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“For Summer has o’erbrimm’d their clammy cells.
Who hath not seen thee oft amid thy store?”

John Keats, Ode to Autumn



Abstract

Functional languages offer a number of advantages over their imperative counterparts. How-
ever, a substantial amount of the time spent on processing functional programs is due to
the large amount of storage management which must be performed. Two apparent reasons
for this are that the programmer is prevented from including explicit storage management
operations in programs which have a purely functional semantics, and that more readable
programs are often far from optimal in their use of storage. Correspondingly, two alternative
approaches to the optimisation of store usage at compile-time are presented in this thesis.

The first approach is called compile-time garbage collection. This approach involves de-
termining at compile-time which cells are no longer required for the evaluation of a program,
and making these cells available for further use. This overcomes the problem of a programmer
not being able to indicate explicitly that a store cell can be made available for further use.
Three different methods for performing compile-time garbage collection are presented in this
thesis; compile-time garbage marking, explicit deallocation and destructive allocation. Of
these three methods, it is found that destructive allocation is the only method which is of
practical use.

The second approach to the optimisation of store usage is called compile-time garbage
avoidance. This approach involves transforming programs into semantically equivalent pro-
grams which produce less garbage at compile-time. This attempts to overcome the problem
of more readable programs being far from optimal in their use of storage. In this thesis, it is
shown how to guarantee that the process of compile-time garbage avoidance will terminate.

Both of the described approaches to the optimisation of store usage make use of the
information obtained by usage counting analysis. This involves counting the number of times
each value in a program is used. In this thesis, a reference semantics is defined against which
the correctness of usage counting analyses can be proved. A usage counting analysis is then
defined and proved to be correct with respect to this reference semantics. The information
obtained by this analysis is used to annotate programs for compile-time garbage collection,
and to guide the transformation when compile-time garbage avoidance is performed.

It is found that compile-time garbage avoidance produces greater increases in efficiency
than compile-time garbage collection, but much of the garbage which can be collected by
compile-time garbage collection cannot be avoided at compile-time. The two approaches are
therefore complementary, and the expressions resulting from compile-time garbage avoidance
transformations can be annotated for compile-time garbage collection to further optimise the
use of storage.
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Chapter 1

Introduction

In recent years, there has been a growing interest in functional languages. Functional lan-
guages offer a number of advantages over their imperative counterparts (Hughes, 1989). The
special characteristic of functional languages which gives them such desirable properties is the
fact that they contain no side-effects. This means that a function call has no effect other than
to calculate its result. An expression can be evaluated at any time, since no side-effect can
change its value. Expressions can therefore be evaluated in any order, and the programmer
does not need to worry about the flow of control. Thus programs may be written which resem-
ble the structure of the original problem without making detailed implementation decisions.
Also, programs will be referentially transparent. This means that variables in an expression
can be replaced by their values, and vice versa. Functional programs are therefore easier
to reason about mathematically, and are more amenable to transformation, than traditional
imperative languages. _

The use of lazy evaluation (Henderson & Morris, 1976; Friedman & Wise, ’1976) within
functional languages offers additional advantages. For example, it allows for greater modu-
larisation within programs (Hughes, 1989). The majority of functional languages which have
appeared in recent years use lazy evaluation (for example LML (Augustsson, 1984), Miranda!
(Turner, 1985) and Haskell (Hudak & Wadler, 1990)).

However, functional languages also have their disadvantages. For example, a substantial
amount of the time spent on processing functional programsis due to the large amount of heap
storage management which must be performed. The aim of this thesis is to investigate how the

amount of store usage implied by lazy functional programs can be reduced at compile-time.

1Miranda is a trademark of Research Software Ltd.
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1.1 Compile-Time Optimisation

As mentioned earlier, functional programs are easy to reason about mathematically, and are
amenable to transformation. Compile-time optimisations can therefore make use of static

analysis and program transformation.

1.1.1 Static Analysis

Static analysis involves the analysis of programs to determine their properties without ac-
tually executing them. This is done by defining abstract domains which are simpler than
the standard semantic domains of the program language. These abstract domains have a
structure which reflects the property of the program which is being analysed, and usually
give the minimum information required to encapsulate this property. There are three main
frameworks which can be used to perform static analysis of functional programs. These are
abstract interpretation (or forward analysis), backward analysis? and type inference. The
framework which is used in this thesis is the backward analysis framework.

Abstract interpretation (Cousot & Cousot, 1977; Mycroft, 1981; Abramsky & Hankin,
1987) involves associating an abstract function with each function in a program. These
abstract functions are applied to information about their arguments to give information about
their results. Thus the flow of information is forwards, from function arguments to function
results.

Backward analysis (Hughes, 1988) also involves associating abstract functions with each
function in a program. These abstract functions are applied to information about their results
to give information about their arguments. Thus the flow of information is backwards, from
function results to function arguments.

Using type inference to perform static analysis involves defining a non-standard type
system to infer the required information from a program. This approach has the advantage
that there already exist efficient algorithms for checking and inferring types (Milner, 1978;
Hindley, 1979; Damas & Milner, 1982). Examples of type inference schemes for performing
static analysis are described in (Wadler, 1990c) and (Kuo & Mishra, 1989). Since program
logics are used to define these type inference schemes, the flow of information takes place in

both forward and backward directions.

2The distinction between forward and backward analysis is not clear, since a backward analysis can be
expressed as an abstract interpretation in which the abstract values of expressions are functions from contexts

to the variables in them.
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1.1.2 Program Transformation

Program transformation involves transforming programs to other programs which exhibit the
same semantic behaviour, but which have hopefully been improved in some way. There are
two different approaches to program transformation. These are the algebraic approach and
the operational approach.

The algebraic approach to program transformation is based on the application of axioms
and theorems which equate expressions and function definitions having certain structures.
Thus, in a functional program, expressions may be re-written by more efficient equivalent
expressions which are given by one of these theorems. This approach requires a new theorem
to be invented for each new class of transformation which is required.

The operational approach to program transformation involves using a small set of mean-
ing preserving rules for generating new recursion equations. An example of this approach
is the unfold/simplify/fold program transformation methodology described in (Burstall &
Darlington, 1977). Unfolding replaces a function call with the function body containing the
appropriate parameter substitutions. Folding replaces an expression which matches a function
body with a corresponding function call. Simplification is achieved through the application
of a small set of meaning preserving rules for generating new equations which are hopefully
more efficient than the original recursion equations.

The operational approach to program transformation is taken in this thesis to reduce the
amount of garbage produced at run-time. Examples of algebraic transformation methods
which seek to reduce the amount of garbage prbduced at run-time are described in (Wadler,
1981; Bellegarde, 1986; Gill et al., 1993).

1.1.3 Desirable Criteria for Compile-Time Optimisations

Compile-time optimisations should satisfy the following criteria:

Termination : the process of optimisation must be finite;

Automatability : it must be possible to perform the optimisations automatically;
Correctness : unoptimised and optimised programs must produce the same results.

Termination and automatability must be guaranteed if the optimisations are to be of any
use during compilation. Correctness is a vital criterion because users will have no confidence

in the optimisations being performed if this is not assured. To show that the compile-time



CHAPTER 1. INTRODUCTION 4

optimisations of store usage which are presented in this thesis are correct, a reference is
required against which their correctness can be proved. Non-standard store semantics are
therefore defined which model the use of store in possible implementations of the language

for which the described optimisations are performed.

1.2 Compile-Time Optimisation of Store Usage

Two apparent reasons why functional programs are such heavy consumers of storage are
that the programmer is prevented from including explicit memory management operations in
programs which have a purely functional semantics, and more readable programs are often
far from optimal in their use of storage. Consequently, two alternative approaches to the
optimisation of store usage at compile-time are presented. These are compile-time garbage
collection and compile-time garbage avoidance. Before these optimisations are performed, the
cells which will become garbage within a program are determined. This is called compile-time

garbage detection.

1.2.1 Compile-Time Garbage Detection

Compile-time garbage detection involves determining at compile-time which cells in a program
will become garbage. A cell will become garbage during the evaluation of an expression if it is
unshared when it loses a reference. To determine whether a cell is unshared, a usage counting
analysis is defined. This analysis determines the number of times a cell will be used in future
computations within a program. If a cell is used only once after it has been created, then it

is unshared.

1.2.2 Compilev-Timer Garbage Collection

Compile-time garbage collection involves determining at compile-time which store cells are no
longer required for the evaluation of a program, and making these cells available for further
use. This overcomes the problem of a programmer not being able to indicate explicitly that a
memory cell can be made available for further use. Programs are annotated at compile-time
to allow garbage cells to be collected automatically at run-time. The garbage collection itself
does not actually take place at compile-time, so the term ‘compile-time garbage collection’ is
misleading. However, this is the term which has been used for this kind of optimisation in the

past, so it is used again in this thesis. Three methods for performing compile-time garbage
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collection in lazy languages are presented. These are called compile-time garbage marking, ez-
plicit deallocation and destructive allocation. Compile-time garbage marking involves marking
those cells which will become garbage after their first use. Explicit deallocation involves ex-
plicitly returning cells to the memory manager at a particular point in a program. Destructive

allocation involves reusing cells directly for further allocations within a program.

1.2.3 Compile-Time Garbage Avoidance

Compile-time garbage avoidance involves transforming programs to other programs which ex-
hibit the same semantic behaviour, but produce less garbage at run-time. This overcomes the
problem of more readable programs being far from optimal in their use of storage. As men-
tioned earlier, the use of lazy evaluation allows for greater modularisation within programs.
Functions can be defined in terms of smaller and simpler functions which are ‘glued’ together
to give the required definition. These smaller functions are easier to define and reuse, but they
often form a structure as a result, or decompose a structured argument into its constituent el-
ements, or both. When these functions are put together to form compound expressions, many
structures are formed only to be decomposed again. As described in (Wadler, 1990b), these
intermediate structures are the ‘glue’ which hold the functions together. The use of these
intermediate structures aids clarity, but it results in inefficiency at run-time. Each interme-
diate structure must be allocated, traversed and subsequently deallocated. These compound
expressions can be transformed instead to avoid the building of intermediate structures. This
is the approach which is taken in this thesis using the deforestation algorithm presented in
(Wadler, 1990Db).

1.3 Thesis Contribution

The main contribution of this thesis is to show how the amount of store usage implied by
lazy functional programs can be reduced at compile-time by making use of the information
obtained by usage counting analysis. This is intended to be a theoretical study rather than a
practical study. The implementation and efficiency of each process of optimisation is there-
fore not considered. The methods which are used to optimise store usage are compile-time
garbage collection and compile-time garbage avoidance. The kinds of expressions which can
be optimised by each method are characterised, thus allowing comparisons to be drawn be-

tween them. The contributions of the thesis to the areas of compile-time garbage detection,
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collection and avoidance are summarised below.

1.3.1 Compile-Time Garbage Detection

In most of the previous work in the area of compile-time garbage detection, the correctness
of the static analyses which are used to detect garbage is not considered. In this thesis, a
reference semantics is defined against which the correctness of these static analyses can be
proved. A static analysis which can be used at compile-time to detect which cells in a program
will become garbage is then defined, and is proved to be correct with respect to this reference
semantics. It is then shown how the information obtained by this analysis can be used to

allow various optimisations of store usage to be performed.

1.3.2 Compile-Time Garbage Collection

Most of the previous work in the area of compile-time garbage collection has been for strict
languages. Not so much work has been done for lazy languages. Three different methods
for performing compile-time garbage collection in lazy languages are therefore presented;
compile-time garbage marking, explicit deallocation and destructive allocation. Of these three
methods, it is found that destructive allocation is the only method which is of practical use.
The correctness of the methods for performing compile-time garbage collection described in
this thesis is considered. In the majority of previous work in the area of compile-time garbage

collection, the correctness of the optimisations which are performed is not considered.

1.3.3 Compile-Time Garbage Avoidance

It has already been shown in (Wadler, 1990b) how compile-time garbage avoidance can be
performed for lazy languages using the deforestation algorithm, and a sketch proof was given
for the deforestation theorem stated in that work. This sketch proof is fleshed out in this
thesis. It was also noted in the conclusion of (Wadler, 1990b) that the class of expressions
for which the deforestation algorithm is guaranteed to terminate could be extended. This is
what has been achieved in this thesis by making use of the information obtained by usage
counting analysis. The work in this thesis therefore contributes to the understanding of when

the deforestation algorithm will terminate.
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1.4 Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 2 : the syntax and semantics of the language which will be used throughout this
thesis are presented. The language is a simple lazy first order language with recursion
equations and list operators. Non-standard store semantics are then defined for the
language. Since these semantics will be used as a reference against which the store-
related analysis and optimisations presented in this thesis can be proved correct, they

are shown to be congruent to the standard semantics of the language.

Chapter 3 : it is shown how the cells which will become garbage within a program can
be detected at compile-time. The store semantics defined in the previous chapter are
augmented to incorporate usage counting. This involves counting the number of times
each value in the store is used. Usage counting values in these semantics are then
abstracted to usage patterns to allow usage counts to be determined at compile-time. A
usage counting analysis is defined using these patterns to determine at compile-time the
number of times each part of a value will be used in future computations. This analysis

is then proved to be correct with respect to the usage counting store semantics.

Chapter 4 : it is shown how information obtained from usage counting analysis can be used
to annotate programs for compile-time garbage collection. Three different methods for
compile-time garbage collection are presented. The first method is called compile-time
garbage marking, which involves marking cells at their allocation to indicate that they
will become garbage after their first use. The second method is called explicit deallo-
cation, which involves explicitly returning cells to the memory manager at a particular
point in a program. The third and final method for compile-time garbage collection is
called destructive allocation, which involves reusing cells directly for further allocations
within a program. Store semantics are defined for programs which have been annotated
for each of these methods for compile-time garbage collection, and the correctness of

these store semantics is considered.

Chapter 5 : it is shown how information obtained from usage counting analysis can be
used to guide the transformation when compile-time garbage avoidance is performed.
The method which is used for avoiding the production of garbage at compile-time is the

deforestation transformation algorithm described in (Wadler, 1990b). A treeless form of
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function definition which does not create any intermediate structures is characterised in
(Wadler, 1990b), and a sketch proof is given that the deforestation algorithm will always
terminate for expressions in which all functions have definitions which are in this treeless
form. This sketch proof is fleshed out in this chapter. The deforestation algorithm will
also terminate for expressions in which some functions have definitions which are not in
this treeless form. It is shown how this treeless form can be extended by making use of
information obtained by usage counting analysis. It is then proved that the deforestation
algorithm will always terminate for expressions in which all functions have definitions in
this extended treeless form. Some intermediate structures can still be eliminated from
expressions in which some functions have definitions which are not in this extended
treeless form. It is therefore shown how any function definition can be generalised in
such a way that it will be in extended treeless form. The deforestation algorithm is
also extended to be able to cope with these generalisations. It is then proved that this
generalised deforestation algorithm will always terminate for expressions in which all

functions have definitions which have been generalised in the described manner.

Chapter 6 : a summary of the achievements of this thesis is given, directions for further

work are discussed, and general conclusions are drawn.



Chapter 2
Language

In this chapter, the syntax and semantics of the language which will be used throughout this
thesis are presented. The language is a simple first ofder lazy functional language with list
operators and recursion equations. To show that the store-related analysis and optimisations
presented in this thesis are correct, a reference must be provided against which their correct-
ness can be proved. The standard semantics of the language do not model the use of store,
so they cannot be used to provide this reference. Non-standard store semantics are therefore

defined for the language and are shown to be congruent to the standard semantics.
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The remainder of this chapter is structured as follows:

¢ Section 2.1: some of the notation which is used throughout this thesis is described.

Section 2.2: the abstract syntax of the language is defined.

Section 2.3: the standard semantics of the language are defined.

Section 2.4: non-standard store semantics are defined for the language.

Section 2.5: the store semantics defined in the previous section are shown to be con-

gruent to the standard semantics for the language.
¢ Section 2.6: related work is considered.

e Section 2.7: a summary of this chapter is given.

2.1 Notation

In this section, some of the notation which is used throughout this thesis is described. It is
assumed that the reader is familiar with domain theory. For a given domain D, the bottom
element of the domain is represented by 1p, and the elements of the domain are ordered by
the partial order Cp. The notation D represents the lifting of the domain D to add a new
bottom element L. The operators @, X and — are the coalesced sum, product and function
space constructors respectively.

Tuples of elements are represented by (v, ..., v,). Elements of a tuple can be accessed
using the | operator, where T | n denotes the n?h element of the tuple T.

The notation D* represents zero or more function arguments which are elements of the

domain D. Thus the function type D* — E is a shorthand notation for D — ... = D — E.

2.2 Syntax

In this section, the abstract syntax of the language which is used throughout this thesis is
defined. The language is a simple first order lazy functional language with list operators
and recursion equations. The abstract syntax is shown in Figure 2.1. Programs in the
language consist of an expression to evaluate and a set of function definitions. Nested function

definitions are not allowed in the language. Programs involving nested function definitions
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pr € Prog u= e
where
Hoveog, = €@ Program

faVnleeink, = e€n

k

v

bey...en Expression
Cé€y...en

fer...eq

case egof pr:ey |...| pr:ex

.o
e

k' € Num == 0]1}]-1]... Constant

v € Bv Bound Variable

b € Bas u= +|-|<|=]... Basic Function

¢ € Con = True| False| Nil| Cons Constructor

f € Fv Function Variable
p € Pat u= cvi...vp Pattern

Figure 2.1: Abstract Syntax

can be transformed into this restricted form of program using a technique called lambda lifting
(Johnsson, 1985). Some example function definitions are given in Figure 2.2.
The language is monomorphically typed, and it is assumed that all programs in the lan-

guage are well-typed. Values in the language can have the following types:

T u= int Integers
|  bool Booleans
| UstT Lists

The only constants in the abstract syntax of the language are integers. Bound variables and
function variables in the language are represented by strings of characters, and are elements
of the domains Bv and Fv respectively. The basic functions are the built-in functions of
the language and operate on integers only. The comparison of lists using the basic equality

function is therefore not allowed, but it is possible to determine the equality of lists recursively
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append i list int — list int — list int
append zs ys = case zs of

Nil i ys

Consz zs : Consz (append zs ys)
flatten : list (list int) — list int
flatten zss = case zss of

Nil i Nil

Cons zs zss : append zs (flatten zss)
reverse : list int — list int
reverse s = case zs of

Nil 2 Nil

Cons z zs : append (reverse zs) (Cons z Nil)
accreverse : list int — list int — list int
accreverse zs ys = case zs of

Nil : ys

Cons z zs : accreverse zs (Cons z ys)

Figure 2.2: Example Function Definitions

within the language. Basic function applications will be expressed in infix notation throughout
the course of this thesis. ’

Booleans are represented by the values True and False. Note that booleans are considered
to be constructors in the abstract syntax of the language. This is so that pattern matching
can be performed upon them, since pattern matching is allowed only on constructors. The

conditional can therefore be expressed as follows:
case eg of True:e; | False: ey
This has the same meaning as the more traditional form of conditional:
if ep then e; else e,

Empty lists are represented by Nil and non-empty lists are represented by an expression
of the form Cons e; ez, where the head of the list is denoted by e;, and the tail of the list is

denoted by e;. Lists are decomposed using a case expression of the following form:
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case eg of Nil:e; | Cons vy v3: e

In the expression e;, the head of the list eg is represented by the variable vy, and the tail of
this list is represented by the variable v;. There is therefore no need to add explicit head and
tail operators to the basic functions.

Within case expressions of the following form:
case egof pyiey |...| pk:ex

g is called the selector, and p; : €;,...,pr : €x are called the branches. The branches in a
case expression can either be separated by the | character or by a newline character. The
patterns used in the branches of case expressions may not be nested. Methods to transform
case expressions with nested patterns into ones without nested patterns are described in
(Augustsson, 1985) and (Wadler, 1987b).

The intended evaluation mechanism for the language is lazy evaluation. However, the
basic functions are strict in all their arguments. Also, pattern matching is strict, and when
a case expression is evaluated, the selector is evaluated to head normal form before the

appropriate branch of the case expression is evaluated.

2z € Valg = Atom & List

Atom = Int & Bool

Int = {0lro{l}Lo{-1}L0...
Bool = {TRUE}, & {FALSE},

List = {NIL}, @ Conscell

Conscell = (Valg x Valg),

p € Bvee = Bv > Valg

¢ € Fveg = Fv - Vali - Valg

Figure 2.3: Standard Semantic Domains
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2.3 Standard Semantics

In this section the standard semantics of the language which is used throughout this thesis
are defined. The standard semantic domains are shown in Figure 2.3. Expressible values
in the language are atomic values or lists. Atomic values consist of integers and booleans.
Integers are represented by the flat domain of integers, and booleans are represented by the
values TRUE and FALSE. Empty lists are represented by the value NIL and non-empty lists
are represented by pairs, where the first element of the pair represents the head of the list,
and the second element of the pair represents the tail of the list.

The functionality of the standard semantic functions of the language is shown in Figure 2.4.

Ep Prog — Valg

E: Exp — Bveg — Fveg — Valg
B: Bas — Valy — Valg

C: Con — Valy — Valg

match: (Valg x Con) — Bool

Figure 2.4: Standard Semantic Functions

&, gives the meaning of a program, £ gives the meaning of an expression, B gives the
meaning of a basic function call and C gives the meaning of a constructor application. These
functions are defined in Figure 2.5. '

Empty environments are represented by (Az.L) in these functions, and non-empty envi-
ronments are represented by [z1/vy,...,2,/vs] where the variable v; is bound to the value z;.
The notation p[z/v] represents an environment in which the variable v is bound to the value
z, and variables other than v are bound to the value given in the environment p. For the
sake of clarity, the domain injections and projections have been omitted from the semantics.
These will be omitted from the semantics throughout the course of this thesis, unless there
is an ambiguity.

The function match is an auxiliary function which is used to perform pattern matching

within case expressions. This function is defined in Figure 2.6.

- g
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Eole
where
fivn...ony, = €

fo nteeotniy = €n] = E[e] (v.L) do

where
do =fix(AB.[(Az1... Az, -Ele;] [21/vi, .- o2k [v5k,] )/ £31)
Elvlp o = plv]

Elber...eal pd = BB (Elea] ). (Eleal £ 9)
flcer...edpd = Cl} (Eler) p 8) - (Elenl p @)
Elfer...elpd = 71 (Eler] p &) ... (Elead p 9)

Elcase epof priey |...|priex] p @
= g[ei] p[z l 1/’01,'-":1:1"’/”7:] ¢

where
z = Ele] p o
p; = cv1...0, and match(z,c)
B[+] = Ar1.Az2.7) + 2
B[-] = A21.)0Z2.71 — T2
B[<] = A71.A22.21 < T2
B{=] = Ar1.AT2.T1 = T2
C[ True] = TRUE
C|False] = FALSE
CINil} = NIL
C[Cons]) = Azr1.Az2.(21,22)

Figure 2.5: Standard Semantics
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match(z,c) = (z = TRUE and ¢ = True)
or (r = FALSE and ¢ = False)
or (z = NIL and ¢ = Nil)
or (z € Conscell and ¢ = Cons)

Figure 2.6: Standard Semantics (auxiliary functions)

2.4 Store Semantics

In this section, non-standard semantics are presented which model the use of store in the
language which is used throughout this thesis. These semantics are largely based on the
store semantics for a higher order lazy language presented in (Hughes, 1991). They provide
a reference against which store-related analyses and optimisations can be proved correct, so
they model the use of store in possible implementations of the language. The store semantics
may not model the use of store in possible implementations of the language particularly
accurately, but they do provide a safe modell.

The store semantic domains of the language are shown in Figure 2.7. Most of these
domains are similar to the domains for the standard semantics of the language given in
Figure 2.3, but some new domains have been added. Obviously, a domain of stores is required
since the use of stores is being modelled. A store is represented by a function which returns
the contents of a cell at a given location. Locations in the store are represented by integers.
Unbound cells in the store are represented by the value UNB. Since the side-effect of updating
a store is being modelled within the semantics, the current state of the store is threaded
through the semantics. Values in the semantics are therefore represented by a pair, the first
element of which is a location, and the second a store.

As in the standard semantics, expressible values in the language are atomic values or lists.
Atomic values consist of integers and booleans. Integers are represented by the flat domain
of integers, and booleans are represented by the values TRUE and FALSE. Empty lists are
represented by the value NIL, and non-empty lists are represented by pairs of locations which
give the head and the tail of the list respectively. Each expressible value in the semantics is

allocated in the store. This is not necessary to ensure lazy evaluation, but is done to facilitate

1To determine whether the store semantics accurately model the use of store in implementations of the
language, it would be necessary to compare them to a canonical operational semantics. This operational
semantics would depend upon the evaluation mechanism of the language, which (for the sake of generality)

has not been given here. It must therefore be ensured that the semantics model the use of store safely.
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Valgatore = (Loc X Storegstore) 1

z € Eval = Atom & List

Atom = Int @ Bool

Int = {},o{1}L.o®{-1}.a®...

Bool = {TRUE}, @ {FALSE},

List = {NIL}, & Conscell

Conscell = (Loc x Loc)y

loc € Loc = Int

Closure = Storegstore = Valgstore

P € Bvegatore = Bv — Loc

¢ € Fvegatore = Fv — Loc* — Storegstore — Valgstore
o € Storegstore = Loc — (Closure @ Loc & Eval @ {UNB},)

Figure 2.7: Store Semantic Domains

the extension of the store semantics to incorporate usage counting in the next chapter.

Within a lazy store semantics, it must be ensured that values are evaluated only when
needed, and are not evaluated more than once. A new domain of closures is therefore intro-
duced. These closures are used to delay the evaluation of expressions until they are actually
required by the program. They are represented by functions which, when supplied with a
store, will return the result of evaluating their associated expression in the given store.

Expressions are therefore evaluated only when their values are needed. The arguments
of basic function applications and selectors of case expressions are evaluated to head normal
form because they appear in a strict context. All other expressions are enclosed within closures
to delay their evaluation until their values are required by the program.

To ensure that closures are not evaluated more than once, they are overwritten with
the result of their evaluation immediately after they have been evaluated. Since the result

of evaluating a closure is given by a location, cells in the store may contain the location
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of another cell in the store, but there are no chains of indirection. Also, since it must be
possible to overwrite the closures given by bound variables with the result of their evaluation,
variables in the bound variable environment are bound to locations. These locations will
either be bound to a closure, or to another location if the closure has been evaluated.

The functionality of the store semantic functions of the language is shown in Figure 2.8.

gytere : Prog — Valgatore
£store . Exp — Bvegstore = Fvegstore = Storegstore — Valgstore
Bgstore :  Bas — Loc* — Storegstore — Valgatore

Cestore ¢+ Con — Loc* — Storegstore — Valgstore

alloc: ((Closure @ Eval) x Storegstore) — Valgstore

force: Valgstore = Valgstore

match: (Eval x Con) — Bool

Figure 2.8: Store Semantic Functions

£3tor gives the meaning of a program and £*'" gives the meaning of an expression. The
location returned by £°®°"® will be bound to an expressible value in the given store. Bgastore
gives the meaning of a basic function application and Cgstere gives the meaning of a constructor
application. These functions are defined in Figures 2.9 and 2.10.

The auxiliary functions of the store semantics are defined in Figure 2.11. The function
alloc is used to allocate a given value at a location in the given store which was previously
unbound. Both closures and expressible values can be allocated in this way. The function
force is used to force the evaluation of the result of a program. It is possible that the result of
a program contains closures. Any closures which are reachable from the result must therefore
be evaluated. When force is applied to a closure, it causes the evaluation of the closure. The
result of this evaluation is also forced. When it is applied to a list value it is recursively
applied to the elements of the list, forcing their evaluation. All other values which can result
from the evaluation of a program will have been fully evaluated already, and do not need to
be forced. It is assumed that this function also serves to print out the result of the program.

The function match is used to perform pattern matching within case expressions as before.
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store
Etrele
where
f] Viles e V1ky

€1

fa Vn1eeUnk, = en] = force(E%m¢[e] (Av.L) ¢o (Aloc.UNB))
where

$o = fix (Ap.[(Mocy...Mocy;.Aa.E%"¢[e;] [locr/vi,.. ., lock;[vix;] ¢ @)/ fi])

e 1 XX = alloc(k,o)

erefol p o = (11016, o'lloc/p[v])), if (o (p[v])) € Closure
(loc,6') = (o (p[v])) 0
= ((o (plv])), 0), otherwise

gatore[b el . .en] p ¢ g Bgatorelb] IOC]_ e .lacn Un

where
(locy,00) = &% leilpdo

(locman) = gstorc[en] P ony

Estore[cer...en ]l pdo = Cgaorelc] locy.. . locy, oy
where
(locy,00) = alloc((E%7¢[e1] p ¢),0)

(locn,0,) = alloc((E%*°[e.] p ¢),0n-1)
Estore[fer...ex] pdpo = ¢[f]locy...loc, oy

where

(locy,00) = ailoc((g’t°'eﬂe1]p¢),a)

(locn,0n) = alloc((E7°*[en] p }),0n-1)

Figure 2.9: Store Semantics
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8atore[case eg of Pie I.. .|'pk : Ck] P $o
= gatorel[ei] p[m l 1/’01,...,2) l n/vn] ¢ o

where
(loc,0'y = &%°r¢[eg] p & o
T = o loc
pi = ¢ ;...v, and match(z,c)
Bgatore[+] = Mocy.Mocg. Ao alloc((z1 + 23),0)
where
1 = oloe
z9 = 0alocy
Bgstore[-] = Alocy.Mocz.Ma.alloc((z1 — z3),0)
where
ry = olog
zo = o locy
Bgstore[<] = Mocy.Mocz.Ao.alloc((zy < z3),0)
where
r; = olog
23 = o locy
Bgatore[=] = Mocy.Mocg.Ao.alloc((z1 = z3),0)
where
7 = olog
zo = o locy

Cestore[True] = MAo.alloc(TRUE,0)

Cestore[False] = MAo.alloc(FALSE,o)

Cesiore[Nil] = Mo.alloc(NIL,o)

Cestore[Cons] = Mocy.Mocy.Ao.alloc((locy, locy),0)

Figure 2.10: Store Semantics (continued)
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alloc(v,o) = (loe,afv/loc])
where
oloc = UNB

force(loc,o) = (loc',0'[loc'[loc)), if (o loc) € Closure
where

(loc,a') = force((o loc) o)
= force((o loc),0), if (o loc) € Loc

= (loc,02((locy,locg)/loc]), if (o loc) € Conscell
where
(locy,00) = force((e loc) | 1,0)
(locg,02) = force((o loc) | 2,04)

= (loc,0), otherwise

match(z,c) = (z = TRUE and ¢ = True)
or (z = FALSE and ¢ = False)
or (z = NIL and ¢ = Nil)
or (z € Conscell and ¢ = Cons)

Figure 2.11: Store Semantics (auxiliary functions)

2.5 Congruence

Since the store semantics of the language will be used as a reference against which store-related
analyses and optimisations can be proved correct, the store semantics and standard semantics
of the language must be shown to be congruent. A function @ is therefore defined which is
used to extract the standard semantic component from a store value. The store semantics
and standard semantics of the language can then be shown to be congruent if the result of

evaluating any program in both semantics have the same standard semantic component.

Definition 2.5.1 (Standard Semantic Component of a Store Value) The standard se-
mantic component of a store value can be extracted using the function ® which is defined as

follows:
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$: Valeuwc - Valg

d(loc,0) = L, if (0 loc) = UNB
= &((e loc) o), if (o loc) € Closure
= &((o loc), o), if (o loc) € Loc
= (®((oloc) | 1,0),®((o loc) | 2,0)), if (o loc) € Conscell
= o loc, otherwise
o

This function forces the evaluation of any closures in the store value, and extracts the stan-
dard semantic component from the resulting store value. Using this definition, the congruence
of expressions in the store semantics and standard semantics of the language can be shown

by proving the following lemma.

Lemma 2.5.2 (Congruence of Expressions)

fOf all PEstore (S Bvegllore, ¢guore € Fvegnore, Ogstore € Storegatore, ¢g (= Fveg, € € Exp:
if for all f € dom(Pgatore):

q’(¢gnore[f] IOC] .e .lOCn (Tgltore) = ¢£[f] (@(IOCI, Ugatore)) . .(@(IOC,” Ugatore))
then for all v € dom(pgatore):

B(E*17<[e] penore gmore Ogutors) = Ele] [B(pemere o], Tgmore) 0] de

Proof
The proof of this lemma can be found in Appendix A.l.
a

The following lemma states that the functional variable environments in the store seman-
tics and standard semantics of the language will always satisfy the requirement in Lemma

2.5.2.
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Lemma 2.5.3 (Congruence of Functional Variable Environments)

for all p € Prog:

if Eolpl = Ele] (Mv.1) ¢¢

and  &£'"[p] = force(£**[e] (Av.L1) dgatore (Aloc.UNB))
then for all f € dom(@gstore), OTgstore € Storegsrore:

O (Peatore[f] locy .. . loc, Ogstore) = Pe[f] (B(locy, Ogatore)) ... (B(l0Cn, Tgatore))

Proof

The proof of this lemma can be found in Appendix A.2.

The congruence of programs in the store semantics and standard semantics of the language

can now be shown by proving the following theorem.

Theorem 2.5.4 (Congruence of Programs)

for all p € Prog: ®(£;7[p]) = &,[p]
0
Proof

This theorem follows immediately from Lemmata 2.5.2 and 2.5.3.

2.6 Related Work

A large number of store semantics have been defined for strict languages. Examples of first or-
der strict store semantics can be found in (Mycroft, 1981; Hudak, 1987; Jones & Le Métayer,

1989; Jensen, 1990). These semantics are similar to the store semantics presented in this
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chapter since they thread the current state of the store through the semantics, but they are
simpler because there is no need to deal with the closures which are required in a lazy store
semantics. Examples of higher order strict store semantics can be found in (Pleban, 1990;
Andersen, 1990; Deutsch, 1990; Hughes, 1991). The store semantics in (Pleban, 1990) are
defined using a relatively complex continuation semantics. The store semantics in (Ander-
sen, 1990) and (Deutsch, 1990) are defined using an operational semantics. The strict store
semantics described in (Hughes, 1991) are quite similar to the semantics in (Mycroft, 1981;
Jones & Le Métayer, 1989; Jensen, 1990), except that higher order values can be allocated in
the store.

Examples of store semantics for lazy languages can be found in (Josephs, 1987) and
(Hughes, 1991). The store semantics in (Josephs, 1987) are defined using a continuation
semantics. The lazy store semantics in (Hughes, 1991) are similar to the lazy store semantics
defined in this chapter, except that higher order values can be allocated in the store. Also, not
all expressible values are allocated in the store in the semantics described in (Hughes, 1991),
since this is not necessary to ensure lazy evaluation. This was done in the store semantics
described in this chapter to facilitate their extension to incorporate usage counting in the
next chapter. Of all the described store semantics, congruence with the standard semantics

of the described language is considered only in (Pleban, 1990) and (Hughes, 1991).

2.7 Conclusion

In this chapter, the syntax and standard semantics of the language which will be used through-
out this thesis have been defined. Non-standard store semantics which model the use of store
in possible implementations of the language were then defined. These store semantics pro-
vide a reference against which store-related analyses and optimisations can be proved correct.
To ensure that these store semantics model the use of store safely, they were proved to be
congruent to the standard semantics of the language.

Now that the store semantics of the language have been defined, store related analyses
and optimisations can be defined and proved correct with respect to them. In Chapter 3,
an analysis is presented which can be used to detect which store cells will become garbage,
and is proved to be correct with respect to these store semantics. In Chapter 4, it is shown
how the information obtained by this analysis can be used to validate compile-time garbage
collection, and in Chapter 5 it is shown how the information obtained by the analysis can be

used to guide the transformation when compile-time garbage avoidance is performed.
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Compile-Time Garbage Detection

In this chapter, it is shown how the cells which will become garbage within a program can be
detected at compile-time. A cell will become garbage during the evaluation of an expression if
it is unshared when it loses a reference. To determine whether a cell is unshared, the number
of times that the cell is used is determined. If the cell is used only once, then it is unshared.

To determine the number of times a cell is used, the store semantics presented in Section
2.4 are augmented to incorporate usage counting. These usage counting store semantics must
be abstracted in some way to allow usage counts to be determined at compile-time. Usage
counting store values are therefore abstracted to usage patterns. These patterns are finite
objects which indicate the number of times each part of a value is used. A usage counting
analysis is then defined, using these patterns, to determine at compile-time the number of
times each part of a value will be used in future computations. The usage count obtained by
this analysis must be safe with respect to the actual usage counting store value. This will be
the case if the usage count of a value determined by the analysis is not less than the actual
usage count, so it will not be assumed that a cell will become garbage when it is still required
by a program. The described usage counting analysis is proved to be safe with respect to the

usage counting store semantics, and some examples of its application are given.

25
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The remainder of this chapter is structured as follows:

o Section 3.1: the store semantics presented in Section 2.4 are augmented to incorporate

usage counting.

¢ Section 3.2: domains of usage patterns which are abstractions of usage counting store

values are defined.
¢ Section 3.3: the operations which can be performed upon usage patterns are defined.
¢ Section 3.4: a usage counting analysis is defined over the domains of usage patterns.

¢ Section 3.5: the usage counting analysis is proved to be correct with respect to the

usage counting store semantics.
o Section 3.6: some examples of the application of usage counting analysis are given.
¢ Section 3.7: related work is considered.

o Section 3.8: a summary of this chapter is given.

3.1 Usage Counting Store Semantics

To provide a reference against which the compile-time analysis of store usage can be proved
correct, the store semantics presented in the previous chapter are augmented to incorporate
usage counting. This involves counting the number of times each value is used in a program.

The usage counting store semantic domains are shown in Figure 3.1. These domains are
very similar to the domains for the store semantics of the language given in Figure 2.7. As
before, all expressible values are allocated in the store so that a usage count can be associated
with them. A new domain is defined to associate a usage count with each expressible value.
These usage counts are represented by integers. The functionality of the usage counting store
semantic functions of lthe language is shown in Figure 3.2, and they are defined in Figures
3.3 and 3.4. They are very similar to the functions defined for the store semantics of the
language given in Figures 2.9 and 2.10, except that they maintain a usage count for all values
in the language. All new values which are created within a program are given an initial usage
count of 0 since they have not yet been used. These usage counts are incremented only when
their associated values are used. This will be the case if a value appears in a strict context.

The usage count for a value is therefore incremented only if it is an argument in a basic
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Valguse

z € Eval
Atom
Int

Bool

List
Conscell
loc € Loc
Uval

u € Use
Closure
p € Bveguse

¢ € Fveguse

0 € Storeguse

(Loc x Storeguse)

Atom @ List

Int @ Bool

{o}jre {1} {-1}L®...
{TRUE}; @ {FALSE},
{NIL}, & Conscell

(Loc x Loc)y

Int

(Use x Eval),

Int

Storeguse — Valguse

Bv — Loc

Fv — Loc* — Storeguse — Valguse

Loc — (Closure & Loc @ Uval @ {UNB},)

Figure 3.1: Usage Counting Store Semantic Domains

function call, a selector in a case expression, or its value is being forced as the result of a

program. Usage counts can only increase as they are never decremented.

* The auxiliary functions of the usage counting store semantics are defined in Figure 3.5.

These functions are very similar to the auxiliary functions of the store semantics given in

Figure 2.11, except that the function inc has been defined to increment the usage count

associated with an expressible value.

Since the usage counting store semantics of the language will be used as a reference against

which store-related analyses and optimisations can be proved correct, they must also be shown

to be congruent to the standard semantics. This can be done in a similar manner to that

described in Section 2.5 for the store semantics.
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ine:

use .,
guse
8“86 .
Busc .
CUBC .

alloc:

Prog — Valguse

Exp — Bveguse — Fveguse — Storeguse — Valguse
Bas — Loc* — Storeguse — Valguse

Con — Loc™ — Storeguse — Valguse

((Closure @ Uval) x Storeguse) — Valguse

Valgule land Valguu

fOTCC: Va.lguu - Va.lguse

match: (Eval x Con) — Bool

Figure 3.2: Usage Counting Store Semantic Functions

3.2 Usage Patterns

The usage counting store semantics defined in the previous section must be abstracted in

some way to allow usage counts to be determined at compile-time. One approach would be to

use an abstract store, as is done in (Hudak, 1987; Andersen, 1990; Deutsch, 1990). Abstract

stores tend to be relatively large objects, so such an analysis is likely to be inefficient. The

approach which is taken here is to abstract usage counting store values to usage patterns

which represent the number of times each part of a value is used in future computations. The

usage pattern which gives the future usage of a value is called its contezt.

The notation Dgpgs used in the definition of the usage counting domains represents the

lifting of the domain D to add a new bottom element ABS. This lifting operation is defined

as follows.

Definition 3.2.1 (The Domain Lifting Operation)

Dsps = DU {ABS}

where
ABS
d;

Cpaps dy VYV d € Dygs
[-:-DABS dz, v dl,d2 € D s.t. dl ED d2
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use

& le
where
Hvie..ony, = @

:f,. VnleooVnk, = en] = force(E¥*¢[e] (Av.L1) ¢o (AMloc.UNB))
where

¢o = fix (Ap.[(Mocy...Mocy; Ao.£¥%¢[ej] [loer/vja, . . ., lock;[vik,] ¢ o)/ f3])

Elklpdo = alloc((0,k),0)

Evlpdo = (loc,o'loc/p[v]]), if (o (p[v])) € Closure
where

(loc,0’) = (o (p[e]) 0
= ((o (p[vD)), o), otherwise
Evelber...enl ppo = B*[b] locy...locy On

where

(locy,01) = inc(E¥**[er] p ¢ 0)

(locn,0,) = inc(E¥*[en] p ¢ On-1)
E¥efcer...ex] pdpo = C*¢[c] loc,...loc, on

where

(locs,01) = alloc((E¥*°[e1] p ¢),0)

(locp, 04) - alloc((E€**¢[en] p ¢),0n-1)
Evlfe...exdpdo = ¢[f]locy...loc, op

where

(locy,a1) = alloc((E**¢[e1] p ¢),0)

(locw, o) = alloc((E[en] p $),0n1)

Figure 3.3: Usage Counting Store Semantics
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E¥¢[case egof pr:er |...|pk:ex] pdo

Buse[+]

Buae[__]

Buae [<]

Buac [___]

Cuo¢[ True]
Cue¢[ False]
Ccuse[Nil]

C**¢[Cons]

E¥le] plz L 1/v1y. vz | nfvs) @ 0

where

(loc,o') = inc(E¥*¢fec] p ¢ o)
(u,2) = o' loc
Pi = ¢ v;...9, and match(z,¢)

Alocy.Moeg. Ao.alloc((0,(zy + z2)),0)
where

(ul,xl) = 01001

(ug,z2) = o locy

Alocy.Mocy. Ao alloc((0, (21 — 22)),0)
where

(ul,zl) = g 1001

(uz,22) = o locy

Mocy.Mlocy. Aa.alloc((0, (21 < z2)),0)
where

(u1,21) = olocy

(u2,z9) = o locy

AMlocy . Mocg.Ao.alloc((0, (21 = x3)),0)
where

(u1,21) = olocy
(ug,z2) = o loc;

Ao.alloc((0,TRUE),0)
Ac.alloc((0,FALSE),0)
Ao.alloc((0,NIL),0)

Mocy.Mocy. Aa.alloc((0,(locy, locy)),0)

Figure 3.4: Usage Counting Store Semantics (continued)
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alloc(v,0)

(loc, o[v/loc))
where
o loc = UNB

inc(loc,g) = (loc,o(u+1,2)/loc]) .
where
(u,z) = oloc

force(loe,o) = (locyo), if (0 loc) = L
or (o loc) = UNB

= (loc',0'[loc' [loc)), - if (o loc) € Closure
where
(loc',a') = force((o loc) o)

= force((o loc),0), if (o loc) € Loc

= inc(loc,o9[(u,(locy,locy))/loc]), if (o loc) € Uval
where and z € Conscell
(u,x) o loc
(locy,01) force(z | 1,0)
(locg, 02) force(z | 2,01)

= inc(loc,o), otherwise

match(z,c)

(z = TRUE and ¢ = True)

or (z = FALSE and ¢ = False)
or (z = NIL and ¢ = Nil)

or (z € Conscell and ¢ = Cons)

Figure 3.5: Usage Counting Store Semantics (auxiliary functions)

A different domain of usage patterns is defined for each possible type of value in the lan-
guage. The domain of usage patterns for a value of type T is given by U(T'). The type T4 in
the definition of the domain U(T,4) represents an atomic type (int, bool). These domains are

defined as follows.
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Definition 3.2.2 (Domains of Usage Patterns)

U(Ta) = (U'(Ta))ass

U'(Ta) = {0,1,2}
where
0 Cuyqr, u YueU(T)
v Cyqr, 2, Vu€eU'(Ta)

U(list T) (U'(list T))aBs

U'llist T) = (U'(Ta) x U(T))
where

(u1,u2) Cprime ) (uhoud), il w Cynr,y ¥

and Ug ;U(T) u’2

Each domain U(T) is an abstract context domain as defined in (Hughes, 1988) with the least
element ABS representing absence (indicating that an expression is not evaluated). There is
no element in any of the domains U(T') representing contradiction because it is assumed that
all programs are well typed, and contradiction can never arise.

Elements of the domain U(Ty4) describe the usage of values of atomic type. The elements
in this domain, other than ABS, are the usage patterns 0, 1 and 2 which indicate that a value
is not used, is used at most once, or may be used any number of times respectively.

Elements of the domain U(list T) describe the usage of list values containing elements of
type T. Elements of this domain, other than ABS, are pairs, where the first element of the
pair describes the usage of all the spine cells in the list, and the second element describes the
usage of all the elements in the list. Since these elements describe the usage of more than one
value, they give a safe approximation to the usage of all of them. The usage of the spine cells
of a list are represented by the values 0, 1 and 2. The value 0 indicates that none of the spine
cells are used at all. The value 1 indicates that none of the spine cells are used more than
once, and the value 2 indicates that all the spine cells may be used any number of times. The
usage of the elements in the list are described by the usage domain corresponding to their

type. Some elements of the domain U(list T') describe a list in which the spine cells are not
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used, but the list elements are used. Although this situation cannot occur, these elements are
included to simplify the definition of the domain.

Each domain U(T) is a complete lattice, with the least element representing absence,
and the greatest element representing a value in which all parts may be used any number of
times. The usage pattern ABS indicates that an expression is not evaluated, so no parts of
it are used. Usage patterns other than ABS indicating that no parts of a value are used (for
example, the usage pattern (0,0) in the domain U(list T4)) represent a context in which an
expression is evaluated to normal form, but is not used in any further computations. Although
this situation should not occur in a lazy functional language, it is shown in Section 5.2.1 how
these usage patterns can be used to detect transient structures within expressions.

The domain U(list T4) can be viewed as shown in Figure 3.6.

(2.2
(1,2) (2,1)\
0.2) (1,1)\ (2,0)\

(2,ABS)

/
N

ABS

Figure 3.6: The Domain of Usage Patterns U(list T4)
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In general, if the definition of type T is parameterised by the types Tj...T,, then the
usage domain for a value of type T is given by U(T'), which is defined as follows:

Definition 3.2.3 (General Definition of Domains of Usage Patterns)

U(T) = (U'(T))ass

U(T) = (U'(Ta) x U(TY) x...x U(T,))
where
(20yeeestn) Cunr) (ugs.-.yuy), if o  Cuyyry) ug

and U EU(Tl) u'l

and u, Cy,) un

3.3 Operations on Usage Patterns

In this section, the operations which can be performed upon usage patterns are defined.
When the usage of a value in one expression is given by u;, and the usage of the same value
in another expression is given by u3, a means of combining these two usage patterns into one
describing the total usage of the value in both expressions is required. As in (Hughes, 1988),
a binary operator & is defined to provide this information. This operator can be regarded
as an abstract addition operator over elements in each domain U(T). It is defined on the

domain of usage patterns for values of atomic type as follows.

Definition 3.3.1 (The & Operator)

u & ABS = wu, VueU(Ts)
v & 0 = 0, ifu=ABS
= u, otherwise
u & 1 = 1, fu=ABSoru=20
2, otherwise
u & 2 = 2, VueU(Ty)
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The definition of this operator is extended pointwise on domains of usage patterns for values
of structured type.

The two usage patterns which are combined using this operator will be safe approximations
to the usage of a value in two different expressions. The usage pattern which is produced as
the result of this operator will therefore be a safe approximation to the total usage of the
value in both expressions, since it simply acts as an abstract addition operator over domains
of usage patterns.

Also following (Hughes, 1988), the binary operator — is defined to preserve absence in

the context ABS. It is defined for each domain of usage patterns as follows.
Definition 3.3.2 (The — Operator)

wp — u; = ABS, ifu; =ABS

g, otherwise

If an expression appears in the context ABS, then no part of the result of the expression
will be used, and so no part of the sub-expressions occurring within it will be used either. It
must therefore be ensured that any absence in the context of an expression is propagated to
all sub-expressions.

The binary operator U gives the least upper bound of two usage patterns in each domain
of usage patterns.

To determine the usage of a constructor application from the usage of its arguments,
abstract constructors which operate on usage patterns are defined. Corresponding to each
constructor ¢ of type Ty — ... — Ty, abstract constructors Uc which are of type U'(T4x) —
U(Ty) = ... — U(T,) are defined as follows.

Definition 3.3.3 (The Abstract Constructors Uc)

U False(uo) = up

U True(uo) =

U Nil(uo) = (uo,ABS)
UCons(ug,u1,u2) = (uo,u1) U uy

O
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The additional argument for each abstract constructor is an element of the usage domain
U'(Ta). It represents the usage of the overall resulting structure if it is of atomic type, or
the usage of the root cell of the resulting structure if it is of list type. The usage of the spine
cells in a list is given by the least upper bound of the usage of the root cell of the list, and
the usage of the spine cells in the tail of the list. The usage of the elements in a list is given
by the least upper bound of the usage of the head of the list and the usage of the elements in
the tail of the list.

In general, if a constructor ¢ is of type Th — ... — Ty, and U'(T) = (U'(T4) x U(TY) x
... X U(T})), then the abstract constructor Uc is defined as follows:

Definition 3.3.4 (General Definition of the Abstract Constructors Uc)

Ue : UTa) - UT) —...— U(Tw)
Uc(ugy..ytin) = u'U(ugyuly...,u))
where
o = | {uwlw € U(T)}
=1

) || {uilui € U(T])}

=1

i

vy = | [ulu e U}

=1

The usage of the head and tail of a list can be determined from the usage of the overall
list using the & Cons#t1 and U Cons#2 operators respectively. These operators are defined as

follows:
Definition 3.3.5 (The U Cons#1 and U Cons#2 Operators)

U Cons#1 ABS ABS
UCons#1 (u1,u2) = ug

U Cons#2 ABS
UCons#2 (uq,uz)

ABS

(u1,u2)

(]
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In general, if a constructor ¢ is of type Ty — ... — Ty, and U'(T},) = (U(TA) xU(T] x...x
U(T})), then the operators Uc#i where 1 < ¢ < n are defined as follows:

Definition 3.3.6 (General Definition of the Uc#i Operators)

Uc#i i U(Tw) - U(T)
Uc#i ABS = ABS
Uc#i (uoy...ouk) = (uoye..,u), fT; =T,
= uj, L =T;,1<j<k
a

Now that the operations on usage patterns have been defined, it remains to prove that they

are monotonic and continuous. The proofs are not difficult, and are not included here.

3.4 Usage Counting Analysis

In this section, a usage counting analysis is presented which operates over the domains of
usage patterns. This analysis determines the maximum number of times a value will be used
in future computations within a program. The domains which are used in this analysis are

shown in Figure 3.7.

u € Usage = U(T)

éu € Fvey = (Fv x Int) — Usage — Usage

Figure 3.7: Usage Counting Analysis Domains

The future usage (or context) of a value of type T is an element of the usage domain U(T)
and is represented by u in this analysis. Each function in the function variable environment
in the analysis gives the future usage of a given argument within a given function for a given

context of function call.
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The functionality of the usage counting analysis functions is shown in Figure 3.8.

Up: Prog — Fvey

U: Exp — Bv — Usage — Fvey — Usage

Figure 3.8: Usage Counting Analysis Functions

The function U, gives the function variable environment resulting from the usage counting
analysis of a program. The result of evaluating U[e][z] u ¢y gives the maximum number of
times the variable z is used in future computations if the expression e appears in the context
u. These functions are defined in Figure 3.9. The rules for this analysis can be explained as

follows:

(U1) The result of evaluating a program is a function variable environment in which functions
of the form U f#k are introduced. Each function of the form U f#k gives the future usage of
argument number & within the function f for a given context of function call. The value of
this function variable environment is determined using a least fixed point evaluation.

(U2) No part of a variable is used in a constant.

(U3) If the variable z is evaluated in a context u, then the usage of z is given by u. If any
other variable is evaluated, then the variable z is absent.

(U4) Each of the arguments in a basic function application will be evaluated in a context 1,
since they will be used only once. The total usage of the variable z is the total (using &) of
its usage in each of these arguments.

(US5) If a constructor application is evaluated in a context u, then each of its arguments will be
evaluated in a context given by the sub-component of u which corresponds to that argument.
The total usage of the variable z is the total (using &) of its usage in each of these arguments.
(U6) If a function application is evaluated in a context u, then each of its arguments will be
evaluated in a context given by the function variable environment for a call of the function
in the context u. The total usage of the variable z is the total (using &) of its usage in each
of these arguments.

(U7) If a case expression is evaluated in a context u, then the branches of the case expression
will also be evaluated in the context u. The context in which the selector of the case expres-

sion will be evaluated depends upon which branch of the expression is selected. This context
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(U1)

(U2)

(U3)

(U4)

(US)

(Us)

(U7)

Uye
where
fl P11...01ky =

favnioovng, =

€1

en]
= fix (Adu [(Auld[e;)[vx] v du)/Uf;#E))

Ulkllz] v du
Uv][z] v du

Ulbey...ex ][] v du
Ufcer...en]lz] v du

where
U = Llc#lu

Un = UcHnu
Ulf er...eallz] v du

where

U = ¢u[uf#1]u
un = dulUftn]u

Ulcase ey of py : ey |

where
Y4

€1 V11 ...V,

Dk Ck Ukl v+ Ukn,

Uk

ABS

U, ifo==z
ABS, otherwise

u— Ulelz] 1 du & ... & Ulenllz] 1 bu1)

u— U[er][z] v1 du & ... & Ulen][z] un du)

= u— (UEGIMQ:] udu&... & ul[ean] Un ¢u)

o] Pt ex]lz] v du

= u— (Uleollz] w1 ¢u) & Ulea)[e] v gu)) U ...

U (Uleodl=] ur ¢u) & Ulexllz] v ¢u)))

u = Ue(LUeadlon] w uy .. Ulerllorm] © )

Uck(1,UTerdlvia] v duy ..., Uler][vrn, ] v du)

Figure 3.9: Usage Counting Analysis
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is given by the application of the abstract constructor (corresponding to the constructor in the
pattern of the selected branch) to the usage patterns giving the usage of the pattern matching
variables in the selected branch. The total usage of the variable z in the case expression is
the total (using &) of its usage in the selector and its usage in the selected branch. Since it
cannot be determined at compile-time which branch of the case expression will be evaluated,

the least upper bound of the usage of the variable & when each branch is evaluated is used

instead.

3.5 Proof of Correctness

Since the information obtained from usage counting analysis is going to be used to allow
various optimisations to be performed, it must be shown that it is safe with respect to the
usage counting store semantics. This will be the case if the future usage of a value obtained
by usage counting analysis is a safe approximation to the increment in usage of the value in
the usage counting store semantics due to the evaluation of the program. It will be a safe
approximation if it is greater than the actual usage.

To determine the usage pattern corresponding to the increment in usage of a usage count-

ing store value, the function 6 is defined as follows.

Definition 3.5.1 (Usage Pattern Corresponding to the Increment in Usage of a
Usage Counting Store Value) The usage pattern corresponding to the increment in usage
of a usage counting store value at location loc between the stores o and o' can be determined

for each type of value using the function § which is defined as follows:

8: (Loc X Storeguse X Storeguse) — U(T4)

é(loc,o,0") = ABS, if (¢ loc) = UNB or (o loc) = L
= é((o loc),0,0"), if (o loc) € Loc
= u, otherwise
where

v = 0, if ((¢'loc) | 1)=((c loc)| 1)
= 1, if ((¢'loc) | 1)=((gloc)]1)=1

= 2, otherwise
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§: (Loc X Storeguse X Storeguse) — U(list T')

6(loc,0,0") = ABS, if (¢ loc) = UNB or (0 loc) = L
= §é((o loc),0,0"), if (o loc) € Loc
= UNil(ug), if (o loc) | 2 = NIL
where
u = 0, if ((6' loc) | 1) = ((o loc)| 1)

1, if ((¢'loc) | 1) = ((oloc) 1) =1

2, otherwise

= UCons(ug,uy,uz), if (o loc)| 2 € Conscell

where

Ug =

wm =

U =

0, if ((¢' loc) | 1) = ((o loc) | 1)

1, if ((¢/loc) } 1) =((o loc) | 1) =1
2, otherwise

§(((aloc) 1 2) ] 1,0,0")

8(((e loc) 1 2) | 2,0,0")

It is assumed that all closures have been evaluated before the usage pattern correspond-

ing to the increment in usage of a usage counting store value is determined. If the value at

the given location in the store is unbound or is undefined, then the corresponding usage pat-

tern is ABS. If there is no increment in the usage of an atomic value, then the corresponding

usage pattern is 0. If there is an increment of one in its usage, then the corresponding usage

pattern is 1, otherwise it is 2. The usage pattern corresponding to a list value is determined

recursively from the usage counting store value and gives the least upper bound of the usage

of the spine cells of the list, and the least upper bound of the usage of the elements in the

list.
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Using this definition, the correctness of the usage counting analysis can be shown by

proving the following theorem.

Theorem 3.5.2 (Correctness of Usage Counting Analysis)

for all pguse € Bveguse, Pguse € Fveguse, 0guse € Storeguse, ¢y € Fvey, p € Prog, e € Exp:

it o o] = (loc, o)
and  for all f € dom(pguse):
if Peuse[f] locy ... locy, Gguse = (loc' Ofuse)
and  8(loc', Ofusey OFuse) = u
then  if deusc[f] locy ... loc), oguse = (loc" 0 use)
and (ulU f#i] v) C 8(loci, 0guse, 05ue)
then u C §(loc”, 0% uie, 0fuse)
and  £%*¢[e] peuse Peuse Oguse = (loc’, Tfuse)
and  §(loc',Okuiey OFuse) = U
then for all z; € dom(pguse):
if £usefe] [loci/ ;] peuse Oguse = (loc”, 0guse)
and  (U[e][z:] v du) € 6(loci, Oguse, OFuse)

then u [; 6(100”, aléuae, 0"5.::)

a
Proof

The proof of this theorem can be found in Appendix B.1.

The following lemma states that the function variable environment in the usage counting

analysis will satisfy the requirement in Theorem 3.5.2.
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Lemma 3.5.3 (Correctness of Function Variable Environment)

for all p € Prog:
if 8;"[]7] = force(g[e] (A’l).l) ¢gute (AIOC.UNB)) = (lOc'", an{“e)

and  U,[p] = du
then for all f c dOm(¢guae), Oguse € Storeguu:

if peuse[f] locy...locy oguse = (loc’,0kuse)

and  §(loc, Ofuse, Ofuse) = u

then if Peuse[f] loc) . . . loc}, oguse = (loc" 0 luse)
and  ($u[Uf#i] u) C 6(locl, oguse,alli.e)

then u C é(loc”, 0fuse, 0fue)

Proof

The proof of this lemma can be found in Appendix B.2.

3.6 Examples

In this section, the results of applying usage counting analysis to the example functions given
in Figure 2.2 are presented. The results of applying the analysis to the function append are

shown in Figure 3.1.

Context | (0,ABS) | (0,0) [ (0,1) |(0,2) | (1,ABS) | (1,0)
Uappend#1 | (1LABS) | (1,00 | (1,1) | (1,2) | (1,ABS) | (1,0)
Uappend#2 | (0,ABS) | (0,0) | (0,1) | (0,2) | (1,ABS) | (1,0)
Context (1,1) 1(1,2)]|(2,ABS) | (2,00 | (2,1) [(2,2)
Uappend#1 | (1,1) | (1,2) | (1,ABS) | (1,0) | (1,1) [(1,2)
Uappend#2 | (1,1) |(1,2) | (2,ABS) | (2,0) | (2,1) |(2,2)

Table 3.1: Usage Counting Analysis of the Function append
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From this table, it can be seen that the spine cells in the first argument of append will never
be used more than once, and the list elements in the first argument will be used the same
number of times as the list elements in the result of the function. The usage of the second
argument of append will be exactly the same as the usage of the result of the function.

The results of applying the analysis to the function reverse are shown in Figure 3.2.

Context | (0,ABS) | (0,00 (0,1) {(0,2) | (1,ABS) | (1,0)
Ureverse#1 | (1,ABS) | (1,0) | (1,1) (1,2) { (1,ABS) | (1,0)
Context (1,1) | (1,2) | (2,ABS) | (2,0) | (2,1) |(2,2)
Ureverse#1 | (1,1) |(1,2) | (1,ABS) | (1,0) | (1,1) |(1,2)

Table 3.2: Usage Counting Analysis of the Function reverse

From this table, it can be seen that the spine cells in the argument of reverse will never be
used more than once, and the list elements in the argument will be used the same number of
times as the list elements in the result of the function.

The results of applying the analysis to the function accreverse are shown in Figure 3.3.

Context (0,ABS) | (0,0) | (0,1) |(0,2) | (1,ABS) | (1,0)
Uaccreverse#1 | (1,ABS) | (1,0) | (1,1) |(1,2) | (1,ABS) | (1,0)
Uaccreverse#2 | (0,ABS) | (0,0) | (0,1) |(0,2) | (1,ABS) | (1,0)

Context (1,1) {1 (1,2) | (2,ABS) | (2,0) | (2,1) {(2,2)
Uaccreverse#l | (1,1) | (1,2) | (1,ABS) | (1,0) | (1,1) | (1,2)
Uaccreverse#2 | (1,1) | (1,2) | (2,ABS) | (2,0) | (2,1) |(2,2)

Table 3.3: Usage Counting Analysis of the Function accreverse

From this table, it can be seen that the spine cells in the first argument of accreverse will
never be used more than once, and the list elements in the first argument will be used the
same number of times as the list elements in the result of the function. The usage of the
second argument of accreverse will be exactly the same as the usage of the result of the

function.
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The results of applying the analysis to the function flatten are shown in Figure 3.4.

Context | (0,ABS) | (0,0) (0,1) 02 | (1,ABS) | (1,0)
Uflatten#1 | (1,(1,ABS)) | (1,(1,0)) | (1,(1,1)) | (1,(1,2)) | (1,(1,ABS)) | (1,(1,0))
Context (1,1) (1,2) (2,ABS) (2,0) (2,1) (2,2)
Uflatten#1 | (1,(1,1)) | (1,(1L,2) | (1,(1,ABS) | (L,(1,0) | (,(1,1) | (1,1,2)

Table 3.4: Usage Counting Analysis of the Function flatten

From this table, it can be seen that no list cells in the argument of flatten will ever be used
more than once, and the bottom level elements in each list in the argument will be used the

same number of times as the list elements in the result of the function.

3.7 Related Work

In this section, other usage counting analyses, within the three frameworks of abstract inter-

pretation, backward analysis and type inference, are considered.

3.7.1 Abstract Interpretation

An isolation interpretation is described in (Mycroft, 1981) which can be used to determine if
data structures are used no more than once in a strict first order functional language. This
extends previous work in (Schwarz, 1978) in which these isolation classes had to be supplied
by the user. An approximate set of isolation patterns are determined for each value. This
interpretation is relatively complex, and makes use of information obtained by two other static
analyses; the Eysgs interpretation and the Egx aas interpretation. No proof of correctness
is given for the isolation interpretation.

The sharing analyses described in (Jones & Le Métayer, 1989) and (Hamilton & Jones,
1990) are applicable to strict first order functional languages, and are similar to the isolation
interpretation described in (Mycroft, 1981). They also make use of the information obtained
by two other static analyses; transmission analysis and necessity analysis. These analyses are
similar to the Eysgs and Egx aa interpretations described in (Mycroft, 1981). The domains
of sharing patterns which are used in these analyses distinguish between the sharing of each of
the spine cells in a list. To allow the compile-time analysis of sharing, these domains are cut

off at a suitable depth. The correctness of the described sharing analyses are not considered.
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In (ITudak, 1987), an abstract interpretation of reference counting in a first order strict
functional language is presented. This involves counting the number of syntactic occurrences
of values in a program. This differs from counting the number of times they are actually used,
as is done in this chapter. A value may be referenced many times, but it might be used only
once. To allow the analysis of reference counting at compile-time, ‘sticky’ reference counts are
used. When a reference count reaches a certain maximum value, it cannot be reduced again.
The analysis presented in (Hudak, 1987) uses an abstract store and is therefore likely to be
inefficient. A similar analysis for a higher order strict language is described in (Andersen,
1990).

An update avoidance analysis is presented in (Marlow, 1993) which can be used to deter-
mine the number of times a value will be used in future computations. If the value is used
no more than once, the cost of updating a closure with the result of its evaluation can be
avoided. The analysis involves collecting a bag of variables which must be used when a given
expression is evaluated. A bag is used because the same variable may be used more than once.
The number of times a variable is used in evaluating the expression can then be determined
by counting the number of occurrences of the variable in the bag. No proof of correctness is

given for this analysis.

3.7.2 Backward Analysis

A simple backward analysis is described in (Hughes, 1988) which can be used to determine
usage counting information. The domain used in this analysis is a simple flat domain similar
to the domain defined in this chapter for values of atomic type, so it does not give very detailed
usage counting information for structured data. The information obtained by this analysis
can be used to optimise call-by-need to call-by-name, thus saving the cost of overwriting a
closure with its value, and testing to see whether the overwrite has been performed.

A backward analysis for determining usage counting information for structured data is
described in (Jensen & Mogensen, 1990) and (Jensen, 1990). This analysis is very similar
to the usage counting analysis presented in this chapter. It is defined on an infinite domain
of contexts, so the usual iterative method for finding fixpoints will not terminate in general.
This situation is avoided by using a global environment which binds variables to their context
and binds functions to the least upper bound of the contexts of the calls to them. This global
environment is represented by a grammar, and it is possible to determine an approximation

to this grammar at compile-time. Although the correctness of the analysis is considered in
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(Jensen, 1990), no safety condition could be defined, and hence no proof of correctness could
be given. A sketch is given of an extension of the analysis to higher order functions. This
involves using a closure analysis like the one described in (Sestoft, 1989) to determine the
set of possible abstract closures to which a function can be evaluated during the execution of
a program. The least upper bound of the corresponding contexts of these abstract closures
is then determined. A global environment is represented by a grammar as before, and an
approximation to this grammar is determined at compile-time. Again, no proof of correctness

is given for this higher order analysis.

3.7.3 Type Inference

The update avoidance analysis described in (Launchbury et al., 1992) is a type scheme which
can be used to determine usage counting information. This type scheme is defined on a domain
similar to the usage counting domain presented in this chapter for values of an atomic type, so
it does not give very detailed usage counting information for structured data. The information
obtained by the analysis is used to avoid updating a closure with its value, if its value is used
only once. No correctness proof is given for the analysis because no appropriate semantics
could be defined as a reference for its correctness.

A type inference scheme for usage counting analysis is also presented in (Baker-Finch,
1992) and (Wright & Baker-Finch, 1993). This scheme is based on relevant logic. It involves
monitoring applications of the contraction structural rule to determine the number of times
a value is used. The usage count of a value is incremented each time the contraction rule is
applied to it. The described work does not give an algorithm for assigning types to terms.
Also, it does not deal with data structures, and recursion is considered only informally.

The type schemes described in (Wadler, 1990c; Guzmdn & Hudak, 1990; Smetsers et al.,
1993) allow the user to indicate that a value will be used once. The linear type scheme
described in (Wadler, 1990c) is based on linear logic (Girard, 1987). Values which are declared
to be linear in this type scheme must be used exactly once. No distinction is made between
sharing and absence. The type scheme described in (Guzmén & Hudak, 1990) is more loosely
based on linear logic, and can be used to determine that values are used no more than once.
This type scheme is therefore not as restrictive as the linear type scheme described in (Wadler,
1990c), but the type rules are considerably more complex. The unique type scheme described
in (Smetsers et al., 1993) makes use of graph reduction information to determine whether

values are unique. A value is unique if there is exactly one path to it from the graph root.
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3.8 Conclusion

In this chapter, it has been shown how cells which will become garbage within a program
can be detected at compile-time. A cell will become garbage during the evaluation of an
expression if it is unshared when it loses a reference. To determine that a cell is unshared,
the store semantics presented in Section 2.4 were augmented to incorporate usage counting.
Usage counting values in this semantics were then abstracted to usage patterns. These usage
patterns are finite objects which indicate the number of times each part of a value is used. A
usage counting analysis was then defined using these patterns to determine at compile-time
the number of times each part of a value will be used in future computations. This analysis
was then proved to be correct with respect to the usage counting store semantics.

Now that cells which will become garbage can be detected at compile-time, a number of
optimisations can be performed to optimise the use of storage in programs. In Chapter 4, it
is shown how this information can be used to validate compile-time garbage collection, and
in Chapter 5, it is shown how this information can be used to guide the transformation when

compile-time garbage avoidance is performed.



Chapter 4

Compile-Tirﬁe Garbage Collection

Compile-time garbage collection involves annotating programs at compile-time to allow garbage
cells to be collected automatically at run-time. This optimisation overcomes the problem of
the programmer not being able to annotate functional programs in this way. Much work has
already been done to show how compile-time garbage collection can be performed for strict
languages, but not so much has been done for lazy languages. In this chapter, it is shown
how information obtained by usage counting analysis can be used to annotate lazy programs
for compile-time garbage collection.

Three different methods for compile-time garbage collection are presented. These are
called compile-time garbage marking, explicit deallocation and destructive allocation. Compile-
time garbage marking involves marking cells at their allocation to indicate that they will
become garbage after their first use. These cells are returned to the memory manager im-
mediately after their first use. Explicit deallocation involves explicitly returning cells to the
memory manager at a particular point in a program. Destructive allocation involves reusing
cells directly for further allocations within a program.

Store semantics are defined for programs which have been annotated for each of these
methods of compile-time garbage collection, and the correctness of these store semantics are

considered.

49
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The remainder of this chapter is structured as follows:

¢ Section 4.1: existing methods for run-time garbage collection are described, and the

relative advantages of each method are considered.

o Section 4.2: it is shown how programs can be annotated for compile-time garbage
marking. A store semantics is defined for programs which have been annotated in this

way, and the correctness of these store semantics is considered.

e Section 4.3: it is shown how programs can be annotated for explicit deallocation. A
store semantics is defined for programs which have been annotated in this way, and the

correctness of these store semantics is considered.

e Section 4.4: it is shown how programs can be annotated for destructive allocation. A
store semantics is defined for programs which have been annotated in this way, and the

correctness of these store semantics is considered.
¢ Section 4.5: related work is considered.

¢ Section 4.6: a summary of this chapter is given.

4.1 Run-Time Garbage Collection

In this section, existing methods for run-time garbage collection are described, and the relative
advantages of each method are considered. Run-time garbage collection involves determining
at run-time which store cells are no longer required by a program, and making these cells
available for further use. This information is relevant in this chapter because the way in
‘which storage is used at run-time must be considered when some of the described compile-
time optimisations of store usage are performed. There are three main garbage collection
strategies. These are reference counting, mark/scan and copying garbage collection. Each of
these methods is now described in more detail, and the relative merits of each method are

considered.

4.1.1 Reference Counting Garbage Collection

The idea of using reference counting for garbage collection was first suggested in (Collins,
1960). In this method of garbage collection, each cell in the store has an extra field which

contains a number indicating how many references there are to the cell. When a cell is
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allocated, its reference count is set to one. Each time a reference to the cell is created, the
count is increased by one, and each time a reference to the cell is destroyed, its reference
count is decreased by one. If the reference count of a cell reaches zero, then the cell is garbage
since there are no references to it. Before the cell is collected, the reference counts of each
cell it points to are also decremented. The reference counts of these cells may also be reduced

to zero as a result, so the process is repeated. These garbage cells are added to a free list of

cells which can be used for further allocations.
Some advantages of reference counting garbage collection over other methods of garbage

collection are as follows:
e Garbage collection takes place continuously as part of the user program, and is not a
logically separate process.
¢ The time spent on memory management is proportional to the number of transactions
which take place, and not to the total number of active cells.
o It is suitable for use in a distributed environment, since altering a reference count is an
atomic operation.
Some disadvantages of reference counting garbage collection are as follows:
Cells in the free list will be scattered arbitrarily throughout the store. There will

therefore be a low locality of reference in structures created from this free list. This

may result in thrashing in a virtual memory system, and the benefits of using a cache

may be lost in a real memory system.

Cyclic structures cannot be collected easily since they always have a reference count of

at least one (they point to themselves).

Extra space is required in each store cell to hold the reference count. This must be

about the same size as a pointer, since all store cells may point to the same cell.

o There is a constant overhead due to the need to update reference counts.

The problem of the space required to hold each reference count field can be alleviated
by limiting their size. If the reference count for any cell reaches its maximum value, then
it cannot be decremented. This approach is taken in the one-bit reference counting method
described in (Wise & Friedman, 1977), which takes advantage of observations in (Clark &
Green, 1977) and (Clark & Green, 1978) that most cells in LISP programs (around 97%) have
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a reference count of one. Another garbage collector must still be used in this case to collect
any cells in which the reference count has reached its maximum value. This garbage collector

can also be used to collect any cyclic structures which cannot be collected using reference

counting,

4.1.2 Mark/Scan Garbage Collection

The earliest garbage collectors were of the mark/scan type. This method of garbage collection
makes use of a free list of unused cells in the store. Each time an allocation is to be performed,
cells are removed from this free list to be allocated. When the free list is exhausted, the
garbage collector is invoked to build a new free list from the garbage cells in the store.

To determine which cells are garbage, all the cells in the store which are accessible from
any of the currently active pointers are marked. This marking is done by setting an extra
mark bit in each cell. After this marking is complete, all the cells in the store are scanned.
Any cells which are unmarked are added to the free list. As the store is scanned, the mark
bit of each cell is reset ready for the next invocation of the garbage collector.

Mark/scan garbage collection is easy to implement, but it does have the following disad-

vantages:
o Extra space is required for the marking of cells.

o All active cells are visited twice (once during the mark phase and once during the scan

phase), and all garbage cells are visited once (during the scan phase).

o As for reference counting, cells in the free list will be scattered arbitrarily throughout

the store, so there will be a low locality of reference in structures created from this free
list.

4.1.3 Copying Garbage Collection

Copying garbage collection involves copying all the store cells which are accessible from any
of the currently active pointers to a contiguous region in memory. Any cells not in this region
are therefore garbage and can be used for further allocations.

The idea of a two-space copying garbage collector was first suggested in (Fenichel &
Yochelson, 1969). The method described divides the store into two semispaces. During
the evaluation of a program, all new cells are allocated in one of the semispaces (the current

semispace). If there is insufficient space for an allocation in the current semispace, the garbage
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collector is invoked. The garbage collector copies all the cells in the current semispace which
are accessible from any of the currently active pointers into the other semispace. All the cells
in the current semispace are therefore garbage, and may be used for further allocations. The
semispace to which all the active cells have been copied then becomes the current semispace.

A problem with two-space copying is that no more than 50% of the available storage space
will be in use at any time. This problem can be alleviated by using multiple spaces. This
approach is taken in the generational garbage collection methods described in (Lieberman &
Hewitt, 1983; Ungar, 1984; Moon, 1984; Appel, 1989). In this approach, the store is divided
into n regions of the same size, n — 1 of which are active at any time. The remaining region
is used for copying into. One region is garbage collected at a time, with the most recently
allocated regions being garbage collected more frequently than older ones. This approach
takes advantage of the observation that the most recently allocated store cells usually contain

the most garbage (Clark, 1979).
Copying methods of garbage collection have the following advantages over other methods:

e All the free cells are compacted into a contiguous region of the store. Thus, successive
cells will be allocated in successive store locations, which results in a higher locality of

reference. This is advantageous in virtual memory systems and in real memory systems
which make use of a cache.

e All the active cells are compacted into a contiguous region of the store. Thus, more

compact storage techniques may be used for lists.

e All active cells are visited only once, and garbage cells are not visited at all.

Copying garbage collection therefore offers more advantages than other methods of garbage
collection. The majority of garbage collectors which are currently used for functional lan-
guages are therefore of the copying type.

In the remainder of this chapter, it is shown how compile-time garbage collection can
be performed. This compile-time garbage collection does not actually remove the need for
run-time garbage collection, it merely serves to reduce the amount of garbage collection
which must be performed at run-time. The compatability of the methods which are used for
compile-time garbage collection and run-time garbage collection must therefore be considered.
Three different methods for compile-time garbage collection are presented. These are called

compile-time garbage marking, explicit deallocation and destructive allocation.
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4.2 Compile-Time Garbage Marking

Compile-time garbage marking involves marking those cells which will become garbage after
their first use. These cells can subsequently be freed and used for further allocations. In
the next section, it is shown how the information obtained by usage counting analysis can
be used to annotate programs for compile-time garbage marking. A store semantics is then
defined for programs which have been annotated in this way, and the correctness of this store

semantics is considered.

4.2.1 Annotating Programs for Compile-Time Garbage Marking

In this section, it is shown how programs can be annotated for compile-time garbage marking.
Any cells which are used at most once can be marked at their allocation to indicate that they
will become garbage after their first use. The safety condition for the annotation of cells in

this way can be formally defined as follows.

Definition 4.2.1 (Safety of Annotation for Compile-Time Garbage Marking) 4 lo-
cation loc can be safely marked for compile-time garbage marking within a program p if the

following condition holds:

(o'loc)§1<1
where £3*¢[p] = (loc’, ")
a

Thus, any Cons cells or closures which are used at most once after their allocation can
be annotated for compile-time garbage marking. It is shown how Cons cells can be annotated
in this way in this section, but the same techniques can be used for the annotation of closures.

In order to annotate a program for compile-time garbage marking, the context of each
expression is determined from an initial context for the program indicating that its result will
be used exactly once. Any Cons applications which appear in a context in which the root
cell of the resulting structure will be used at most once are annotated with the superscript
m. These Cons™ applications indicate that the root cell of the resulting structure will be
marked when it is allocated. Any cells which are marked in this way can be returned to the

memory manager immediately after they are used.
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For example, consider the following expression:
accreverse (append zs ys) zs

None of the spine cells created in the result of the function call (append zs ys) will be used
more than once (see Table 3.3). Thus any cells created within the spine of this structure can
be marked to indicate that they will become garbage after their first use. The annotation of

this expression for compile-time garbage marking is shown in Figure 4.1.

accreverse (append’ zs ys) zs
where
accreverse s ys = case zs of
Nil T ys
Cons z s : accreverse zs (Cons r ys)
append’ zs ys = case zs of
Nil P oys
Consz zs : Cons™ z (append’ zs ys)

Figure 4.1: Annotation of accreverse (append zs ys) zs for Compile-Time Garbage Marking

4.2.2 Compile-Time Garbage Marking Store Semantics

In this section, it is shown how the store semantics of the language defined in Section 2.4 must
be changed to handle programs which have been annotated for compile-time garbage marking.
A usage counting store semantics is defined for programs which have been annotated in this
way so that it can be shown that they are equivalent to the usage counting store semantics
for unannotated programs presented in Section 3.1.

The semantic domains of the usage counting store semantics for compile-time garbage
marking are shown in Figure 4.2. These domains are similar to those for the usage counting
store semantics for unannotated programs given in Figure 3.1, except that an extra boolean
flag is associated with each list cell. This flag is used to indicate whether or not the list cell
will become garbage after its first use.

The functionality of the store semantic functions for performing compile-time garbage
marking is shown in Figure 4.3. These functions are defined in Figures 4.4 and 4.5. They are
very similar to the functions defined for the usage counting store semantics for unannotated

programs given in Figures 3.3 and 3.4. List cells are marked at their allocation to indicate
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Valgetgm

z € Eval
Atom

Int

Bool

List
Conscell

loc € Loc
Uval

u € Use
Closure

p € Bvegcigm
¢ € Fvegergm

o € Storegectgm

(Loc x Storegetgm)

Atom @ List

Int @ Bool
O)ro{t}lLo{-1}Lo...
{TRUE}, @ {FALSE},
{NIL}, & Conscell

(Bool x Loc x Loc)

Int

(Use x Eval)y

Int

Storegctgm — Valgergm

Bv — Loc

Fv — Loc* — Storegetgm — Valgetgm

Loc — (Closure @ Loc @ Uval @ {UNB},)

Figure 4.2: Compile-Time Garbage Marking Store Semantic Domains

whether or not they will become garbage after their first use. Any cells created by Cons™

applications are marked in this way, but cells created by Cons applications are not. List cells

are used during the evaluation of an expression only if they are the root cells of a selector in

a case expression. When a cell is used in this way, a check is made to see if it is marked. If

this is the case, then the cell is freed so that it can be used for further allocations.

The auxiliary functions of the usage counting store semantics for performing compile-time

garbage marking are defined in Figure 4.6. These functions are very similar to the auxiliary

functions of the usage counting store semantics for unannotated programs given in Figure 3.5,

except that the function dealloc has been defined to deallocate a given location in the given

store.
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Egtam
gctgm .
Bctgm .
Cctgm :
alloc:
dealloc:
inc:
force:

maltch:

Prog — Valgetgm

Exp — Bvegetem — Fvegctgm — Storegesgm — Valgetgm
Bas — Loc* — Storegctgm — Valgetgm

Con — Loc* — Storegetgm — Valgetgm

((Closure @ Uval) X Storegctgm) — Valgetgm

Valgetgm — Storegctgm

Valgetgm — Valgetgm

Valgetgm — Valgetgm

(Eval x Con) — Bool

Figure 4.3: Compile-Time Garbage Marking Store Semantic Functions

4.2.3 Correctness

To prove that the store semantics for programs which have been annotated for compile-time

garbage marking are correct, the following conjecture must be proved:

Conjecture 4.2.2 The usage counting store semantics for programs which have been safely

annotated for compile-time garbage marking as defined in Definition 4.2.1 are equivalent to

the usage counting store semantics for unannotated programs.

a

Sketch Proof

To prove this conjecture, it must be shown that the usage counts of values in both store

semantics are the same, and that the standard semantic components of values in both store

semantics are the same. If the usage counts of values in both store semantics can be shown to

be the same, the annotations of programs for compile-time garbage marking will be correct

with respect to the compile-time garbage marking store semantics. This will be the case since

list cells are deallocated only if they will not be used again. If these deallocated cells are

subsequently allocated again, their usage counts cannot be affected by any uses due to their
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ctgm
&M e
where
Hhoa.ooovyg =

o Va1e tnk, =
where

do = fix (Ad.[(Alocy...
eom[k] p 6 o

gctgm[v] p ¢ c

EUmber...en]poo

Emcey...ex]pdo

£ [fer...en] pd o

€

en] = force(£%9™ [e] (Av.L) @o (Moc.UNB))

Mock,; . Aa.E%™[e;] [locy /v, ., loc;[vik;] ¢ o)/ fi])

alloc((0,k),0)

= (11016, o'lloc/p[v]]), if (o (p[v])) € Closure
where
(loc, ") = (o (p[oD) o

= ((o (p[?])),0), otherwise

= BUW™[b] loc;...loc, o,
where
(locy,01) = inc(E™[e1] p ¢ 0)

(locp,04) = nc(E%9™[e ] p ¢ 0n1)
= C%™[c] locy...loc, oy

where
(toct,01) = alloc((£75™[es] p ¢),0)

(locn, ) = alloc((E75™[en] p $),7n-1)
= ¢[f] locy...locy, 0n

where
(loc1,01) = alloc((E9™[e1] p ¢),0)

(locp,04) - alloc((E9™[en] p ), On-1)

Figure 4.4: Compile-Time Garbage Marking Store Semantics
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Em[case egof py:er |...|pr:ex] pdo
= &4m[e] plz | 2/v1y..hz ] (n+1)/v,]) ¢ 0"
where
(loc, o) = inc(€%mfecl p ¢ )
(u,2) = o' loc
Di = c¢v...v, and match(z,c)
o = dealloc(loc,0’), if z € Conscell
andz |1 = TRUE
= o, otherwise
B[ +] = Mocy.Mocz.Aa.alloc((0, (z1 + 73)),0)
where
(u1,21) = o log
(ug,22) = ¢ loc
Betam[-] = Mocy.Mocz.Ma.alloc((0,(z1 — z2)),0)
where
(u1,21) = o loc
(uz,22) = o loca
Betam[<] = Mocy.Mocg.Aa.alloc((0,(z1 < 22)),0)
where
(v1,21) = o log
(u2,22) = o loc;
Betsm[=] = Mocy.Mocg.Ma.alloc((0, (z1 = z2)),0)
where
(u1,21) = o locy
(ug,z2) = o locy
Ct9™[True] = MAa.alloc((0,TRUE),0)
C¥™[False] = MAo.alloc((0,FALSE),0)
ctom[Nil] = Ao.alloc((0,NIL),0)
Ct9m[Cons] = Mocy.Mocy.Ao.alloc((0,(FALSE,locy,locz)),0)
Ct9m[Cons™] = Mocy.Mocy.Ao.alloc((0,(TRUE,locy,locs)),0)

Figure 4.5: Compile-Time Garbage Marking Store Semantics (continued)
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alloc(v,0) = (loc,o[v/loc))
where
ocloc = UNB

dealloc(loc,c) = o[UNB/loc]

(locyof(u+ l;z)/loc])
where
(u,z) = oloc

inc(loc,0)

force(loe,o) = (loc,o), if (0 loc)= L
or (o loc) = UNB

= (loc,o'[loc'[loc]), if (o Joc) € Closure
where
(loc',a') = force((o loc) o)

= force((a‘ Ioc),a'), if ((7 IOC) € Loc

= inc(loc,o2[(u,(z | 1,locy,locz))/loc)), if (o loc) € Uval
where and z € Conscell
(u, ) o loc
(locy, 01) force(z | 2,0)
(locg, 03) force(z | 3,04)

nan

= inc(loc,o), otherwise

match(z,c) = (z = TRUE and ¢ = True)
or (z = FALSE and ¢ = False)
or (z = NIL and ¢ = Nil)
or (z € Conscell and ¢ = Cons)

Figure 4.6: Compile-Time Garbage Marking Store Semantics (auxiliary functions)

previous allocation. If the standard semantic components of values in both store semantics
can be shown to be the same, then the result of evaluating programs which have been anno-
tated for compile-time garbage marking will be equivalent to the result of evaluating the same
programs before they were annotated. This will be the case since list cells are deallocated
only if they will not be used again. Only values which are used again in a program can affect

its result. The proof of this conjecture remains as further work.
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4.3 Explicit Deallocation

The compile-time garbage marking method described in the previous section requires an extra
bit per cell to indicate whether or not the cell is marked. The extra space required for this
may be more than the space which is saved by using this method. Also, extra time is required
to check each cell to see if it is marked. It is therefore unlikely that compile-time garbage
marking is suitable for practical use.

If it could be determined that a cell will always become garbage at a particular point in
a program, then there would be no need to mark it and check it, since it could always be
deallocated at this point. The program could therefore be annotated to indicate that the
cell can always be deallocated at this point. This form of compile-time garbage collection is
called ezplicit deallocation. In the next section, it is shown how programs can be annotated
for explicit deallocation. A store semantics is then defined for programs which have been

annotated in this way, and the correctness of this store semantics is considered.

4.3.1 Annotating Programs for Explicit Deallocation

In this section, it is shown how programs can be annotated for explicit deallocation. It is
shown only how Cons cells can be explicitly deallocated, but the same techniques can be used
for the explicit deallocation of closures. If it can be determined that the root cell of alist which
is the selector in a case expression is always unshared, then it can be explicitly deallocated
after it has been used within the case expression. The usage counting analysis described
in Section 3.4 does not provide this sharing information; it can be used only to determine
whether a value is used at most once in future computations, not in all computations. It is
shown in (Hamilton, 1992) how usage counting analysis can be combined with an abstract
interpretation to determine whether a value is used at most once in all computations. The

safety condition for the explicit deallocation of cells can be formally defined as follows.

Definition 4.3.1 (Safety of Explicit Deallocation) A location loc can be safely deallo-

cated within a program p when the current store is o if the following condition holds:

(o loc) 1= (c"loc) | 1
where £3°¢[p] = (loc’, o)

a
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The usage analysis described in (Hamilton, 1992) can be used to determine whether cells
satisfy this safety condition. To indicate that the root cell of a case selector can be explic-
itly deallocated, any Cons applications in the patterns of the case expression are annotated
with the superscript d. These Cons? applications indicate that the root cell of the resulting

structure is garbage. For example, consider the following expression:
accreverse (flatten zss) ys

All the spine cells in the result of the function call (flatten zss) are unshared. They can
therefore be explicitly deallocated within the case expression in the accreverse function. The

annotation of this expression for explicit deallocation is shown in Figure 4.7.

accreverse’ (flatten zss) ys
where
accreverse’ s ys = case zs of
Nil Poys
Cons® zzs : accreverse’ zs (Cons z ys)
~ flatten zss = case zss of
Nil : Nil
Cons zs zss : append zs (flatten xss)
append zs ys = case zs of
Nil T
Consz zs : Cons z (append zs ys)

Figure 4.7: Annotation of accreverse (flatten rss) ys for Explicit Deallocation

4.3.2 Explicit Deallocation Store Semantics

In this section, it is shown how the store semantics of the language defined in Section 2.4
must be changed to handle programs which have been annotated for explicit deallocation as
described in the previous section. A usage counting store semantics is defined for programs
which have been annotated in this way so that they can be shown to be equivalent to the
usage counting store semantics for unannotated programs presented in Section 3.1.

The semantic domains of the usage counting store semantics for explicit deallocation are

shown in Figure 4.8.
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Valged (Loc x Storeges)y
z € Eval Atom @ List
Atom Int @ Bool
Int {0}, {t}L{-1}1®...
Bool {TRUE}, & {FALSE},
List {NIL}, & Conscell
Conscell (Loc x Loc)
loc € Loc Int
Uval (Use x Eval),
u € Use Int
Closure = Storeges — Valgea
p € Bvegea = Bv — Loc
¢ € Fvegeda = Fv — Loc* — Storegea — Valgea
o € Storegea = Loc — (Closure @ Loc @ Uval @ {UNB},)

Figure 4.8: Explicit Deallocation Store Semantic Domains

These domains are similar to those for the usage counting store semantics for unannotated
programs given in Figure 3.1.

The functionality of the store semantic functions for performing explicit deallocation is
shown in Figure 4.9. These functions are defined in Figures 4.10 and 4.11.  They are
very similar to the functions defined for the usage counting store semantics for unannotated
programs given in Figures 3.3 and 3.4. If the selector in a case expression is a non-empty list
and the pattern in one of the branches contains an application of a Cons?® constructor, then
the root cell of the selector is freed for further use.

The auxiliary functions of the store semantics for performing explicit deallocation are

defined in Figure 4.12. These functions are very similar to the auxiliary functions of the
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ed .
£

alloc:

inc:
force:

match:

dealloc:

Prog — Valged

Exp — Bvegea — Fvegeda — Storegea — Valgea
Bas — Loc* — Storeged — Valgea

Con — Loc* — Storegea — Valged

((Closure @ Uval) x Storegea) — Valged
Valgea — Storeges

Valgea — Valged

Valgea — Valged

(Eval x Con) — Bool

Figure 4.9: Explicit Deallocation Store Semantic Functions

usage counting store semantics for unannotated programs given in Figure 3.5, except that the

function dealloc has been defined to deallocate a given location in the given store.

4.3.3 Correctness

To prove that the store semantics for programs which have been annotated for explicit deal-

location are correct, the following conjecture must be proved:

Conjecture 4.3.2 The usage counting store semantics for programs which have been safely

annotated for explicit deallocation as defined in Definition 4.3.1 are equivalent to the usage

counting store semantics for unannotated programs.

a

Sketch Proof

The proof of this conjecture would be similar to the proof of Conjecture 4.2.2 for compile-time

garbage marking. It also remains as further work.
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ed
Elle
where
fl V11...V1ky = €

:f,, Vnle. Vnk, = en]= force(£%[e] (Av.L) ¢o (AMoc.UNB))
where
do = fix (Ad.[(Mocy... AlOij.AU.EedKEj] [locy /i1y ..., lock; [viK;] ¢ o)/ fil)

&kl ppo = alloc((0,k),0)
Evlp oo = (loc,a'lloc/p[v])), if (o (p[v])) € Closure
where
(loc,a’) = (o (p[oD) o
= ((o (p[v])),0), otherwise

Elbey...en] pdo = B[b]locy...locy 0n
where
(locy,01) = inc(E%[er] p ¢ )

(10¢n,0,) = inc(E%en] p & on_1)
Ecer...ex]l pdo = Cc]locy...loc, oy

where

(loci,01) = alloc((€°[e1} p ¢),0)

(locp,0n) - alloc((£%%en] p ¢),n-1)
Efer...ex]pda = @[f]locr...loc, o

where
(locy,01) = alloc((£%%[e1] p ¢),0)

(locgy 04) - alloc((£%[en] p #),0n-1)

Figure 4.10: Explicit Deallocation Store Semantics
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&% case egof prier|...|pr:ex)pd o
= &) plz | 1/v1y...y2 | nfvn) ¢ 0"

where
(loc,a") = inc(E%%[eo] p ¢ o)
(v,z) = o' loc
P = ¢v;...9, and match(z,c)
o = dealloc(loc,a"), if ¢ = Cons?
= o, otherwise
B*[+] = Mocy.Mlocg.Ma.alloc((0,(z1 + 232)),0)
where
(u1,21) = olog
(ug,z2) = o loc;
B*¢[-] = Mocy.Mocz.Aa.alloc((0, (21 — 22)),0)
where
(u1,21) = olocy
(Uz, :132) = O IOC2
B*¢[<] = Mocy.Mocz.Aa.alloc((0,(z1 < z2)),0)
where
(w,21) = ¢ loc
(uz,22) = o locy
B*4[=] = Mocy.Mocz.Aa.alloc((0,(z1 = z2)),0)
where
(u1,21) = olocy
(uz,z2) = o loc;
C4[True] = M\o.alloc((0,TRUE),0)

C®[False] = MAo.alloc((0,FALSE),0)
Ce[Nil] = Mo.alloc((0,NIL),0)

C%[Cons] = Mocy.Moca.Ao.alloc((0,(locy, locs)),0)

Figure 4.11: Explicit Deallocation Store Semantics (continued)
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alloc(v,0) = (loc,ov/loc])
where
ocloc = UNB

dealloc(loc,c) = o[UNB/loc]

inc(loc,0) = (loc,of(u+ 1,z)/loc))
where - ,
(u,z) = oloc
force(loe,o) = (loc,o), if (o loc) = L
or (o loc) = UNB
= (loc',0'[loc'[loc]), if (o loc) € Closure
where
(loc'yo') = force((o loc) o)
= force((o loc),0), if (o loc) € Loc
= inc(loc,a2[(u,(locy,locz))/loc]), if (o loc) € Uval
where and z € Conscell
(u,z) = o loc
(locy,01) = force(z | 1,0)
(loca,03) = force(z | 2,01)
= inc(loc,0), otherwise
match(z,c) = (z = TRUE and ¢ = True)

or (z = FALSE and ¢ = False)
or (z = NIL and ¢ = Nil)

or (z € Conscell and ¢ = Cons)
or (z € Conscell and ¢ = Cons?)

Figure 4.12: Explicit Deallocation Store Semantics (auxiliary functions)

4.4 Destructive Allocation

Explicit deallocation requires that any cells which are explicitly deallocated are added to a
free list. This method of compile-time garbage collection can therefore be used only if the
run-time garbage collector also makes use of a free list. As was explained in Section 4.1, the
most efficient methods for performing run-time garbage collection do not make use of a free

list. It is therefore concluded that explicit deallocation is of limited use.
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To avoid the need for a run-time free list, garbage cells could be reused directly within
a program. This form of compile-time garbage collection is called destructive allocation. In
the next section, it is shown how programs can be annotated for destructive allocation. A
store semantics is then defined for programs which have been annotated in this way, and the

correctness of this store semantics is considered.

4.4.1 Annotating Programs for Destructive Allocation

In this section, it is shown how programs can be annotated for destructive allocation. It is
shown only how Cons cells can be destructively allocated, but the same techniques can be
used for the destructive allocation of closures.

As for explicit deallocation, if it can be determined that the root cell of a list which is the
selector in a case expression is always unshared, then it can be destructively allocated after it
has been used within the case expression. The root cell of the selector can be reused within
the selected branch of the case expression if it contains a Cons application in its pattern.

The safety condition for the destructive allocation of cells can be formally defined as follows.

Definition 4.4.1 (Safety of Destructive Allocation) A location loc can be safely destruc-

tively allocated within a program p when the current store is o if the following condition holds:

(cloc) 1= (0"loc)|1
where £3*°[p] = (loc/, o)
a

To indicate that the root cell of a case selector can be destructively allocated, any Cons
applications in the patterns of the case expression are superscripted with a variable which
represents the root cell of the selector. The variable name which is used in this annotation
should not clash with any of the variables in the branch of the case expression. In a branch
in which the pattern has been changed in this way, one Cons application can also be super-
scripted with the same variable to indicate that the root cell of the selector can be used to

hold the result of the application.
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For example, consider the following expression in the definition of the function reverse

(see Figure 2.2):

append (reverse zs) (Cons z Nil)

All the spine cells in the result of the function call (reverse zs) are unshared. They can
therefore be destructively allocated within the case expression in the append function. The

annotation of this expression for destructive allocation is shown in Figure 4.13.

append’ (reverse' zs) (Cons z Nil)

where
append' s ys = case zs of

Nil Toys

Cons® z 2s : Cons’ z (append’ zs ys)
reverse' zs = case zs of

Nil : Nil

Cons zzs : append’ (reverse’ zs) (Cons z Nil)

Figure 4.13: Annotation of append (reverse zs) (Cons z Nil) for Destructive Allocation

4.4.2 Destructive Allocation Store Semantics

In this section, it is shown how the store semantics of the language defined in Section 2.4
must be changed to handle programs which have been annotated for destructive allocation as
described in the previous section. A usage counting store semantics is defined for programs
which have been annotated in this way so that it can be shown that they are equivalent to
the usage counting store semantics for unannotated programs presented in Section 3.1.

The semantic domains of the usage counting store semantics for destructive allocation
are shown in Figure 4.14. These domains are similar to those for the usage counting store
semantics for unannotated programs given in Figure 3.1.

The functionality of the store semantic functions for performing destructive allocation is
shown in Figure 4.15. These functions are defined in Figures 4.16 and 4.17. They are very
similar to the functions defined for the store semantics for unannotated programs given in
Figures 2.9 and 2.10. If the selector in a case expression matches with a pattern of the form
Cons’ vy...v,, then the variable v is bound to the root cell of the selector. If any Cons®
applications are subsequently encountered during the evaluation of an expression, then the

root cell of the variable v is used to hold the result of the application.
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Valgaa (Loc x Storegda)y
z € Eval Atom @ List
Atom Int ® Bool
Int {0} {1}, {-1}. ...
Bool {TRUE}, & {FALSE},
List {NIL}, @ Conscell
Conscell (Loc x Loc)y
loc € Loc Int
Uval (Use x Eval)y
u € Use Int
Closure Storegda — Valgda
p € Bvegda Bv — Loc
¢ € Fvegda Fv — Loc* — Storegsa — Valgda
o € Storegaa = Loc — (Closure @ Loc @ Uval @ {UNB},)

Figure 4.14: Destructive Allocation Store Semantic Domains

The auxiliary functions of the store semantics for performing destructive allocation are
defined in Figure 4.18. These functions are very similar to the auxiliary functions of the
usage counting store semantics for unannotated programs given in Figure 3.5. No deallocation
function is required since garbage cells are reused within programs rather than being added

to a free list.
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Sg“ : Prog — Valgda

gda Exp — Bvegda — Fvegaa — Storegisa — Valgaa
B¥:  Bas — Loc* — Storegsa — Valgua
cda: Con — Loc* — Storegda — Valgda

alloc:  ((Closure @ Uval) x Storegaa) — Valgda
inc: Valgaa — Valgaa
force:  Valgaa — Valgaa

match: (Eval x Con) — Bool

Figure 4.15: Destructive Allocation Store Semantic Functions

4.4.3 Correctness

To prove that the store semantics for programs which have been annotated for destructive

allocation are correct, the following conjecture must be proved:

Conjecture 4.4.2 The usage counting store semantics for programs which have been safely
annotated for destructive allocation as defined in Definition {.4.1 are equivalent to the usage

counting store semantics for unannotated programs.

o

Sketch Proof
The proof of this conjecture would be similar to the proof of Conjecture 4.2.2 for compile-time

garbage marking. It also remains as further work.
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d

& le
where
Hvie..viy = €@

:fn Vn1...Unk, = en] = force(€%[e] (Av.L) ¢o (Aloc.UNB))

:s/: - fix (A.[(Mocy . .. Nock;.Aa.£%]e;] [loc/vjy, .. -, lock; [v;x;} & 0)/ £3))
Elfklp oo = alloc((0,k),0)
£ vlpgo = giz,r :'[IOC/PI[vB]), if (o (p[v])) € Closure
(loc,a") = (o (p[v]) @
= ((o (p[*D),0), otherwise
Eber...en]p oo = BU[b] loc;...locy on

where
(locy,01) = inc(E4[e] p ¢ 0)

(locp,0n) = inc(E%[en] p ¢ 0n-1)
£%[Cons’ e1...e,] ppo = C?%[Cons"] p[v] locy .. .locy oy

where
(locr,01) = alloc((€%[er] p 4),0)

(locpy00) = alloc((f,'d“{en] P $),0n-1)
E%[cer...ex]p oo = C%[c] locy...locy on

where

(locy,01) = alloc((£%[er] p ¢),0)

(locn, 0n) = alloc((E%[en] p ¢),0n-1)
E¥[fer...en]pdbo = @[f] locy...locy on

where
(locy,01) = alloc((E%[er] p ¢),0)

(locp,on) - alloc((£%[ex]) p ¢),0n-1)

Figure 4.16: Destructive Allocation Store Semantics
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E%case eg of py:e; |...|priex]l pd o
- Sd"[e,‘] P' é rd
where
(loc,o”) = inc(E%eo] p ¢ )
(u,z) = o loc
Pi = ¢ v1...v, and match(z,c)
o' = plloc/v,z | 1/v1,...,z | n/v,), if ¢ = Cons®
= plz | 1/v1,...,2 | n/vy), otherwise
B[+] = Mocy.Mocz.Aa.alloc((0, (21 + z3)),0)
where
(u1,21) = olocy
(ug,22) = o locy
B*[-] = Mocy.Mocg.Aa.alloc((0, (z1 — z3)),0)
where
(u1,21) = o locy
(u2,22) = o locy
B#[<] = Mocy.Mocz.Ao.alloc((0,(z1 < 22)),0)
where
(u1,21) = olocy
(u2,22) = o locy
B*[=] = Mocyi.Mocg. Ao .alloc((0,(z1 = z3)),0)
where
(u1,21) = oloe
(ug,22) = o locy
C%[True] = MXo.alloc((0,TRUE),q)
Cd[False] = Mo.alloc((0,FALSE),0)
CIs[ Nil] = \a.alloc((0,NIL),0)
C¥[Cons] = Alocy.Mocz.Aa.alloc((0,(locy,locz)),0)
C¥[Cons’] = Aloco.Mocy.Mlocy. Ao .(loco,a[(0,(locy, locg))/loco))

Figure 4.17: Destructive Allocation Store Semantics (continued)
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alloc(v,0)

(loc, a[v/loc))
where
cloc = UNB

inc(loc,o) = (loc,o[(u+ 1,z)/loc))
where
(u,z) = oloc

force(loc,o) = (loc,o), if (¢ loc) = L
or (o loc) = UNB

= (loc',o'[loc! [loc]), if (o loc) € Closure
where
(lod',0") = force((o loc) o)

= force((o loc),0), if (o loc) € Loc

= inc(loc,02[(u,(locy,locy))/loc]), if (o loc) € Uval
where and z € Conscell
(u, ) o loc
(locy, 1) force(z | 1,0)
(locz, 02) force(z | 2,01)

nmonn

= inc(loc,0), otherwise

match(z,c) = (z = TRUE and ¢ = True)
or (z = FALSE and ¢ = False)
or (z = NIL and ¢ = Nil)
or (z € Conscell and ¢ = Cons)
or (¢ € Conscell and ¢ = Cons")

Figure 4.18: Destructive Allocation Store Semantics (auxiliary functions)

4.5 Related Work

4.5.1 Compile-Time Garbage Marking

Compile-time garbage marking is quite similar to the use of a one-bit reference count, as
described in (Wise & Friedman, 1977). Any cells which have a reference count of one can be
collected using this method, but any cells with a greater reference count cannot be collected.
This is similar to the one-bit usage count which is used for marking cells in this chapter.

The method for validating compile-time garbage marking described in this thesis is similar
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to that described in (Jensen & Mogensen, 1990) and (Jensen, 1990). The method described in
(Jensen & Mogensen, 1990) and (Jensen, 1990) also involves marking cells at their allocation
which will be used at most once. A usage counting analysis, similar to the one presented
in Section 3.4, is used to determine the number of times that cells will be used. Any Cons
applications in which the root cells of the resulting structures will be used no more than once
are tagged to indicate that their root cells will become garbage after they have been used.
No store semantics are defined for programs which have been annotated in this way, and the

correctness of programs which have been annotated in this way is not considered.

4.5.2 Explicit Deallocation

The methods for validating explicit deallocation in a strict language described in (Inoue et al.,
1988) and (Hughes, 1991) both make use of information obtained by an inheritance analysis
and a generation analysis. The inheritance analysis is used to determine which cells will
appear directly in the result of a function, and the generation analysis is used to determine
which cells are created within a function argument. Any cells generated within a function
argument which are unshared and do not appear in the result of the function can be collected
after evaluation of the function call. To determine whether generated cells are unshared,
an overlapping analysis is presented in (Inoue et al., 1988). In (Hughes, 1991), it is noted
that cells are always shared at the same level in a list in a well-typed language. A complete
level of a list which is generated can therefore be explicitly deallocated en-masse if it is not
inherited. This method cannot be used to validate explicit deallocation in lazy languages,
since some arguments which do not appear in the result of a function may not have been
evaluated during the evaluation of the function. Attempting to explicitly deallocate these
arguments may therefore force their evaluation, which is unsafe when using a lazy evaluation
strategy. Another problem with this method of explicit deallocation is that there may be
a substantial delay between a cell becoming garbage and its explicit deallocation. This is
because cells are explicitly deallocated only after the evaluation of a function call. The need
for run-time garbage collection will therefore not be delayed as long as possible. In the method
of explicit deallocation described in this chapter, cells are explicitly deallocated immediately
after becoming garbage.

An implementation of explicit deallocation in a lazy language is described in (Wakeling
& Runciman, 1991). This optimisation is validated by making use of the linear type system
described in (Wadler, 1990c). Values which are determined to be linear in the type system
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will be used exactly once. They can therefore be explicitly deallocated immediately after they
have been used. In the work described in (Wakeling & Runciman, 1991), explicit deallocation
is performed in a similar manner to the way in which it is performed in this chapter. If
the selector in a case expression is of linear type, then its root cell is explicitly deallocated
immediately after it has been used. Unfortunately, it was found that very little benefit was
obtained from performing explicit deallocation in this way. This was partly due to the need
to maintain a free list for values which were explicitly deallocated.

An optimisation which is quite similar to explicit deallocation is the use of stack allocation.
This involves determining which values appear directly in the result of a function call. Any
values which do not appear in the result can be allocated on a stack, and automatically
collected after evaluation of the function call. Examples of validating this kind of optimisation
in a strict language are described in (Chase, 1987; Ruggieri & Murtagh, 1988; Hughes, 1988;
Goldberg & Gil Park, 1990). It would be quite difficult to implement in lazy languages
because values which do not appear in the result of a function call may not be evaluated until
a considerable time after the evaluation of the function call. Also, it is argued in (Appel,
1987) that garbage collection can be faster than stack allocation when reasonably large stores

are used.

4.5.3 Destructive Allocation

One of the earliest examples of validating destructive allocation is the method described in
(Barth, 1977). This method involves performing a global flow analysis of a program which uses
the run-time garbage collection method described in (Deutsch & Bobrow, 1976). Information
obtained by the global flow analysis is used to avoid redundant operations for run-time garbage
collection. For example, a deallocation followed by an allocation can be coalesced to give a
destructive allocation instead.

An analysis for determining when destructive operators can be used without altering the
meaning of strict first order programs is described in (Schwarz, 1978). These destructive
operators are introduced according to the sharing properties of a program, which are given
by isolation classes supplied by the user. The isolation classes given by the user are checked
by ensuring that the meaning of programs are not changed by introducing destructive oper-
ators based on this information. In (Mycroft, 1981), it is shown how the isolation classes in
(Schwarz, 1978) can be determined automatically. Destructive operators are then introduced

based on this sharing information.
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The methods for validating destructive allocation in a strict first order language which
are described in (Jones & Le Métayer, 1989) and (Hamilton & Jones, 1990) both involve
performing a sharing analysis to determine when cells can be deallocated. An interpreter is
defined in which these unshared cells are added to a free list. The output from this interpreter
is analysed to determine when destructive allocation can be performed. This will be the case
when a deallocation is followed by an allocation.

A method for performing destructive allocation in a first order strict language is described
in (Peterossi, 1978). This method involves reusing the arguments of basic function applica-
tions to hold the result of the application. It is not concerned with the destructive allocation
of structured data.

The methods for validating destructive allocation described in (Mason, 1988) :ind (Hughes,
1991) involve adding destructive operators to a program, and then checking their validity.
In the method for validating destructive allocation described in this chapter, programs are
analysed first to indicate where destructive operators can be used, and then these destructive
operators are added to the programs.

An optimisation which is quite similar to destructive allocation is the in-place update of
arrays. In conventional functional implementations of arrays, the modification of an array
involves making a copy of it, in case the original array is ever needed again. This problem is
described in (Hudak & Bloss, 1985). A usage counting analysis could be used to determine
when the in-place update of an array can be performed. Examples of analyses which can be
used to determine when in-place updates of arrays can be performed are described in (Hudak,
1987; Bloss, 1989; Gopinath & Hennessy, 1989; Draghicescu & Purushothaman, 1990; Sastry
et al., 1993).

Another optimisation which is quite similar to destructive allocation is the globalisation of
variables. This involves determining whether a value is single threaded. If this is the case, the
value can be implemented globally and updated in-place each time it is modified. Examples
of analyses which can be used to determine when this optimisation can be performed are
described in (Schmidt, 1985; Sestoft, 1989; Gomard & Sestoft, 1991; Fradet, 1991).

The type schemes described in (Wadler, 1990c; Guzman & Hudak, 1990; Smetsers et al.,
1993) and the use of monads (Wadler, 1990a) allow the user to indicate that values can always
be destructively updated.
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4,6 Conclusion

In this chapter, it has been shown how information obtained by usage counting analysis
can be used to validate compile-time garbage collection. Three different optimisations were
presented which can be viewed as different forms of compile-time garbage collection; compile-
time garbage marking, explicit deallocation and destructive allocation.

Compile-time garbage marking involves marking cells at their allocation to indicate that
they will become garbage after their first use. These cells can be returned to the memory
manager immediately after their first use. This method has the disadvantages of requiring a
run-time free list, extra space to allow for the marking of cells, and extra time to allow for
the checking of cells to see if they are marked at run-time. It is therefore concluded that this
form of compile-time garbage collection is probably not suitable for practical use.

Explicit deallocation involves explicitly returning cells to the memory manager at a par-
~ ticular point in a program. This compile-time garbage collection technique also requires the
use of a free list at run-time, so the method of run-time garbage collection which must be used
will not be very efficient. It is therefore concluded that this form of compile-time garbage
collection is of limited use.

Destructive allocation involves reusing cells directly for further allocations within a pro-
gram, thus avoiding the need for a run-time free list, so a more efficient method for run-time
garbage collection can be used. It is therefore concluded that this is the only method for
compile-time garbage collection which merits further consideration.

Store semantics were defined for programs which have been annotated for each of the three
methods of compile-time garbage collection, and the correctness of these store semantics was
considered.

It has been shown in this chapter how information obtained from usage counting analysis
can be used to validate compile-time garbage collection. In Chapter 5, it is shown how infor-
mation obtained from usage counting analysis can also be used to guide the transformation

when compile-time garbage avoidance is performed.



Chapter 5

Compile-Time Garbage Avoidance

Compile-time garbage avoidance involves transforming programs at compile-time to reduce
the amount of garbage they will produce at run-time. This optimisation attempts to over-
come the problem of more readable programs being less than optimal in their use of storage.
Programs which use intermediate structures are usually much easier to understand, but they
are less efficient in their use of storage at run-time. To reduce the run-time costs associated
with intermediate structures, a transformation algorithm called deforestation was proposed in
(Wadler, 1990b) to eliminate them. A treeless form of expression is characterised in (Wadler,
1990b) which does not create any intermediate structures, and the deforestation theorem is
given. This theorem states that the deforestation algorithm will always terminate for expres-
sions in which all functions have definitions which are in treeless form. The sketch proof of
this theorem given in (Wadler, 1990b) is fleshed out in this chapter.

The deforestation algorithm will also terminate for some expressions in which functions
have definitions which are not in treeless form. The notion of an intermediate structure as
described in (Wadler, 1990b) is therefore extended to that of a transient structure by making
use of information obtained by usage counting analysis. It is shown how treeless form can be
extended by making use of this definition, and that the deforestation algorithm will always
terminate for expressions in which all functions have definitions which are in this extended
treeless form.

Some intermediate structures can still be eliminated from expressions in which some func-
tions have definitions which are not in extended treeless form. It is therefore shown how any
function definition can be generalised in such a way that it will be in extended treeless form,

and the deforestation algorithm is extended to be able to cope with these generalisations.

79
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The remainder of this chapter is structured as follows:

e Section 5.1: the deforestation transformation algorithm presented in (Wadler, 1990b)
is described. The treeless form of expressions defined in (Wadler, 1990b) is described,
and the sketch proof given in (Wadler, 1990b) that the deforestation algorithm will
always terminate for expressions in which all functions have definitions which are in

this treeless form is fleshed out.

e Section 5.2: it is shown how treeless form can be extended by making use of information
obtained by usage counting analysis. It is then proved that the deforestation algorithm
will always terminate for expressions in which all functions have definitions which are

in this extended treeless form.

¢ Section 5.3: it is shown how any function definition can be generalised in such a way
that it is in extended treeless form. The deforestation algorithm is extended to be able
to deal with these generalisations, and it is proved that this generalised deforestation
algorithm will always terminate for expressions in which all functions have definitions

which have been generalised in the described manner.
o Section 5.4: related work is considered.

e Section 5.5: a summary of this chapter is given.

5.1 Deforestation

In this section, the deforestation algorithm presented in (Wadler, 1990b) is described. This
algorithm can be used to transform programs to eliminate intermediate structures. A form of
expression, called treeless form, which does not create any intermediate structures is defined.
The transformation rules of the deforestation algorithm are then given. In (Wadler, 1990b),
a sketch proof is given that the deforestation algorithm is guaranteed to terminate for expres-
sions in which all functions have definitions which are in treeless form. This sketch proof is
fleshed out in this section. The remainder of the work this section is merely an exposition of

the work given in (Wadler, 1990b).
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5.1.1 Treeless Form

In (Wadler, 1990b), a treeless form of expression is characterised which creates no intermediate

structures. This form of expression is defined as follows.

Definition 5.1.1 (Treeless Form) An ezpression is in treeless form if it is linear' in all
variables, it contains no basic function applications, every argument in a function application
and every selector in a case ezpression is a variable, and all functions within it have treeless

definitions.

(m]

Expressions in treeless form must therefore satisfy the following grammar:

if == k
| v
| citfy.. tf,
| fore..vn
I

case vg of py:tfy |...| Pk : tf
where tf is linear in all variables, and the definition of each function f is in treeless form.
Basic function applications are not allowed in treeless expressions because they cannot
be unfolded. The restriction that every argument of a function and every selector of a case
expression must be a variable guarantees that no intermediate structures are created. The
restriction that treeless expressions must be linear in all variables guarantees that certain
transformations will not duplicate expressions which are expensive to compute. For example,

consider a function call square e where square is a non-linear function defined as follows:
square T = T *T

If e is an expression which is expensive to compute, then the unfolded expression e * e will
be less efficient than the original function call square e. This situation will be avoided if
expressions are linear in all variables. _

The definition of append given in Figure 2.2 is in treeless form, but the definitions of

flatten, reverse and accreverse are not because they contain function arguments which are

not variables.

! An expression other than a case expression is said to be linear if no variable appears in it more than once.

A case expression is said to be linear if no variables appear in both the selector and a branch.
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5.1.2 The Deforestation Algorithm

The transformation rules of the deforestation algorithm described in (Wadler, 1990b) are

shown in Figure 5.1.

1) TI] = &

@) Tl = v

(3) Tleer...en) = cTlea]...T[en]
(4) Tlfer...ea] = Tleler/v1,.. . n/a]l

where f is defined by f v;...v, =€

(5) T[case vof pi:e} |...| pi ekl
= casevof pi:T[ei}|...| pi: Tle)]

(6) T[case (cey...e;)of pj:ey|...] pi:eil
= T[eiler/v1y. .. €n/vn]]

where pi = cvy...0,

(7) Tlcase (fer...ex)of py:ey|...] pi ekl
= T[case (e[e1/v1,...,en/va]) Of P} i€} |...| P} : €;]
where f is defined by f vy...v, =€

(8) T[case (case ep of py:e1|...| pnien) of Py i€l |...] P} :eil
= T[case ¢ of

. /. ! U |
py : caseerof pi:ef |...| p}:e}

pn : case e, of pl:ei|...| pL ekl

Figure 5.1: Transformation Rules for Deforestation

A valid input to the deforestation algorithm is a linear expression in which there are no
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basic function applications, and all functions have treeless definitions. The output from the
algorithm will be an equivalent expression which is in treeless form.

The transformation rules given in Figure 5.1 cover all possible expressions which can be
encountered by the deforestation algorithm. Basic function applications will not be encoun-
tered by the algorithm since they cannot be present in its input, or in any treeless function
definition. All four possibilities for the selector of a case expression are considered in rules
(5) to (8). The selector of a case expression cannot be a constant since pattern matching is
not performed on integers.

Rule (8) is valid only if there is no name clash between the variables in the patterns
P1...Pn, and the free variables in the branches pj : €}...p} : €. It is always possible to
rename the variables in the patterns p; ...p, so that this condition applies.

As they stand, these transformation rules will not necessarily terminate. For example,

consider the deforestation of the expression append (append zs ys) zs shown in Figure 5.2.

T[append (append zs ys) zs]

= T{case (append zs ys) of (By 4)
Nil : zs
Conszzs : Cons z (append zs zs)]
= T]case (case zs of (By 7)
Nil :oys
Consz zs : Cons z (append zs ys)) of
Nil P zs
Consz zs : Cons z (append zs zs)]
= case zs of (By 8,5,5,2,6)
Nil : case ys of
Nil :ozs

Cons z zs : T[Cons z (append zs zs)]
Consz zs : T[Cons z (append (append zs ys) zs)]

= case zs of (By 3,2,4,3,2)
Nil : case ys of
Nil 1
Cons z zs
Cons z (T[case s of
Nil H-]

Consz zs : Cons z (append zs zs)])
Consz zs : Cons z (T{append (append zs ys) zs])

Figure 5.2: Deforestation of append (append zs ys) zs
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The transformation rules are applied until an expression is obtained which is a renaming of
a previously encountered expression. If the transformation were to continue, the rules would
be applied without end. This non-termination can be avoided by introducing appropriate

new function definitions. For the given example, the following function definitions need to be

introduced:
fzsyszs = Tl[append (append zs ys) 2s].
flzsys = T[case zs of
Nil 1 oys

Conszzs : Consz (append zs ys)]

Expressions which match the right hand side of one of these definitions (modulo renaming of
variables) are replaced by an appropriate call of the corresponding function, resulting in the

expression shown in Figure 5.3.

fzsyszs
where
frsyszs = case zs of
Nil : flyszs
Conszzs : Consz (fzs ys 2s)
f'zsys = case zs of
Nil T oys
Cons zzs : Consz (f' zs ys)

Figure 5.3: Result of Deforestation of append (append zs ys) zs

It remains to be shown when these new function definitions should be introduced. Any
infinite sequence of transformation steps must involve applications of rules (4) or (7) in which
function calls are unfolded. A new function definition is therefore introduced before the
application of each of these rules. The right hand sides of these function definitions are the
expressions which were about to be transformed by rules (4) and (7). When an expression
is encountered later in the transformation which matches the right hand side of one of these
function definitions (modulo renaming of variables), it is replaced by an appropriate call of
the corresponding function. Transformation rules (4) and (7) must therefore be changed to

make this more explicit.



CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 85
These modified rules are shown in Figure 5.4.
4) Tifer...en] ¢

= flop.ol, i (fv. vl =fe..en) €9
where
v] ...} are the free variables in (f e;...e,)

= f'v1...v}, otherwise
where
flop...vi = Tlelei/v1,...,enfvn]] ¢

where f is defined by f vy...v, = ¢
¢ = ¢ U {ffv...v)=Ffer...en}
and v} ...v} are the free variables in (f e;...e,)
(7) Tlcase (fer...eq)of pi:ei|...|pL:ei] ¢

= flol.ovf, f(f o). =case (fer...en)of plie)|...|p:ef) € &
where
v] ...} are the free variables in (case (f e1...en) of py1ef |...| p} : €})

= f v{ ...V}, otherwise
where
flvi...vf = Tlcase (eler/v1,...,en/vn]) of Py i€y |...| P} i ei] &'

where f is defined by f v1...v, =€

¢ = ¢ U {f v)...v=case (fer...en) of pj:ey |...| p} :€}}
and v]...v] are the free variables in (case (f e1...e,) of pj: e} |...| P} : €})

Figure 5.4: Modified Transformation Rules for Deforestation

In these rules, the additional parameter ¢ contains the set of function definitions which

have been created during the transformation so far.
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5.1.3 The Deforestation Theorem

The main result of the deforestation transformation presented in (Wadler, 1990b) is the

deforestation theorem.

Theorem 5.1.2 (Deforestation Theorem) FEvery ezpression which is linear in all vari-
ables, contains no basic function applications, and in which all functions have treeless defini-
tions, will be transformed by the deforestation algorithm to an equivalent treeless expression,

without loss of efficiency.

0
Proof

The deforestation theorem can be proved by showing the following four lemmata, which

together demonstrate the validity of the theorem.

a

Lemma 5.1.3 Every expression which contains no basic function applications will be trans-

formed to an equivalent expression if the deforestation algorithm terminates.

a

Lemma 5.1.4 FEvery expression which contains no basic function applications will be trans-

formed to a treeless expression if the deforestation algorithm terminates.

a

Lemma 5.1.5 FEvery ezpression which is linear in all variables, contains no basic function
applications, and in which all functions have treeless definitions, will be transformed without

loss of efficiency if the deforestation algorithm terminates.

a

Lemma 5.1.6 The deforestation algorithm will always terminate for every erpression which

contains no basic function applications and in which all functions have treeless definitions.

a
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Proof of Lemma 5.1.3

The proof of this lemma can be found in Appendix C.1.1.

Proof of Lemma 5.1.4

The proof of this lemma can be found in Appendix C.1.2.

Proof of Lemma 5.1.5

The proof of this lemma can be found in Appendix C.1.3.

a

Proof of Lemma 5.1.6

As described in (Wadler, 1990b), to prove that the deforestation algorithm always termi-

nates, it is sufficient to show that there is a bound on the size of the expressions encountered

during transformation. If there is such a bound, then there will be a finite number of expres-

sions encountered (modulo renaming of variables), and a renaming of a previous expression

must eventually be encountered. The algorithm will therefore be guaranteed to terminate.

A sketch proof of this is given in (Wadler, 1990b). This proof is fleshed out here. First of

all, it is shown that any expression encountered by the deforestation algorithm must always

satisfy a particular grammatical form. It is then shown that there is a bound on the size of

expressions described by this grammar.

Definition 5.1.7 (Size of Expressions) The size of an ezpression is given by S, as defined

in Figure 5.5.

a
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SIK] =0
S[vl =0
Sbey...eq] = 1+ maz(S[es), ..., S[ea])
Sleer...en] = 1+ maz(S[el, ..., Slea])
SIf e1...ea] = 1+ maz(S[er], .. Sleal)
Slcase egof priey |...|prier] = 1+ maz(S[eo), .- S[es])

Figure 5.5: Definition of the Size of Expressions

This definition corresponds to the definition of the depth of an expression given in (Wadler,

1990b).

Definition 5.1.8 (Maximum Size of Function Definitions in a Program)
For a given program in which the right hand sides of function definitions are e, ...e,, the

mazimum size of the function definitions is defined as follows:

s = maz(1,S[e1],. . ,S]en])

Definition 5.1.9 (Grammar of Expressions Encountered During Deforestation)
The grammar of ezpressions encountered during deforestation is given by dg®(s,n), as de-
scribed in Figure 5.6 for a suitable value of n where s is the mazimum size of any function

definitions accessible within the erpression.

]

In the definition of this grammar, fv represents any free variable in the expression which
is described by the grammar. All treeless function definitions are described by the grammar
dg®(s,1) since the size of all function definitions is bounded by s. The expression to be
transformed must be described by the grammar dg*(s, n) for a suitable value of n. The value
of s may need to be changed to satisfy this criterion, but no loss of generality results. The

value of n corresponds to the order of an expression, as described in (Wadler, 1990b).
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dg*(z,y) :::i

fo(z,y) u=

k ifz>0and y>0
v ifz>0andy>0
cdgi(z—1,y)...dgi(z~1,y) ifz>0andy>0
f dgi(0,y)...dg3(0,y) ifz>0andy>0

where f is defined by f v;...v, = e and e € dg*(s,1)
case dg§(0,y) of p1:dgi(z — y,9) |...| px : dgi(z - 9,9)
ifz>0andy>0

dg*(z - 1,y) fz>0andy>0
fg’(s,y—-1) fz>0andy>1
k ifz>0andy>0
fv ifz>0andy>0
c fgi(z-1,9)...foi(z~1,y) fz>0andy>0
f £93(0,y)...f9:(0,9) ifz>0and y>0

where f is defined by f v;...v, = e and e € dg°(s,1)
case fg3(0,y) of pi: foi(z —v,9) |...| px : fai(z — v,9)
ifz>0andy>0
fe’(z-1,y) ifz>0andy>0
fg*(s,y-1) ifz>0andy>1

Figure 5.6: Grammar of Expressions Encountered During Deforestation

If an expression is described by the grammar dg®(z,y) where z < s and y < n, then the

expression is also described by the grammar dg*(s, n).

Lemma 5.1.6 can now be proved by showing the following two lemmata.

Lemma 5.1.10 All expressions encountered by the deforestation algorithm are described by

the grammar dg®(s,n) if the original expression to be transformed is also described by the

grammar dg*(s,n) for a suitable value of n, where s is as defined in Definition 5.1.8.

a

Lemma 5.1.11 The size of all ezpressions described by the grammar dg*(s,n) is bounded by

s Xn.

a
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Proof of Lemma 5.1.10

The proof of this lemma can be found in Appendix C.1.4.

Proof of Lemma 5.1.11

The proof of this lemma can be found in Appendix C.1.5.

5.2 Extended Deforestation

The deforestation algorithm is guaranteed to terminate for expressions in which all functions
have definitions which are in treeless form. It may, however, also terminate for expressions
in which some functions have definitions which are not in treeless form. For example, the
definition of the function flatten given in Figure 2.2 is not in treeless form, but expressions
involving calls of this function can be successfully transformed by the deforestation algorithm.

In this section, it is shown how the definition of treeless form (Definition 5.1.1) can be
extended by making use of information obtained by usage counting analysis. It is then
proved that the deforestation algorithm is guaranteed to terminate for expressions in which

all functions have definitions which are in this extended treeless form.

5.2.1 Transient Structures

In the definition of treeless form (Definition 5.1.1), an intermediate structure is assumed to
be a function argument or case selector, and these are restricted to being variables. However,
some function arguments may appear directly in the result of the function. These function
arguments can be treated in the same way as the arguments in constructor applications. The
notion of an intermediate structure is therefore extended to that of a transient structure,

which is defined as follows.
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Definition 5.2.1 (Transient Structure) A structure is transient within an ezpression if it

is used as the selector in a case erpression during the evaluation of the expression to normal

form.

a

T[append (flatten zss) ys]

= T[case (flatten zss) of (By 4)
Nil Ty
Cons z zs : Cons z (append zs ys)]
= T[case (case zss of (By 7)
Nil : Nil
Cons rs zss : append rs (flatten zss)) of
Nil P oys
Consz zs : Cons z (append zs ys)]
= case zss of (By 8,5,6,2)
Nil :oys
Cons zs zss : T[case (append zs (flatten zss)) of
Nil Poys
Consz zs : Consz (append s ys)]
= case zss of (By 7)
Nil T ys

Cons zs zss
T [case (case zs of

Nil : flatten zss
Consz zs : Consz (append zs (flatten zss))) of
Nil T oys
Consz zs : Cons z (append zs ys)]
= case zss of (By 8,5,6,3,2,4)
Nil HE T
Cons s zss
case zs of
Nil : T[case (flatten zss) of
Nil T ys

Conszzs : Consz (append zs ys)}

Consz zs : Consz (T[case (append zs (flatten zss)) of
Nil Toys
Consz zs : Consz (append zs ys)])

Figure 5.7: Deforestation of append (flatten zss)
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This information can be determined by usage counting analysis. If some parts of a struc-
ture are used during the evaluation of an expression, then the structure is transient within
the expression. A variable v of atomic type is a transient structure within the expression e if

the following condition holds:

1 Ex, ULl (0, .., 0) u

A variable v of structured type T is a transient structure within an expression e if the following

condition holds:

(]-vABS) ET UI[CM'U]I (07'“’0) ¢U

As described in Section 3.2, the usage pattern (0,...,0) represents a context in which an
expression is evaluated to normal form, but is not used in any further computations. Thus
the only usage of a structure within the expression must be as the selector in a case expression.

In order to determine the transient structures within a function definition, the context
of each expression is determined from an initial top-level context for the function indicating
that its result will not be used. For example, consider the definition of the function flatten
given in Figure 2.2. All transient structures within this definition are variables. The second
argument in the call of the function append within this definition is not a variable, but it is not
a transient structure (see Table 3.1). The deforestation algorithm can be successfully applied
to expressions containing calls of the function flatten. For example, the deforestation of the
expression append (flatten zss) ys is shown in Figure 5.7. The result of this transformation

is the expression shown in Figure 5.8.

fzss ys
where
fzss ys = case zss of
Nil :ys
Cons zs zss : f' zszssys
f' zs zss ys = case zs of
Nil : fazssys
Conszzs : Consz (f' zs zss ys)

Figure 5.8: Result of Deforestation of append (flatten zss) ys
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5.2.2 Accumulating Parameters

The deforestation algorithm will not terminate for some expressions in which all transient
structures are variables. For example, all transient structures in the definition of the function
accreverse given in Figure 2.2 are variables. The deforestation of the expression accreverse zs ys

is shown in Figure 5.9.

Tlaccreverse zs ys]
= T[case zs of (By 4)
Nil P oys
Cons z zs : accreverse zs (Cons z ys)]
= case zs of (By 5,2)
Nil T
Cons z zs : T[accreverse zs (Cons z ys)]
= case zs of (By 4)
Nil T
Conszzs : T[case zs of
Nil : Conszys
Consz' zs' : accreverse zs' (Cons z' (Cons z ys))]
= case zs of (By 5,3,2,2)
Nil P oys
Consz zs : case zs of
Nil : Conszys
Cons ¢’ zs' : Tlaccreverse zs' (Cons z' (Cons z ys))]

Figure 5.9: Deforestation of accreverse zs ys

The size of the second parameter in the recursive call of accreverse continually increases
during the transformation, so the transformation fails to terminate. This situation occurs
when a recursive function accumulates information in its parameters. A recursive function

call is defined as follows?.

Definition 5.2.2 (Recursive Function Call) A function call is recursive if it occurs within

the definition of a function which the recursive function calls (either directly or indirectly).

a

2This definition also defines mutually recursive function calls.
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Accumulating parameters can now be defined as follows.

Definition 5.2.3 (Accumulating Parameter) An argument in a recursive function call

is an accumulating parameter if it is not a variable.

(]

5.2.3 Shared Values

In the deforestation theorem, the expressions to be transformed are required to be linear
in all variables. This is to avoid the duplication of expressions which may be expensive to
compute, so that they will not need to be evaluated more than once. It may be the case
that a duplicated expression will not be evaluated more than once. For example, consider the

following function definitions:

fz = Kzz

Kzy = ¢

The definition of the function f is not in treeless form because it is not linear in the variable
z. However, the expression represented by the variable z will be used only once, so there is
no reason why it should not be involved in transformations using the deforestation algorithm.
Values will be duplicated by the deforestation algorithm only if they are shared. Shared

values are defined as follows.
Definition 5.2.4 (Shared Value) A value is shared if it is used more than once.

a

This information can be determined by usage counting analysis. A variable v of atomic

type is a shared value within the expression e if the following condition holds:

2 Cr, Ulel[o] (1,.-.,1) du
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A value of structured type is a shared value within the expression e if the following

condition holds:

(2,ABS) Cr U[ellv] (1., 1) du

In order to determine the shared values within a function definition, the context of each
expression is determined from an initial top-level context for the function indicating that its

result will be used exactly once.

5.2.4 Extended Treeless Form
Extended treeless form can now be defined as follows.

Definition 5.2.5 (Extended Treeless Form) An ezpression is in extended treeless form
if it contains no basic function applications, accumulating parameters or shared values, all
transient structures within it are variables, and all functions within it have ertended treeless

definitions.

O

As for treeless form, basic function applications are not allowed in extended treeless expres-
sions because they cannot be unfolded. The definitions of the functions append and flatten
given in Figure 2.2 are in extended treeless form, but the definitions of the functions reverse
and accreverse are not.

A valid input to the deforestation algorithm is an expression in which there are no shared
values or basic function applications, and all functions have extended treeless definitions. The
output from the algorithm will be an equivalent treeless expression and a collection of treeless

function definitions.

5.2.5 The Extended Deforestation Theorem
The deforestation theorem can now be extended to the extended deforestation theorem.

Theorem 5.2.6 (Extended Deforestation Theorem) Every expression which contains
no shared values or basic function applications, and in which all functions have eztended

treeless definitions, will be transformed to an equivalent treeless expression by the deforesta-

tion algorithm, without loss of efficiency.

a
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Proof

The proof of the extended deforestation theorem is very similar to the proof of the defor-
estation theorem. It can be proved by showing the following four lemmata, which together

demonstrate the validity of the theorem.

]

Lemma 5.2.7 Every ezpression which contains no basic function applications will be trans-

formed to an equivalent expression if the deforestation algorithm terminates.

a

Lemma 5.2.8 Every expression which contains no basic function applications will be trans-

formed to a treeless expression if the deforestation algorithm terminates.

a

Lemma 5.2.9 Every expression which contains no shared values or basic function applica-
tions, and in which all functions have extended treeless definitions, will be transformed without

loss of efficiency if the deforestation algorithm terminates.

a

Lemma 5.2.10 The deforestation algorithm will always terminate for every ezpression which
contains no basic function applications and in which all functions have extended treeless def-

tnitions.

a

Proof of Lemma 5.2.7

This lemma is identical to Lemma 5.1.3, the proof of which is given in Appendix C.1.1.
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Proof of Lemma 5.2.8

This lemma is identical to Lemma 5.1.4, the proof of which is given in Appendix C.1.2.

Proof of Lemma 5.2.9

The proof of this lemma is very similar to the proof of Lemma 5.1.5, which is given in

Appendix C.1.3.

Proof of Lemma 5.2.10

As for the proof of Lemma 5.1.6, to prove that the deforestation algorithm always termi-
nates, it is sufficient to show that there is a bound on the size of expressions encountered
during deforestation. It is therefore shown that expressions which are encountered by the
deforestation algorithm are always described by the grammar edg*™(s, f,n) for a suitable
value of n, where f is the number of function definitions in the overall program, and s is the
maximum size of the right hand side of any function definition (Definition 5.1.8). It is then

shown that there is a bound on the size of expressions described by the grammar edg®"(s, f,n).

Definition 5.2.11 (Grammar of Expressions Encountered During Extended Defor-
estation) The grammar of expressions encountered during extended deforestation is described
by edg*™(s, f,n), as defined in Figure 5.10 for a suitable value of n where s is the mazimum
size of any function definitions accessible from within the expression, and f is the mazimum

number of functions accessible from within the erpression..

a
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|
I

edg*™(z,y,z) =

k ifz>0,y>0and 2>0

v ifz>0,y>0and 2>0

cedgi™(z—1,y,2)...edg>™(z — 1,y,2)
ifz>0,y>0and 2> 0

fe...e, ifz>0,0<y< fandz>0

where f is defined by f v;...v, = e and e € edg*™(s,0,1)

and e; € edg*"(0,0,2), if e; is a transient structure

€ edg®™(z ~ 1,y,z), otherwise

for...o, ifz>0,y=fandz>0

where f is defined by f v{...v, = e and e € edg*"(s,0,1)

case edgy™(0,0,2) of py:edgi™(z - 2,y,2) |...| P : edgy" (2 — 2,9, 2)
ifz>0,y>0and 2>0

edg®™(z — 1,y,2) ifz>0,y>0and 2>0

edg*™(s,y—1,2) ifz>0,y>0and z>0

efg*™(s,f,z—1) fz>0,y>0and z>1

efg*™(z,y,2) u=

k ifz>0,y>0and z>0

fv ifz>0,y>0and 2>0

cefgy"(z-1,y,2)...efgr™(z ~ 1,9, 2)
ifz>0,y>0and z>0

fel...en ife>0,0<y<fandz>0

where f is defined by f v;...v, = eand e € efg*"(s,0,1)

and e; € efg*"(0,0,2), if e; is a transient structure

€efg*™(z—1,y,z), otherwise

for...0, fz>0,y=fand z>0

where f is defined by f v}...v, = eand e € efg*"(s,0,1)

case efgy"(0,0,z) of py:efgy"(z —2,9,2) |...| pr : efg" (2 — 2,9, 2)
ifz>0,y>0and 2>0

efg*™(z-1,y,2) fz>0,y>0andz>0

efg*™(s,y—1,2z) ifz2>20,y>0and2>0

efg*™(s, f,z—1) ifz>0,y>0and z2>1

Figure 5.10: Grammar of Expressions Encountered During Extended Deforestation

In the definition of the grammar efg*™(z,y, ), the value of y represents the number of

different functions which have been unfolded to produce the current expression. If the value

of y is equal to f, all function calls within the current expression must be recursive (Definition

5.2.2), and can have only variables as arguments.

All extended treeless function definitions are described by the grammar efg®"(s,0,1),

since the size of all function definitions is bounded by s. The expression to be transformed
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must be described by the grammar efg*"(s, f,n) for a suitable value of n. The value of
3 may need to be changed to satisfy this criterion, but no loss of generality results. If an
expression is described by the grammar edg®"(z,y, 2), where z < s, y < f and z < n, then

the expression is also described by the grammar edg*™(s, f, n).

Lemma 5.2.10 can now be proved by showing the following two lemmata.

Lemma 5.2.12 All expressions encountered by the deforestation algorithm are described by
the grammar edg®"(s, f,n) if the original ezpression to be transformed is also described by

the grammar edg®"(s, f,n).

a

Lemma 5.2.13 The size of all expressions described by the grammar edg®"(s, f,n) is bounded

by s x (f+1) xn.

a
Proof of Lemma 5.2.12

The proof of this lemma can be found in Appendix C.2.1.

Proof of Lemma 5.2.13

The proof of this lemma can be found in Appendix C.2.2.

5.3 Generalised Deforestation

The deforestation algorithm is guaranteed to terminate for expressions in which all functions
have definitions which are in extended treeless form. It may, however, be possible to eliminate
intermediate structures from an expression in which some functions have definitions which

are not in extended treeless form. For example, in the expression accreverse (flatten zss)
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ys, it is possible to eliminate the intermediate list created as the result of the function call
(flatten zss), even though the definition of the function accreverse given in Figure 2.2 is not
in extended treeless form.

In this section, it is shown how expressions can be generalised to extended treeless form.
The deforestation algorithm is then extended to be able to cope with these generalisations.
It is then proved that this generalised deforestation algorithm is guaranteed to terminate for

expressions in which all functions have definitions which are in this generalised treeless form.

5.3.1 Generalised Treeless Form

If all function definitions could be generalised in such a way that they are in extended treeless
form, then the deforestation algorithm would be guaranteed to terminate for all expressions
in the language. An expression is not in extended treeless form if it contains accumulat-
ing parameters, shared values or transient structures which are not variables. Accumulating
parameters, shared values and transient structures which are not variables are therefore ex-
tracted so that they can be transformed independently, as is done in the blazed deforestation
algorithm described in (Wadler, 1990b) for values of atomic type. To represent the result of

these extractions, let expressions of the following form are introduced:
let v =€ in €
Generalised treeless form can now be defined as follows.

Definition 5.3.1 (Generalised Treeless Form) An ezpression is in generalised treeless
form if all accumulating parameters, shared values and transient structures which are not
variables have been extracted from it using let erpressions, and all functions within it have

generalised treeless definitions.

0

For example, the accreverse function defined in Figure 2.2 is not in extended treeless form be-
cause there is an accumulating parameter in its recursive call. This accumulating parameter

can be extracted to give the following generalised treeless definition:

accreverse s ys = case 25 of
Nil :ys
Conszzs : let v=Conszys

in accreverse zs v
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5.3.2 The Generalised Deforestation Algorithm

The four additional transformation rules shown in Figure 5.11 must be added to the defor-

estation algorithm to cope with the described generalisations.

9) Tlbey...en] = bTle]...T[en]

(10) T[case (bey...en) of pi:ey |...| P} :eil
= case (b T[ei]...T[en]) of py : T[el} |...| ok : Tel]

(11) T[let v = ep in €]
= let v=T[e] in T[e;}

(12) T[case (let v=-epin e;) of pj:e} |...| p; :ei]
= let v="T[eg] in T[case e; of pj : e} |...| p} : €}]

Figure 5.11: Additional Transformation Rules for the Generalised Deforestation Algorithm

Rules (9) and (10) cover the application of basic functions. Basic function applications
are not allowed in the input to the deforestation algorithm since they cannot be unfolded.
They are handled by the generalised deforestation algorithm by recursively transforming their
arguments. Rules (11) and (12) deal with the transformation of let expressions. Rule (12) is
valid only if the variable v does not occur free in any of the branches of the case expression.
It is always possible to rename this variable so that this condition applies.

A valid input to the generalised deforestation algorithm is an expression in which all
shared values have been extracted, and all functions have generalised treeless definitions.
The output from the generalised deforestation algorithm will be an equivalent expression from
which intermediate structures have been removed. After the transformation is complete, all
expressions of the form let v = ¢g in e; may be removed in the same manner as described
in (Wadler, 1990b). If the variable v is used at most once in the expression ey, then the let
expression may be replaced by e;[eg/v]. Otherwise, a new function f defined by f v = ¢; is
introduced, and the let expression can be replaced by f eg. Alternatively, the language could
be extended to include let expressions. The standard semantics for such a let expression

would be defined as follows:
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Tlaccreverse (flatten zss) ys]

= T[case (flatten zss) of (By 4)
Nil : ys
Conszzs : let v=Conszys
in accreverse zs v]
= T[case (case zss of . (By 7)
Nil : Nl
Cons zs zss : append zs (flatten zss)) of
Nil :oys
Conszzs : let v=Conszys
in accreverse zs v]
= case zss of (By 8,5,6,2)
Nil :oys
Cons zs zss : T[case (append zs (flatten zss)) of
Nil P oys
Conszzs : let v= Conszys
in accreverse zs v]
= case zss of - (By 7)
Nil T
Cons zs zss
T[case (case zs of
Nil :  flatten zss
Conszzs : Consz (append zs (flatten zss))) of
Nil P ys
Conszzs : let v=Conszys
in accreverse zs v] ‘
= case zss of (By 8,5,6,11,3,2,2,4)
Nil :oys
Cons zs zss
case zs of
Nil : T[case (flatten zss) of
Nil T
Conszzs : let v= Conszys
in accreverse zs v}
Conszzs : let v= Conszys
in T[case (append zs (flatten zss)) of
Nil HE
Conszzs : let v'=Conszv

in accreverse zs v']

Figure 5.12: Generalised Deforestation of accreverse (flatten zss) ys
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Ellet v=reo in e1] p ¢ = Efer] pl(ELecl p #)/0] ¢

The generalised deforestation of the expression accreverse (flatten zss) ys is shown in Figure
5.12. The result of this transformation is shown in Figure 5.13. Non-termination will result

if this expression is transformed by the original unextended deforestation algorithm.

fxss ys
where
f zss ys = case zss of
Nil T oys
Conszs zss : f' zszssys
f zsrssys = case zs of .
Nil : fzssys
Consz zs : f' zs zss (Cons z ys)

Figure 5.13: Result of Generalised Deforestation of accreverse (flatten zss) ys

5.3.3 The Generalised Deforestation Theorem

The generalised deforestation theorem can now be stated as follows.

Theorem 5.3.2 (Generalised Deforestation Theorem) FEvery ezpression from which shared
values have been extracted, and in which all functions have generalised treeless definitions, will
be transformed by the generalised deforestation algorithm to an equivalent ezpression without

loss of efficiency.

a
Proof
The proof of the generalised deforestation theorem is very similar to the proof of the ex-

tended deforestation theorem. It can be proved by showing the following three lemmata,

which together demonstrate the validity of the theorem.
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Lemma 5.3.3 Every expression will be transformed to an equivalent expression if the gener-

alised deforestation algorithm terminates.

]

Lemma 5.3.4 Every ezpression from which shared values have been eztracted, and in which
all functions have generalised treeless definitions, will be transformed without loss of efficiency

if the generalised deforestation algorithm terminates.

a

Lemma 5.3.5 The generalised deforestation algorithm will always terminate for every ez-

pression in which all functions have generalised treeless definitions.

a

Proof of Lemma 5.3.3

The proof of this lemma can be found in Appendix C.3.1

Proof of Lemma 5.3.4

The proof of this lemma can be found in Appendix C.3.2

Proof of Lemma 5.3.5

As for the proof of Lemma 5.2.10, to prove that the generalised deforestation algorithm
always terminates, it is sufficient to show that there is a bound on the size of expressions

encountered during generalised deforestation.
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Definition 5.3.6 (Size of Generalised Expressions) The definition of the size of expres-
sions (Definition 5.1.7) is extended in the following way to define the size of generalised

ezpressions.
S[let v=egin e;] = 1+ maz(S[eo],S[er])
a

Definition 5.3.7 (Grammar of Expressions Encountered During Generalised De-
forestation) The following terms must be added to the grammar edg®™(s, f,n) to describe

the grammar of expressions which are encountered by the generalised deforestation algorithm.

edg*™(z,y,2) u= bedgi™(z-1,y,2)...edgi™(z - 1,y,2) ifr>0,y>0and 2> 0
| let v=edgy™(z—1,y,2) in edg;™(z —1,y,2) ifz>0,y>0and 2> 0
efg*™(2,y,2) u= befg"(z-1,9,2)...efg;"(z - 1,9,2) ifz>0,y>0and 2>0

| let v=-efgy"(z—1,y,2) in efg7™(z —1,y,2) ifz>0,y>0and 2>0

Lemma 5.3.5 can now be proved by showing the following two lemmata.

Lemma 5.3.8 All expressions encountered by the generalised deforestation algorithm are de-
scribed by the grammar edg®"(s, f,n), if the original erpression to be transformed is also

described by the grammar edg*™(s, f,n).

a

Lemma 5.3.9 The size of all expressions described by the grammar edg®"(s, f,n) is bounded

bysx (f+1)xn.

a
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Proof of Lemma 5.3.8

The proof of this lemma can be found in Appendix C.3.3.

Proof of Lemma 5.3.9

The proof of this lemma is very similar to the proof of Lemma 5.2.13, which is given in
Appendix C.2.2.

5.4 Related Work

5.4.1 Deforestation

Deforestation grew out of earlier work by Wadler on listlessness (Wadler, 1984). The listless
transformer is a semi-decision procedure which can convert recursive programs with a bounded
evaluation property (programs needing bounded internal storage to perform computation) to
equivalent listless programs. The work described in (Wadler, 1985) shows how two listless
programs can be combined into a single listless program. The programs to be combined are
required to be preorder. This means that the inputs of each program are traversed once,
and the outputs are produced in a left-to-right manner. The transformations in the listless
transformer are not source-to-source, and give a non-functional result. Also, the definition of
listless form is not as simple as the treeless form defined for deforestation, so it is harder to
determine when an expression is in listless form.

An area of work related to the listless transformer is the transformation technique pro-
posed in (Waters, 1991) for eliminating unnecessary intermediate series, where a series is a
sequence of items such as vectors or lists which may be unbounded. The class of expres-
sions which can be transformed by this technique are those which are preorder, statically
analysable and on-line cyclic. The preorder restriction is the same as that which is used in
(Wadler, 1985). The on-line cyclic restriction allows the transformation of functions which

take multiple inputs originating from common variables (thus forming cycles) with the on-
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line characteristic (lockstep production of one output for every input consumed). The class of
expressions which can be transformed by this technique are therefore not as simple as those
which can be transformed by deforestation.

A closely related work to the deforestation algorithm is the supercompiler described in
(Turchin, 1986). This involves driving (unfolding) programs to obtain a history of compu-
tational states (configurations) from the symbolic evaluation of programs. The graphs of
configurations obtained can then be used to compile more efficient programs. Folding is ap-
plied when a configuration matches one which has been encountered previously, as is done
in the deforestation algorithm. The graphs of configurations which are obtained during su-
percompilation are potentially infinite. A complicated generalisation algorithm is therefore
used to obtain a finite set of configurations. These generalised configurations must then be
supercompiled again. This is a much more complicated procedure to ensure termination of
the transformation process than is required for the deforestation algorithm.

Another related area to deforestation is partial evaluation (Bjorner et al., 1988). Partial
evaluation involves the specialisation of function calls in which the arguments are known (or
partially known). These calls can be transformed into more efficient equivalent functions
which make use of the known properties of their arguments. Deforestation allows the trans-
formation of symbolic data in which the values of arguments may not be known. The result of
the partial evaluation process is a residual program which contains evaluated and unevaluated

expressions. Transformations in the deforestation algorithm are source-to-source.

5.4.2 Extended Deforestation

Other work has already been done on trying to extend deforestation for first order expressions
in (Chin, 1991) and (Chin, 1992). This work is explained using a producer-consumer model
of functions. A function argument is a good consumer if it is linear and non-accumulating,
where linear and accumulating are defined in the same way as in this chapter. An extended
treeless form of expression is defined in which all good consumers are variables. An expression
is a good producer if it satisfies this extended treeless form. Good producers are fused with
good consumers during transformation, whilst expressions which are not good consumers or
good producers are extracted and transformed separately. This extended treeless form is more
restrictive than the extended treeless form defined in this chapter. All good consumers are
restricted to being variables, even if they are not transient structures. Thus, for example, the

flatten function defined in Figure 2.2 is not in the extended treeless form defined in (Chin,
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1991) and (Chin, 1992), but it is in the extended treeless form defined in this chapter. More
intermediate structures can therefore be eliminated by the method presented in this thesis.
Previous work has been done in (Hamilton & Jones, 1991b; Hamilton & Jones, 1991a;
Hamilton, 1991) to try to extend deforestation for first order functions. This work also
makes use of the information obtained by static analysis. In (Hamilton & Jones, 1991b), a
transmission analysis is used to determine whether structures are transient. This analysis
determines whether a structure will appear directly in the result of an expression. Structures
which do not satisfy this criterion, and are not variables, are extracted and transformed
independently. However, accumulating parameters and shared values are not extracted in
this work, so non-termination or loss of efficiency may occur as a result of applying the
deforestation algorithm. In (Hamilton & Jones, 1991a), a creation analysis is performed
in addition to the transmission analysis. This analysis is used to determine whether an
expression will produce a list result in preorder. Transient structures which are created in
this way can be eliminated by the deforestation algorithm. This analysis is still not sufficient
to ensure the termination of the deforestation algorithm, because accumulating parameters
are not extracted. In the work described in (Hamilton, 1991}, accumulating parameters are
extracted, thus ensuring the termination of the deforestation algorithm. The work described

in (Hamilton, 1991) is similar to the work described in this chapter.

5.4.3 Generalised Deforestation

The blazed deforestation algorithm described in (Wadler, 1990b) is a generalisation of the
original deforestation algorithm. This generalisation is performed on the basis of the types of
expressions. Expressions of atomic type are blazed ©, and expressions of structured type are
blazed @. Expressions blazed © are extracted using let expressions and transformed indepen-
dently, since they cannot be intermediate structures. More expressions can be transformed as
a result of this generalisation, but there are still many function definitions which are not in
the described blazed treeless form. More intermediate structures can therefore be eliminated
using the generalised deforestation algorithm described in this chapter.

The universal deforestation algorithm described in (Chin, 1991) and (Chin, 1992) is similar
to the generalised deforestation algorithm described in this chapter. Any sub-expressions
which prevent an expression from being in the described extended treeless form are extracted
using let expressions and are transformed separately. Thus, any function arguments which

are not variables are extracted, even if they are not transient structures. More intermediate
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structures can therefore be eliminated by the generalised deforestation algorithm described
in this chapter.

In the work described in (Turchin, 1986), the graphs of configurations which are obtained
during supercompilation are potentially infinite. Generalisation is therefore performed to ob-
tain a finite set of configurations. This generalisation determines a more general configuration
for a configuration which does not precisely match a previous one. The algorithm for this
generalisation which is presented in (Turchin, 1988) ensures termination of the supercompila-
tion process. This generalisation algorithm is a sophisticated on-line technique (Jones, 1988),
which looks back at the history of configurations at transformation-time in order to perform
on-the-fly generalisation. The generalised deforestation algorithm presented here uses a sim-
ple off-line generalisation to determine which intermediate structures can be eliminated. This
off-line technique is used to determine in advance where generalisations must be introduced.
The supercompiler requires a complex algorithm to determine at transformation time when
generalisations must be performed, and re-supercompilation of the generalised configurations

when they are introduced.

5.5 Conclusion

In this chapter, it has been shown how information obtained by usage counting analysis can
be used to guide the transformation when compile-time garbage avoidance is performed. The
method of compile-time garbage avoidance which was used is the deforestation algorithm
described in (Wadler, 1990b). A treeless form of expression was characterised in (Wadler,
1990b) which does not create any intermediate structures. It has been proved in this chapter
that the deforestation algorithm will always terminate for expressions in which all functions
have definitions which are in treeless form.

The deforestation algorithm will also terminate for some expressions in which functions
have definitions which are not in treeless form. It was therefore shown how treeless form can
be extended by making use of the information obtained by usage counting analysis. It was
then proved that the deforestation algorithm will always terminate for expressions in which
all functions have definitions which are in this extended treeless form.

Some intermediate structures can also be eliminated from expressions in which some func-
tions have definitions which are not in extended treeless form. It was therefore shown how
any function definition can be generalised in such a way that it will be in extended treeless

form. The deforestation algorithm was extended to be able to deal with these generalisations.



Chapter 6

Conclusion

In this thesis, it has been shown how the use of storage in lazy functional programs can be
optimised at compile-time by utilising the information obtained by usage counting analysis.
Two different approaches to performing this optimisation were taken; compile-time garbage
collection and compile-time garbage avoidance. The information obtained by usage counting
analysis can be used to annotate programs for compile-time garbage collection, and to guide
the transformation when compile-time garbage avoidance is performed. In this chapter, a
summary is given of the work in this thesis, directions for further work are discussed, and

general conclusions are drawn.

110
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The remainder of this chapter is structured as follows:
e Section 6.1: a summary is given of the work in this thesis.
e Section 6.2: directions for further work arising from this thesis are discussed.

e Section 6.3: the general conclusions of the thesis are given.

6.1 Summary of Thesis

6.1.1 Language

In Chapter 2, the syntax and semantics of the language used throughout this thesis were
defined. The standard semantics of the language do not model the use of store, and so
could not be used as a reference against which store-related analyses and optimisations could
be proved correct. Non-standard store semantics were therefore defined for the language.
To ensure that these store semantics model the use of store safely, they were proved to be

congruent to the standard semantics of the language.

6.1.2 Compile-Time Garbage Detection

In Chapter 3, it was shown how the cells which will become garbage within a program can be
detected at compile-time. A cell will become garbage during the evaluation of an expression
if it is unshared when it loses a reference. To determine that a cell is unshared (used once),
the store semantics presented in Chapter 2 were augmented to incorporate usage counting.
These usage counting store semantics had to be abstracted in some way to allow usage counts
to be determined at compile-time. Usage counting store values were therefore abstracted to
usage patterns. These patterns are finite objects which indicate the number of times each
part of a value is used. A usage counting analysis was then defined, using these patterns, to
determine at compile-time the number of times each part of a value will be used in future
computations. This usage counting analysis was then proved to be safe with respect to the
usage counting store semantics by showing that the usage count of a value determined by
the analysis is not less than its actual usage count. Thus, it is not assumed that a cell will

become garbage when it is still required by a program.
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6.1.3 Compile-Time Garbage Collection

In Chapter 4, it was shown how information obtained from usage counting analysis can be
used to annotate programs for compile-time garbage collection. Three different methods
for compile-time garbage collection were presented; compile-time garbage marking, explicit
deallocation and destructive allocation. Compile-time garbage marking involves marking
cells at their allocation to indicate that they will become garbage after their first use. This
method requires an extra bit per cell to indicate whether or not a cell is marked, so the
extra space required may be more than the space which is saved by using this method.
Explicit deallocation involves returning cells to the memory manager at a particular point in
a program. This avoids the need to mark cells since it is known that cells will always become
garbage at this point. This method requires that the run-time garbage collector makes use
of a free list, which is not the most efficient way to perform garbage collection at run-time.
Destructive allocation involves reusing cells directly within a program for further allocations.
This avoids the need to use a free list, so a more efficient method for performing run-time
garbage collection can be used. Store semantics were defined for programs which have been
annotated for each of these methods of compile;time garbage collection, and the correctness

of these store semantics was considered.

6.1.4 Compile-Time Garbage Avoidance

In Chapter 5, it was shown how information obtained by usage counting analysis can be
used to guide the transformation when compile-time garbage avoidance is performed. The
method of compile-time garbage avoidance which was used is the deforestation algorithm
described in (Wadler, 1990b). A treeless form of expression was characterised in (Wadler,
1990b) which does not create any intermediate structures. A proof was given in Chapter 5
that the deforestation algorithm will always terminate for expressions in which functions have
definitions which are in treeless form. The deforestation algorithm will also terminate for some
expressions in which functions have definitions which are not in treeless form. It was therefore
shown how treeless form can be extended by making use of the information obtained by usage
counting analysis. It was then proved that the deforestation algorithm will always terminate
for expressions in which all functions have definitions which are in this extended treeless
form. Some intermediate structures can also be eliminated from expressions in which some
functions have definitions which are not in extended treeless form. It was therefore shown how

any function definition can be generalised in such a way that it will be in extended treeless
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form. The deforestation algorithm was extended to be able to deal with these generalisations,

and it was proved that this generalised deforestation algorithm will always terminate.

6.2 Further Work

There are many directions for further work arising from this thesis. These are summarised

below.

6.2.1 Compile-Time Garbage Detection

The usage counting analysis presented in this thesis is for a first order monomorphic language.
This analysis could be extended to deal with higher order expressions and polymorphism.

In order to deal with higher order expressions, the analysis could be combined with an
abstract interpretation in which all higher order values are analysed in a forward direction,
in the manner described in (Hughes, 1988). Alternatively, a closure analysis, such as the one
performed in (Sestoft, 1989), could be performed to determine the set of possible abstract
closures to which a function can be evaluated during the execution of a program. The least
upper bound of the corresponding contexts of these abstract closures could then be determined
to give a safe approximation to the context of each function.

In (Abramsky, 1985), it is shown that it is necessary only to analyse a polymorphic function
at its simplest instance when abstract interpretation is used to perform strictness analysis.
This result for the simplest instance of the function is then applicable to every instance of
the function. In order to extend usage counting analysis to deal with polymorphism, it would

have to be shown that this is also the case for usage counting analysis.

6.2.2 Compile-Time Garbage Collection

A full proof of correctness is required for the three methods of compile-time garbage collec-
tion which have been presented in this thesis. This would involve defining an equivalence
relation between the usage counting store semantics for programs which have been annotated
for compile-time garbage collection and the usage counting store semantics for unannotated
programs.

If usage counting analysis could be extended to handle higher order expressions, then
the described methods for compile-time garbage collection could also be extended. This

would allow an implementation of the methods for compile-time garbage collection to be
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incorporated into the optimisation phase of a compiler, and a thorough assessment could be

made of the benefits which can be obtained by these optimisations.

6.2.3 Compile-Time Garbage Avoidance

More intermediate structures could be removed from expressions by making use of laws (for
example, the commutativity or associativity of functions). In (Wadler, 1987a), it is shown how
some intermediate structures which are unshared can be removed from function definitions
by making use of the associativity of the append function. However, the function definitions
which result from this transformation contain accumulating parameters, so they are still not
suitable for transformation by the deforestation algorithm.

The generalised deforestation algorithm could also be extended to deal with higher order
expressions. It has already been shown in (Marlow & Wadler, 1992) and (Hamilton, 1993)
how the deforestation transformation rules can be re-formulated in order to be able to deal
with higher order expressions. If usage counting analysis could be extended to handle higher
order expressions, then the generalised deforestation algorithm presented in this thesis could
also be extended. This generalised algorithm would allow a much wider range of expressions
to be transformed. For example, in many of the more widely used higher order functions (for
example map, filter, fold), the function type argument is used more than once. These function
type arguments would therefore have to be extracted before the functions could be involved
in higher order deforestation transformations. Also, in higher order languages, applications
are of the form e; ey, where the function e; is applied to the argument e;. Without an
analysis similar to usage counting analysis to determine which expressions are intermediate
structures, it would have to be assumed that the expression e; is intermediate, and it would
have to be restricted to being a variable. Thus, not many useful higher order expressions
could be transformed.

Finally, an implementation of a higher order generalised deforestation algorithm could be
incorporated into the optimisation phase of a compiler so that a thorough assessment could

be made of the benefits obtained by this optimisation.

6.3 General Conclusions

In this thesis, it has been shown that usage counting analysis provides useful information for '

the compile-time optimisation of store usage in lazy functional programs. The three desirable
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criteria for compile-time optimisations given in Section 1.1.3 (termination, automatability
and correctness) have been of paramount importance in the optimisations described in this
thesis.

It has been shown how usage counting information can be used to annotate lazy programs
for compile-time garbage collection. Most of the previous work in the area of compile-time
garbage collection has been for strict languages. Three different methods of compile-time
garbage collection were presented; compile-time garbage marking, explicit deallocation and
destructive allocation. The correctness of each of these methods was considered. In most of
the previous work in the area of compile-time garbage collection, correctness has not been
considered. Of the three described methods for compile-time garbage collection, it has been
found that destructive allocation is the only method which is of practical use.

It has also been shown how usage counting information can be used to guide the trans-
formation when compile-time garbage avoidance is performed. The method of compile-time
garbage avoidance which Vwas used is the deforestation algorithm described in (Wadler, 1990b).
A proof of the deforestation theorem stated in (Wadler, 1990b) has been given in this thesis.
It has also been shown how the class of expressions for which the deforestation algorithm
is guaranteed to terminate can be extended by utilising the information obtained by usage
counting analysis.

Compile-time garbage avoidance produces greater increases in efficiency than compile-time
garbage collection. Time which is required to allocate, traverse and subsequently deallocate
intermediate structures is saved through the use of compile-time avoidance, but not through
the use of compile-time garbage collection. Compile-time garbage collection merely serves to
reduce the amount of time required for garbage collection at run-time. However, much of
the garbage which can be collected by compile-time garbage collection cannot be avoided at
compile-time. The two approaches are therefore complementary, and the expressions resulting
from compile-time garbage avoidance transformations could be annotated for compile-time

garbage collection to further optimise the use of storage.
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Appendix A

Proofs for Language Semantics

A.1 Congruence of Expressions

for all pgatore € Bvegitore, Pestore € Fvegstore, Ogstore € Storegsiore, ¢¢ € Fveg, e € Exp:
if for all f € dom(¢gstore):

¢(¢£ntore[f] lOC] . .lOCn Ugltore) = ¢£[f] (Q(IOCI, Ugatore)) v (Q(IOCn, Uguore))
then for all v € dom(pgstore):

q’((‘:“ore[en PEstore ¢gnore Uenore) = £|[€] [‘I’(pguore[v], Ugatore)/v] ¢g

Proof

The proof is by structural induction on the expression e.

Base Cases

Case l: e =k

Eklp & = k
gtorelk} pdpo = alloc(k,o)
Q(g’to"[k] PEstore ¢gnore O’g-tore) = k
= q’(guore[k] PEstore (bgotore Ugnore) = E[k] [Q(pg.twe[v]],ag-mc)/'v] ¢£

124



APPENDIX A. PROOFS FOR LANGUAGE SEMANTICS , 125

Case 2: e := v

€] p o = plv]
groreful ppo = (loc,a’lloc/p[v]]), if (o (p[v])) € Closure
where

(loc,o") = (o (p[o])) o

= ((o (p[¥D)),0), otherwise
®(£%%m¢[v] pestore Pestore Ogaore) = B(pgstore[v], agstore)
= (£ [v] pestore pgstore Oguore) = E[v] [B(pgatorev], Tgatore) [v] e
Inductive Cases
Casel:eu=bey...e,
Elber...en] p ¢ = B[] (Elead p @) ... (Elen] p ¢) ;
Erelbey...es) pdpo = Beaore[b] locy...loc, 0,

where

(locr,01) = &% [e1] p oo
(locn, Un) = gatore[en] P ¢ On-1

d(E2torefb ey ...e,] peotore Pestore Tgatore)

= B[b] ®(&°%°m¢[e1] peotore Pestore Ogatore) o
P(E2tom¢en] pstore Pestore Oatore)

= B[b] (Ele1] [®(pgstore]v], ogatore)[v] d¢) ...
(ETeal [8(perioreled, opuire) 2] d)

(by inductive hypothesis)
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= g[b €1.. .en] [Q(pgotore[v], O'gﬂore)/'v] ¢£
= q)(gotore[b €1 .. .Cn] PEstore ¢£atwe Ugatore)

= E[ber...e] [B(pestore[v], ogstore)/v] P

Case 2: eii=cey...ey

Elcer...ex]lp o

£or¢fcey...ex ]l pdo

Cle] (Eleal p 8) ... (Elenl £ 8)
Cestore[c] locy .. . locy, 0n
where

(locy,01) = alloc((E%**[er] p ¢),0)

(locp,00) = alloc((£*"[en] p ¢),0n-1)

B(E%%c e1...€n) pestore Pestore Tgatore)

= Cle] 3(£°%[er] pgstore Peatore Ogatore) ..
B(E£2tm*[en] pestore dgstore Ogstore)

= C[e] (€ler] [(pemorelol, puere) 0] ) ...
(€len] [B(peurelt], Teiors) /] d)
(by inductive hypothesis)

= E&fcey...e.] [B(pgsiore]v], Ogstore)/v] b

= (% [c e1...en] peotors Peatore Tgatore)
= Elcer...en] [B(pgstore[v], Ogatore) [v] £

Case 3: e := fe;...e,

Elfer...exlp @

gatorc[f el-'-en] p ¢U

olf1 (Elea] o ¢) ... (Elenl p 9)
&[f] locy...locy 0n
where

(locr,01) = alloc((E*[e1] p ¢),0)

(locn,0,) = alloc((E%*[en] p ¢),On-1)
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O(E%%¢[f e1...en] pestore Pgotore Tgatore)
= ¢e[f] B(E%*[er] pestore Pgotore Tgutore) ...
B(E77[en] peuire Pgutors Tgutore)
(by assumptions for ¢gstore and ¢¢ in Lemma 2.5.2)
= @elf] (Eler] [B(pgatore]v], ogarore) /] d¢) ...
(Elen] [2(pestore]v], ogerore)/v] )
(by inductive hypothesis)
= O(EM[f e1...en)] pestore Pgatore Tgatore)
= E[f e1...en] [2(pgetore[v], ogutore) /v] e

Case 4: e :=case egof py:ey |...| pr:ex

Elcase egof py ey |...| pr:ex]lp @
= £le]plz | 1/v1y.e.yz | nfva] ¢

where
z = Ele] p o
p; = ¢ ...v, and match(z,c)

8“°'°[case €9 of Pe | | Pk - ek] p ¢ o
— gatorc[e‘.] p[x l 1/01,.. A l n/vn] ¢ o'

where
(loc,d’) = &% fe] pdo
T = o loc
Pi = ¢...v, and match(z,c)
d(E%ore[case eg of pr:ey |...| i : ex] pestore Peatore Tgatore)
= ®(E%r¢[e;] pgstore[z | 1/V1,. ., | NfVs] Patore ')
where
(loc,0’) = &% leg) p o o
z = o' loc

Pi = c¢v1...v, and match(z,c)
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= 8[6;] pg[xll/’l)l,---,zln/vn] ¢£

where

g = Eleo] pe ¢¢

peE = [Q(Peatwc{v], Ug-tore)/v]

p; = ¢v...v, and match(z,c)

(by inductive hypothesis)
= EJcase e of py ey |...| px : €] [B(pestore[v], Testore) V] P
= (&%r[caseegof pr:ier|...| pr: ex] pestore Pgotore Ogatore)

= E[case eg of p1:e1 |...| px : ex] [B(pestore[v], Ogstore)/v] P
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A.2 Congruence of Function Variable Environments

for all p € Prog:

if
and

then

Proof

Eplp] = Ele} (Av.L) ¢
Eytere[p] = force(£*°m[e] (Av.L) ¢gstore (Aloc.UNB))
for all f € dom(@gstore), Tgstore € Storegstore:

@((ﬁguwelf] lOCl e lOCn Ugatore) = ¢5|[f] (Q(IOCI, Ugntore)) .o .(@(IOCn, O'gnore))

The proof is by fixpoint induction.

Base Case

The first approximations to each function variable environment are as follows:

¢gnorc

= [(Ae1... 22k L1)/f;]

= [(Mocy ... Moc;.Ma.1)/f;]

B(P2utore[fi] locy .. locy Tgstore)

= 1
= ¢g[fJ] (‘P(locl, G’gatore)) ‘e .(Q(locn, Ugnore))

Inductive Case

¢zt

¢n+l

£ atore

[(Azq...  ex; .Ele] [w1/viny .o o2k /v50;] 83)/ £5]
where f; is defined by f; vj1...vk; = e;

= [(Mocy...Mocy; Xa.£%"e;] [loc1 /v, ..., lock; [ vik;] BRetore 0)] £3]

where f; is defined by f; vj1...vj; = e;
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<I>(¢gf,,l,,, [fi] locj1 .. locjk; ogstore)
= o(&tr[e;] [locj1/vi1s- - -, 10Cik; [Vik,;] BRatore Testore)
= Ele;] [®(locj1, Ogstore)[V515 400y B(lOCjk,, Tgstore)[vik, | D7
(by inductive hypothesis and Lemma 2.5.2)
= ¢2¥! [fJ] (®(locj1, Ogstore)) . . .(B(locjk;, Testore))



Appendix B

Proofs for Compile-Time Garbage

Detection

B.1

Correctness of Usage Counting Analysis

for all peuse € Bveguse, Ppguse € Fveguse, Oguse € Storeguse, ¢y € Fvey, p € Prog, e € Exp:

if

and

and
and
then

Proof

E%[p] = (loc", 0fuse)
for all f € dom(Pguse):
if Peuse[f] locy ... loc, oguse = (loc',0kuse)
and  §(loc’, 0fuse, Ofuse) = u
then if Peuse]f] loc) ... loch, aguse = (loc" 0% use)
and  (Gull i u) C 8(loch rgase,otius)
then u C 6(loc”,0%use,0usc)
Ev%[e] peuse Peuse oguse = (loc', 0fuse)
6(loc’, Ofuse, Ofuse) = 1
for all z; € dom(pguse):
if Ewele] [loci/xi] peuse Tguse = (loc”, 0 uae)
and  (U[el[z] u u) C 6(loci, oguse, o)

then u C 6(loc”, 0, 0fuse)

The proof is by structural induction.
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Base Cases
Case l: e =k
U[k][:t] u ¢u = ABS
Evefk] p ¢ o = alloc((0,k),0)
£ 5] = (loc”, o)
if £v2¢fe] peuse peuse Teuse = (loc’,0fuse)
and 6(106,’0',8“"’02{{‘“) =u
then if guse[€] [lOC,‘/zi] ¢guae Oguse = (lOC”, U’éu.e)
and  (U[e)[z:] v ¢u) C é(loci,oguse, 0fuse)
then §(loc",08uie,080se) = 1
(since no part of z; appears in the result of €)
= u ; 6(100”,02,"‘“,0,5,(“@)

Case 2: e =10

Ulv]lz] v du

u, fo=1c

= ABS, otherwise

Evelpdo = (loc,a'lloc/p[v])), if (¢ (p[v])) € Closure

where

(loc,0’) = (o (p[v])) o
= ((o (p[¥]), ), otherwise

£1[p) = (loc", o)
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if Ev%¢[e] peuse Peuse aguse = (loc'yOpuse)

and  §(loc',Ofuse,Opuse) = U

then if Eu2ee] [loci/z;] peuse Tguse = (loc” 0Fuae)
and  (U[e][z:] v du) T 6(loci, Oguse, 05uae)
then u C §(loci,0guse,08use), ifv=x

and  ABS C §(loc;,Oguse,0Fus), otherwise

=> u C 8(loc",0Fuse,Opuse)y if v = Z;
and 8(loc" 0% use 0 use) = u, otherwise

(since no part of z; appears in the result of €)

= ul 6(100”,Ulgluoe,o’é<ue)

Inductive Cases

Case l:e:=be;...e,

Ulb ey...ex][z] v du = v = Uleallz] 1 du & ... & Ufes][=] 1 du)

E¥elbe;...en] p ¢ o = B*e[b] locy .. .loc, op

where

(locy,04) inc(E¥[e1] p ¢ 0)

(locn,00) = inc(E¥[en] p ¢ 1)
£3%[p] = (loc", ot

if Ev*ee] peuse Peuse gguse = (loc’, Ofuse)

and  §(loc'Ofuse,0Fuse) =

and  £¥*[e] [loci/x;]) Peuse Tguee = (loc”, 0Fuse)

and  (U[e]l[z:] v du) T 6(loci,ocuse,050se)

then (u— U[er]lz] 1 du & ... & Ulen][z:] 1 du)) E 6(loci,0cuse,0use)
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if
then
=

£v¢[e;] [loci/z;) deuse 05 = (loc), 0})
(Ule;lzi] 1 du) T é(loci,05,05use), if u # ABS
1 € é(loc},07,08use), if u # ABS

(by inductive hypothesis)

"

uC 6(100",0lg’uoe,asule)

Case 2: e:=ceé€1...6,

Ulcer...en}z] v du = u - Uler][z] w1 du &

where
uy = Uc#lu
U, = Uc#nu

E¥lcer...en] p @ o =C"[c] loc;...locy On

where

(locy,01) = alloc((E¥[e1] p ¢),0)

(locp,00) = alloc((E¥**[es] p ¢),0n-1)

g3 [p] = (loc”, 0uue)

=

if
and
and
and
then
if
then

8036[61 PEuse ¢£.“3 Oguse = (lOC" O"gu:e)
8(loc' \0fuse,050e) = U
Ev:efe] [loci/ 2] deuse aguse = (loc”,0%use)

(U[e)lzi] v du) C 6(loci,0guse,08use)

(u - (UI81M.’L‘,‘] 151 ¢u &...& UEean;] Up qSu)) E 5(106,‘,0’5-‘;3,0'8'5‘.,)

£vse[e;] loci/z:] peuse 05 = (loc},07)
(Ule;lz:] v; du) E 6(l0ciy0;,08use )y if u # ABS
u; C 8(loc},0%,0%ue), if u # ABS

(by inductive hypothesis)

"

u C §(loc" 08 use 0 use

o & Uleal] un du)
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Case 3: e = fe1...€,

Ulf e1-..e]lz] v du = u — Ulea]lz] u1 du & ... & Ulen]lz] un du)

where

Uy = ¢u|[ZIf#1]u

Un

eulU f#n] u

Ev[f er...eql p ¢ o = ¢[f] locy...loc, an

where

(locr,01) = alloc((E***[e1] p ¢),0)
(locn, 0n) = alloc((£**¢[en] p #),0n-1)
Ex*[p] = (loc", 05use)
i 9] peure ppuse Tguse = (10€', Thuse)
and  §(loc'\Ofuse,Ofuse) = U

and  £**¢[e] [loci/zi] peuse Tguse = (loc", Ouse)

and  (U[ellzd] u ¢u) € 8(loci,oguse,0guec)

then (u — (U[ea][z:] w1 du & ... & Ulen]}[zi] un du)) E §(loci,oguse 0 use)

= if £¥*¢[e;] [loci/xi] peuse a; = (loc},05)
then  (U[e;lz:] u; du) C 6(loci,oj,05use), if w # ABS
= u; T 6(loc,05,08use), if u # ABS

(by inductive hypothesis)
= u C 6(loc",0Fuse,Tpuse)

(by assumptions for @guse and ¢y in Theorem 3.5.2)
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Case 4: e :=caseegof py:e; |...| pr:ex

U[case eo of p1: ey |...] pi:ex]lz] v b =
v — ((Uleoll=] w1 ¢u) & Uleallz] w du)) U ...
U (Uleollz] ux du) & (Ulerllz] v du)))

where

Pr = €1 Vi1...¥1n

Pk = Ck Ukl...Vkn,

uy = Llcl(l,ll[el][vu]l u ¢u,.. .,Ul[eleln,] u ¢u)
up = Uek(L,U[ellvia] u dus.. ., Uler][vkn,] v du)

E¥¢[case eg of py:er |...|priex]lpdo=
gusc[e‘_l P[zl 1/’01,...,12 ) n/vn] ¢ o

where

(loc,a') = inc(E**[eo] p ¢ o)

(v,z) = o' loc

Pi = c¢v...v, and match(z,c)

£55¢1p] = (loc", ouse)

if £u%¢[e] peuse Peuse Teuse = (loc'y Opuse)
and  6(loc',Ofuse,0%uee) = U
and  &%*[e] [loci/xi] Peuse Tguse = (loc”, 0Fuse)
and  (U[e][z:] v du) T 8(loci,ocuse,0Fuse)
then u — ((U[eo)[z:] w1 du) & Ulerllz] v b)) U ...
U (Uleo)lz] ur du) & Ulexllz:] u du))) C (loci,oguse,05use)
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= if the branch p; : e; is selected
and  &%*¢[eo] [loci/x;] peuse Tguse = (loch, ap)
and  &%*[e;] [loci/xi] peuse 0 = (loc}, 07)
then  (U[eo][zi] u; du) C 6(loci,oguse,0fue)
and  (U[e;][z:] v du) T 6(loci,00,05use)
= u; C 8(locy,00,08use)
"

and  u C §(loc},0,07u.)

(by inductive hypothesis)
= U [; 6(100”,0’2‘"‘” ,U,g’:ue)

a
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B.2 Correctness of Usage Counting Analysis Function Vari-

able Environment

for all p € Prog:
if Ex°¢[p] = force(E]e] (Av.L) pguse (Aloc.UNB)) = (loc", 0uae)
and  Uplp] = du
then for all f € dom(@guse), Oguse € Storeguse:
if Peuse[f] locy .. .loc, oguse = (loc'\Okuse)
and  6(loc’, Ofuse; OFuse) =
then if deuse[f] loc) ... loc), oguse = (loc” 0 use)
and  (u[Uf#i] u) C 6(loc}, 0guse, 0fuse)

then u ; 6(106”, Uguae, 0,5,{402)

Proof

The proof is by recursion induction.
Base Case
£1p] = (loc", o)
if peuse[fi] locjy .. locjk; geuse = (loc',0use)

then  £9¢e;] [loest/vjn, s 1ot /0jn,] deuse ague = (10 ohun)

where f; is defined by f; vj1...vk; = €;

if 6(’0C’,U’guae,a’,g,:ue) =1U
then if peuee[f] loc) ... locs,. oguse = (loc",0Fusc)

and (¢u[uf-7#k] U) (; 6(106,’1'1005“”’02!{4”)
then  &£*[ej] [loch/vj1, .- s 10€)y, [Vjk;] Peuse Oguse = (10" 0Fuse)
and  (U[e;lvir] v du) C 6(loc)y,00use,00u.e)

= ul 6(1061/,025...,,0"5'(‘“)

(by Theorem 3.5.2, since the function f is not recursive)
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Inductive Case

gttt = [Quldlelvin] v ¢5)/Ufi#k]
where f; is defined by f; vj1...vk; = ¢;
il = [(Mocjy .. .AlOCjkj.)\dguce.Euse[Cj] [locj1/vj1,. .. ,locikj/vjkj] Ppuse Tguse)/ fj]

where f; is defined by f; vj1...vk; = ¢€;
Ex[p] = (loc",05use)

if ¢21’,1,[fj] locjy.. . locjk; Oguse = (loc',0puse)

then  £%¢[e;] [locj1/vj1y .+ +y10Cik;/Vik;] Ruse Teuse = (loc',0%use)

if 6(!0C’,Uéu.¢,ale’(ue) =1u
then  if $RErlf] locly ... locly. ggue = (loc”,0Fus)

and (g [US;#k] u) € 6(loc)y, Oguse, 0Fuse)
then  £“c[e;] [loc)y /vj1, .. .,Ioc;.kj/vjkj] PRuse Oguse = (l0c",0Fuse)
and  (Ule;l[vjx] v 84) T 6(loc;y,0cuse,0¢use)

mn

= U ; 6(10C”,0’guu,aguaa)
(by inductive hypothesis and Theorem 3.5.2)



Appendix C

Proofs for Compile-Time Garbage

Avoidance

C.1 Proof of Deforestation Theorem

C.1.1 Proof of Lemma 5.1.3

Prove: E[Tlellp ¢ =CE[e]l p ¢

The proof is by recursion induction over the transformation rules 7.

Base Cases

Case for Rule 1:
TIk] = &

Nothing to prove as the expressions are identical.

Case for Rule 2:
Tv] = v

Nothing to prove as the expressions are identical.

Inductive Cases

Case for Rule 3:
Tlcer...ex] = ¢ Tlea]... T[en]

140
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Elcer...eal p ¢ = Clc] (€lel p ¢) .- (Elen] p ¢)
= CldETTeadl p6) - (ELTTeall £ 6)
(by inductive hypothesis)
= EleTlal]...Tle]l p ¢

= 8[7[681...en]]p¢ g[C 61...en]p¢

Case for Rule 4:

T[f er...en] = flvi...v
where
[l = Tle[e1/v1,.. . en/vn]]

where f is defined by f v,...v, = e

and v} ...v} are the free variables in (f e;...e5)

flfer...eal p é = ¢lf1(flea] p o) ... (Elen) 0 8)
= Ele] [(Eled] p #)/ 15 o(Elen] p 6)/vn] &
= Eleler/viy..venfvnl] p ¢
= E[Tleler/v1,...ren/valll 0 ¢
(by inductive hypothesis)
= &f'vi..nled
where
fol..v) = Tleler/v1,y. .. enfvn]]
and v} ...v} are the free variables in (f e1...€5)

= CTlfe...ellpd = Elfer...cen]pd

Case for Rule 5:
T[case vof pj:¢||...| p}:ei]
= casevof p| :T[e]|...] p,: Tlei}

E[case vof pi:el |...|pi:elp ¢
= €[} plz | 1/v1y..0hzinfvy] ¢
where

z = EP)pé

p. = cv...vn and match(z,c)



APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 142

= E[Tel]l plz L 1/v1y..sz i nfvi] ¢

where
z = E)ré
p, = cwv...v, and match(z,c)

(by inductive hypothesis)
= Efcase vof pi:Tleil|...| Pk : Tleill p ¢
= E[T[case vof p:ei|...|pi:eill p &
= E[casevof pi:ei|...|pp:eklpd

Case for Rule 6:
T[case (cer...eq) of pl:ei |...| p el
= T[ei[e1/viy...renfvn]]

where pi = cvy...0,

E[case (cer...en) of pi:e) |...|pi:etlp @
= E[e) plz | 1/v1, vz i nfvn] &

where
z = Efce...en]lpd
p. = cwv...v, and match(z,c)

= £[el] pl(Eledd p 6)/v1y. .5 (Elen) p )/ va] ¢
= Eleller/vrye.ovenfvnll p &
= E[Tleller/v1,-.. en/valll P &
(by inductive hypothesis)
= E[T[case (cey...en)of pi:ef|...|pk:eillp @
= E[case(cer...ep)of piiel |...IpL:eilp o

Case for Rule 7:
Tlcase (fer1...en)of Priey |...| P ei] = f vi. .0
where
flv)...vp = Tl[case (eler/v1,...,en/vn]) Of py ey |...| Py €]
where f is defined by f v...v, =€

and v}...v} are the free variables in (case (f e;...e,) of p i€y |...| p} : €)
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E[case (fer...eq)of Piiey |...|Diiei]p o
= Ele] plz | 1/v1yeenyz | nfvy] &

where
r = E[fer...ex]lp @
p, = cv...v, and match(z,c)
= £l pla L 1/oryeeyz L nfon] 6
where
2 = GIf1(Elesd p )-.(Eleal £ 9)
p, = cv...v, and match(z,c)
= Ele] plz L 1/v1ye0 sz L nfva] 6
where
z = Elel[(Elerl p /o1y, (Elend p 6)/va] 6
p. = cv...vy and match(z,c)
= Elelplzll/v1,..iz infva] 6
where
z = Efeler/v1y...,enfvn]]l p @
p. = cv...v, and match(z,c)

= E[case (e[er/v1y. .. enfvn]) Of Pl i€y | .| DL ekl p o
= E[T[case (e[er/v1,...,enf/vn))of Piiel |...| Pk e ]l p &
(by inductive hypothesis)
= Elf v...nlpé
where
[ vi... v, = Tcase (e[er/vy,...,enfvn]) Of pi i€} |...| pk: €]
and v ...} are the free variables in (case (f e;...e,) of pj : €} |...| P} : €})
o £[T[case (f e1.nea) of 2 i h ool ph: ]l p 6
= CEcase (fer...ep)of piiej|...|pL:ei]lpd
Case for Rule 8:
T[case (case eg of pyiey |...| pnien) of P i€l |...] D} :el] -
= T[case ey of

p1 ¢ caseeyof piief|...| ph:el

Pn : case e, of piiel |...| p):el]
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E[case (case eg of py:e; |...|pnies) of Pi:iey|...|pi:ei]lp o
= Elef] plz’' | 1/v,...,2" L m/v,] ¢

where
2 = Efcaseegof pyier|...|prnies]l p o
p. = c v]...v), and match(z’,c)
= E[ef] plz' L 1/, . 2" L m/o,) ¢
where
o = E[ed pla ) 1on,..crz L1/o] §
p. = ¢ v}...v), and match(a’,c’)
z = Ele] p o
pi = cwv...v and match(z,c)

= Elcase e;of py:el|...| piie] ple i 1/v1, ..z L[] ¢

where
g = Ele]pd
pi = cuv...vy and match(z,c)

(since there is no nameclash between the variables in the patterns py...p,
and the free variables in the expressions €] ...€;)
= &[case eg of

. ' ’
pr : caseejof piiel|...|p}:e;

pn : casee,of piiel|...|piei]lp o
= &[T[case ¢ of

. /) . ol /.
pr : caseerof pi:ej|...[piie;

pn : casee,of piiey|... pi:eillp d
(by inductive hypothesis)
= £[T|[case (case ep of pr:ey|...|pnien)of Priey|...|pk:er]lp ¢

= E[case (case egof py:er|...|pnies)of piier|. .. pi:elpd
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C.1.2 Proof of Lemma 5.1.4

Prove: Tle] € tf

The proof is by recursion induction over the transformation rules 7.

Base Cases

Case for Rule 1:
Tkl = &
Nothing to prove as k € tf

Case for Rule 2:
T} = v
Nothing to prove as v € tf

Inductive Cases

Case for Rule 3:
Tlcer...ea]l = cTle]... T]ea)

Tle] e tf,Vie {1...n}

(by inductive hypothesis)
=> (cTla]...Tle.]) € tf
=> Tlcer...en]) €tf

Case for Rule 4:
Tifer...en] = flov]...v
where

flol.oov Tleler/vay -« -y en/val]
where f is defined by f v;...v, =€

and v} ...v) are the free variables in (f e;...e,)
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(f'vp...v0) €tf
(Tleler/1s- - -renfva]l) € tf
(by inductive hypothesis)

= T[fer...en] €tf

Case for Rule 5:
Tlcase vof pj:el|...| p} : €Ll

= casevof pi:T[ej} |...| P} : Tle}]

Tle!yetf,Vie{l...k}

(by inductive hypothesis)
=> (casevof pi:T[el} |...| pi: Tlei]) € tf
= T[case vof pj:€i|...]p}:ei] € tf

Case for Rule 6:
T[case (cey...e,) of pi:ef |...| P} :€il
= T[es[el/vla”-’en/vn]]

where pl = cvy...vp

(Tlekler/v1y--senf/vn]]) € tf
(by inductive hypothesis)
= T[case (cey...ex)of piie}|...|pi:e;] €tf

Case for Rule 7:
Tlcase (fer...en)of piiel |...| el = f v]...v
where
flol..vf = Tlcase (eler/viy... enfvn]) of P} i€l |...| Pkt ei)
where f is defined by fv,...v, =€
and v}...v} are the free variables in (case (f e1...e,) of pj : €} |...| p} :€})
o v €etf
(Tlcase (eler/v1,. .. en/va]) of Py i€} |...| Pl :ei]) € #f
(by inductive hypothesis)
= Tlcase (fer...ep)of pi:ej|...|p.:€] €tf
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Case for Rule 8:
T[case (case eg of py:e1 |...| pn:es) of pi :¢'1 |...| Pk ekl
= T[case ¢ of

py : casee of piie)|...] p} e}
pn : casee,of piief|...|p;:eil

(T[case e of
!

. N !l .
py : caseejof py:ie)|...| pfie}

p, : casee,of piiei|...|p:er]) € Uf
(by inductive hypothesis)
= T[case (case egof pr:er|...|paies) of piiey|...|piiep] € tf

a
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C.1.3 Proof of Lemma 5.1.5

Assume R[e] is a measure of the number of steps required to reduce the expression e to a fully
forced form. One expression is considered to be more efficient than another if, for every pos-

sible instantiation of the free variables, the first requires fewer steps to reduce than the second.

Prove: R[T{e]] < Rle}

The proof is by recursion induction over the transformation rules 7.

Base Cases

Case for Rule 1:
Tk = &

Nothing to prove as the expressions are identical.

Case for Rule 2:
Tv] = v

Nothing to prove as the expressions are identical.

Inductive Cases

Case for Rule 3:
Tlcer...eq}

cTled) ... Tlen)

RI[T[e] < Rfe],Vie{l...n}
(by inductive hypothesis)
= RlcTlea]... Tlex]] £ Rlcer...en]
= R[T[cer...en]] < Rfcey...en]
Case for Rule 4:
Tlfer...en] = foj...v

where

J

T[e[el/vl, seey en/vn]]
where f is defined by f v;...v, = e

and v]...v} are the free variables in (f e;...e,)
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Rleler/v1y. ..y en/vnll < Rlfer...en]

(since e is linear in all variables and
a function call has been removed)
Rleler/v1y-+s€n/vn]]

(by inductive hypothesis)
R(fer...e]

Rlfer...e]

(since a function call is introduced only when

R[Tleler/v1, ... ren/valll

IA

= R[T[ele1/v1y---r€n/vn]]]
= R[f vi...v]

IAN A

another function call has been removed)

= R[T[fer...ell RI[fe1...en]

IA

Case for Rule 5:
T[case v of p|:¢} |...| P} : el

= casevof pj : T[ef] |...] P : T{et]

RIT[¢]] € RIELVie{1...k}
(by inductive hypothesis)
= R[case vof p|:T[ei]]...| Pk : Tleill
< TR[case vof pj:€\|...| P} :ei]
= R[T[case vof p,:ei |...| p}:eill
< TR[case vof pj:ey|...| pi:ei]

Case for Rule 6:
T[case (cey...e;) of pi:ef |...| p; el
= T[es[el/vl, veey en/vn]n

where pl = cv1...0,
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Rlei[er/v1y .« -ren/vnl]
< TR[case (cer...e5) of py:ef|...| pi:el]
(since e} is linear in all variables and a
constructor application has been removed)
RITIEe1 /015 - en/va]l]
< R[ei[er/v1y..+r€n/vn]]
(by inductive hypothesis)
= R[T[eller/v1,...,en/vn]]]
< TRlcase (cey...e,) of pj:ef |...] pi: el
= R[T[case (cey...en) of pj ey |...] pi:eil]

< TRlcase (cey...ex) of pf ey |...| Pk :ei]
Case for Rule T:

Tlcase (fer...en) of Pyie) | .. p:er] = f vi. .0

where

flvj...vp = Tlcase (eler/vi,...renfvn]) of pi ey |...| p} t €i]
where f is defined by f v1...v, =€

and v} ...v} are the free variables in (case (f e1...en) of pi i€} |...| p} : €})

R[case (e[er/v1,...,en/vn]) of P i€l |...] Pl : €i]
< TRfcase (fer...en) of pyiey|...| pi €]
(since e is linear in all variables and
a function call has been removed)
R[T[case (e[er/v1,---ren/vn]) of P} 1€ |...| P €]l
< TR[case (eler/v1y...,en/vn]) of D} e} |...]| i : €]
(by inductive hypothesis) '
= R[T[case (e[e1/v1,... en/va] Of Py i€} |...| P}t €]l
< TRfcase (fer...en) of pi:ef |...] Pk : €]
= R[f v]{...v{]
< TRlcase (fer...eq) of pl:ef |...| P} :eil
(since a function call is introduced only when
another function call has been removed)
= TR[T[case (fer...e,) of pi:ej|...| p}:eill
< Rlcase (fer...en) of pi:el|...| P):ei]
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Case for Rule 8:
T[case (case eg of py:ey |...| paien) of pf e} |...| p:ei]
= T[case ¢ of

. ! o ol /.
pm : casee;of pi:ef|...| p, e}

pn : casee,of pi:iel|...| p) ekl

R[case ¢ of

(N LN |
py : caseejof pi:ef|...|p) e}

p. : case e, of pi:ei|...| p, €]
< TR[case (case eg of p1:e1|...| pnies) of piie) |...| D : €]
R[T[case e of

R LN
pr : caseey of pjiel|...] pi:e

pn : case e, of pi:ef|...| pi:eill
< R[case e of

Lt !,
pr : caseeyof piief|...|piie}

pn : case e, of pj:e}|...| pi:er]
(by inductive hypothesis)
= TR[T[case ¢ of

. of ! . !
P case e of pj:e} |...| pi:€}

pn : case e, of pl:ei|...] pL:e]]
< TR[case (case eg of py:ey |...| pnien) of py ey |...| p):eil
= R[T[case (case eg of py:er|...| pnien) of Py ey |...| p}:erl]

< TR]case (case eg of py:e1|...|pnien) of piel |...| pi:ei]
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C.1.4 Proof of Lemma 5.1.10

Prove: Ve € dg’(z,y),z<s,y<n:
Tle] = ... T[e'}... = € € dg°(s,n)

The proof is by inspection of the transformation rules 7

Case for Rule 1:
Tkl = &

Nothing to prove.

Case for Rule 2:
Tv] = v

Nothing to prove.

Case for Rule 3:
Tlcer...en]

cTlea]... Tlenl

(C € -”en) € dg"(a:,y), z S S Y S n
=> e edg(z~-1,y),Vie{l...n}
= e €dg’(s,n),Vie{l...n}

(since z < 8,y < n)

Case for Rule 4:

T[f €1... en]
where

flol.. v

fvp.. v

Tleler/v15. . -renfvnll
where f is defined by f v;...v, = e

and v} ...v}, are the free variables in (f e1...en)

(f €1...€n) € dg’(a:,y),a: S 8, 3/5 n
= ¢ € dg®(0,y),Vi€{l...n}

and e € dg*(s,1)
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= e[er/v1,...,enfvn] € dg*(s,)
= eler/v1,...,en/vn] € dg°(s,7m)
(since y < n)

Case for Rule 5:
T[case v of p} : €| |...| P} :e;}
= casevof pi:T[e]|...] P} : Tlei)

(case vof pl : €| |...| p}:€}) € dg*(z,y), 2 <8, y<n
=> e edg(z-yy)Vie{l.. .k}
= ¢ edg’(s,n)Vie{l...k}

(since z < s, y < n)

Case for Rule 6:
T[case (ce1...ex) of pi:ef |...| p}:eil
= Tleller/v1y. . en/vn]]

where pl = ¢cv1...v4

(case (ce;...eq) of P} :é’l |...] phiek) € dg*(z,y), 2 <8, y<n
=> e €dg’(s—1,y-1),Vie{l...n}
and el € dg’(z—y,y),Vi€{l...k}
= €ler/v1,...,en/vs] € dg°(z — ¥, Y)
(since v1,...,v5 ¢ fv)
= el[er/v1y...,en/vn] € dg’(s,n)
(since z < 8,y < n)

Case for Rule T:

T[case (f e;...e;) of pl:ey | ..l phiei] = f vi...v

where
fvj...v, = Tlcase (eler/v1,...renfva]) of pyiey |...| Pk s €]

where f is defined by f v1...v, =€

and o) ...v} are the free variables in (case (f e;...e,) of pj e} |...| Pt €k)
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(case (fer...en)of piej |...] P} :€}) €dg’(z,y),2<s,y<n
=> e €dg(0,y—1),Vie{l...n}
and el €dg’(z-y,y), Vi€ {l...k}
and e € dg*(s,1)
= (case (e[e1/v1y.. . en/vn]) Of P i€} |...| P : €}) € dg°(z,y)
= (case (e[e1/v1,.. . €nfvn]) of P} i€} |...| P} :€}) € dg°(s,n)
(since z < s,y < n)

Case for Rule 8:
T[case (case eg of py:er |...|pazen) of proey|...]| P : €kl
= T[case ¢ of

. 1ol T,
p1 : caseejof pi:el |...| p}:e)

p. @ case e, of pi i€} |...| piiei]

(case (case eg of py:ej|...| pn:en) of piiei ). .| pLrel) € dg’(z,y),
r<s,ysn

= e edg(s—y+1,y-1),Vie{l...n}
and ¢l €dg*(z—y,y), Vi€ {l...k}

and e € dg°(0,y—1)

= (case e of

[N | !,
pr @ casee of piiel|...| P} e

pn : case e, of py 1€l |...] P} :€t) € dg*(z,y)
= (case eg of

pr : casee of piiel|...|piie

pn : case e, of p, e} |...| P} :€}) € dg°(s,n)
(since < 8, y < n)
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C.1.5 Proof of Lemma 5.1.11

Prove: Ve € dg’(z,y),22>20,8>0,y>0:
Slel < 2+ (s x (y = 1))
(Lemma 5.1.11 is a corollary of this)

The proof is by induction on the variable y.

Base Cases: y=1

The proof of the base cases is by induction on the variable z.

Base Cases: =10

Case 1: dg*(z,y) u=kifz>0andy >0

S[k]

0
< z+(sx(y-1)
(since z =0, y =1 and s > 0)

Case 2: dg’(z,y) u=vifz>0and y> 0

Slv] 0
< z+(sx(y-1))

(since z =0,y =1 and s > 0)

Inductive Cases: z > 0

Case 1: dg¢*(z,y) u=cdg}(z - 1,y)...dg3(z - 1,y)ifz >0and y >0
Slcer...en) 1 + maz(Sfes, ..., en])

1+(z=-1)+(sx(y—-1)),if(cer...e,) € dg*(z,y)

(by inductive hypothesis for z)
z+(sx(y-1))

IA

IN
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Case 2: dg*(z,y) = f dgj(0,¥)...dg3(0,y)ifz > 0and y > 0
where f is defined by f v1...v, = e and e € dg*(s, 1)

S[fer...eq} 1 + maz(Sfei], ..., S[en])
Lif (fer...eq) € dg*(z,y)
z+(sx(y-1))

(sincez > 0,y =1)

IA

Case 3: dg*(z,y) ::= case dgj(0,y) of py : dgj(z - y,9) |...| px : dgi(z — ¥,9)
ifz>0andy>0

Slcase egof py:ey |...| pi:ex]
1 + maz(S[eo], - .., Sfex])
< 1+ ((z-9)+(s x (y-1)))),
if (case ep of py:ey |...| pr:ex) € dg*(x,y)
(by inductive hypothesis for )
< z+(sx(y-1))
(since y = 1)

Case 4: dg*(z,y) u=dg*(z - 1,y)ifz >0and y > 0
Sl € o-1+(sx(y=1),Veedg’(z-1,9)
(by inductive hypothesis for z)
< s+(sx(y-1)

Inductive Cases: y > 1

The proof of the inductive cases is by induction on the variable z.

Base Cases: ¢ =0

Case 1: dg°(z,y) ui=kifz >0andy > 0
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0
< z+(sx(y-1)
(since z =0,y > 1 and s > 0)

S[¥]

Case 2: dg*(z,y) s=vifz>0and y >0

0
< z+(sx(y-1)
(since z =0, y > 0 and s > 0)

S[v]

Inductive Cases: z > 0

Case 1: dg’(z,y) == c dgi(z — 1,y)...dgi(z — 1,y)if > 0and y > 0
S[cer...en) 1 + maz(Sfe1, ..., enl)

1+(z-1)+(sx(y-1)),if (cer...en) € dg*(z,y)

(by inductive hypothesis for z)

z+(sx(y-1))

IA

IN

Case 2: dg*(z,y) ::= f dg}(0,y)...dgs(0,y)if z >0and y > 0
where f is defined by f v1...v, = e and e € dg°(s,1)
S[fer...en} 1 + maz(S[e1], .. - Sleal)
143+ (sx(y—2)),if(fer...eq) € dg*(z,y)
(by inductive hypothesis for y)
z+(sx(y-1))
(since z > 0)

IA

IA

Case 3: dg°(z,y) ::= case dgj(0,y) of p1:dgj(z —y,9) |...] px: dgi(z - y,9)
ifz>0andy>0
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Slcase eq of p1:ey |...| pr : k]
1 4+ maz(Sfeo], ..., Sex])
< T+ maz((s+(sx(y-2)h((z-v)+(sx (y-1))),
if (case ep of p; i ey |...| px :ex) € dg*(z,y)
(by inductive hypotheses for z and y)
< z+(sx(y-1)
(since z >0,y > 1)

Case 4: dg*°(z,y) n=dg’(z-1,y)ifz >0and y > 0

IA

Slel z-1+(sx(y—-1)),Ve€dg(z-1,y)
(by inductive hypothesis for z)

r+(sx(y-1))

IA

Case 5: dg*(z,y) = fg*(s,y—1)ifz >0and y > 1

IA

Slel s+(sx(y-2),Vee fg’(s,y—1)

(by inductive hypothesis for y, since e € fg*(s,y—1) = e € dg°(s,y — 1))
sx(y-1)

z+(sx(y-1))

(since z > 0)

IAN A
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C.2 Proof of Extended Deforestation Theorem

C.2.1 Proof of Lemma 5.2.12
Prove: Ve € edg®*(z,y,2),c <8, y< f,z<m
Tlel =...T[e']... = € € edg*"(s, f,n)

The proof is by inspection of the transformation rules 7°

Case for Rule 1:
Tkl = &k
Nothing to prove.

Case for Rule 2:
Tv] = v
Nothing to prove.

Case for Rule 3:
Tlcer...es] = ¢ Tlei]...Tex]

(cer...e,) € edg®™(z,y,2), <8, y< f,z<n
= e € edg®™(z-1,y,2),Vi€ {l...n}
= e € edg®™(s, f,n),Vie€ {1...n}
(sincez < 8,y < f,z< n)

Case for Rule 4:
T[fer...ex] = [fovi...v
where

foj..vh = Tleler/viy.oren/vall

where f is defined by f vy ...v, =€

and v} ...v} are the free variables in (f e1...€xa)
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(fer...eq) € edg*™(2,9,2),2<s,y< f,z2<n
= e € edg®™(s,0,1)
and ¢ € v, fy=f
€ edg*™(0,0, 2), if 0 <y < f and ¢; is a transient structure
€ edg®*(z —1,y,2), if 0 <y < fand e; is not a transient structure
= (eler/v1y... en/vn]) € edg®"(s,0,1), ify=f
€ edg®™(s,y+1,2), if0<y<f
(since only transient structures can be the selectors in case expressions)
= (e[er/viy.+-yen/vn)) € edg®™(s, f,n)
(since y £ f,z2< n)

Case for Rule §:
Tcase v of pj : e} |...| P} :e;]
= casevof pj:T[ei}]...| p} : Tle}

(case vof p) i€} |...| P} :e}) € edg®™(z,9,2), 2 <s,y< f,z<n
= el €edg’™(z-2y,2),Vie{l...k}
= ¢} € edg™(s, f,n), Vi€ {l...k}

(sincez < s,y < f,2< n)

Case for Rule 6:
Tlcase (c e1...e,) of py e} |...] i :eil
= Tleiler/v1y...,en/vn]]

where p} = ¢ v1...0,

(case (cey...ep) of py i€y |...] p}:€}) € edg™™(z,y,2),z <s,y< f,2<n
= e €edg*(s-1,f,z—-1),YVie{l...n}
and e € edg*™(z - 2,9,2),Vie€ {1...k}
= (ellea/v1y.. . en/vn]) € edg®™(z — 2,9, 2)
(since v1...v, € fv)
= (eer/v1y...,€n/vn]) € edg®"(s, f,n)
(sinceis,ySf,zSn)
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Case for Rule 7:
Tcase (fe1...en)of piie} |...] pL:ei] = f vi...v}
where
Jio.ov = T[case (e[er/v1,...,en/vn]) of Pl : €} |...| P : ei]
where f is defined by f vi...vp=¢€

and v]...v} are the free variables in (case (f e;...e;) of pj 1€} |...| p} : €})

(case (fer...ep)of pi:e} |...] p}:ei) € edg®(z,y,2),2<s,y< f,z<n
= ¢l €edg®(z—2,9,2),Vi€{l...k}
and (fer...en) € edg®™(¢,y,7), e’ <8,y < f,2d <2
and e € edg*"(s,0,1)
= € €uv, ify=f
€ edg®"(0,0,2' - 1), if0<y < fand e is a transient structure
€ edg®"(z' - 1,9,2'), f0< ¢ < f and e; is not a transient structure
= (eler/viy. . yenfvn]) € edg®m(s,0,1), ify'=f
€ edg®™(s,y' +1,7), f0<y < f
(since only transient structures can be the selectors in case expressions)
= (e[er/v1,...,enfvn]) € edg®"(s, f, 2~ 1)
(case (e[e1/v1y...,en/vn]) Of P} i €] |...| P} : €}) € edg®™(a,y, 2)
= (case (efe1/vy,...,enf/vn]) of Py €1 |...| D} : €)) € edg®™(s, f,n)
(sincez <8,y < f,2< n)

Y

Case for Rule 8:
T[case (case eg of py:ey |...| paien) of pfrel |...| P} :el]
= T[case ey of

. [ ] Yy
pr : casee of piiej|...|pie

Pn ¢ case e, of pl e} |...] pi:ei]



APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE

162

(case (case eg of py:ey |...| prnien) of pl:el|...| pf:ef)
€ edg®™(z,y,2),2 < s, y< f,z2<n
= e €edg®(s-2+1,f,z-1),Yie {1...n}
and ¢! € edg®™(z - 2,y,2),Vi€ {1...k}
and eg € edg*"(0,0,2-1)
= (case ¢g of

. ) .
pr : caseejof pi:el|...| p}:¢€;

Pn : casee,of plie]|...| p}:eL) € edg®"(z,y,2)
= (case eg of

. ’ ! /ool
p1 : caseerof pliel|...| D)€

pn : case e, of pi e} |...| p}:e€L) € edg®™(s, f,n)
(sincez <8, y< f,z2< n)
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C.2.2 Proof of Lemma 5.2.13

Prove: Ve € edg*"(z,y,2),22>20,8>0,y<0,f>0,z>0:
Steh € z+(sx9) + (s x (f +1)x (2= 1))
(Lemma 5.3.9 is a corollary of this)

The proof is by induction on the variable z.

Base Cases: 2 =1

The proof of the base cases is by induction on the variable y.

Base Cases: y=0

The proof of the base cases is by induction on the variable z.
Base Cases: z =0

Case 1: edg*"(z,y,z) u=kifz2>0,y>0and 2> 0

S[k] 0
< z+(sxy)+(sx(f+1)x(2-1))

(sincez=0,y=0,z=1,8>0and f > 0)
Case 2: edg*™(z,y,2) u=vifz>0,y>0and 2> 0

S} 0
S z+(sxy)+(ex(f+1)x(2-1))

(sincez=0,y=0,2=1,8>0and f >0)

Inductive Cases: z > 0

Case 1: edg”"(z,y,2) = c edgy™(z - 1,9,2)...edgs™(z — 1,9, 2)
fz>0,y>0andz>0
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]

Scer...en] 1 + maz(S[e1], .-+ S[en)])
L4 (= 1)+ (s x )+ (X (f+1) x (= 1)),
if (cey...en) € edg*(z,y,2)
(by inductive hypothesis for z)
z+(sxy)+(sx(f+1)x(z-1))
Case 2: c¢dg*"(z,y,2) = fe1...e,if2>0,0<y< fand2>0
where f is defined by f v;...v, = e and e € edg*"(s,0,1)

IA

IA

and ¢; € edg*"(0,0,2), if ; is a transient structure

€ edg*"(z - 1,y,2), otherwise

S[fer...eal = 1+ maz(S[e], ..., Sea])
< 1+ (@@-D+(sx@y-1)+(sx fx(2-1))),
if(fer...eq) € edg®™(z,y,2)
(by inductive hypothesis for z)
< at(sxy)+(x(F+)x(z-1)

Case 3: edg*™(z,y,2) i= fv1...0,if2>0,y= fand 2> 0
where f is defined by f v} ...v], = e and e € edg®"(s,0,1)
S[fvi...v,] 1 + maz(Sfni), ..., Slvn))
1
< z4(sxp+ExF+)X(-1)
(sincez>0,y=0,z=1,8>0and f >0)

]

Case 4: edg*"(z,y,2) =
case edg)"(0,0,2) of py :edgy™(z — 2,y,2) |...| pr 1 edgy" (T — 2,¥,2)
ifz>0,y>0and 2> 0
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Sfcase egof py:er |...| pi:ex]
1 + maz(S|eo), ..., Slex])
< 1+@E-DtExN+HExF+DXE-1),
if case eg of py 1 ey |...| pr : ex € edg*"(z,y,2)
(by inductive hypothesis for z)
< at(sxP+ExFHDx(z-1)
(since z = 1)

Case 5: edg*"(z,y,2) = edg*™(z - 1,y,2)if £>0,y>0and 2> 0
S[e] € (z-1)+(sxy)+(sx(f+1)x(z—1)),Ye€ edg®"(z~1,y,2)
(by inductive hypothesis for z)

< z4+(sxy)+(x(f+1)x(2-1))

Inductive Cases: y > 0

The proof of the inductive cases is by induction on the variable z.
Base Cases: z =0

Case 1: edg*"(z,y,2) u=kif220,y>0and 2> 0

0
< z+(sxy)+(sx(f+1)x(2-1))
(sincez=0,y>0,z=1,8>0and f >0)

S[k]

Case 2: edg*™(z,y,2) n=vifz20,y>0and 2> 0

0
< z+(sxy)+(sx(f+1)x(2-1))
(sincez=0,y>0,2=1,8>0and f >0)

Siv)
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Inductive Cases: z > 0

Case 1: edg*"(z,y,2) = c edg;"(z — 1,y,2) ...edgi™(z — 1,¥, 2)
ifz>0,y>0and 2> 0

Slcer...ex] = 14 maz(S[ed], ..., Sleal)
< 14(e-D+(sxy)+(sx (f+1)x(2-1)),
if (cer...en) € edg®™(z,y,2)
(by inductive hypothesis for z)
< z+(sxy)+(sx(f+1)x(z-1))

Case 2: edg®™(z,y,2) = fer...epifz>0,0<y< fandz2>0
where f is defined by f v;...v, = e and e € edg*™(s,0,1)
and ¢; € edg®"(0,0,2), if e; is a transient structure

€ edg*™(z — 1,y,2), otherwise

S[fei...ea] = 1+ maz(Sle], ..., Slea])
< 14 (a=D+(sxn+ExF+)x(z=1)),
if(fer...en) € edg®"(z,y,2)
(by inductive hypothesis for z)
< z+(xy+(sx(f+1)x(2-1))

Case 3: edg®"(z,y,2) ii= fv1...0,f2>0,y=fand 2> 0
where f is defined by f v{...v, = e and e € edg®"(s,0,1)

Il

S[f v1...v3] 1 4+ maz(S[n], ..., S[vn])

1
g+(sxy))+(sx(f+1)x(z-1))
(sincez >0,y>0,z2=1,8>0and f >0)

IA
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Case 4: edg®™(z,y,2) =
case edgy"(0,0,2) of p; : edgy"(z — 2,4,2) | ...| pr s edgy™(x — 2,9, 2)
fz>0,y>0and z>0

S|case eg of py ey |...| it ex]
1 + maz(S[eo], - .., S[ex])

< 14+ (@=-2)+(6xy+(x(f+1)x(z-1)),
if case eg of py €1 |...| Pk : ex € edg*™(z,y,2)
(by inductive hypothesis for z)
< z+(sxy)+(sx(f+1)x(2-1)

(sincez >0,y>0,z=1,s>0)
Case 5: edg®"(z,y,2) u= edg®™(z - 1,y,2)if 2 > 0,y>0and 2> 0
Sl € (@-1)+(x)+Ex(+D)x(z-1),Y e € edg™(z - 1,3,2)
(by inductive hypothesis for )
< zH(sxp)+(x(F+1)x(z~1)

Case 6: edg*™(z,y,2) == edg®"(s,y - 1,2)if >0,y >0and 2 >0

Sle)

IN

s+(sx(y-1))+(sx(f+1)x(2=1)),V e € edg®™(s,y - 1,2)
(by inductive hypothesis for y)

(sx3) +(sx (f+1)x (= 1))

g+ (sxy)+(sx(f+1)x(2-1))

(since z > 0)

IAIA

Inductive Cases: z > 1

The proof of the inductive cases is by induction on the variable y.

Base Cases: y =0

The proof of the base cases is by induction on the variable z.
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Base Cases: z =0
Case 1: ed¢g*™(z,y,z) ni=kifz2>0,y>0and 2> 0
0

c+(sxy)+(sx(f+1)x(2-1))
(sincez=0,y=0,z>1,s>0and f >0)

S[k]

IA

Case 2: ed¢g®™(z,y,2) i=vifz >20,y>0and 2> 0
S[v] 0

s+ (sxy)+(sx(f+1)x(2-1))

(sincez=0,y=0,2>1,8>0and f>0)

I

IA

Inductive Cases: z > 0

Case 1: edg*™(z,y,2) = c edgy"(z — 1,9, 2)...edgp™(z - 1,9,2)
fz>0,y>0and 2> 0
Slcer...e] 1 + maz(S[es], - .., Slen])
1+ (z-1)+(sxy)+(sx(f+1) x(z-1)),
if (cey...en) € edg®™(z,y,2)

IN

(by inductive hypothesié for z)
g+ (sxy)+(sx(f+1)x(2-1))

IN

Case 2: edg®™(z,y,2) i= fe1...epif2>0,0<y< fand 2> 0
where f is defined by f v;...v, = e and e € edg®"(s,0,1)
and ¢; € edg®"(0,0,z), if e; is a transient structure

€ edg®™(z — 1,y,2), otherwise
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S[fer...ex] = 1+ maz(S[es], ..., Senl)

1+ maz((s+ (sx )+ (sx(f+1)x(z-2))),

(z-1)+(sxy)+(sx (f+1) x(2-1)))),
if(fe...en) € edg®(z,9,2)

(by inductive hypotheses for z and 2)

I+ (z-1)+(sxy)+(sx(f+1)x(2-1))

(since z > 0,y =0)

g+ (sxy)+(sx(f+1)x(2-1))

IA

IA

IN

Case 3: edg®™(z,y,2) = fvy...vnif2>0,y=fand 2> 0
where f is defined by f v ...v, = e and e € edg*™(s,0,1)

S[f v1...v.] 1 4+ maz(S[n], ... S[va])
1
2+ (sx9)+(sx (f+1)x (2~ 1))

(sincez >0,y=0,z2>1,8>0and f >0)

Il

IA

Case 4: edg™(z,y,2) ::=
case edg)™(0,0,2) of py : edgi™(z — 2,9,2) |...| Pk : edgy™ (2 — 2,9, 2)
fz>0,y>0and 2> 0

S[case eg of p1:e1 |...| pi : ek}
= 1 + maz(S[eo], .- Slex])
< 14 ma((a+(sxNHHEx )X (=2)),

(e—2)+(sxy)+(sx (f+1)x(z-1)))),
if case ep of p; :e1 |...| pr: ek € edg®™(2,y,2)

(by inductive hypotheses for z and z)

< 1+ (@=-2)+(xy+(sx(f+1)x(2-1))
(since z > 0,y =0, s> 0)
< z+(sxy)+(sx(f+1)x(z-1))

(since z > 1)
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Case 5: edg*"(z,y,2) = edg®™(z - 1,y,2)ifz >0,y >0and 2 >0

Sle] £ -1+ (sxy)+(sx(f+1)x(2-1)),Ve€ edg®™(z - 1,y,2)
(by inductive hypothesis for z)
z+(sxy)+(sx(f+1)x(2-1))

IA

Inductive Cases: y > 0

The proof of the inductive cases is by induction on the variable x.
Base Cases»: z=0

Case 1: edg®™(z,y,2) u=kifz>0,y>0and 2> 0

0

< sH+(sxy)+(sx(f+1)x(z-1))
(sincez=0,y>0,2z>1,8>0and f >0)

S[]

Case 2: edg*™(z,y,z) n=vifz>0,y>0and 2> 0

il

0
2+ (sx )+ (s X (f+1)x (2= 1))
(sincez =0,y >0,2>1,8>0and f >0)

S[v]

IN

Inductive Cases: z > 0

Case 1: edg*™(z,y,2) = c edg?"™(z - 1,9,2)...edgy™(z — 1,9, 2)
ifz>0,y>0and 2> 0
1 4+ maz(S[eq], .. ., S[end)
L+(E=1)+(sx)+ (X (F+1)x (2= 1),
if (cep...eq) € edg®™(z,y,2)

Slcer...e]

IA

(by inductive hypothesis for )
e+ (sxy)+(sx(f+1)x(2-1))

IA
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Case 2: edg®"(z,y,z) = fe1...enif2>0,0<y< fand 2> 0
where f is defined by f v;...v, = e and e € edg®™(s,0,1)
and e; € edg®"(0,0,2), if e; is a transient structure
€ edg®*(z — 1,y,z), otherwise
Slfei...en] = 1+ maz(S[e], ..., S[en])
< 1+ maz((s+ (sx f)+(sx (F+1)x(z-2))),
((z=D+(sxy)+(sx (f+1) x (2 -1)))),
if (fer...eq) € edg®™(2,y,2)
(by inductive hypotheses for z and z)

< 1+(z-1+xy)+(sx(f+1)x(z-1))
(since z > 0, y > 0)
< zH(sxy)+(sx(f+1)x(z-1))

Case 3: edg®"(z,y,z) = f v ...onifc>0,y=fand 2>0
where f is defined by f v{...v) = e and e € edg*"(s,0,1)

1 + maz(S[v1], ..., S[vnl)

1

2+ (sxy)+(sx (F+1)x (z=1)
(sincez >0,y>0,2>1,s>0and f2>0)

Sif (41 ...’Un]

IN

Case 4: edg*™(z,y,2) =
case edgd™(0,0,2) of p; : edgd™(z — 2,9,2) | ...| pi t edgy™(z — 2,9, 2)
fz>0,y>0and 2>0

171
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S[case eg of py:ey |...| pr : ex]
= 1 4+ maz(S[eq], .. ., Sfex])
< 14+ maz((s+(sx )+ (sx(f+1)x(z-2))),
((z-2)+(sxy)+ (s x (f+1) x (2 -1)))),
if case eg of py i€y |...| px:ex € edg®"(z,v, 2)

(by inductive hypotheses for z and z)
14 (o-2)+(sx9)+(sx (f+1)x (2= 1))
(since z > 0,y > 0, s > 0)
< at(exP+Ex(FH)x(z-1))
(since 2 > 1)

IA

Case 5: edg*™(z,y,2) u= edg®"(z - 1,y,2)if 2 >0,y>0and 2> 0

Sle] £ (E-1D)+((xy)+(x(f+1)x(2=-1)),Vec€edg*(z-1,y,2)
(by inductive hypothesis for z)
< z+(sxy)+(sx(f+1)x(2-1))

Case 6: edg""(z,y,2) := edg®"(s,y—1,2)if >0,y >0and 2> 0

Sfe]

IA

s+ (sx (W=D)+ (X (FH1)x (2= 1)), ¥ e € edg* (5,5~ 1,2)
(by inductive hypothesis for y)

(s x3)+ (s X (F+1) x (2= 1))

o+ (sx )+ (s x (f+1) X (z=1))

(since z > 0)

IANIA

Case T: edg*™(z,y,2) u=efg*™(s, f,z2—1)if >0,y >0and 2> 1

IA

Sle] s+(sx fl+(sx(f+1)x(2-2)),Vecefg* (s, frz—1)
(by inductive hypothesis for z, since

e€efg®(s,fyz2—1) => e € edg®*(s, f,2—- 1))
(sx(f+1)x (2=1))

s+(sxy)+(sx(f+1)x(z-1))

(since z > 0,y >0, s > 0)

IA A
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C.3 Proof of Generalised Deforestation Theorem

C.3.1 Proof of Lemma 5.3.3

In order to prove Lemma 5.3.3, the proof of Lemma 5.1.3 must be extended to include the
three new transformation rules. The following inductive cases must be added to the recursion

induction proof of Lemma 5.1.3.

Case for Rule 9:
Tber...en} = bTlei]...Ten]

EBer.enl pp = BII(Eled p9) .. (Elen] p 9)
= B[b] (E[TTer]l p ¢) - .- (E[TTenll » 4)
(by inductive hypothesis)
= £ Tleddl. Tleall p 6
lbey...ex] p @

= E[T[ber...en]lp ¢

Case for Rule 10:
Tcase (bey...ex) of pf i e} |...| P : €}l
= case (b T[e1]...T[es]) of py : Tlefl |...] o : Tlei]

Elcase (bey...ex) of pl:el ...l pi:eil p ¢
= Ele]l plz L1/, 2l n/va] ¢
where
z = Efber...exlp ¢
pi = cuvi...vy, and match(z,c)
= Elef] plz | 1/v1,y..0yz infvn]
where

z = B[b] (£[e] p ¢)...(Elex] p ¢)

pi = c¢wv;...v, and match(z,c)
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= E[T[e] plz | 1/v1,.. .02 L nfvn] &

where
z = B[] (E[Teall p 4)...(E[Tlenll p )
p. = cv...v, and match(z,c)

(by inductive hypothesis)
= E[case (b T[e1]... Tlen]) of Py : Tlef} |...| Pk :Tleill p ¢
= E[T[case (bey...ex)of pi:ef|...]pL:ekllp ¢
= Efcase (bey...ep)of pliel|...|pL:e ]l p @

Case for Rule 11:
Tllet v=-epin e} = let v = T[eo] in T[eq]

Ellet v=egine] p ¢ = Eled] pl(Elea] p ¢)/v] ¢

= E[Tla]l pl(E1TTeol] p 8)/v] ¢
(by inductive hypothesis)
= Eflet v="T[eo] in T[e1]] p ¢
= E[Tllet v=eyine]]pdp = Efletv=erine]pod

Case for Rule 12:
T[case (let v=-eqin e;) of p} : ¢} |...| p} : €}]

= let v="T[eo] in T[case e; of p|: ¢ |...| p} : €}]

Efcase (let v=egin e;) of p| e} |...|pL:et] p &
= Elelelzl1/v,.. 2 L /o] ¢

where

z = E[let v=eyine]p¢

i = cvi...v, and match(z,c)
= Elelplz /vy, izl nfv) ¢

where

¢ = e pl(Eled] p )/ ¢

7. = cuv...v, and match(z,c)

= Efcase ey of p|: ¢} |...| it €kl p[(Elec] p 8)/01 6

. . ,
(since v does not occur free in €} ...€})
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ElT[case e1 of i : €] |...|  : e4]] A(E[TTeol] o 6)/0) 6
(by inductive hypothesis)

= £llet v="T[eg] in T[case e; of p| :ej |...|p: €]l p ¢
= E[T[case (let v=esine;)of pi:ej|...|pi:eillp ¢

= &|case (let v=epine)of pi:ef|...|pi:€e)pd

C.3.2 Proof of Lemma 5.3.4

In order to prove Lemma 5.3.4, the proof of Lemma 5.1.5 must be extended to include the
three new transformation rules. The following inductive cases must be added to the recursion

induction proof of Lemma 5.1.5.

Case for Rule 9:

Tlhe ... e} = bT[e]...Ten)
RI[TIe] < Rle],Vie{l...n}
(by inductive hypothesis)
= R T[e1]... Tlen]] £ Rlber...en]
= R[T[be;...en]] < Rlber...en]

Case for Rule 10:

Tlcase (bey...e,) of plie) |...| pi:eil
= case (b T[e1]...T[en)) of p} : Tlel] |...| P, : Tle}]

RlTle]l £ Rle],Vie{l...n}
(by inductive hypothesis)
RITIED]l £ R[eD,Vie{l...k}
(by inductive hypothesis)
= TR[case (b T[e:]...T[es]) of py : T[eh] ].. | P} : Tleill
< Rlcase (bey...e;) of pj el |...] Pk ei]
= TR[T[case (bei...e,) of pi i€ |...| p}: el
< Rlcase (bey...e,) of pi:e)|...] pi:eil
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Case for Rule 11:
Tllet v=epin e;] = let v="T[eo] in T{es]

R[T[el] < Rle}, Vie{0,1}
(by inductive hypothesis)
= TRllet v = T[eo] in T[e1]]
< Rllet v = ¢ in €]
=> TR[T[let v=ep in €1]]

< Rllet v =¢g in €]

Case for Rule 12:
T[case (let v =eg in e;) of p| : ¢} |...| P}, : ei]

= let v=T[eo] in T[case e; of pj : €] |...| P} : €}]

R]let v =ep in case e; of p} : €] |...| P} : €}
< TR[case (let v=-¢egin e;) of pj: e} |...| P, : €]
R[T[let v = ¢ in case e; of p} : €] |...| P} : e;]]
< R[let v = e in case e; of pf : €} |...| p} : €]
(by inductive hypothesis)
= TR[T[let v =¢g in case e; of p} : e} |...| P} : e;]]
< Rfcase (let v=-—¢gin e;) of pj: e} |...| pi:ei)
= R[T[case (let v=¢gin e;) of pj : ¢} |...| p} : €i]]

< TRfcase (let v=-epin e;) of pj:e} |...| p}:ei]

C.3.3 Proof of Lemma 5.3.8

In order to prove Lemma 5.3.8, the proof of Lemma 5.2.12 must be extended to include the
three new transformation rules. The following inductive cases must be added to the proof of
Lemma 5.2.12.
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Case for Rule 9:
Tlber...en] = bT[er]...T[en]

(bey...eq) € edg*™(z,y,2), 2 <s,y< f,z<n
= ¢ € edg*(z—1,y,2),Vi€{l...n}
= e; € edg®™(s, f,n),Vie€ {l...n}
(sincez < s,y< f,2<n)

Case for Rule 10:
Tcase (bey...e,) of piie) |...| P} : el
= case (b Te;]...T[en]) of py: TLefl |...| pk : Tlekd

(case (bey...en) of py i€l |...| D} :€}) € edg®™(,y,2), 2 <8, y< f,z<n
=> ¢ €edg®(s—1,y,z—1),Vie{l...n}
and ¢! € edg®™(z - 2,9,2),V i €{1...k}
=> ¢ €edg®(s,fyn),Vie {1...n}
and ! € edg®(s, f,n),Vi€{l...k}
(sincez < s,y < f,z2< n)

Case for Rule 11:
Tllet v=1¢ in ] = let v="T[eo] in T{e]

(let v =€ in €;) € edg®"(z,y,2), 2 <8, y< f,2<n
= e € edg*™(z-1,y,2),Vie€ {01}
= e; € edg*"(s, f,n),Vie {0,1}
(sincez < 8,y < f,2<n)

Case for Rule 12:
T[case (let v=1¢g in e;) of pj : €} |...| P} : €]

= let v=T[eg] in T[case e; of p} : e} |...| Pk :€rl
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(case (let v=1¢g in e;) of p} : ¢} |...| p} : €}) € edg”"(z,y,2),
t<s,y<f,2<n
= & €edg®™(s-1,f,z2-1),Vie {0,1}
and el € edg®™(z — 2,y,2),V i€ {1...k}
= (caseej of pj:e||...]p}:e}) € edg®™(z,y,2)
= e € edg®"(s, f,n)
and (case e; of p) :e} |...| P} :¢€}) € edg®"(s, f,n)

(sincez < s,y < f,2< n)



