6,084 research outputs found

    A simple approach to distributed objects in prolog

    Full text link
    We present the design of a distributed object system for Prolog, based on adding remote execution and distribution capabilities to a previously existing object system. Remote execution brings RPC into a Prolog system, and its semantics is easy to express in terms of well-known Prolog builtins. The final distributed object design features state mobility and user-transparent network behavior. We sketch an implementation which provides distributed garbage collection and some degree of tolerance to network failures. We provide a preliminary study of the overhead of the communication mechanism for some test cases

    Declassification: transforming java programs to remove intermediate classes

    Get PDF
    Computer applications are increasingly being written in object-oriented languages like Java and C++ Object-onented programming encourages the use of small methods and classes. However, this style of programming introduces much overhead as each method call results in a dynamic dispatch and each field access becomes a pointer dereference to the heap allocated object. Many of the classes in these programs are included to provide structure rather than to act as reusable code, and can therefore be regarded as intermediate. We have therefore developed an optimisation technique, called declassification, which will transform Java programs into equivalent programs from which these intermediate classes have been removed. The optimisation technique developed involves two phases, analysis and transformation. The analysis involves the identification of intermediate classes for removal. A suitable class is defined to be a class which is used exactly once within a program. Such classes are identified by this analysis The subsequent transformation involves eliminating these intermediate classes from the program. This involves inlinmg the fields and methods of each intermediate class within the enclosing class which uses it. In theory, declassification reduces the number of classes which are instantiated and used in a program during its execution. This should reduce the overhead of object creation and maintenance as child objects are no longer created, and it should also reduce the number of field accesses and dynamic dispatches required by a program to execute. An important feature of the declassification technique, as opposed to other similar techniques, is that it guarantees there will be no increase in code size. An empirical study was conducted on a number of reasonable-sized Java programs and it was found that very few suitable classes were identified for miming. The results showed that the declassification technique had a small influence on the memory consumption and a negligible influence on the run-time performance of these programs. It is therefore concluded that the declassification technique was not successful in optimizing the test programs but further extensions to this technique combined with an intrinsically object-onented set of test programs could greatly improve its success

    Compile-Time Optimisation of Store Usage in Lazy Functional Programs

    Get PDF
    Functional languages offer a number of advantages over their imperative counterparts. However, a substantial amount of the time spent on processing functional programs is due to the large amount of storage management which must be performed. Two apparent reasons for this are that the programmer is prevented from including explicit storage management operations in programs which have a purely functional semantics, and that more readable programs are often far from optimal in their use of storage. Correspondingly, two alternative approaches to the optimisation of store usage at compile-time are presented in this thesis. The first approach is called compile-time garbage collection. This approach involves determining at compile-time which cells are no longer required for the evaluation of a program, and making these cells available for further use. This overcomes the problem of a programmer not being able to indicate explicitly that a store cell can be made available for further use. Three different methods for performing compile-time garbage collection are presented in this thesis; compile-time garbage marking, explicit deallocation and destructive allocation. Of these three methods, it is found that destructive allocation is the only method which is of practical use. The second approach to the optimisation of store usage is called compile-time garbage avoidance. This approach involves transforming programs into semantically equivalent programs which produce less garbage at compile-time. This attempts to overcome the problem of more readable programs being far from optimal in their use of storage. In this thesis, it is shown how to guarantee that the process of compile-time garbage avoidance will terminate. Both of the described approaches to the optimisation of store usage make use of the information obtained by usage counting analysis. This involves counting the number of times each value in a program is used. In this thesis, a reference semantics is defined against which the correctness of usage counting analyses can be proved. A usage counting analysis is then defined and proved to be correct with respect to this reference semantics. The information obtained by this analysis is used to annotate programs for compile-time garbage collection, and to guide the transformation when compile-time garbage avoidance is performed. It is found that compile-time garbage avoidance produces greater increases in efficiency than compile-time garbage collection, but much of the garbage which can be collected by compile-time garbage collection cannot be avoided at compile-time. The two approaches are therefore complementary, and the expressions resulting from compile-time garbage avoidance transformations can be annotated for compile-time garbage collection to further optimise the use of storage

    Draining the Swamp: Micro Virtual Machines as Solid Foundation for Language Development

    Get PDF
    Many of today\u27s programming languages are broken. Poor performance, lack of features and hard-to-reason-about semantics can cost dearly in software maintenance and inefficient execution. The problem is only getting worse with programming languages proliferating and hardware becoming more complicated. An important reason for this brokenness is that much of language design is implementation-driven. The difficulties in implementation and insufficient understanding of concepts bake bad designs into the language itself. Concurrency, architectural details and garbage collection are three fundamental concerns that contribute much to the complexities of implementing managed languages. We propose the micro virtual machine, a thin abstraction designed specifically to relieve implementers of managed languages of the most fundamental implementation challenges that currently impede good design. The micro virtual machine targets abstractions over memory (garbage collection), architecture (compiler backend), and concurrency. We motivate the micro virtual machine and give an account of the design and initial experience of a concrete instance, which we call Mu, built over a two year period. Our goal is to remove an important barrier to performant and semantically sound managed language design and implementation

    The C Object System: Using C as a High-Level Object-Oriented Language

    Full text link
    The C Object System (Cos) is a small C library which implements high-level concepts available in Clos, Objc and other object-oriented programming languages: uniform object model (class, meta-class and property-metaclass), generic functions, multi-methods, delegation, properties, exceptions, contracts and closures. Cos relies on the programmable capabilities of the C programming language to extend its syntax and to implement the aforementioned concepts as first-class objects. Cos aims at satisfying several general principles like simplicity, extensibility, reusability, efficiency and portability which are rarely met in a single programming language. Its design is tuned to provide efficient and portable implementation of message multi-dispatch and message multi-forwarding which are the heart of code extensibility and reusability. With COS features in hand, software should become as flexible and extensible as with scripting languages and as efficient and portable as expected with C programming. Likewise, Cos concepts should significantly simplify adaptive and aspect-oriented programming as well as distributed and service-oriented computingComment: 18

    Energy-Efficient Algorithms

    Full text link
    We initiate the systematic study of the energy complexity of algorithms (in addition to time and space complexity) based on Landauer's Principle in physics, which gives a lower bound on the amount of energy a system must dissipate if it destroys information. We propose energy-aware variations of three standard models of computation: circuit RAM, word RAM, and transdichotomous RAM. On top of these models, we build familiar high-level primitives such as control logic, memory allocation, and garbage collection with zero energy complexity and only constant-factor overheads in space and time complexity, enabling simple expression of energy-efficient algorithms. We analyze several classic algorithms in our models and develop low-energy variations: comparison sort, insertion sort, counting sort, breadth-first search, Bellman-Ford, Floyd-Warshall, matrix all-pairs shortest paths, AVL trees, binary heaps, and dynamic arrays. We explore the time/space/energy trade-off and develop several general techniques for analyzing algorithms and reducing their energy complexity. These results lay a theoretical foundation for a new field of semi-reversible computing and provide a new framework for the investigation of algorithms.Comment: 40 pages, 8 pdf figures, full version of work published in ITCS 201

    Unwoven Aspect Analysis

    Get PDF
    Various languages and tools supporting advanced separation of concerns (such as aspect-oriented programming) provide a software developer with the ability to separate functional and non-functional programmatic intentions. Once these separate pieces of the software have been specified, the tools automatically handle interaction points between separate modules, relieving the developer of this chore and permitting more understandable, maintainable code. Many approaches have left traditional compiler analysis and optimization until after the composition has been performed; unfortunately, analyses performed after composition cannot make use of the logical separation present in the original program. Further, for modular systems that can be configured with different sets of features, testing under every possible combination of features may be necessary and time-consuming to avoid bugs in production software. To solve this testing problem, we investigate a feature-aware compiler analysis that runs during composition and discovers features strongly independent of each other. When the their independence can be judged, the number of feature combinations that must be separately tested can be reduced. We develop this approach and discuss our implementation. We look forward to future programming languages in two ways: we implement solutions to problems that are conceptually aspect-oriented but for which current aspect languages and tools fail. We study these cases and consider what language designs might provide even more information to a compiler. We describe some features that such a future language might have, based on our observations of current language deficiencies and our experience with compilers for these languages
    corecore