
Compile-Time Optimisation

of Store Usage in

Lazy Functional Programs

Geoffrey William ·Hamilton

Department of Computing Science and Mathematics

University of Stirling

Submitted in partial fulfilment
of the requirements for the

degree of Doctor of Philosophy

October 1993

"For Summer has o'erbrimm'd their clammy cells.
Who hath not seen thee oft amid thy store?"

John Keats, Ode to Autumn

Abstract
Functional languages offer a number of advantages over their imperative counterparts. How-
ever, a substantial amount of the time spent on processing functional programs is due to
the large amount of storage management which must be performed. Two apparent reasons
for this are that the programmer is prevented from including explicit storage management
operations in programs which have a purely functional semantics, and that more readable
programs are often far from optimal in their use of storage. Correspondingly, two alternative
approaches to the optimisation of store usage at compile-time are presented in this thesis.

The first approach is called compile-time garbage collection. This approach involves de-
termining at compile-time which cells are no longer required for the evaluation of a program,
and making these cells available for further use. This overcomes the problem of a programmer
not being able to indicate explicitly that a store cell can be made available for further use.
Three different methods for performing compile-time garbage collection are presented in this
thesis; compile-time garbage marking, explicit deallocation and destructive allocation. Of
these three methods, it is found that destructive allocation is the only method which is of
practical use.

The second approach to the optimisation of store usage is called compile-time garbage
avoidance. This approach involves transforming programs into semantically equivalent pro-
grams which produce less garbage at compile-time. This attempts to overcome the problem
of more readable programs being far from optimal in their use of storage. In this thesis, it is
shown how to guarantee that the process of compile-time garbage avoidance will terminate.

Both of the described approaches to the optimisation of store usage make use of the
information obtained by usage counting analysis. This involves counting the number of times
each value in a program is used. In this thesis, a reference semantics is defined against which
the correctness of usage counting analyses can be proved. A usage counting analysis is then
defined and proved to be correct with respect to this reference semantics. The information
obtained by this analysis is used to annotate programs for compile-time garbage collection,
and to guide the transformation when compile-time garbage avoidance is performed.

It is found that compile-time garbage avoidance produces greater increases in efficiency
than compile-time garbage collection, but much of the garbage which can be collected by
compile-time garbage collection cannot be avoided at compile-time. The two approaches are
therefore complementary, and the expressions resulting from compile-time garbage avoidance
transformations can be annotated for compile-time garbage collection to further optimise the
use of storage.

ii

Declaration
I hereby declare that this thesis has been composed by myself, that the work reported has

not been presented for any university degree before, and that the ideas I do not attribute to
others are due to myself.

Geoffrey Hamilton
October 1993

iii

Acknowledgements
The completion of this thesis was dependent on many different people. I would like to thank
everyone who encouraged me, but I apologise if I do not mention them by name.

Firstly, Simon Jones, must be acknowledged for his supervision and encouragement during
the course of this work. The Computing Science department at Stirling University must also
be thanked for providing a friendly working atmosphere. Special thanks go to the technical
support team, Graham, Sam and Catherine, and to the secretaries, Jane, Moira and Muriel
for their help over the years.

The functional programming group in Glasgow is acknowledged for providing a stimulating
atmosphere for research, and for accepting me into their fold. In particular, I would like to
acknowledge Phil Wadler, whose ideas have inspired much of the work in this thesis.

The Department of Education for Northern Ireland must also be acknowledged for their
financial support during the course of this work, and for funding my trips abroad.

On a personal note, Iwould like to thank my friends at Stirling for their help and encour-
agement, and for keeping me sane. Paul Gibson deserves a special mention for his friendship
over the years, and for helping me to complete this thesis by proof reading it for me, and for
giving me a roof over my head while Ifinished it off.

I would also like to thank my father for his encouragement from across the Irish Sea over
the years. He was always ready to listen and to help in whatever way he could. I don't think
I could ever repay him.

Finally, and most importantly, I would like to thank my fiancee Sam for her strength
and devotion over the years. She was always prepared to listen to my problems, and help
me through them, even in the darkest moments. This thesis would not have been completed
without her help. I don't know why she has stuck by me over the years, but I'm just glad
that she has. This thesis is dedicated to her.

iv

Contents

1 Introd uction
1.1 Compile-Time Optimisation

1.1.1 Static Analysis ...
1.1.2 Program Transformation ..
1.1.3 Desirable Criteria for Compile-Time Optimisations

1.2 Compile-Time Optimisation of Store Usage ..
1.2.1 Compile-Time Garbage Detection.
1.2.2 Compile-Time Garbage Collection
1.2.3 Compile-Time Garbage Avoidance

1.3 Thesis Contribution .
1.3.1 Compile-Time Garbage Detection.
1.3.2 Compile-Time Garbage Collection
1.3.3 Compile-Time Garbage Avoidance

1.4 Thesis Outline•......

2 Language
2.1 Notation.
2.2 Syntax
2.3 Standard Semantics
2.4 Store Semantics . .
2.5 Congruence
2.6 Related Work
2.7 Conclusion .

3 Compile-Time Garbage Detection
3.1 Usage Counting Store Semantics
3.2 Usage Patterns .
3.3 Operations on Usage Patterns ..
3.4 Usage Counting Analysis.
3.5 Proof of Correctness
3.6 Examples .
3.7 Related Work .

3.7.1 Abstract Interpretation
3.7.2 Backward Analysis
3.7.3 Type Inference

3.8 Conclusion .

v

1
2
2
3
3
4
4
4
5
5
6. 6
6. 7

9
10
10
14
16
21
23
24

25
26
28
34
37
40
43
45
45
46
47
48

4 Compile-Time Garbage Collection 49
4.1 Run-Time Garbage Collection 50

4.1.1 Reference Counting Garbage Collection 50
4.1.2 Mark/Scan Garbage Collection 52
4.1.3 Copying Garbage Collection. 52

4.2 Compile-Time Garbage Marking 54
4.2.1 Annotating Programs for Compile-Time Garbage Marking. . . 54
4.2.2 Compile-Time Garbage Marking Store Semantics . . 55
4.2.3 Correctness.................... 57

4.3 Explicit Deallocation 61
4.3.1 Annotating Programs for Explicit Deallocation 61
4.3.2 Explicit Deallocation Store Semantics . 62
4.3.3 Correctness.................... 64

4.4 Destructive Allocation 67
4.4.1 Annotating Programs for Destructive Allocation 68
4.4.2 Destructive Allocation Store Semantics 69
4.4.3 Correctness............ 71

4.5 Related Work. 74
4.5.1 Compile-Time Garbage Marking 74
4.5.2 Explicit Deallocation . 75
4.5.3 Destructive Allocation 76

4.6 Conclusion .. 78

5 Compile-Time Garbage Avoidance
5.1 Deforestation • . . .

5.1.1 Treeless ~orm .
5.1.2 The Deforestation Algorithm .
5.1.3 The Deforestation Theorem

5.2 Extended Deforestation
5.2.1 Transient Structures •...
5.2.2 Accumulating Parameters
5.2.3 Shared Values.
5.2.4 Extended Treeless Form . .
5.2.5 The Extended Deforestation Theorem . .

5.3 Generalised Deforestation
5.3.1 Generalised Treeless Form .
5.3.2 The Generalised Deforestation Algorithm
5.3.3 The Generalised Deforestation Theorem . .

5.4 Related Work
5.4.1 Deforestation...... ..
5.4.2 Extended Deforestation . .
5.4.3 Generalised Deforestation

5.5 Conclusion .

79
80
81
82
86
90
90
93
94
95
95
99
100
101
103
106
106
107
108
109

vi

6 Conclusion
6.1 Summary of Thesis. 0 0 0 • 0 • 0 0 • 0 0 ••

6.1.1 Language 0 0 0 0 0 • 0 • 0 • 0 0 0 0 0

6.1.2 Compile-Time Garbage Detection 0 0

6.1.3 Compile-Time Garbage Collection 0

6.1.4 Compile-Time Garbage Avoidance .
6.2 Further Work 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6.2.1 Compile-Time Garbage Detection 0 0

6.2.2 Compile-Time Garbage Collection 0

6.2.3 Compile-Time Garbage Avoidance .
6.3 General Conclusions 0 • 0 •••• 0 • 0 • 0 •

110
111
111
111
112
112
113
113
113
114
114

References 116

Appendices 123

A Proofs for Language Semantics 124
A.1 Congruence of Expressions. 124
A.2 Congruence of Function Variable Environments 129

B Proofs for Compile-Time Garbage Detection 131
D.1 Correctness of Usage Counting Analysis 0 0 0 • 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 131
D.2 Correctness of Usage Counting Analysis Function Variable Environment 138

C Proofs for Compile-Time Garbage Avoidance
Col Proof of Deforestation Theorem 0 0

CoLI Proof of Lemma 5.1.3
C.1.2 Proof of Lemma 5.1.4 0 0 •

C.1.3 Proof of Lemma 5.1.5 . 0 0

C.1.4 Proof of Lemma 5.1.10 . 0 •

C.1.5 Proof of Lemma 5.1.11 . 0 0

C.2 Proof of Extended Deforestation Theorem 0 • 0 • 0 0 0

C.2.1 Proof of Lemma 5.2.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Co2.2 Proof of Lemma 5.2.13 0 • 0 0 0 •• 0 ••••• 0

C.3 Proof of Generalised Deforestation Theorem . . 0

C.3.1 Proof of Lemma 5.3.3
C.3.2 Proof of Lemma 5.3.4
C.3.3 Proof of Lemma 5.3.8

140
140
140
145
148
152
155
159
159
163
173
173
175
176

vii

List of Figures

2.1 Abstract Syntax .
2.2 Example Function Definitions
2.3 Standard Semantic Domains.
2.4 Standard Semantic Functions
2.5 Standard Semantics
2.6 Standard Semantics (auxiliary functions) ..
2.7 Store Semantic Domains.
2.8 Store Semantic Functions ..
2.9 Store Semantics
2.10 Store Semantics (continued) .
2.11 Store Semantics (auxiliary functions) ..

3.1 Usage Counting Store Semantic Domains
3.2 Usage Counting Store Semantic Functions
3.3 Usage Counting Store Semantics .
3.4 Usage Counting Store Semantics (continued) .
3.5 Usage Counting Store Semantics (auxiliary functions)
3.6 The Domain of Usage Patterns U(list TA) .
3.7 Usage Counting Analysis Domains ...
3.8 Usage Counting Analysis Functions
3.9 Usage Counting Analysis .

11
12
13
14
15
16
17
18
19
20
21

27
28
29
30
31
33
37
38
39

4.1 Annotation of accreverse (append zs ys) zs for Compile-Time Garbage Marking 55
4.2 Compile-Time Garbage Marking Store Semantic Domains 56
4.3 Compile-Time Garbage Marking Store Semantic Functions. . . 57
4.4 Compile- Time Garbage Marking Store Semantics 58
4.5 Compile-Time Garbage Marking Store Semantics (continued) . 59
4.6 Compile- Time Garbage Marking Store Semantics (auxiliary functions) 60
4.7 Annotation of accreverse (flatten xss) ys for Explicit Deallocation ••. 62
4.8 Explicit Deallocation Store Semantic Domains. . 63
4.9 Explicit Deallocation Store Semantic Functions . . 64
4.10 Explicit Deallocation Store Semantics 65
4.11 Explicit Deallocation Store Semantics (continued) . . • . . . 66
4.12 Explicit Deallocation Store Semantics (auxiliary functions) 67
4.13 Annotation of append (reverse xs) (Cons x Nil) for Destructive Allocation. 69
4.14 Destructive Allocation Store Semantic Domains. 70
4.15 Destructive Allocation Store Semantic Functions • . . • •. 71

viii

4.16 Destructive Allocation Store Semantics. 72
4.17 Destructive Allocation Store Semantics (continued) • . 73
4.18 Destructive Allocation Store Semantics (auxiliary functions) . . . 74

5.1 Transformation Rules for Deforestation. 82
5.2 Deforestation of append (append xs ys) zs . . • . • • • 83
5.3 Result of Deforestation of append (append zs ys) zs 84
5.4 Modified Transformation Rules for Deforestation . . . 85
5.5 Definition of the Size of Expressions 88
5.6 Grammar of Expressions Encountered During Deforestation 89
5.7 Deforestation of append (flatten xss) • • • 91
5.8 Result of Deforestation of append (flatten xss) ys . . • . • • 92
5.9 Deforestation of accreverse xs ys • • . • . • . • . . . • • • • 93
5.10 Grammar of Expressions Encountered During Extended Deforestation • . • 98
5.11 Additional Transformation Rules for the Generalised Deforestation Algorithm 101
5.12 Generalised Deforestation of accreverse (flatten xss) ys .•••• 102
5.13 Result of Generalised Deforestation of accreverse (flatten xss) ys 103

ix

List of Tables

3.1 Usage Counting Analysis of the Function append ..•
3.2 Usage Counting Analysis of the Function reverse . . .
3.3 Usage Counting Analysis of the Function accreverse
3.4 Usage Counting Analysis of the Function flatten ...

43
44
44
45

x

Chapter 1

Introduction

In recent years, there has been a growing interest in functional languages. Functional lan-

guages offer a number of advantages over their imperative counterparts (Hughes, 1989). The

special characteristic of functional languages which gives them such desirable properties is the

fact that they contain no side-effects. This means that a function call has no effect other than

to calculate its result. An expression can be evaluated at any time, since no side-effect can

change its value. Expressions can therefore be evaluated in any order, and the programmer

does not need to worry about the flowof control. Thus programs may be written which resem-

ble the structure of the original problem without making detailed implementation decisions.

Also, programs will be referentially transparent. This means that variables in an expression

can be replaced by their values, and vice versa. Functional programs are therefore easier

to reason about mathematically, and are more amenable to transformation, than traditional

imperative languages.

The use of lazy evaluation (Henderson & Morris, 1976; Friedman & Wise, 1976) within

functional languages offers additional advantages. For example, it allows for greater modu-

larisation within programs (Hughes, 1989). The majority of functional languages which have

appeared in recent years use lazy evaluation (for example LML (Augustsson, 1984), Miranda!

(Turner, 1985) and Haskell (Hudak & Wadler, 1990».

However, functional languages also have their disadvantages. For example, a substantial

amount of the time spent on processing functional programs is due to the large amount of heap

storage management which must be performed. The aim of this thesis is to investigate how the

amount of store usage implied by lazy functional programs can be reduced at compile-time.

1Miranda is a trademark of Research Software Ltd.

1

CHAPTER 1. INTRODUCTION 2

1.1 Compile-Time Optimisation

As mentioned earlier, functional programs are easy to reason about mathematically, and are

amenable to transformation. Compile-time optimisations can therefore make use of static

analysis and program transformation.

1.1.1 Static Analysis

Static analysis involves the analysis of programs to determine their properties without ac-

tually executing them. This is done by defining abstract domains which are simpler than

the standard semantic domains of the program language. These abstract domains have a

structure which reflects the property of the program which is being analysed, and usually

give the minimum information required to encapsulate this property. There are three main

frameworks which can be used to perform static analysis of functional programs. These are

abstract interpretation (or forward analysis), backward analysis2 and type inference. The

framework which is used in this thesis is the backward analysis framework.

Abstract interpretation (Cousot & Cousot, 1977; Mycroft, 1981; Abramsky & Hankin,

1987) involves associating an abstract function with each function in a program. These

abstract functions are applied to information about their arguments to give information about

their results. Thus the flow of information is forwards, from function arguments to function

results.
Backward analysis (Hughes, 1988) also involves associating abstract functions with each

function in a program. These abstract functions are applied to information about their results

to give information about their arguments. Thus the flow of information is backwards, from

function results to function arguments.

Using type inference to perform static analysis involves defining a non-standard type

system to infer the required information from a program. This approach has the advantage

that there already exist efficient algorithms for checking and inferring types (Milner, 1978;

Hindley, 1979; Damas & Milner, 1982). Examples of type inference schemes for performing

static analysis are described in (Wadler, 1990c) and (Kuo & Mishra, 1989). Since program

logics are used to define these type inference schemes, the flow of information takes place in

both forward and backward directions.
2The distinction between forward and backward analysis is not clear, since a backward analysis can be

expressed as a.n abstract interpretation in which the abstract values of expressions are functions from contexts

to the variables in them.

CHAPTER 1. INTRODUCTION 3

1.1.2 Program Transformation

Program transformation involves transforming programs to other programs which exhibit the

same semantic behaviour, but which have hopefully been improved in some way. There are

two different approaches to program transformation. These are the algebraic approach and

the operational approach.

The algebraic approach to program transformation is based on the application of axioms

and theorems which equate expressions and function definitions having certain structures.

Thus, in a functional program, expressions may be re-written by more efficient equivalent

expressions which are given by one of these theorems. This approach requires a new theorem

to be invented for each new class of transformation which is required.

The operational approach to program transformation involves using a small set of mean-

ing preserving rules for generating new recursion equations. An example of this approach

is the unfold/simplify/fold program transformation methodology described in (Burstall &

Darlington, 1977). Unfolding replaces a function call with the function body containing the

appropriate parameter substitutions. Folding replaces an expression which matches a function

body with a corresponding function call. Simplification is achieved through the application

of a small set of meaning preserving rules for generating new equations which are hopefully

more efficient than the original recursion equations.

The operational approach to program transformation is taken in this thesis to reduce the

amount of garbage produced at run-time. Examples of algebraic transformation methods

which seek to reduce the amount of garbage produced at run-time are described in (Wadler,

1981; Bellegarde, 1986; Gill et al., 1993).

1.1.3 Desirable Criteria for Compile-Time Optimisations

Compile-time optimisations should satisfy the following criteria:

Termination : the process of optimisation must be finite;

A utomatability : it must be possible to perform the optimisations automatically;

Correctness : unoptimised and optimised programs must produce the same results.

Termination and automatability must be guaranteed if the optimisations are to be of any

use during compilation. Correctness is a vital criterion because users will have no confidence

in the optimisations being performed if this is not assured. To show that the compile-time

CHAPTER 1. INTRODUCTION 4

optimisations of store usage which are presented in this thesis are correct, a reference is

required against which their correctness can be proved. Non-standard store semantics are

therefore defined which model the use of store in possible implementations of the language

for which the described optimisations are performed.

1.2 Compile-Time Optimisation of Store Usage

Two apparent reasons why functional programs are such heavy consumers of storage are

that the programmer is prevented from including explicit memory management operations in

programs which have a purely functional semantics, and more readable programs are often

far from optimal in their use of storage. Consequently, two alternative approaches to the

optimisation of store usage at compile-time are presented. These are compile-time garbage

collection and compile-time garbage avoidance. Before these optimisations are performed, the

cells which will become garbage within a program are determined. This is called compile-time

garbage detection.

1.2.1 Compile-Time Garbage Detection

Compile-time garbage detection involves determining at compile-time which cells in a program

will become garbage. A cell will become garbage during the evaluation of an expression if it is

unshared when it loses a reference. To determine whether a cell is unshared, a usage counting

analysis is defined. This analysis determines the number of times a cell will be used in future

computations within a program. If a cell is used only once after it has been created, then it

is unshared.

1.2.2 Compile-Time Garbage Collection

Compile-time garbage collection involves determining at compile-time which store cells are no

longer required for the evaluation of a program, and making these cells available for further

use. This overcomes the problem of a programmer not being able to indicate explicitly that a

memory cell can be made available for further use. Programs are annotated at compile-time

to allow garbage cells to be collected automatically at run-time. The garbage collection itself

does not actually take place at compile-time, so the term 'compile-time garbage collection' is

misleading. However, this is the term which has been used for this kind of optimisation in the

past, so it is used again in this thesis. Three methods for performing compile-time garbage

CllAPTER 1. INTRODUCTION 5

collection in lazy languages are presented. These are called compile-time garbage marking, ex-

plicit deallocation and destructive allocation. Compile-time garbage marking involves marking

those cells which will become garbage after their first use. Explicit deallocation involves ex-

plicitly returning cells to the memory manager at a particular point in a program. Destructive

allocation involves reusing cells directly for further allocations within a program.

1.2.3 Compile-Time Garbage Avoidance

Compile-time garbage avoidance involves transforming programs to other programs which ex-

hibit the same semantic behaviour, but produce less garbage at run-time. This overcomes the

problem of more readable programs being far from optimal in their use of storage. As men-

tioned earlier, the use of lazy evaluation allows for greater modularisation within programs.

Functions can be defined in terms of smaller and simpler functions which are 'glued' together

to give the required definition. These smaller functions are easier to define and reuse, but they

often form a structure as a result, or decompose a structured argument into its constituent el-

ements, or both. When these functions are put together to form compound expressions, many

structures are formed only to be decomposed again. As described in (Wadler, 1990b), these

intermediate structures are the 'glue' which hold the functions together. The use of these

intermediate structures aids clarity, but it results in inefficiency at run-time. Each interme-

diate structure must be allocated, traversed and subsequently deallocated. These compound

expressions can be transformed instead to avoid the building of intermediate structures. This

is the approach which is taken in this thesis using the deforestation algorithm presented in

(Wadler, 1990b).

1.3 Thesis Contribution

The main contribution of this thesis is to show how the amount of store usage implied by

lazy functional programs can be reduced at compile-time by making use of the information

obtained by usage counting analysis. This is intended to be a theoretical study rather than a

practical study. The implementation and efficiency of each process of optimisation is there-

fore not considered. The methods which are used to optimise store usage are compile-time

garbage collection and compile-time garbage avoidance. The kinds of expressions which can

be optimised by each method are characterised, thus allowing comparisons to be drawn be-

tween them. The contributions of the thesis to the areas of compile-time garbage detection,

CHAPTER 1. INTRODUCTION 6

collection and avoidance are summarised below.

1.3.1 Compile-Time Garbage Detection

In most of the previous work in the area of compile-time garbage detection, the correctness

of the static analyses which are used to detect garbage is not considered. In this thesis, a

reference semantics is defined against which the correctness of these static analyses can be

proved. A static analysis which can be used at compile-time to detect which cells in a program

will become garbage is then defined, and is proved to be correct with respect to this reference

semantics. It is then shown how the information obtained by this analysis can be used to

allow various optimisations of store usage to be performed.

1.3.2 Compile-Time Garbage Collection

Most of the previous work in the area of compile-time garbage collection has been for strict

languages. Not so much work has been done for lazy languages. Three different methods

for performing compile-time garbage collection in lazy languages are therefore presented;

compile-time garbage marking, explicit deallocation and destructive allocation. Of these three

methods, it is found that destructive allocation is the only method which is of practical use.

The correctness of the methods for performing compile-time garbage collection described in

this thesis is considered. In the majority of previous work in the area of compile-time garbage

collection, the correctness of the optimisations which are performed is not considered.

1.3.3 Compile-Time Garbage Avoidance

It has already been shown in (Wadler, 1990b) how compile-time garbage avoidance can be

performed for lazy languages using the deforestation algorithm, and a sketch proof was given

for the deforestation theorem stated in that work. This sketch proof is fleshed out in this

thesis. It was also noted in the conclusion of (Wadler, 1990b) that the class of expressions

for which the deforestation algorithm is guaranteed to terminate could be extended. This is

what has been achieved in this thesis by making use of the information obtained by usage

counting analysis. The work in this thesis therefore contributes to the understanding of when

the deforestation algorithm will terminate.

ClIAPTER 1. INTRODUCTION 7

1.4 Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 2 : the syntax and semantics of the language which will be used throughout this

thesis are presented. The language is a simple lazy first order language with recursion

equations and list operators. Non-standard store semantics are then defined for the

language. Since these semantics will be used as a reference against which the store-

related analysis and optimisations presented in this thesis can be proved correct, they

are shown to be congruent to the standard semantics of the language.

Chapter 3 : it is shown how the cells which will become garbage within a program can

be detected at compile-time. The store semantics defined in the previous chapter are

augmented to incorporate usage counting. This involves counting the number of times

each value in the store is used. Usage counting values in these semantics are then

abstracted to usage patterns to allow usage counts to be determined at compile-time. A

usage counting analysis is defined using these patterns to determine at compile-time the

number of times each part of a value will be used in future computations. This analysis

is then proved to be correct with respect to the usage counting store semantics.

Chapter 4 : it is shown how information obtained from usage counting analysis can be used

to annotate programs for compile-time garbage collection. Three different methods for

compile-time garbage collection are presented. The first method is called compile-time

garbage marking, which involves marking cells at their allocation to indicate that they

will become garbage after their first use. The second method is called explicit deallo-

cation, which involves explicitly returning cells to the memory manager at a particular

point in a program. The third and final method for compile-time garbage collection is

called destructive allocation, which involves reusing cells directly for further allocations

within a program. Store semantics are defined for programs which have been annotated

for each of these methods for compile-time garbage collection, and the correctness of

these store semantics is considered.

Chapter 5 : it is shown how information obtained from usage counting analysis can be

used to guide the transformation when compile-time garbage avoidance is performed.

The method which is used for avoiding the production of garbage at compile-time is the

deforestation transformation algorithm described in (Wadler, 1990b). A treeless form of

CHAPTER 1. INTRODUCTION 8

function definition which does not create any intermediate structures is characterised in

(Wadler, 1990b), and a sketch proof is given that the deforestation algorithm will always

terminate for expressions in which all functions have definitions which are in this treeless

form. This sketch proof is fleshed out in this chapter. The deforestation algorithm will

also terminate for expressions in which some functions have definitions which are not in

this treeless form. It is shown how this treeless form can be extended by making use of

information obtained by usage counting analysis. It is then proved that the deforestation

algorithm will always terminate for expressions in which all functions have definitions in

this extended treeless form. Some intermediate structures can still be eliminated from

expressions in which some functions have definitions which are not in this extended

treeless form. It is therefore shown how any function definition can be generalised in

such a way that it will be in extended treeless form. The deforestation algorithm is

also extended to be able to cope with these generalisations. It is then proved that this

generalised deforestation algorithm will always terminate for expressions in which all

functions have definitions which have been generalised in the described manner.

Chapter 6 : a summary of the achievements of this thesis is given, directions for further

work are discussed, and general conclusions are drawn.

Chapter 2

Language

In this chapter, the syntax and semantics of the language which will be used throughout this

thesis are presented. The language is a simple first order lazy functional language with list

operators and recursion equations. To show that the store-related analysis and optimisations

presented in this thesis are correct, a reference must be provided against which their correct-

ness can be proved. The standard semantics of the language do not model the use of store,

so they cannot be used to provide this reference. Non-standard store semantics are therefore

defined for the language and are shown to be congruent to the standard semantics.

9

CHAPTER 2. LANGUAGE 10

The remainder of this chapter is structured as follows:

• Section 2.1: some of the notation which is used throughout this thesis is described.

• Section 2.2: the abstract syntax of the language is defined.

• Section 2.3: the standard semantics of the language are defined.

• Section 2.4: non-standard store semantics are defined for the language.

• Section 2.5: the store semantics defined in the previous section are shown to be con-

gruent to the standard semantics for the language.

• Section 2.6: related work is considered.

• Section 2.7: a summary of this chapter is given.

2.1 Notation

In this section, some of the notation which is used throughout this thesis is described. It is

assumed that the reader is familiar with domain theory. For a given domain D, the bottom

element of the domain is represented by .Lv, and the elements of the domain are ordered by

the partial order kV. The notation DJ. represents the lifting of the domain D to add a new

bottom element 1.. The operators $, X and -+ are the coalesced sum, product and function

space constructors respectively.

Tuples of elements are represented by (VI, ••. , vn). Elements of a tuple can be accessed

using the! operator, where T ! n denotes the nth element of the tuple T.

The notation D* represents zero or more function arguments which are elements of the

domain D. Thus the function type D* -+ E is a shorthand notation for D -+ ••• -+ D -+ E.

2.2 Syntax

In this section, the abstract syntax of the language which is used throughout this thesis is

defined. The language is a simple first order lazy functional language with list operators

and recursion equations. The abstract syntax is shown in Figure 2.1. Programs in the

language consist of an expression to evaluate and a set of function definitions. Nested function

definitions are not allowed in the language. Programs involving nested function definitions

CHAPTER 2. LANGUAGE 11

pr E Prog e
where
It Vu··· Vlkt = el Program

In Vnl .•• Vnkn = en

e E Exp ,,- k,,-

V
bel ... en Expression
eel" .en
leI" .en
case eo of PI : el 1... 1Pk : ek

k E Num ,,- 011 I -11 .. · Constant

v E Bv Bound Variable

b E Bas ,,- +1-1<1=1 .. · Basic Function,,-

c E Con ,,- True I False I Nil I Cons Constructor

I E Fv Function Variable

P E Pat ,,- c VI'" Vn Pattern

Figure 2.1: Abstract Syntax

can be transformed into this restricted form of program using a technique called lambda lifting

(Johnsson, 1985). Some example function definitions are given in Figure 2.2.

The language is monomorphically typed, and it is assumed that all programs in the lan-

guage are well-typed. Values in the language can have the following types:

T int Integers

Booleans

Lists

The only constants in the abstract syntax of the language are integers. Bound variables and

function variables in the language are represented by strings of characters, and are elements

of the domains Bv and Fv respectively. The basic functions are the built-in functions of

the language and operate on integers only. The comparison of lists using the basic equality

function is therefore not allowed, but it is possible to determine the equality of lists recursively

bool

list T

CIIAPTER 2. LANGUAGE 12

append list int - list int - list int

append zs ys = case zs of
Nil
Cons x zs

ys
Cons x (append zs ys)

flatten list (list int) - list int

flatten zss = case zss of
Nil
Cons zs zss

Nil
append zs (flatten xss)

reverse list int - list int

reverse zs = case zs of
Nil
Cons x zs

Nil
append (reverse xs) (Cons x Nil)

accreverse list int - list int - list int

accreverse zs ys = case zs of
Nil
Cons x zs

ys
accreverse zs (Cons x ys)

Figure 2.2: Example Function Definitions

within the language. Basic function applications will be expressed in infix notation throughout

the course of this thesis.

Booleans are represented by the values True and False. Note that booleans are considered

to be constructors in the abstract syntax of the language. This is so that pattern matching

can be performed upon them, since pattern matching is allowed only on constructors. The

conditional can therefore be expressed as follows:

case eo of True : et I False : e2

This has the same meaning as the more traditional form of conditional:

if eo then et else e2

Empty lists are represented by Nil and non-empty lists are represented by an expression

of the form Cons et e2, where the head of the list is denoted by eIt and the tail of the list is

denoted by e2. Lists are decomposed using a case expression of the following form:

CHAPTER 2. LANGUAGE 13

case eo of Nil: el 1 Cons VIV2 : e2

In the expression e2, the head of the list eo is represented by the variable VI,and the tail of

this list is represented by the variable V2. There is therefore no need to add explicit head and

tail operators to the basic functions.

Within case expressions of the following form:

case eo of PI : el 1 ••• 1 Pk : ek

eo is called the selector, and PI : eI, .•• ,Pk : ek are called the branches. The branches in a

case expression can either be separated by the 1 character or by a newline character. The

patterns used in the branches of case expressions may not be nested. Methods to transform

case expressions with nested patterns into ones without nested patterns are described in

(Augustsson, 1985) and (Wadler, 1987b).

The intended evaluation mechanism for the language is lazy evaluation. However, the

basic functions are strict in all their arguments. Also, pattern matching is strict, and when

a case expression is evaluated, the selector is evaluated to head normal form before the

appropriate branch of the case expression is evaluated.

x E Vale = Atom EBList

Atom = Int EBBool

Int = {O}L EB{1lL EB{-1}L EB...

Bool = {TRUElL EB{FALSE} L

List = {NIL} L EBConscell

Conscell = (Vale x Valeh

pE Bvee = Bv - Vale

4> E Fvee = Fv - Vale - Vale

Figure 2.3: Standard Semantic Domains

CHAPTER 2. LANGUAGE 14

2.3 Standard Semantics

In this section the standard semantics of the language which is used throughout this thesis

are defined. The standard semantic domains are shown in Figure 2.3. Expressible values

in the language are atomic values or lists. Atomic values consist of integers and booleans.

Integers are represented by the flat domain of integers, and booleans are represented by the

values TRUE and FALSE. Empty lists are represented by the value NIL and non-empty lists

are represented by pairs, where the first element of the pair represents the head of the list,

and the second element of the pair represents the tail of the list.

The functionality of the standard semantic functions of the language is shown in Figure 2.4.

match: (Vale x Con) -+ Bool

£p : Prog -+ Vale

£ : Exp -+ Bvez -+ Fvee -+ Vale

B : Bas -+ Vale -+ Vale

C : Con -+ Vale -+ Vale

Figure 2.4: Standard Semantic Functions

£p gives the meaning of a program, £ gives the meaning of an expression, B gives the

meaning of a basic function call and C gives the meaning of a constructor application. These

functions are defined in Figure 2.5.

Empty environments are represented by (>.x.j_) in these functions, and non-empty envi-

ronments are represented by [Xt/Vb"" xn/vnl where the variable Vi is bound to the value Xi.

The notation p[x/v] represents an environment in which the variable V is bound to the value

x, and variables other than v are bound to the value given in the environment p, For the

sake of clarity, the domain injections and projections have been omitted from the semantics.

These will be omitted from the semantics throughout the course of this thesis, unless there

is an ambiguity.

The function match is an auxiliary function which is used to perform pattern matching

within case expressions. This function is defined in Figure 2.6.

CHAPTER 2. LANGUAGE 15

C(True) = TRUE

CIFalse] = FALSE

C[Nil] = NIL

C(Cons] = AXI.AX2.(X},X2)

Figure 2.5: Standard Semantics

Cp[e
where
II Vu··· V1kl = el

[« Vnl .•• Vnkn = en] = C[e] (Av.i) 4>0
where
4>0=fiX(A4>.[(AXI" .AxkrC[ej] [xI/Vj}, ••. ,Xkj/Vjkj] 4»/ hD

C(k] P 4> = k

C[v] p 4> = p[v]

C[b el ••• en] p 4> = B[b] (C[ed p 4» ••• (C[en] p 4»

Cle el ••. en] p 4> = C[e] (C[el] P 4» _ .. (C[en] P 4»

cif el·· .en] P 4> = 4>[J] (C[ell P 4» - - - (C[en] P 4»

C[case eo of PI: el 1-.·1 Pk: ek] P 4>
= C[ei] p[x! l/v}, __.,x! n/vn] 4>

where
x = Cleo] P 4>
Pi = e VI- _ 'Vn and mateh(x,c)

B[+l = AXI.AX2.XI + X2

B[-] = AXI.AX2.XI - X2

B[<] = AXI.AX2.XI < X2

Bl=] = AXI.AX2.XI = X2

CHAPTER 2. LANGUAGE 16

match(x,c) = (x = TRUE and c = True)
or (x = FALSE and c = False)
or (x = NIL and c = Nil)
or (x E Conscell and c = Cons)

Figure 2.6: Standard Semantics (auxiliary functions)

2.4 Store Semantics

In this section, non-standard semantics are presented which model the use of store in the

language which is used throughout this thesis. These semantics are largely based on the

store semantics for a higher order lazy language presented in (Hughes, 1991). They provide

a reference against which store-related analyses and optimisations can be proved correct, so

they model the use of store in possible implementations of the language. The store semantics

may not model the use of store in possible implementations of the language particularly

accurately, but they do provide a safe model",

The store semantic domains of the language are shown in Figure 2.7. Most of these

domains are similar to the domains for the standard semantics of the language given in

Figure 2.3, but some new domains have been added. Obviously, a domain of stores is required

since the use of stores is being modelled. A store is represented by a function which returns

the contents of a cell at a given location. Locations in the store are represented by integers.

Unbound cells in the store are represented by the value UNB. Since the side-effect of updating

a store is being modelled within the semantics, the current state of the store is threaded

through the semantics. Values in the semantics are therefore represented by a pair, the first

element of which is a location, and the second a store.

As in the standard semantics, expressible values in the language are atomic values or lists.

Atomic values consist of integers and booleans. Integers are represented by the flat domain

of integers, and booleans are represented by the values TRUE and FALSE. Empty lists are

represented by the value NIL, and non-empty lists are represented by pairs of locations which

give the head and the tail of the list respectively. Each expressible value in the semantics is

allocated in the store. This is not necessary to ensure lazy evaluation, but is done to facilitate

ITo determine whether the store semantics accurately model the use of store in implementations of the

language, it would be necessary to compare them to a canonical operational semantics. This operational

semantics would depend upon the evaluation mechanism of the language, which (for the sake of generality)

has not been given here. It must therefore be ensured that the semantics model the use of store safely.

CHAPTER 2. LANGUAGE 17

Vale·,ore = (Lac X Storee.,oreh

x E Eval = Atom $ List

Atom = Int $ Baal

Int = {Oh$ {lh $ {-I}J. $...

Baal = {TRUE} J. $ {FALSE}J.

List = {NIL}J. $ Conscell

Conscell = (Lac x Loch

loc E Lac = Int

Closure = Storee.,ore -+ Vale·,ore

p E Bvee.,ore = Bv -+ Lac

¢ E Fvee"or. = Fv -+ Loc" -+ Storeeolore -+ Vale.'Ore

(J E Storee.,ore = Lac -+ (Closure ffi Lac ffi Eval ffi {UNB}J.)

Figure 2.7: Store Semantic Domains

the extension of the store semantics to incorporate usage counting in the next chapter.

Within a lazy store semantics, it must be ensured that values are evaluated only when

needed, and are not evaluated more than once. A new domain of closures is therefore intro-

duced. These closures are used to delay the evaluation of expressions until they are actually

required by the program. They are represented by functions which, when supplied with a

store, will return the result of evaluating their associated expression in the given store.

Expressions are therefore evaluated only when their values are needed. The arguments

of basic function applications and selectors of case expressions are evaluated to head normal

form because they appear in a strict context. All other expressions are enclosed within closures

to delay their evaluation until their values are required by the program.

To ensure that closures are not evaluated more than once, they are overwritten with

the result of their evaluation immediately after they have been evaluated. Since the result

of evaluating a closure is given by a location, cells in the store may contain the location

CHAPTER 2. LANGUAGE 18

of another cell in the store, but there are no chains of indirection. Also, since it must be

possible to overwrite the closures given by bound variables with the result of their evaluation,

variables in the bound variable environment are bound to locations. These locations will

either be bound to a closure, or to another location if the closure has been evaluated.

The functionality of the store semantic functions of the language is shown in Figure 2.8.

match: (Eval X Con) -+ Bool

[;tore: Prog -+ Vale_lore

[store: Exp -+ Bvee.lore -+ Fvee.lore -+ Storee_lore -+ Vale.lore

Be.lore: Bas -+ Loc" -+ Storee.lore -+ Valeotore

Ce.lore: Con -+ Loc· -+ Storee_tore -+ Vale.tore

alloc: «Closure Ef) Eval) X Storee.lor.) -+ Vale_lore

force: Vale.lore -+ Vale.IOre

Figure 2.8: Store Semantic Functions

[;tore gives the meaning of a program and [store gives the meaning of an expression. The

location returned by [store will be bound to an expressible value in the given store. Be.tore
gives the meaning of a basic function application and Ce.tore gives the meaning of a constructor

application. These functions are defined in Figures 2.9 and 2.10.

The auxiliary functions of the store semantics are defined in Figure 2.11. The function

alloc is used to allocate a given value at a location in the given store which was previously

unbound. Both closures and expressible values can be allocated in this way. The function

force is used to force the evaluation of the result of a program. It is possible that the result of

a program contains closures. Any closures which are reachable from the result must therefore

be evaluated. When force is applied to a closure, it causes the evaluation of the closure. The

result of this evaluation is also forced. When it is applied to a list value it is recursively

applied to the elements of the list, forcing their evaluation. All other values which can result

from the evaluation of a program will have been fully evaluated already, and do not need to

be forced. It. is assumed that this function also serves to print out the result of the program.

The function match is used to perform pattern matching within case expressions as before.

CllAPTER 2. LANGUAGE

£;tore[e
where
It Vu··· Vlk1 = el

In Vnl ••• Vnkn = en] = force(£store[e] (AV.l.) ¢o (Aloc.UNB))
where
<Po = fix (A¢.[(AloCI'" ,\loCkj'AO'.£store[ej] [loct/vjI, ... , IOCkj/Vjkj] ¢ 0')/ /iD

£store[k] p ¢ 0' = alloc(k ,0')

£store[v] p ¢ 0' = (loc, O"[loc/ p[v]]),
where
(loc,O") = (0' (p[v]) 0'

= «0' (p[v]),O'),

if (0' (p[v]) E Closure

otherwise

('store[b el ••• en] p A. 0' - B [b] loc loc 0'" 'I' - e·core 1 • • • n n
where
(IOCI,O't) = £store[eI1 P ¢ 0'

('store[C el ••• en) P A. 0' - C c [c] lOCI loc 0'" 'I' - e' ore • • • n n
where
(loc}, 0'1) = alloc«£store[eI1 p ¢),O')

£store[1 el ••• en] P ¢ 0' = 4>[1] lOCI" .loc.; O'n
where
(loc}, O't) = alloc((£store[et] P ¢), 0')

Figure 2.9: Store Semantics

19

CHAPTER 2. LANGUAGE 20

= >.locI.>..loc2.>..er.alloc((xl + X2), er)
where
Xl = er lOCI
x2 = er loc2

cetore[case eo of PI : el 1 ••• 1 Pk : ek] P 4> er
= estore[ed p[x t l/vl!"" X t n/vn1 4> er'

where
(loc,er') = cstore[eo] p 4> er
X = er' loc
Pi = C VI •• ,vn and match(x,c)

Ce.tore[True] = >..er.alloc(TRUE,er)

Ce.tore[False] = >..er.alloc(FALSE,er)

Ce.tore[Nil] = >..er.alloc(NIL,er)

Be·tore[-] = >..IOCI.>..loc2.>..er.alloc((xl - X2), er)
where
Xl = er lOCI
X2 = er loc2

= >..loCI.>..loc2.>..er.alloc((xl < X2), er)
where
Xl = er lOCI
x2 = er loc2

= >..loCI.>..loc2.>..er.alloc((xl = X2), er)
where
Xl = er lOCI
X2 = er loc2

Figure 2.10: Store Semantics (continued)

CHAPTER 2. LANGUAGE 21

= (Ioc,cr), otherwise

aUoc(v,cr) = (Ioc, cr[vJlocD
where
a loc = UNB

force(/oc,cr) = (loc',cr'[loc'Jloc]), if (cr loc) E Closure
where
(loc', cr') = force((cr loc) cr)

= force«cr loc),cr), if (cr loc) E Loc

(loc,cr2[(10cI,loc2)Jloc]), if (cr loc) E Conscell
where
(locbcrt) = force«crloc) L l.,«)
(IOC2'cr2) = force((cr loc) L 2, crI)

match(x,c) = (x = TRUE and c = True)
or (x = FALSE and c = False)
or (x = NIL and c = Nil)
or (x E Conscell and c = Cons)

Figure 2.11: Store Semantics (auxiliary functions)

2.5 Congruence

Since the store semantics of the language will be used as a reference against which store-related

analyses and optimisations can be proved correct, the store semantics and standard semantics

of the language must be shown to be congruent. A function <T> is therefore defined which is

used to extract the standard semantic component from a store value. The store semantics

and standard semantics of the language can then be shown to be congruent if the result of

evaluating any program in both semantics have the same standard semantic component.

Definition 2.5.1 (Standard Semantic Component of a Store Value) The standard se-

mantic component of a store value can be extracted using the function Cl> which is defined as

follows:

CIlAPTER 2. LANGUAGE 22

4>: l'a1e"ore - l'a1e
4>(loc, 0') = .L, if (0' loc) = UNB

= 4>«0' loc) 0'), if (0' loc) E Closure

= 4>«0' 10c),0'), if (0' loc) E Loc

= (4)((0' loc)! 1,0'),4>«0' loc)! 2,0'», if (0' Ioc) E Cons cell

= 0' loc, otherwise

o

This function forces the evaluation of any closures in the store value, and extracts the stan-

dard semantic component from the resulting store value. Using this definition, the congruence

of expressions in the store semantics and standard semantics of the language can be shown

by proving the following lemma.

Lemma 2.5.2 (Congruence of Expressions)

for all Pe"ore E Dvee"ore, CPe.,orlE Fvee.,ore, O'e"ore E Storee.lore, CPeE Fvee, e E Exp:

if for all I E dome cpe,lore):

4>(CPe.,ore[/] 10Ct ... loe; O'e·lore)= cPe[J] (4)(loc17O'e.lore)) ... (cI>(locn,O'e.lore))
then for all V E dom(Pellore):

4>(E,tore[e] Pe"ore cpe,lore O'ellore) = Ele] [4>(Pe.lore[V],O'e.,ore)/V] CPe

o

Proof

The proof of this lemma can be found in Appendix A.I.

o

The following lemma states that the functional variable environments in the store seman-

tics and standard semantics of the language will always satisfy the requirement in Lemma

2.5.2.

Cll.4PTER 2. LANGUAGE 23

Lemma 2.5.3 (Congruence of Functional Variable Environments)

for all p E Prog:

if Cp[p] = C[e] (~v.l.) <Pe
and c;tore[p] = force(C'tore[e] (~v.l.) <Pc.tore(~loc.UNB))
then for all f E dom(<peltore), Ue.tore E Storee.tore:

~(<pe,'ore[f] lOCI" .loc; Uc.tore) = <Pe[f] (~(10Cl,Uc.tore)) ... (~(locn,uc.tore))

o

Proof

The proof of this lemma can be found in Appendix A.2.

o

The congruence of programs in the store semantics and standard semantics of the language

can now be shown by proving the following theorem.

Theorem 2.5.4 (Congruence of Programs)

for all p E Prog: ~(£;tore(p]) = £p[P]

o

Proof

This theorem follows immediately from Lemmata 2.5.2 and 2.5.3.

o

2.6 Related Work

A large number of store semantics have been defined for strict languages. Examples of first or-

der strict store semantics can be found in (Mycroft, 1981; Hudak, 1987; Jones & Le Metayer,

1989; Jensen, 1990). These semantics are similar to the store semantics presented in this

CIIAPTER 2. LANGUAGE 24

chapter since they thread the current state of the store through the semantics, but they are

simpler because there is no need to deal with the closures which are required in a lazy store

semantics. Examples of higher order strict store semantics can be found in (Pleban, 1990;

Andersen, 1990; Deutsch, 1990; Hughes, 1991). The store semantics in (Pleban, 1990) are

defined using a relatively complex continuation semantics. The store semantics in (Ander-

sen, 1990) and (Deutsch, 1990) are defined using an operational semantics. The strict store

semantics described in (Hughes, 1991) are quite similar to the semantics in (Mycroft, 1981;

Jones & Le Metayer, 1989; Jensen, 1990), except that higher order values can be allocated in

the store.

Examples of store semantics for lazy languages can be found in (Josephs, 1987) and

(Hughes, 1991). The store semantics in (Josephs, 1987) are defined using a continuation

semantics. The lazy store semantics in (Hughes, 1991) are similar to the lazy store semantics

defined in this chapter, except that higher order values can be allocated in the store. Also, not

all expressible values are allocated in the store in the semantics described in (Hughes, 1991),

since this is not necessary to ensure lazy evaluation. This was done in the store semantics

described in this chapter to facilitate their extension to incorporate usage counting in the

next chapter. Of all the described store semantics, congruence with the standard semantics

of the described language is considered only in (Pleban, 1990) and (Hughes, 1991).

2.7 Conclusion

In this chapter, the syntax and standard semantics of the language which will be used through-

out this thesis have been defined. Non-standard store semantics which model the use of store

in possible implementations of the language were then defined. These store semantics pro-

vide a reference against which store-related analyses and optimisations can be proved correct.

To ensure that these store semantics model the use of store safely, they were proved to be

congruent to the standard semantics of the language.

Now that the store semantics of the language have been defined, store related analyses

and optimisations can be defined and proved correct with respect to them. In Chapter 3,

an analysis is presented which can be used to detect which store cells will become garbage,

and is proved to be correct with respect to these store semantics. In Chapter 4, it is shown

how the information obtained by this analysis can be used to validate compile-time garbage

collection, and in Chapter 5 it is shown how the information obtained by the analysis can be

used to guide the transformation when compile-time garbage avoidance is performed.

Chapter 3

Compile-Time Garbage Detection

In this chapter, it is shown how the cells which will become garbage within a program can be

detected at compile-time. A cell will become garbage during the evaluation of an expression if

it is unshared when it loses a reference. To determine whether a cell is unshared, the number

of times that the cell is used is determined. If the cell is used only once, then it is unshared.

To determine the number of times a cell is used, the store semantics presented in Section

2.4 are augmented to incorporate usage counting. These usage counting store semantics must

be abstracted in some way to allow usage counts to be determined at compile-time. Usage

counting store values are therefore abstracted to usage patterns. These patterns are finite

objects which indicate the number of times each part of a value is used. A usage counting

analysis is then defined, using these patterns, to determine at compile-time the number of

times each part of a value will be used in future computations. The usage count obtained by

this analysis must be safe with respect to the actual usage counting store value. This will be

the case if the usage count of a value determined by the analysis is not less than the actual

usage count, so it will not be assumed that a cell will become garbage when it is still required

by a program. The described usage counting analysis is proved to be safe with respect to the

usage counting store semantics, and some examples of its application are given.

25

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION 26

The remainder of this chapter is structured as follows:

• Section 3.1: the store semantics presented in Section 2.4 are augmented to incorporate
usage counting.

• Section 3.2: domains of usage patterns which are abstractions of usage counting store

values are defined.

• Section 3.3: the operations which can be performed upon usage patterns are defined.

• Section 3.4: a usage counting analysis is defined over the domains of usage patterns.

• Section 3.5: the usage counting analysis is proved to be correct with respect to the

usage counting store semantics.

• Section 3.6: some examples of the application of usage counting analysis are given.

• Section 3.7: related work is considered.

• Section 3.8: a summary of this chapter is given.

3.1 Usage Counting Store Semantics

To provide a reference against which the compile-time analysis of store usage can be proved

correct, the store semantics presented in the previous chapter are augmented to incorporate

usage counting. This involves counting the number of times each value is used in a program.

The usage counting store semantic domains are shown in Figure 3.1. These domains are

very similar to the domains for the store semantics of the language given in Figure 2.7. As

before, all expressible values are allocated in the store so that a usage count can be associated

with them. A new domain is defined to associate a usage count with each expressible value.

These usage counts are represented by integers. The functionality of the usage counting store

semantic functions of the language is shown in Figure 3.2, and they are defined in Figures

3.3 and 3.4. They are very similar to the functions defined for the store semantics of the

language given in Figures 2.9 and 2.10, except that they maintain a usage count for all values

in the language. All new values which are created within a program are given an initial usage

count of 0 since they have not yet been used. These usage counts are incremented only when

their associated values are used. This will be the case if a value appears in a strict context.

The usage count for a value is therefore incremented only if it is an argument in a basic

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION 27

Valeu.e = (Lac X Storeeu.eh

x E Eval Atom EBList

Atom Int EBBaal

Int {O}1. EB{IlL EB{-I}1. EB...

Baal = {TRUE} 1. EB{FALSE} 1.

List {NIL}.L EBConscell

Conscell = (Lac X Loch

loc E Lac Int

Uval = (Use X Evalh

U E Use = Int

Closure = Storeeu.e -+ Valeuu

pE Bveeuoe Bv -+ Lac

4> E Fveeuoe Fv -+ Loc" -+ Storeeuoe -+ Valeun

a E Storeeu.e = Lac -+ (Closure EBLac EBUval EB{UNB} 1.)

Figure 3.1: Usage Counting Store Semantic Domains

function call, a selector in a case expression, or its value is being forced as the result of a

program. Usage counts can only increase as they are never decremented .

. The auxiliary functions of the usage counting store semantics are defined in Figure 3.5.

These functions are very similar to the auxiliary functions of the store semantics given in

Figure 2.11, except that the function inc has been defined to increment the usage count

associated with an expressible value.

Since the usage counting store semantics of the language will be used as a reference against

which store-related analyses and optimisations can be proved correct, they must also be shown

to be congruent to the standard semantics. This can be done in a similar manner to that

described in Section 2.5 for the store semantics.

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION 28

inc: Vale..... -+ Vale...e

f;se : Prog -+ Vale".e

fuse: Exp -+ Bvee -+ Fvee..... -+ Storee"'" -+ Vale"."

Buse: Bas -+ Loc" -+ Store!"..... -+ Vale"'"

CU8e
: Con -+ Loc" -+ Storee -+ Vale.....

alloc: ((Closure El7Uval) x Store!".....) -+ Vale.....

match: (Eval x Con) -+ Baal

Figure 3.2: Usage Counting Store Semantic Functions

3.2 Usage Patterns

The usage counting store semantics defined in the previous section must be abstracted in

some way to allow usage counts to be determined at compile-time. One approach would be to

use an abstract store, as is done in (Hudak, 1987; Andersen, 1990; Deutsch, 1990). Abstract

stores tend to be relatively large objects, so such an analysis is likely to be inefficient. The

approach which is taken here is to abstract usage counting store values to usage patterns

which represent the number of times each part of a value is used in future computations. The

usage pattern which gives the future usage of a value is called its context.

The notation DABS used in the definition of the usage counting domains represents the

lifting of the domain D to add a new bottom element ABS. This lifting operation is defined

as follows.

Definition 3.2.1 (The Domain Lifting Operation)

DABS = DU {ABS}

where

ABS ~DABS d, Vd E DABS

d1 ~DABS d2, V d},d2 E D s.t. d1 ~D d2

o

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION

£;"e[e
where
II Vu··· V1kl = el

In Vnl ... Vnkn = en] = lorce(£USe[e] (~v.l.) <Po(~loc.UNB))
where
4>0 = fix (~<p.[(~IOCI ... ~loCkj.~O'.£u"e[ej] [[oct!vjh ... ,lockj/vjkj] <PO')//iD

£use[k] p 4> 0' = alloc((0, k) ,0')

£U6e[v] p <P0' = (lac, O"[loc/ p[v]]),
where
(loc,O") = (0' (p[v])) 0'

= ((0' (p[v])),O'),

if (0' (p[v])) E Closure

otherwise

£use[b et ... en] p 4> 0' = 8use[b] loct ••. loc; O'n
where
(IOCbO't) = inc(£USe[et1 p <p0')

£U6e[c el ••• en] p 4> 0' = cuse[c] lOCI" .loc., O'n
where
(IOCI,O't) = alloc((£use [et] p 4»,0')

£use(f et ... en] p 4> 0' = <p[J] loct ..• loc; O'n
where
(locb O't) = alloc((£use[et] P <p),0')

Figure 3.3: Usage Counting Store Semantics

29

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION 30

AlocI.Aloc2.AO'.alloc«0, (Xl < X2)),0')
where
(ut, Xl) = 0' lOCI
(U2, X2) = 0' loc2

£use[case eo of PI : el 1 ••• 1 Pk : ek] P 4> 0'
= £USe[eiJp[x! l/vt, ... ,x! n/vnl 4> 0"

where
(loc,O") = inc(£use[eol p 4> 0')
(u,x) = 0" loc

= C VI .. ,vn and match(x,c)Pi

= AloCI.>.loc2.AO'.alloc«0,(XI + X2)),0')
where
(ut, xt} = 0' lOCI
(U2, X2) = 0' loc2

= AIOCI.Aloc2.AO'.alloc((0, (Xl - X2)), 0')
where
(Ut,XI) = 0' lOCI
(U2, X2) = 0' lOC2

Buse[=] = AloCI.>.loc2.AO'.alloc«O,(XI = X2)),0')
where
(Ut,XI) = O'IOCI
(U2' X2) = 0' loc2

Cuse[True] = AO'.alloc«O,TRUE),O')

Cuse[False] = AO'.alloc«O,FALSE),O')

cuse[Nil] = AO'.alloc«O,NIL),O')

Figure 3.4: Usage Counting Store Semantics (continued)

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION 31

alloc(v .a) = (lac, 0'[vI lac])
where
a lac = UNB

inc(loc,u) = (loc,u[(u+ 1,x)lloc])
where
(u,x) = er lac

[orceiloc.o) = (loc,O'), if (0' lac) = .L
or (0' lac) = UNB

= (loc',er'[loc'lloc]), if (0' lac) E Closure
where
(loc',O") = force«u lac) u)

= foree((u lac),u), if (0' lac) E Loc

= inc(loc,u2[(u,(loc!loc2» / lac]), if (u lac) E Uval
where and x E Conscell
(u,x) = er lac
(lac}, 0'1) = foree(x! 1,u)
(loc2,0'2) = force(x! 2,0'1)

= inc(1oc,er), otherwise

match(x,c) = (x = TRUE and c = True)
or (x = FALSE and c = False)
or (x = NIL and c = Nil)
or (x E Conscell and c = Cons)

Figure 3.5: Usage Counting Store Semantics (auxiliary functions)

A different domain of usage patterns is defined for each possible type of value in the lan-

guage. The domain of usage patterns for a value of type T is given by U(T). The type TA in

the definition of the domain U(TA) represents an atomic type (int, bool). These domains are

defined as follows.

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION 32

Definition 3.2.2 (Domains of Usage Patterns)

U(TA) = (U'(TA»ABs

U'(TA) = {0,1,2}

where

0 ~UI(TA) U, 'V U E U'(TA)
U ~UI(TA) 2, 'V U E U'(TA)

U(list T) = (U'(list T»ABS

U'(list T) = (U'(TA) X U(T»
where

(ut, U2) ~UI(li8t T) (ui,u~), if Ul ~UI(TA) U'1

and U2 ~U(T) U'2

0

Each domain U(T) is an abstract context domain as defined in (Hughes, 1988) with the least

element ADS representing absence (indicating that an expression is not evaluated). There is

no element in any of the domains U(T) representing contradiction because it is assumed that

all programs are well typed, and contradiction can never arise.

Elements of the domain U(TA) describe the usage of values of atomic type. The elements

in this domain, other than ABS, are the usage patterns 0, 1 and 2 which indicate that a value

is not used, is used at most once, or may be used any number of times respectively.

Elements of the domain U(list T) describe the usage of list values containing elements of

type T. Elements of this domain, other than ABS, are pairs, where the first element of the

pair describes the usage of all the spine cells in the list, and the second element describes the

usage of all the elements in the list. Since these elements describe the usage of more than one

value, they give a safe approximation to the usage of all of them. The usage of the spine cells

of a list are represented by the values 0, 1 and 2. The value ° indicates that none of the spine

cells are used at all. The value 1 indicates that none of the spine cells are used more than

once, and the value 2 indicates that all the spine cells may be used any number of times. The

usage of the elements in the list are described by the usage domain corresponding to their

type. Some elements of the domain U(list T) describe a list in which the spine cells are not

CllAPTER 3. COMPILE-TIME GARBAGE DETECTION 33

used, but the list elements are used. Although this situation cannot occur, these elements are

included to simplify the definition of the domain.

Each domain U(T) is a complete lattice, with the least element representing absence,

and the greatest element representing a value in which all parts may be used any number of

times. The usage pattern ABS indicates that an expression is not evaluated, so no parts of

it are used. Usage patterns other than ABS indicating that no parts of a value are used (for

example, the usage pattern (0,0) in the domain U(list TA» represent a context in which an

expression is evaluated to normal form, but is not used in any further computations. Although

this situation should not occur in a lazy functional language, it is shown in Section 5.2.1 how

these usage patterns can be used to detect transient structures within expressions.

The domain U(list TA) can be viewed as shown in Figure 3.6.

(2,2)/~)1'2)~)2'1)~
(O'2~)t,1)~)2'O)~

(O'I)~)1'O)~ .;

(0,0) (LABS)~/
(O,ABS)

ABS

Figure 3.6: The Domain of Usage Patterns U(list TA)

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION 34

In general, if the definition of type T is parameterised by the types Tl ... Tn, then the

usage domain for a value of type T is given by U(T), which is defined as follows:

Definition 3.2.3 (General Definition of Domains of Usage Patterns)

U(T) = (U'(T))ABS

U'(T) = (U'(TA) X U(Tt) x ... X U(Tn))
where

(Uo, ••• , un) ~U'(T) (u~, ... , U~), if Uo ~U'(TA) U'°and Ut ~U(TJ) U't

and Un ~U(Tn) U'n

0

3.3 Operations on Usage Patterns

In this section, the operations which can be performed upon usage patterns are defined.

When the usage of a value in one expression is given by Ut, and the usage of the same value

in another expression is given by U2, a means of combining these two usage patterns into one

describing the total usage of the value in both expressions is required. As in (Hughes, 1988),

a binary operator & is defined to provide this information. This operator can be regarded

as an abstract addition operator over elements in each domain U(T). It is defined on the

domain of usage patterns for values of atomic type as follows.

Definition 3.3.1 (The & Operator)

U & ABS = u, 'V U E U(TA)
U & 0 = 0, if U = ABS

= u, otherwise

U & 1 = 1, if U = ABS or U = 0

= 2, otherwise

U & 2 = 2, 'V U E U(TA)

0

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION 35

The definition of this operator is extended pointwise on domains of usage patterns for values

of structured type.

The two usage patterns which are combined using this operator will be safe approximations

to the usage of a value in two different expressions. The usage pattern which is produced as

the result of this operator will therefore be a safe approximation to the total usage of the

value in both expressions, since it simply acts as an abstract addition operator over domains

of usage patterns.

Also following (Hughes, 1988), the binary operator -+ is defined to preserve absence in

the context ABS. It is defined for each domain of usage patterns as follows.

Definition 3.3.2 (The -+ Operator)

Ul -+ U2 = ABS, if Ul = ABS

otherwise

o

If an expression appears in the context ABS, then no part of the result of the expression

will be used, and so no part of the sub-expressions occurring within it will be used either. It

must therefore be ensured that any absence in the context of an expression is propagated to

all sub-expressions.
The binary operator U gives the least upper bound of two usage patterns in each domain

of usage patterns.

To determine the usage of a constructor application from the usage of its arguments,

abstract constructors which operate on usage patterns are defined. Corresponding to each

constructor c of type Tt -+ ••• -+ Tn, abstract constructors Uc which are of type U'{TA) -+

U{Tl) -+ ••• -+ U(Tn) are defined as follows.

Definition 3.3.3 (The Abstract Constructors Uc)

UFalse(uo) = Uo
UTrue(uo) = Uo
UNil(uo) = (uo,ABS)

U Cons(Uo,UbU2) = (uo,Ut) U U2

0

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION 36

The additional argument for each abstract constructor is an element of the usage domain

U'(TA). It represents the usage of the overall resulting structure if it is of atomic type, or

the usage of the root cell of the resulting structure if it is of list type. The usage of the spine

cells in a list is given by the least upper bound of the usage of the root cell of the list, and

the usage of the spine cells in the tail of the list. The usage of the elements in a list is given

by the least upper bound of the usage of the head of the list and the usage of the elements in

the tail of the list.

In general, if a constructor c is of type T, -+ ••• -+ Tn, and U'(Tn) = (U'(TA) x U(Ti) x

... x U(Tk», then the abstract constructor Uc is defined as follows:

Definition 3.3.4 (General Definition of the Abstract Constructors Uc)

Uc U'(TA) -+ U(Tl) -+ ••• -+ U(Tn)
U c(Uo, ... , un) = U'U (uo, U~,... , uk)

where
n

u' = U{uilui E U(Tn)}
i=ln

u' = U{uilUj E U(T{)}1
i=l

n
U' = U{udUj E U(Tk)}k

i=l

0

The usage of the head and tail of a list can be determined from the usage of the overall

list using the UCons# 1 and UCons#2 operators respectively. These operators are defined as

follows:

Definition 3.3.5 (The UCons#l and UCons#2 Operators)

UCons#l ABS = ABS

UCons#2 ABS = ABS
UCons#2 (Ut,U2) = (Ut,U2)

o

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION 37

In general, if a constructor c is of type Tt -+ .•• -+ T«, and U'(Tn) = (U'(TA) x U(Tf) x ... x

U(Tk)), then the operators Uc#i where 1~ i < n are defined as follows:

Definition 3.3.6 (General Definition of the Uc#i Operators)

Uc#i
Uc#i ADS

U(Tn) -+ U(Ti)
= ABS

if T; = Tn
if t: = TJ, 1 s j s k=

o

Now that the operations on usage patterns have been defined, it remains to prove that they

are monotonic and continuous. The proofs are not difficult, and are not included here.

3.4 Usage Counting Analysis

In this section, a usage counting analysis is presented which operates over the domains of

usage patterns. This analysis determines the maximum number of times a value will be used

in future computations within a program. The domains which are used in this analysis are

shown in Figure 3.7.

U E Usage = U(T)

¢>u E Fveu = (Fv x Int) -+ Usage -+ Usage

Figure 3.7: Usage Counting Analysis Domains

The future usage (or context) of a value of type T is an element ofthe usage domain U(T)
and is represented by u in this analysis. Each function in the function variable environment

in the analysis gives the future usage of a given argument within a given function for a given

context of function call.

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION 38

The functionality of the usage counting analysis functions is shown in Figure 3.8.

Up: Prog - Fveu

U: Exp - Bv - Usage - Fveu - Usage

Figure 3.8: Usage Counting Analysis Functions

The function Up gives the function variable environment resulting from the usage counting

analysis of a program. The result of evaluating U[e][x] u 4>u gives the maximum number of

times the variable x is used in future computations if the expression e appears in the context

u. These functions are defined in Figure 3.9. The rules for this analysis can be explained as

follows:

(Ul) The result of evaluating a program is a function variable environment in which functions

of the form UJ#k are introduced. Each function of the form UJ#k gives the future usage of

argument number k within the function J for a given context of function call. The value of

this function variable environment is determined using a least fixed point evaluation.

(U2) No part of a variable is used in a constant.

(U3) If the variable x is evaluated in a context u, then the usage of x is given by u. If any

other variable is evaluated, then the variable x is absent.

(U4) Each of the arguments in a basic function application will be evaluated in a context 1,

since they will be used only once. The total usage of the variable x is the total (using &) of
its usage in each of these arguments.

(U5) If a constructor application is evaluated in a context u, then each of its arguments will be

evaluated in a context given by the sub-component of u which corresponds to that argument.

The total usage of the variable x is the total (using &) of its usage in each of these arguments.

(U6) If a function application is evaluated in a context u, then each of its arguments will be

evaluated in a context given by the function variable environment for a call of the function

in the context u. The total usage of the variable x is the total (using &) of its usage in each

of these arguments.

(U7) If a case expression is evaluated in a context u, then the branches of the case expression

will also be evaluated in the context u. The context in which the selector of the case expres-

sion will be evaluated depends upon which branch of the expression is selected. This context

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION

(UI) Up[e
where
It Vu··· Vlkl = el

In Vnl •.• Vnkn = en]
= fix (A¢U.[(Au.u[ej][Vjk] U ¢U)/Ulj#kD

(U2) U[k][x] U ¢u = ABS

(U3) U[v][x] U ¢u = u, if V = X
= ABS, otherwise

(U4) U[b el .•. en][x] U ¢u = U ~ (U[et][x] I ¢u & ... & U[en][x] I ¢U)

(U5) U[c el ••. en][x] U ¢u = U ~ (U[el][x] UI ¢u & ... & U[en][x] Un ¢u)
where
UI = Uc#1 U

Un = Uc#n U

(U6) U[I el" .en][x] U ¢u = U ~ (U[ed[x] UI ¢u & ... & U[enUx] Un ¢U)
where
UI = ¢u[UI#I] U

Un = ¢u[UI#n] U

(U7) U[case eo of PI : el 1 ... 1 s» : ek][x] U ¢u
= U ~ «(U[eo][x] UI ¢U) & (U[el][x] U ¢u)) u ...

U «U[eo][x] Uk ¢u) & (U[ek][X] U ¢u)))
where
PI = Cl Vu .•. Vlnl

Pk = Ck Vkl .•. Vkn"
UI = UCI(I,U[el][VII) U ¢u, .•. ,U[el][Vlnl] U ¢u)

Uk = UCk(I,U[ek][Vk1] U ¢u, ... ,U[ek][Vkn,,] U ¢U)

Figure 3.9: Usage Counting Analysis

39

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION 40

is given by the application of the abstract constructor (corresponding to the constructor in the

pattern of the selected branch) to the usage patterns giving the usage ofthe pattern matching

variables in the selected branch. The total usage of the variable x in the case expression is

the total (using &) of its usage in the selector and its usage in the selected branch. Since it

cannot be determined at compile-time which branch of the case expression will be evaluated,

the least upper bound of the usage of the variable x when each branch is evaluated is used

instead.

3.S Proof of Correctness

Since the information obtained from usage counting analysis is going to be used to allow

various optimisations to be performed, it must be shown that it is safe with respect to the

usage counting store semantics. This will be the case if the future usage of a value obtained

by usage counting analysis is a safe approximation to the increment in usage of the value in

the usage counting store semantics due to the evaluation of the program. It will be a safe

approximation if it is greater than the actual usage.

To determine the usage pattern corresponding to the increment in usage of a usage count-

ing store value, the function 8 is defined as follows.

Definition 3.5.1 (Usage Pattern Corresponding to the Increment in Usage of a

Usage Counting Store Value) The usage pattern corresponding to the increment in usage

of a usage counting store value at location loc between the stores 0' and 0" can be determined

for each type of value using the function 8 which is defined as follows:

8: (Loc X Storez •.,e X Storec".e) -+ U(TA)
8(loc,0',0") = ABS, if (0' loc) = UNB or (0' IDe) = .1.

= c((0' loc), 0', 0"), if (0' loc) E Loc

= u, otherwise

where

u = 0, if «0" loc) L 1) = «0' loc) L 1)

= 1, if «0" loc) L 1) - «0' loc) L 1) = 1

= 2, otherwise

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION 41

6: (Loc x Storeeuoe x Storeeuoe) - U(list T)

6(loe, 0', 0") = ADS, if (0' loe) = UNB or (0' loe) = .1.

= 6«0' loe), 0', O'~, if (0' loe) E Loc

= UNil(uo), if (0' loe)! 2 = NIL

where

Uo = 0, if «0" loe) ! 1) = «0' loe) ! 1)

= 1, if «0" loe) ! 1) - «0' loe) ! 1) = 1

= 2, otherwise

= UCons(uo, Ut, U2), if (0' loe) ! 2 E Conscell

where

Uo = 0, if «0" loe) ! 1) = «0' loe) ! 1)

= 1, if « 0" loe) ! 1) - «0' loe) ! 1) = 1

= 2, otherwise

Ut = 6«(0' loe)! 2)! 1,0',0")

U2 = 6« (0' Ioe) ! 2) ! 2, 0', 0")

o

It is assumed that all closures have been evaluated before the usage pattern correspond-

ing to the increment in usage of a usage counting store value is determined. If the value at

the given location in the store is unbound or is undefined, then the corresponding usage pat-

tern is ABS. If there is no increment in the usage of an atomic value, then the corresponding

usage pattern is 0. If there is an increment of one in its usage, then the corresponding usage

pattern is 1, otherwise it is 2. The usage pattern corresponding to a list value is determined

recursively from the usage counting store value and gives the least upper bound of the usage

of the spine cells of the list, and the least upper bound of the usage of the elements in the

list.

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION 42

Using this definition, the correctness of the usage counting analysis can be shown by

proving the following theorem.

Theorem 3.5.2 (Correctness of Usage Counting Analysis)

for all peu,. E Bveeu.e, ¢>euoeE Fveeu.e, CTeu,. E Storeeu.e, ¢>u E Fveu, p E Prog, e E Exp:

if £;8e[p] = (loc"', CT~~.e)
and for all / E dome ¢>eu.e):

if ¢>eu,.[111 OCI ••• 1oCn CTeu.e = (I OC' ,CTtu••)
and 6(Ioc', CTtu•• , O'~~ ee) = U

then if

and (¢>u[U/#i] u) !; 6(loc~,CTeu.e,CT~~.e)
th C £(1 "" "')en u _ o oc ,CTeu•• ,CTeu"

and £U8e[e] peu" ¢>eu.eCTeu" = (loc',CTeu,,)
and 6(loc',CTeu.e,CT~~.e) = u

then for all Xi E dom(peu.e):

if £UBe[e] [loci/xi] ¢>eu.eCTe.... = (loc",CT~u ..)
and (U[e][xi] U ¢>u) b 6(loCi,CTeuoe,CT~~.e)
th C £(1 "" "')en U _ v oc, CTeu.e, CTe-«

o
Proof

The proof of this theorem can be found in Appendix B.l.

o

The following lemma states that the function variable environment in the usage counting

analysis will satisfy the requirement in Theorem 3.5.2.

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION 43

Lemma 3.5.3 (Correctness of Function Variable Environment)

for all p E Prog:

if C;3e(p] = force(C[e] (Av.i) lPeUle(Aloc.UNB)) = (1oc"',CTe~.e)
and Up(P] = 4>u
then for all f E dome lPe".e), CTe"uE Storee".e:

if lPe"oe(J] lOCI" .loc; CTeuu= (loc',O't".e)
and 6(loc',CTtuoe,CTe~oe) = u

then if lPefloe[J] loci ••. loc~ CTefl,e= (loc",CTefl.e)
and (lPu[Uf#i] u) !; 6(loc~,CT'fI.e,CT~~.e)
th C e(l "" ",)en u _ v oc, CTe",e, CT'fI.e

o

Proof

The proof of this lemma can be found in Appendix B.2.

o

3.6 Examples

In this section, the results of applying usage counting analysis to the example functions given

in Figure 2.2 are presented. The results of applying the analysis to the function append are

shown in Figure 3.1.

Context (O,ABS) (0,0) (0,1) (0,2) (l,ABS) (1,0)

Uappend#l (l,ABS) (1,0) (1,1) (1,2) (l,ABS) (1,0)

Uappend#2 (O,ABS) (0,0) (0,1) (0,2) (l,ABS) (1,0)

Context (1,1) (1,2) (2,ABS) (2,0) (2,1) (2,2)

Uappend#l (1,1) (1,2) (l,ABS) (1,0) (1,1) (1,2)

Uappend#2 (1,1) (1,2) (2,ABS) (2,0) (2,1) (2,2)

Table 3.1: Usage Counting Analysis of the Function append

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION 44

From this table, it can be seen that the spine cells in the first argument of append will never

be used more than once, and the list elements in the first argument will be used the same

number of times as the list elements in the result of the function. The usage of the second

argument of append will be exactly the same as the usage of the result of the function.

The results of applying the analysis to the function reverse are shown in Figure 3.2.

Context (O,ABS) (0,0) (0,1) (0,2) (l,ABS) (1,0)

Ureverse#l (l,ABS) (1,0) (1,1) (1,2) (l,ABS) (1,0)

Context (1,1) (1,2) (2,ABS) (2,0) (2,1) (2,2)

Ureverse#l (1,1) (1,2) (l,ABS) (1,0) (1,1) (1,2)

Table 3.2: Usage Counting Analysis of the Function reverse

From this table, it can be seen that the spine cells in the argument of reverse will never be

used more than once, and the list elements in the argument will be used the same number of

times as the list elements in the result of the function.

The results of applying the analysis to the function accreverse are shown in Figure 3.3.

Context (O,ABS) (0,0) (0,1) (0,2) (l,ABS) (1,0)

U accreverse # 1 (l,ABS) (1,0) (1,1) (1,2) (l,ABS) (1,0)

U accreverse #2 (O,ABS) (0,0) (0,1) (0,2) (l,ABS) (1,0)

Context (1,1) (1,2) (2,ABS) (2,0) (2,1) (2,2)

U accreverse# 1 (1,1) (1,2) (l,ABS) (1,0) (1,1) (1,2)

U accreverse#2 (1,1) (1,2) (2,ABS) (2,0) (2,1) (2,2)

Table 3.3: Usage Counting Analysis of the Function accreverse

From this table, it can be seen that the spine cells in the first argument of accreverse will

never be used more than once, and the list elements in the first argument will be used the

same number of times as the list elements in the result of the function. The usage of the

second argument of accreverse will be exactly the same as the usage of the result of the

function.

CIIAPTER 3. COMPILE-TIME GARBAGE DETECTION 45

The results of applying the analysis to the function flatten are shown in Figure 3.4.

Context (O,ABS) (0,0) (0,1) (0,2) (l,ABS) (1,0)

Uflatten#l (l,(l,ABS» (1,(1,0» (1,(1,1» (1,(1,2)) (l,(l,ABS» (1,(1,0))

Context (1,1) (1,2) (2,ABS) (2,0) (2,1) (2,2)

Uflatten#l (1,(1,1» (1,(1,2» (l,(l,ABS)) (1,(1,0)) (1,(1,1» (1,(1,2»

Table 3.4: Usage Counting Analysis of the Function flatten

From this table, it can be seen that no list cells in the argument of flatten will ever be used

more than once, and the bottom level elements in each list in the argument will be used the

same number of times as the list elements in the result of the function.

3.7 Related Work

In this section, other usage counting analyses, within the three frameworks of abstract inter-

pretation, backward analysis and type inference, are considered.

3.7.1 Abstract Interpretation

An isolation interpretation is described in (Mycroft, 1981) which can be used to determine if

data structures are used no more than once in a strict first order functional language. This

extends previous work in (Schwarz, 1978) in which these isolation classes had to be supplied

by the user. An approximate set of isolation patterns are determined for each value. This

interpretation is relatively complex, and makes use of information obtained by two other static

analyses; the EUSES interpretation and the EEXAM interpretation. No proof of correctness

is given for the isolation interpretation.

The sharing analyses described in (Jones & Le Metayer, 1989) and (Hamilton & Jones,

1990) are applicable to strict first order functional languages, and are similar to the isolation

interpretation described in (Mycroft, 1981). They also make use of the information obtained

by two other static analyses; transmission analysis and necessity analysis. These analyses are

similar to the EUSES and EEXAM interpretations described in (Mycroft, 1981). The domains

of sharing patterns which are used in these analyses distinguish between the sharing of each of

the spine cells in a list. To allow the compile-time analysis of sharing, these domains are cut

off at a suitable depth. The correctness of the described sharing analyses are not considered.

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION 46

In (Hudak, 1987), an abstract interpretation of reference counting in a first order strict

functional language is presented. This involves counting the number of syntactic occurrences

of values in a program. This differs from counting the number of times they are actually used,

as is done in this chapter. A value may be referenced many times, but it might be used only

once. To allow the analysis of reference counting at compile-time, 'sticky' reference counts are

used. When a reference count reaches a certain maximum value, it cannot be reduced again.

The analysis presented in (Hudak, 1987) uses an abstract store and is therefore likely to be

inefficient. A similar analysis for a higher order strict language is described in (Andersen,

1990).

An update avoidance analysis is presented in (Marlow, 1993) which can be used to deter-

mine the number of times a value will be used in future computations. If the value is used

no more than once, the cost of updating a closure with the result of its evaluation can be

avoided. The analysis involves collecting a bag of variables which must be used when a given

expression is evaluated. A bag is used because the same variable may be used more than once.

The number of times a variable is used in evaluating the expression can then be determined

by counting the number of occurrences of the variable in the bag. No proof of correctness is

given for this analysis.

3.7.2 Backward Analysis

A simple backward analysis is described in (Hughes, 1988) which can be used to determine

usage counting information. The domain used in this analysis is a simple flat domain similar

to the domain defined in this chapter for values of atomic type, so it does not give very detailed

usage counting information for structured data. The information obtained by this analysis

can be used to optimise call-by-need to call-by-name, thus saving the cost of overwriting a

closure with its value, and testing to see whether the overwrite has been performed.

A backward analysis for determining usage counting information for structured data is

described in (Jensen & Mogensen, 1990) and (Jensen, 1990). This analysis is very similar

to the usage counting analysis presented in this chapter. It is defined on an infinite domain

of contexts, so the usual iterative method for finding fixpoints will not terminate in general.

This situation is avoided by using a global environment which binds variables to their context

and binds functions to the least upper bound of the contexts of the calls to them. This global

environment is represented by a grammar, and it is possible to determine an approximation

to this grammar at compile-time. Although the correctness of the analysis is considered in

CIIAPTER 3. COMPILE-TIME GARBAGE DETECTION 47

(Jensen, 1990), no safety condition could be defined, and hence no proof of correctness could

be given. A sketch is given of an extension of the analysis to higher order functions. This

involves using a closure analysis like the one described in (Sestoft, 1989) to determine the

set of possible abstract closures to which a function can be evaluated during the execution of

a program. The least upper bound of the corresponding contexts of these abstract closures

is then determined. A global environment is represented by a grammar as before, and an

approximation to this grammar is determined at compile-time. Again, no proof of correctness

is given for this higher order analysis.

3.7.3 Type Inference

The update avoidance analysis described in (Launchbury et al., 1992) is a type scheme which

can be used to determine usage counting information. This type scheme is defined on a domain

similar to the usage counting domain presented in this chapter for values of an atomic type, so

it does not give very detailed usage counting information for structured data. The information

obtained by the analysis is used to avoid updating a closure with its value, if its value is used

only once. No correctness proof is given for the analysis because no appropriate semantics

could be defined as a reference for its correctness.

A type inference scheme for usage counting analysis is also presented in (Baker-Finch,

1992) and (Wright & Baker-Finch, 1993). This scheme is based on relevant logic. It involves

monitoring applications of the contraction structural rule to determine the number of times

a value is used. The usage count of a value is incremented each time the contraction rule is

applied to it. The described work does not give an algorithm for assigning types to terms.

Also, it does not deal with data structures, and recursion is considered only informally.

The type schemes described in (Wadler, 1990cj Guzman & Hudak, 1990j Smetsers et al.,

1993) allow the user to indicate that a value will be used once. The linear type scheme

described in (Wadler, 1990c) is based on linear logic (Girard, 1987). Values which are declared

to be linear in this type scheme must be used exactly once. No distinction is made between

sharing and absence. The type scheme described in (Guzman & Hudak, 1990) is more loosely

based on linear logic, and can be used to determine that values are used no more than once.

This type scheme is therefore not as restrictive as the linear type scheme described in (Wadler,

1990c), but the type rules are considerably more complex. The unique type scheme described

in (Smetsers et al., 1993) makes use of graph reduction information to determine whether

values are unique. A value is unique if there is exactly one path to it from the graph root.

CHAPTER 3. COMPILE-TIME GARBAGE DETECTION 48

3.8 Conclusion

In this chapter, it has been shown how cells which will become garbage within a program

can be detected at compile-time. A cell will become garbage during the evaluation of an

expression if it is unshared when it loses a reference. To determine that a cell is unshared,

the store semantics presented in Section 2.4 were augmented to incorporate usage counting.

Usage counting values in this semantics were then abstracted to usage patterns. These usage

patterns are finite objects which indicate the number of times each part of a value is used. A

usage counting analysis was then defined using these patterns to determine at compile-time

the number of times each part of a value will be used in future computations. This analysis

was then proved to be correct with respect to the usage counting store semantics.

Now that cells which will become garbage can be detected at compile-time, a number of

optimisations can be performed to optimise the use of storage in programs. In Chapter 4, it

is shown how this information can be used to validate compile-time garbage collection, and

in Chapter 5, it is shown how this information can be used to guide the transformation when

compile-time garbage avoidance is performed.

Chapter 4

Compile-Time Garbage Collection

Compile-time garbage collection involves annotating programs at compile-time to allow garbage

cells to be collected automatically at run-time. This optimisation overcomes the problem of

the programmer not being able to annotate functional programs in this way. Much work has

already been done to show how compile-time garbage collection can be performed for strict

languages, but not so much has been done for lazy languages. In this chapter, it is shown

how information obtained by usage counting analysis can be used to annotate lazy programs

for compile-time garbage collection.

Three different methods for compile-time garbage collection are presented. These are

called compile-time garbage marking, explicit deallocation and destructive allocation. Compile-

time garbage marking involves marking cells at their allocation to indicate that they will

become garbage after their first use. These cells are returned to the memory manager im-

mediately after their first use. Explicit deallocation involves explicitly returning cells to the

memory manager at a particular point in a program. Destructive allocation involves reusing

cells directly for further allocations within a program.

Store semantics are defined for programs which have been annotated for each of these

methods of compile-time garbage collection, and the correctness of these store semantics are

considered.

49

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 50

The remainder of this chapter is structured as follows:

• Section 4.1: existing methods for run-time garbage collection are described, and the

relative advantages of each method are considered.

• Section 4.2: it is shown how programs can be annotated for compile-time garbage

marking. A store semantics is defined for programs which have been annotated in this

way, and the correctness of these store semantics is considered.

• Section 4.3: it is shown how programs can be annotated for explicit deallocation. A

store semantics is defined for programs which have been annotated in this way, and the

correctness of these store semantics is considered.

• Section 4.4: it is shown how programs can be annotated for destructive allocation. A

store semantics is defined for programs which have been annotated in this way, and the

correctness of these store semantics is considered.

• Section 4.5: related work is considered.

• Section 4.6: a summary of this chapter is given.

4.1 Run-Time Garbage Collection

In this section, existing methods for run-time garbage collection are described, and the relative

advantages of each method are considered. Run-time garbage collection involves determining

at run-time which store cells are no longer required by a program, and making these cells

available for further use. This information is relevant in this chapter because the way in

which storage is used at run-time must be considered when some of the described compile-

time optimisations of store usage are performed. There are three main garbage collection

strategies. These are reference counting, mark/scan and copying garbage collection. Each of

these methods is now described in more detail, and the relative merits of each method are

considered.

4.1.1 Reference Counting Garbage Collection

The idea of using reference counting for garbage collection was first suggested in (Collins,

1960). In this method of garbage collection, each cell in the store has an extra field which

contains a number indicating how many references there are to the cell. When a cell is

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 51

allocated, its reference count is set to one. Each time a reference to the cell is created, the

count is increased by one, and each time a reference to the cell is destroyed, its reference

count is decreased by one. If the reference count of a cell reaches zero, then the cell is garbage

since there are no references to it. Before the cell is collected, the reference counts of each

cell it points to are also decremented. The reference counts of these cells may also be reduced

to zero as a result, so the process is repeated. These garbage cells are added to a free list of

cells which can be used for further allocations.

Some advantages of reference counting garbage collection over other methods of garbage

collection are as follows:

• Garbage collection takes place continuously as part of the user program, and is not a

logically separate process.

• The time spent on memory management is proportional to the number of transactions

which take place, and not to the total number of active cells.

• It is suitable for use in a distributed environment, since altering a reference count is an

atomic operation.

Some disadvantages of reference counting garbage collection are as follows:

• Cells in the free list will be scattered arbitrarily throughout the store. There will

therefore be a low locality of reference in structures created from this free list. This

may result in thrashing in a virtual memory system, and the benefits of using a cache

may be lost in a real memory system.

• Cyclic structures cannot be collected easily since they always have a reference count of

at least one (they point to themselves).

• Extra space is required in each store cell to hold the reference count. This must be

about the same size as a pointer, since all store cells may point to the same cell.

• There is a constant overhead due to the need to update reference counts.

The problem of the space required to hold each reference count field can be alleviated

by limiting their size. If the reference count for any cell reaches its maximum value, then

it cannot be decremented. This approach is taken in the one-bit reference counting method

described in (Wise & Friedman, 1977), which takes advantage of observations in (Clark &

Green, 1977) and (Clark & Green, 1978) that most cells in LISP programs (around 97%) have

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 52

a reference count of one. Another garbage collector must still be used in this case to collect

any cells in which the reference count has reached its maximum value. This garbage collector

can also be used to collect any cyclic structures which cannot be collected using reference

counting.

4.1.2 Mark/Scan Garbage Collection

The earliest garbage collectors were of the mark/scan type. This method of garbage collection

makes use of a free list of unused cells in the store. Each time an allocation is to be performed,

cells are removed from this free list to be allocated. When the free list is exhausted, the

garbage collector is invoked to build a new free list from the garbage cells in the store.

To determine which cells are garbage, all the cells in the store which are accessible from

any of the currently active pointers are marked. This marking is done by setting an extra

mark bit in each cell. After this marking is complete, all the cells in the store are scanned.

Any cells which are unmarked are added to the free list. As the store is scanned, the mark

bit of each cell is reset ready for the next invocation of the garbage collector.

Mark/scan garbage collection is easy to implement, but it does have the following disad-

vantages:

• Extra space is required for the marking of cells.

• All active cells are visited twice (once during the mark phase and once during the scan

phase), and all garbage cells are visited once (during the scan phase).

• As for reference counting, cells in the free list will be scattered arbitrarily throughout

the store, so there will be a low locality of reference in structures created from this free

list.

4.1.3 Copying Garbage Collection

Copying garbage collection involves copying all the store cells which are accessible from any

of the currently active pointers to a contiguous region in memory. Any cells not in this region

are therefore garbage and can be used for further allocations.

The idea of a two-space copying garbage collector was first suggested in (Fenichel &

Yochelson, 1969). The method described divides the store into two semispaces. During

the evaluation of a program, all new cells are allocated in one of the semispaces (the current

semispace). If there is insufficient space for an allocation in the current semispace, the garbage

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 53

collector is invoked. The garbage collector copies all the cells in the current semispace which

are accessible from any of the currently active pointers into the other semispace. All the cells

in the current semispace are therefore garbage, and may be used for further allocations. The

semispace to which all the active cells have been copied then becomes the current semispace.

A problem with two-space copying is that no more than 50% of the available storage space

will be in use at any time. This problem can be alleviated by using multiple spaces. This

approach is taken in the generational garbage collection methods described in (Lieberman &

Hewitt, 1983; Ungar, 1984; Moon, 1984; Appel, 1989). In this approach, the store is divided

into n regions of the same size, n - 1 of which are active at any time. The remaining region

is used for copying into. One region is garbage collected at a time, with the most recently

allocated regions being garbage collected more frequently than older ones. This approach

takes advantage of the observation that the most recently allocated store cells usually contain

the most garbage (Clark, 1979).
Copying methods of garbage collection have the following advantages over other methods:

• All the free cells are compacted into a contiguous region of the store. Thus, successive

cells will be allocated in successive store locations, which results in a higher locality of

reference. This is advantageous in virtual memory systems and in real memory systems

which make use of a cache.

• All the active cells are compacted into a contiguous region of the store. Thus, more

compact storage techniques may be used for lists.

• All active cells are visited only once, and garbage cells are not visited at all.

Copying garbage collection therefore offers more advantages than other methods of garbage

collection. The majority of garbage collectors which are currently used for functional lan-

guages are therefore of the copying type.
In the remainder of this chapter, it is shown how compile-time garbage collection can

be performed. This compile-time garbage collection does not actually remove the need for

run-time garbage collection, it merely serves to reduce the amount of garbage collection

which must be performed at run-time. The compatability of the methods which are used for

compile-time garbage collection and run-time garbage collection must therefore be considered.

Three different methods for compile-time garbage collection are presented. These are called

compile-time garbage marking, explicit deallocation and destructive allocation.

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 54

4.2 Compile-Time Garbage Marking

Compile-time garbage marking involves marking those cells which will become garbage after

their first use. These cells can subsequently be freed and used for further allocations. In

the next section, it is shown how the information obtained by usage counting analysis can

be used to annotate programs for compile-time garbage marking. A store semantics is then

defined for programs which have been annotated in this way, and the correctness of this store

semantics is considered.

4.2.1 Annotating Programs for Compile-Time Garbage Marking

In this section, it is shown how programs can be annotated for compile-time garbage marking.

Any cells which are used at most once can be marked at their allocation to indicate that they

will become garbage after their first use. The safety condition for the annotation of cells in

this way can be formally defined as follows.

Definition 4.2.1 (Safety of Annotation for Compile-Time Garbage Marking) A lo-

cation loc can be safely marked for compile-time garbage marking within a program p if the

following condition holds:

(O"loc)!l~l

where £;se[p] = (loc',O")

o

Thus, any Cons cells or closures which are used at most once after their allocation can

be annotated for compile-time garbage marking. It is shown how Cons cells can be annotated

in this way in this section, but the same techniques can be used for the annotation of closures.

In order to annotate a program for compile-time garbage marking, the context of each

expression is determined from an initial context for the program indicating that its result will

be used exactly once. Any Cons applications which appear in a context in which the root

cell of the resulting structure will be used at most once are annotated with the superscript

m. These Cons": applications indicate that the root cell of the resulting structure will be

marked when it is allocated. Any cells which are marked in this way can be returned to the

memory manager immediately after they are used.

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 55

For example, consider the following expression:

accreverse (append zs ys) zs

None of the spine cells created in the result of the function call (append zs ys) will be used

more than once (see Table 3.3). Thus any cells created within the spine of this structure can

be marked to indicate that they will become garbage after their first use. The annotation of

this expression for compile-time garbage marking is shown in Figure 4.1.

append' zs ys = case zs of
Nil
Cons x zs

ys
Cons": x (append' zs ys)

accreverse (append' xs ys) zs
where
accreverse zs ys = case xs of

Nil
Cons x zs

ys
accreverse zs (Cons x ys)

Figure 4.1: Annotation of accreverse (append zs ys) zs for Compile-Time Garbage Marking

4.2.2 Compile-Time Garbage Marking Store Semantics

In this section, it is shown how the store semantics of the language defined in Section 2.4 must

be changed to handle programs which have been annotated for compile-time garbage marking.

A usage counting store semantics is defined for programs which have been annotated in this

way so that it can be shown that they are equivalent to the usage counting store semantics

for unannotated programs presented in Section 3.1.

The semantic domains of the usage counting store semantics for compile-time garbage

marking are shown in Figure 4.2. These domains are similar to those for the usage counting

store semantics for unannotated programs given in Figure 3.1, except that an extra boolean

flag is associated with each list cell. This flag is used to indicate whether or not the list cell

will become garbage after its first use.

The functionality of the store semantic functions for performing compile-time garbage

marking is shown in Figure 4.3. These functions are defined in Figures 4.4 and 4.5. They are

very similar to the functions defined for the usage counting store semantics for unannotated

programs given in Figures 3.3 and 3.4. List cells are marked at their allocation to indicate

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 56

Valt"ctgm = (Loc X Storet"ctgmh

x E Eval = Atom EElList

Atom = Int EElBool

Int = {OhEEl{lh EEl{-l}1. Efl ...

Bool = {TRUE} 1. Efl {FALSE} 1.

List = {NIL} 1. Efl Conscell

Conscell (Bool x Loc x Loch

loc E Loc = Int

Uval (Use X Evalh

U E Use = Int

Closure = Storet"ctgm - Valt"ctgm

p E Bvet"ctgm = Bv - Loc

q, E Fvet"ctgm = Fv - Loc" - Storet"ctgm - Valt"ctgm

U E Storet"etgm = Loc - (Closure EElLoc EElUval EEl{UNB} 1.)

Figure 4.2: Compile-Time Garbage Marking Store Semantic Domains

whether or not they will become garbage after their first use. Any cells created by Cons"

applications are marked in this way, but cells created by Cons applications are not. List cells

are used during the evaluation of an expression only if they are the root cells of a selector in

a case expression. When a cell is used in this way, a check is made to see if it is marked. If

this is the case, then the cell is freed so that it can be used for further allocations.

The auxiliary functions of the usage counting store semantics for performing compile-time

garbage marking are defined in Figure 4.6. These functions are very similar to the auxiliary

functions of the usage counting store semantics for unannotated programs given in Figure 3.5,

except that the function dealloc has been defined to deallocate a given location in the given

store.

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 57

alloc: ((Closure EBUval) X Storeectgm) -+ Valectgm

{'ctgm. P V I"p . rog -+ a ectgm

t:ctgm: Exp -+ Bveectgm -+ Fveectgm -+ Storeectgm -+ Valectgm

Bctgm: Bas -e+ Loc" -+ Storeectgm -+ Valectgm

cctgm: Con -+ Loc" -+ Storeectgm -+ Valectgm

dealloc: Valectgm -+ Storeectgm

inc: Valectgm -+ Valectgm

force: Valectgm -+ Valectgm

match: (Eval X Con) -+ Bool

Figure 4.3: Compile-Time Garbage Marking Store Semantic Functions

4.2.3 Correctness

To prove that the store semantics for programs which have been annotated for compile-time

garbage marking are correct, the following conjecture must be proved:

Conjecture 4.2.2 The usage counting store semantics for programs which have been safely

annotated for compile-time garbage marking as defined in Definition 4.2.1 are equivalent to

the usage counting store semantics for unannotated programs.

o

Sketch Proof

To prove this conjecture, it must be shown that the usage counts of values in both store

semantics are the same, and that the standard semantic components of values in both store

semantics are the same. If the usage counts of values in both store semantics can be shown to

be the same, the annotations of programs for compile-time garbage marking will be correct

with respect to the compile-time garbage marking store semantics. This will be the case since

list cells are deallocated only if they will not be used again. If these deallocated cells are

subsequently allocated again, their usage counts cannot be affected by any uses due to their

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 58

£~tgm[e
where
It Vu··· Vtkt = et

In Vnt·· .Vnkn = en] = lorce([ctgm[e] (AV.l.) </>0 (Aloc.UNB))
where
</>0 = fix (A</>.[(Aloct ..• Alockj'AO'.[ctgm[ej] [loCt/Vjb"" lockJvjki] </> 0')/ /iD

[ctgm[k] P</>O' = alloc((O,k),0')

£ctgm[v] P</>O' = (loc, a'[loc/ p[v]D,
where
(loc,O") = (0' (p[vD) 0'

= «0' (p[v])),O'),

if (0' (p[v])) E Closure

otherwise

£ctgm[b et .•• en] P</>O' = Bctgm[b] loe, ... loc; O'n
where
(IOCbO't) = inc([ctgm[etJ p </> 0')

£ctgm[C et .•• en] P</>O' = cctgm[c] loci ... loc; O'n
where
(locI, O't) = alloc(([ctgm [et] p </»,0')

£ctgm[J Et·· .en] P</>O' = </>[J] IOCt ••. loc; O'n
where
(locI, O't) = alloc((£ctgm [et] p </»,0')

Figure 4.4: Compile-Time Garbage Marking Store Semantics

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 59

£ctgm[case eo of PI : el 1 ••• 1 Pk : ek] P ¢> a
= £ctgm[ei] p[X !2/Vb'''' z] (n + 1)/vn1 ¢> o"

where
(Ioc,u') = inc(£ctgm[eo1 P ¢> u)
(u,x) = u'loc

C VI •• ,vn and match(x,c)
dealloc(loc, u'), if X E Conscell

and X !1 = TRUE
otherwise

Pi
u"

= a';

Bctgm[+] >.locI.>.loc2.>.u.alloc«O, (Xl + X2», u)
where
(UbXI) = UIOCI
(U2,X2) = a loc2

Bctgm[_] >.locI.>.10c2.>.u.alloc«O, (Xl - X2», u)
where
(UI,XI) = a lOCI
(U2,X2) = uloc2

>.10cI.>.loC2.>'u.alloc«O, (Xl < X2)), u)
where
(UbXI) = a lOCI
(U2,X2) = a JOC2

Bctgm[=] >.locI.>.10c2.>'u.alloc«O, (Xl = X2)), u)
where
(UbXI) = o lOCI
(U2' X2) = a JOC2

cctgm [True] = >.u .alloc«O,TRUE),u)

cctgm [False] = >.u .alloc((O,FALSE),u)

cctgm[Nil] = >.u.alloc«O,NIL),u)

cctgm [Cons] = >.IOCI.>.IoC2'>'U.alloc((O,(FALSE,loCI ,JoC2)),u)

cctgm [Consm] = >.IocI.>.loC2.>'U .alloc((O,(TRUE,Joq,Joc2)),u)

Figure 4.5: Compile-Time Garbage Marking Store Semantics (continued)

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 60

alloc(v,O') = (loc,O'[v/locD
where
0' loc = UNB

dealloc(loc,O') = O'[UNB/loc]

inc(Ioc,«) = (loc,O'[(u+ 1,x)/locD
where
(u,x) = 0' loc

force(loc,O') = (loc,O'), if (0' Ioc) = .L
or (0' loc) = UNB

= (loc' ,O"[loc' / loc]), if (0' Joc) E Closure
where
(loc',O") = force«O' loc) 0')

= force« 0' loc),0'), if (0' loc) E Lac

= ine(loc,0'2[(U,(X! 1,[ocb[oc2»/loc]), if (0' loc) E Uval
where and x E Conscell
(u,x) = 0' loc
([oebO't) = force(x !2,0')
(loc2,0'2) = foree(x !3, O't)

ine(IOc,O'), otherwise

mateh(x,c) = (x = TRUE and c = True)
or (x = FALSE and c = False)
or (x = NIL and c = Nil)
or (x E Conscell and c = Cons)

Figure 4.6: Compile-Time Garbage Marking Store Semantics (auxiliary functions)

previous allocation. If the standard semantic components of values in both store semantics

can be shown to be the same, then the result of evaluating programs which have been anno-

tated for compile-time garbage marking will be equivalent to the result of evaluating the same

programs before they were annotated. This will be the case since list cells are deallocated

only if they will not be used again. Only values which are used again in a program can affect

its result. The proof of this conjecture remains as further work.

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 61

4.3 Explicit Deallocation

The compile-time garbage marking method described in the previous section requires an extra

bit per cell to indicate whether or not the cell is marked. The extra space required for this

may be more than the space which is saved by using this method. Also, extra time is required

to check each cell to see if it is marked. It is therefore unlikely that compile-time garbage

marking is suitable for practical use.

If it could be determined that a cell will always become garbage at a particular point in

a program, then there would be no need to mark it and check it, since it could always be

deallocated at this point. The program could therefore be annotated to indicate that the

cell can always be deallocated at this point. This form of compile-time garbage collection is

called explicit deallocation. In the next section, it is shown how programs can be annotated

for explicit deallocation. A store semantics is then defined for programs which have been

annotated in this way, and the correctness of this store semantics is considered.

4.3.1 Annotating Programs for Explicit Deallocation

In this section, it is shown how programs can be annotated for explicit deallocation. It is

shown only how Cons cells can be explicitly deallocated, but the same techniques can be used

for the explicit deallocation of closures. If it can be determined that the root cell of a list which

is the selector in a case expression is always unshared, then it can be explicitly deallocated

after it has been used within the case expression. The usage counting analysis described

in Section 3.4 does not provide this sharing information; it can be used only to determine

whether a value is used at most once in future computations, not in all computations. It is

shown in (Hamilton, 1992) how usage counting analysis can be combined with an abstract

interpretation to determine whether a value is used at most once in all computations. The

safety condition for the explicit deallocation of cells can be formally defined as follows.

Definition 4.3.1 (Safety of Explicit Deallocation) A location loc can be safely deallo-

cated within a program p when the current store is (I if the following condition holds:

«(I loc) 11 = «(I' loc) 1 1

where c;se[p] = (loc', (I')

o

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 62

The usage analysis described in (Hamilton, 1992) can be used to determine whether cells

satisfy this safety condition. To indicate that the root cell of a case selector can be explic-

itly deallocated, any Cons applications in the patterns of the case expression are annotated

with the superscript d. These Consd applications indicate that the root cell of the resulting

structure is garbage. For example, consider the following expression:

accreverse (flatten xss) ys

All the spine cells in the result of the function call (flatten xss) are unshared. They can

therefore be explicitly deallocated within the case expression in the accreverse function. The

annotation of this expression for explicit deallocation is shown in Figure 4.7.

accreverse' (flatten xss) ys
where
accreverse' zs ys = case zs of

Nil
Consd x zs

ys
accreverse' zs (Cons x ys)

- flatten xss = case zss of
Nil Nil
Cons zs zss append zs (flatten xss)

= case zs of
Nil ys
Cons x xs Cons x (append zs ys)

append zs ys

Figure 4.7: Annotation of accreverse (flatten xss) ys for Explicit Deallocation

4.3.2 Explicit Deallocation Store Semantics

In this section, it is shown how the store semantics of the language defined in Section 2.4

must be changed to handle programs which have been annotated for explicit deallocation as

described in the previous section. A usage counting store semantics is defined for programs

which have been annotated in this way so that they can be shown to be equivalent to the

usage counting store semantics for unannotated programs presented in Section 3.1.

The semantic domains of the usage counting store semantics for explicit deallocation are

shown in Figure 4.8.

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 63

Valeeel = (Lac X Storeeeelh

x E Eval = Atom EDList

Atom = Int EDBaal

Int {Oh ED{1h ED{-1} J. ED...

Baal = {TRUE} J. ED{FALSE} J.

List = {NIL}J. EDConscell

Conscell = (Lac x Loch

loc E Lac = Int

Uval = (Use X Evalh

U E Use Int

Closure = Storeeeel-+ Valeeel

pE Bveeed Bv -+ Lac

¢ E Fveeed = Fv -+ Loc" -+ Storeeeel-+ Valeeel

(1 E Storeeeel = Lac -+ (Closure EDLac EDUval ED{UNBh)

Figure 4.8: Explicit Deallocation Store Semantic Domains

These domains are similar to those for the usage counting store semantics for unannotated

programs given in Figure 3.1.

The functionality of the store semantic functions for performing explicit deallocation is

shown in Figure 4.9. These functions are defined in Figures 4.10 and 4.11. They are

very similar to the functions defined for the usage counting store semantics for unannotated

programs given in Figures 3.3 and 3.4. If the selector in a case expression is a non-empty list

and the pattern in one of the branches contains an application of a Consd constructor, then

the root cell of the selector is freed for further use.

The auxiliary functions of the store semantics for performing explicit deallocation are

defined in Figure 4.12. These functions are very similar to the auxiliary functions of the

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 64

match: (Eval X Con) - Baal

ted: Exp _ Bvet'ed - Fvet'ed - Storet'ed - Valt'ed

Bed : Bas _ Loc" - Storet'ed - Valt'ed

Ced : Con _ Loc" - StOret'ed- Valted

alloc: ((Closure $ Uval) x Storeted) - Valt'ed

deal/oc: Valted - Storet'ed

inc: Valted - Valt'ed

force: Valted - Valted

Figure 4.9: Explicit Deallocation Store Semantic Functions

usage counting store semantics for unannotated programs given in Figure 3.5, except that the

function dealloc has been defined to deallocate a given location in the given store.

4.3.3 Correctness

To prove that the store semantics for programs which have been annotated for explicit deal-

location are correct, the following conjecture must be proved:

Conjecture 4.3.2 The usage counting store semantics for programs which have been safely

annotated for explicit deallocation as defined in Definition 4.3.1 are equivalent to the usage

counting store semantics for unannotated programs.

o

Sketch Proof

The proof of this conjecture would be similar to the proof of Conjecture 4.2.2 for compile-time

garbage marking. It also remains as further work.

ClIAPTER 4. COMPILE-TIME GARBAGE COLLECTION 65

£;d[e
where
It Vu·· .V1kl = el

In Vnl ••• Vnkn = en] = Jorce(£ed[e] (Av.l..) </>0 (Aloc.UNB))
where
</>0 = fix (A</>.[(AIOCI ... AIOCkj'AU.£ed[ej I [locd Vjl, ... , lOCk) Vjkj] </> u)/ liD

£ed[k] p </> a = alloc((O,k),u)

£ed[vJ p </> a = (loc, u'[locl p[v]]),
where
(loc, u/) = (u (p[v])) U

= «(u (p[v])), u),

if (u (p[v])) E Closure

otherwise

£ed[b ei ..• en] p </> a = 8ed[b] lOCI ••. loc; Un
where
(locb UI) = inc(fed [elIp </> u)

(locn, Un) = inc(£ed[enJ p </> un-d

£ed[C ei •.. en] p </> a = Ced[c] lOCI" .loc; Un
where
(locb UI) = aUoc«£ed[eIJ p </», o)

(lOCn, un) = alloc«£ed[enl p </», Un-I)

£ed[1 ei •.• en] p </> a = </>[J] lOCI ••• loc; Un
where
(IOCbUI) = alloc«£ed[ell p </», o)

Figure 4.10: Explicit Deallocation Store Semantics

CII.4PTER 4. COMPILE-TIME GARBAGE COLLECTION 66

=).IOCI.).loc2.).0'.alloc((O, (Xl + X2)), 0')
where
(UllXI) = O'IOCI
(U2,X2) = 0'loc2

Ced[case eo of PI : el 1 ... 1 Pk : ek] P 1> 0'
= Ced[ed p[x !l/v}, ... , X !n/vn1 1> 0'''

where
(loc,O") = inc(Ced[eo] p 1> 0')
(u,x) = 0" loc
Pi = C VI",Vn and match(x,c)
0''' = dealloc(loc,O"), if c = Consd

= 0", otherwise

Ced[True] =).O'.alloc((O,TRUE),O')

Ced[False] =).O'.al/oc((O,FALSE),O')

=).locI.).loc2.).0'.alloc((O, (Xl - X2)), 0')
where
(Ut, Xl) = 0' lOCI
(U2, X2) = 0' loc2

=).locI.).loc2.).0'.alloc((O, (Xl < X2)),0')
where
(Ull Xl) = 0' lOCI
(U2, X2) = 0' loc2

=).locI.).loc2.).0'.alloc((O, (Xl = X2)), 0')
where
(UllXI) = a loc,
(U2, X2) = 0' loc2

=).O'.alloc((O,NIL),0')

Figure 4.11: Explicit Deallocation Store Semantics (continued)

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 67

alloc(v ,CT) = (loc, CT[vjloc])
where
CTloc = UNB

dealloc(loc,CT) = CT[UNBjloc]

inc(loc,CT) = (loc,CT[(u+ 1,x)jloc])
where
(u,x) = CTloc

Jorce(loc,CT) = (Ioc,c), if (CT loc) = 1.
or (CT loc) = UNB

= (loc' ,CT'[loc' jloc]), if (CT loc) E Closure
where
(loc', CT') = Jorce((CT loc) CT)

= Jorce«CT loc),CT), if (CT loc) E Loc

= inc(loc,0'2[(u,(loct,loc2»j loc]), if (0' loc) E Uval
where and x E Conscell
(u,x) = 0' loc
(IOCbCTl) = Jorce(x! 1,CT)
(loc2, CT2) = Jorce(x! 2,0'1)

= inc(loc,CT), otherwise

match(x,c) = (x = TRUE and c = True)
or (x = FALSE and c = False)
or (x = NIL and c = Nil)
or (x E Conscell and c = Cons)
or (x E Conscell and c = Consd)

Figure 4.12: Explicit Deallocation Store Semantics (auxiliary functions)

4.4 Destructive Allocation

Explicit deallocation requires that any cells which are explicitly deallocated are added to a

free list. This method of compile-time garbage collection can therefore be used only if the

run-time garbage collector also makes use of a free list. As was explained in Section 4.1, the

most efficient methods for performing run-time garbage collection do not make use of a free

list. It is therefore concluded that explicit deallocation is of limited use.

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 68

To avoid the need for a run-time free list, garbage cells could be reused directly within

a program. This form of compile-time garbage collection is called destructive allocation. In

the next section, it is shown how programs can be annotated for destructive allocation. A

store semantics is then defined for programs which have been annotated in this way, and the

correctness of this store semantics is considered.

4.4.1 Annotating Programs for Destructive Allocation

In this section, it is shown how programs can be annotated for destructive allocation. It is

shown only how Cons cells can be destructively allocated, but the same techniques can be

used for the destructive allocation of closures.

As for explicit deallocation, if it can be determined that the root cell of a list which is the

selector in a case expression is always unshared, then it can be destructively allocated after it

has been used within the case expression. The root cell of the selector can be reused within

the selected branch of the case expression if it contains a Cons application in its pattern.

The safety condition for the destructive allocation of cells can be formally defined as follows.

Definition 4.4.1 (Safety of Destructive Allocation) A location loc can be safely destruc-

tively allocated within a program p when the current store is a if the following condition holds:

(u Ioc) !1= (u' Ioc) !1

where E;se(p] = (loc',O")

o

To indicate that the root cell of a case selector can be destructively allocated, any Cons

applications in the patterns of the case expression are superscripted with a variable which

represents the root cell of the selector. The variable name which is used in this annotation

should not clash with any of the variables in the branch of the case expression. In a branch

in which the pattern has been changed in this way, one Cons application can also be super-

scripted with the same variable to indicate that the root cell of the selector can be used to

hold the result of the application.

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 69

For example, consider the following expression in the definition of the function reverse

(see Figure 2.2):

append (reverse zs) (Cons x Nil)

All the spine cells in the result of the function call (reverse xs) are unshared. They can

therefore be destructively allocated within the case expression in the append function. The

annotation of this expression for destructive allocation is shown in Figure 4.13.

append' (reverse' xs) (Cons x Nil)
where
append' zs ys = case zs of

Nil
Cons" x zs

ys
Cons" x (append' zs ys)

reverse' zs = case zs of
Nil
Cons x zs

Nil
append' (reverse' xs) (Cons x Nil)

Figure 4.13: Annotation of append (reverse xs) (Cons z Nil) for Destructive Allocation

4.4.2 Destructive Allocation Store Semantics

In this section, it is shown how the store semantics of the language defined in Section 2.4

must be changed to handle programs which have been annotated for destructive allocation as

described in the previous section. A usage counting store semantics is defined for programs

which have been annotated in this way so that it can be shown that they are equivalent to

the usage counting store semantics for unannotated programs presented in Section 3.1.

The semantic domains of the usage counting store semantics for destructive allocation

are shown in Figure 4.14. These domains are similar to those for the usage counting store

semantics for unannotated programs given in Figure 3.1.

The functionality of the store semantic functions for performing destructive allocation is

shown in Figure 4.15. These functions are defined in Figures 4.16 and 4.17. They are very

similar to the functions defined for the store semantics for unannotated programs given in

Figures 2.9 and 2.10. If the selector in a case expression matches with a pattern of the form

Cons" VI ••• vn, then the variable V is bound to the root cell of the selector. If any Cons"

applications are subsequently encountered during the evaluation of an expression, then the

root cell of the variable v is used to hold the result of the application.

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 70

Valeda = (Loc X Storeedah

X E Eval = Atom El1List

Atom = Int El1Bool

Int = {Oh El1{Ih El1{-I}.L El1...

Bool = {TRUE}.L El1{FALSE}.L

List = {NIL h El1Conscell

Conscell = (Loc x Loch

IDe E Loc = Int

Uval = (Use X Evalh

U E Use = Int

Closure Storeeda -+ Valeda

pE Bveeda = Bv -+ Loc

</> E Fveeda = Fv -+ Loc" -+ Storeeda -+ Valeda

a E Storetda = Loc -+ (Closure El1Loc El1Uval El1{UNB}.L)

Figure 4.14: Destructive Allocation Store Semantic Domains

The auxiliary functions of the store semantics for performing destructive allocation are

defined in Figure 4.18. These functions are very similar to the auxiliary functions of the

usage counting store semantics for unannotated programs given in Figure 3.5. No deallocation

function is required since garbage cells are reused within programs rather than being added

to a free list.

CIIAPTER 4. COMPILE-TIME GARBAGE COLLECTION 71

Bda : Bas -+ Loc" -+ Storeeda -+ Valeda

cda : Con -+ Loc" -+ Storeeda -+ Valeda

alloc: ((Closure $ Uval) x Storeeda) -+ Valeda

match: (Eval x Con) -+ Bool

Figure 4.15: Destructive Allocation Store Semantic Functions

4.4.3 Correctness

To prove that the store semantics for programs which have been annotated for destructive

allocation are correct, the following conjecture must be proved:

Conjecture 4.4.2 The usage counting store semantics for programs which have been safely

annotated for destructive allocation as defined in Definition 4.4.1 are equivalent to the usage

counting store semantics for unannoiated programs.

o

Sketch Proof

The proof of this conjecture would be similar to the proof of Conjecture 4.2.2 for compile-time

garbage marking. It also remains as further work.

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION

f;a[e
where
It Vu··· Vlkl = el

In Vnl ... Vnkn = en] = lorce(fda[e] (AV •.L) </>0 (Aloc.UNB))
where
</>0 = fix (A</>.[(AlOCl ..• Alockj.AO'.fda[ej] [locI/VjI,"" lock,!vjkj] </>0')/ /iD

fda[k] P</>O' = alloc((0 ,k) ,0')

fda[v] P</>O' = (loc, O"[loc/ p[v]]),
where
(loc,O") = (0' (p[vD) 0'

= «0' (p[v])),O'),

if (0' (p[v])) E Closure

otherwise

fda[b el ••• en] P</>O' = sda [b] lOCI' •. loc; O'n
where
(IOCb 0'1) = inc(fda[ell p </> 0')

(locn,O'n) = inc(fda[enl p </>O'n-l)

fda[Cons" el ••• en] P</>O' = Cda[GonsV] p[v] lOCI ... loc.; O'n
where
(IOCb 0'1) = alloc((fda [et] p </»,0')

(locn,O'n) = alloc((fdll[en] p </», O'n-l)

fda[c el ••. en] P</>O' = Cdll[c] lOCI ... loc., O'n
where
(IOCb 0'1) = alloc«fda[el1 p </»,0')

(locn,O'n) = alloc«fda[en] p </»,O'n-l)

fda[J ei ... en] P</>O' = </>[1] lOCI ..• loc.; 0'n
where
(loc}, 0'1) = alloc«fda[el1 p </»,0')

Figure 4.16: Destructive Allocation Store Semantics

72

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 73

[da[case eo of PI : el 1 ... 1 Pk : ek] P </> 0'

= [dale,] p' </> 0"

where
(loc,u') = inc([da[eo] p </> 0')

(u,x) = 0" loc
C VI. "vn and match(x,c)
p[loc/v,x! l/vh".,x! n/vn], if C = Cons"
p[x! l/vt, ... ,x! n/vn], otherwise

Pi =
p' =

=
=).locI.).loC2.).u.alloc«0, (Xl + X2)), 0')

where
(ut,xt) = 0' lOCI
(U2' X2) = 0' loc2

=).locI.).loc2.).u.alloc«0, (Xl - X2)), 0')

where
(Uh Xl) = 0' lOCI
(U2, X2) = 0' IOC2

=).IOCI.).loc2.).u.alloc((0, (Xl < X2)), 0')
where
(Ul! Xl) = 0' lOCI
(U2, X2) = 0' loc2

=).locI.).loC2.).u.alloc«O,(XI = X2)),U)
where
(Ul! Xl) = 0' lOCI
(U2, X2) = 0' loc2

Cda[True] =).0' .alloc((O,TRUE),u)

Cda[False] =).u.alloc«O,FALSE),u)

Cda[NiZ] =).0' .alloc((O,NIL),0')

Cda[Gons] =).ZOCI.).lOC2').U .alloc((0,(lOCh loc2)),0')

Cda[GonsV] =),1 ocO.).IOCI.).loC2.).U.(loco,u[(0,(lOCI, IOC2» / local)

Figure 4.17: Destructive Allocation Store Semantics (continued)

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 74

alloc(v,er) = (loc, u[vlloc])
where
er loc = UNB

inc(loc,u) = (loc,u[(u+ l,x)/loc])
where
(u,x) = o loc

force(loc,u) = (loc,u), if (u loc) = 1..
or (u loc) = UNB

= (loc',u'[loc'lloc]), if (u loc) E Closure
where
(loc', u') = force«er loc) er)

= force« er loc),u), if (er loc) E Loc

inc(loc,u2[(u,(loc},loc2»/ loc]), if (er loc) E Uval
where and x E Conscell
(u,x) = a loc
(lOCI, ut) = force(x t 1,u)
(lOC2' (2) = force(x t 2, erl)

= inc(loc,u), otherwise

match(x,c) = (x = TRUE and c = True)
or (x = FALSE and c = False)
or (x = NIL and c = Nil)
or (x E Conscell and c = Cons)
or (x E Conscell and c = Const})

Figure 4.18: Destructive Allocation Store Semantics (auxiliary functions)

4.5 Related Work

4.5.1 Compile-Time Garbage Marking

Compile-time garbage marking is quite similar to the use of a one-bit reference count, as

described in (Wise & Friedman, 1977). Any cells which have a reference count of one can be

collected using this method, but any cells with a greater reference count cannot be collected.

This is similar to the one-bit usage count which is used for marking cells in this chapter.

The method for validating compile-time garbage marking described in this thesis is similar

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 75

to that described in (Jensen & Mogensen, 1990) and (Jensen, 1990). The method described in

(Jensen & Mogensen, 1990) and (Jensen, 1990) also involves marking cells at their allocation

which will be used at most once. A usage counting analysis, similar to the one presented

in Section 3.4, is used to determine the number of times that cells will be used. Any Cons

applications in which the root cells of the resulting structures will be used no more than once

are tagged to indicate that their root cells will become garbage after they have been used.

No store semantics are defined for programs which have been annotated in this way, and the

correctness of programs which have been annotated in this way is not considered.

4.5.2 Explicit Deallocation

The methods for validating explicit deallocation in a strict language described in (Inoue et al.,

1988) and (Hughes, 1991) both make use of information obtained by an inheritance analysis

and a generation analysis. The inheritance analysis is used to determine which cells will

appear directly in the result of a function, and the generation analysis is used to determine

which cells are created within a function argument. Any cells generated within a function

argument which are unshared and do not appear in the result of the function can be collected

after evaluation of the function call. To determine whether generated cells are unshared,

an overlapping analysis is presented in (Inoue et al., 1988). In (Hughes, 1991), it is noted

that cells are always shared at the same level in a list in a well-typed language. A complete

level of a list which is generated can therefore be explicitly deallocated en-masse if it is not

inherited. This method cannot be used to validate explicit deallocation in lazy languages,

since some arguments which do not appear in the result of a function may not have been

evaluated during the evaluation of the function. Attempting to explicitly deallocate these

arguments may therefore force their evaluation, which is unsafe when using a lazy evaluation

strategy. Another problem with this method of explicit deallocation is that there may be

a substantial delay between a cell becoming garbage and its explicit deallocation. This is

because cells are explicitly deallocated only after the evaluation of a function call. The need

for run-time garbage collection will therefore not be delayed as long as possible. In the method

of explicit deallocation described in this chapter, cells are explicitly deallocated immediately

after becoming garbage.

An implementation of explicit deallocation in a lazy language is described in (Wakeling

& Runciman, 1991). This optimisation is validated by making use of the linear type system

described in (Wadler, 1990c). Values which are determined to be linear in the type system

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 76

will be used exactly once. They can therefore be explicitly deallocated immediately after they

have been used. In the work described in (Wakeling & Runciman, 1991), explicit deallocation

is performed in a similar manner to the way in which it is performed in this chapter. If

the selector in a case expression is of linear type, then its root cell is explicitly deallocated

immediately after it has been used. Unfortunately, it was found that very little benefit was

obtained from performing explicit deallocation in this way. This was partly due to the need

to maintain a free list for values which were explicitly deallocated.

An optimisation which is quite similar to explicit deallocation is the use of stack allocation.

This involves determining which values appear directly in the result of a function call. Any

values which do not appear in the result can be allocated on a stack, and automatically

collected after evaluation of the function call. Examples of validating this kind of optimisation

in a strict language are described in (Chase, 1987; Ruggieri & Murtagh, 1988; Hughes, 1988;

Goldberg & Gil Park, 1990). It would be quite difficult to implement in lazy languages

because values which do not appear in the result of a function call may not be evaluated until

a considerable time after the evaluation of the function call. Also, it is argued in (Appel,

1987) that garbage collection can be faster than stack allocation when reasonably large stores

are used.

4.5.3 Destructive Allocation

One of the earliest examples of validating destructive allocation is the method described in

(Barth, 1977). This method involves performing a global flow analysis of a program which uses

the run-time garbage collection method described in (Deutsch & Bobrow, 1976). Information

obtained by the global flow analysis is used to avoid redundant operations for run-time garbage

collection. For example, a deallocation followed by an allocation can be coalesced to give a

destructive allocation instead.

An analysis for determining when destructive operators can be used without altering the

meaning of strict first order programs is described in (Schwarz, 1978). These destructive

operators are introduced according to the sharing properties of a program, which are given

by isolation classes supplied by the user. The isolation classes given by the user are checked

by ensuring that the meaning of programs are not changed by introducing destructive oper-

ators based on this information. In (Mycroft, 1981), it is shown how the isolation classes in

(Schwarz, 1978) can be determined automatically. Destructive operators are then introduced

based on this sharing information.

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 77

The methods for validating destructive allocation in a strict first order language which

are described in (Jones & Le Metayer, 1989) and (Hamilton & Jones, 1990) both involve

performing a sharing analysis to determine when cells can be deallocated. An interpreter is

defined in which these unshared cells are added to a free list. The output from this interpreter

is analysed to determine when destructive allocation can be performed. This will be the case

when a deallocation is followed by an allocation.

A method for performing destructive allocation in a first order strict language is described

in (Peterossi, 1978). This method involves reusing the arguments of basic function applica-

tions to hold the result of the application. It is not concerned with the destructive allocation

of structured data.

The methods for validating destructive allocation described in (Mason, 1988) and (Hughes,

1991) involve adding destructive operators to a program, and then checking their validity.

In the method for validating destructive allocation described in this chapter, programs are

analysed first to indicate where destructive operators can be used, and then these destructive

operators are added to the programs.

An optimisation which is quite similar to destructive allocation is the in-place update of

arrays. In conventional functional implementations of arrays, the modification of an array

involves making a copy of it, in case the original array is ever needed again. This problem is

described in (Hudak & Bloss, 1985). A usage counting analysis could be used to determine

when the in-place update of an array can be performed. Examples of analyses which can be

used to determine when in-place updates of arrays can be performed are described in (Hudak,

1987; Bloss, 1989; Gopinath & Hennessy, 1989; Draghicescu & Purushothaman, 1990; Sastry

et al., 1993).

Another optimisation which is quite similar to destructive allocation is the globalisation of

variables. This involves determining whether a value is single threaded. If this is the case, the

value can be implemented globally and updated in-place each time it is modified. Examples

of analyses which can be used to determine when this optimisation can be performed are

described in (Schmidt, 1985; Sestoft, 1989; Gomard & Sestoft, 1991; Fradet, 1991).

The type schemes described in (Wadler, 1990c; Guzman & Hudak, 1990; Smetsers et al.,

1993) and the use of monads (Wadler, 1990a) allow the user to indicate that values can always

be destructively updated.

CHAPTER 4. COMPILE-TIME GARBAGE COLLECTION 78

4.6 Conclusion

In this chapter, it has been shown how information obtained by usage counting analysis

can be used to validate compile-time garbage collection. Three different optimisations were

presented which can be viewed as different forms of compile-time garbage collection; compile-

time garbage marking, explicit deallocation and destructive allocation.

Compile-time garbage marking involves marking cells at their allocation to indicate that

they will become garbage after their first use. These cells can be returned to the memory

manager immediately after their first use. This method has the disadvantages of requiring a

run-time free list, extra space to allow for the marking of cells, and extra time to allow for

the checking of cells to see if they are marked at run-time. It is therefore concluded that this

form of compile-time garbage collection is probably not suitable for practical use.

Explicit deallocation involves explicitly returning cells to the memory manager at a par-

ticular point in a program. This compile-time garbage collection technique also requires the

use of a free list at run-time, so the method of run-time garbage collection which must be used

will not be very efficient. It is therefore concluded that this form of compile-time garbage

collection is of limited use.

Destructive allocation involves reusing cells directly for further allocations within a pro-

gram, thus avoiding the need for a run-time free list, so a more efficient method for run-time

garbage collection can be used. It is therefore concluded that this is the only method for

compile-time garbage collection which merits further consideration.

Store semantics were defined for programs which have been annotated for each of the three

methods of compile-time garbage collection, and the correctness of these store semantics was

considered.

It has been shown in this chapter how information obtained from usage counting analysis

can be used to validate compile-time garbage collection. In Chapter 5, it is shown how infor-

mation obtained from usage counting analysis can also be used to guide the transformation

when compile-time garbage avoidance is performed.

Chapter 5

Compile-Time Garbage Avoidance

Compile-time garbage avoidance involves transforming programs at compile-time to reduce

the amount of garbage they will produce at run-time. This optimisation attempts to over-

come the problem of more readable programs being less than optimal in their use of storage.

Programs which use intermediate structures are usually much easier to understand, but they

are less efficient in their use of storage at run-time. To reduce the run-time costs associated

with intermediate structures, a transformation algorithm called deforestation was proposed in

(Wadler, 1990b) to eliminate them. A treeless form of expression is characterised in (Wadler,

1990b) which does not create any intermediate structures, and the deforestation theorem is

given. This theorem states that the deforestation algorithm will always terminate for expres-

sions in which all functions have definitions which are in treeless form. The sketch proof of

this theorem given in (Wadler, 1990b) is fleshed out in this chapter.

The deforestation algorithm will also terminate for some expressions in which functions

have definitions which are not in treeless form. The notion of an intermediate structure as

described in (Wadler, 1990b) is therefore extended to that of a transient structure by making

use of information obtained by usage counting analysis. It is shown how treeless form can be

extended by making use of this definition, and that the deforestation algorithm will always

terminate for expressions in which all functions have definitions which are in this extended

treeless form.

Some intermediate structures can still be eliminated from expressions in which some func-

tions have definitions which are not in extended treeless form. It is therefore shown how any

function definition can be generalised in such a way that it will be in extended treeless form,

and the deforestation algorithm is extended to be able to cope with these generalisations.

79

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 80

The remainder of this chapter is structured as follows:

• Section 5.1: the deforestation transformation algorithm presented in (Wadler, 1990b)

is described. The treeless form of expressions defined in (Wadler, 1990b) is described,

and the sketch proof given in (Wadler, 1990b) that the deforestation algorithm will

always terminate for expressions in which all functions have definitions which are in

this treeless form is fleshed out.

• Section 5.2: it is shown how treeless form can be extended by making use of information

obtained by usage counting analysis. It is then proved that the deforestation algorithm

will always terminate for expressions in which all functions have definitions which are

in this extended treeless form.

• Section 5.3: it is shown how any function definition can be generalised in such a way

that it is in extended treeless form. The deforestation algorithm is extended to be able

to deal with these generalisations, and it is proved that this generalised deforestation

algorithm will always terminate for expressions in which all functions have definitions

which have been generalised in the described manner.

• Section 5.4: related work is considered.

• Section 5.5: a summary of this chapter is given.

5.1 Deforestation

In this section, the deforestation algorithm presented in (Wadler, 1990b) is described. This

algorithm can be used to transform programs to eliminate intermediate structures. A form of

expression, called treeless form, which does not create any intermediate structures is defined.

The transformation rules of the deforestation algorithm are then given. In (Wadler, 1990b),

a sketch proof is given that the deforestation algorithm is guaranteed to terminate for expres-

sions in which all functions have definitions which are in treeless form. This sketch proof is

fleshed out in this section. The remainder of the work this section is merely an exposition of

the work given in (Wadler, 1990b).

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 81

5.1.1 Treeless Form

In (Wadler, 1990b), a treeless form of expression is characterised which creates no intermediate

structures. This form of expression is defined as follows.

Definition 5.1.1 (Treeless Form) An expression is in treeless jorm ij it is linearl in all

variables, it contains no basic junction applications, every argument in a junction application

and every selector in a case expression is a variable, and all functions within it have treeless

definitions.

o

Expressions in treeless form must therefore satisfy the following grammar:

tj k

v

c tfl ... tf n

f VI .. 'Vn

case va of PI : tf I 1···1 Pk : tf k

where tf is linear in all variables, and the definition of each function f is in treeless form.

Basic function applications are not allowed in treeless expressions because they cannot

be unfolded. The restriction that every argument of a function and every selector of a case

expression must be a variable guarantees that no intermediate structures are created. The

restriction that treeless expressions must be linear in all variables guarantees that certain

transformations will not duplicate expressions which are expensive to compute. For example,

consider a function call square e where square is a non-linear function defined as follows:

square x = x * x
If e is an expression which is expensive to compute, then the unfolded expression e * e will

be less efficient than the original function call square e. This situation will be avoided if

expressions are linear in all variables.

The definition of append given in Figure 2.2 is in treeless form, but the definitions of

flatten, reverse and accreverse are not because they contain function arguments which are

not variables.
1An expression other than a case expression is said to be linear if no variable appears in it more than once.

A case expression is said to be linear if no variables appear in both the selector and a branch.

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 82

5.1.2 The Deforestation Algorithm

The transformation rules of the deforestation algorithm described in (Wadler, 1990b) are

shown in Figure 5.1.

(1) T[k] k

(2) T[v] v

(4) T[fel ... en] = T[e[el/V}, ... ,en/vn]]
where f is defined by f VI ••• Vn = e

(5) T[case V of p~ : e~ , ... , p~ : e~]
= case V of p~ : T[eU , ... , p~ : T[eU

(6) T[case (c el" .en) of p~ : ei , , p~: ekl
= T[eaet! VI! , en/ Vn]]

Where P~ = c VI ••• Vn

(7) T[case (f el ... en) of pi : e~ , ... , Pk : ekl
= T[case (e[et/vl!"" en/vnD of pi : ei , ... , Pk : ekJ

where f is defined by f VI ... vn = e

(8) T[case (case eo of PI : el , ... , Pn : en) of pi : ei , ... , Pk : eU
= T[case eo of

PI case el of pi : ei , ... , Pk : ek

Pn : case en of p~ : e~ , •.• , Pk : ekl

Figure 5.1: Transformation Rules for Deforestation

A valid input to the deforestation algorithm is a linear expression in which there are no

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 83

basic function applications, and all functions have treeless definitions. The output from the

algorithm will be an equivalent expression which is in treeless form.

The transformation rules given in Figure 5.1 cover all possible expressions which can be

encountered by the deforestation algorithm. Basic function applications will not be encoun-

tered by the algorithm since they cannot be present in its input, or in any treeless function

definition. All four possibilities for the selector of a case expression are considered in rules

(5) to (8). The selector of a case expression cannot be a constant since pattern matching is

not performed on integers.

Rule (8) is valid only if there is no name clash between the variables in the patterns

PI.' .Pn, and the free variables in the branches p~ : e~... p" : e". It is always possible to

rename the variables in the patterns PI ... p« so that this condition applies.

As they stand, these transformation rules will not necessarily terminate. For example,

consider the deforestation of the expression append (append zs ys) zs shown in Figure 5.2.

T[append (append zs ys) zs]

(By 4)T[case (append zs ys) of
Nil : zs
Cons x zs : Cons x (append zs zs)]

= T[case (case xs of
Nil ys
Cons x xs Cons x (append xs ys)) of

Nil zs
Cons x zs : Cons x (append zs zsH

= case xs of
Nil

(By 7)

(By 8,5,5,2,6)
case ys of

Nil : zs
Cons x zs : T[Cons x (append zs zs)]

T[Cons x (append (append zs ys) zs)]Cons x xs
= case zs of

Nil
(By 3,2,4,3,2)

case ys of
Nil : zs
Cons x zs

Cons x (T[case zs of
Nil : zs
Cons x xs : Cons x (append X8 Z8)])

Cons x (T[append (append xs ys) zs])Cons x X8

Figure 5.2: Deforestation of append (append X8 ys) zs

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 84

The transformation rules are applied until an expression is obtained which is a renaming of

a previously encountered expression. If the transformation were to continue, the rules would

be applied without end. This non-termination can be avoided by introducing appropriate

new function definitions. For the given example, the following function definitions need to be

introduced:

I zs ys zs = T[append (append xs ys) zs].

I' zs ys = T[case zs of

Nil

Cons x xs

ys

Cons x (append ss ys)]

Expressions which match the right hand side of one of these definitions (modulo renaming of

variables) are replaced by an appropriate call of the corresponding function, resulting in the

expression shown in Figure 5.3.

I' xs ys case xs of
Nil
Cons x xs

ys
Cons x (I' zs ys)

I zs ys zs
where
I zs ys zs = case zs of

Nil
Cons x zs

I' ys zs
Cons x (I zs ys zs)

Figure 5.3: Result of Deforestation of append (append xs ys) zs

It remains to be shown when these new function definitions should be introduced. Any

infinite sequence of transformation steps must involve applications ofrules (4) or (7) in which

function calls are unfolded. A new function definition is therefore introduced before the

application of each of these rules. The right hand sides of these function definitions are the

expressions which were about to be transformed by rules (4) and (7). When an expression

is encountered later in the transformation which matches the right hand side of one of these

function definitions (modulo renaming of variables), it is replaced by an appropriate call of

the corresponding function. Transformation rules (4) and (7) must therefore be changed to

make this more explicit.

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 85

These modified rules are shown in Figure 5.4.

f' vi ... vi, if (J' vi ... vi = f ei ... en) E </>

where

vi ... vi are the free variables in (J el ... en)
= f' vi ... vi, otherwise

where

=

f" ,vI" .Vj = T[e[et/vI, ... , en/vnH <//
where f is defined by f VI ••• vn = e

= </> U {f' vi ... vi = f el ... en}</>'

and vi ... vi are the free variables in (J el ... en)

(7) T[case (J el ... en) of pi : ei 1 .• ·1 p~ : eU </>

= f' vi ... vi, if (J' vi ... vi = case (J eI ... en) of pi: ei 1 ... 1 p~: e~) E </>

where

vi ... vi are the free variables in (case (J el ... en) of pi : ei 1 ••• 1 p~ : e~)
= f' vi ... vi, otherwise

where

f" ,VI'" Vj = T[case (e[et/vl!" .,en/vn]) of pi: ei 1 ... 1 p~: e~] </>'

where f is defined by f VI ••• vn = e

= </> U {f' vi ... vi = case (J et ... en) of pi : ei 1 .. ·1 p~ : eD</>'

and vi ... vj are the free variables in (case (J el ... en) of pi : ei 1 ••• 1 p~ : e~)

Figure 5.4: Modified Transformation Rules for Deforestation

In these rules, the additional parameter </> contains the set of function definitions which

have been created during the transformation so far.

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 86

5.1.3 The Deforestation Theorem

The main result of the deforestation transformation presented in (Wadler, 1990b) is the

deforestation theorem.

Theorem 5.1.2 (Deforestation Theorem) Every expression which is linear in all vari-

ables, contains no basic function applications, and in which all functions have treeless defini-

tions, will be transformed by the deforestation algorithm to an equivalent treeless expression,

without loss of efficiency.

o

Proof

The deforestation theorem can be proved by showing the following four lemmata, which

together demonstrate the validity of the theorem.

o

Lemma 5.1.3 Every expression which contains no basic function applications will be trans-

formed to an equivalent expression if the deforestation algorithm terminates.

o

Lemma 5.1.4 Every expression which contains no basic function applications will be trans-

formed to a treeless expression if the deforestation algorithm terminates.

o

Lemma 5.1.5 Every expression which is linear in all variables, contains no basic function

applications, and in which all functions have treeless definitions, will be transformed without

loss of efficiency if the deforestation algorithm terminates.

o

Lemma 5.1.6 The deforestation algorithm will always terminate for every expression which

contains no basic function applications and in which all functions have treeless definitions.

o

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 87

Proof of Lemma 5.1.3

The proof of this lemma can be found in Appendix C.l.l.

o

Proof of Lemma 5.1.4

The proof of this lemma can be found in Appendix C.l.2.

o

Proof of Lemma 5.1.5

The proof of this lemma can be found in Appendix C.l.3.

o

Proof of Lemma 5.1.6

As described in (Wadler, 1990b), to prove that the deforestation algorithm always termi-

nates, it is sufficient to show that there is a bound on the size of the expressions encountered

during transformation. If there is such a bound, then there will be a finite number of expres-

sions encountered (modulo renaming of variables), and a renaming of a previous expression

must eventually be encountered. The algorithm will therefore be guaranteed to terminate.

A sketch proof of this is given in (Wadler, 1990b). This proof is fleshed out here. First of

all, it is shown that any expression encountered by the deforestation algorithm must always

satisfy a particular grammatical form. It is then shown that there is a bound on the size of

expressions described by this grammar.

Definition 5.1.7 (Size of Expressions) The size of an expression is given by S, as defined

in Figure 5.5.

o

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 88

S[k] = 0

S[v] = 0

S[b el ... en] = 1 + max(S[el]' ... , S[en])

S[c el ••. en] = 1 + max(S[el], •.. , S[en])

S[f el" .en] = 1 + max(S[el], ... , S[enD

S[case eo of PI : et 1 ... 1 Pk : ek] = 1 + max(S[eo], ... , S[ek])

Figure 5.5: Definition of the Size of Expressions

This definition corresponds to the definition of the depth of an expression given in (Wadler,

1990b).

Definition 5.1.8 (Maximum Size of Function Definitions in a Program)

For a given program in which the right hand sides of function definitions are et •.. en, the

maximum size of the function definitions is defined as follows:

s = max(l,S[eI]'" .,S[en))

o

Definition 5.1.9 (Grammar of Expressions Encountered During Deforestation)

The grammar of expressions encountered during deforestation is given by dgll(s, n), as de-

scribed in Figure 5.6 for a suitable value of n where s is the maximum size of any function

definitions accessible within the expression.

o

In the definition of this grammar, fv represents any free variable in the expression which

is described by the grammar. All treeless function definitions are described by the grammar

dgll
(s, 1) since the size of all function definitions is bounded by s. The expression to be

transformed must be described by the grammar dgll(s, n) for a suitable value of n. The value

of s may need to be changed to satisfy this criterion, but no loss of generality results. The

value of n corresponds to the order of an expression, as described in (Wadler, 1990b).

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 89

dgll(x, y) .. - k if x ~ 0 and v > 0
v if x ~ 0 and y > 0
c dgf(x -1,y) ... dg!(x -1,y) if x> 0 and y> 0
f dgHO, y) ... dg!(O, y) if x> 0 and y > 0
where f is defined by f Vl ••• Vn = e and e E dg8(s, 1)
case dgMO,y) of Pl: dgi(x - y,y) 1 ••• 1 Pk: d9Z(x - y,y)

if x > 0 and y > 0
dgll(x - 1, y) if x> 0 and y> 0
fgll(S, Y - 1) if x ~ 0 and y> 1

Is't», y) ..- k if x ~ 0 and y > 0
fv if z ~ 0 and y > 0
c f gf(x - 1, y) ... f s;(x - 1, y) if x > 0 and y > °
f fgi(O, y) ... fg!(O, y) if x> 0 and y> 0
where f is defined by f Vl ••• Vn = e and e E dg8(S, 1)
case fgg(O,y) of Pl: fgi{x - y,y) 1 ••• 1 Pk: fgk(x - y,y)

if x > 0 and y > 0
Is'!» - 1, y) if x> 0 and y> 0
fgll(S, Y - 1) if x ~ 0 and s > 1

Figure 5.6: Grammar of Expressions Encountered During Deforestation

If an expression is described by the grammar dgB(x,y) where x =:; sand y =:; n, then the

expression is also described by the grammar dgll(s, n).

Lemma 5.1.6 can now be proved by showing the following two lemmata.

Lemma 5.1.10 All expressions encountered by the deforestation algorithm are described by

the grammar dgS(s, n) if the original expression to be transformed is also described by the

grammar dg8(s, n) for a suitable value of n, where s is as defined in Definition 5.1.8.

o

Lemma 5.1.11 The size of all expressions described by the grammar dg8(s, n) is bounded by

S X n.

o

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 90

Proof of Lemma 5.1.10

The proof of this lemma can be found in Appendix C.1.4.

o

Proof of Lemma 5.1.11

The proof of this lemma can be found in Appendix C.1.5.

o

5.2 Extended Deforestation

The deforestation algorithm is guaranteed to terminate for expressions in which all functions

have definitions which are in treeless form. It may, however, also terminate for expressions

in which some functions have definitions which are not in treeless form. For example, the

definition of the function flatten given in Figure 2.2 is not in treeless form, but expressions

involving calls of this function can be successfully transformed by the deforestation algorithm.

In this section, it is shown how the definition of treeless form (Definition 5.1.1) can be

extended by making use of information obtained by usage counting analysis. It is then

proved that the deforestation algorithm is guaranteed to terminate for expressions in which

all functions have definitions which are in this extended treeless form.

5.2.1 Transient Structures

In the definition of treeless form (Definition 5.1.1), an intermediate structure is assumed to

be a function argument or case selector, and these are restricted to being variables. However,

some function arguments may appear directly in the result of the function. These function

arguments can be treated in the same way as the arguments in constructor applications. The

notion of an intermediate structure is therefore extended to that of a transient structure,

which is defined as follows.

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE

Definition 5.2.1 (Transient Structure) A structure is transient within an expression if it

is used as the selector in a case expression during the evaluation of the expression to normal

form.

o

T[append (flatten zss) vs]

= T[case (flatten xss) of
Nil : ys
Cons x xs : Cons x (append xs ys)]

= T[case (case zss of
Nil
Cons zs zss

Nil
append zs (flatten xss)) of

91

(By 4)

Nil
Cons x zs

case zss of
Nil
Cons zs xss

ys
Cons x (append zs ys)]

(By 8,5,6,2)
ys
T[case (append zs (flatten xss)) of

Nil ys
Cons x zs : Cons x (append zs ys)]

(By 7)

(By 7)= case zss of
Nil : ys
Cons zs xss

T[case (case zs of
Nil flatten xss

Cons x (append zs (flatten xss))) ofCons x zs
Nil ys
Cons z zs : Cons x (append xs ys)]

(By 8,5,6,3,2,4)= case xss of
Nil
Cons xs xss

case xs of
Nil

: ys

T[case (flatten xss) of
Nil ys
Cons x xs : Cons z (append xs ys)]

Cons x zs Cons x (T[case (append zs (flatten xss)) of
Nil ys
Cons x xs : Cons x (append es ys)])

Figure 5.7: Deforestation of append (flatten xss)

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 92

This information can be determined by usage counting analysis. If some parts of a struc-

ture are used during the evaluation of an expression, then the structure is transient within

the expression. A variable v of atomic type is a transient structure within the expression e if

the following condition holds:

1 !;TA U[e][v] (0, ... ,0) 4>u

A variable v of structured type T is a transient structure within an expression e if the following

condition holds:

(1, ABS) !;T U[e][v] (0, ... ,0) 4>u

As described in Section 3.2, the usage pattern (0, ... ,0) represents a context in which an

expression is evaluated to normal form, but is not used in any further computations. Thus

the only usage of a structure within the expression must be as the selector in a case expression.

In order to determine the transient structures within a function definition, the context

of each expression is determined from an initial top-level context for the function indicating

that its result will not be used. For example, consider the definition of the function flatten

given in Figure 2.2. All transient structures within this definition are variables. The second

argument in the call of the function append within this definition is not a variable, but it is not

a transient structure (see Table 3.1). The deforestation algorithm can be successfully applied

to expressions containing calls of the function flatten. For example, the deforestation of the

expression append (flatten xss) ys is shown in Figure 5.7. The result of this transformation

is the expression shown in Figure 5.8.

/ zss ys
where
/ zss ys = case zss of

Nil
Cons xs xss

ys
/' xs xss ys

/' xs zss ys = case xs of
Nil
Cons x xs

/ zss ys
Cons x (I' zs zss ys)

Figure 5.8: Result of Deforestation of append (flatten xss) ys

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE

5.2.2 Accumulating Parameters

93

The deforestation algorithm will not terminate for some expressions in which all transient

structures are variables. For example, all transient structures in the definition of the function

accreverse given in Figure 2.2 are variables. The deforestation of the expression accreverse zs ys

is shown in Figure 5.9.

~[accreverse xs ys]

= ~[case zs of (By 4)
Nil ys
Cons x zs accreverse zs (Cons x ysn

= case zs of (By 5,2)
Nil ys
Cons x zs ~[accreverse zs (Cons x ysH

= case zs of (By 4)
Nil ys
Cons x zs ~[case zs of

Nil Cons x ys
Cons x' zs' accreverse zs' (Cons z' (Cons x ys))]

= case zs of (By 5,3,2,2)
Nil ys
Cons x zs case xs of

Nil Cons x ys
Cons z' zs' T[accreverse zs' (Cons z' (Cons z ys))]

Definition 5.2.2 (Recursive Function Call) A function call is recursive if it occurs within

the definition of a function which the recursive function calls (either directly or indirectly).

Figure 5.9: Deforestation of accreverse zs ys

The size of the second parameter in the recursive call of accreverse continually increases

during the transformation, so the transformation fails to terminate. This situation occurs

when a recursive function accumulates information in its parameters. A recursive function

call is defined as follows'[.

o

~This definition also defines mutually recursive function calls.

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 94

Accumulating parameters can now be defined as follows.

Definition 5.2.3 (Accumulating Parameter) An argument in a recursive function call

is an accumulating parameter if it is not a variable.

o

5.2.3 Shared Values

In the deforestation theorem, the expressions to be transformed are required to be linear

in all variables. This is to avoid the duplication of expressions which may be expensive to

compute, so that they will not need to be evaluated more than once. It may be the case

that a duplicated expression will not be evaluated more than once. For example, consider the

following function definitions:

fx K xx

K x y = x

The definition of the function f is not in treeless form because it is not linear in the variable

x. However, the expression represented by the variable x will be used only once, so there is

no reason why it should not be involved in transformations using the deforestation algorithm.

Values will be duplicated by the deforestation algorithm only if they are shared. Shared

values are defined as follows.

Definition 5.2.4 (Shared Value) A value is shared if it is used more than once.

o

This information can be determined by usage counting analysis. A variable v of atomic

type is a shared value within the expression e if the following condition holds:

2 !;TA U[eHv] (1, ... ,1) 4>u

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 95

A value of structured type is a shared value within the expression e if the following
condition holds:

(2,ABS) !;T U[e][v] (1, ... ,1) ¢u

In order to determine the shared values within a function definition, the context of each

expression is determined from an initial top-level context for the function indicating that its

result will be used exactly once.

5.2.4 Extended Treeless Form

Extended treeless form can now be defined as follows.

Definition 5.2.5 (Extended Treeless Form) An expression is in extended treeless form

if it contains no basic function applications, accumulating parameters or shared values, all

transient structures within it are variables, and all functions within it have extended treeless

definitions.

o

As for treeless form, basic function applications are not allowed in extended treeless expres-

sions because they cannot be unfolded. The definitions of the functions append and flatten

given in Figure 2.2 are in extended treeless form, but the definitions of the functions reverse

and accreverse are not.

A valid input to the deforestation algorithm is an expression in which there are no shared

values or basic function applications, and all functions have extended treeless definitions. The

output from the algorithm will be an equivalent treeless expression and a collection of treeless

function definitions.

5.2.5 The Extended Deforestation Theorem

The deforestation theorem can now be extended to the extended deforestation theorem.

Theorem 5.2.6 (Extended Deforestation Theorem) Every expression which contains

no shared values or basic function applications, and in which all functions have extended

treeless definitions, will be transformed to an equivalent treeless expression by the deforesta-

tion algorithm, without loss of efficiency.

o

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 96

Proof

The proof of the extended deforestation theorem is very similar to the proof of the defor-

estation theorem. It can be proved by showing the following four lemmata, which together

demonstrate the validity of the theorem.

o

Lemma 5.2.7 Every expression which contains no basic function applications will be trans-

formed to an equivalent expression if the deforestation algorithm terminates.

o

Lemma 5.2.8 Every expression which contains no basic function applications will be trans-

formed to a treeless expression if the deforestation algorithm terminates.

o

Lemma 5.2.9 Every expression which contains no shared values or basic function applica-

tions, and in which all functions have extended treeless definitions, will be transformed without

loss of efficiency if the deforestation algorithm terminates.

o

Lemma 5.2.10 The deforestation algorithm will always terminate for every expression which

contains no basic function applications and in which all functions have extended treeless def-

initions.

o

Proof of Lemma 5.2.7

This lemma is identical to Lemma 5.1.3, the proof of which is given in Appendix C.1.1.

o

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 97

Proof of Lemma 5.2.8

This lemma is identical to Lemma 5.1.4, the proof of which is given in Appendix C.1.2.

o

Proof of Lemma 5.2.9

The proof of this lemma is very similar to the proof of Lemma 5.1.5, which is given in

Appendix C.1.3.

o

Proof of Lemma 5.2.10

As for the proof of Lemma 5.1.6, to prove that the deforestation algorithm always termi-

nates, it is sufficient to show that there is a bound on the size of expressions encountered

during deforestation. It is therefore shown that expressions which are encountered by the

deforestation algorithm are always described by the grammar edg3,n{ s, f, n) for a suitable

value of n, where f is the number of function definitions in the overall program, and s is the

maximum size of the right hand side of any function definition (Definition 5.1.8). It is then

shown that there is a bound on the size of expressions described by the grammar edg8,n(s, f, n).

o

Definition 5.2.11 (Grammar of Expressions Encountered During Extended Defor-

estation) The grammar of expressions encountered during extended deforestation is described

by edg8,n(s, f, n), as defined in Figure 5.10 for a suitable value of n where s is the maximum

size of any function definitions accessible from within the expression, and f is the maximum

number of functions accessible from within the expression ..

o

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE

edg8,n(x, y, z) ::=
k if x ~ 0, y ~ ° and z > °
v if x ~ 0, y ~ ° and z > °
c edg:,n(x - 1, y, z) ... edg~,n(x - 1,y, z)

if x > 0, y ~ ° and z > °
I el ••• en if x > 0, ° $ y < I and z > °
where I is defined by I VI ••• Vn = e and e E edg8,n(s, 0, 1)
and ei E edg8,n(0,0,z), if ei is a transient structure

E edg8,n(x -l,y,z), otherwise
I VI·· ,vn if x > 0, y = I and z > °
where I is defined by I v~... v~ = e and e E edgS,n(s,O, 1)
case edg~,n(O,O,z) of PI: edg:,n(x - z,y,z) 1 ... 1 Pk: edgz,n(x - z,y,z)

if x > 0, y ~ ° and z > °
if x > 0, y ~ ° and z > °
if x ~ 0, y > ° and z > °
if z ~ 0, y ~ ° and z > 1

edgs,n(x - 1, y, z)
edg8,n(s, y - 1,z)
elgS,n(s,l,z -1)

elgs,n(x, y, z) ::=
k if z ~ 0, y ~ ° and z > °
[» if x ~ 0, y ~ ° and z > °
c elg:,n(x - 1, y, z) ... elg~,n(x - 1, y, z)

if x > 0, y ~ ° and z > °
leI ... en if x> 0, ° $ y < I and z > °
where I is defined by I VI" 'Vn = e and e E elgll,n(s,O, 1)
and ei E elgs,n(o,O,z), if ei is a transient structure

E elgB,n(x - 1, y, z), otherwise
I VI ••• Vn if x > 0, y = I and z > °
where I is defined by I v~ ... v~ = e and e E elgB,n(s,O, 1)
case elg~,n(O,O,z) of PI: elg:,n(x - z,y,z) 1 ••• 1 Pk: elgz,n(x - z,y,z)

if x > 0, y ~ ° and z > °
if x > 0, y ~ 0 and z > 0
if x ~ 0, y > ° and z > °
if x ~ 0, y ~ ° and z > 1

elgB,n(x -l,y,z)
elg8,n(s,y -l,z)
elgB,n(s,/,z-l)

Figure 5.10: Grammar of Expressions Encountered During Extended Deforestation

In the definition of the grammar elgB,n(x,y,z), the value of y represents the number of

different functions which have been unfolded to produce the current expression. If the value

of y is equal to I, all function calls within the current expression must be recursive (Definition

5.2.2), and can have only variables as arguments.

All extended treeless function definitions are described by the grammar elgB,n(s,O, 1),

since the size of all function definitions is bounded by s. The expression to be transformed

98

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 99

must be described by the grammar efgB,n(s, f, n) for a suitable value of n. The value of

s may need to be changed to satisfy this criterion, but no loss of generality results. If an

expression is described by the grammar edgB,n(x, y, z), where x ~ s, y ~ f and z ~ n, then

the expression is also described by the grammar edgS,n(s, I,n).

Lemma 5.2.10 can now be proved by showing the following two lemmata.

Lemma 5.2.12 All expressions encountered by the deforestation algorithm are described by

the grammar edg8,n(s, f, n) if the original expression to be transformed is also described by

the grammar edg8•n(s,J,n).

o

Lemma 5.2.13 The size of all expressions described by the grammar edgB,n(s, J, n) is bounded

by s X (J + 1) X n.

o

Proof of Lemma 5.2.12

The proof of this lemma can be found in Appendix C.2.!'

o

Proof of Lemma 5.2.13

The proof of this lemma can be found in Appendix C.2.2.

o

5.3 Generalised Deforestation

The deforestation algorithm is guaranteed to terminate for expressions in which all functions

have definitions which are in extended treeless form. It may, however, be possible to eliminate

intermediate structures from an expression in which some functions have definitions which

are not in extended treeless form. For example, in the expression accreverse (flatten xss)

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 100

ys, it is possible to eliminate the intermediate list created as the result of the function call

(flatten xss), even though the definition of the function accreverse given in Figure 2.2 is not

in extended treeless form.

In this section, it is shown how expressions can be generalised to extended treeless form.

The deforestation algorithm is then extended to be able to cope with these generalisations.

It is then proved that this generalised deforestation algorithm is guaranteed to terminate for

expressions in which all functions have definitions which are in this generalised treeless form.

5.3.1 Generalised Treeless Form

If all function definitions could be generalised in such a way that they are in extended treeless

form, then the deforestation algorithm would be guaranteed to terminate for all expressions

in the language. An expression is not in extended treeless form if it contains accumulat-

ing parameters, shared values or transient structures which are not variables. Accumulating

parameters, shared values and transient structures which are not variables are therefore ex-

tracted so that they can be transformed independently, as is done in the blazed deforestation

algorithm described in (Wadler, 1990b) for values of atomic type. To represent the result of

these extractions, let expressions of the following form are introduced:

let v = eo in el

Generalised treeless form can now be defined as follows.

Definition 5.3.1 (Generalised Treeless Form) An expression is in generalised treeless

form iJ all accumulating parameters, shared values and transient structures which are not

variables have been extracted Jrom it using let expressions, and all Junctions within it have

generalised treeless definitions.

o

For example, the accreverse function defined in Figure 2.2 is not in extended treeless form be-

cause there is an accumulating parameter in its recursive call. This accumulating parameter

can be extracted to give the following generalised treeless definition:

accreverse xs ys = case zs of

Nil

Cons x zs

ys

let v = Cons x ys

in accreverse zs v

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE

5.3.2 The Generalised Deforestation Algorithm

The four additional transformation rules shown in Figure 5.11 must be added to the defor-

estation algorithm to cope with the described generalisations.

(10) T[ease (b et ... en) of pi : ei 1 ••. 1 p~ : e~]
= case (b T[el]'" T[enD of pi : T[ei1 1 ... 1 p~ : T[e~]

(11) T[let v = eo in et]

= let v = T[eo] in T[el]

(12) T[ease (let v = eo in et) of pi : ei 1···1 p~ : ekJ

= let v = T[eol in T[ease et of pi : ei 1 ••• 1 Pk : e~]

Figure 5.11: Additional Transformation Rules for the Generalised Deforestation Algorithm

Rules (9) and (10) cover the application of basic functions. Basic function applications

are not allowed in the input to the deforestation algorithm since they cannot be unfolded.

They are handled by the generalised deforestation algorithm by recursively transforming their

arguments. Rules (11) and (12) deal with the transformation of let expressions. Rule (12) is

valid only if the variable v does not occur free in any of the branches of the case expression.

It is always possible to rename this variable so that this condition applies.

A valid input to the generalised deforestation algorithm is an expression in which all

shared values have been extracted, and all functions have generalised treeless definitions.

The output from the generalised deforestation algorithm will be an equivalent expression from

which intermediate structures have been removed. After the transformation is complete, all

expressions of the form let v = eo in el may be removed in the same manner as described

in (Wadler, 1990b). If the variable v is used at most once in the expression et, then the let

expression may be replaced by et[eo/v]. Otherwise, a new function f defined by f v = et is

introduced, and the let expression can be replaced by f eo. Alternatively, the language could

be extended to include let expressions. The standard semantics for such a let expression

would be defined as follows:

101

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 102

T[accreverse (flatten xss) ys]

= T[case (flatten xss) of
Nil ys
Cons x zs : let v = Cons x ys

in accreverse zs vl
= T[case (case zss of

Nil Nil
Cons zs xss append zs (flatten zss] of

Nil
Cons x zs

ys
let v = Cons x ys
in accreverse zs vl

(By 4)

(By 7)

(By 8,5,6,2)

(By 7)

: ys
(By 8,5,6,11,3,2,2,4)

Figure 5.12: Generalised Deforestation of accreverse (flatten xss) ys

= case zss of
Nil
Cons zs zss

ys
T[case (append zs (flatten xss)) of

Nil ys
Cons x zs : let v = Cons x ys

in accreverse zs v]
= case zss of

Nil : ys
Cons zs zss

T[case (case es of
Nil
Cons x zs

flatten zss
Cons x (append zs (flatten xss») of

Nil ys
Cons x xs : let v = Cons x ys

in accreverse xs v]
= case zss of

Nil
Cons zs zss

case zs of
Nil T[case (flatten xss) of

Nil ys
Cons x zs : let v = Cons x ys

in accreverse zs v]
let v = Cons x ys
in T[case (append xs (flatten zss) of

Nil v
Cons x zs : let v' = Cons x v

in accreverse zs v']

Cons x zs

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 103

[[let v = eo in el] P 4> = [led p[([[eoJ p 4»/v] 4>

The generalised deforestation of the expression accreverse (flatten xss) Vs is shown in Figure

5.12. The result of this transformation is shown in Figure 5.13. Non-termination will result

if this expression is transformed by the original unextended deforestation algorithm.

f zss ys
where
f zss Vs = case xss of

Nil
Cons zs xss

Vs
f' zs xss Vs

!' xs xss Vs = case xs of
Nil
Cons x zs

f xss Vs
f' zs xss (Cons x Vs)

Figure 5.13: Result of Generalised Deforestation of accreverse (flatten xss) Vs

5.3.3 The Generalised Deforestation Theorem

The generalised deforestation theorem can now be stated as follows.

Theorem 5.3.2 (Generalised Deforestation Theorem) Every expression from which shared

values have been extracted, and in which all functions have generalised treeless definitions, will

be transformed by the generalised deforestation algorithm to an equivalent expression without

loss of efficiency.

o

Proof

The proof of the generalised deforestation theorem is very similar to the proof of the ex-

tended deforestation theorem. It can be proved by showing the following three lemmata,

which together demonstrate the validity of the theorem.

o

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 104

Lemma 5.3.3 Every expression will be transformed to an equivalent expression if the gener-

alised deforestation algorithm terminates.

o

Lemma 5.3.4 Every expression from which shared values have been extracted, and in which

all functions have generalised treeless definitions, will be transformed without loss of efficiency

if the generalised deforestation algorithm terminates.

o

Lemma 5.3.5 The generalised deforestation algorithm will always terminate for every ex-

pression in which all functions have generalised treeless definitions.

o

Proof of Lemma 5.3.3

The proof of this lemma can be found in Appendix C.3.1

o

Proof of Lemma 5.3.4

The proof of this lemma can be found in Appendix C.3.2

o

Proof of Lemma 5.3.5

As for the proof of Lemma 5.2.10, to prove that the generalised deforestation algorithm

always terminates, it is sufficient to show that there is a bound on the size of expressions

encountered during generalised deforestation.

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 105

Definition 5.3.6 (Size of Generalised Expressions) The definition of the size of expres-

sions (Definition 5.1.7) is extended in the following way to define the size of generalised

expressions.

S[let v = eo in et] 1+ max(S[eo],S[et])

o

Definition 5.3.7 (Grammar of Expressions Encountered During Generalised De-

forestation) The following terms must be added to the grammar edgB,n(s, f, n) to describe

the grammar of expressions which are encountered by the generalised deforestation algorithm.

edgB,n(x, y, z) b edg~,n(x -l,y,z) ... edg~,n(x -l,y,z)

let v = edg~,n(x -l,y,z) in edg~,n(x -l,y,z)

b efg~,n(x - 1, y, z) ... efg~,n(x - 1,y, z)

let v = efg~,n(x - 1,y, z) in efg~,n(x - 1,y, z)

if x > 0, Y ~ 0 and z > 0

if x > 0, Y ~ 0 and z > 0

if x > 0, y ~ 0 and z > 0

if x > 0, Y ~ 0 and z > 0

o

Lemma 5.3.5 can now be proved by showing the following two lemmata.

Lemma 5.3.8 All expressions encountered by the generalised deforestation algorithm are de-

scribed by the grammar edgB,n(s, f, n), if the original expression to be transformed is also

described by the grammar edgB,n(s, I,n).

o

Lemma 5.3.9 The size of all expressions described by the grammar edg8,n(s, /, n) is bounded

by s x (f + 1) x n.

o

ClIAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 106

Proof of Lemma 5.3.8

The proof of this lemma can be found in Appendix C.3.3.

o

Proof of Lemma 5.3.9

The proof of this lemma is very similar to the proof of Lemma 5.2.13, which is given in

Appendix C.2.2.

o

5.4 Related Work

5.4.1 Deforestation

Deforestation grew out of earlier work by Wadler on listlessness (Wadler, 1984). The listless

transformer is a semi-decision procedure which can convert recursive programs with a bounded

evaluation property (programs needing bounded internal storage to perform computation) to

equivalent listless programs. The work described in (Wadler, 1985) shows how two listless

programs can be combined into a single listless program. The programs to be combined are

required to be preorder. This means that the inputs of each program are traversed once,

and the outputs are produced in a left-to-right manner. The transformations in the listless

transformer are not source-to-source, and give a non-functional result. Also, the definition of

listless form is not as simple as the treeless form defined for deforestation, so it is harder to

determine when an expression is in listless form.

An area of work related to the listless transformer is the transformation technique pro-

posed in (Waters, 1991) for eliminating unnecessary intermediate series, where a series is a

sequence of items such as vectors or lists which may be unbounded. The class of expres-

sions which can be transformed by this technique are those which are preorder, statically

analysable and on-line cyclic. The preorder restriction is the same as that which is used in

(Wadler, 1985). The on-line cyclic restriction allows the transformation of functions which

take multiple inputs originating from common variables (thus forming cycles) with the on-

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 107

line characteristic (lockstep production of one output for every input consumed). The class of

expressions which can be transformed by this technique are therefore not as simple as those

which can be transformed by deforestation.

A closely related work to the deforestation algorithm is the supercompiler described in

(Turchin, 1986). This involves driving (unfolding) programs to obtain a history of compu-

tational states (configurations) from the symbolic evaluation of programs. The graphs of

configurations obtained can then be used to compile more efficient programs. Folding is ap-

plied when a configuration matches one which has been encountered previously, as is done

in the deforestation algorithm. The graphs of configurations which are obtained during su-

percompilation are potentially infinite. A complicated generalisation algorithm is therefore

used to obtain a finite set of configurations. These generalised configurations must then be

supercompiled again. This is a much more complicated procedure to ensure termination of

the transformation process than is required for the deforestation algorithm.

Another related area to deforestation is partial evaluation (Bjorner et al., 1988). Partial

evaluation involves the specialisation of function calls in which the arguments are known (or

partially known). These calls can be transformed into more efficient equivalent functions

which make use of the known properties of their arguments. Deforestation allows the trans-

formation of symbolic data in which the values of arguments may not be known. The result of

the partial evaluation process is a residual program which contains evaluated and unevaluated

expressions. Transformations in the deforestation algorithm are source-to-source.

5.4.2 Extended Deforestation

Other work has already been done on trying to extend deforestation for first order expressions

in (Chin, 1991) and (Chin, 1992). This work is explained using a producer-consumer model

of functions. A function argument is a good consumer if it is linear and non-accumulating,

where linear and accumulating are defined in the same way as in this chapter. An extended

treeless form of expression is defined in which all good consumers are variables. An expression

is a good producer if it satisfies this extended treeless form. Good producers are fused with

good consumers during transformation, whilst expressions which are not good consumers or

good producers are extracted and transformed separately. This extended treeless form is more

restrictive than the extended treeless form defined in this chapter. All good consumers are

restricted to being variables, even if they are not transient structures. Thus, for example, the

flatten function defined in Figure 2.2 is not in the extended treeless form defined in (Chin,

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 108

1991) and (Chin, 1992), but it is in the extended treeless form defined in this chapter. More

intermediate structures can therefore be eliminated by the method presented in this thesis.

Previous work has been done in (Hamilton & Jones, 1991b; Hamilton & Jones, 1991a;

Hamilton, 1991) to try to extend deforestation for first order functions. This work also

makes use of the information obtained by static analysis. In (Hamilton & Jones, 1991b), a

transmission analysis is used to determine whether structures are transient. This analysis

determines whether a structure will appear directly in the result of an expression. Structures

which do not satisfy this criterion, and are not variables, are extracted and transformed

independently. However, accumulating parameters and shared values are not extracted in

this work, so non-termination or loss of efficiency may occur as a result of applying the

deforestation algorithm. In (Hamilton & Jones, 1991a), a creation analysis is performed

in addition to the transmission analysis. This analysis is used to determine whether an

expression will produce a list result in preorder. Transient structures which are created in

this way can be eliminated by the deforestation algorithm. This analysis is still not sufficient

to ensure the termination of the deforestation algorithm, because accumulating parameters

are not extracted. In the work described in (Hamilton, 1991), accumulating parameters are

extracted, thus ensuring the termination of the deforestation algorithm. The work described

in (Hamilton, 1991) is similar to the work described in this chapter.

5.4.3 Generalised Deforestation

The blazed deforestation algorithm described in (Wadler, 1990b) is a generalisation of the

original deforestation algorithm. This generalisation is performed on the basis of the types of

expressions. Expressions of atomic type are blazed e, and expressions of structured type are

blazed ffi. Expressions blazed e are extracted using let expressions and transformed indepen-

dently, since they cannot be intermediate structures. More expressions can be transformed as

a result of this generalisation, but there are still many function definitions which are not in

the described blazed treeless form. More intermediate structures can therefore be eliminated

using the generalised deforestation algorithm described in this chapter.

The universal deforestation algorithm described in (Chin, 1991) and (Chin, 1992) is similar

to the generalised deforestation algorithm described in this chapter. Any sub-expressions

which prevent an expression from being in the described extended treeless form are extracted

using let expressions and are transformed separately. Thus, any function arguments which

are not variables are extracted, even if they are not transient structures. More intermediate

CHAPTER 5. COMPILE-TIME GARBAGE AVOIDANCE 109

structures can therefore be eliminated by the generalised deforestation algorithm described

in this chapter.

In the work described in (Turchin, 1986), the graphs of configurations which are obtained

during supercompilation are potentially infinite. Generalisation is therefore performed to ob-

tain a finite set of configurations. This generalisation determines a more general configuration

for a configuration which does not precisely match a previous one. The algorithm for this

generalisation which is presented in (Turchin, 1988) ensures termination of the supercompila-

tion process. This generalisation algorithm is a sophisticated on-line technique (Jones, 1988),

which looks back at the history of configurations at transformation-time in order to perform

on-the-fly generalisation. The generalised deforestation algorithm presented here uses a sim-

ple off-line generalisation to determine which intermediate structures can be eliminated. This

off-line technique is used to determine in advance where generalisations must be introduced.

The supercompiler requires a complex algorithm to determine at transformation time when

generalisations must be performed, and re-supercompilation of the generalised configurations

when they are introduced.

5.5 Conclusion

In this chapter, it has been shown how information obtained by usage counting analysis can

be used to guide the transformation when compile-time garbage avoidance is performed. The

method of compile-time garbage avoidance which was used is the deforestation algorithm

described in (Wadler, 1990b). A treeless form of expression was characterised in (Wadler,

1990b) which does not create any intermediate structures. It has been proved in this chapter

that the deforestation algorithm will always terminate for expressions in which all functions

have definitions which are in treeless form.

The deforestation algorithm will also terminate for some expressions in which functions

have definitions which are not in treeless form. It was therefore shown how treeless form can

be extended by making use of the information obtained by usage counting analysis. It was

then proved that the deforestation algorithm will always terminate for expressions in which

all functions have definitions which are in this extended treeless form.

Some intermediate structures can also be eliminated from expressions in which some func-

tions have definitions which are not in extended treeless form. It was therefore shown how

any function definition can be generalised in such a way that it will be in extended treeless

form. The deforestation algorithm was extended to be able to deal with these generalisations.

Chapter 6

Conclusion

In this thesis, it has been shown how the use of storage in lazy functional programs can be

optimised at compile-time by utilising the information obtained by usage counting analysis.

Two different approaches to performing this optimisation were taken; compile-time garbage

collection and compile-time garbage avoidance. The information obtained by usage counting

analysis can be used to annotate programs for compile-time garbage collection, and to guide

the transformation when compile-time garbage avoidance is performed. In this chapter, a

summary is given of the work in this thesis, directions for further work are discussed, and

general conclusions are drawn.

110

CHAPTER 6. CONCL USION 111

The remainder of this chapter is structured as follows:

• Section 6.1: a summary is given of the work in this thesis.

• Section 6.2: directions for further work arising from this thesis are discussed.

• Section 6.3: the general conclusions of the thesis are given.

6.1 Summary of Thesis

6.1.1 Language

In Chapter 2, the syntax and semantics of the language used throughout this thesis were

defined. The standard semantics of the language do not model the use of store, and so

could not be used as a reference against which store-related analyses and optimisations could

be proved correct. Non-standard store semantics were therefore defined for the language.

To ensure that these store semantics model the use of store safely, they were proved to be

congruent to the standard semantics of the language.

6.1.2 Compile-Time Garbage Detection

In Chapter 3, it was shown how the cells which will become garbage within a program can be

detected at compile-time. A cell will become garbage during the evaluation of an expression

if it is unshared when it loses a reference. To determine that a cell is unshared (used once),

the store semantics presented in Chapter 2 were augmented to incorporate usage counting.

These usage counting store semantics had to be abstracted in some way to allow usage counts

to be determined at compile-time. Usage counting store values were therefore abstracted to

usage patterns. These patterns are finite objects which indicate the number of times each

part of a value is used. A usage counting analysis was then defined, using these patterns, to

determine at compile-time the number of times each part of a value will be used in future

computations. This usage counting analysis was then proved to be safe with respect to the

usage counting store semantics by showing that the usage count of a value determined by

the analysis is not less than its actual usage count. Thus, it is not assumed that a cell will

become garbage when it is still required by a program.

CIIAPTER 6. CONCL USION 112

6.1.3 Compile-Time Garbage Collection

In Chapter 4, it was shown how information obtained from usage counting analysis can be

used to annotate programs for compile-time garbage collection. Three different methods

for compile-time garbage collection were presented; compile-time garbage marking, explicit

deallocation and destructive allocation. Compile-time garbage marking involves marking

cells at their allocation to indicate that they will become garbage after their first use. This

method requires an extra bit per cell to indicate whether or not a cell is marked, so the

extra space required may be more than the space which is saved by using this method.

Explicit deallocation involves returning cells to the memory manager at a particular point in

a program. This avoids the need to mark cells since it is known that cells will always become

garbage at this point. This method requires that the run-time garbage collector makes use

of a free list, which is not the most efficient way to perform garbage collection at run-time.

Destructive allocation involves reusing cells directly within a program for further allocations.

This avoids the need to use a free list, so a more efficient method for performing run-time

garbage collection can be used. Store semantics were defined for programs which have been

annotated for each of these methods of compile-time garbage collection, and the correctness

of these store semantics was considered.

6.1.4 Compile-Time Garbage Avoidance

In Chapter 5, it was shown how information obtained by usage counting analysis can be

used to guide the transformation when compile-time garbage avoidance is performed. The

method of compile-time garbage avoidance which was used is the deforestation algorithm

described in (Wadler, 1990b). A treeless form of expression was characterised in (Wadler,

1990b) which does not create any intermediate structures. A proof was given in Chapter 5

that the deforestation algorithm will always terminate for expressions in which functions have

definitions which are in treeless form. The deforestation algorithm will also terminate for some

expressions in which functions have definitions which are not in treeless form. It was therefore

shown how treeless form can be extended by making use of the information obtained by usage

counting analysis. It was then proved that the deforestation algorithm will always terminate

for expressions in which all functions have definitions which are in this extended treeless

form. Some intermediate structures can also be eliminated from expressions in which some

functions have definitions which are not in extended treeless form. It was therefore shown how

any function definition can be generalised in such a way that it will be in extended treeless

CIIAPTER 6. CONCL USION 113

form. The deforestation algorithm was extended to be able to deal with these generalisations,

and it was proved that this generalised deforestation algorithm will always terminate.

6.2 Further Work

There are many directions for further work arising from this thesis. These are summarised

below.

6.2.1 Compile-Time Garbage Detection

The usage counting analysis presented in this thesis is for a first order monomorphic language.

This analysis could be extended to deal with higher order expressions and polymorphism.

In order to deal with higher order expressions, the analysis could be combined with an

abstract interpretation in which all higher order values are analysed in a forward direction,

in the manner described in (Hughes, 1988). Alternatively, a closure analysis, such as the one

performed in (Sestoft, 1989), could be performed to determine the set of possible abstract

closures to which a function can be evaluated during the execution of a program. The least

upper bound of the corresponding contexts of these abstract closures could then be determined

to give a safe approximation to the context of each function.

In (Abramsky, 1985), it is shown that it is necessary only to analyse a polymorphic function

at its simplest instance when abstract interpretation is used to perform strictness analysis.

This result for the simplest instance of the function is then applicable to every instance of

the function. In order to extend usage counting analysis to deal with polymorphism, it would

have to be shown that this is also the case for usage counting analysis.

6.2.2 Compile-Time Garbage Collection

A full proof of correctness is required for the three methods of compile-time garbage collec-

tion which have been presented in this thesis. This would involve defining an equivalence

relation between the usage counting store semantics for programs which have been annotated

for compile-time garbage collection and the usage counting store semantics for unannotated

programs.

If usage counting analysis could be extended to handle higher order expressions, then

the described methods for compile-time garbage collection could also be extended. This

would allow an implementation of the methods for compile-time garbage collection to be

CHAPTER 6. CONCLUSION 114

incorporated into the optimisation phase of a compiler, and a thorough assessment could be

made of the benefits which can be obtained by these optimisations.

6.2.3 Compile-Time Garbage Avoidance

More intermediate structures could be removed from expressions by making use of laws (for

example, the commutativity or associativity offunctions). In (Wadler, 1987a), it is shown how

some intermediate structures which are unshared can be removed from function definitions

by making use of the associativity of the append function. However, the function definitions

which result from this transformation contain accumulating parameters, so they are still not

suitable for transformation by the deforestation algorithm.

The generalised deforestation algorithm could also be extended to deal with higher order

expressions. It has already been shown in (Marlow & Wadler, 1992) and (Hamilton, 1993)

how the deforestation transformation rules can be re-formulated in order to be able to deal

with higher order expressions. If usage counting analysis could be extended to handle higher

order expressions, then the generalised deforestation algorithm presented in this thesis could

also be extended. This generalised algorithm would allow a much wider range of expressions

to be transformed. For example, in many of the more widely used higher order functions (for

example map, filter, fold), the function type argument is used more than once. These function

type arguments would therefore have to be extracted before the functions could be involved

in higher order deforestation transformations. Also, in higher order languages, applications

are of the form el e2, where the function el is applied to the argument e2' Without an

analysis similar to usage counting analysis to determine which expressions are intermediate

structures, it would have to be assumed that the expression e2 is intermediate, and it would

have to be restricted to being a variable. Thus, not many useful higher order expressions

could be transformed.

Finally, an implementation of a higher order generalised deforestation algorithm could be

incorporated into the optimisation phase of a compiler so that a thorough assessment could

be made of the benefits obtained by this optimisation.

6.3 General Conclusions

In this thesis, it has been shown that usage counting analysis provides useful information for

the compile-time optimisation of store usage in lazy functional programs. The three desirable

CIIAPTER 6. CONCL USION 115

criteria for compile-time optimisations given in Section 1.1.3 (termination, automat ability

and correctness) have been of paramount importance in the optimisations described in this

thesis.

It has been shown how usage counting information can be used to annotate lazy programs

for compile-time garbage collection. Most of the previous work in the area of compile-time

garbage collection has been for strict languages. Three different methods of compile-time

garbage collection were presented; compile-time garbage marking, explicit deallocation and

destructive allocation. The correctness of each of these methods was considered. In most of

the previous work in the area of compile-time garbage collection, correctness has not been

considered. Of the three described methods for compile-time garbage collection, it has been

found that destructive allocation is the only method which is of practical use.

It has also been shown how usage counting information can be used to guide the trans-

formation when compile-time garbage avoidance is performed. The method of compile-time

garbage avoidance which was used is the deforestation algorithm described in (Wadler, 1990b).

A proof of the deforestation theorem stated in (Wadler, 1990b) has been given in this thesis.

It has also been shown how the class of expressions for which the deforestation algorithm

is guaranteed to terminate can be extended by utilising the information obtained by usage

counting analysis.
Compile-time garbage avoidance produces greater increases in efficiency than compile-time

garbage collection. Time which is required to allocate, traverse and subsequently deallocate

intermediate structures is saved through the use of compile-time avoidance, but not through

the use of compile-time garbage collection. Compile-time garbage collection merely serves to

reduce the amount of time required for garbage collection at run-time. However, much of

the garbage which can be collected by compile-time garbage collection cannot be avoided at

compile-time. The two approaches are therefore complementary, and the expressions resulting

from compile-time garbage avoidance transformations could be annotated for compile-time

garbage collection to further optimise the use of storage.

References

Abramsky, S. 1985. Strictness Analysis and Polymorphic Invariance. Lecture Notes in Com-

puter Science, 217, 1-23.

Abramsky, S., & Hankin, C. (eds). 1987. Abstract Interpretation of Declarative Languages.

Ellis Horwood.

Andersen, J. 1990 (Aug.). Abstract Interpretation Using Operational Semantics. Ph.D. thesis,

University of London.

Appel, A.\V. 1987. Garbage Collection can be Faster Than Stack Allocation. Information

Processing Letters, 2S(4), 275-279.

Appel, A.W. 1989. Simple Generational Garbage Collection and Fast Allocation. Software -

Practice and Experience, 19(2), 171-183.

Augustsson, L. 1984. A Compiler for Lazy ML. Pages 218-227 of: Proceedings of the ACM

Conference on LISP and Functional Programming.

Augustsson, L. 1985. Compiling Pattern Matching. Lecture Notes in Computer Science, 201,

368-381.

Baker-Finch, C.A. 1992. Relevance and Contraction: A Logical Basis for Strictness and

Sharing Analysis. Submitted to the Journal of Functional Programming.

Barth, J.M. 1977. Shifting Garbage Collection Overhead to Compile Time. Communications

of the ACM, 20(7),513-518.

Bellegarde, F. 1986. Rewriting Systems on FP Expressions That Reduce the Number of

Sequences Yielded. Science of Computer Programming, 6, 11-34.

Bjorner, D., Ershov, A.P., & Jones, N.D. (eds). 1988. Workshop on Partial Evaluation and

Mixed Computation. North-Holland.

116

REFERENCES 117

Bloss, A. 1989. Update Analysis and the Efficient Implementation of Functional Aggregates.

Pages 26-38 of: Proceedings of the Fourth International Conference on Functional Pro-

gramming Languages and Computer Architecture.

Burstall, R.M., & Darlington, J. 1977. A Transformation System for Developing Recursive

Programs. Journal of the AGM, 24(1), 44-67.

Chase, D.R. 1987 (Aug.). Garbage Collection and Other Optimizations. Ph.D. thesis, Rice

University, Houston, Texas.

Chin, Wei-Ngan. 1991 (Oct.). Generalising Deforestation for All First-Order Functional Pro-

grams. Pages 173-181 of: Joumees de Travail sur L 'Analyse Statique en Programmation

Equationnelle, Fonctionnelle et Logique.

Chin, Wei-Ngan. 1992. Safe Fusion of Functional Expressions. Pages 11-20 of: Proceedings

of the ACA! Conference on LISP and Functional Programming.

Clark, D.W. 1979. Measurements of Dynamic List Structure Use in Lisp. IEEE Transactions

on Software Engineering, 5(1), 51-59.

Clark, D.W., & Green, C.C. 1977. An Empirical Study of List Structure in Lisp. Communi-

cations of the ACM, 20(2), 78-86.

Clark, D.W., & Green, C.C. 1978. A Note on Shared List Structure in Lisp. Information

Processing Letters, 7(6),312-314.

Collins, G.E. 1960. A Method For Overlapping and Erasure of Lists. Communications of the

AGM, 3(12),655-657.

Cousot, P., & Cousot, R. 1977 (Jan.). Abstract Interpretation: A Unified Lattice Model

for Static Analysis of Programs by Construction or Approximation of Fixpoints. Pages

238-252 of: Proceedings of the Fourth A CM Symposium on Principles of Programming

Languages.

Damas, L., & Milner, R. 1982. Principal Type Schemes for Functional Programs. Pages

207-212 of: Proceedings of the Ninth AGM Symposium on Principles of Programming

Languages.

REFERENCES 118

Deutsch, A. 1990 (Jan.). On Determining Lifetime and Aliasing of Dynamically Allocated

Data in Higher-Order Functional Specifications. Pages 157-168 of: Proceedings of the

A CM Symposium on Principles of Programming Languages.

Deutsch, L.P., & Bobrow, D.G.1976. An Efficient, Incremental, Automatic Garbage Collector.

Communications of the ACM, 19(9),522-526.

Draghicescu, M., & Purushothaman, S. 1990. A Compositional Analysis of Evaluation Order

and its Application. Pages 242-250 of: Proceedings of the 1990 ACM Conference on

Lisp and Functional Programming.

Fenichel, R.R., & Yochelson, J.C. 1969. A LISP Garbage Collector for Virtual-Memory

Computer Systems. Communications of the ACM, 12(11),611-612.

Fradet, P. 1991. Syntactic Detection of Single-Threading Using Continuations. Lecture Notes

in Computer Science, 523, 241-258.

Friedman, D.P., & Wise, D.S. 1976. CONS Should Not Evaluate Its arguments. Automata

Languages and Programming, 257-284.

Gill, A., Launchbury, J., & Peyton Jones, S.L. 1993. A Short Cut to Deforestation. In:

Proceedings of the Sixth International Conference on Functional Programming Languages

and Computer Architecture.

Girard, J.- Y. 1987. Linear Logic. Theoretical Computer Science, 50(1), 1-101.

Goldberg, D., & Gil Park, Y. 1990. Higher Order Escape Analysis: Optimizing Stack Alloca-

tion in Functional Program Implementations. Lecture Notes in Computer Science, 432,

152-160.

Gomard, C.K., & Sestoft, P. 1991. Globalization and Live Variables. Pages 166-177 of:

Symposium on Partial Evaluation and Semantics-Based Program Manipulation.

Gopinath, K., & Hennessy, J .L. 1989. Copy Elimination in Functional Languages. Pages

303-314 of: Proceedings of the Sixteenth Annual ACM SIGACT-SIGPLAN Symposium

on Principles of Programming Languages.

Guzman, J.C., & Hudak, P. 1990 (June). Single Threaded Polymorphic Lambda Calculus.

In: Fifth IEEE Symposium on Logic in Computer Science.

REFERENCES 119

Hamilton, G.W. 1991. Compile-Time Garbage Avoidance. Technical Report TR 74. Dept. of

Computing Science and Mathematics, University of Stirling.

Hamilton, G.W. 1992 (Sept.). Sharing Analysis of Lazy First Order Functional Programs.

Pages 68-78 of: Proceedings of the Workshop on Static Analysis, BIGRE 81-82.

Hamilton, G.W. 1993. IIigher Order Deforestation. To appear.

Hamilton, G.W., & Jones, S.D. 1990. Compile-Time Garbage Collection by Necessity Analysis.

Technical Report TR 67. Dept. of Computing Science and Mathematics, University of

Stirling.

Hamilton, G.W., & Jones, S.D. 1991a (Aug.). Extending Deforestation for First Order Func-

tional Programs. Pages 134-145 of: Proceedings of the 1991 Glasgow Workshop on

Functional Programming.

Hamilton, G.W., & Jones, S.D. 1991b (Oct.). Transforming Programs to Eliminate Inter-

mediate Structures. Pages 182-188 of: Journees de Travail sur L'Analyse Statique en

Programmation Equaiionnelle Fonctionnelle et Logique, BIGRE 74.

Henderson, P., & Morris, J. 1976. A Lazy Evaluator. Pages 95-103 of: Proceedings of the

Third Symposium on Principles of Programming Languages.

IIindley, R. 1979. The Principal Type Scheme of an Object in Combinatory Logic. Transac-

tions of the American Mathematics Society, 146, 29-60.

Hudak, P. 1987. A Semantic Model of Reference Counting and its Abstraction. Pages 45-62

of: Abramsky, S., & Hankin, C. (eds), Abstract Interpretation of Declarative Languages.

Ellis Horwood.

Hudak, P., & moss, A. 1985. The Aggregate Update Problem in Functional Programming

Systems. Pages 300-314 of: Proceedings of the Twelfth Annual AGM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages.

Hudak, P., & Wadler, P. 1990. Report on the Programming Language Haskell. Technical

Report. Yale University and Glasgow University.

Hughes, R.J.M. 1988. Dackwards Analysis of Functional Programs. Pages 187-208 of: Pro-

ceedings of the IFIP TC2 Workshop on Partial Evaluation and Mixed Computation.

REFERENCES 120

Hughes, R.J.M. 1989. Why Functional Programming Matters. The Computer Journal, 32(2),

98-107.

Hughes, S. 1991 (Oct.). Static Analysis of Store Use in Functional Programs. Ph.D. thesis,

Imperial College, University of London.

Inoue, K., Seki, II., & Vagi, II. 1988. Analysis of Functional Programs to Detect Run-Time

Garbage Cells. ACM Transactions on Programming Languages and Systems, 10(4),555-

578.

Jensen, T.P. 1990. Context Analysis of Functional Programs. M.Phil. thesis, University of

Copenhagen.

Jensen, T.P., & Mogensen, T.£. 1990. A Backwards Analysis for Compile-Time Garbage

Collection. Lecture Notes in Computer Science, 432, 227-239.

Johnsson, T. 1985 (Feb.). Lambda Lifting: Transforming Programs to Recursive Equations.

Pages 165-1S0 of: Proceedings of the Workshop on Implementation of Functional Lan-

guages.

Jones, N.D. 1988. Challenging Problems in Partial Evaluation and Mixed Computations.

Pages 1-1.1 of: Proceedings of the IFIP TC2 Workshop on Partial Evaluation and Mixed

Computation.

Jones, S.B., &. Le Metayer, D. 1989. Compile-Time Garbage Collection by Sharing Analy-

sis. Pages 5~-7~ of: Proceedings of the Fourth International Conference on Functional

Programming Languages and Computer Architecture.

Josephs, M.B. 1987. Functional Programming With Side-Effects. Technical Monograph 55.

PRG, Oxford University.

Kuo, T-M., & Mishra, P. 1989. Strictness Analysis: A New Perspective Based on Type

Inference. Pages 260-272 of: Proceedings of the Fourth International Conference on

Functional Programming Languages and Computer Architecture.

Launchbury, J., Gill, A., Hughes, J., Marlow, S., Peyton Jones, S.L., &. Wadler, P. 1992

(July). Avoiding Unnecessary Updates. Pages 144-153 of: Proceedings of the Fifth

Annual Glasgow Workshop on Functional Programming.

REFERENCES 121

Lieberman, H., & Hewitt, C. 1983. A Real-Time Garbage Collector Based on the Lifetimes

of Objects. Communications of the ACM, 26(6),419-429.

Marlow, S. 1993 (July). Update Avoidance Analysis by Abstract Interpretation. In: Draft

Proceedings of the Sixth Annual Glasgow Workshop on Functional Programming.

Marlow, S., & Wadler, P. 1992 (July). Deforestation for Higher-Order Functions. Pages 154-

165 of: Proceedings of the Fifth Annual Glasgow Workshop on Functional Programming.

Mason, LA. 1988. Verification of Programs That Destructively Update Data. Science of

Computer Programming, 10, 177-210.

Milner, R. 1978. A Theory of Type Polymorphism in Programming. Journal of Computer

and System Science, 17, 348-375.

Moon, D.A. 1984. Garbage Collection in a Large Lisp System. Pages 235-246 of: Proceedings

of the A CM Conference on LISP and Functional Programming.

Mycroft, A. 1981. Abstract Interpretation and Optimising Transformations for Applicative

Programs. Ph.D. thesis, University of Edinburgh.

Peterossi, A. 1978. Improving Memory Utilization in Transforming Recursive Programs. In:

Seventh International Symposium on Mathematical Foundations of Computer Science.

Pleban, U.F. 1990. Preezecuiion Analysis Based on Denotational Semantics. Ph.D. thesis,

University of Kansas.

Ruggieri, C., & Murtagh, T.P. 1988 (Jan.). Lifetime Analysis of Dynamically Allocated Ob-

jects. Pages 285-293 of: Proceedings of the Fifteenth Annual ACM SIGAGT-SIGPLAN

Symposium on Principles of Programming Languages.

Sastry, A.V.S., Clinger, W., & Ariola, Z. 1993. Order-of-evaluation Analysis for Destructive

Updates in Strict Functional Languages with Flat Aggregates. Pages 266-275 of: Pro-

ceedings of the Sixth International Conference on Functional Programming Languages

and Computer Architecture.

Schmidt, D.A. 1985. Detecting Global Variables in Denotational Specifications. AGM Trans-

actions on Programming Languages and Systems, 7(2), 299-310.

Schwarz, J. 1978. Verifying the Safe Use of Destructive Operations in Applicative Programs.

Pages 995-411 of: Proceedings of the Third International Symposium on Programming.

REFERENCES 122

Sestoft, P. 1989. Replacing Function Parameters by Global Variables. Pages 39-53 of: Pro-

ceedings of the Fourth International Conference on Functional Programming Languages

and Computer Architecture.

Smetsers, S., Barendsen, E., van Eekelen, M., & Plasmeijer, R. 1993. Guaranteeing Safe

Destructive Updates through a Type System with Uniqueness Information for Graphs.

Technical Report 93-4. University of Nijmegen.

Turchin, V.F. 1986. The Concept of a Supercompiler. ACM Transactions on Programming

Languages and Systems, 8(3), 90-121.

Turchin, V.F. 1988. The Algorithm of Generalization in the Supercompiler. Pages 531-549 of:

Proceedings of the IFIP TC2 Workshop on Partial Evaluation and Mixed Computation.

Turner, D.A. 1985. Miranda: A Non-Strict Functional Language With Polymorphic Types.

Lecture Notes in Computer Science, 201, 1-16.

Ungar, D. 1984. Generation Scavenging: A Non-Disruptive High Performance Storage Recla-

mation Algorithm. Pages 157-167 of: Proceedings of the ACM SIGSOFT/SIGPLAN

Software Engineering Symposium on Practical Software Development Environments.

Wadler, P. 1981. Applicative Style of Programming, Program Transformation and List Op-

erators. Pages 25-32 of: Proceedings of the International Conference on Functional

Programming Languages and Computer Architecture.

Wadler, P. 1984. Listlessness is Better than Laziness: Lazy Evaluation and Garbage Collection

at Compile-Time. Pages 45-52 of: Proceedings of the ACM Conference on LISP and

Functional Programming.

Wadler, P. 1985. Listlessness is Better than Laziness II: Composing Listless Functions. Lecture

Notes in Computer Science, 217, 282-305.

Wadler, P. 1987a (Dec.). The Concatenate Vanishes. FP Electronic Mailing List.

Wadler, P. 1987b. Efficient Compilation of Pattern Matching. Pages 78-103 of: Jones,

S.L. Peyton (ed), The Implementation of Functional Programming Languages. Prentice

Hall.

Wadler, P. 1990a (June). Comprehending Monads. Pages 61-78 of: Proceedings of the ACM

Conference on Lisp and Functional Programming.

REFERENCES 123

Wadler, P. 1990b. Deforestation: Transforming Programs to Eliminate Trees. Theoretical

Computer Science, 73, 231-248.

Wadler, P. 1990c. Linear Types Can Change the World! In: Broy, M., & Jones, C. (eds),

IFIP Working Conference on Programming Concepts and Methods. North Holland. Sea

of Galilee, Israel.

Wakeling, D., & Runciman, C. 1991. Linearity and Laziness. Lecture Notes in Computer

Science, 523, 215-240.

Waters, R.C. 1991. Automatic Transformation of Series Expressions into Loops. ACM Trans-

actions on Programming Languages and Systems, 13(1),52-98.

Wise, D.S., & Friedman, P. 1977. The One-Bit Reference Count. BIT, 17(4),351-359.

Wright, D.A., & Baker-Finch, C.A. 1993 (Sept.). Usage Analysis With Natural Reduction

Types. In: Third International Workshop on Static Analysis.

Appendix A

Proofs for Language Semantics

A.1 Congruence of Expressions

for all Pe.tore E Bvee.tore, <pe.toreE Fveeotore, (Je.'ore E Storee.tore, <Pe E Fvee, e E Exp:

if for all f E dome <pe.tore):

<1>(<pe.tore [J] lOCI ... loc., (Je.tore) = <pe[f] (<1>(lOCI, (Jeatore)) ••• (<1>(locn, (Je.tore))
then for all v E dom(pe.tore):

<1>(£8tore[e] Pe.tore <pe.tore (Je.tore) = £[e] [<1>(pe.tore[V],(Je.tore)/V] <Pe

Proof

The proof is by structural induction on the expression e.

Base Cases

Case 1: e ::= k

£[k] P <P = k

["tore [k] P <P(J = alloc(k,(J)

cI>(£8tore[k] Pe.tore <Peotore (Je.tore) = k
::} cI>(£store[k] Peatore <Pe.tore (Je.tore) = £[k] [cI>(Pe.tore[V],(Jeotore)/V] <Pe

124

APPENDIX A. PROOFS FOR LANGUAGE SEMANTICS 125

Case 2: e ::= v

C[v) P ¢ = p[v]

cstore[v] P ¢o = (loc, u'[loc/ p[v]]),
where

if (u (p[v]) E Closure

(loc,u') = (u (p[vD) a

= « 0' (p[v]»,O'), otherwise

Inductive Cases

Case 1: e ::= bet ... en

C[b et ... en] p ¢ = B[b] ([[el) P ¢) ... ([[enI p ¢)

cstore[b et ... en] P ¢ a = Be.tore[b] loct·· .loc; O'n
where

(lochut) = [store[et] P ¢ a

= B[b) (C[el] [cp(Peotore[V], ue.tore)/v) ¢e) •.•
(C[en] [cp(Pe·tore[V],ue.tore)/V] ¢e)
(by inductive hypothesis)

APPENDIX A. PROOFS FOR LANGUAGE SEMANTICS 126

Case 2: e ::= eel ... en

cstore[e el ... en] pcP o = C£.lore[e] lOCI ••• loc; Un
where

= C[e] 4>(£store[el] p£.lore cP£.lore U£.lore) •••

4>(c,tore[en] p£.lore cP£.lore U£.lore)

= C[c] (C[el] [4>(p£oIore[V], U£'lore)/V] cP£) ..•
(£[en] [4>(p£.tore[V],U£.tore)/V] cPt)
(by inductive hypothesis)

= Cle et ... en] [4>(p£.lore[V],U£.tore)/V] cP£

Case 3: e ::= f el ... en

('store [f el ... en] p A..,. -_ A..[f] loe loc.:o" If' v If' I. •. n vn

where

(loebUt) = alloc«£store[ell p cP),u)

APPENDIX A. PROOFS FOR LANGUAGE SEMANTICS 127

4.>(£stort[f el ... en] Pe.tore cl>e.tore O'e.,ore)
= cl>e[f) <I>(£..tore[ell Peotore cl>eolore O'totore) •••

(by assumptions for cl>e.,ore and cl>ein Lemma 2.5.2)

= 4>e[fJ (£[el] [4.>(Pe,lore[V],O't·,ore)/v] cl>e) •••
(£[en] [4.>(pellore[V],O'eolore)/V] cl>e)
(by inductive hypothesis)

=> <I>(£store[f el •.. en] Pe.,ore cl>e.,ore O'e.,ore)

Case 4: e ::= case eo of PI : el 1 ••• 1 Pk : ek

£[case eo of PI : el 1· .. 1 Pk : ek]p 4>
= £[ed p[x !1/vl!"" z] n/vnl cl>

where

x = £[eo] P cl>
Pi = e VI" ,vn and mateh(x,e)

£stort[case eo of Pt : et 1 1 Pk : ek] P cl>0'
= £ ..tortled p[x !1/vt, , x !n/vn] cl>0"

where

(loe,O") = £storeleo] P 4> 0'

X = 0" loc

Pi = e VI •• ,vn and match(x,c)

<I>(£"tore[case eo of PI : et 1 ••• 1 Pk : ek] p£.tore cI>£.,oreO'£.tore)
= <I>(£storeleilPe.tore[x! 1/vlt ... ,x! n/vnl cI>£.tore 0")

where

(loc,O") = £store[eo] P cl>0'
X = 0" loe

Pi = e VI •• ,vn and match(x,c)

APPENDIX A. PROOFS FOR LANGUAGE SEMANTICS 128

= £le;] pe[x L l/v}, ... , x t n/vnl ¢e
where

x = £[eo] oe ¢e
ee = [cI>(Pe·tore[v],O'eotore)/V]
Pi = C VI"'Vn and match(x,c)

(by inductive hypothesis)

= £[case eo of PI :eI 1 ... 1 Pk :ek] [cI>(Pe.tore[V],O'e·tore)/V] ¢e
=? cI>(£3tore[case eo of PI : eI 1 ••• 1 Pk : ek] Pe.tore ¢e.tore O'e·tore)

= £[case eo of PI : ei 1 ... 1 Pk : ek] [cI>(pe.tore[v],O'e·tore)/V] ¢e

o

APPENDIX A. PROOFS FOR LANGUAGE SEMANTICS 129

A.2 Congruence of Function Variable Environments

for all p E Prog:

if fp[P] = fIe] (Av.i) 4>c
and f;tore[p] = lorce(fstore[e] (Av.i) <Pc.tore (Aloc.UNB))

then for all I E dome 4>e.tore), (Je.tore E Storee.tore:

(>(4>c.tore[J] lOCI" .loc; (Je.tore) = 4>e[J] ((>(lOCI,(Je.tore)) ... ((>(lOCmO'e.tore))

Proof
The proof is by fixpoint induction.

Base Case

The first approximations to each function variable environment are as follows:

(>(<p~.tore[h) lOCI., .loc; (Jc'tore)

= i

= 4>Uh] ((>(locI, O'e.tore)) .•. ((>(locn, (Je.tore))

Inductive Case

4>e+1 = [(AXI" .AXkj'f[ei] [XI/ViI,···, Xkj!Vikj] <Pe)! Ii]
where h is defined by Ij Vjl ••• Vjkj = ej

4>;t!,.. = [(Aioci .•. Alockj'A(J.fstore[ej] [lOCI! VjI! •.. , lOCk) Vjkj] 4>e.tore (J)! Ij]

where!; is defined by Ij Vjl ••. Vjkj = ej

APPENDIX A. PROOFS FOR LANGUAGE SEMANTICS 130

~(<pet!..e[/j] locj1 ••• locjkj O"c.tore)
= ~(cstore[ej] [loCj1/Vj1," .,locjkj/Vjkj] <Pe'tore O"e'tore)
= C[ej] [~(loCjI, O"c.tore)/ VjI, ... , ~(lOCjkj' O"E'tore)/ Vjkj] <Pe

(by inductive hypothesis and Lemma 2.5.2)

= <Pe+1 [/j] (~(lOCj1! O"c,tore)) ... (~(IOCjkj' O"c'tore))

o

Appendix B

Proofs for Compile-Time Garbage

Detection

B.l Correctness of Usage Counting Analysis

for all Pe E Bveeu •• , <Peu•eE Fveeu.e, ueu.e E Storeeu.e, <pu E Fveu, p E Prog, e E Exp:

if £;"e[p] = (loe"', U~~oe)

and for all f E dome 4>eU04):

if <peuoelf] IOCt ... loc; ue ..oe = (loc',utu",)

and 8(1oc';Utuoe, u~~...) = u

then if <peu.elf] loc~ ... loe~ Ueu.e = (loe",u~uoe)

and (4)u[Uf#i] u) ~ 8(/oc~,ueuoe,u~~",)

th C r(l "" "')en u _ v oc ,Ueu.e,Ueuo e

and £u"e[e] Peu" <Pe.... ueu.e = (loc', Utu.e)

and 8(loc',uetue'u~~oe) = u
then for all Xi E dom(peuo ..):

if £UBe[e] [loci/xiJ <Ptu""Ut = iloc", O'~)

and (U[eUx;J u <pu) ~ 8(loCi,Utu ... ,U~~oe)

t h C r(1 "" III)en u _ v OC, 0' tu..., 0' tu...

Proof

The proof is by structural induction.

131

APPENDIX B. PROOFS FOR COMPILE-TIME GARBAGE DETECTION 132

Base Cases

Case 1: e ::= k

U[kUx] u 4>u = ABS

£u.te[k] p 4> o = alloc«O, k),u)

if £use[e] p&u.e 4>&u.e U&uoe = (loc',u~u.e)

and 6(loc',utu •• ,u~~oe) = u

then if

and

£use[e] [loci/xi] 4>&u.e u&uoe = (loc", u~u ..)

(U[e][xi] u 4>u) ~ 6(lOCi,U&u.e,U~~ ••)
th '(1"" III) -en 0 oc ,(1s» •• .a e=« - u

(since no part of Xi appears in the result of e)

C '(1 "" III):::> u _ v oc ,u eu'. ,Ueuae

Case 2: e ::= v

U[v][X] u 4>u = u, if v = X
= ABS, otherwise

£u.te [v] p 4> U = (loc, u'[loc/ p[v]]),
where

if (u (p[v])) E Closure

(loc,u') = (u (p[v])) o

= «u (p[v])),u), otherwise

APPENDIX B. PROOFS FOR COMPILE-TIME GARBAGE DETECTION 133

if CUBe[e] Pe ...e <Pe"" aeu'. = (loc', at)
and 6(loc',aeUle,ae~ ••) = u
then if CUBe[e] [lOCi/Xi] <Peu•• ae..'. = (loc", aeu,.)

(U[e][xd u <Pu)b; 6(loci,ae ...e,ae~ ••)and

then u b; 6(loci,ae ,ae~ se), if v = Xi
and ABS b; 6(lOCi, ae-«, ae~ ••), otherwise

::} u b 6(loc",aeu se ,ae~ ••), if v = Xi
and 6(loc",aeu.e,ae~.e) = u, otherwise

(since no part of Xi appears in the result of e)

C ~(l "" III)::} U _ o DC ,a e=« ,a e=«

Ind uctive Cases

Case 1: e ::= bet ... en

cuse [b et ... en] p <Pa = BUBe [b] lOCI' . .loc.; an
where

if CUBe[e] peu'. <Pe.... aeu,.. = (loc', atu se)

and 6(loc',atu se ,ae~ ••) = u
and cuse[e] [loci/xi] <Peu,. ae"'. = (loc",aeu,.)
and (U[e][xiJ u <Pu)b; 6(loci,aeu •• ,ae~,,)
then (u --+ (U[et][xi] 1 <Pu& ... & U[en][xd 1 <Pu) b; 6(loci,aeu .. ,ae~ se)

APPENDIX B. PROOFS FOR COMPILE-TIME GARBAGE DETECTION 134

=? if £use[ej] [loci/xi] <peu,. Uj = (locj, uj)
then (U[ej][xd 1 <pu) !; 6(loci,Uj,U~~oe), if U 1= ABS

=? 1 !; 6(locj,O'i,u~~ ••), if U 1= ABS

(by inductive hypothesis)

C 1:(1 "" III)=? U _ v oc ,Utuu,O'euu

Case 2: e ::= c el ... en

U[c el.' .en][x] U <Pu= U ~ (U[et][x] UI <Pu& ... & U[en][x] Un <Pu)
where

Ul = Uc#1 U

Un = Uc#n u

£use[c el" .en] P <PU = cuse[c] loe, ... loci, Un
where

(lOCh Ul) = alloc((£use [el] P <p),e)

if
and

and

and

then

=? if
then

=?

1:(1 " III) -V oc ,u,....,u,.... - U

£u.e[e] [loci/xi] <P,.... as= (loc", O'~....)
(U[e][Xi] U <PU)b 6(loCi,Ueu",0'~~u)
(u ~ (U[elUxd Ut <PU& ... & U[enUXi] Un <PU)) !; c(loci,Utu.e,U~~.e)
£u.e[ej] [IOCi/Xa] <Ptu•• Uj = (loci, uj)
(U[ej][xd Uj <PU)!; 6(loCi,O'j,U~~ ••), if U 1= ABS

Uj b 6(locj,ui,0'~~ ••), if U 1= ABS

(by inductive hypothesis)

C '(I "" III)=? u _ o OC ,0'tu .. ,0'tu ••

APPENDIX B. PROOFS FOR COMPILE-TIME GARBAGE DETECTION 135

Case 3: e ::= J el.' .en

where

U[J el ••• en][x] U <Pu = U _. (U[ed[x] UI <Pu& ... & U[en][x] Un <pu)

UI = <pu[UJ#1) U

Un = <pu[UJ#n] U

cuse (J el ... en] P <P(1 = <p[J] lOCI ... loc; (171

where

if

and
and
and
then

=> if

then
=>

1:(1 I I III) _
V OC ,(1e ... e ,(1e"oe - U

CUBe[e] [loci/xi] <pe...e ae= = (loc", (1~..oe)

(U[eUxd U <pu) ~ h(loCi,(1e...e,(1~~.e)

(u _. (U[et][xd Ut <Pu & ... & U[en][Xi] Un <Pu» r;; b(loCi,(1e ..·e,(1~~.e)

Cuse[ej] [lOCi/Xi] <pe... e (1j = (loci, (1j)

(U[ej][xiJ Uj <pu) r;; 6(loCi,(1j,(1~~oe), if U i- ABS

Uj ~ 6(loCi,(1j,(1~~.e), if U i:- ABS
(by inductive hypothesis)

C 1:(1 "" III)=> U _ v OC ,(1e"oe ,(1e ... e
(by assumptions for <pe... e and <Pu in Theorem 3.5.2)

APPENDIX B. PROOFS FOR COMPILE-TIME GARBAGE DETECTION 136

Case 4: e ::= case eo of PI : ei 1 ••• 1 Pk : ek

Urease eo of PI : ei I ••• 1 Pk: ekUx] U 4>u=
U -+ «(U[eo][x] UI 4>u) & (U[eI][x] U 4>u)) u ...
U ((U[eoUx] Uk 4>u) & (U[ekUx] U 4>u)))
where

PI = Cl vu··· Vlnl

Pk = Ck Vu ... Vkn"
ul = UCI(l,U[eI][Vll] U 4>u,•.• ,U[eI][Vlnl] U 4>u)

£Uae[ease eo of PI : el 1 ••• 1 s» : ek] P 4> o =
£uae[ei] p[x! l/v}, ... ,x! n/vn] 4> o'
where

(loc,u') = inc(£uBe[eol P 4> u)

(u,x) = u'loc

Pi = c VI ..• vn and match(x, c)

if E':" [e] Pe"'. 4>e.... ue"'. = (loc', ue" ••)
and c(loc',Ue" •• ,C1~~..) = U
and £u.e[e] [lOCi/Xi] 4>e.... ae.... = (loe", u~)
and (U(e][x;J U 4>u) !:':'; C(IOCi,Ue ,u~~oe)
then U -+ (((U[eo][xil UI 4>u) & (U[eIUxil U </>u)) u ...

U ((U[eo][xj] Uk 4>u) & (U[ekUXj] U </>u))) !:':'; C(loei,C1e ,u~~ ••)

APPENDIX B. PROOFS FOR COMPILE-TIME GARBAGE DETECTION 137

::} if the branch pj : ej is selected
and Cu..e[eo1 [lOCi/Xi] <Peu•a (1eu... = (loc~, (1~)

and Cuse[ej] [loci/xi] <Peuoe (1~ = (locj,(1j)

then (U[eo][xd Uj <Pu) ~ b(loci,(1eu ... ,(1~~.a)

and (U[ej][xd U <Pu) c 6(loCi,(1~,(1~~.e)
::} Uj ~ 6(loc~,(1~,(1~~.e)

and U ~ 6(locj,(1j,(1~~.e)

(by inductive hypothesis)

C ~(l II II III)::} U _ u OC,(1 eUIe,(1 eu'"

o

APPENDIX B. PROOFS FOR COMPILE-TIME GARBAGE DETECTION 138

B.2 Correctness of Usage Counting Analysis Function Vari-

able Environment

for all p E Prog:

if E;6e(p] = force(E[e] (AV.J..) ¢>eu.e (Aloc.UNB)) = (loc"', O'~~.e)
and Up[p] = ¢>u
then for all f E dome¢>euoe), O'euoe E Storeeu•e:

if ¢>euoe [J] lOCI' •• 1OCn 0'e= = (1OC' ,00efJae)
and <5(loc',O'efJ.e,(1~~ae) = u
then if ¢>eu.e[f] loci .• .loc~ O'euae = (loclI,O'~u.e)

and (¢>u[Uf#i] u) !; 8(loci,O'efJae,0'~~.e)
th C 1:(1 II II III)en u _ v oc, 0'eu.e, 0'e-»

Proof

The proof is by recursion induction.

Base Case

if ¢>efJu[/j] locj1" .locjkj O'eu.e = (loc',O'euae)
then l'u6e[ej] [locjI/vj1!"" locjk)vjkj] ¢>eu.e O'eu.e = (loc',O'euoe)

where Ii is defined by Ii Vjl ••• Vjkj = ej
if <5 (1 oc' ,00efJ.e,O'~~ae) = U

then if

and

¢>efJ.e[J] locjl ... locjkj O'efJ.e = iloc" ,O'~u.e)
(¢>u[UIi#k] u)!; <5(locjk,O'eu.e,O'~~ae)

then l'u6e[ej] [locjdvjI, ... , locjk/vjkj] ¢>eu.e O'eu.e = (loc",(1~u.e)
and (U[eiUVjk] u ¢>u) !; 8(locjk,O'eu,e,0'~~ae)

C 1:(1 "" III)=> U _ u oc ,00eu",O'efJ.e
(by Theorem 3.5.2, since the function f is not recursive)

APPENDIX n. PROOFS FOR COMPILE-TIME GARBAGE DETECTION 139

Inductive Case

[(.xu.U[ej][Vjk] u <p'U)/U/j#k]

where /j is defined by /j Vjl ••• Vjkj = ej

A,n+l =re-« [(AloCjl ••• AloCjkj"AO'eu se ,£use [ej] [lOCjl/ Vj}, •.• , locjkj / Vjkj] <peu•• O'euu)/ /j]

where /j is defined by /j Vjl .•• Vjkj = ej

if <P~t}.[fi11ocjl" .loCjkj O'eu'. = (loc',O'tu ••)

then £use[ej] [IOCjl/Vj}"'" IOCjk)Vjkj] <Peuoe O'e.... = (/oc',O'tuoe)

if 6(IOC''o,e.... ,O'~~.e)= u

th l'f ,J.n+l [fl l' I' - (1 II II)en ve-« OCjl ••• OCjkj O'eu'" - oc ,0' e=«
and (<Pu+1[U /j#k] u) ~ 6(locjk' oe=«, O'~~se)

then £use[ej] [locjtlvj}"'" locjk)vjkj] <Peu•• O'eu'. = (loc",O'~u.e)

and (U[ej][VjkJ u <P'U)~ 6(locjk,O'eu··,O'e~oe)

C £(1 11 II III)=> U _ v OC ,0' tu••,0' eu'.
(by inductive hypothesis and Theorem 3.5.2)

o

Appendix C

Proofs for Compile-Time Garbage

Avoidance

C.l Proof of Deforestation Theorem

C.l.I Proof of Lemma 5.1.3

Prove: E[T[e]] p <p = E[e] p <p

The proof is by recursion induction over the transformation rules T.

Base Cases

Case for Rule 1:

Tlk] = k
Nothing to prove as the expressions are identical.

Case for Rule 2:

Tlv] = v
Nothing to prove as the expressions are identical.

Inductive Cases

Case for Rule 3:

TIc el ••• en] = c T[el1 ... T[en1

140

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 141

= C[e] (£[el) P <p) ••• (£[en] P <p)
= C[e] (£[Tlel]] P 4» ••• (£[T[enH P 4»

(by inductive hypothesis)

= £[e T[eIH ... T[enl1 P <p
=> £[T[e el ... en]] P <p = £[c el ... en] P <p

Case for Rule 4:

T[J el.· .en]
where

I" ,VI'" Vk

-- I'v' V'1'" k

= T[e[et/vt, ... ,en/vn]]
where f is defined by f VI ••• Vn = e

and v~... t'~ are the free variables in (f el ... en)

£[f el ... en] P <p = <p[!] (£[el] P 4» ••• (£[en] P <p)

= tIel [(£lel] P <p)/v}, ... ,(£[en] P <p)/vn] <p

= £[e[el/vb" .,en/vnU P <p
= £[T[e[el/vt, ... , en/vnm P <p

(by inductive hypothesis)

= Elf' v~ ... vkJ P 4>
where

f' v~... v~ = T[e[et/v}, ••• , en/vnH
and vi ... v~ are the free variables in (f er ... en)

=> £[T[f el ... en]] P <p = £[f el ... en] P 4>

Case for Rule 5:

T[case v of p~ : e~ 1···1 Pk: ekl
= case V of pi : T[el1 I· ··1 Pk : T[ek]

£[case V of p~ : e~ 1 ••• 1 Pk : ek1 P cl>

= £[ea p[x !l/vlt ... ,z] n/vn] <p
where

x = £[v] P <p
P: = e VI" 'Vn and match(x,e)

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 142

= C[T[e~]] p[x! 1/vlt .•• ,x! n/vnl ¢

where

x = C[v] p ¢

p~ = CVI"'Vn andmatch(x,c)

(by inductive hypothesis)

= C[case V of pi : T[ei] 1···1 Pk : T[ek]] P ¢

:::} C[T[case V of pi : ei 1.. ·1 p~ : ekH p ¢
= C[case V of pi : ei 1···1 Pk : ekl p ¢

Case for Rule 6:

T[case (c el" .en) of pi: ei 1···1 Pk : eU
= T[eHet/vh"" en/vn]]

where p~= c VI •• 'Vn

C[case (c el ... en) of pi: ei 1 .. ·1 p~: ek] p ¢

= C[ea p[x !1/Vlt ... , z] n/vn] ¢

where

x = C[c el ... en] p ¢

p~ = CVI'''Vn andmatch(x,c)

= C[ea p[(C[eII P ¢)/Vlt ... ,(C[en] p ¢)/vn] ¢

= C[eaet/Vlt ... ,en/vn]] P ¢
= C[T[eHet/vlt ... , en/vn]]] p ¢

(by inductive hypothesis)

:::} C[T[ease (c el ... en) of pi : ei 1 .. ·1 Pk : ekH p ¢
= C[case (c ei ... en) of pi: ei 1 .. ·1 Pk : ek1 p ¢

Case for Rule 7:

T[case (f ei ... en) of pi: ei 1 ... 1 p~ : e~] = f' v~ ... v~
where

I' v~ ... vk = T[case (e[eI/Vlt ... , en/vnD of pi : e~ 1 .. ·1 Pk : ekl
where I is defined by I VI ... Vn = e

and v~ ... vk are the free variables in (case (f el ... en) of pi : ei 1···1 Pk : ek)

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 143

C[case (f et ... en) of p~ : e~ 1.. ·1 Pk : ekJ p 4>
= C[ea p[x !1/t'l!"" x !n/vnl 4>

where

x = C[f et ... en] p 4>

pi = C Vt .. 'Vn and match(x,c)

= C[ea p[x ! l/vl!"" x !n/vnl 4>
where

x = 4>[f] (£[etl p 4» ... (£[enJ p 4»
pi = c Vt ... Vn and match(x, c)

= C[ea p[x ! l/vl!"" x !n/vnl 4>
where

x = Cle] [(£[etl p 4»/Vb"" (£[enJ p 4»/vnl 4>
pi = c Vt •.. Vn and match(x, c)

= C[ea p[x ! l/vl! ... , x !n/vnl 4>
where

x = C[e[et/vl!"" en/vn]] p 4>
p~ = c Vt ••• Vn and match(x, c)

= £[case (e[el/Vlt ... ,en/vn]) of p~ : e~ 1 .. ·1 Pk: eU p 4>
= C[T[case (e[et!Vlt ... ,en/vn]) of p~: e~ 1· .. 1 Pk: ekU p 4>

(by inductive hypothesis)

= Clf' vi· .. vk] p 4>
where

!'vi··· vk = T[case (e[et/Vl!"" en/vn]) of p~ : e~ 1···1 Pk : ek]
and vi ... vk are the free variables in (case (J et •.. en) of Pl : el 1···1 Pk : ek)

::} C[T[case (J et en) of p~ : ell···1 Pk : ekU p 4>

= £[case (J et en) of P~ : e~ 1.. ·1Pk : ek] p 4>

Case for Rule 8:

T[case (case eo of Pt : et 1· .. 1 Pn : en) of P~ : e~ 1 .. ·1 Pk : ek]
= Tlcase eo of

Pt case et of Pl : e~ 1···1 Pk : ek

Pn case en of P~ : e~ 1· .. 1 Pk : eU

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 144

C[case (case eo of PI: el 1.. ·1 Pn: en) of P~ : e~ 1.. ·1 Pk: ek] P if>

C[ea p[x' !1/v~, ... ,x'! m/v:n] if>

where

x' = C[case eo of PI : el 1 ... 1 Pn : en] p if>

P~ = c' v~ •.. v:n and match (x', c')
= C[en p[x' !1/v~, ... ,x' !m/v:n] if>

where

x' = C[ei] p[x !1/v}, ..• , x !l/vl] if>

P~ = c' VI... v:n and match (x', c')
x = Cleo] p if>

Pi = c VI'" VI and match(x, c)
= C[case ei of P~ : e~ 1... 1 Pk : ek1 p[x !1/v}, ... , x! l/vd if>

where

x = Cleo] p if>

Pi = C VI' .. VI and match(x,c)
(since there is no nameclash between the variables in the patterns PI .•. Pn

and the free variables in the expressions e~ •.. ele)

= C[case eo of

PI case el of P~ : e~ 1···1 Pk : ek

Pn : case en of P~ : e~ 1···1 Pk : ek] p if>

= C[T[case eo of

PI case el of P~ : e~ 1· .. 1 Pk : ek

Pn : case en of P~ : e~ 1···1 Pk : ekH p if>

(by inductive hypothesis)

=> C[T[case (case eo of PI: ei 1.··1 Pn: en) of P~ : e~ 1.. ·1 Pk : ekU p if>

= C[case (case eo of PI: el 1 .. ·1 Pn: en) of PI: e~ 1···1 Pk: ek] P if>

o

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 145

C.1.2 Proof of Lemma 5.1.4

Prove: T[e] E tf

The proof is by recursion induction over the transformation rules T.

Base Cases

Case for Rule 1:

T[k] = k

Nothing to prove as k E tf

Case for Rule 2:

T[v] = v
Nothing to prove as v E tf

Inductive Cases

Case for Rule 3:

T[c et ... en] = c T[ell ... T[enl

T[ei] E tf, ViE {l...n}
(by inductive hypothesis)

=> (c T[etl ... T[en]) E tf

=> T[c el ..• en] E tf

Case for Rule 4:

T[f et ... en] = f' vi ... v~

where

= T[e[et/vt! ... ! en/vn]]
where f is defined by f Vt ••• Vn = e

and vi ... v~ are the free variables in (f et ... en)

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 146

(f' v~... vk) E tf

(T[e[et/vI,"" en/vn]]) E tf
(by inductive hypothesis)

::} T[f el ••• en] E tf

Case for Rule 5:

T[case V of p~ : e~ 1 ... 1 p~ : eU
= case V of p~: T[ea 1 ... 1 p~: T[ek]

T[ea E tf, 'V i E {1 ... k}

(by inductive hypothesis)

::} (case V of p~ : T[el] 1 ••• 1 p~ : T[e~D E tf

::} T[ease v of p~ : e~ 1 ... 1 p~ : e~] E tf

Case for Rule 6:

T[ease (c el ..• en) of p~ : e~ 1 ... 1 p~ : e~]

= T[eHel/VI, ... , en/vn]]
where p~ = c VI" .vn

(T[eHel/Vl!"" en/vn]]) E tf
(by inductive hypothesis)

::} T[ease (c ei ... en) of p~ : e~ 1 ••• 1 Pk : ek1 E tf

Case for Rule 7:

T[ease (J el ..• en) of p~ : e~ 1 ... 1 p~: e~] = f' v~ ... v~

where

f' v~ ... v~ = T[ease (e[el/vb" .,en/vnD of p~ : e~ 1 ... 1 p~ : eU
where f is defined by f VI ••• Vn = e

and v~ •.. v~ are the free variables in (case (f el ••• en) of p~ : e~ 1···1 Pk : ek)

f' v~ ... v~ E tf

(T[ease (e[et/vb" .,en/vnD of p~ : ei 1 ... 1 Pk: ekD E tf
(by inductive hypothesis)

::} T[ease (f el ..• en) of pi : e~ 1 .. ·1 Pk : eAJE tf

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 147

Case for Rule 8:

T[case (case eo of Pt: et 1 ••• 1 Pn: en) of P~ : e~ I· •• 1 P~: e~]

= T[case eo of

Pt case et of P~ : e~ 1 ... 1 P~ : e~

Pn case en of P~ : e~ 1 ••• 1 P~ : e~]

(T[case eo of

Pt case el of P~ : e~ 1 ••• 1 P~ : e~

Pn : case en of P~ : e~ 1 ... 1 P~ : e~]) E tf

(by inductive hypothesis)

=? T[case (case eo of Pt: el 1 ••• 1 Pn: en) of P~ : e~ 1 ••• 1 P~: e~] E tf

o

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 148

C.1.3 Proof of Lemma 5.1.5

Assume n[e] is a measure of the number of steps required to reduce the expression e to a fully

forced form. One expression is considered to be more efficient than another if, for every pos-

sible instantiation of the free variables, the first requires fewer steps to reduce than the second.

Prove: n[T[e]] s R[e]
The proof is by recursion induction over the transformation rules T.

Base Cases

Case for Rule 1:

Tlk] = k
Nothing to prove as the expressions are identical.

Case for Rule 2:

Tlv] = v
Nothing to prove as the expressions are identical.

Ind uctive Cases

Case for Rule 3:

TIc el ... en] =
R[T[eill <

=? Ric Tiel]'" TlenH <
=? RIT[e et ... en]] s

e T[el] ... T[en]
n[ei], '7 i E {1 ... n}

(by inductive hypothesis)

R[e et en]
R[e el en]

Case for Rule 4:

Til] I' I Iet ••• en = Vt ••• Vic

where

= T[e[et/vt, ... , en/vn]]
where I is defined by I VI ••• Vn = e

and v~ ... vk are the free variables in (f et ... en)

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 149

< n[f el •••en]
(since e is linear in all variables and

a function call has been removed)

n[T[e[edv}, ... , en/vnl]] < n[e[el/vl,"" en/vn]]
(by inductive hypothesis)

=> n[T[e[edv}, ... , en/vn]]] < n[f el ••• en]
=> n[f' v~ ... vk1 < n[f el ••. en]

(since a function call is introduced only when

another function call has been removed)

< n[f el" .en]

Case for Rule 5:

T[case v of p~: e~ 1 ... 1 p~: e~]
= case v of p~ : T[e~] 1 ••• 1 p~ : T[e~J

n[T[e~]] s n[en, v i E {l...k}
(by inductive hypothesis)

=> n[case v of p~ : T[ei] 1 ... 1 p~ : T[e~J]
~ n[case v of p~ : e~ 1 ... 1 p~ : eU

=> n[T[case v of p~ : e~ 1.··1 p~ : eU]
~ n[case v of p~ : ell· .. 1Pk : ekJ

Case for Rule 6:

T[case (c el ... en) of pi : e~ 1 .. ·1 p~ : eU
= T[eaeI/v}, ... ,en/vn]]

where p~ = C vI ••• vn

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 150

n[eHet/Vb"" en/vnH
< n[case (c ei ... en) of p~ : e~ 1... 1p~ : eU

(since e~is linear in all variables and a

constructor application has been removed)

n[T[eHet/vb"" en/vn]]]
::; n[eHet/vt, ... , en/vn]]

(by inductive hypothesis)

=> n[T[eHet/v}, ... ,en/vn]H
< n[case (c et ... en) of p~ : e~ 1... 1p~ : eU

=> n[T[ease (c et ... en) of p~ : e~ 1 ••• 1 p~: e~H

~ n[ease (c et ... en) of p~ : e~ 1... 1p~ : eU

Case for Rule 7:

T[ease (f et ... en) of p~ : e~ 1 .. ·1 p~ : e~] = I' vi .. ,vk
where

I' vi ... vk = T[ease (e[et/vb"" en/vnD of p~ : e~ 1···1 p~ : elc]
where I is defined by I Vt ... Vn = e

and vi ... vk are the free variables in (case (f et ... en) of p~ : e~ 1···1 Pk : eD

n[ease (e[et/vb' .. ,en/vn)) of p~ : e~ 1 .. ·1 plc: elc]
< n[ease (f et ... en) of p~ : e~ 1 .. ·1 Pk : elc]

(since e is linear in all variables and

a function call has been removed)

n[T[ease (e[et/vt, ... ,en/vn]) of p~ :e~ 1 .. ·1 Pk :elcH

::; n[case (e[et/vb" .,en/vn]) of p~ : e~1.. ·1 Pk : ekl
(by inductive hypothesis)

=> n[T[ease (e[et/vI,"" en/vnl of p~ : e~ 1.. ·1 Pk : e~n
< n[ease (f et .. ·en) of p~ : e~ 1 .. ·1 plc : ekJ

=> n[I' vi· .. vkJ
::; n[case (f et··· en) of p~ : e~ 1···1 Pk : ekJ

(since a function call is introduced only when

another function call has been removed)

=> n[T[case (f et··· en) of p~ : e~ 1 ••• 1 p~ : ek]]
::; n[case (f el·· .en) of p~ : e~ 1···1 Pk: eU

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 151

Case for Rule 8:

T[case (case eo of PI : el 1· .. 1 Pn: en) of pi: ei 1 ... 1 p~: e~]

= T[case eo of

PI case el of pi : ei 1... 1 p~ : e~

Pn case en of pi : ei 1 ... 1 p~ : e~]

'R[case eo of

PI case ei of pi : ei 1 ••• 1 p~ : e~

Pn : case en of pi : ei 1 .. ·1 p~ : eU

:::; 'R[case (case eo of PI: el 1 ... 1 Pn: en) of pi: ei 1 ... 1 p~: e~]

'R[T[case eo of

PI case el of pi : ei 1 ... 1 p~ : e~

Pn : case en of pi : ei 1 ... 1 p~ : e~]]

:::; 'R[case eo of

PI case el of pi : ei 1· .. 1 Pk : e~

Pn : case en of pi : ei 1···1 Pk : e,J
(by inductive hypothesis)

=? 'R[T[case eo of

PI case el of pi : ei 1···1 p~ : ek

Pn : case en of pi : ei 1 ••• 1 p~ : e~]]

:::; 'R[case (case eo of PI: el 1... 1Pn: en) of pi: ei 1···1 p~: ek]

=? 'R[T[case (case eo of PI: el 1···1 Pn: en) of pi: ei 1.. ·1 Pk: ekU

:::; 'R[case (case eo of PI : ell· . ·1 Pn : en) of pi : ei 1···1 Pk : ek]

o

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 152

C.1.4 Proof of Lemma 5.1.10

Prove: VeE dgS(x, y), x :::;:s, y :::;:n:
T[e] = ... T[e/] ... => e' E dgB(s, n)

The proof is by inspection of the transformation rules T

Case for Rule 1:

Tlk] = k
Nothing to prove.

Case for Rule 2:

T[v] = v
Nothing to prove.

Case for Rule 3:

T[c el ... en] = c T[el] ... T[enl

(c el ••• en) E dgB(x,y), x:::;:s, y:::;:n
=> eiEdgS(x-1,y),ViE{1 ... n}
=> e, E dglf(s, n), ViE {1... n}

(since x :::;:s, y :::;:n)

Case for Rule 4:

T[I el ... en] = I' v~. "vk
where

= T[e[el/vll"" en/vnH
where I is defined by I VI ••• Vn = e

and v~ ••• vk are the free variables in (f el ••• en)

(f el ..• en) E dgS(x,y), x:::;:s, y:::;:n
=> ei E dgB(O,y), Vi E {1. .. n}
and e E dgS(s, 1)

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 153

:::} e[eI/vI, ... ,en/vn] E dg8(s,y)
:::} e[et!vl! •.• ,en/vn] E dgll(s,n)

(since y ~ n)

Case for Rule 5:

T[case v of P; : e; 1.. ·1 p,,: e"J

= case v of p; : T[e;] 1 ••• 1 p" : T[e"l

(case v of p; : e; 1 ••• 1 p,,: e,,) E dgll(x,y), x ~ s, y ~ n

:::} e~ E dgll(x - y, y) 'V i E {l. ..k}

:::} e~ E dgll(s,n) 'V i E {l...k}
(since x ~ s, y ~ n)

Case for Rule 6:

T[case (c ei ... en) of p; : e; 1···1 Pk: ek]
= T[ei[et/vl!"" en/vnU

where p~= c VI •• ,Vn

(case (c el ..• en) of P; : e; I. 001 Pk: ek) E dg8(x,y), x ~ s, y::; n
:::} eiEdgll(s:"'1,y-1),'ViE{1 ... n}
and e~ E dgll(x - y,y), 'V i E {loo .k}

:::} eHet!vl!" .,en/vn] E dg8(x - y,y)
(since V1! ... ,Vn ~ Iv)

::} ei[el/Vl!'''' en/vnl E dgll(s, n)
(since x ~ s, y ~ n)

Case for Rule 7:

T[case (f el" .en) of P; : e; I·001Pk : ek1 = I' v~ .. ,vk
where

I' v~ ",vk = T[case (e[et/VI, ... ,en/vn]) of pi: e; 100·1Pk: ek]
where f is defined by f vI ••• Vn = e

and vi ... vk are the free variables in (case (f el ... en) of pi : ei 1.··1 Pk : ek)

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 154

(case (f el" .en) of p~: e~ 1 ... 1 Pk: ek) E dgS(x,y), x::; s, y::; n

=? ei E dg8(O,y-1), ViE {l n}

and e~EdgS(x-y,y),ViE{l k}
and e E dgS(s,l)

=? (case (e[el/Vtt ... ,en/vn)) of p~: e~ 1.. ·1 Pk: ek) E dgS(x,y)

=? (case (e[et/vI'"'' en/vnD of pi : ei 1 ... 1 Pk : ek) E dgS(s, n)

(since x ~ s, y ~ n)

Case for Rule 8:

T[case (case eo of PI: el 1 ••• 1 Pn: en) of p~: e~ 1 .. ·1 Pk: ek]

= T[case eo of

PI case el of p~ : e~ 1 .. ·1 Pk : ek

Pn : case en of p~ : ei 1···1 Pk : ek]

(case (case eo of PI: ei 1 .. ·1 Pn: en) of p~ : ei 1 .. ·1 Pk: ek) E dg'(x,y),
x ~ s, y ~ n

=? eiEdgS(s-y+1,y-1),ViE{1 ... n}

and e~ E dgS(x - y,y), ViE {1 ... k}

and eo E dglJ(O, y - 1)

=? (case eo of

PI case el of p~ : e~ 1···1 Pk : ek

Pn : case en of pi: ei 1···1 Pk: ek) E dg8(x,y)

=? (case eo of

f r , I 1 1 p' • e'PI case el 0 Pl' el .. . k' k

v« : case en of p~: e~ 1 ... 1 Pk: ek) E dg8(s,n)
(since x s s, y ::; n)

o

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 155

C.1.5 Proof of Lemma 5.1.11

Prove: VeE dg'(x, y), x 2: 0, 8 > 0, Y > 0:

S[e] ~ x + (s X (y - 1»
(Lemma 5.1.11 is a corollary of this)

The proof is by induction on the variable y.

Base Cases: y = 1

The proof of the base cases is by induction on the variable z.

Base Cases: x = 0

Case 1: dg'(x, y) ::= k if x 2: 0 and y > 0

S[k] = 0

~ x+(s x (y-1»
(since x = 0, y = 1 and 8 > 0)

Case 2: dg'(x, y) ::= v if x 2: 0 and y> 0

S[v] = 0

~ x + (8 X (y - 1»
(since x = 0, y = 1 and 8 > 0)

Inductive Cases: e > 0

Case 1: dg'(x, y) ::= c dg~(x - 1,y) .•. dg~(x - 1,y) if x > 0 and u > 0

S[c el" ,en] = 1+ max(S[eb .," en])
~ 1+ (x - 1)+ (s X (y - 1», if (c ei ••• en) E dg'(x, y)

(by inductive hypothesis for x)
~ x+(sx(y-1»

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 156

Case 2: dg8(x, y) ::= f dgi(O, y) ... dg~(O, y) if x > 0 and y > 0

where f is defined by f vI ... Vn = e and e E dg8(s,l)

SI! el" .en] = 1+ max(S[etJ, ... , S[enD
= l,if(jeI ... en) Edg"(x,y)

~ x+(s X (y-l»

(since x > O,Y = 1)

Case 3: dg8(x, y) ::= case dg~(O, y) of PI : dgi(x - y, y) 1 ••• 1 Pk : dgk(x - y, y)

if x > 0 and y > 0

S[case eo of PI: el 1 ... 1 Pk: ek]
= 1+ max(S[eo], ... , S[ek])
~ 1+ «x - y) + (s X (y - 1»»,

if (case eo of PI: el 1 ... 1 Pk: ek) E dg8(x,y)

(by inductive hypothesis for x)

~ x + (s X (y - 1»
(since y = 1)

Case 4: dgll(x, y) ::= dg.9(x - 1,y) if z > 0 and y > 0

S[e] ~ x-I + (s X (y - 1», VeE dgll(x - 1, y)
(by inductive hypothesis for x)

~ x+(sx(y-l»

Inductive Cases: u > 1

The proof of the inductive cases is by induction on the variable x.

Base Cases: x = 0

Case 1: dgll(x, y) ::= k if x ~ 0 and y > 0

APPENDIX C, PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 157

Slk] = 0

~ x+(sx(y-l))
(since x = 0, y> 1 and s > 0)

Case 2: dgll(x, y) ::= V if x 2: 0 and s > 0

Slv] = 0

~ x+(sx(y-l))
(since x = 0, y > 0 and s > 0)

Inductive Cases: x > 0

Case 1: dgll(x, y) ::= c dgi(x - 1,y) ... dg~(x - 1,y) if x > 0 and y > 0

Sic el" .en] = 1+ max(S[eb"" en])
< 1+ (x - 1) + (s X (y - 1)), if (c el ... en) E dgll(x, y)

(by inductive hypothesis for x)

~ x+(sx(y-l))

Case 2: dgll(x, y) ::= ! dgi(O, y) ... dg~(O, y) if x > 0 and y > 0

where! is defined by ! VI ••• Vn = e and e E dgll(s,1)

SI! el ... en] = 1+ max(S[et], ... , S[enD
< 1+ s + (s X (y - 2)), if (f et ... en) E dgll(x,y)

(by inductive hypothesis for y)

~ x + (s X (y - 1))

(since x > 0)

Case 3: dgll(x, y) ::= case dgo(O, y) of Pt : dgi(x - y, y) 1· .. 1 Pk : dgZ(x - y, y)
if x > 0 and y > 0

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 158

S[case eo of PI: el 1 ... 1 Pk: ek]
= 1+ max(S[eo), ••. , S[ek))
~ 1+ max«s + (s X (y - 2)),«x - y) + (s x (y - 1)),

if(case eo of PI :el 1 ... 1 Pk :ek) E dg'(x,y)
(by inductive hypotheses for x and y)

< x + (s x (y - 1»

(since x > 0, y > 1)

Case 4: dg'(x,y) ::= dg'(x -l,y) if x> 0 and y > 0

S[e) ~ x - 1+ (s x (y - 1», VeE dg'(x - 1, y)
(by inductive hypothesis for x)

< x+(sx(y-l))

Case 5: dg'(x, y) ::= fg'(s, y - 1) if x ~ 0 and y> 1

S[e) ~ s + (s X (y - 2)), VeE fg'(s,y - 1)

(by inductive hypothesis for y, since e E fg'(s, y - 1) => e E dg'(s, y - 1))

~ sX(Y-l)
~ x + (s x (y - 1»

(since x > 0)

o

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 159

C.2 Proof of Extended Deforestation Theorem

C.2.1 Proof of Lemma 5.2.12

Prove: 'VeE edgB,n(x, y, z), x ::;s, y ::; I, z ::;n:
T[e] = ... T[e'] ... => e' E edgS,n(s,l,n)

The proof is by inspection of the transformation rules T

Case for Rule 1:

T[k] = k
Nothing to prove.

Case for Rule 2:

T[v] = v
Nothing to prove.

Case for Rule 3:

T[c el.' .en] = c T[ed ... T[enl

(c el •••en) E edgS,n(x, y, z), x ::;s, y ::; I, z ::;n
=> ei E edgB,n(x -l,y,z), 'V i E {l ... n}

=> ei E edgB,n(s, I, n), 'V i E {l...n}
(since x s s, y s I, z s n)

Case for Rule 4:

T(f el" .en] = I' v~... v~
where

= T[e[etJvl!"" en/vnU
where I is defined by I VI ••• Vn = e

and v~ ... v~ are the free variables in (f el ... en)

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 160

(f el ... en) E edg3,n(x, y, z), x :::;s, y :::;I, z :::;n
=> e E edg3,n(s, 0, 1)

and ei E v,
E edg3,n(0, 0, z),

if y = /
if 0 :::;y < / and ei is a transient structure

E edg"n(x -1,y,z), if 0:::; y < / and ej is not a transient structure

=> (e[et/v1! •.• ,en/vnD Eedg"n(s,0,1), ify=/
E edg3,n(s,y+ 1,z), if 0:::; y < /

(since only transient structures can be the selectors in case expressions)

=> (e[et/vlt ... ,en/vn]) E edg"n(s,/,n)
(since y s I, z s n)

Case for Rule 5:

T[case v of pi : ei 1· .. 1 PI. : ek]
= case v of pi : T[eill .. ·1 PI. : T[ekl

(case V of pi: etl ... 1 PI.: ek) E edg3,n(x,y,z), x:::; s, y:::; t. z:::; n
=> e~ E edg"n(x - z, y, z), ViE {I ... k}
=> e~ E edg"n(s,/,n), ViE {l ... k}

(since x :::;s, y:::; I, z :::;n)

Case for Rule 6:

T(case (c et ... en) of pi: ei 1 .. ·1 PI. : ekJ
= T[eHet/Vb'''' en/vn]]

where p~= c VI" 'Vn

(case (c et ... en) of pi : etl. ·.1 PI.: ek) E edg3,n(x,y,z), x:::; s, y:::; I, z:::; n
=> ei E edg"n(s -l,/,z -1), ViE {l ... n}
and e~ E edg3,n(x-z,y,z), Vi E {l .•. k}
=> (eHet/vb" .,en/vn]) E edg"n(x - z,y,z)

(since VI" .tln ~ /v)

=> (e~[et/vlt ... ,en/Vn]) E edg"n(s,/,n)
(since x :::; s, y :::; /, z:::; n)

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 161

Case for Rule 7:

T[case (J et ... en) of P~ : e~ 1 .. ·1 Pk: ek1 = I' v~ .. ,vk
where

where I is defined by I VI ••• Vn = e

and v~ ... vk are the free variables in (case (f et ... en) of P~ : e~ 1···1 Pk : ek)

(case (f et ... en) of P~: e~ 1 1P~: e~} E edgB,n(x,y,z), x ~ s, y ~ I, z ~ n

::} e~ E edgB,n(x-z,y,z), 'V i E {l k}

and (f et ... en) E edg"n(x',y',z'), x' ~ s, y' ~ I, z' < z
and e E edg"n(s,O,I)
::} ej E u, if y' = I

E edg"n(O, 0, z' - 1), if 0 ~ y' < I and ej is a transient structure

E edg"n(x' - 1, y', z'}, if 0 ~ y' < I and e, is not a transient structure

::} (e[etlvI! ... ,en/vnD Eedg",n(s,O,I), ify'=1
E edgB,n(s, y' + 1, z'), if 0 ~ y' < I

(since only transient structures can be the selectors in case expressions)

::} (e[etl Vb ..• , en/ vnD E edg"n(s, I, z - 1)

=> (case (e[eI/VI!" .,en/vn]) of P~ : e~ 1 1 Pk: e~) E edg"n(x,y,z)
=> (case (e[et/vlt ... ,en/vn]) of P~: ell 1Pk: ek) E edgB,n(s,I, n)

(since x ~ s, y ~ I, z ~ n)

Case for Rule 8:

T[case (case eo of Pt : et 1 .. ·1 Pn : en) of P~ : e~ 1 .. ·1 Pk : ek]
= T[case eo of

PI case el of P~ : et 1···1 P~ : ek

Pn case en of PI : el 1···1 Pk : ekJ

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 162

(case (case eo of Pt: et 1 ... 1 Pn: en) of p~ : e~ 1· .. 1 p~: eD

E edg"n(x, y, z), x :5 s, y :5 I, z :5 n
=? e, E edgll,n(s - z + 1, /, z - 1), ViE {1. .. n}

and e~ E edgll,n(x - z,y,z), ViE {1. .. k}

and eo E edg'l,n(o, 0, z - 1)

=? (case eo of
Pl case et of p~ : ei 1 ••• 1 p~ : e~

Pn : case en of p~ : ei 1 ••• 1 p~ : e~) E edg"n(x,y,z)

=? (case eo of
Pl case et of pi : ei 1 ... 1 p~ : e~

Pn : case en of pi : ei 1 ••• 1 p~ : ek) E edgll,n(s, /, n)
(since x :5 s, y :5 /, z :5 n)

o

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 163

C.2.2 Proof of Lemma 5.2.13

Prove: VeE edg··n(x,y,z), x 2: 0, s > 0, y::; 0, f 2: 0, z > 0:

S[e] ::; x + (s x y) + (s x (f + 1) X (z - 1»
(Lemma 5.3.9 is a corollary of this)

The proof is by induction on the variable z.

Base Cases: z = 1

The proof of the base cases is by induction on the variable y.

Base Cases: y = 0

The proof of the base cases is by induction on the variable x.

Base Cases: x = 0

Case 1: edg··n(x,y,z) ::= k if x 2: 0, y ~ 0 and z> 0

S[k) = 0

::; x + (s X y) + (s X (f + 1)X (z - 1»
(since x = 0, y = 0, z = I, s > 0 and f ~ 0)

Case 2: edg··n(x, y, z) ::= v if x ~ 0, y ~ 0 and z > 0

S[v] = 0

::; x + (s X y) + (s X (f + 1)X (z - 1»
(since x = 0, y = 0, z = 1, s > 0 and f ~ 0)

Inductive Cases: x> 0

Case 1: edg··n(x, y, z) ::= c edg~·n(x - 1,y, z) ... edg~·n(x - 1,y, z)

if x > 0, y ~ 0 and z > 0

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 164

Src ('1" '('n] = 1+ max(S[el], ... , S[en])
~ 1+ (x - 1)+ (s x y) + (s X (f + 1)x (z - 1»,

if (c el.' .en) E edgB,n(x, y, z)

(by inductive hypothesis for x)

~ x + (s X y) + (s X (f + 1) X (z - 1»

Case 2: cdg·,n(x, y, z) ::= leI ... en if x > 0, °~y < I and z > °
where / is defined by I VI ••• Vn = e and e E edgB,n(s, 0, 1)

and t'i E t'dg,·n(o,O,z), if ei is a transient structure

E cdg·,n(x -1,y,z), otherwise

S[I t'l ••• en] = 1+ max(S[et], .. ,' S[en])
~ 1+ (x - 1)+ (s x (y - 1» + (s x f x (z - 1»),

if (f et ..• en) E edgB,n(x,y,z)

(by inductive hypothesis for x)

~ x + (s X y) + (s X (f + 1) x (z - 1»

Case 3: edg"n(x,y,z) ::= / VI,,'Vn if x> 0, y = I and z > °
where f is defined by I v~ .. ,v~ = e and e E edgB,n(s,O,I)

SrI VI •.. Vn] = 1+ max(S[vI], .. ,' Slvn])

= 1
~ x + (s X y) + (s x (f + 1) x (z - 1»

(since x > 0, y = 0, Z = 1, s > ° and f ~ 0)

Case 4: edg"n(x, y, z) ::=

case edg~·n(O,O,z) of PI : edg~,n(x - z,y,z) 1 ... 1 Pk: edgz,n(x - z,y,z)

if x > 0, y ~ ° and z > °

APPF.,Vorx C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 165

S[case to or PI : el 1.··1 Pie : tie]
= 1 + ma.r(S[eo], ••. , S[ek])

~ 1 + (x - z) + (s X y) + (s X (f + 1) X (z - 1))),
if case to of PI : tl 1.•. 1 Pk : ek E edg3,,,(x,y,z)

(by inductive hypothesis for x)
~ x + (s X y) + (s X (f + 1) x (z - 1))

(since z = 1)

Case 5: edg·'''(x,y,z) ::= edg""(x -1,y,z) if x> 0, y ~ 0 and z > 0

S[fJ ~ (x - 1)+ (s x y) + (s X (f + 1) x (z - 1)), VeE edgll,,,(x - 1, y, z)
(by inductive hypothesis for x)

~ x + (s x y) + (s X (f + 1) x (z - 1»

Inductive Cases: u > 0

The proof of the inductive cases is by induction on the variable z :

Base Cases: x = 0

Case 1: cdg""(x,y,z) ::= k if x ~ 0, y ~ 0 and z » 0

S[Q = 0

~ x + (s X y) + (s X (f + 1) X (z - 1»
(since x = 0, y > 0, z = 1, s > 0 and f ~ 0)

Case 2: cdg·'''(x,y,z) ::= t1 if x ~ 0, y ~ 0 and z > 0

S[v] = 0

~ x + (s X y) + (s X (f + 1) X (z - 1»
(since x = 0, 11 > 0, Z = 1, s > 0 and f ~ 0)

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 166

Inductive Cases: z > 0

Case 1: edgB,n(x, y, z) ::= c edg:,n(x - 1, y, z)., ,edg!,n(x - 1, y, z)

if x > 0, y ~ 0 and z > 0

S[c el '" en] = 1+ max(S[eI], "" S[enD
~ 1+ (x - 1)+ (s X y) + (s X (f + 1) X (z - 1»,

if (c el" ,en) E edgB,n(x,y,z)

(by inductive hypothesis for x)
< x + (s X y) + (s X (f + 1) X (z - 1»

Case 2: edgB,n(x, y, z) ::= f el" ,en if x > 0, 0 ~ y < f and z > 0

where f is defined by f vI'" Vn = e and e E edg8,n(s, 0,1)

and ei E edg8,n(O, 0, z), if ei is a transient structure

E edg8,n(x - 1, y, z), otherwise

S[f el ",en] = 1+ max(S[eI], "" S[en])
~ 1+ (x - 1)+ (s X y) + (s X (f + 1)X (z - 1»),

if (f el", en) E edg8,n(x, y, z)

(by inductive hypothesis for x)

~ x+(sxy)+(sx(f+l)x(z-l»

Case 3: edg8,n(x,y,z) ::= f VI" 'Vn if x> 0, y = f and z > 0

where f is defined by f vi ",V~ = e and e E edg",n(s,O,1)

S[f VI" ,Vn] = 1+ max(S[vd, "" S[VnD
= 1

~ x + (s X y» + (s X (f + 1) X (z - 1»
(since x > 0, y > 0, z = 1, s > 0 and f ~ 0)

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 167

Case 4: edgs,n(x, y, z) ::=

case edgg,n(O,O,z) of PI : edg~,n(x - z,y,z) 1 ••• 1 Pk: edgz,n(x - z,y,z)
if x > 0, Y ~ 0 and z > 0

S[case eo of PI : et 1 •• ·1 Pk : ek]
= 1+ max(S[eo], ... , S[ek])
< 1 + (x - z) + (s X y) + (s X (f + 1) X (z - 1))),

if case eo of PI: el I ••• 1 Pk: ek E edgs.n(x,y,z)
(by inductive hypothesis for x)

~ x + (s X y) + (s X (f + 1) X (z - 1))

(since x > 0, Y > 0, z = 1, s » 0)

Case 5: edgs,n(x,y,z) ::= edgs,n(x -l,y,z) if x> 0, y ~ 0 and z > 0

S[e] < (x -1) + (s X y) + (s X (f + 1) X (z -1)), VeE edgs,n(x -l,y,z)
(by inductive hypothesis for x)

< x + (s X y) + (s X (f + 1) X (z - 1))

Case 6: edgs,n(x,y,z) ::= edgs,n(s,y -l,z) if x ~ 0, y > 0 and z > 0

S[e] < s + (s X (y - 1))+ (s X (f + 1) X (z - 1)), VeE edgs,n(s, y - 1, z)
(by inductive hypothesis for y)

~ (s X y) + (s X (f + 1) X (z - 1))

~ x + (s X y) + (s X (f + 1) X (z - 1))

(since x > 0)

Inductive Cases: z > 1

The proof of the inductive cases is by induction on the variable y.

Base Cases: y = 0

The proof of the base cases is by induction on the variable x.

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 168

Base Cases: x = 0

Case 1: edgs,n(x, V, z) ::= k if x ~ 0, V ~ 0 and z » 0

S[k] = 0

< x + (s X V) + (s x (J + 1) x (z - 1»
(since x = 0, V = 0, z > 1, s > 0 and f ~ 0)

Case 2: edgs,n(x, V, z) ::= V if x ~ 0, V ~ 0 and z > 0

S[V] = 0

$ x + (s X V) + (s x (J + 1) x (z - 1»

(since x = 0, V = 0, z > 1, s > 0 and f ~ 0)

Inductive Cases: x> 0

Case 1: edgs,n(x, V, z) ::= c edg~,n(x - 1,V, z) ... edg~,n(x - 1,V, z)

if x > 0, V ~ 0 and z > 0

S[c et ... en] = 1+ max(S[ed, ... , S[en])

< 1+ (x - 1)+ (s x V) + (s x (J + 1) x (z - 1»,
if (c et ..• en) E edgs,n(x, V, z)

(by inductive hypothesis for x)

< x + (s X V) + (s x (f + 1) x (z - 1»

Case 2: edg8,n(x, V, z) ::= f et ••. en if x > 0, 0 ::;V < f and z > 0

where f is defined by f VI ••• vn = e and e E edgs,n(s, 0, 1)

and ei E edgs,n(o, 0, z), if ei is a transient structure

E edgs,n(x -l,V,z), otherwise

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 169

S[! ei •.. en] = 1+ max(S[eI]' ... , S[en])

< 1+ max«s + (s X J) + (s X (f + 1) X (z - 2»),
«x - 1)+ (s X y) + (s X (f + 1)X (z - 1»»,

if (f eI ... en) E edg8•n(x, y, z)

(by inductive hypotheses for x and z)
< 1+ (x - 1)+ (s X y) + (s X (f + 1) X (z - 1»

(since x > 0, y = 0)

~ x+(sxy)+(sx(f+1)x(z-l»

Case 3: edgll.n(x,y,z) ::= f VI"'Vn if x> 0, y = f and z > 0

where f is defined by f v{ .•. v~ = e and e E edg8
•
n(s, 0, 1)

S[f VI" .Vn] = 1+ max(S[vt], ... , S[vnD

= 1

< x + (s X y) + (s X (f + 1) x (z - 1»
(since x > 0, y = 0, z > 1, s > 0 and f 2: 0)

Case 4: edgll.n(x, y, z) ::=

case edg~·n(O,O,z) of Pt: edg:·n(x - z,y,z) 1 ••• 1 Pk: edgZ·n(x - z,y,z)

if x > 0, y 2: 0 and z > 0

S[case eo of Pt: et 1 ••• 1 Pk: ek]

= 1+ max(S[eo], ... , S[ek])

< 1 + max«s + (s X J) + (s X (f + 1) X (z - 2»),
«x - z) + (s X y) + (s X (f + 1) X (z - 1»»,

if case eo of PI: et 1 ... 1 Pk: ek E edgs.n(x,y,z)

(by inductive hypotheses for x and z)
~ 1 + (x - z) + (s X y) + (s X (f + 1) X (z - 1»

(since x > 0, y = 0, s > 0)

~ x + (s X y) + (s X (f + 1) X (z - 1»
(since z > 1)

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 170

Case 5: edgs.n(x,y,z) ::= edgB.n(x -1,y,z) if x> 0, y ~ 0 and z > 0

S[e] :5 (x -1) + (s X y) + (s X (f + 1) X (z -1)), VeE edgs.n(x -1,y,z)
(by inductive hypothesis for x)

< x + (s X y) + (s X (f + 1) X (z - 1))

Inductive Cases: y> 0

The proof of the inductive cases is by induction on the variable x.

Base Cases: x = 0

Case 1: edgs.n(x, y, z) ::= k if x ~ 0, y ~ 0 and z » 0

S[k] = 0

:5 x + (s X y) + (s X (f + 1) X (z - 1»
(since x = 0, y > 0, z > 1, s > 0 and f ~ 0)

Case 2: edgs.n(x, y, z) ::= v if x ~ 0, y ~ 0 and z > 0

S[v] = 0

< x + (s X y) + (s X (f + 1) X (z - 1»
(since x = 0, y > 0, z > 1, s > ° and f ;:::0)

Inductive Cases: x > 0

Case 1: edgs.n(x, y, z) ::= c edg~·n(x - 1,y, z) .. ,edg~·n(x - 1,y, z)
if x > 0, y ;:::° and z > 0

SIc el" ,en] = 1+ max(S[el], "" S[enD
:5 1+ (x - 1)+ (s X y) + (s X (f + 1) X (z - 1)),

if (c el" ,en) E edgB.n(x,y,z)
(by inductive hypothesis for x)

:5 x + (s X y) + (s X (f + 1) X (z - 1»

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 171

Case 2: edgs,n(x,y,z) ::= f el ... en if x> 0, °$ y < f and z > °
where f is defined by f VI ••• Vn = e and e E edgs,n(s, 0,1)

and e, E edgs,n(o, 0, z), if ej is a transient structure

E edgB,n(x - 1, y, z), otherwise

S[f el ••• en] = 1+ max(S[ed, ... , S[en])
$ 1+ max((s + (s X f) + (s X (f + 1) X (z - 2))),

((x - 1) + (s X y) + (s X (f + 1) X (z -1»»,
if (f el .•• en) E edgB,n(x,y,z)

(by inductive hypotheses for x and z)
$ 1+ (x - 1)+ (s X y) + (s X (f + 1) X (z - 1»

(since x> 0, y > 0)

$ x + (s X y) + (s X (f + 1) X (z - 1»

Case 3: edgiJ,n(x,y,z) ::= f VI ••• Vn if x> 0, y = f and z > °
where f is defined by f v~ ... v~ = e and e E edgB,n(s, 0,1)

S[f VI ••• vn] = 1+ max(S[vd, ... , S[vn])

= 1

$ x + (s X y) + (s X (f + 1) X (z - 1»
(since x > 0, y > 0, z > 1, s > ° and f 2:: 0)

Case 4: edgB,n(x, y, z) ::=

case edgg,n(O,O,z) of PI : edgr,n(x - z,y,z) 1 ••• 1 Pk: edgz,n(x - z,y,z)

if x > 0, y 2:: ° and z > °

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 172

S[case eo of Pt: et 1· .. 1 Pk: ek]
= 1+ max(S[eo], ... , S[ek])
< 1 + max « s + (s X f)+ (s X (J + 1) X (z - 2))),

«x - z) + (s X y) + (s X (J + 1) X (z - 1»»,
if case eo of Pt: et 1 ••• 1 Pk: ek E edgs,n(x,y,z)
(by inductive hypotheses for x and z)

< 1 + (x - z) + (s X y) + (s X (J + 1) X (z - 1»
(since x > 0, y > 0, s > 0)

< x + (s X y) + (s X (J + 1) X (z - 1»
(since z> 1)

Case 5: edgs,n(x, y, z) ::= edgB,n(x - 1,y, z) if x> 0, y;::: ° and z > 0

SleD ::; (x -1) + (s X y) + (s X (J + 1) X (z -1», VeE edgB,n(x -1,y,z)
(by inductive hypothesis for x)

::; x + (s X y) + (s X (J + 1) X (z - 1»

Case 6: edgs,n(x, y,z) ::= edgs,n(s, y - 1,z) if x;::: 0, y > 0 and z > 0

SleD < s + (s X (y -1» + (s X (J + 1) X (z - 1», VeE edgB,n(s, y - 1,z)
(by inductive hypothesis for y)

< (s X y) + (s X (J + 1) X (z - 1»
::; x + (s X y) + (s X (J + 1) X (z - 1»

(since x > 0)

Case 7: edg8,n(x, y, z) ::= elgB,n(s, I, z - 1) if x ;:::0, y ;:::0 and z > 1

S[e] ::; s + (s X f)+ (s X (J + 1) X (z - 2», VeE elg8,n(s, I, z - 1)
(by inductive hypothesis for z, since

e E elgB,n(s,l,z-l) => e E edg8,n(s,l,z-l»
< (s X (f + 1) X (z - 1»
::; z + (s X y) + (s X (J + 1) X (z - 1»

(since x > 0, y > 0, s > 0)

o

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 173

C.3 Proof of Generalised Deforestation Theorem

C.3.1 Proof of Lemma 5.3.3

In order to prove Lemma 5.3.3, the proof of Lemma 5.1.3 must be extended to include the

three new transformation rules. The following inductive cases must be added to the recursion

induction proof of Lemma 5.1.3.

Case for Rule 9:

T[b el ... en]

= B[b] (£[eI] P ¢) ... (£[en] P ¢)

= B[b] (£[T[ed] p ¢) ... (£[T[enH P ¢)

(by inductive hypothesis)

= £[b T[eIH ... T[enH p ¢
::} £[T[b el ... enH p ¢ = £[b el ... en] P ¢

Case for Rule 10:

T[case (b el ... en) of pi : ei 1 .. ·1 Pk : ek]
= case (b T[eI]'" T[en]) of pi : T[ei] , .•. , Pk : T[eU

£[case (b eI ... en) of pi: ei 1 .. ·1 Pk: ek] P ¢
= £[ei] p[x !l/v}, ... , x !n/vnl ¢

where

x = £[beI ... en]p¢
p~ = C VI. "Vn and match(x,c)

= £[ei] p[x ! l/v}, ... , x !n/vnl ¢

where

x = B[b] (£[eI] P ¢) ... (£[en] P ¢)

pi = C VI •• ,vn and match(x,c)

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 174

= C[T[e~n p[x !1/vlt ... , z] n/vnl 4>

where

x = 8[b] (C[T[el]] P 4» ..• (C[T[en]] P 4»

p~ = C VI ..• Vn and match(x,c)

(by inductive hypothesis)

= C[case (b TIel] ... T[en]) of PI : T[el] 1···1 Pk : T[ekH p 4>

=> C[T[case (b el ... en) of PI : el 1.. ·1 Pk : ek]] P 4>

= C[case (b ei ... en) of PI: ell .. ·1 Pk: ek] P 4>

Case for Rule 11:

T[let V = eo in el] = let V = T[eo] in T[el]

C[let v = eo in el] P ¢

= C[T[ed] p[(C[T[eoH p 4»/vl 4>
(by inductive hypothesis)

= C[let V = T[eol in T[eIU P ¢

=> C[T[let v = eo in ell] P ¢ = C[let v = eo in el] P ¢

Case for Rule 12:

T[case (let v = eo in ed of PI: ell ... 1 Pk: ek]
= let v = T[eo] in T[case el of PI : el 1 ••• 1 Pk : ek]

C[case (let V = eo in et) of PI : el 1 ... 1 Pk : ekJ P ¢

= C[en p[x ! l/VI,'''' x !n/vnl 4>
where

x = C[let v = eo in ed p 4>

pi = c VI •• ,vn and match(x,c)

= C[ei] p[x ! l/v}, ... , z] n/vnJ </J

where

x = [(et} p[(Cleol p </J)/v] </J

P: = CVl"'v" andmatch(x,c)

= C(case el of P~ : ei , ... , p~: eU p[(£[eoJ p ~)/vJ ¢

(since v does not occur free in e~ ... cD

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 175

= [[T[ease et of p~ : e~ 1 ••• 1 p~ : e~]] p[([[T[eoH p 4»/v] 4>
(by inductive hypothesis)

= [[let v = T[eo1 in T[ease et of p~ : e~ 1 ••• 1 p~ : e~n p 4>

::} [[T[ease (let v = eo in ed of p~ : e~ 1 ••• 1 p~ : e~n p 4>

= [[case (let v = eo in et) of p~: e~ 1 ... 1 p~: e~] p 4>

o

C.3.2 Proof of Lemma 5.3.4

In order to prove Lemma 5.3.4, the proof of Lemma 5.1.5 must be extended to include the

three new transformation rules. The following inductive cases must be added to the recursion

induction proof of Lemma 5.1.5.

Case for Rule 9:

T[b el ... en] = b T[etJ ... T[en1

n[T[eiH ~ n[ed, ViE {l...n}
(by inductive hypothesis)

::} n[b T[el] T[enH < n[b el en]
::} n[T[b el en]] s n[b el en]

Case for Rule 10:

T[ease (b el ... en) of p~ : e~ 1 1 p~ : e~]
= case (b T[ed T[enD of p~ :T[e~II ... 1 p~ : T[eU

n[T[eiH < n[ed, ViE {I ... n}
(by inductive hypothesis)

n[T[e~n s n[en, ViE {l...k}
(by inductive hypothesis)

::} n[ease (b T[el]'" T[en]) of p~ : T[eU 1 ••• 1 p~ : T[e~n
~ n[ease (b el ... en) of p~ : e~ 1 ... 1 p~ : e~]

::} n[T[ease (b el ... en) of p~ : e~ 1 ••• 1 p~ : e~]]
~ n[ease (b el ... en) of p~ : e~ 1 ... 1 p~ : ekJ

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 176

Case for Rule 11:

T[let v = eo in et] let v = T[eo] in T[eIl

n[T[eiU ~ n[ed, 'V i E {D, I}
(by inductive hypothesis)

=> n[let v = T[eo] in T[et]]
~ n[let v = eo in ed

=> n[T[let v = eo in etl]
:5 n[let v = eo in el]

Case for Rule 12:

T[case (let v = eo in el) of p~ : ei 1···1 pic : eic]
= let v = T[eo] in T[case el of pi : ei 1···1 pic : eic]

n[let v = eo in case el of pi : ei 1.. ·1 pic : e~J
:5 n[case (let v = eo in er) of pi : ei 1.. ·1 pic: eic]

n[T[let v = eo in case el of pi : ei 1···1 pic : eic]]
:5 n[let v = eo in case el of p~ : ei 1.. ·1pic : elc]

(by inductive hypothesis)

=> n[T[let v = eo in case el of p~ : e~ 1···1 pic : eic]]
~ n[case (let v = eo in ed of pi : ei 1···1 Pk: ekJ

=> n[T[case (let v = eo in et) of pi : ei 1···1 pic : eic]]
:5 n[case (let v = eo in el) of p~ : ei 1···1Pk : ek1

o

C.3.3 Proof of Lemma 5.3.8

In order to prove Lemma 5.3.8, the proof of Lemma 5.2.12 must be extended to include the

three new transformation rules. The following inductive cases must be added to the proof of

Lemma 5.2.12.

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 177

Case for Rule 9:

(b ei ••• en) E edgB.n(x, V, z), x ~ s, V ~ I, z ~ n

=> ei E edgB.n(x - 1, v, z), ViE {I ... n}

=> ei E edgB.n(s, I, n), ViE {l...n}

(since x ~ s, V ~ I, z ~ n)

Case for Rule 10:

T[case (b el ... en) of P~ : e~ 1 ... 1 P~ : ek]

= case (b T[el]'" T[enD of p~ :T[ei] 1 ... 1 p~ : T[eU

(case (b el ... en) of P~ : e~ 1 ... 1 P~: e~) E edgB.n(x,V,z), x ~ s, V ~ I, z ~ n

=> ei E edgs.n(s -l,V,z-l), ViE {l ... n}

and e~EedgB.n(x-z,V,z),ViE{l ... k}

=> ei E edgs.n(s,/,n), ViE {1 n}

and e~ E edgs.n(s,l,n), Vi E{l k}

(since x ~ s, V ~ I, z s n)

Case for Rule 11:

T[let v = eo in el] = let v = T[eol in T[el]

(let v = eo in et} E edgB.n(x,y,z), x ~ s, y ~ I, z ~ n

=> et E edgs.n(x - 1, v, z), ViE {O,l}

=> ei E edgB.n(s, I, n), ViE {O,l}

(since x s s, y s I, z s n)

Case for Rule 12:

T[case (let v = eo in et) of P~ : e~ 1 ••• 1 P~ : ek]

= let v = T[eo] in T[case el of P~ : e~ 1···1 PI. : ek]

APPENDIX C. PROOFS FOR COMPILE-TIME GARBAGE AVOIDANCE 178

(case (let v = eo in el) of P~ : e~ 1 ... 1 Pk: ek) E edg8•n(x,y,z),

x S s, y SI, z S n

=} ei E edg8•n(s -l,l,z -1), 'r/ i E {O,l}

and e~ E edg8•n(x - z, y, z), 'r/ i E {I ... k}
=} (case el of P~ : e~ 1 ... 1 PA:: eA:) E edg8•n(x,y,z)

=} eo E edg8•n(s, I, n)
and (case el of P~ : e~ 1 ... 1 PA:: eA:) E edgll.n(s,l,n)

(since x S s, y S I, z S n)

o

"

, '-.

