171 3,124
22-23 230,337 11,950 921 871 871
23-24 251,911 2,570 321 321 321

Total fuel cost (USD) 3,147,942 246,139 39,221 32,707 32,440
Total delay (min) 31,327 2,516 476 511 511

Table 2.3: Fuel Costs under Alternative Runway Settings (ICAO Separation Stan-
dard)
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Window Single runway Two runways
(GMT) FCFS FCFS-SEG FCFS-MIX FCFS-OPT OPT
0-1 0 0 0 0 0
1-2 172 172 34 34 34
2-3 10,152 8,512 2,727 2,671 2,671
3-4 12,853 5,105 316 306 306
4-5 6,825 2,971 862 862 862
5-6 5,121 3,169 1,141 1,141 1,141
6-7 4,838 1,772 301 301 301
7-8 531 346 0 0 0
8-9 1,017 653 124 124 124
9-10 1,090 469 77 77 77
10-11 452 199 97 97 97
11-12 1,032 586 129 129 129
12-13 1,498 885 394 394 394
13-14 1,019 673 87 87 87
14-15 4,642 3,513 1,184 972 972
15-16 5,803 4,450 508 508 508
16-17 14,345 11,646 1,745 1,745 1,745
17-18 2,877 904 241 200 200
18-19 7,003 4,577 1,050 1,050 1,050
19-20 16,402 13,018 3,138 3,138 3,138
20-21 13,237 9,898 2,241 2,241 2,241
21-22 13,702 4,757 411 411 411
22-23 3,135 2,776 584 584 584
23-24 1,753 1,077 140 140 140

Total fuel cost (USD) 129,497 82,128 17,531 17,211 17,211
Total delay (min) 1,262 696 205 209 209

Table 2.4: Fuel Costs under Alternative Runway Settings (FAA Separation Standard)

departure and arrival queues over the same runway. This highlights that aircraft-

runway assignments are crucial and can yield excellent results, even when the aircraft

sequence follows an FCFS policy within the same stream of operations.

In contrast, swapping aircraft positions or optimizing their sequencing within the

same stream of operations does not result in notable savings. This underscores the

importance of aircraft assignment decisions in reducing excess fuel costs, an aspect

that is often overlooked, as more attention has been devoted to sequencing strategies.

This also explains why FCFS-OPT dominates FCFS-MIX with respect to excess

fuel cost, as the latter adopts myopic/greedy aircraft-runway assignments. A final

note is in order to elucidate why delays under FCFS-MIX could be shorter than

under FCFS-OPT. In our study, the excess fuel cost is the unique objective that is

optimized in Model RCM and delays are only recorded in a post-solution analysis

as a useful auxiliary metric (that is not optimized). As such, the greedy aircraft
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Fuel cost Delay Shifted
Heuristic Total (USD) Saving % Total (minutes) Saving % operation Position Shifts
FCFS-MIX 39,221 - 476 - 0 0
FCFS-OPT 32,707 16.61 511 -7.4 31.8% 2
OPT 32,440 17.29 511 -7.4 49.0% 2

Table 2.5: Benefits of FCFS-OPT over other Heuristics (under ICAO standard)

runway-assignment policy enforced by FCFS-MIX is dictated by the ready-times of

aircraft and, therefore, can result is slightly better delays than under FCFS-OPT,

while being suboptimal from an excess fuel cost viewpoint. As FCFS-OPT seeks

to optimize the excess fuel cost, it performs limited position shifts that result in

deviations from ready-times and occasionally slightly higher delays. To compare the

trade-offs between optimizing total fuel cost and optimizing total delays we assess

further computation to show the non-inferior solutions in Appendix B.

Table 2.5 summarizes results from our analysis of FCFS-MIX, FCFS-OPT, and

OPT. Column 2 and 3 report fuel costs (USD) and anticipated savings for FCFS-

OPT and OPT compared to FCFS-MIX. Likewise, Columns 4 and 5 summarize the

associated delays and savings. Column 6 reports the percentage of the operations that

are shifted from their initial FCFS position in the sequence, whereas the last column

provides the number of aircraft position shifts in the FCFS-OPT and OPT solutions

from the sequence produced with FCFS-MIX. Both the optimal sequence (OPT) and

our proposed heuristic (FCFS-OPT) resulted in less than 2 aircraft position shifts

at an average, per shifted operation (Figure 2.7). That is, optimal or near-optimal

schedules can be achieved via very limited position shifts, which largely preserves the

FCFS-MIX sequence. This is due to the fact that in presence of multiple runways

assignment of operations has a crucial impact on the final excess fuel cost than that of

the sequencing strategy. This indicates that, under data trends at Doha, our proposed

FCFS-OPT heuristic not only ensures fairness amongst aircraft by exhibiting limited

deviation from FCFS-MIX, but also empirically provides optimal or near-optimal

results with respect to the fuel burn cost.
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Figure 2.7: Comparison of Heuristic Results on DOH Projected Data

Further, we assessed the benefit of adopting two runways vs. a single runway. By

transitioning operations from DOH to HIA, an anticipated savings of nearly 3 million

dollars per day can be achieved. Our results also indicate that a segregated mode,

as in FCFS-SEG, results in over 240 thousand dollars of excess fuel cost per day, as

opposed to 39,221 dollars under a mixed mode. Under increasingly higher volumes

of aircraft movements, especially when arrival and departure peaks are not occurring

during the same time-windows, a mixed mode utilization of the runways can yield

significant fuel savings.

We also examined in the anticipated gains accruing from the adoption of the

FAA aircraft separation standard in lieu of the ICAO standard. Our results suggest

that substantial reductions in fuel cost and average delays can be achieved using

the FAA standard. Although using the FAA standard does not necessarily result

in important fuel costs and delay reductions in every time-window of the day, it is

overall very beneficial at the aggregate level as depicted in Figure 2.8. Limited savings

with FAA usually occur when the mix of aircraft weight classes involves a significant

proportion of small/large aircraft that follow heavy aircraft, which requires slightly

larger separation times under the FAA standard.
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Figure 2.8: Benefits of FAA Standard over ICAO Standard (FCFS-SEG setting)

2.5. Conclusion

This chapter investigated a three-faceted approach for the assessment of runway

management strategies, whereby an airport can strategically evaluate the combined

effect of its runway physical configuration, a candidate aircraft sequencing policy, and

a chosen aircraft separation standard, using optimization methodology. The chapter

makes the following contributions:

• Using data from Qatar Civil Aviation Authority, our study quantifies the sav-

ings and demonstrates that the transition from a single runway with a nominal

capacity of 30 arrivals per hour, as in the Doha International Airport, to two

parallel independent runways with the nominal capacity of 60 arrivals per hour,

as planned in the new Hamad International Airport (HIA), would achieve nearly

$3 million savings per day in excess fuel burn cost. This, however, also revealed

that the excess fuel cost or delays would not be completely eliminated, even

under a two-runway configurations, whether used in segregated or mixed mode,

because of the uneven distribution of operations throughout the day. It further

highlights the necessity of examining enhanced sequencing policies and alter-

native aircraft separation times in order to better exploit the runway capacity.
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Although the nominal runway capacity may not be reached during many hours

of activity throughout the day, certain time-windows of the day are particularly

congested and witness excess fuel cost and delays. Such busier hours typically

can benefit from optimized aircraft assignment and sequencing procedures. In

this regard, major airports can benefit from providing incentives to airlines to

shift some of their operations to less congested hours of the day to more uni-

formly avail of the capacity of the airport.

• We developed an optimization-based heuristic which is based on the FCFS se-

quencing policy. We find that by slightly altering the FCFS sequence, the pro-

posed heuristic not only preserves fairness among aircraft, but also consistently

produces excellent (optimal or near optimal) solutions. Without deviating air-

craft by not more than 2 positions from their FCFS sequence positions, the

objective value produced by the proposed heuristic deviated by less than 1%

from the optimal objective value found using a mixed-integer program.

• Our empirical results also indicate that international airports such as the Hamad

International Airport can significantly benefit from using the FAA aircraft sep-

aration standard in lieu of the ICAO standard. In the specific case of HIA, this

choice is expected to achieve nearly a 50% reduction in excess fuel cost.

Although illustrated with real data for Doha International Airport, the approach

presented in the chapter and the proposed heuristic can be of general benefit to other

airports, especially during busier hours of activity during the day. The anticipated

savings in fuel costs can directly benefit airlines, airports, and governmental author-

ities that are concerned with environmental effects and emissions. We recommend

for further investigation an analysis of the impact of alternative runway settings on

additional airborne or ground-based operations related to taxiway routing, gate as-

signments, and workload at terminals.
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CHAPTER 3

MULTIPLE-RUNWAY AIRCRAFT SEQUENCING
PROBLEMS: ENHANCED FORMULATION AND

ACCELERATED COLUMN GENERATION APPROACH

This chapter examines aircraft sequencing problems over multiple runways un-

der mixed mode operations. Crafting valid inequalities, preprocessing routines, and

symmetry-defeating hierarchical constraints yields computational savings over a base

mixed-integer formulation using a branch-and-bound/cut technique. To further en-

hance its computational tractability, the problem is alternatively reformulated as a set

partitioning model with one side constraint that prompts the development of a special-

ized column generation approach. The latter is accelerated by incorporating several

algorithmic features, including an interior point dual stabilization scheme, a comple-

mentary column generation routine, and a dynamic lower bounding feature. Empirical

results using a set of computationally challenging simulated instances demonstrate

the effectiveness and the relative merits of the strengthened mixed-integer formulation

and the accelerated column generation approach.

3.1. Introduction & Motivation

Air traffic loads have been on the rise over the last several decades and are expected

to double, and possibly triple in some regions, over the coming decade (Bennell et al.,

2011). This growth in air traffic volumes has not been accompanied by appropriate

capacity expansion in the air transport infrastructure. It is, therefore, predicted that

flight delays costing multi-billion dollars will continue to negatively impact airline
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companies and consumers. This motivates our research on developing efficient proce-

dures to manage bottleneck operations and existing scarce resources at airports such

as runways.

More specifically, this chapter studies modeling and solution methodology en-

hancements for an aircraft sequencing problem (ASP) over multiple independent run-

ways, under mixed mode operations (both landings and departures). First, we exam-

ine a disjunctive-based 0-1 mixed-integer program (MIP) that simultaneously assigns

aircraft to runways and ascertains optimal sequences for aircraft that are assigned

to the same runway. The assignment and sequencing decisions are performed while

complying with individual aircraft operation time-windows and minimal safety sep-

aration times amongst aircraft as imposed by aviation authorities to preclude wake

vortex turbulence effects. Various preprocessing routines and symmetry-defeating

constraints are proposed in order to enhance the computational tractability of this

model. We also reformulate the problem as a set partitioning problem with a side

constraint that prompts a specialized column generation approach. The latter is sub-

stantially accelerated using a combination of algorithmic schemes such as an interior

point dual stabilization scheme, a complementary column generation feature, and a

dynamic lower bounding feature in the subproblem that are tested in isolation and

in a synergistic fashion.

The literature is replete with operations research approaches to aircraft sequencing

problems, spanning complexity results, exact algorithms, and heuristics. The recent

survey by Bennell et al. (2011) indicates that greater attention has been given to

single-runway aircraft landing problems and that dynamic programming algorithms,

Branch-and-Bound (B&B) algorithms, and metaheuristics are the most commonly

used solution approaches. MIP models have been proposed in Abela et al. (1993),

Ernst et al. (1999), and Beasley et al. (2000) for static single-runway aircraft sequenc-

ing problems. In Ernst et al. (1999), the multiple-runway case was also examined and
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a B&B algorithm was proposed with root node preprocessing routines. Beasley et al.

(2000) also extended their single-runway model to the case of multiple interdependent

runways, with the objective of minimizing a weighted deviation from specified target

landing times.

Also of interest in our study is the work by Wen et al. (2005), where the au-

thors addressed the aircraft sequencing problem over multiple independent runways

following the framework in Beasley et al. (2000) using a branch-and-price algorithm.

As pointed out by the authors, although the column generation approach expectedly

produced very tight lower bounds on the objective value, it was not tractable enough

as it required computational times substantially greater than what is reported in

the literature for the instances tested in Beasley et al. (2000). This is particularly

impractical when it is noted that the aforementioned instances are mostly solvable

in a fraction of a CPU second using recent versions of commercial solvers. It is

also worthwhile to note that the multiple-runway aircraft sequencing problem under

investigation bears similarities with parallel machine scheduling problems with time-

windows and sequence-dependent processing times or the m-Asymmetric Traveling

Salesman Problem with time-windows. Chen and Powell (1999) investigated parallel

(identical, uniform, and unrelated) machine scheduling problems with the objective

of minimizing the total weighted completion time and the weighted number of tardy

jobs using a branch-and-price algorithm.

Beyond the specific confines of the application under investigation, there have

been active efforts to mitigate two notorious drawbacks of column generation: a)

tailing-off phenomena that are symptomatic of a slow convergence of simplex-based

column generation approaches; and b) the difficulty of producing near-optimal integer

solutions. Tailing-off effects have been combated using stabilization techniques, as

discussed in du Merle et al. (1999) and Lübbecke and Desrosiers (2005) (also see

encouraging results for the cutting stock problem in de Carvalho (2005) and Clautiaux
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et al. (2011)). In particular, Rousseau et al. (2007) proposed an interior point dual

stabilization (IPDS) technique that does not require elaborate parameter calibrations

and that has been empirically observed to outperform the stabilization technique

by Neame (1999) and to be comparably competitive to the box-penalty method in

du Merle et al. (1999) for the vehicle routing problem with time-windows. Likewise,

Gondzio et al. (2013) recently developed a primal-dual interior point method in order

to overcome the unstable behavior of standard column generation approaches and to

curtail the number of iterations performed. Furthermore, Subramanian and Sherali

(2008) proposed a deflected subgradient scheme to mitigate dual noise and accelerate

a column generation approach for large-scale airline crew planning problems. Such

stabilization procedures tend to be successful in reducing the number of iterations

performed and the overall computational effort in the linear programming phase, but

without necessarily producing good quality integer solutions.

As far as producing optimal (or near-optimal) integer solutions was concerned,

branch-and-price algorithms Barnhart et al. (1998) have typically been the method

of choice. However, Ghoniem and Sherali (2009) introduced a complementary column

generation (CCG) feature that consistently yielded optimal and near-optimal integer

solutions to set partitioning problems that are solved by column generation without

resorting to developing a branch-and-price algorithm. The CCG feature was shown

to produce excellent duality-based gaps for bin packing problems, vehicle assembly-

routing problems (Sherali and Ghoniem, 2009; Ghoniem and Sherali, 2009), and

set packing problems (Ghoniem and Sherali, 2010). However, to the best of our

knowledge, the IPDS technique in the spirit of Rousseau et al. (2007) and the CCG

feature have not been empirically compared, nor has the synergistic benefit of jointly

using them been examined. The present study precisely addresses this matter in

the context of the multiple-runway aircraft sequencing problem. Furthermore, we
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introduce a dynamic lower bounding (DLB) feature that can be applied to further

accelerate the proposed column generation algorithm.

This chapter makes the following contributions. First, it demonstrates how valid

inequalities, preprocessing schemes, and lexicographic symmetry-defeating constraints

can greatly improve the computational tractability of the multiple-runway aircraft se-

quencing problem for difficult problem instances when used in isolation or in concert

with each other. Second, the chapter demonstrates the relative merits and synergis-

tic gains afforded by three column generation acceleration schemes. Third, our study

empirically reveals which problem instance sizes in our test-bed were more efficiently

solved using an enhanced MIP formulation or an accelerated column generation ap-

proach.

The remainder of this chapter is organized as follows. Section 3.2 develops an MIP

formulation for the multiple-runway aircraft sequencing problem along with valid in-

equalities, preprocessing routines, and symmetry-defeating constraints. Thereafter,

Section 3.3 introduces an alternative set partitioning reformulation of the problem

and delineates a column generation approach that is enhanced with three algorithmic

features. Section 3.4 reports our empirical results over a set of computationally chal-

lenging problem instances and highlights the relative merits and limitations of the

proposed solution methodologies. Section 3.5 concludes this work with a summary of

our findings and directions for future research.

3.2. Enhanced Mathematical Programming Formulation

This section provides a 0-1 MIP formulation for the multiple-runway aircraft se-

quencing problem along with modeling enhancements.
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3.2.1 Notation and MIP Formulation

Given a set of m identical runways and n aircraft with input data on aircraft types

(heavy/large/small), operation types (arrival/departure), ready-times and due-times,

and the minimum separation times enforced by aviation authorities, the multiple-

runway aircraft sequencing problem seeks to jointly assign the aircraft to runways

and to determine the best aircraft sequence for each runway with respect to a chosen

objective function. In doing so, time-window restrictions must be met for all aircraft

and minimal safety separation times need to be enforced between any pair of aircraft

that are assigned to the same runway. Consider the following notation:

Index Sets and Parameters:

• M = {1, . . . ,m} : A set of m identical runways.

• J = {1, . . . , n} : A set of n aircraft (landings or departures).

• rj : Ready-time for aircraft j, ∀j ∈ J .

• dj : Due-time for aircraft j, ∀j ∈ J .

• Oj: Operation type of aircraft j, being a landing or a departure, ∀j ∈ J .

• Cj: Weight class of aircraft j, e.g., heavy, large, or small, ∀j ∈ J .

• wj : Weight assigned to aircraft j based on its operation type and its weight

class, ∀j ∈ J . In particular, higher priority has been assigned to landings over

departures and to heavy aircraft over large and small ones. Moreover, in our

test-bed wj1 = wj2 if Oj1 = Oj2 and Cj1 = Cj2.

• pj1j2 : Minimum separation time required between aircraft j1 and j2 if they are

assigned to the same runways and respectively the leading and the following
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aircraft, ∀j1, j2 ∈ J , j1 6= j2. This separation time is dictated by the operation

types and weight classes of any pair of aircraft and are typically asymmetric.

Decision Variables:

• tj : the start time of aircraft j, ∀j ∈ J .

• zij ∈ {0, 1}: zij = 1 if and only if aircraft j is assigned to runway i, ∀i ∈M, j ∈

J .

• yj1j2 ∈ {0, 1}: yj1j2 = 1 if and only if aircraft j1 and j2 are assigned to the same

runway and tj2 > tj1 , ∀j1, j2 ∈ J, j1 6= j2.

The multiple-runway aircraft sequencing problem, denoted by MRASP, is for-

mulated as the following 0-1 mixed-integer program:

MRASP: Minimize
∑
j∈J

wjtj (3.1a)

∑
i∈M

zij = 1, ∀j ∈ J (3.1b)

∑
j∈J

zij ≤
⌈ n
m

⌉
, ∀i ∈M (3.1c)

rj ≤ tj ≤ dj, ∀j ∈ J (3.1d)

tj2 ≥ tj1 + pj1j2 − (1− yj1j2)(dj1 − rj2 + pj1j2),

∀j1 ∈ J, j2 ∈ J, j1 6= j2 (3.1e)

yj1j2 + yj2j1 ≥ zij1 + zij2 − 1, ∀i ∈M, j1 ∈ J, j2 ∈ J, j1 < j2 (3.1f)

y, z binary. (3.1g)

The objective function (3.1a) minimizes total weighted start times. Constraint

(3.1b) ensures that every aircraft is assigned to exactly one of the m runways, whereas
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Constraint (3.1c) bounds above the number of aircraft that are assigned to any run-

way. Time-window restrictions are introduced in Constraint (3.1d). Constraint (3.1e)

guarantees proper separation between any pair of aircraft that are assigned to the

same runway. Constraint (3.1f) activates the sequencing variables between any pair

of aircraft that are assigned to the same runway. Constraint (3.1g) defines binary

decision variables.

3.2.2 Enhancing Constraints for MRASP

In this section, we present valid inequalities, preprocessing routines, and symmetry-

defeating hierarchical constraints that were found to be computationally advantageous

for MRASP.

3.2.2.0.1 Proposition 1 Constraint (3.2) is a valid inequality for MRASP:

yj1j2 + yj2j1 ≤ 1− 1

m− 1

∣∣∣∣∣∑
i∈M

i(zij1 − zij2)

∣∣∣∣∣ , ∀j1 ∈ J, j2 ∈ J, j1 < j2. (3.2)

Proof. The term

∣∣∣∣∑
i∈M

i(zij1 − zij2)
∣∣∣∣ expresses the absolute difference between the

runway indices to which aircraft j1 and j2 are assigned. If zij1 = zij2 for some run-

way i, then this term equals 0, and Constraint (3.2) in conjunction with Constraint

(3.1f) would require yj1j2 + yj2j1 = 1. However, if zij1 6= zij2 ,∀i, i.e., j1 and j2

are not assigned to the same runway, then 0 <

∣∣∣∣∑
i∈M

i(zij1 − zij2)
∣∣∣∣ ≤ m − 1, i.e.,

0 < 1
m−1

∣∣∣∣∑
i∈M

i(zij1 − zij2)
∣∣∣∣ ≤ 1 and Constraint (3.2) forces yj1j2 + yj2j1 to equal 0. �

Note that the Constraint (3.2) introduces nonlinearities in the model, which can

be obviated by noting that

∣∣∣∣∣∑
i∈M

i(zij1 − zij2)

∣∣∣∣∣ = max{
∑
i∈M

i(zij1 − zij2),−
∑
i∈M

i(zij1 − zij2)}
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and, thereby, substituting Constraints (3.3a)-(3.3b) in lieu of Constraint (3.2):

∑
i∈M

i(zij1 − zij2) ≤ (m− 1)(1− yj1j2 − yj2j1), ∀j1 ∈ J, j2 ∈ J, j1 < j2 (3.3a)

∑
i∈M

i(zij1 − zij2) ≥ (1−m)(1− yj1j2 − yj2j1), ∀j1 ∈ J, j2 ∈ J, j1 < j2. (3.3b)

3.2.2.0.2 Proposition 2 By preprocessing, to ensure feasibility, we can enforce:

yj2j1 = 0, ∀i ∈M, j1 ∈ J, j2 ∈ J, j1 6= j2, rj2 + pj2j1 > dj1 . (3.4)

Proof. If scheduling j2 before j1 would cause the latter to be infeasible (rj2+pj2j1 >

dj1), then j2 cannot precede j1, and hence yj2j1 = 0. �

3.2.2.0.3 Proposition 3 By preprocessing, without loss of optimality, we can

impose:

yj2j1 = 0, ∀i ∈M, j1 ∈ J, j2 ∈ J, j1 6= j2,

rj1 < rj2 , dj1 ≤ dj2 ,Oj1 = Oj2 , Cj1 = Cj2 . (3.5)

Proof. If zij1 6= zij2 ,∀i, then this requirement holds. In addition, if aircraft

j1 and j2 have the same weight class and the same operation type (being landings

or departures), satisfy rj1 < rj2 , dj1 ≤ dj2 , and are assigned to the same runway,

then aircraft j1 can be forced to precede j2 without loss of optimality. In fact, in any

optimal schedule where j2 precedes j1 under the aforementioned conditions, swapping

the positions of j1 and j2 does not impact the separation times amongst aircraft or

the objective value and, therefore, yields an alternative optimal solution. �

In the context of independent runways, there exists an inherent symmetry amongst

aircraft, which introduces a significant computational burden on B&B/C solvers
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(Sherali and Smith, 2001). To combat the symmetric reflections of feasible solu-

tions, it is judicious to impose symmetry-defeating hierarchical constraints that aim

at imparting distinct identities to the otherwise indistinguishable runways as follows:

∑
j∈J

ajzi,j ≥
∑
j∈J

ajzi+1,j, ∀i = 1, . . . ,m− 1, (3.6)

where aj is a coefficient that can be specified to enforce different possible rank order-

ings of the runways. For example, by setting aj = 1, Constraint (3.6) simply ranks

the runways in the order of non-increasing number of aircraft assigned to the runways.

However, the latter provides a weak differentiation amongst aircraft. The following

lexicographic-based ordering provides a more useful device to defeat symmetry:

∑
j∈J

2n−jzi,j ≥
∑
j∈J

2n−jzi+1,j, ∀i = 1, . . . ,m− 1. (3.7)

Preliminary computational results suggest that the alternative formulation of Con-

straint (3.7) as in Constraint (3.8) (Ostrowski et al., 2010) was not advantageous for

MRASP.

min(j,m)∑
v=i

zv,j ≤
j−1∑
u=1

zi−1,u, ∀i = 2, . . . ,m, j ∈ J, j ≥ i. (3.8)

3.3. Accelerated Column Generation Approach

In this section, the MRASP is alternatively reformulated as a set partitioning

model with a side constraint that is solved by column generation. We discuss dif-

ferent algorithmic features, including an interior point dual stabilization strategy, a

complementary column generation scheme, and a dynamic lower bounding feature,

which can be used in isolation or in concert with each other to accelerate the conver-

gence of the column generation method.
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3.3.1 Set Partitioning Reformulation

To formally introduce the proposed column generation approach, consider the fol-

lowing column construct, P h, which is associated with a runway:

P h =

j = 1

j = 2

...

j

...

j = n


(P h

j )


, where P h

j =


1, if aircraft j is included

in column h,∀j ∈ J

0, otherwise.

Note that the column P h is an n-column vector having 0-1 entries, where P h
j = 1

equals 1 if and only if aircraft j is assigned to this column. Let ch be the total cost

for P h, which reflects the cost in the optimized aircraft schedule associated with this

particular runway, P h. Thus, aircraft assignment decisions are captured by the 0-1

entries of a column, whereas the accompanying aircraft sequencing decisions are re-

flected in the column cost itself. We then define the decision variable xh as

xh =

 1 if column h is selected,

0 otherwise, ∀h = 1, ..., H,

where H is the total number of columns for the problem instance under investigation.

Accordingly, the following set partitioning problem, denoted by SPP, provides an

alternative formulation for the MRASP:
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SPP: Minimize
H∑
h=1

chxh (3.9a)

subject to
H∑
h=1

P h
j xh = 1, ∀j = 1, . . . , n (3.9b)

H∑
h=1

xh = m (3.9c)

x binary. (3.9d)

The objective function (3.9a) minimizes the total schedule cost (the total weighted

start times). Constraint (3.9b) achieves a set partitioning scheme for aircraft, guar-

anteeing that every aircraft is assigned to exactly one runway, whereas Constraint

(3.9c) enforces an upper bound on the number of available runways. To alleviate the

computational burden created by the huge number of possible columns, it is usually

worthwhile to construct a restricted master program (RMP) that is associated with

SPP. This RMP initially includes some selected set of Ĥ(≤ H) columns that yield a

feasible solution to SPP, which get dynamically expanded by coordinating the linear

programming (LP) relaxation of the RMP and a subproblem that identifies columns

having a most negative reduced cost, until the LP relaxation of SPP is solved to

optimality. A 0-1 solution to SPP would then need to be determined.

Consider the following notation for a formal statement of the subproblem:

• zj ∈ {0, 1}: zj = 1 if and only if aircraft j is selected in the column constructed

by the subproblem, ∀j ∈ J .

• π: vector of dual variables associated with the set partitioning constraints in

(3.9b), where π = π̄ represents specific dual variable values obtained at a given

iteration in the course of the column generation approach.
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• π0: dual variable associated with the upper bounding constraint (3.9c), where

π0 = π̄0 represents a specific dual variable value obtained at a given iteration

in the course of the column generation approach.

The subproblem, denoted by SP(π̄, π̄0), is defined as follows:

SP(π̄, π̄0): Minimize RC ≡
∑
j∈J

(wjtj − π̄jzj)− π̄0 (3.10a)

∑
j∈J

zj ≤
⌈ n
m

⌉
, ∀i ∈M (3.10b)

rjzj ≤ tj ≤ djzj, ∀j ∈ J (3.10c)

tj2 ≥ tj1 + pj1j2yj1j2 − (1− yj1j2) max
j∈J
{dj},

∀j1 ∈ J, j2 ∈ J, j1 6= j2 (3.10d)

yj1j2 + yj2j1 ≥ zj1 + zj2 − 1, ∀i ∈M, j1 ∈ J, j2 ∈ J, j1 < j2 (3.10e)

yj1j2 + yj2j1 ≤ zj1 , ∀i ∈M, j1 ∈ J, j2 ∈ J, j1 6= j2 (3.10f)

yj2j1 = 0, ∀j1 ∈ J, j2 ∈ J, j1 6= j2, rj2 + pj2j1 > dj1 (3.10g)

yj2j1 = 0, ∀j1 ∈ J, j2 ∈ J, j1 6= j2,

rj1 < rj2 , dj1 ≤ dj2 ,Oj1 = Oj2 , Cj1 = Cj2 (3.10h)

y, z binary. (3.10i)

3.3.2 Interior Point Dual Stabilization

Column generation techniques tend to exhibit slow convergence and long tailing-off

effects that are largely due to degeneracy in the restricted master program. This issue

can be particularly acute when multiple dual solutions exist for a given primal solution

to the continuous relaxation of the RMP. Several stabilization techniques have been
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proposed to mitigate this drawback by carefully guiding the selection of the dual

variable values as these greatly impact the columns constructed in the subproblem

and the overall column generation performance. Rousseau et al. (2007) proposed a

so-called interior point stabilization technique that advocates, at every iteration, the

construction of a vector of dual values as a convex combination of multiple optimal

dual solutions. This generally tends to yield an interior point of the optimal dual

polyhedron, and avoids the generation of an extreme point of this polyhedron that

could typically exhibit unbalanced dual values.

We present the interior point stabilization technique in the context of the set

partitioning model with a side constraint for the multiple-runway aircraft sequencing

problem. To this end, we first reformulate the restricted set partitioning model (3.9)

as the following restricted set covering problem with a side constraint (SCP-P):

SCP-P: Minimize
Ĥ∑
h=1

chxh (3.11a)

s.t.
Ĥ∑
h=1

P h
j xh ≥ 1, ∀ j ∈ J (3.11b)

−
Ĥ∑
h=1

xk ≥ −m (3.11c)

x ≥ 0. (3.11d)

At every iteration, upon solving SCP-P, the following sets K∗ and J∗ are deter-

mined:

• K∗ = { k ∈ {1, . . . , Ĥ} |xk > 0}.

• J∗ = { j ∈ J | π̄j = 0}, for which Constraint (3.11b) is not binding.
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Using complementary slackness, any dual vector π that satisfies Constraints (3.12b)-

(3.12e) qualifies as a dual optimum at the current iteration. Hence, to generate differ-

ent extreme points of the dual polyhedron (SCP-D), the objective function (3.12a)

employs a vector u, where uj is randomly generated between 0 and 1:

SCP-D(π̄0) : Maximize (
∑
j∈J

ujπj)− π̄0 (3.12a)

s.t.
∑
j∈J

P k
j πj − π̄0 = ck, ∀ k ∈ K∗ (3.12b)

∑
j∈J

P k
j πj − π̄0 ≤ ck, ∀ k ∈ {1, . . . , Ĥ}\K∗ (3.12c)

πj = 0, ∀j ∈ J∗ (3.12d)

πj ≥ 0, ∀j ∈ J, (3.12e)

where π̄0 is the dual variable value associated with Constraint (3.11c).

By solving SCP-D ρ times, a set of extreme points of the dual polyhedron is

generated iteratively, denoted π̄1, . . . , π̄ρ, and we construct the interior point dual

solution π̄ = 1
ρ

ρ∑
k=1

π̄k as an average of the extreme points generated. Noting that

(π̄, π̄0) is feasible to (3.12b)-(3.12e) and is hence dual optimal, this vector of dual

values is passed on to the subproblem. In Rousseau et al. (2007), setting ρ =

20 empirically yielded attractive computational results for the vehicle routing with

time-windows instances, whereas ρ = 5 yielded the best results for MRASP in our

experience.

3.3.3 Complementary Column Generation

Upon solving the LP relaxation of SPP to optimality, a strong lower bound is typ-

ically produced. It is, however, more challenging to produce a high quality feasible
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0-1 solution to SPP. Ghoniem and Sherali (2009) proposed the use of a complemen-

tary column generation feature that has been shown to produce excellent feasible 0-1

solutions to set partitioning problems with side constraints. We exploit this feature

in the context of the multiple-runway aircraft sequencing problem. In every LP iter-

ation, upon finding a column that prices out favorably in the subproblem, the CCG

feature advocates the construction of an additional set of complementary columns by

resolving the subproblem sequentially, whereby aircraft that appear in any column

produced in the LP iteration get excluded from the aircraft set. Let F be a set of

temporarily forbidden aircraft that is used to implement the CCG. The overall CCG

approach is delineated as follows:

Algorithm 1: Complementary Column Generation

1: Initialize RMP with Ĥ = m columns using a feasible solution to SPP.
2: repeat
3: Solve the LP relaxation of RMP.
4: Update π̄ and π̄0.
5: Solve SP(π̄, π̄0).
6: Let z̄ and t̄ correspond to the constructed column and the associated start

times.
7: if RC < 0 then
8: Ĥ ← Ĥ + 1, P Ĥ

j = z̄j, c
Ĥ =

∑
j∈J

wj t̄j

9: F ← {j ∈ J : z̄j = 1}
10: flag = 0
11: Begin CCG
12: while J 6= F and flag = 0 do
13: Solve the SP(π̄, π̄0) with the additional constraint

∑
j∈F

zj = 0.

14: if SP is feasible with z̄new, t̄new then
15: Ĥ ← Ĥ + 1, P Ĥ

j = z̄newj

16: cĤ =
∑
j∈J

wj t̄
new
j , and F ← F ∪ {j ∈ J : z̄newj = 1}

17: else
18: flag = 1
19: End CCG
20: until RC < 0
21: Solve the RMP as a 0-1 program.
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3.3.4 Dynamic Lower Bounds

High quality solutions are mostly composed of balanced runways, where each

runway is assigned a number of aircraft close to
⌈
n
m

⌉
on average. However, the column

generation approach may generate at early iterations very sparse columns having a

number of aircraft significantly lower than
⌈
n
m

⌉
(and sometimes close to 1), due to

their attractive reduced costs. We, therefore, propose a dynamic lower bounding

(DLB) scheme that can be triggered in addition to the CCG feature presented in

Section 3.3.3. In every LP iteration, if the RMP contains less than δ columns, where

δ is a user-specified threshold, then we do the following:

• Append Constraint (3.13) to the subproblem and solve it to generate a first

column that prices out favorably:

∑
j∈J

zj =
⌊ n
m

⌋
(3.13)

If no negative reduced-cost column is produced, the DLB routine is terminated.

• For the kth complementary column generated by the CCG feature, where k

runs between 1, . . . ,m− 2, we impose the following lower bounding constraint

in order to balance the assignment of the remaining aircraft across the next

columns produced by the SP:

∑
j∈J\F

zj ≥
⌊
|J\F|
m− k

⌋
− 1. (3.14)

• For the last complementary column, we simply impose:

∑
j∈J\F

zj = 1. (3.15)
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That is, in every LP iteration, the subproblem is solved iteratively (as for the CCG

feature), with a lower bounding requirement to identify relatively dense columns and

possibly create a full block of m columns. The DLB scheme is terminated when the

RMP comprises a number of columns greater than or equal to some user-specified δ or

when no negative reduced-cost first column could be produced in a given LP iteration.

At such a point, the algorithm would have sufficiently progressed and the subproblem

tends to generate attractive assignments of aircraft to runways until convergence to

an optimal LP solution is obtained.

3.4. Computational Study

In this section, we first discuss computational results obtained for the 0-1 MIP

formulation with valid inequalities, preprocessing routines, and symmetry-defeating

hierarchical constraints, followed by an examination of the accelerated column gen-

eration approach.

3.4.1 Data Generation

We created a test-bed that includes 11 problem sizes characterized by the number

of aircraft, n, and the number of runways, m: 15-aircraft instances with 2, 3, and 4

runways, 20-aircraft instances with 2, . . . ,5 runways, and 25-aircraft instances with

2, . . . ,5 runways. For each (n,m) combination, 5 instances were generated, resulting

in a total of 55 instances which are available online at:

http://ahmed.ghoniem.info/download/MASP-SET.txt.

We also implemented the MIP formulation in Beasley et al. (2000) and tested it

along with MRASP on the instances by Beasley (see Appendix A). The proposed

MIP formulation and column generation approach were coded with AMPL and were

solved using CPLEX 12.4 on a Windows 7 professional 64-bit operating system with
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an Intel Core i7-2600 CPU with 3.40 GHz and 12 GB RAM desktop. A time limit of

3600 CPU seconds was imposed on all runs.

The ready-times were randomly generated using a discrete uniform distribution

over the interval (0, γ n
m

), where γ is a parameter that was randomly selected in

the interval (30,90) to simulate the inter-arrival time between aircraft. The opera-

tion types (Arrival/Departure) were randomly assigned to aircraft using a discrete

uniform distribution with equal likelihood (1
2
/1
2
). Likewise, aircraft weight classes

(Heavy/Large/Small) were randomly assigned to aircraft using a discrete uniform

distribution with equal likelihood (1
3
/1
3
/1
3
). The weight wj was introduced as a func-

tion of the aircraft operation type and its weight class. In our study, the greatest

weight of 6 was assigned to heavy arrivals and the least weight of 1 was given to small

departures. Every aircraft was prescribed a time-window of 600 seconds.

3.4.2 Results for the Enhanced MIP Model

Table 3.1 reports our computational results for the MIP model, MRASP, and

its enhanced variants. The first two columns specify the number of aircraft, n, and

the number of runways, m. The following MIP model variants considered in our

computational study are reported in the third column of Table 3.1:

• MRASP is the base model introduced in Section 3.2.1, Equations (3.1a)-(3.1g).

• + VI refers to the base model augmented with Constraints (3.3a)-(3.3b).

• + PREP refers to the base model strengthened with the preprocessing restric-

tions in Constraints (3.4)-(3.5).

• + SYM refers to the base model with the lexicographic-based symmetry-defeating

hierarchical constraint in (3.6).

• + VI/PREP/SYM combines all the aforementioned enhancements.
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Table 3.1: Results on the Enhanced MIP Model

% CPU B&B/C % B&B/C
n m MIP Model Solved CPU (s) Time Red. Nodes Node Red.
15 2 MRASP 5/5 874.7 - 9,856,702 -

+VI 5/5 46.5 94.69 624,811 93.66
+PREP 5/5 45.8 94.77 762,149 92.27
+SYM 5/5 713.7 18.41 8,523,046 13.53
+(VI/PREP/SYM) 5/5 4.0 99.54 38,203 99.61

3 MRASP 5/5 224.8 - 3,255,207 -
+VI 5/5 180.3 19.78 1,500,565 53.90
+PREP 5/5 165.4 26.41 2,191,359 32.68
+SYM 5/5 444.2 -97.62 5,002,711 -53.68
+(VI/PREP/SYM) 5/5 21.6 90.39 179,567 94.48

4 MRASP 2/5 ≥ 2,757.5 - 12,744,464 -
+VI 1/5 ≥ 2,970.1 - 7,771,502 -
+PREP 3/5 ≥ 2,281.4 - 14,056,413 -
+SYM 1/5 ≥ 2,948.3 - 11,700,049 -
+(VI/PREP/SYM) 5/5 297.4 89.22 1,992,002 84.37

20 2 MRASP 5/5 432.8 - 3,817,577 -
+VI 5/5 21.4 95.05 109,588 97.13
+PREP 5/5 9.9 97.71 101,361 97.34
+SYM 5/5 110.9 74.38 1,033,455 72.93
+(VI/PREP/SYM) 5/5 7.7 98.23 49,260 98.71

3 MRASP 4/5 ≥ 1,624.3 - 11,549,197 -
+VI 4/5 ≥ 1,643.6 - 3,372,009 -
+PREP 5/5 431.7 73.42 3,332,702 71.14
+SYM 3/5 ≥ 2,017.9 - 8,827,096 -
+(VI/PREP/SYM) 5/5 313.9 80.68 1,083,759 90.62

4 MRASP 0/5 ≥ 3,600.0 - 13,909,720 -
+VI 0/5 ≥ 3,600.0 - 4,358,216 -
+PREP 0/5 ≥ 3,600.0 - 12,481,349 -
+SYM 0/5 ≥ 3,600.0 - 10,968,404 -
+(VI/PREP/SYM) 1/5 ≥ 3,092.0 - 8,360,935 -

5 MRASP 0/5 ≥ 3,600.0 - 9,144,660 -
+VI 0/5 ≥ 3,600.0 - 3,566,620 -
+PREP 0/5 ≥ 3,600.0 - 8,667,972 -
+SYM 0/5 ≥ 3,600.0 - 8,056,089 -
+(VI/PREP/SYM) 2/5 ≥ 2,780.3 - 4,145,831 -

25 2 MRASP 5/5 15.6 - 118,702 -
+VI 5/5 10.8 30.79 16,417 86.17
+PREP 5/5 3.0 80.44 16,141 86.40
+SYM 5/5 12.3 21.06 103,374 12.91
+(VI/PREP/SYM) 5/5 4.7 69.63 9,795 91.75

3 MRASP 4/5 ≥ 791.6 - 773,087 -
+VI 3/5 ≥ 1,652.3 - 1,015,697 -
+PREP 5/5 124.2 84.31 1,067,518 -38.09
+SYM 4/5 ≥ 827.6 - 809,042 -
+(VI/PREP/SYM) 5/5 810.7 -2.41 602,539 22.06

4 MRASP 4/5 ≥ 934.1 - 4,298,233 -
+VI 2/5 ≥ 2,363.6 - 1,164,986 -
+PREP 4/5 ≥ 1,343.9 - 3,808,334 -
+SYM 2/5 ≥ 2,179.5 - 6,046,367 -
+(VI/PREP/SYM) 2/5 ≥ 2,249.1 - 1,145,874 -

5 MRASP 1/5 ≥ 3,282.6 - 6,805,936 -
+VI 0/5 ≥ 3,600.0 - 1,253,355 -
+PREP 1/5 ≥ 3,077.3 - 6,045,729 -
+SYM 0/5 ≥ 3,600.0 - 5,856,473 -
+(VI/PREP/SYM) 0/5 ≥ 3,600.0 - 1,551,552 -
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The fourth column in Table 3.1 reports the number of instances that were solved

to optimality within a time limit of 3600 CPU seconds. Columns 5-8 in Table 3.1

summarize the average CPU time in seconds over five instances, the % CPU time

savings achieved by each model variant over the base model, the average number of

B&B/C nodes, and the % savings in the number of B&B/C nodes achieved by the

enhanced model variants over the base model.

Tested in isolation, the preprocessing routines in Model MRASP + PREP appear

to most markedly improve over MRASP, achieving an average computational savings

over 70% and an accompanying 57% reduction in the number of B&B/C nodes. In

contrast, Model MRASP + VI exhibited mixed results, ranging from 94.7% CPU

time savings for (n,m) = (15, 2) to worsening the performance for instances with

25 aircraft. MRASP + SYM also produced mixed results, achieving 74.4% CPU

time savings for (n,m) = (25, 2), but causing a substantial CPU time increase for

(n,m) =(15, 3).

Crafting valid inequalities, preprocessing routines, or lexicographic-based symmetry-

defeating constraints in isolation did not consistently curtail the computational ef-

fort. However, our computational experience reveals that there is a remarkable

synergy between the proposed modeling enhancements. In fact, Model MRASP +

(VI/PREP/SYM) achieves an average computational savings of 75.1% over the base

model for (n,m) = (15, 2/3/4), (20, 2/3), and (25, 2/3). However, as the number of

aircraft and the number of runways increase, even this enhanced formulation becomes

ineffective, especially, for (n,m) = (20, 4/5) and (25, 4/5).

3.4.3 Results for the Accelerated Column Generation Approach

Table 3.2 reports our computational results for the column generation approach

with different acceleration and enhancement schemes. Columns 1-2 specify the num-

ber of aircraft, n, and the number of runways, m. The third column reports the best
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CPU time in seconds that is achieved by the MIP variants reported in Table 3.1.

Column 4 lists the different column generation approaches in our study:

• Algorithm CG: Basic column generation approach (see Section 3.3.1).

• Algorithm SCG: Column generation with interior point dual stabilization scheme

(see Section 3.3.2).

• Algorithm CCG: Column generation approach with the complementary column

generation feature (see Section 3.3.3).

• Algorithm SCCG: Column generation with interior point dual stabilization and

complementary column generation combined.

• Algorithm SCCG-DLB: SCCG with the dynamic lower bounding feature. Pa-

rameter δ (for DLB termination) was empirically set to 50, 100, and 150 for

n = 15, 20, and 25, respectively (see Section 3.3.4).

Columns 5-6 show the average CPU time in seconds achieved by the different ap-

proaches and the average CPU time savings achieved by the enhanced CG algorithms

over the basic CG approach. Column 7 reports the gap between the lower bound by

solving the LP relaxation of the set partitioning formulation and the best IP solution

obtained respectively by the different CG approaches. Column 8 shows the average

reduction in the % gap achieved by the different CG approaches over the base ap-

proach. Likewise, Columns 9-10 summarize the number of LP iterations and the %

reduction in the number of LP iterations.

A few observations are in order. First, instances with (n,m) = (15, 2/3), (20, 2),

and (25, 2/3) were efficiently solved using the enhanced MIP formulation and did not

call for the use of the CG approach. In contrast, for (n,m) = (15, 4), (20, 3/4/5),

and (25, 4/5), the CG approach, especially with the proposed acceleration schemes,

offered an attractive alternative. SCCG-DLB solved the instances in our test-bed
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Table 3.2: Results on the Column Generation Approach with Acceleration Schemes

Best MIP Model % red. % red.
n m CPU (s) Approach CPU (s) CPU Time % GAP % red. gap LP Iter. LP Iter.
15 2 4.0 CG 176.6 - 4.72 - 83 -

SCG 167.9 4.92 6.98 -48.00 83 -0.48
CCG 125.8 28.79 0.06 98.72 67 18.80
SCCG 149.2 15.55 0.08 98.35 73 11.81
SCCG-DLB 133.2 24.61 0.04 99.09 51 38.31

3 21.6 CG 33.0 - 22.74 - 61 -
SCG 47.5 -43.72 22.51 1.04 53 12.50
CCG 33.3 -0.90 0.47 97.94 41 32.24
SCCG 37.6 -13.73 0.03 99.86 34 44.41
SCCG-DLB 41.0 -24.12 0.15 99.33 33 46.38

4 297.4 CG 22.1 - 2.51 - 51 -
SCG 38.7 -75.20 0.49 80.64 45 12.55
CCG 22.9 -3.47 0.10 95.95 25 51.37
SCCG 30.8 -39.56 0.11 95.52 24 53.33
SCCG-DLB 29.2 -32.17 0.17 93.32 22 57.65

20 2 7.7 CG 558.3 - 5.30 - 166 -
SCG 360.2 35.49 5.30 0.00 169.6 -2.17
CCG 349.5 37.41 0.00 100.00 137.4 17.23
SCCG 320.6 42.57 0.00 100.00 142 14.46
SCCG-DLB 315.2 43.54 0.00 100.00 103.8 37.47

3 313.9 CG 267.5 - 17.88 - 104 -
SCG 301.0 -12.54 17.88 0.00 100 3.86
CCG 235.9 11.80 0.41 97.68 75 27.61
SCCG 203.1 24.06 0.48 97.29 62 39.96
SCCG-DLB 214.0 19.99 0.41 97.69 58 43.82

4 ≥ 3092.0 CG 127.7 - 14.45 - 86 -
SCG 169.1 -32.43 13.31 7.86 82 5.10
CCG 93.6 26.65 0.76 94.73 44 48.72
SCCG 102.8 19.52 0.07 99.52 40 53.36
SCCG-DLB 82.5 35.39 0.14 99.05 33 61.95

5 ≥ 2780.3 CG 51.8 - 0.05 - 79 -
SCG 71.6 -38.32 8.15 -16,688.35 68 13.71
CCG 47.2 8.82 0.10 -113.87 32 59.14
SCCG 49.0 5.41 0.03 37.15 27 65.23
SCCG-DLB 49.9 3.59 0.04 23.21 26 67.26

25 2 3.0 CG 765.5 - 20.15 - 273 -
SCG 571.6 25.33 8.73 56.67 271.6 0.51
CCG 608.4 20.53 5.28 73.80 247.4 9.38
SCCG 584.4 23.65 5.43 73.06 250.4 8.28
SCCG-DLB 461.3 39.74 0.00 100.00 165 39.56

3 124.2 CG 847.9 - 20.27 - 178 -
SCG 663.0 21.80 14.93 26.35 143 19.62
CCG 539.2 36.40 5.06 75.06 112 37.00
SCCG 436.3 48.54 5.02 75.25 93 48.09
SCCG-DLB 461.9 45.52 0.19 99.04 83 53.70

4 ≥ 934.1 CG 514.0 - 16.43 - 146 -
SCG 537.2 -4.52 10.83 34.08 132 9.99
CCG 286.5 44.25 3.46 78.95 72 50.48
SCCG 303.6 40.94 3.41 79.22 63 56.63
SCCG-DLB 292.1 43.16 0.08 99.52 53 63.61

5 ≥ 3077.3 CG 245.1 - 17.96 - 125 -
SCG 257.4 -5.02 4.34 75.83 107 14.58
CCG 138.3 43.58 0.23 98.72 49 60.90
SCCG 155.7 36.49 0.20 98.88 44 64.90
SCCG-DLB 128.6 47.55 0.15 99.19 38 69.87
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typically within 30 to 460 CPU seconds, producing optimal or very near-optimal

solutions.

Although the SCG algorithm achieved 8.2% LP iteration savings over the CG

approach, it did not consistently improve the CPU time or the duality gap at termi-

nation, yielding relatively poor IP solutions. In contrast, the CCG feature resulted

in an overall 23.1% CPU time savings at an average over the basic CG, with 72.5%

reduction in % gap. Moreover, blending the SCG algorithm with the CCG feature

resulted in 18.5% and 86.7% reduction in CPU time and in % gap, respectively.

It is noteworthy that utilizing the DLB feature in the accelerated column gener-

ation scheme achieved an overall CPU time savings of 22.4% over the base column

generation algorithm. It also achieved an average 91.8% savings in the % gap, reduc-

ing it from an average of 12% gap with the basic CG approach to a 0.12% overall gap,

with an accompanying 52.7% reduction in the number of LP iterations. That is, all

the instances were solved to optimality or near-optimality with a faster convergence

(evidenced by shorter CPU times, fewer LP iterations, and an earlier generation of

useful columns). Figures 3.1a and 3.1b illustrate how the accelerated SCCG-DLB ap-

proach curtails the tailing-off effect, produces attractive columns in early iterations,

and reduces the number of LP iterations in comparison with the basic CG approach

for a representative instance.

It is, therefore, our conclusion that, for the multiple-runway aircraft sequenc-

ing problem, the stabilization feature tends to accelerate the convergence of the CG

without improving the quality of IP solutions produced. The complementary col-

umn generation feature, in contrast, played a decisive role in both accelerating the

algorithmic convergence and producing excellent IP solutions. However, blending the

stabilization scheme with the complementary feature in concert with the additional

dynamic lower bounding technique consistently led to a faster convergence to optimal

or near-optimal solutions.
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(a) Value of Lower Bound (b) subproblem CPU Time (seconds)

Figure 3.1: CG acceleration for an instance of size (n,m) = (25, 5)

3.5. Conclusion and Directions for Future Research

This chapter examined the multiple-runway aircraft sequencing problem with both

aircraft departures and arrivals. We investigated the computational tractability and

the relative merits of a 0-1 mixed-integer program and a set partitioning formula-

tion solved using column generation. Our empirical results indicate that the solution

effort can be greatly reduced by adjoining valid inequalities, preprocessing routines,

and symmetry-defeating hierarchical constraints to the mixed-integer formulation.

However, the aforementioned enhancements became less effective when the number

of aircraft and runways increased, in which case the proposed column generation

approach yielded attractive results. The individual and synergistic benefits of the ac-

celeration schemes for the column generation approach were empirically investigated

in our computational study. Our results suggest that the enhanced mixed-integer

model failed to solve most of the instances with 20 and 25 aircraft with 4 and 5 run-

ways within a time limit of 1 CPU hour, whereas the accelerated column generation

approach consistently produced excellent solutions in manageable times.

From a computational point of view, we recommend for future research the in-

vestigation of tighter partial convex hull representations using the Reformulation-
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Linearization Technique of Sherali and Adams (1990). This could be beneficial to

further strengthen the mixed-integer formulation as well as the subproblem in the

column generation approach. We also recommend solving the mixed-integer program

that arises in the pricing subproblem using a dynammic programming procedure in

lieu of resorting to solving it using a standard commercial solver such as CPLEX or

GUROBI. This approach is detailed next in Chapter 4 and is demonstrated to yield

very promising results. Other decomposition techniques, in the spirit of Benders

decomposition or logic-based Benders decomposition, that decouple the assignment

and sequencing decisions to tackle problem instances of even larger scale could be

worthwhile. From an application point of view, we recommend for future research

the development of integrated runway/taxiway models that extend the confines of

classical models in the literature by taking into account such considerations as the

location of runway exits, the network structure of taxiways, the physical constraints

at holding areas, and the location of gates.
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CHAPTER 4

AN EXACT DYNAMIC PROGRAMMING METHOD FOR
SOLVING MULTIPLE-RUNWAY AIRCRAFT

SEQUENCING PROBLEMS

In this chapter, the column generation approach proposed in Chapter 3 is fur-

ther enhanced by devising a dynamic programming procedure for solving the pricing

subproblem as an elementary shortest path problem with resource constraints. The

results presented in Chapter 3 demonstrate the usefulness of employing complemen-

tary column generation and stabilization techniques to curtail the tailing off effect of

column generation and to improve the ability to identify both tight lower and up-

per bounds on this class of problems. However, the computational effort involved in

solving the column generation subproblem using commercial solvers was found to be

relatively onerous and prohibits the implementation of a branch-and-price algorithm

for multiple-runway aircraft sequencing problems. To overcome this difficulty, we de-

velop a dynamic programming approach that is demonstrated to solve such pricing

subproblems in manageable times, thereby greatly outperforming the use of commer-

cial solvers to this end. Extending the work by Feillet et al. (2004), the proposed

algorithm caters for non-triangular aircraft separation times and the need to separate

consecutive as well as certain nonconsecutive aircraft. Our computational study was

conducted using randomly generated computationally challenging instances that are

often not solvable using CPLEX within a time limit of one CPU hour.
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4.1. Introduction & Literature Review

The Multiple-Runway Aircraft Scheduling Problem (MRASP) has inherent sim-

ilarities with m-Asymmetric Traveling Salesman Problems with Time-Windows or

Vehicle Routing Problems with Time Windows (VRPTW). The VRPTW seeks to

identify a set of minimum cost routes, originating and terminating at a depot, which

service a set of costumers within the allowable service times, given a fleet of (capac-

itated) vehicles. In MRASP, runways can be metaphorically viewed as vehicles and

aircraft as costumers. MRASP can be modeled as a 0-1 MIP (as in Beasley et al.

2000) or alternatively as a set partitioning problem (SPP). In the latter, a column

represents of a subset of aircraft that are assigned to a runway with an associated

objective cost that reflects their optimal sequencing over this runway.

The VRPTW has been widely investigated in the literature using exact as well

as heuristic solution approaches. In a survey by Laporte (1992), exact approaches

for the VRPTW are classified into three main categories: (i) tailored tree search

methods; (ii) dynamic programming; and (iii) solving integer linear programs using

optimization solvers. Solomon and Desrosiers (1988), in another extensive survey,

categorize time-window-constrained routing and scheduling problems as follows: (i)

single and multiple traveling salesman problems; (ii) shortest path problems; (iii)

minimum spanning trees; (iv) VRPs; (v) pickup-delivery problems; and (vi) so-called

shoreline problems. Optimization-based approaches for such problems mainly employ

principles of implicit enumeration that are based on dynamic programing and branch-

and-bound algorithms (Desrochers et al. 1988). Branch-and-bound approaches either

rely on state space relaxations to compute lower bounds or solving the continuous re-

laxation of set partitioning models by column generation. In the latter case, so-called

branch-and-price algorithms typically employ a dynamic programming procedure for

single vehicle problems to solve the column generation pricing subproblem.
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Single vehicle routing problems with time-windows generalize Shortest Path Prob-

lems with Time windows (SPPTW) and are commonly solved using dynamic pro-

gramming procedures having pseudo-polynomial complexity (Feillet et al. 2004). A

shortest path is determined via a recursive procedure, starting from the origin node

and ending at the destination node, or vice versa. As the algorithm progresses each

partial path is assigned a label that encapsulates pertinent information related to

its cost, nodes it includes, and its resource consumption (e.g., time, capacity, etc.).

What distinguishes a DP variant for SPPTW from another is the way the set of eli-

gible nodes to be visited from a current node is formed and the order in which nodes

are identified and selected for examination. Optimal shortest path algorithms are

usually classified into label correcting algorithms and label setting algorithms (Fu et

al. 2006).

This chapter makes the following contributions. First, it proposes a dynamic

programming algorithm for solving elementary shortest path problems with non-

triangular aircraft separation times. Second, it demonstrates the usefulness of the

proposed DP approach over a set of computationally challenging problem instances

and demonstrates that it greatly outperforms column generation approaches where

the pricing problem is solved as a mixed-integer program. Third, it highlights algo-

rithmic features that contribute to enhancing the computational performance of the

proposed DP.

The remainder of this chapter is organized as follows. In Section 4.2 we present the

set partitioning formulation used for solving the Multiple-Runway Aircraft Sequenc-

ing Problem. Section 4.3 presents the dynamic programing scheme for solving the

column generation pricing subproblem. This section further proposes additional en-

hancements to a dynamic programing scheme to accelerate the computational speed.

In Section 4.4 we demonstrate our computational results from solving the MRASP

with a branch-and-bound method and comparing the results with our proposed dy-
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namic programing algorithm with the enhancements. Section 4.5 summarizes our key

findings and the directions for future study.

4.2. Set Partitioning Formulation of MRASP

In this section MRASP is presented as a set partitioning model with a convexity

constraint. Consider a column construct, Qh, which is associated with a runway. The

column Qh is an n-column vector having 0-1 entries, where Qh
j = 1 equals 1 if and

only if aircraft j is assigned to this column. Let κh be the total cost for Qh, which

reflects the cost in the optimized aircraft schedule associated with this particular

runway, Qh. Thus, aircraft assignment decisions are captured by the 0-1 entries of a

column, whereas the accompanying aircraft sequencing decisions are reflected in the

column cost itself. We use the following set partitioning problem, denoted by SPP.

Consider the following notation for a formal statement of the master problem:

• Qh: n-column with 0-1 entries that represents a subset of aircraft assigned to

the same runway.

• κh: Cost associated with column Qh. Here, it represents the total cost resulting

from sequencing the aircraft included in column Qh.

• xh: Binary variable such that xh = 1 if and only if column h is selected.

• π: Vector of dual variables associated with the set partitioning constraints in

(4.1b), where π = π̄ represents specific dual variable values obtained at a given

iteration in the course of the column generation approach.

• π0: Dual variable associated with constraint (4.1c), where π0 = π̄0 represents

a specific dual variable value obtained at a given iteration in the course of the

column generation approach.
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SPP: Minimize
H∑
h=1

κhxh (4.1a)

subject to
H∑
h=1

Qh
jxh = 1, ∀j = 1, . . . , n (4.1b)

H∑
h=1

xh = m (4.1c)

x binary. (4.1d)

The objective function (4.1a) minimizes the total schedule cost (the total weighted

start times). Constraint (4.1b) achieves a set partitioning scheme for aircraft, guar-

anteeing that every aircraft is assigned to exactly one runway. Constraint (4.1c) is a

convexity constraint that enforces the number of available runways.

To circumvent a complete enumeration of a possibly exponential number of columns,

each corresponding to a subset of aircraft that can be feasibly assigned to a runway,

column generation approaches can be used to heuristically solve Model SPP or can

be embedded in a branch-and-price algorithm to solve it to optimality. Our computa-

tional experience in Chapter 3, however, indicates that solving the pricing subprob-

lem as an MIP can be computationally onerous and can inhibit the development of

branch-and-price algorithm. To overcome this shortcoming, we propose next a label

correcting dynamic programing scheme to solve the pricing subproblem while taking

account non-triangular aircraft separation times.

4.3. Solving the Subproblem via Dynamic Programming

In this section, we present the proposed DP approach for solving the column gen-

eration pricing subproblem of model SPP. Let V denote the set of landing/departing

aircraft under scrutiny. In the sequel, each aircraft is referred to as a node and every

pair of nodes is connected via a directed arc whose cost, δ(u, v),∀u, v ∈ V, u 6= v,
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equals the minimum separation time between the corresponding two aircraft. As dis-

cussed in Subsection 2.4.1, these separation times are non-triangular under the FAA

standard. Further, each node is characterized by a time-window during which the

start-time of of its aircraft, tv, v ∈ V , has to be scheduled. That is, rv ≤ tv ≤ dv,

∀v ∈ V , where rv and dv are the ready time and the deadline for node v, respectively.

We also define weight wv associated with each node and consider cost of visiting a

node as wvtv.

Label correcting algorithms extend the paths to possible adjacent nodes by either

reaching forward or backtracking, and labels are updated accordingly. Dominance

rules are commonly employed eliminate inferior paths in order to reduce the number

of extended paths that have to be considered as the algorithm progresses. Desrochers

(1988) introduced a label reaching algorithm based on the Bellman-Ford-Moore short-

est path algorithm and demonstrated its usefulness for VRPTW (Desrochers et al.

1992). Feillet et al. (2004) extended the algorithm for the elementary shortest path

problems with resource constraints (ESPPRC). In the elementary shortest path prob-

lem, each node appears on a path at most once. In such algorithms, nodes and the

labels are iteratively examined until no new label is available. It should be noted

that such algorithms are based on the assumption that triangular inequality holds for

arc costs. Considering a network G ≡ (V,E) with arc costs δ : E → R for any edge

(u, v) ∈ E, triangle inequality dictates that δ(s, v) ≤ δ(s, u) + δ(u, v), for any triplet

of nodes in the network. However, this condition does not hold in MRASP due to

non-triangular aircraft separation times.

In Subsection 4.3.1, we first introduce a path extension scheme. This is followed

by a discussion of dominance rules in Subsection 4.3.2. The overall DP scheme is

summarized in Subsection 4.3.3, whereas Subsection 4.3.4 discusses a base and an

enhanced DP implementation variants.
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4.3.1 Path Extension Scheme

Let path Pv be the path extended from dummy origin s to node v. We set the

ready-time of the dummy node s as rs = 0, its arc cost to any other node in the net-

work as δ(s, v) = 0,∀v ∈ V , and its dual variable value to πs = π̄0 (i.e. the dual value

associated with Constraint (4.1c)). Any path Pv is characterized by a cost cv and its

resource consumption tv which, in the context of MRASP, corresponds to the cumu-

lative time along the path (i.e., the earliest time at aircraft/node v can start). This

is information is encapsulated in Pv(cv, tv, Rv), where Rv denotes the set of reachable

nodes from v. With this notation, for the case of the dummy node Ps = (−π̄0, 0, V ).

When node u is examined, all non-dominated paths from u will be extended to all

adjacent reachable nodes, v, and the labels of the v nodes will be updated accordingly.

Algorithm 2: extend(Pu, v)

1: tv = max {rv, tτ(Pu,l) + δ(τ(Pu, l), v) : l = 0, . . . ,min{θ, |Pu|}}
2: cv = cu + wvtv − π̄v
3: update-R(Pv)
4: Pv ← (cv, tv, Rv)

With the use of dominance rule the labels are eliminated at destinations. The

dominance rule in Feillet et al. (2004) works as follows. Let P ∗v (c∗v, t
∗
v, R

∗
v) and

P ′v(c
′
v, t
′
v, R

′
v) be two distinct paths extended to v. P ∗v dominates P ′v if and only if

c∗v ≤ c′v, t
∗
v ≤ t′v, and R′v ⊆ R∗v. The optimal solution will be reached by extending the

non-dominated paths to reachable nodes.

To determine an optimal solution with non-triangular arc costs, the attributes of

the labels, the label updating rule, and the dominance rule need to be adjusted. We

define the degree of non-triangularity for any node u in the graph, θ, as the maxi-

mum number of predecessors along a path extended to u for which nonconsecutive

separation needs to be enforced. In general, θ can vary between 0 and |V | − 1. The

case of θ = 0 presents itself in a network where the triangular inequality holds. The
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worst case of θ = |V | − 1 arises when there exists a path through all nodes in V ,

ending in u, such that the consecutive separation between the |V | − 1 consecutive

nodes preceding u is not sufficient to properly separate the first node and node u.

An examination of the FAA aircraft separation time standard in Table 2.2 indicates

that θ = 3. For example, this arises in the following sequence of four aircraft: Heavy

arrival, Large departure, Large departure, and Small arrival, where the consecutive

separation times amount to 75 + 60 + 60 = 195 s, whereas 196 s are required between

the first and fourth aircraft.

Algorithm extend(Pu, v) updates the labels as we extend the paths from node

u to node v. Attribute τ(Pu, l) records the lth parent of node u in the path Pu with

τ(Pu, 0) ≡ u. Since the separation times are non-triangular, we need to enforce sep-

aration times between consecutive as well as non-consecutive nodes. While updating

the time tv we take the maximum time that will appropriately separate v from its

1, . . . , θth predecessors. update-R(Pv) identifies the adjacent nodes j /∈ Pv that are

feasible to extend the label, tj ≤ dj (i.e. extending the label is not causing any time

window violation) and wjrj − π̄j < 0 so that they can improve the path Pv. Let P̄v

be the set of non-dominated labels already extended to node v.

4.3.2 Dominance Rules

Algorithm dominance(P ∗v , P
′
v, λ) checks for domination of labels when new labels

are extended to each node. A few modifications are required to Feillet et al. (2004)

dominance rule. Ω is a temporary set storing pair of labels at each node. enqueue

and dequeue add and remove the pair of labels from the set Ω. If path P ∗v is not

dominating path P ′v the algorithm will return false, thus the path P ′v will be added

to the labels at node v. Otherwise we need to check the dominance of P ∗v if both

paths extend to the possible adjacent reachable nodes for the next θ stages. If all of

the possible extensions for the next θ stages were dominant then we conclude that
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path P ′v is dominated by P ∗v and therefore will not be extended to node v. Let λ be

the degree of non-triangularity of the network that we defined earlier as θ.

Algorithm 3: dominance (P ∗v , P
′
v, λ)

1: if (c′v < c∗v or t′v < t∗v or R′v * R∗v) then
2: return False
3: enqueue (Ω, (P ∗v , P

′
v))

4: while λ > 0 and Ω 6= ∅ do
5: dequeue(Ω)
6: for j ∈ R∗v ∩R′v do
7: extend(P ∗v , j)
8: extend(P ′v, j)
9: dominance (P ∗j , P

′
j , λ− 1)

10: return True

The dominance(P ∗v , P
′
v, λ) algorithm will solve the shortest path problem for the

networks with non-triangular distances in the general case. However, the complexity

of the algorithm exponentially increases as the degree of non-triangularity of the

network increases. For the case that θ = |V | − 1 the algorithm will eventually is

required to search a complete enumeration of the nodes at each iteration of label

extension.

To resolve this issue we avail of the fact that the FAA separation times have

a standardized format. We extract the exceptions that the triangle inequality are

violated. Defining the standard exceptions, we redefine the dominance algorithm

according to the exceptions. With regard to the separation times there will be three

main exceptions that the separations violate the triangle inequality. These exceptions

are depicted in Figures 4.1 and 4.2.

We explain exception1 with an example depicted in Figure 4.3. Here, t∗v < t′v and

assume that c∗v < c′v, and R′v * R∗v. If we assume that the triangle inequality holds,

according to the dominance rule proposed by Feillet et al. (2004) we can conclude that

P ∗v dominates P ′v and therefore P ′v is not extended to v. However for a reachable node

j, under FAA separation times we will have t∗j = max{rj, tv+δ(v, j), tv1 +δ(v1, j), tv2 +
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(a) exception1 (b) exception2

Figure 4.1: Exceptions 1 and 2 in dominance rule

Figure 4.2: exception3 in dominance rule

δ(v2, j)} = 996 while t′j = max{rj, tv + δ(v, j), tu1 + δ(u1, j), tu2 + δ(u2, j)} = 960.

Due to the non-triangular separation times and the fact that all of the separation

times (consecutive and non-consecutive) are required to be conserved, we encounter a

contradiction where t′v < t∗v and therefore, P ∗j will no longer dominate P ′v at j. Node

v1 causes a 61 unit increase in t∗j . We will refer to this increase as push.

Let v◦ be the node in P ∗v that can cause the push in t∗j . For exception1 and

exception2 this node is v1 and in exception3 this node is v2 (see Figures 4.1

and 4.2). For node j we assume that it will be a node that could potentially cause

the largest push in a general case. The worst case push occurs when node j is

a Small Arrival and we have δ(v, j) = 60. The value of push can be derived by
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Figure 4.3: Example from exception1

δ(v◦, j) − ((t∗v + 60) − t∗v◦). If push ≤ (t′v − t∗v) then we have t∗v < t′v and therefore

P ∗v dominates P ′v. Otherwise, no conclusion can be made and the label P ′v will be

added to P̄v. If label P ∗v dominates P ′v in the worst case scenario it will dominate in

other cases. Algorithm check-dominance will determine our adjusted dominance

rule among pairs of labels using the exception rules.

Using the check-dominance algorithm we update the set of non-dominated la-

bels P̄v at node v. Let the set Lv be the set of newly extended labels to node v at

each iteration. update-P̄(P̄v, Lv) adds Lv to P̄v while removing all non-dominated

labels. For each newly generated path P ′v from Lv and each path P ∗v from P̄v, the

algorithm will remove the non-dominated labels from both sets. At the end, all the

non-dominated members of Lv and P̄v will constitute the updated set P̄v.

Algorithm 4: check-dominance(P ∗v , P
′
v)

1: if (c∗v ≤ c′v and t∗v ≤ t′v and R′v ⊆ R∗v) then
2: if any of the exceptions apply then
3: identify the exception node v◦

4: j ← Small Arrival
5: push = δ(v◦, j)− ((t∗v + 60)− t∗v◦)
6: if push > (t′v − t∗v) then
7: return False
8: return True
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Algorithm 5: update-P̄(P̄v, Lv)

1: for P ′v ∈ Lv do
2: for P ∗v ∈ P̄v do
3: if check-dominance(P ∗v , P

′
v) then

4: Lv = Lv \ {P ′v}
5: Break
6: if check-dominance(P ′v, P

∗
v ) then

7: P̄v = P̄v \ {P ∗v }
8: P̄v = P̄v ∪ Lv

4.3.3 Overall DP Procedure

To demonstrate the algorithm for non-triangular shortest path problem with time

windows (NTSPPTW) we use the following sets. Let set A be the set of nodes with

negative reduced cost. Set E is the set of nodes that have unextended labels and

need treatment. We define NTSPPTW as follows.

Algorithm 6: NTSPPTW

1: for v = 1 to n do
2: Pv = extend(Ps, v)
3: if rvwv − π̄v < 0 then
4: Add v to A and E
5: Add Pv to P̄v
6: while E 6= ∅ do
7: Select a node u from E and E = E \ {u}
8: for all v ∈ A do
9: for all Pu ∈ P̄u do

10: if v ∈ Ru then
11: Pv = extend(Pu, v)
12: Lv = Lv ∪ {Pv}
13: update-P̄(P̄v, Lv)
14: if at least one path was added to P̄v then
15: E = E ∪ {v}
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4.3.4 Enhanced vs. Base DP

In our computational study, we contrast two implementations of the proposed

DP approach. The first, simply referred to as DP, is delineated in Algorithm 6:

NTSPPWT. The second is an enhanced DP (EDP) procedure with the following

details that aim at accelerating its computational performance:

1. Multiple columns : At each iteration of DP for solving the subproblem, DP

produces many labels along with the optimal label with the minimum reduced

cost. Here, instead of adjoining the best column to the RMP, EDP augments

the RMP with a set of up to k columns.

2. CPU time threshold : At the early stages of DP, RMP is not producing good

quality dual values and normally the labels that are produced by DP are not

good quality columns for RMP in return. Therefore we set a time limit ε for

the computation time at each iteration of DP. If at the time ε, DP has labels

with negative reduced costs it terminates and returns the labels, otherwise it

will continue until termination by finding the optimal label.

3. Dominance rule: The dominance rule in Algorithm 4 plays an important role

in eliminating the inferior labels and therefore reducing the size of the problem

and accelerating the computational speed. We can use a heuristic version of the

dominance rule before reaching the termination in column generation. To this

end we follow this procedure:

• Relax the condition R′v ⊆ R∗v in Algorithm 4;

• If DP did not find labels with negative reduced cost at termination, then fix the
condition and re-run DP;

• If no label with negative reduced cost is produced, then terminate the column
generation;

• Otherwise, for next iteration run the relaxed DP.

77



4.4. Computational Results

In this section we discuss the computational results on Mixed-Integer Programing

(MIP) approach where MRASP is solved by branch-and-bound/cut approach with

the solver CPLEX 12.4 and the column generation approach where the subproblem is

solved by our proposed DP and EDP. For the MIP approach we used a version of the

model MRASP introduced in Chapter 3 where the constraint (3.1c) is relaxed. The

instances used for these series of computations are the same test-bed introduced in

Chapter 3, Subsection 3.4.1 including 55 instances. The minimum separation times

used as δ(u, v) for our computations are the FAA separation standard introduced in

Subsection 2.4.1, Table 2.2. The column generation approach, DP, and enhancements

of DP were coded with C++. The MIP approach was tested using CPLEX 12.4.

All the computations were conducted on a Windows 7 professional 64-bit operating

system with an Intel Core i7-2600 CPU with 3.40 GHz and 12 GB RAM desktop. A

time limit of 3600 CPU seconds was imposed on all runs.

Table 4.1 reports our computational results for the MIP approach, DP, and EDP.

The first two columns specify the number of aircraft, n, and the number of runways,

m. For each problem size there are 5 randomly generated instances. We report the

average values for each problem size. Column 3 specifies the method used to solve

the instances. The following method variants considered in our computational study:

• MIP refers to a variation of the base MIP model introduced in Chapter 3,

Subsection 3.2.1 where the Constraint (3.1c) is relaxed. Equations: (3.1a, 3.1b,

3.1d, 3.1e, 3.1f, and 3.1g). This MIP model is solved by a branch-and-bound/cut

method with the solver CPLEX 12.4.

• DP refers to the Algorithm 6: NTSPPWT. Column generation terminates when

DP was unable to produce any label with negative reduced cost.

• EDP refers to the DP algorithm with additional enhancements.
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We summarize the computational results for MIP, DP, and EDP in Table 4.1.

Column 4 reports the number of solved instances within the 1 hour time threshold.

Column 5 reports the average CPU time in seconds. Column 6 demonstrates the

average percentage reduction in CPU time comparing DP and EDP. Column 7 reports

the average percentage gap after termination. The results for DP and EDP are

reported for the root node. Column 8 summarizes the average percentage reduction

in the percentage gap comparing DP and EDP.

As it was tested in Chapter 3, Subsection 3.4.1 the MIP generally fails to efficiently

solve MRASP. Even with the enhancements and the additional convexity Constraint

(3.1c) the results in Table 3.1 showed that a MIP approach even with enhancements

is unable to solve the problem instances to optimality within the time limit. Here in

Table 4.1 we also test MRASP in isolation without the convexity constraint. Besides

the problem size (m,n)=(25,2) the MIP failed to solve all of the instances in the

specific problem sizes to optimality. The percentage gaps that are reported by the

solver at termination are also reported in the table. for instance, for the problem size

(20,5) the average percentage gap is at least 24.2% since the solver was teminated at

1 hour time limit.

Under the proposed DP algorithm all of the instances for different problem sizes

were solved within the time limit until the column generation terminated with the true

lower bound. The CPU times are substantially lower than MIP approach. For the

case of (15,2) the average CPU time is 36.4 seconds compare to the 1897.3 seconds

for MIP with just 3 instances solved to optimality. Two observations are worth

mentioning here. First, the DP has shown very good reductions in average CPU

times but the percentage gaps at termination are higher than the gaps achieved by

MIP. For example for the same problem size (15,2) the percentage gap for DP is 39.5%

compare to MIP with 4.9%. Although DP is effectively finding the lower bounds at

very reasonable times compare to MIP, at termination the column generation faces
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Table 4.1: Results on the Dynamic Programing Approach

n m method Solved CPU time (s) % red. time % gap % red. gap # of columns
15 2 MIP 3/5 ≥ 1897.3 ≥ 4.9

DP 5/5 36.4 29.5 84
EDP 5/5 0.6 98.5 0.7 97.6 747

3 MIP 1/5 ≥ 2941.6 ≥ 11.6
DP 5/5 1.2 26.1 62
EDP 5/5 0.2 82.4 0.1 99.5 448

4 MIP 0/5 ≥ 3600.0 ≥ 16.6
DP 5/5 39.7 38.6 70
EDP 5/5 0.1 99.7 0.0 100.0 391

20 2 MIP 4/5 ≥ 1065.3 ≥ 1.7
DP 5/5 597.9 3.7 161
EDP 5/5 6.0 99.0 0.1 97.7 1261

3 MIP 0/5 ≥ 3600.0 ≥ 7.9
DP 5/5 386.0 15.3 113
EDP 5/5 0.6 99.9 0.0 99.7 743

4 MIP 0/5 ≥ 3600.0 ≥ 16.6
DP 5/5 17.2 13.1 96
EDP 5/5 0.3 98.0 0.2 98.8 600

5 MIP 0/5 ≥ 3600.0 ≥ 24.2
DP 5/5 6.6 62.1 105
EDP 5/5 0.3 95.6 0.0 100.0 632

25 2 MIP 5/5 29.2 0.0
DP 5/5 413.0 9.0 242
EDP 5/5 1.8 99.6 8.7 3.5 1927

3 MIP 3/5 ≥ 2146.6 ≥ 1.8
DP 5/5 36.3 25.1 189
EDP 5/5 1.1 96.9 3.7 85.1 1337

4 MIP 0/5 ≥ 3600.0 ≥ 3.8
DP 5/5 76.0 20.2 174
EDP 5/5 0.9 98.8 0.0 99.8 1107

5 MIP 1/5 ≥ 2913.0 ≥ 7.4
DP 5/5 49.5 34.8 153
EDP 5/5 0.7 98.7 0.0 99.9 870
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difficulties to find good quality integer solutions and therefore resulting in large gaps

at termination. The second observation is that DP tends to perform faster at problem

sizes with larger number of runways. For the case of (20,2) the algorithm terminates

at 597.9 seconds on average. As the number of runways increases we see for the

problem size (20,5) DP solves all of teh instances at an average CPU time of 6.6

seconds.

In contrast, adding the enhancements to DP shows substantial improvements in

reducing CPU time and duality gap. Adding the enhancements, EDP shows an overall

97% reduction in the CPU time and an overall reduction of the duality gap by 89%.

All of the problem instances were solved in a fraction of seconds. The worst case

performance of EDP was on problem size (20,2) with an average CPU time of only

6 seconds and the average duality gap of 0.1%. Out of 55 instances, 42 instances

were solved to optimality at the root node. RMP was unable to find an optimal

integer solution for only 13 instances at termination of column generation approach.

The enhancements to DP resulted in producing significantly larger number of labels

compare to the base DP. EDP on average was able to provide RMP with 6 times more

number of labels relative to DP. This increase in number of the labels reduced the

total number of column generation iterations and therefore the total computational

time. It also provided the RMP with many more number of columns and led to

producing good quality integer solutions that would result in optimal or very near-

optimal solutions.

It can be concluded that Multiple-Runway Aircraft Sequencing Problems can be

efficiently solved by the dynamic programing method. The base dynamic program-

ing approach enables the column generation to converge at a very fast rate but the

quality of the integer solutions were not appealing. Adding the enhancements to the

basic DP can substantially reduce the computation time and the duality gap. The

combination of enhancements on DP, show that there is no need for producing opti-
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mal labels at early stages of column generation and only returning a batch of labels

with negative reduced cost can potentially provide the restricted master problem with

sufficient information to produce good quality dual values. This is also due to the

fact that the enhancements would enable the dynamic programing algorithm to pro-

duce significantly larger number of the columns and therefore reducing the column

generation convergence time and increasing the quality of the integer solution.

4.5. Conclusion and Remarks

This chapter, proposed a methodology to efficiently solve the Multiple-Runway

Aircraft Sequencing Problem. The algorithm is based on a dynamic programing

approach to solve the shortest path problem within the column generation scheme.

The main difficulty of the Multiple-Runway Aircraft Sequencing Problem is that

minimum safety distances between aircraft operations must be preserved within the

consecutive and non-consecutive operations considering the fact that these distances

do not hold the triangle inequality. The proposed dynamic programing method finds

an exact solution to MRASP while considering non-triangular distances and other

side constraints. This chapter further introduced enhancements to the base dynamic

programing approach to accelerate the computational speed.

Our empirical results reveal that Multiple-Runway Aircraft Sequencing Problems

can be efficiently solved by dynamic programing method. Branch-and-bound/cut

methods failed to solve different problem sized to optimality. In contrast the proposed

dynamic programing algorithm solved all of the instances in our test-bed within a

reasonable time. The only drawback for the base dynamic programing approach was

the poor duality gap at convergence. This issue was addressed by the introduction

of enhancements to the base dynamic programing algorithm. The enhancements

enabled the algorithm to produce significantly larger number of columns in less time

and therefore reducing the total number of the iterations, reducing the total amount
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of computational time and substantially improving the quality of the integer solutions

at the convergence. In fact, the enhanced dynamic programing approach was able to

solve most of the instances to optimality at the root node. Although the proposed

algorithm converges with optimal or very near-optimal solutions, we recommend for

future research the implementation of a branch-and-price approach to solve this class

of problems to optimality.
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CHAPTER 5

CONCLUSION AND DIRECTIONS FOR FUTURE WORK

This dissertation presents three essays on runway operations management. The

first essay proposes a three-faceted approach that examines the impact of runway

physical configurations, runway scheduling strategies, and runway safety regulations

on runway capacity utilization using optimization methodology. This work is grounded

in the analysis of data on Doha International Airport which operates a single runway

and will be replaced, during 2013, by two parallel, independent runways in the New

Doha International Airport. The second essay proposes an in-depth study of multiple

runway aircraft sequencing problems using mixed-integer programming models and

column generation algorithms. The third essay designs and proposes a dynamic pro-

graming scheme to efficiently solve Multiple-Runway Aircraft Sequencing Problem.

The proposed dynamic programing method finds an exact solution to the problem

while considering the specific problem attributes and other side constraints. This

chapter summarizes our findings and identifies directions for future research.

5.1. Summary, Findings and Insights

Essay one examines a three-faceted approach for runway capacity management,

based on the runway configuration, a chosen sequencing policy, and an aircraft sepa-

ration standard. In this context, we propose optimization-based heuristics that yield

optimal or near-optimal schedules and assess their benefits under alternative runway

settings. This integrated approach is applied, in collaboration with Qatar Civil Avi-

ation Authority, to investigating the transition from the (Old) Doha International
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Airport to the New Doha International Airport. Our computational study of alterna-

tive runway settings uses optimization methodology along with tailored preprocessing

routines. The main findings on this essay can be summarizes as the the following:

• Using data from Qatar Civil Aviation Authority, this essay demonstrates that

the transition from a single runway with a nominal capacity of 30 arrivals per

hour, as in the Doha International Airport, to two parallel independent runways

with the nominal capacity of 60 arrivals per hour, as planned in the new Hamad

International Airport (HIA), would achieve nearly $3 million savings per day in

excess fuel burn cost.

• The excess fuel cost or delays would not be completely eliminated, even under

a two-runway configurations. This further highlights the necessity of examining

enhanced sequencing policies and alternative aircraft separation times in order

to better exploit the runway capacity during busier hours.

• The study introduced a mixed-integer mathematical programing model for Multiple-

Runway Aircraft Sequencing Problem and developed an optimization-based

heuristic which is based on the FCFS sequencing policy. We find that by slightly

altering the FCFS sequence, the proposed heuristic not only preserves fairness

among aircraft, but also consistently produces excellent (optimal or near opti-

mal) solutions. Without deviating aircraft by not more than 2 positions from

their FCFS sequence positions, the objective value produced by the proposed

heuristic deviated by less than 1% from the optimal objective value found using

a mixed-integer program.

• Our empirical results also indicate that international airports such as the Hamad

International Airport can significantly benefit from using the FAA aircraft sep-

aration standard in lieu of the ICAO standard. In the specific case of HIA, this

choice is expected to achieve nearly a 50% reduction in excess fuel cost.
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Essay two examines aircraft sequencing problems over multiple runways under

mixed mode operations. Crafting valid inequalities, preprocessing routines, and

symmetry-defeating hierarchical constraints yields computational savings over a base

mixed-integer formulation using a branch-and-bound/cut technique. To further en-

hance its computational tractability, the problem is alternatively reformulated as a

set partitioning model with one convexity constraint that prompts the development

of a specialized column generation approach. The latter is accelerated by incor-

porating several algorithmic features, including an interior point dual stabilization

scheme, a complementary column generation routine, and a dynamic lower bound-

ing feature. Empirical results using a set of computationally challenging simulated

instances demonstrate the effectiveness and the relative merits of the strengthened

mixed-integer formulation and the accelerated column generation approach. The

main findings on this essay can be summarizes as the the following:

• We investigated the computational tractability and the relative merits of a 0-1

mixed-integer program and a set partitioning formulation solved using column

generation.

• Our empirical results indicate that the solution effort can be greatly reduced

by adjoining valid inequalities, preprocessing routines, and symmetry-defeating

hierarchical constraints to the mixed-integer formulation. However, the afore-

mentioned enhancements became less effective when the number of aircraft and

runways increased. Our results suggest that the enhanced mixed-integer model

failed to solve most of the instances with 20 and 25 aircraft with 4 and 5 runways

within a time limit of 1 CPU hour.

• The proposed column generation approach yielded attractive results in cases

where the branch-and-bound/cut failed to efficiently solve the 0-1 mixed-integer

program to optimality within a reasonable time. Additional acceleration schemes
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introduced to the base column generation approach to further enhance the com-

putational efficacy. An interior point dual stabilization algorithm, a complemen-

tary feature and a dynamic lower bounding technique introduced to the base

column generation.

• The individual and synergistic benefits of the acceleration schemes for the col-

umn generation approach were empirically investigated in our computational

study. The accelerated column generation approach consistently produced ex-

cellent solutions in manageable times.

• For the multiple-runway aircraft sequencing problem, the stabilization feature

tends to accelerate the convergence of the column generation without improving

the quality of IP solutions produced. The complementary column generation

feature, in contrast, played a decisive role in both accelerating the algorithmic

convergence and producing excellent IP solutions. However, blending the stabi-

lization scheme with the complementary feature in concert with the additional

dynamic lower bounding technique consistently led to a faster convergence to

optimal or near-optimal solutions.

Essay three, proposed a methodology to efficiently solve the Multiple-Runway

Aircraft Sequencing Problem. The algorithm is based on a dynamic programing

approach to solve the shortest path problem within the column generation scheme.

The main difficulty of the Multiple-Runway Aircraft Sequencing Problem is that

minimum safety distances between aircraft operations must be preserved within the

consecutive and non-consecutive operations considering the fact that these distances

do not hold the triangle inequality. The proposed dynamic programing method finds

an exact solution to MRASP while considering non-triangular distances and other

side constraints. This essay further introduced enhancements to the base dynamic
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programing approach to accelerate the computational speed. The main findings on

this essay can be summarizes as the the following:

• Our empirical results reveal that Multiple-Runway Aircraft Sequencing Prob-

lems can be efficiently solved by dynamic programing method. Branch-and-

bound method failed to solve different problem sized to optimality as it was

also tested and shown in essay two.

• The proposed dynamic programing algorithm solved all of the instances in our

test-bed within a reasonable time. The base dynamic programing approach

enables the column generation to converge at a very fast rate. The only draw-

back for the base dynamic programing approach was the poor duality gap at

convergence.

• We further introduced enhancements to the base dynamic programing algo-

rithm. The enhancements enabled the algorithm to produce significantly larger

number of columns in less time and therefore reducing the total number of the

iterations, reducing the total amount of computational time and substantially

improving the quality of the integer solutions at the convergence. In fact, the

enhanced dynamic programing approach was able to solve most of the instances

to optimality at the root node.

• The enhancements enabled the dynamic programing algorithm to produce sig-

nificantly larger number of the columns and therefore reducing the column gen-

eration convergence time and increasing the quality of the integer solution.

• The combination of enhancements on DP, show that there is no need for pro-

ducing optimal labels at early stages of column generation and only returning a

batch of labels with negative reduced cost can potentially provide the restricted

master problem with sufficient information to produce good quality dual values.
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5.2. Future Research Directions and Recommendations

Although illustrated with real data for Doha International Airport, the approach

presented in the essay one and the proposed heuristic can be of general benefit to

other airports, especially during busier hours of activity during the day. The antic-

ipated savings in fuel costs can directly benefit airlines, airports, and governmental

authorities that are concerned with environmental effects and emissions. We recom-

mend for further investigation an analysis of the impact of alternative runway settings

on additional airborne or ground-based operations related to taxiway routing, gate

assignments, and workload at terminals.

From a computational point of view, we recommend for future research the in-

vestigation of tighter partial convex hull representations using the Reformulation-

Linearization Technique of Sherali and Adams (1990). This could be beneficial to

further strengthen the mixed-integer formulation as well as the subproblem in the col-

umn generation approach. Other decomposition techniques, in the spirit of Benders

decomposition or logic-based Benders decomposition, that decouple the assignment

and sequencing decisions to tackle problem instances of even larger scale could be

worthwhile. From an application point of view, we recommend for future research

the development of integrated runway/taxiway models that extend the confines of

classical models in the literature by taking into account such considerations as the

location of runway exits, the network structure of taxiways, the physical constraints

at holding areas, and the location of gates.

On the last essay, we recommend for future research the necessity of implementing

a branch-and-price approach to find the final optimal solution. It is also necessary

to test the proposed algorithm on larger problem sizes with larger number of aircraft

and runways. From an application point of view we recommend to test the algorithm

on the instances generated based on real life examples such as the data shown in

Chapter 2.
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APPENDIX A

FUEL CONSUMPTION ESTIMATES

Fuel costs are calculated based on fuel burn/minute for an aircraft, which depends

on the aircraft operation and its weight class. We employed the base fuel burn of the

aircraft models categorized by Cook et al. (2004) and used estimates for average fuel

burn (gallons per block hour of operation) for the existing aircraft models operating

in DOH. The following table reports the average estimates of fuel burn (gal/hour) for

aircraft weight categories based on the operation type at DOH.

Heavy Large Small
Arrival 5,043 2,063 206
Departure 1,614 658 66

Table A.1: Fuel Burn Consumption (gal/hour)
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APPENDIX B

TRADE-OFFS BETWEEN TOTAL DELAYS AND FUEL
CONSUMPTION

In Chapter 2 we find the optimal solutions with respect to fuel cost function for

ICAO and FAA separation standards. Optimizing fuel costs will cause sub-optimal

solutions in terms of total delays. Here we solve the instances to optimality with the

objective of minimizing total delays and record the value of fuel cost for the optimal

solution with respect to total delays. Table B.1 and B.2 summarize the results.

Columns 2 and three in each table shows the values of the respective function while

optimizing the selected objective function.

Resulted value
Objective function Delay (min) Fuel cost (USD)
Delay (min) 475 50,071 (54.3% increase)
Fuel cost (USD) 511 (7.6% increase) 32,440

Table B.1: Trade-offs with ICAO standard

Resulted value
Objective function Delay (min) Fuel cost (USD)
Delay (min) 171 25,100 (45.8% increase)
Fuel cost (USD) 209 (22.1% increase) 17,211

Table B.2: Trade-offs with FAA standard

For example, in Table B.1 optimizing total delays will result to 475 minutes of

delay while the fuel cost for this solution is 50,071 USD. Optimizing delays caused

54.3% increase in the fuel cost compare to optimal fuel costs. On the other hand,
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optimal fuel costs are 32,440 USD which will enforce just 7.6% increase in the delays

compare to optimal delays. This shows that optimal fuel cost results in solutions

that are very close to optimal delays. In Table B.2 we summarize similar results

under FAA standard. With FAA separations, due to more refined separation times,

the optimal solutions result in smaller values in general. However, the optimal fuel

costs have much more impact on delays (22.1% increase compare to optimal delays).

Figure B.1 depicts the relative trade-offs between the two objective functions under

ICAO and FAA standards.

Figure B.1: Trade-offs between Total Fuel Cost and Total Delay Cost Functions
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APPENDIX C

RESULTS ON BENCHMARK INSTANCES

We report here results for benchmark instances used in Beasley et al. (2000)

with the objective of minimizing the total weighted deviations from target times.

Columns 4-6 provide results as reported in Beasley et al. (2000). Columns 7-8

present the results we obtained using these instances with the model in Beasley et al.

(2000) and CPLEX 12.4. The last two columns report the results obtained using an

adaptation of MRASP to reflect the constraints and the objective function in Beasley

et al. (2000). It is worth noting that our model does not involve the auxiliary binary

variables introduced in Beasley et al. (2000) that indicate whether or not a pair of

aircraft is assigned to the same runway.
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Beasley et. al (2000) Beasley Model MRASP
Tree B&B B&B

Instance n m Optimal CPU(s) Nodes CPU(s) Nodes CPU(s) Nodes
1 10 1 700 0.4 49 0.11 44 0.28 31

2 90 0.6 91 0.11 11 0.13 27
3 0 - - 0.10 0 0.10 0

2 15 1 1480 5.2 454 0.14 361 0.12 580
2 210 1.8 115 0.27 77 0.25 4
3 0 - - 0.11 0 0.11 0

3 20 1 820 2.7 42 0.13 83 0.12 127
2 60 3.8 142 0.13 57 0.28 56
3 0 - - 0.13 0 0.13 0

4 20 1 2520 220.4 20002 1.10 11926 1.45 15015
2 640 1919.9 193319 5.16 101737 1.21 8729
3 130 2299.2 39901 0.35 2578 0.67 1927
4 0 - - 0.14 0 0.14 0

5 20 1 3100 922 50745 2.45 33617 4.14 41737
2 650 11510.4 282160 2.40 27288 1.02 7538
3 170 1655.3 20035 0.46 2841 0.35 1271
4 0 - - 0.14 0 0.15 0

6 30 1 24442 33.1 10806 0.08 0 0.08 0
2 554 1568.1 25316 0.21 361 0.28 84
3 0 - - 0.12 0 0.11 0

7 44 1 1550 10.6 2192 0.17 1512 0.14 1326
2 0 - - 0.12 0 0.10 0

8 50 1 1950 111.9 1114 0.35 71 0.50 142
2 135 3450.6 9020 0.64 520 1.69 1742
3 0 - - 0.41 0 0.35 0

Table C.1: Benchmark Instances with Weighted Deviations from Target Times
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