
Declassification: Transforming Java

Programs to Remove Intermediate Classes

Bernadette Power B Sc

Submitted in fulfillment of the requirement for the degree of Master

of Science in Computer Applications

Dublin City University

Supervisor Dr G W Hamilton

School o f Computer Applications

February 2003

Declaration

I hereby certify that this material, which I now submit for assessment on the
programme of study leading to the award of degree of master of science is entirely
my own work and has not been taken from the work of others save and to the extent
that such work has been cited and acknowledged within the text of my work.

ID No.: (l £ CH 0 5 k (:i

Date: O b ~ k f 3 0 0 3

Table of Contents

Chapter 1 Introduction 1
1 1 Features of object-onented languages 1
1 2 The Java Language 3
1 3 Garbage Collection Systems 4
1 4 Uniform verses Non-Uniform techniques 6
1 5 Optimizing Memory Usage 7
1 6 Other optimization techniques 8
1 7 The Declassification Technique 10
1 8 Summary 12

Chapter 2 Compile - Time Garbage Collection 14
2 1 Functional languages 14

2 11 Compile-Time Garbage Marking 15
2 1 2 Explicit Deallocation 17
2 13 Destructive Allocation 18
2 14 Comparison of the different functional techniques 20

2 14 1 Compile-time garbage marking 20
2 14 2 Explict Deallocation 20
2 14 3 Destructive Allocation 21

2 2 Object-Onented Languages 22
2 2 1 Compile-Time Garbage Marking 22
2 2 2 Explicit Deallocation 24
2 2 3 Comparison of the different object-oriented techniques 26

2 2 3 1 Compile-time garbage marking 26
2 2 3 2 Explicit Deallocation 27

2 3 Benefits of Compile-Time Garbage Collection techniques 28
2 4 Summary 29

Chapter 3 Compile-Time Garbage Avoidance 30
3 1 Functional Languages 30

3 11 First-order Languages 31
3 111 Listlessness Algorithms 31
3 112 Deforestation Techniques 32

3 12 Hi gher-Order Languages 35
3 12 1 Deforestation algorithms 35

3 13 Comparison of functional language techniques 37
3 2 Object-Onented Languages 40

3 2 1 Object Inhmng 40
3 2 1 1 The Ongins of Object Inlming 42
3 2 12 Inlming Objects within Methods 43
3 2 13 Automatic Object Inlming 45
3 2 14 Evaluation of the Automatic Object Inlming Technique 47
3 2 1 5 A Second Evaluation of Automatic Object Inhmng 48
3 2 16 Extending the Automatic Object Inlming Technique 50

3 2 2 Comparison of the Object Inlming Techniques 51
3 3 Other techniques suitable for the optimization of object-oriented languages 53

3 3 1 Improved Memory Usage 54
3 3 2 Partial Redundancy Elimination 57

I

3 3 2 1 History of PRE 57
3 3 2 2 Partial Redundancy Elimination for Object-Oriented Languages 58

3 3 3 Eliminating Dynamic Dispatches 60
3 3 3 1 Static Class Analysis Techniques 61
3 3 3 2 Method Specialization Techniques 62

3 3 4 Comparison of the object-oriented techniques 64
3 4 Benefits of compile-time garbage avoidance techniques 66
3 5 Summary 68

Chapter 4 Analysis 69
4 1 Type inference of object-oriented languages 70
4 2 Ways in which this information can be used 75
4 3 Analysis for the Declassification technique 75

4 3 1 Analysis Process 76
4 3 2 Intermediate Representation 79
4 3 3 Shanng Semantics 81

4 4 Summary 88

Chapter 5 Transformation 89
5 1 Transformation Algorithm 89

5 1 1 Fields 89
5 12 Methods 91
5 13 Transformation Example 92
5 14 Pseudocode for the transformation algorithm 94

5 2 Another example of program transformation 97
5 3 Restrictions 99
5 4 Visibility Modifiers 100

5 4 1 Class Access Modifiers 101
5 4 2 Fields and Methods 101

5 5 Other issues 102
5 6 Comparison of the Declassification technique to the object miming

optimization techniques 103
5 7 Implementation of the declassification technique 105
5 8 Summary 108

Chapter 6 Evaluation 109
6 1 Test Programs 109
6 2 Analysis 110
6 3 Transformation 111

6 3 1 Performance 111
6 3 2 Program code size 113

6 4 Further extensions 114
6 4 1 Local Objects 114
6 4 2 Anonymous objects 116
64 3 Superclasses 116
6 44 Inner classes 117

6 4 4 1 Member classes 117
6 4 4 2 Local Classes 118
6 4 4 3 Anonymous Classes 118

6 5 Summary 119

Chapter 7 Conclusions 121
7 1 Evaluation of the Declassification Technique 121

7 11 Number of mlinable classes 122

II

7 12 Memory use
7 13 Run-time performance
7 1 4 Code size

7 2 Extensions to the declassification technique
7 3 Summary

References

41
44
55
57
59

62
63
73
73
73
77
78
80
81
82
83
83
84
86
87
91
92
94
95
99

111
112
113
114
115
115
116
117
118
119

Table of Figures

An example of object miming
Example C++ program
Structure Splitting
Partial redundancy elimination
Illustrates an example of PRE for access path expressions
Illustrates the hierarchy information which could be stored about a
program
Illustrates a weighted call graph for a program
Polymorphic Function
Entry set for the method CalculateArea()
Polymorphic Container
The Picture and Circle classes
Program code
The pseudocode for the analysis algorithm
Program code
Usage Counts
Program code
Program code
Program code before and after transformation
Program code
Program code
Method Clashes
The Picture and Shape classes
Transformed program code
The pseudocode for the transformation technique
Transformed program code
The number of inhnable classes in each program
Reduction in memory consumption of the test programs
Percentage increases in run-time performance
Percentage decrease in program code size
Number of top-level classes created in a method
Class B is a local object
Number of top-level classes created as anonymous objects
Illustrates how a member class is mimed within an enclosing class
Class B is mimed within the method createLocal()
An anonymous class is created within the method create Anon ymous()

IV

Abstract

Computer applications are increasingly being written in object-oriented languages like

Java and C++ Object-onented programming encourages the use of small methods and

classes However, this style of programming introduces much overhead as each method

call results in a dynamic dispatch and each field access becomes a pointer dereference

to the heap allocated object Many of the classes m these programs are included to

provide structure rather than to act as reusable code, and can therefore be regarded as

intermediate We have therefore developed an optimisation technique, called

declassification, which will transform Java programs into equivalent programs from

which these intermediate classes have been removed

The optimisation technique developed involves two phases, analysis and

transformation The analysis involves the identification of intermediate classes for

removal A suitable class is defined to be a class which is used exactly once within a

program Such classes are identified by this analysis The subsequent transformation

involves eliminating these intermediate classes from the program This involves

inlinmg the fields and methods of each intermediate class within the enclosing class

which uses it

In theory, declassification reduces the number of classes which are instantiated and

used in a program during its execution This should reduce the overhead of object

creation and maintenance as child objects are no longer created, and it should also

reduce the number of field accesses and dynamic dispatches required by a program to

execute An important feature of the declassification technique, as opposed to other

similar techniques, is that it guarantees there will be no increase in code size An

empirical study was conducted on a number of reasonable-sized Java programs and it

was found that very few suitable classes were identified for miming The results

showed that the declassification technique had a small influence on the memory

consumption and a negligible influence on the run-time performance of these programs

It is therefore concluded that the declassification technique was not successful in

optimizing the test programs but further extensions to this technique combined with an

intrinsically object-onented set of test programs could greatly improve its success

V

Chapter 1 Introduction
\

Computer programming has undergone phenomenal growth in recent years Software

applications are increasingly being written in object-oriented languages like Java

[Gosling & Joy & Steele, 1996] and C++ [Ellis & Stroustrup, 1990], because they offer

simple, uniform, abstract programming models This programming model provides the

benefits of increased flexibility, maintainability, extendibility and reusability Object-

oriented programs have the significant disadvantage of being difficult to analyse and

reason about This makes the task of optimizing the software much more difficult A

number of features associated with object-oriented languages contnbute to this

problem

1.1 Features of object-oriented languages

One of the principle features of object-oriented languages is the use of inheritance

There are two types of inheritance, single and multiple-mhentance Single inheritance

means each class can inherit from only a single class, multiple-mhentance means each

class can inherit from one or more classes Programmers are encouraged to design and

write software which is built from a hierarchy of classes Class libraries, for example,

are created which contain a collection of base classes These classes can be extended

by client applications for use in their applications [Johnson, 1992] Another example

where a hierarchy of classes is required is building unspecialized data structures to be

genenc and reusable rather than building custom optimized structures A drawback of

designing and writing software m this way is it increases the chances that it is built with

a deeply layered inheritance structure This in turn increases the difficulty of analyzing

the software

Another powerful feature of object-oriented software is polymorphism Polymorphism

is the ability of an entity to become attached to objects of various possible types The

key benefits of polymorphism are that it makes objects more independent of each other

and it allows new objects to be added with minimal changes to existing objects A

significant disadvantage of this is that dynamic dispatching is required to locate the

relevant methods at run-time Dynamic dispatching is required because the type of a

1

receiver is not known until run-time This makes the control flow of the program more

difficult to follow and substantially increases the complexity of analyzing the program

Data polymorphism is also facilitated and this too adds to the complexity Dynamic

class loading is another feature which increases the difficulty of analysis

These features of object-oriented languages not only make it difficult to carry out

precise and detailed analysis of the code but they also result in expensive overheads,

which slow down the execution of the program Object-oriented programming

encourages the use of many objects and methods when designing software [Calder &

Grunwald & Zorn, 1994] In many programs, sophisticated structures are assembled

using a large number of composite objects Creating a large number of objects results

in many objects being created on the heap This has two significant disadvantages, time

is required to create and maintain the heap objects, and time is necessary to access the

fields and methods of each object Each access to an object’s field becomes a pointer

dereference to the heap allocated object This puts pressure on the memory subsystem

which adversely affects the run-time performance of the program

The widespread use of polymorphism and the fact that many methods are encouraged

when designing software results in a substantial decrease in the performance of object

oriented software This is because it is necessary to bind these methods to their calling

objects by dynamic dispatch at run-time This is a major source of overhead for two

reasons, one is as a result of the direct cost of method lookup, and the second is the

indirect cost incurred as a result of the loss of the opportunity to inline methods and

carry out other optimization techniques The widespread use of objects and methods

are not the only issues negatively affecting the run-time performance of object-oriented

software Other features of object-oriented languages such as thread synchronization

and exception handling also contribute to this problem

Consequently, the run-time performance of object-onented languages like Java are

behind the most popular non object-onented languages today, even with just-in-time

compilation technology There is an obvious need for more aggressive optimizing

techniques The effectiveness of optimization is decreased by the difficulty in

obtaining adequate and precise analysis information A wide range of optimization

techniques have been researched and developed for both functional and object-onented

languages

2

1.2 The Java Language

Java is an object-oriented language and has become very popular for software

development It has the following characteristics, statically typed, single inhentance,

dynamic class loading and late-binding Statically typed means that every object in

Java has a well-defined type that is known at compile-time Java, however, is fully run­

time typed as well which means the run-time system keeps track of all objects and

makes it possible to determine their types and relationships during execution It is

therefore possible to use completely new kinds of dynamically loaded objects with a

level of type safety Dynamic class loading means that new classes can be dynamically

loaded at run-time Late-binding means that a message is dynamically bound to the

receiving object at run-time These powerful properties of the language come with

significant overheads to the memory subsystem and run-time performance as discussed

earlier

The Java language is a portable language The source code is firstly compiled into

bytecodes This byte code can then be executed on any computer architecture running

a Java virtual machine This ability to compile a program once and run it on many

different types of machine is very important Some optimization techniques analyse the

Java source code and obtain sufficient information to carry out different types of

optimizations Other techniques focus on analyzing and optimizing the Java bytecodes

In section 1 1, we descnbed some of the charactenstics of object-oriented languages

that increase the difficulty of optimizing programs The Java language has other

features that add to this complexity

They are as follows

1 The exception mechanism in Java presents obstacles to compiler optimization

When an exception occurs within a Java program, all instructions prior to the

exception should have executed and all instructions after should not

Optimization techniques often involve moving code within a program The

exception mechanism will severely restrict the freedom of code movement The

problem is exacerbated by the fact that most Java instructions can cause an

exception A number of approaches have been put forward to mitigate this

problem, but it is still an area of on-going research,

2 The Java source code is compiled into Java bytecode, which is subsequently run

on a Java Virtual Machine (JVM) [Lindholm & Yellin 1996] There is a high

3

level of abstraction associated with JVM bytecode This is a salient problem for

compilers as it hides many machine dependent optimization opportunities,

3 The Java language is designed to be safe This is ensured by the security

features that are built into the language For example, each class is created with

a certain set of access rights associated with its fields and methods These

access rights give the programmer the ability to declare the visibility of the

fields and methods as being one of the following, private, public, protected and

default A class can be declared as being public, default, abstract and final The

use of access rights and the other secunty features provided by the language

ensures its safety This safety hinders optimization opportunities because any

changes made to the program by the optimization technique should not change

or weaken the secunty of the program

1.3 Garbage Collection Systems

It is estimated that CPU speeds have increased by 60% per year for the past two

decades [Chilimbi & Hill & Larus, 1999A] The time required to access the main

memory of the computer has only decreased by 10% per year The unfortunate

consequence of this has been an ever-increasing gap between the performance of the

CPU and memory subsystems It is therefore vital that the computer’s heap and other

memory resources are used efficiently to improve the run-time performance of a

program Object-onented programs create objects which are allocated within the heap,

dunng the execution of a program The more objects that are created, the more heap

space which must be designated to store them These programs have been cnticized for

the amount of heap space they require when executing and consequently, the issue of

heap space is becoming a senous problem In these situations it is paramount that the

objects in the heap space which are no longer needed are detected and removed

6Garbage collector9 is the term used to descnbe a system which will automatically

search for, find and reclaim any heap allocated objects which are no longer required for

the execution of a program These objects are referred to as ‘garbage’

Some object-onented languages, such as Java and Smalltalk, do not have explicit

memory management operations The programmer is prevented from including explicit

memory deallocation statements within a program The programmer is therefore

dependent on the garbage collection system to find and release any unused storage

4

cells Object-onented languages which have explicit memory management operations

are dependent on the programmer to deallocate the garbage objects, when they are no

longer needed Failure to do so could put unnecessary pressure on the memory

subsystem These languages can also benefit from an automatic garbage collection

system, which can be used to remove garbage objects from the heap space that the

programmer has not explicitly deallocated This reclaimed heap space can then be used

to accommodate any new objects which are created

The main aim of the run-time garbage collection system is to automatically search for,

find and deallocate any garbage in the program’s heap space during execution When

an object is allocated on the heap, used, and then the reference to the object is no longer

needed, the garbage collection system should detect this and deallocate the memory for

the object This space will be used in the future when allocating new objects This

process is performed not by the compiler, but by the runtime system Much research

has and is taking place into developing and improving run-time garbage collection

techniques Three of the most popular types of run-time garbage collection schemes

are mark and sweep, reference counting and, copying These schemes increase the

amount of heap space that is available to the running program Performing garbage

collection on a program may introduce both performance overheads and extra

implementation complexity There has been much research as a result into garbage

collection algorithms spanning a wide range of precision, and it should be noted that

determining when objects are no longer needed is a very difficult task

A second important benefit of a run-time garbage collection system is that it frees the

programmer from the responsibility of explicitly releasing objects in his/her program

when he/she no longer needs them Programmers do not have to waste their time even

thinking about the issue when an automated tool has the full responsibility for finding

and releasing garbage in a program He/she is free to concentrate on other important

issues which need to be addressed when designing and writing application software

Thirdly, it can sometimes be very difficult for a programmer to know when to wnte the

statement to release the object(s) at the critical moment necessary Incorrectly placed

assignment statements could result in unintended and invalid results during program

execution

The ability of a garbage collection system to achieve absolute precision in the detection

of garbage cells in a program is impossible and is equivalent to the halting problem

5

There are a number of techniques used by each of the garbage collection systems Each

technique has varying degrees of sophistication and complexity, but the benefit of the

technique must be judged on its ability to detect and reclaim garbage cells, increase

heap memory and improve the speed performance of the program

It would be detrimental to the running of a program if an object which was being used,

was identified as garbage by a garbage collector and destroyed This would result in

the garbage collector arbitrarily affecting the correct execution of programs Therefore

garbage collectors should use safe approximations as to what cells are no longer

required by a program This is considered a conservative garbage collector If a

conservative garbage collector is overly conservative then this could result in the

retention of large amounts of garbage

1.4 Uniform verses Non-Uniform techniques

The mechanisms associated with software development using some object-onented

languages like Java promote a uniform approach, while the mechanisms associated with

other object-oriented languages like C++ promote a non-uniform approach Automatic

garbage collection is one of these mechanisms which promote a uniform approach to

software development m Java Automatic garbage collection mechanisms can have a

negative effect on the run-time performance of a program Other object-oriented

languages like C++ have explicit memory management operations This means that

they do not suffer from the overhead of implementing an automatic garbage collector

There are, however, significant benefits associated with automatic garbage collection

mechanisms as highlighted earlier and these are thought to out-weigh the disadvantage

of the run-time overhead

Object-oriented languages such as C++ have a number of language features that

improve the performance of the language One of these is the ability to declare an

object or method to be ‘mlined’ Object miming means a programmer can declare the

fields of an object to be either objects or pointers to objects This feature gives the

programmer the ability to explicitly inline objects within other objects In doing so you

group related objects which can be allocated and deallocated together A consequence

of this is a reduction in the number of memory dereferences necessary during program

execution C++ also permits a programmer to explicitly declare that a method is to be

6

mlined The method specified as mlinable can then be expanded inline by the compiler

at each point in the program in which it is invoked In doing so, the run-time

performance of the program should be improved because you have eliminated the

number of dynamic dispatches Explicit miming requires changes to be made to the

code structure, which modifies the sharing semantics of a program This burdens the

programmer with the responsibility of deciding which objects and methods should be

mlined Automatic inhning frees the programmer from the responsibility of having to

explicitly inline objects and allows him/her to program in a uniform object model

Another language feature that improves run-time performance is allowing the

programmer to explicitly declare if a method is virtual or not A method that has been

declared as being virtual, can be ovemdden by methods created m subclasses A non­

virtual method cannot be ovemdden in this way The compiler can use this information

to implement direct procedure calls There are disadvantages associated with this

technique These include the fact that in some situations it may be difficult to decide if

a method should be virtual or non-virtual Another reason is it restricts the

extendibihty and reusability of the classes when they are declared as non-virtual It

also forces the programmer to write software in a non-uniform way

1.5 Optimizing Memory Usage

The functionality and complexity of software has increased over the past number of

years and is continuing to grow This often results in a greater requirement for heap

space by software programs Object-onented programming encourages the building of

programs which resemble the structure of the onginal problem to be solved The

purported benefit of this type of programming is software which is easier to read and

understand, which in turn should lead to software which is easier to debug and

maintain However, this leads to greater inefficiency in memory usage and decreases

the run-time performance of object-oriented software

Compile-time garbage collection and compile-time garbage avoidance techniques are

optimization techniques which can reduce the run-time memory requirements of

programs The compile-time garbage collection technique does not actually collect

garbage cells during the compilation of a program The goal of compile-time garbage

collection is to analyse a program during compilation to determine any cells that are no

7

longer required after a particular point for the evaluation of the program This program

is then annotated to identify the detected cells as garbage The garbage cells are

subsequently collected automatically at run-time These cells will be available for

further use during the execution of the program once they have been collected

Therefore, compile-time garbage collection should be regarded as compile-time

optimization of memory usage Because the garbage collection itself does not actually

take place at compile-time, the term compile-time garbage collection is misleading

However this term has been used for this kind of optimization in the past, so it is used

again here This technique reduces the amount of heap space required by a program

during execution

The compile-time garbage avoidance technique has a different approach to that of the

compile-time garbage collection system Its aim is to analyse a program’s source code

and to detect and carry out changes to the source code These changes should

transform the source code and reduce the amount of heap space it allocates and uses

during its execution These optimization techniques have been successful m improving

the run-time performance of programs Object miming is an important compile-time

garbage avoidance technique and it is used to optimize object-oriented programs It is

estimated, for example, in [Dolby & Chien, 2000] that the object miming technique

improves the run-time performance of programs by approximately 14% Less research

has taken place into compile-time garbage collection techniques for object-oriented

languages A number of them are presented in section 2 2 and some have had

encouraging results For example the technique in [Gay & Steensgaard, 1998]

established that speed improvements of up to 1 1 % were achievable

1.6 Other optimization techniques

There are many other optimization techniques developed besides the techniques which

one would class as optimizing memory usage The following are a list of popular and

widely used optimization techniques, which can be applied to different types of

languages

1 Dead code elimination - This is the deletion of code within a program, which will

never be executed An example of dead code elimination is finding a method in a

class that is never called in the program This can be safely eliminated from the

program,

8

Local common subexpression elimination - This is a prevalent and successful

technique which is used to eliminate redundant re-compilations within a program

Value numbering is the algorithm [Simpson, 1996] and [Bnggs et a l , 1996] used to

achieve this optimization This algonthm involves numbering all variables in the

program Two variables are given the same number only if they have the same

value Two expressions will get the same number if they have identical structure

and the variables used in each expression have the same value Once the

numbering has been completed it is easy to identify common sub-expressions,

Register & stack allocation - Carefully allocating variables to storage locations

within a program dunng program execution can enhance the performance of the

program Local variables which can be stored on the stack, for example, eliminate

the need for a store and subsequent load from memory and thereby improves the

performance,

PeepHole optimizations - The performance of a program can be enhanced by

replacing complex computations with simpler ones, that compute the same result,

Constant/copy propagation - Constant propagation involves analyzing a program to

identify where constants are used It is then possible to substitute each constant

with its value This aids the analysis of the program because more information is

available on the variables which use these constants Copy propagation is similar to

constant propagation It involves substituting a variable with a value instead of a

constant

There are many optimization techniques which are specifically designed for object-

oriented languages Their success at improving the run-time performance and/or heap

usage has resulted in their use becoming prevalent Three of the more popular are

presented in this thesis, improved memory usage, partially redundancy elimination

(PRE) and elimination of dynamic dispatches These techniques are presented to

illustrate some of the other methods which can be used to optimize object-oriented

software

9

1.7 The Declassification Technique

In this thesis we present the declassification technique, a novel optimization technique

designed for the Java language The inception of the declassification technique was

motivated by the success of the higher-order deforestation algorithm proposed in

[Hamilton, 1996] This optimization algorithm is a compile-time garbage avoidance

technique It has the ability to eliminate intermediate data structures from higher-order

functional programs By removing the intermediate data structures, the performance of

the program should be improved and the heap space required by the program reduced

It was also influenced by the fact that in the C++ language, a programmer can declare

an object or method as being mlined There are a number of salient advantages

associated with inhning This motivated our research in finding a way in which to

automatically inline classes

The central aim of the declassification technique is to reduce the number of top-level

classes that are instantiated and used in a program at run-time A top-level class is a

Java class which is not an inner class Inner classes were introduced in Java 111 and

there are four types, static member classes, member classes, local classes and

anonymous classes Other references to inner classes may differ, for example in some

books the term inner class refers to member classes, local classes and anonymous

classes but not static member classes Throughout this thesis top-level classes will be

referred to as classes and a distinction will only be made between top-level and inner

classes when extensions to the declassification technique are discussed in chapters 6

and 7

The declassification technique analyses a program to identify suitable classes for

miming A suitable class is a class which is used exactly once within the program A

usage count is associated with each mhnable class and the number of its uses are

calculated by analyzing how the class is instantiated and manipulated within the

program A field which is declared in the program of the mhnable class type is

considered a use of the class A field of the mhnable classes superclass type is also

counted if it is used to store an instance of the mhnable class Local variables, method

parameters and method return types of the mhnable class type are counted Similarly,

if a local van able, method parameter or method return type is declared in such a way

that it enabled an instance of the inlinable class to be stored there, the usage count of

the inlinable class is incremented Any anonymous object of the mhnable class type is

10

counted Each superclass of the mhnable class is also counted as a use of the inlinable

class The process of identifying a suitable inlinable class is explained in detail in

section 4 3 1 Declassification means miming each inlinable class which has a usage

count of one within the class which uses it, which is referred to as the ‘enclosing’ class

Any references to the instance of the mimed class are changed to reference its mlined

fields and methods within the enclosing class object The declassification technique

can then eliminate the mimed classes declaration from the program source code

Inlming as an optimization technique is a known algorithm The optimization

technique presented in [Dolby, 1997], for example, inhnes the fields and methods of an

object within a container object This is discussed in detail in section 3 2 1 The

important contnbutions made by the declassification technique are the presentation of a

new analysis algonthm for deciding when miming should take place and the fact that it

inhnes classes within container classes not objects within container objects The

declassification technique involves a source code to source code transformation The

optimized program code can then be compiled and run as normal Although the

declassification technique has been designed and implemented to transform program

source code, it is possible m theory to apply the analysis and transformation algorithms

to bytecode directly We investigate the potential of the declassification technique by

evaluating its effect on a number of reasonable sized programs

A number of benefits are associated with the declassification optimization technique

These include

1 Eliminating the need to create ‘intermediate’ classes from a program This

should reduce the pressure on the memory subsystem as fewer objects need to

be created and maintained,

2 The fields of the inlinable class become local to the enclosing class This

reduces the number of memory dereferences as these fields can now be accessed

directly,

3 The methods of the inlinable class also become local to the enclosing class

This eliminates the necessity of a subroutine call to access the classes methods

This will in turn reduce the number of dynamically dispatched messages

required by the program, which should improve the run-time performance of the

program,

11

4 The mhnable classes methods are mimed within their enclosing class This

exposes the body of each method to further optimization opportunities in the

context of the original invocation,

5 An important benefit associated with this technique is that it guarantees that

there will not be any increase in the code size of a program following its

optimization This is an important issue for Java because one of the main

reasons it became so popular was as a result of its suitability for writing

software for the internet Any enlargement in code size would increase the time

required to download Java programs from the Internet and increase the disk

space required to store them Other optimization techniques such as [Dolby,

1997] cannot give such a guarantee

1.8 Summary

A lot of research is taking place into the optimization of object-onented languages

because of the popularity of object-onented software development and the considerable

overheads associated with the execution of object-onented software The features

which make object-onented languages, specifically the Java language, difficult to

analyse were discussed m section 1 1 The Java language is a popular language, it

allows you to program in a uniform abstract way Its charactensties were explored m

section 1 2 The Java language has inbuilt run-time garbage collection facilities The

benefits and drawbacks of such a system were discussed in section 1 3

A number of different optimization techniques were introduced m section 1 5 including

compile-time garbage collection and compile-time garbage avoidance techniques An

overview of the declassification technique was presented in section 1 7 Its central aim

is to identify and inline suitable classes It is a fully automatic optimization technique

for the Java language It does not burden the programmer with the responsibility of

explicitly stating which classes should be mlined

In chapter 2, we introduce compile-time garbage collection, explaining the three mam

techniques used, compile-time garbage marking, explicit deallocation and destructive

allocation Chapter 3 presents a wide range of compile-time garbage avoidance

techniques for both functional and object-onented languages The benefits and

problems associated with the garbage avoidance techniques are discussed The analysis

12

and transformation algorithms used to carry out the declassification technique are

presented in chapters 4 and 5 The declassification technique was used to optimize a

number of reasonably sized programs and the results of this empirical study are

presented in chapter 6 Finally, chapter 7 analyses the results from the empirical study

Further possible extensions to the declassification technique are also discussed

13

Chapter 2 Compile - Time Garbage Collection

In this chapter we give an overview of some compile-time garbage collection

techniques The goal of compile-time garbage collection is the detection of garbage

cells during the compilation of a program and annotating the program to allow these

cells to be collected at run-time The program is searched and the relevant cells are

identified This program is then annotated to highlight the detected cells as garbage

and they can be subsequently reclaimed for use m allocating new objects This chapter

is divided into three sections, section 2 1 discusses the compile-time garbage collection

techniques which have been researched and developed for functional languages, section

2 2 discusses the techniques for object-oriented languages The benefits of compile-

time garbage collection are discussed in section 2 3 We look at the techniques which

are used to optimize functional languages because this research is more mature and

lessons can be learned from these techniques which can and are applied to object-

oriented languages

2.1 Functional languages

Three of the main techniques used to perform compile-time garbage collection on

functional languages are

1 Compile-time garbage marking,

2 Explicit deallocation,

3 Destructive allocation

Programs are annotated for each of the three methods of compile-time garbage

collection using information obtained by static analysis Static analysis is the analysis

of programs to determine properties of programs without actually executing them

Static analysis can involve collecting information about the definition and uses of cells

m a program Relationships between cells can be traced to determine how they affect

each other The control flow of the program can be analysed to try to determine the

sequence of events that could take place during the execution of the program

14

The results of the static analysis are used by each technique to add the necessary

annotations to a program Type inference is an example of a static analysis technique

which is used to obtain information about the object types which are used in a program

This information is obtained by the analysis of the program structure and physical data

layouts, to distinguish between different data types which occur in a program

Examples of type inference schemes which can be used are described in [Baker-Finch,

1992], [Wnght & Baker-Finch, 1993] and [Smetsers et a l , 1993] Other static analysis

techniques, which can be used are described in [Mycroft, 1981], [Hudak, 1987], [Jones

& Le Metayer, 1989], [Hamilton & Jones, 1990], [Hamilton, 1992] and [Hamilton,

1998]

2.1.1 Compile-Time Garbage Marking

This technique involves marking those cells in a program which will become garbage

after their first use These cells will subsequently be freed and made available for

further allocations Static analysis is used to obtain information about cell usage in a

program and the program is then annotated for compile-time garbage marking A usage

counter could be associated with each cell to determine the number of times that cell

has been used A cell, which has a usage count of no more than 1, will be tagged to

indicate that it will become garbage after it has been used During the execution of the

program, the run-time garbage collector will automatically collect these tagged/marked

cells after their first use These cells will be added to a run-time free list and their

memory space will be available for further allocations

[Hughes, 1991] describes how a strict higher-order functional language can be

optimized by a compile-time garbage marking technique Static analysis is used to

determine properties about a program Dunng the compilation of a program it is

annotated to indicate that at certain points dunng its execution the store-cells can be

collected as garbage [Hughes, 1991] introduces two static analysis techniques to

obtain information which will allow the programs to be optimized for compile-time

garbage marking, generation analysis and mhentance analysis The generation

analysis technique identifies the shanng information among values within expressions

It can tell which values within a particular list are unshared when evaluation of the

expression finishes Inheritance analysis is the second technique and it identifies

15

which values of a list used within a function are required for the evaluation of the result

of the function

The sharing information obtained by the two techniques is very important It is used to

identify values which are no longer needed after a particular point in a program These

values can therefore be marked and considered as garbage A reference semantics is

provided to show that the store related optimizations of compile-time garbage marking

are correct By ‘correct’ we mean that an unoptimized and an optimized program

should compute exactly the same result, that is, they are equivalent The denotational

semantics of the language is therefore augmented with denotational store semantics

This serves as a reference for the correctness of the analysis and optimizations

In [Hamilton, 1995] it is shown how a program wntten in a first-order lazy functional

language could be annotated for compile-time garbage marking The static analysis

technique used to obtain properties about a program is called usage counting analysis

and is responsible for detecting and counting the number of times each value is used in

a program Usage counting values are then abstracted to usage patterns to allow usage

counts to be determined at compile-time The aim of this analysis is to be able to

determine at particular points in a program the maximum number of times a value will

be used in the future evaluation of the program This information is invaluable in

identifying cells within a program, which should be tagged to indicate that they will

become garbage after their first use It is shown how a program optimized in this way

can be proven correct A reference semantics is provided m order to show that the

usage counting store related optimizations for compile-time garbage marking are

correct

This technique is similar to that of [Hughes, 1991], as they both use static analysis

information to tag cells in a program, to indicate that they can be collected as garbage

at certain points during program execution

16

2.1.2 Explicit Deallocation

Using this technique, cells in a program are analysed to determine if they will always

become garbage at a particular point in that program The program is then annotated to

indicate that the cell can always be deallocated at this particular point This method

ensures that cells are explicitly deallocated immediately after becoming garbage

Explicit deallocation does not involve marking cells in a program and then checking

each cell during its execution to see if it is marked, as is done for compile-time garbage

marking However, it does require that cells which are explicitly deallocated are added

to a free list Static analysis is again used to obtain information about cell usage in a

program and it is used to annotate programs for explicit deallocation

In [Hamilton, 1995], it is shown how a program written m a first-order lazy functional

language could be annotated for compile-time explicit deallocation Usage counting

analysis is again used to identify the particular points in a program where cells are no

longer needed and can be explicity deallocted This usage counting analysis is similar

to the analysis used for compile-time garbage collection This technique is also similar

in the way the standard semantics of the language are augmented with store semantics

These are used as a reference against which the usage counting store related

optimizations can be proved correct

An explicit deallocation technique is considered in [Mohnen, 1995], which analyses the

data structures found in functions written m a first-order functional language Each

function is analysed to detect data structures in the function which will become garbage

after a particular point in the program This data structure can then be subsequently

deallocated and made available for further allocations This optimization technique

focuses entirely on the data structures of the arguments to a function and it has the

ability to handle arbitrary data structures Its aim is to obtain enough information to be

able to determine if the data structure becomes obsolete during the execution of the

function

An abstract interpretation, which exploits the special structure of the underlying

functional language was developed m [Mohnen, 1995] This interpretation will make it

possible to determine if the heap cells of the arguments are inherited in the function

result An argument is inherited if it is needed for the further evaluation of the program

and is therefore not considered garbage The inheritance information gathered by the

17

abstract interpretation associates an abstract domain with the heap cells of the function

arguments The abstract domain can be inferred directly from the types of the

arguments This abstract domain is a finite partially ordered set, and the efficiency of

the technique is improved because it does not contain all possible argument

combinations It should be noted that if one cell of a data structure is inherited, all cells

of that data structure are considered inherited The cells associated with the arguments

of the function which are considered garbage on termination of that function, can be

safely deallocated The correctness of the abstract interpretation is considered in this

paper and it proves that a program, which has been modified by this technique is

correct Using information gathered as a result of the abstract interpretation, commands

can be inserted into the program to explicity deallocate the appropriate cells

The [Hughes, 1991] approach to static analysis has close similarities with [Mohnen,

1995] The [Mohnen, 1995] technique however, has the ability to handle arbitrary data

structures or structures containing functional parameters Garbage is detected in

[Hughes, 1991] if heap cells are not inherited, [Mohnen, 1995] does not have this

restriction

There are two ways in which the deallocation of the cells can take place within a

program

1 The cell could be deallocated immediately after it becomes garbage This will have

the disadvantage of frequent interruptions to the actual computation,

2 The second approach delays collection of garbage cells until the end of the

corresponding function call It has the advantage of efficiency as more deallocation

can be performed at the same time However, it has the disadvantage of delaying

the collection of garbage cells

2.1.3 Destructive Allocation

This technique involves reusing garbage cells directly within a program A

deallocation function is not required since garbage cells are reused directly within a

program rather than being added to a free list Static analysis is again used to obtain

information about cell usage in a program and it is used to annotate programs for

destructive allocation The analysis must determine that a cell will no longer be needed

for the evaluation of a program and could be explicitly deallocated This cell can then

18

be destructively allocated at some later point in the program These cells are not

deallocated by the run-time garbage collector and added to a free list for further

allocation The cells are reallocated directly within the program

[Hughes, 1991] describes how a strict higher-order functional language can be

optimized by a compile-time destructive allocation technique Static analysis is again

used to obtain properties about a program without actually executing it It is shown

how programs are annotated to allow a deallocation followed by an allocation to be

coalesced to give a destructive allocation instead Generation analysis which has been

described earlier in compile-time garbage marking, and a destruction function analysis

are the two techniques used to obtain the necessary information

The destruction function analysis technique in [Hughes, 1991] investigates the

arguments to a function, to identify any of these arguments or part of the arguments,

which could be reused within the function body A free cell does not have to be

allocated if we can reuse an existing argument value This is essential information for

the destructive allocation technique Similarly, as in the case of compile-time garbage

marking, [Hughes, 1991] provides a reference semantics to show that the store related

optimization of compile-time destructive allocation are correct

In [Hamilton, 1995], it is shown how a program written in a first-order lazy functional

language could be annotated for compile-time destructive allocation Usage counting

analysis is again used to obtain information about cell usage in a program and it is used

to annotate programs for destructive allocation It is shown how a program optimized

in this way can be proven correct Similarly, as in the cases of compile-time garbage

marking and explicit allocation, the standard semantics of the language is augmented

with store semantics This is used as a reference against which the usage counting store

related optimizations can be proved correct

[Mohnen, 1995] considers using the technique previously presented for explicit

allocation to implement a destructive allocation compile-time garbage collection

technique Consider the scenario where a deallocation is followed immediately by an

allocation In this situation a deallocation is not required since the garbage cells can be

reused directly within the program, rather than being added to a free list However,

[Mohnen, 1995] does not implement a destructive allocation technique because of a

major disadvantage associated with it The complexity of the optimization technique

19

would have to be increased in order to handle destructive updates It is estimated that

the gams associated with destructive allocation are far out-weighed by the increased

complexity

2.1.4 Comparison of the different functional techniques

2 1.4.1 Compile-time garbage marking

Compile-time garbage marking requires extra storage per cell to indicate whether or not

the cell is marked The extra storage required may be more than the storage which is

saved by using this technique A second problem associated with this technique is that

extra time is required dunng the execution of the program to check each cell to see if it

is marked This overhead in execution speed could potentially swamp out the benefits

Another disadvantage is the necessity of maintaining a run-time free list, to which the

marked cells are added This restricts the run-time garbage collector to a scheme which

uses a free list Because of the overall disadvantages associated with compile-time

garbage marking, it is unlikely to be suitable for practical use

2 1 4 2 Explict Deallocation

This technique does not require storage space to be allocated to associate a usage

counter with each cell in a program Additional memory space is therefore not required

by this technique Expensive time is not wasted dunng the execution of the program

checking each cell to see if it is marked, which must be done to implement the compile-

time garbage marking technique

Explict deallocation requires that cells, which are explicitly deallocated, are added to a

free list The run-time garbage collection system used must therefore use a free list

when it is allocating storage This restncts the type of run-time garbage collection

system which can be chosen, to a scheme like mark and sweep Run-time garbage

collectors which do not use a free list are considered to be more efficient garbage

collectors As a result, the majonty of garbage collectors which are currently used for

functional languages are of the copying type The techniques of compile-time garbage

marking and explict deallocation are therefore of limited use

20

There is also a problem of conflicts between this technique and the run-time garbage

collector A cell, which has been explicitly deallocated might still be considered to be

live by the run-time garbage collection system There are instances where compile-time

garbage marking can be used to collect a garbage cell within a program and explicit

deallocation is unable to The reverse of this situation is also true, there are situations

where explicit deallocation can be used and compile-time garbage marking cannot

2 1 4.3 Destructive Allocation

This technique has the benefit of not requiring a free list since garbage cells are reused

directly within a program We are therefore not restricted in the type of run-time

garbage collection scheme used

Destructive allocation does not have the same overheads associated with compile-time

garbage marking These overheads are the extra memory space necessary to store the

usage counter and the overhead on execution time caused by checking each cell to see

if it is marked However, there are instances where compile-time garbage marking can

be used to collect a garbage cell or the cell can be explicitly deallocated within a

program, but the destructive allocation technique cannot be performed This technique

is therefore less applicable than the other techniques The complexity of the algorithm

to implement a destructive allocation technique has been identified as a significant

disadvantage It is estimated that the gams associated with this technique are over­

shadowed by the increased complexity

21

2.2 Object-Oriented Languages

Not a lot of research has been done in the area of compile-time garbage collection

techniques for object-oriented languages, research has instead concentrated on compile-

time garbage avoidance and a myriad of other optimization techniques However, a

number of algorithms have been devised for compile-time garbage marking and explicit

deallocation techniques and are presented in this section Some of the techniques have

identified methods for compacting memory or allocating objects on the stack

2.2.1 Compile-Time Garbage Marking

[Diwan et a l , 1992] explores how information gathered during the compilation of a

statically typed language can be used to support the compaction of memory by a run­

time garbage collector [Diwan et a l , 1992] describes a technique which is used to

build stack maps for the Modula-3 language Modula-3 is an object-onented statically

typed language and a salient feature of this language is the fact that a stack map is not

generated for every instruction, but is restricted to the garbage collection points A

garbage collection point is a place in the program where a collection might occur The

stack map data structure which is used in this technique, is an example of a tagless

system and it has been used by other compile-time garbage collection techniques

It is imperative that the garbage collector obtains the necessary information on the

different data types contained within a program It is stated that tracking the location of

pointers in global variables is trivial Locating variables on the stack and in registers is

more difficult and it is emphasized that there is particular difficulty associated with

derived pointers A derived pointer’s value is created as a result of pointer arithmetic

and there are difficulties associated with accurately identifying the base values for each

derived value, at particular points in the program There are three different tables

constructed to store the necessary information on stack, register and derived pointers

A study was conducted in [Diwan et a l , 1992] and it was estimated that the table sizes

when compressed reduced to 16% of the optimized code size It is possible to store and

extract information from the tables quickly, which is important It was also established

as a result of this study that the technique had no effect on the optimized code

produced

22

[Agesen et a l , 1998] considers two techniques which are used to increase the accuracy

of the root set, type precision and liveness analysis A root set is the set of local and

global variables in a program Some of these variables could be used to reference

objects that are local or global The aim of these techniques is to reduce the root set,

that is to establish what cells in memory are no longer being referenced and can be

released To achieve absolute precision of the root set is not possible because there

could be pointers to cells within memory, where it is unable to determine whether the

cell is garbage or not This is because it does not have enough definite information

about the cell and in this situation it should consider the cell to be live

The first algorithm in [Agesen et a l , 1998] considers the type of all local area variables

in a program This information is gathered and stored during the compilation of the

program in order to increase the precision of the part of the root set resulting from local

vanables This technique was developed using the Java programming language where

local vanables are stored m slots m stack frames It could be adapted for use with other

object-onented languages This technique generates a stack map data structure to store

the relevant information The generation of the stack map would be relatively tnvial if

it was not for the fact that the JVM allows one exception to the Gosling property

[Lindholm & Yelhn 1996] The Gosling property states that the stack and registers

must always look the same whenever a JVM instruction is executed For example, the

type of each stack element and local vanable at any point in a program should not

depend on the path taken to reach that static program point The exception to the

Gosling property is the JSR subroutine It makes it very difficult to carry out type

analysis on a program, as it may be unable to determine the exact type of a particular

vanable in a JSR subroutine A solution was found by adding additional information to

the stack map and splitting conflicting vanables

The second technique in [Agesen et a l , 1998] uses intra-procedural live vanable

analysis to identify the local vanables within the stack, which are reachable from the

root set We consider a vanable to be live if it holds a value that may be needed in the

future execution of the program Liveness analysis is not a new research area and has

been used in the past to reduce the root set by identifying dead references, which are

garbage cells Live vanable analysis information is added to the stack map and it is

estimated that the cost of generating a live-precise stack map is approximately 50%

greater than the cost of generating a type-precise stack map

23

2.2.2 Explicit Deallocation

[Gay & Steensgaard, 1998] describes a technique which allocates objects on the stack

rather than the heap The algorithm will try to calculate the lifetimes of each object

created in a program, and any object with a known limited lifetime can be created on

the stack The memory associated with these objects is automatically reclaimed when

the stack frames are reclaimed as functions return There are two important benefits

associated with allocating objects on the stack instead of the heap, an increase in the

amount of heap memory available during the execution of the program and a reduction

in the memory management activities, which should subsequently lead to an increase in

the execution speed of the program

Two analysis techniques are introduced which are used to obtain the necessary

information to allow it to identify the stackable objects, escape analysis and loop

analysis The escape analysis technique conservatively estimates the references to the

objects in a program An object cannot be stack allocated in a method’s stack frame if

a reference to the object escapes from that stack frame The analysis considers a

reference to an object to have escaped if the object is returned from the method or if

another object stores a reference to this object Loop analysis is the second technique

and it is primarily concerned with the control flow of a program This is necessary to

evaluate whether assignments are made to variables in a loop dependent manner

Information is gathered on fresh methods and variables A fresh method is a method

which will return an unahased object of a certain type An object is considered

unaliased when there are no other references to this object A fresh variable is one

which is assigned a new object or an object from a fresh method The stackable

vanables are computed using this information and the results of the escape analysis and

the loop analysis An empirical study in [Gay & Steensgaard, 1998] estimated that

approximately 10-20% of objects created m a program could be allocated on the stack

instead of in heap memory

[McDowell, 1998] presents a hypothesis that a compiler can identify a significant

number of object allocations that can be changed from being allocated on the heap to

being allocated on the stack This study was earned out on the Java language

24

A Java virtual machine was instrumented to count the number of potentially stackable

objects at runtime, in a small collection of Java programs JDK1 0 2 from JavaSoft was

the virtual machine used This version of the Java virtual machine does not have a Java

Native Interface (JNI) specification and therefore cannot accurately track references

which are passed into native methods A native method is a method which is callable

from a Java program and is written in a different language The results of the analysis

can be interpreted in two ways The first is a conservative analysis and it assumes that

all references passed to native methods cannot be considered as a stackable object The

second is the non-conservative analysis and it assumes that all references passed to

native methods are stackable

The conservative analysis estimated that approximately 10% of the heap allocated

objects could be allocated on the stack during the execution of the program The results

of the non-conservative analysis was significantly better, one of the programs tested

resulted in 56% of its objects being suitable for allocation on the stack It is proposed

that further research is necessary to implement a Java virtual machine which will

support the stack allocation of objects

No object-onented destructive allocation techniques were found in the literature

25

2.2.3 Comparison of the different object-oriented techmques

2.2.3.1 Compile-time garbage marking

The techniques presented in [Diwan et a l , 1992] and [Agesen et a l , 1998] are both

tagless systems An alternative to this approach would be to use tags, this would

involve tagging all objects allocated m the stack The overhead of this technique is

expensive because stack frames are created and destroyed regularly dunng the

compilation of a program Diwan’s technique [Diwan et a l , 1992] is used to obtain

information on a wider range of cell storage than Agesen’s technique [Agesen et al],

which only concentrates on obtaining information about variables stored m the stack

frame [Diwan et a l , 1992] and [Agesen et a l , 1998] do not generate stack maps for

every instruction in the program They are instead generated at particular points within

the program

An empincal study was earned out in [Agesen et a l , 1998] and it was found that there

was on average an 11% reduction in the amount of memory space required by the local

vanable root set as a result of the liveness analysis technique This technique therefore

appears to offer minimal benefits over type-precise analysis However, it should be

noted that it is important m reducing the possibility of surpnsingly large volumes of

garbage being retained [Diwan et a l , 1992] did not carry out an empincal study,

however, they state that because the overhead of implementing the stack map is small,

the application of this technique should be of practical use

The complexity of the technique in [Diwan et a l , 1992] is increased as a result of the

problem in clearly identifying type information about denved pointers Two solutions

are explored, path vanable scheme and path splitting Both solutions have overhead

associated with them Path splitting increases the code size of the program and the path

vanable scheme increases the size of the denved tables and there is also the problem

with indirect references m machines with complicated addressing modes The path

vanable scheme is the method used by [Diwan et a l , 1992] because it is considered to

be simpler and more straightforward It is stated that the problem with indirect

references should not occur for a load/store architecture

A problem could anse in the type precision technique [Agesen et a l , 1998] as a result

of rewnting instructions because an instruction’s position and length could change

26

This could result in a method exceeding the maximum method size To resolve

conflicts occurring m the type precision technique, variables are split This will result

in an increase in the number of variables created within a program This could exceed

the limit on the number of local variables allowed within a method which is imposed by

the byte code instruction set The above two problems are in practice extremely

unlikely to occur

[Diwan et a l , 1992] and [Agesen et a l , 1998] are compile-time garbage marking

techniques and they suffer from similar drawbacks to the ones highlighted m reference

to functional compile-time garbage marking techniques

2.2.3 2 Explicit Deallocation

The empirical study [Gay & Steensgaard, 1998] established that speed improvements of

up to 11% for medium sized programs were achievable However, there are a number

of salient speed variations where a negative performance results This cannot be

attributed to stack allocation, as some of the programs where there is a considerable

negative performance carried out very little stack allocation It is therefore unclear as

to why these speed variations occur between the benchmark programs

The analysis algorithm in [Gay & Steensgaard, 1998] can be accomplished m linear

time and is considered to be simple and fast However, the escape analysis has been

criticized for being too conservative The performance of the stack allocating

technique could be enhanced if the quality of the escape analysis was improved For

example, the analysis does not track objects which are thrown by exceptions, it

considers them to be live and necessary for the execution of the program

The work in [McDowell, 1998] does not implement a compile-time explicit

deallocation technique, but carries out a theoretical study to quantify the benefits of

allocating objects on the stack [McDowell, 1998]’s conservative analysis estimates that

approximately 10% of objects could be allocated on the stack instead of the heap It is

noted, however, that as the overhead of garbage collection increases, this technique

could become more attractive It is impractical to make a comparison between the

results of stack allocating objects in [Gay & Steensgaard, 1998] because McDowell’s

study did not consider the possibility of stack allocating objects returned by ‘fresh

methods’

27

The explicit deallocation technique presented m [Gay & Steensgaard, 1998] suffers

from similar disadvantages, as described in section 2 14 2 For example, the type of

run-time garbage collector is restricted because the reclaimed objects must be added to

a run-time free list

2.3 Benefits of Compile-Time Garbage Collection

techniques

The main benefit of these techniques is the increase m the amount of available memory

during the execution of a program as a result of the garbage cells that have been

detected and deallocated An empirical study was earned out on a number of programs

in [Mohnen, 1995] which shows clearly that compile-time explicit deallocation is worth

the effort

One of the important benefits is that programs can be wntten which may be far from

optimal in their use of memory, but are much easier to read and understand These

programs can then be analysed to search for and detect any garbage cells by one of the

compile-time garbage collection techniques

In some object-onented languages, it is the responsibility of the programmer to know

when to wnte the assignment statements to release the object(s) Incorrectly placed

deallocation statements could result m unexpected and invalid results A compile-time

garbage collection system will automatically find and deallocate garbage cells

There should be a reduction in the amount of garbage which will be found by the run­

time garbage collection system This should result in speed improvements as time is

not wasted searching for and detecting the unshared memory cells dunng the execution

of a program However, this is not always the case as the overhead involved in

carrying out one of the compile-time garbage collection techniques may outweigh any

increase in speed due to reducing the overhead of run-time garbage collections This is

particularly pertinent in the case of compile-time garbage marking as it is shown to

slow down the execution speed of a program

28

Some program bugs can be highlighted as a result of different program optimization

techniques The liveness analysis in [Agesen et a l , 1998] is therefore not unique in

having the ability to expose or hide bugs within a program These bugs are exposed

when it identifies and omits dead van able references within a program It is therefore

imperative that an optimization technique does not interfere with the results of a

program execution, because the outcome of a program must not be dependent on the

optimization techniques used

Improving the locality of objects stored in the heap and making the allocation of new

objects faster are important benefits The stack allocation of objects presented m [Gay

& Steensgaard, 1998] is an example of this This is because objects that have short

lifetimes are allocated on the stack and are destroyed automatically when the stack

frames are reclaimed Objects that have longer lifetimes can be allocated m heap

memory and this avoids the fragmentation of heap memory by short lived objects

[Diwan et a l , 1992] and [Agesen et a l , 1998] also present techniques that lead to

improved memory locality

2.4 Summary

In this chapter, we have introduced the area of compile-time garbage collection,

explaining the three most popular types of garbage collection schemes, compile-time

garbage marking, explicit deallocation and destructive allocation We have presented a

number of different algonthms in each of the garbage collection schemes for the

functional and object-oriented languages In chapter 3, we introduce compile-time

garbage avoidance techniques for both functional and object-onented languages We

discuss how this approach differs from those which we have seen in this chapter

29

Chapter 3 Compile-Time Garbage Avoidance

In this chapter we consider compile-time garbage avoidance techniques Compile-time

garbage avoidance has a different approach to the resolution of the ‘garbage problem’

in programs Its mam aim is to reduce the amount of garbage created during the

execution of the program In order to achieve this, the source code of the program is

transformed in some way and a number of different techniques are used to accomplish

this The transformed program should be more efficient in terms of memory space used

because the amount of heap space required by the program to execute has been

reduced The amount of time spent allocating and deallocating these intermediate data

structures has also been reduced The reduction in the amount of heap space used by a

program after it has been transformed depends on the particular program and the type

of compile-time garbage avoidance technique used

It should also be noted that research has revealed that compile-time garbage collection

and compile-time garbage avoidance can be complementary [Hamilton, 1995] A

program which has been transformed using a compile-time garbage avoidance

technique, could be further optimized to reduce the heap space requirements, by

applying a compile-time garbage collection technique Much research has taken place

into developing and improving compile-time garbage avoidance techniques This

chapter is divided into three main sections, section 3 1 discusses the compile-time

garbage avoidance techniques which have been researched and developed for

functional languages, section 3 2 discusses the compile-time garbage avoidance

techniques for object-oriented languages Section 3 3 presents other techniques that are

used to optimize object oriented languages

3.1 Functional Languages

Much research has taken place into developing compile-time garbage avoidance

techniques for functional languages and a number of algorithms have been developed

One of the reasons for the interest in functional languages is because of their suitability

for transformation [Burstall & Darlington, 1977] researched and developed an

unfold/fold transformation system which is the basis for a substantial number of

30

optimizing techniques It consists of a number of rules which are applied to a set of

equations and can be used to transform almost any first-order or higher-order program

3.1.1 First-order Languages

3 1.11 Listlessness Algorithms

The technique in [Wadler, 1984] removes intermediate lists from programs that have

been written in a functional language and use lazy evaluation A program compiled

with lazy evaluation will not evaluate any expression unless its value is required by

some other part of the computation Intermediate lists were identified as being a cause

of inefficiency during program execution A program that produces intermediate lists

will require more memory space to store these lists There could also be an increase in

execution time as these lists must be allocated, traversed and finally deallocated when

no longer required

The technique presented in [Wadler, 1984] can automatically transform a program to

improve its efficiency by removing all intermediate lists It can only be applied to

programs which can be lazily evaluated m a bounded space, excluding the space

occupied by the input and output of the program The domain of programs to which

this technique can be applied, is therefore very limited It cannot be used, for example,

to transform a program which processes tree structures using a stack of pointers as this

requires unbounded internal storage The technique presented in [Wadler, 1984] uses a

listless transformer which is partly responsible for calculating the storage requirements

of the program and thereby estimating its suitability for transformation This is

important because applying this technique to a program which cannot be evaluated in a

constant bounded space could result in an infinite loop

Further research was carried out in [Wadler, 1985], in the area of listless programming

It was evident that more research was required to enhance the transformation

developed, to widen the domain of programs to which the technique could be applied

There are many programs which cannot be transformed by the technique descnbed in

[Wadler, 1984] An example of a program which cannot be made listless is a program

which requires two traversals of the input data Other programs which cannot be

transformed include programs with tree data structures

31

In general there are few complete programs which are listless, that is the whole

program can be automatically transformed to eliminate all intermediate lists There

may be sections of the program which can be made listless, but other sections which

cannot The technique presented in [Wadler, 1985] has the capability to transform parts

of a program The complexity of the overall task may be reduced as a result of breaking

the complex problem into a number of smaller manageable programs which are easier

to construct and reuse All the sub-programs which make up the overall program may

not be suitable to the technique described in [Wadler, 1984], therefore the program as a

whole cannot be transformed The technique described in [Wadler, 1985] supports

modularity, as it allows you to transform a sub-program to remove intermediate lists

and combine this program with the other parts of the program which are not listless

The types of program which can be optimized by [Wadler, 1985] ’s algorithm is

therefore widened

3 1.1 2 Deforestation Techniques

[Wadler, 1990] descnbes a transformation technique that is used to eliminate the

intermediate trees produced m a program that has been written in a first-order lazy

functional language This algorithm is referred to as deforestation because it detects

and eliminates any intermediate tree structures which are produced in the program The

program is transformed by this deforestation technique and is based on the unfold/fold

strategy of [Burstall & Darlington, 1977]

The deforestation algorithm in [Wadler, 1990] can only be applied to a term which has

a function definition m a given syntactic form This algorithm is presented in three

steps The first is the ‘pure’ treeless form A term is treeless with respect to the

function definition if it is linear and every argument of a function and every selector of

a case term is a variable A term is considered linear if a van able does not appear in the

term more than once The restnction that every term is linear guarantees that certain

program transformations do not result in a more inefficient program

The input to the deforestation algonthm is therefore a linear term m which the function

definitions are treeless The output will be a treeless term, which has eliminated all

intermediate tree data structures This ‘pure’ treeless form is very restnctive for most

practical uses and as a result it was extended The first extension allows the use of

‘blazing’ which is the marking of data structures of a certain type to indicate where

32

intermediate values can remain The terms are blazed either with a © or © mark,

which are assigned solely on the basis of type The terms which are blazed with a ®

will be transformed by the deforestation algorithm to eliminate intermediate data

structures while the terms which are blazed with a © can be extracted and transformed

independently The programs which we can input to this blazed deforestation

algonthm are therefore less restrictive The second extension to the deforestation

algorithm is to allow some higher-order functions, by treating them as macros The

deforestation algonthm and its two extensions are proven to terminate in [Wadler,

1990]

[Chin, 1990] and [Chin, 1991] present a generalised deforestation algonthm which can

be used to eliminate intermediate data structures from all programs which have been

wntten in a first-order functional language Blazing is used in this technique and is

similar to the blazed deforestation algonthm [Wadler, 1990] A function’s arguments

must satisfy an extended treeless form (e-treeless form) Any part of the function

arguments which are not in this form, are blazed © and extracted

An enhancement in [Chin, 1990] to the deforestation algonthm was researched and

developed This enhancement will allow programs from the complete higher-order

language to be transformed, the technique is called ‘higher-order removal’ This

algonthm can be proved to terminate if a well-typed higher-order program is input for

transformation It has the ability to eliminate most higher-order expressions from the

program, which facilities the removal of intermediate data structures A proof of the

termination of this deforestation algonthm is presented m [Chin, 1990], which proves

that the algonthm will terminate if only e-treeless functions are used m the expressions

to be transformed

[Hamilton & Jones, 1991 A] & [Hamilton & Jones, 199IB] also extend the

deforestation technique presented in [Wadler, 1990] This extended deforestation

algonthm can be applied to all programs which have been wntten in a first-order

functional language This algonthm will detect and remove intermediate structures

from a program and it is achieved by performing static analysis to determine which data

structures can be eliminated

Two static analysis techniques, inhentance analysis and creation analysis are performed

to obtain properties about the program without actually executing it Inheritance

33

analysis is a backward analysis method It is used to determine if values of a structure

which are used by a term, are definitely needed by the result of the overall term of

which it is a part This structure is considered inherited if it is needed by the result and

is therefore not an intermediate structure The second static analysis method is creation

analysis This is a forward analysis technique, that is used to determine if a term

constructs a structure Inheritance analysis is then used to establish whether this

structure is inherited to the result, and if not it is called a constructed intermediate

structure

The extended deforestation algorithm performs these static analysis techniques on all

terms to be transformed Any constructed intermediate structures which are identified

are blazed © and can be eliminated by the algorithm Any inherited intermediate

structures are blazed © and are extracted in a similar manner to the blazed

deforestation algorithm described by [Wadler, 1990] The algorithm shows that there is

a finite number of terms encountered dunng transformation This bound is pertinent in

proving that the algorithm will terminate

Further research was earned out by Chin in [Chin, 1992], where he extends the

deforestation algonthm presented in [Chin, 1990] and [Chin, 1991] [Chin, 1992]

presents a ‘safe’ deforestation algonthm which has the ability to transform a complete

program and it outlines the necessary cntena to conservatively determine when this is

possible The most salient feature of this algonthm is its ability to prevent the

transformation of a program entenng an infinite loop This was a senous problem with

the previous generalised algonthm which could under certain circumstances enter an

infinite loop dunng transformation The transformed program will be at least as

efficient as the onginal program and should be more efficient when its intermediate

data structures are removed

This algonthm eliminates intermediate data structures from all first-order functional

languages and from most higher-order programs These transformations are earned out

safely by annotating any unsafe expressions and extracting them before transformation

takes place The result of the algonthm are expressions which have a form which is

known as extended-treeless or e-treeless This generalised deforestation algonthm can

therefore be proven to terminate

34

3.1.2 Higher-Order Languages

The higher-order deforestation algorithm can be used to transform both higher-order

languages and first-order languages which are a subset of it

3.1.2.1 Deforestation algorithms

A higher-order deforestation algorithm is presented in [Marlow & Wadler, 1992] This

algonthm will remove intermediate data structures from programs which are written in

a higher-order language An integral part of this algonthm is a set of transformation

rules which convert a given expression into a higher-order treeless expression The

transformation consists of three mutually recursive functions There are short-comings

associated with this technique however, a higher-order treeless form is not defined for

the algonthm and a proof of termination is not given

The deforestation algonthm provides the use of let-expressions, which can be used to

indicate in the source language where intermediate structures should be allowed to

appear It is expounded that there is increased flexibility and convenience associated

with using let-expressions instead of the use of blazing Any intermediate structures as

a result, which cannot be removed by deforestation can be present in the input program

by the explicit use of a let-expression It is therefore relatively easy to generate treeless

expressions from a non-treeless expression by adding appropnate let-expressions For

example a let-expression can be used to protect any non-linear arguments in a program

However, there is no mechanism which will accurately determinate where let-

expressions should be placed within a program, to guarantee that a more efficient

program will result after transformation

[Hamilton, 1995B] and [Hamilton, 1996] also present a higher-order deforestation

algonthm A higher-order treeless form of expression is defined, similar to the blazed

treeless form defined in [Wadler, 1990] There are two conditions m which an

expression can be blazed Firstly, function arguments and case selectors which are not

vanables are blazed © Secondly, all non-linear vanables within higher-order treeless

expressions must be blazed 0 at their binding occurrence This means that these

intermediate structures will not be removed by the deforestation algonthm and must be

35

transformed separately All other intermediate structures within the program will be

removed

A set of transformation rules are used to convert a given expression into a higher-order

treeless expression This higher-order treeless form of expression is an easily

recognized form of expression and any function definition can easily be generalised so

that it is in this form The two major contributions made in [Hamilton, 1995B] and

[Hamilton, 1996] are, a higher-order treeless form is defined for the algorithm and a

proof of termination is given

Marlow presents a deforestation algorithm in [Marlow, 1996] which is fundamentally

based on previous research done in [Marlow & Wadler, 1992] He was encouraged to

revert his attention to his previous work following the publication of Hamilton’s

deforestation algorithm [Hamilton, 1995B] Marlow’s algorithm like other

deforestation algorithms is based on the [Burstall & Darlington, 1977] unfold/fold

transformation system This thesis shows how deforestation can be performed for

arbitrary higher-order functional programs and it specifies the conditions that must be

satisfied

A higher-order treeless form is defined m [Marlow, 1996] for the deforestation

algonthm and he also provides a proof of termination The cut-elimination principles

of logic have been merged with the simple first-order deforestation algonthm to obtain

a new higher-order deforestation algonthm Any sub-terms which are considered

dangerous within a program, are transformed into let-expressions This algonthm is

similar to the deforestation algonthm in [Hamilton, 1995B] and [Hamilton, 1996]

A higher-order deforestation technique is presented in [Seidl & S0rensen, 1997] The

major contnbution of this paper is it ensures the termination of the higher-order

deforestation algonthm for a wider class of programs A control-flow analysis is

performed on the program, and a set of integer constraints are collected This analysis

is necessary in order to gather the vital information needed to detect dangerous sub­

terms within the program A sub-term is considered dangerous if there is a nsk that the

program will enter an infinite loop and as a result not terminate, when carrying out the

deforestation technique

36

The principles behind this technique are well-known and a detailed description of the

termination analysis technique used in the deforestation algorithm is given m [Seidl,

1996] The unfolding of function calls is earned out, except m the case where it will

affect the termination of the deforestation algonthm In this situation, folding is

introduced to avoid the repeated unfolding of the same expression The analysis is

powerful enough to be able to determine where unfolding is not safe within a program

[Seidl, 1996] was unable to resolve a problem with constructor functions and, as a

result, there was a necessity to restnct higher-order programs A program which has a

constructor function with a functional argument could result in the transformation of

the program looping indefinitely A solution was identified but requires that

constructor functions cannot have functional arguments A mitigating argument is

provided which states that using constructor functions with functional arguments may

not be popular when wnting programs It also states that it is only in some

circumstances that the deforestation algonthm will enter an infinite loop when

processing a program with such constructor functions

3.1.3 Comparison of functional language techniques

The definition of treeless form is simpler and more straightforward in the technique

presented in [Wadler, 1990] than the definition of listless form presented in [Wadler,

1984] and [Wadler, 1985] The range of programs to which [Wadler, 1990] can be

applied are more general, as it will transform programs that use intermediate trees and

they do not have to evaluate in a constant bounded space but may use the space

bounded by the depth of the tree

There are two extensions to the ongmal deforestation algonthm in [Wadler, 1990], the

blazed treeless form and higher-order macro technique The blazed treeless form

extends the type of program which can be optimized The higher-order macro

technique can only be applied to higher-order functions which have first-order

recursion This will restnct the usability of these higher-order functions It is also

more difficult for a programmer to see where intermediate structures will be eliminated,

due to the loss of transparency when macros are used The deforestation technique in

[Wadler, 1990] is considered to be restnctive and limited as a result

37

The algorithms presented in [Chin, 1990], [Chin, 1991] and [Hamilton & Jones,

1991 A] are not as restrictive as the algorithm presented in [Wadler, 1990] as they can

eliminate intermediate data structures from all programs which are written in a first-

order functional language Programs which can be transformed by [Hamilton & Jones,

1991 A] and [Hamilton & Jones, 199 IB] algonthm must be linear Any non-linear

function arguments must be blazed © and extracted before the program transformation

takes place The linear property is essential to ensure that there is no loss of efficiency

in program execution after deforestation This is more restnctive than other non-linear

algorithms such as [Chin, 1990], [Chin, 1991] and [Marlow & Wadler, 1992] These

algorithms, however, are unable to guarantee the improved efficiency of a program

after transformation This is a significant drawback and could result in a slower

program following transformation as duplication of expressions could occur

The technique in [Hamilton & Jones, 1991A] could be considered to be more intuitive

and straightforward than the generalised deforestation algonthm presented in [Chin,

1990] and [Chin, 1991] This is because it is not necessary to transform function

definitions into a treeless form before carrying out the transformation and special

consideration does not have to be given to recursive functions [Chin, 1992] presents a

deforestation algonthm which is proven to be safe This was not done previously An

important benefit of this algonthm is its ability to eliminate more intermediate

structures than [Chin, 1990] and [Chin, 1991]

The ‘higher-order removal' extension in [Chin, 1990] and [Chin, 1991] requires a

separate process to remove the higher-order features from a program before

deforestation can begin The techniques in [Hamilton, 1996] and [Marlow, 1996] do

not This ‘higher-order removal’ extension could result in redundant intermediate data

structures remaining in the program and increases the complexity of the deforestation

algonthm Chin’s algonthm also has the major drawback that it cannot be applied to all

higher-order expressions The techniques m [Hamilton, 1996] and [Marlow, 1996], in

companson, can be applied to all programs and are considered a more efficient

algonthm for higher-order program deforestation Chin’s algonthm may result in the

transformed program having a considerable increase in code size

[Marlow, 1996]’s contnbutions on higher-order deforestation are very similar to the

notion of higher-order treelessness and the termination proof made by [Hamilton,

1995B] and [Hamilton, 1996] The algonthm in [Hamilton, 1995B] and [Hamilton,

38

1996] is considered to be a less complicated and a more intuitive process than the other

techniques used to eliminate intermediate structures such as [Marlow & Wadler, 1992],

[Marlow, 1996] and [Seidl & S0rensen, 1997]

[Hamilton, 1996] and [Seidl & S0rensen, 1997] present proofs which will guarantee the

termination of the deforestation techniques Transparency is a property associated with

the algorithms presented in [Hamilton, 1996] and [Marlow, 1996] This is vital in

achieving predictable optimization results and facilitating the changing of a source

program for further enhancements The importance of transparency is that it is easy for

a programmer to see where in the source program intermediate data structures will be

eliminated

The deforestation algorithm m [Seidl & S0rensen, 1997] is considered to be very

complex and it may be difficult for a programmer to identify where intermediate data

structures will be eliminated The analysis which must be accomplished to implement

this technique is expensive on resources The transformation of a program by the

[Hamilton, 1996] technique can guarantee that a transformed program will be as

efficient as the original, because it has a linearity requirement This linearity

requirement is also important in reducing the risk of a program’s code size increasing

dramatically [Seidl & S0rensen, 1997] and [Marlow, 1996] do not have a linearity

requirement and, as a result, duplication of code could occur during transformation

This could result in an explosion in code size

[Seidl & S0rensen, 1997] presents a deforestation technique which allows useful

transformation steps that were not previously possible [Seidl & S0rensen, 1997]’s

algorithm, however, has a requirement that constructors cannot have functional

arguments, this is not required of the other deforestation techniques such as [Hamilton,

1996] The two deforestation techniques [Seidl & S0rensen, 1997] and [Hamilton,

1996] perform differently depending on the type of programs which are being

transformed Therefore, the [Hamilton, 1996] algorithm may perform better for some

programs

39

3.2 Object-Oriented Languages

Much research has taken place into developing compile-time garbage avoidance

techniques for object-oriented languages This is because a reduction in the size of the

heap space required by a program will have the eminent benefit of decreasing the

pressure on the heap management system This should reduce the execution time of a

program as a substantial amount of time is spent on memory management activities

The compile-time garbage avoidance techniques presented here could be referred to as

object miming techniques

3.2.1 Object Inlming

The aim of object miming is to inline objects into a container object The container

object is usually the object which declared an instance of the mhnable object Inlming

involves replacing the reference from the container object to the mlinable object with

the actual contents of the mhnable object

In practice, this would involve transforming the program in the following way

1 Adding the fields of the mlinable object to the container object This includes

all fields and methods The attributes which are added to the container, are

referred to as the mhned state,

2 Rewrite all uses of the mhned attributes to use the containers new mhned state,

3 Assignments to the mhned attributes must be changed to update the container’s

new mhned state

40

5 2

6 7

Shape

Point 1 Point 2

(a) Before object miming (b) After object miming

Figure 3 1 An example of object miming

For example, an object Shape has two attribute fields, which are Point objects These

two Point objects could be mimed within the container object This is shown in part (b)

of Figure 3 1 To achieve this the two Point objects (mimed fields) are removed from

the container and, the fields and methods of the Point objects are mlined within the

container object

It should be noted that the container object is referred to using different names in the

literature Some of the names which are used are enclosing and parent object The

mlined object is also referred to as the child object Before object miming can take

place two pieces of information must be obtained accurately The algorithm must

precisely identify all accesses to the child object and it must also ensure that sharing

relationships are correctly preserved This is because an mlined object has by-value

semantics, this means they cannot be shared by multiple parents, through a reference to

an mlined field in the container object

There are a number of benefits associated with object miming

1 It eliminates the requirement of creating the mlined object, which removes the

necessity of dynamically allocating space for the object and maintaining the

object dunng its lifetime There should be a reduction in the amount of heap

space because there is less overhead when fewer objects are created Space is

also saved because there are fewer pointer fields,

41

2 It eliminates the necessity of a subroutine call to access the object’s methods, as

they can now be mlined,

3 The fields of the object become local to the calling object or procedure This

enables direct access to its fields, which involves a single load with offset

instruction This is faster than indirect access,

4 Object miming provides the ability to group related objects together Handling

related objects together may increase the cache performance of the machine,

5 Inlinmg an object’s methods exposes the body of the method to further

optimization in the context of the original invocation,

6 Allocating and reclaiming the storage for the objects contained within another

object requires multiple memory operations In contrast after object miming the

operation of allocating and reclaiming can be earned out m a single operation

This should improve the run-time performance of the program

There are a number of disadvantages associated with object inlinmg

1 Object inlinmg has the potential negative effect of increasing code size, this

could result in an explosion in code size if not controlled properly,

2 Increasing code size could increase the compilation time of the program It also

increases the time required to download the program This is a particularly

senous disadvantage for the Java language whose populanty has grown because

of its suitability for wntmg applets for the internet

3 2 1.1 The Origins of Object Inhning

The Emerald system was one of the first systems to implement automatic object

inlinmg The goal of this system is not to identify the maximum number of inhnable

objects, but to provide an object-based language for the programming and

implementation of distnbuted applications [Black et a l , 1986], [Hutchinson, 1987]

Emerald has a uniform object model which is an important feature of object-onented

languages The Emerald compiler supports three different implementations of objects,

global objects, local objects and direct objects The compiler will choose the particular

style to implement each object, taking into account the efficiency and overheads

associated with that implementation Global objccts are specifically created with the

ability to be moved within the network Local objects are local to other objects, that is,

they reside on the same physical machine The direct object implementation is the one

we are particularly interested in because it is object inlinmg This implementation

42

allows the compiler to inline a ‘direct object’ within a container object The compiler

deduces by type inference what objects are suitable candidates for miming

3 2.1.2 Inlming Objects within Methods

[Budimlic & Kennedy, 1997] presents two optimization techniques, method and object

miming Method miming causes the body of the method to be expanded at its point of

call during compilation, otherwise, the method is invoked at run-time This eliminates

the need for subroutine call overheads and also makes it possible to carry out further

optimizations on the method body Three different compilation strategies are

introduced in [Budimlic & Kennedy, 1997], the standard, relaxed and high performance

model The suitability of each compilation model for the application of these and other

optimizing techniques are discussed The bytecode of a Java program is analysed to

obtain the relevant information necessary to carry out the different optimization

techniques The bytecode is converted into a Static Single Assignment (SSA) based

representation, which is considered a more efficient intermediate representation for

optimization A SSA representation essentially means that each vanable in the

program has only one definition in the program text

A number of problems are highlighted which make the optimization of Java programs

difficult These problems include, an incomplete program, Java’s exception

mechanism and high level of abstraction associated with Java Virtual Machine (JVM)

bytecode An incomplete program is a program where the entire source code is not

available at compilation time The three compilation strategies provide an environment

for the optimization of Java programs, each with differing degrees of optimization

success

The Standard Model is confined to the boundaries of the Java compilation model

defined by Sun Microsystems This model ensures that the bytecode produced has the

necessary characteristics of portability, security and functionality The High

Performance Model is used m environments where it is possible to compile programs to

run directly on a target machine without going through the JVM This results in the

loss of some of its security and portability capabilities

43

The relaxed model eases the constraints of the previous model to allow greater

opportunities for optimization Consequently, it sacrifices some portability for better

performance Method and object miming have been developed m this model as a result

class Shape
{

private int size = 0,
public void incSize()
{

size++,
}

I

public void draw()
{

DrawCounter aDrawCounter = new DrawCounter(),
aDrawCounter m e () ,
incSize(),

}
}

class DrawCounter
{

private int count = 0,
public void inc{)
{

count ++,
}

}

Figure 3 2 Example Java program

A lot of research has taken place in the area of object miming because of the difficulties

with miming methods There are difficulties because you cannot break the privacy of

objects when miming methods This problem is exacerbated by the fact that the Java

language encourages its classes to be extended and its methods to be overridden The

method aDrawCounter inc() in Figure 3 2 cannot be mlined for example, because the

count field is private to the drawCounter class Most Java virtual machine

implementations would reject the bytecodes that violate the privacy laws A solution to

this problem is to inline the whole object drawCounter within the method draw()

By making the whole object local to the calling procedure, it is possible to gain access

to its private attributes and to also inline all the calls to that object’s methods The

benefits associated with object miming apply in this case as an object is mlined within a

method An empirical study was earned out in [Budimlic & Kennedy, 1997] to

estimate the benefits of object mlining in the relaxed model It established that the

performance gams are encouraging It is thought that code duplication does not

44

increase the performance speed of code, however it does facilitate other optimizations

to take place on the mimed code

[Budimlic & Kennedy, 1998] presents the implementation in an optimizing compiler of

the method and object miming techniques presented in [Budimlic & Kennedy, 1997]

It is an ‘almost whole-pro gram' optimization technique which has some of the benefits

of whole-program optimization but does not restrict the extensibility of the program

The object miming technique is considered a very simple yet effective optimization

technique This technique, however, has the serious restriction that you can only inline

an object which is local to a method, and it cannot be mimed if a reference to the

mimed object is passed as a parameter to other objects or methods withm the program

The solution to this problem is to reconstruct the object, and the feasibility of this

approach is discussed in [Budimlic & Kennedy, 1998] An inlined object could be

reconstructed from its constructor methods or an extra constructor method could be

added to the class The probability of this outweighing the benefits of lnhning is

considered very high

Tests were earned out in [Budimlic & Kennedy, 1998] to assess the benefit of object

miming and the results were encouraging It compared the difference between the run­

time performance of interpreted bytecodes and interpreted bytecodes with object

mhnmg It is estimated that the run-time performance gam was between 16% and

295% This technique is restncted to miming arrays of objects locally within a method

Its ability to carry this out is very limited as a number of conditions must be met, one of

these is that each element of the array must be of the same known class

3.2.1.3 Automatic Object Inlimng

Object miming is the optimizing technique also presented m [Dolby, 1997], which will

automatically inline objects within container objects The interprocedural data-flow

analysis used by this technique is complex because it is necessary to obtain detailed

information on the objects used within a program to enable program transformation

This analysis technique must examine the control structure of the program and the data­

flow properties of object fields It will identify the creation and use of all objects

within a program and also track any aliases to objects An object is aliased if more than

one reference pointer in the program can make changes to its state Previous research

45

[Plevyak & Chien, 1994] and [Plevyak & Chien, 1995] was earned out in the area of

type inferences, method specialization and cloning etc This research is exploited to

enable the object miming analysis technique to be developed

The analysis technique in [Plevyak & Chien, 1994] and [Plevyak, 1996] was developed

in the Concert Compiler [Chien et a l , 1997] This compiler has an analysis framework

capable of context-sensitive flow-analysis This analysis framework has the ability to

create method and object contours when it is necessary to distinguish different program

properties A method contour is created for each method with a different set of

argument types Object contours are created to distinguish the different types of objects

which can be stored in the container’s field

Use specialization and assignment specialization are the two interprocedural data flow

analysis techniques which facilitate object miming Use Specialization is responsible

for identifying all the uses of mimed objects within the program Accuracy is

important when carrying out this task, as it will be necessary to change how the mimed

fields are accessed and used within the program This mterprocedural data-flow

analysis may perform a number of iterations, creating contours where required It

directs effort to specific areas of the program splitting the necessary contours

Assignment Specialization has the onerous task of ensuring that inline allocation is safe

Aliasing relationships are changed when an mimed object is copied into its container

and it is essential that changing these relationships will not affect the correct execution

of the program The fundamental basis of this assignment specialization technique is

that an object can be mimed if it is passed by value An object is passed by value if it

has not been previously stored and is not subsequently used

Cloning is necessary to implement this transformation Methods are cloned when they

have different method contours Method contours are grouped together according to

their compatibility and a clone is generated for each set (group) Objects are cloned in

a similar manner The automatic inline allocation technique was evaluated on a suite of

C++ object onented benchmarks m [Dolby, 1997] and two important benefits are

highlighted

1 It estimated that it eliminates approximately 40% but sometimes as high as 90%

of object accesses and allocations within a program There is no increase in

code size as a result of removing object allocation and heap references,

46

2 The runtime performance was found to be equal to a program, which was

manually mlined, and up to three times as fast as a program without miming

It is stated that a major weakness of this miming technique is its inability to establish

concrete information on complex aliasing relationships

3.2 1 4 Evaluation of the Automatic Object Inlinmg Technique

[Dolby & Chien, 1998] evaluates the automatic object inline allocation technique

presented m [Dolby, 1997] It provides a further exposition of what object miming is

and, how and when it can be earned out There are two main objectives of this

evaluation The first is to assess how much analysis power is necessary to facilitate

object miming The earlier paper did not investigate this in detail The second

objective is to evaluate the cost and benefits of the technique using a wider range of

benchmarks Three different program analysis frameworks are implemented, local data

flow, control flow analysis (CFA) [Shivers, 1988] and adaptive analysis [Plevyak &

Chien, 1994] The CFA and adaptive analysis techniques are based upon the

techniques in Dolby’s earlier work [Dolby, 1997] This paper uncovers some

deficiencies with the earlier techniques and instigates some changes The three analysis

frameworks are presented and their aim is to precisely identify all uses of the child

object(s) and to ensure that shanng relationships between container and child object(s)

are correctly preserved They differ in the power and sophistication of their analysis to

acquire this information

Local data flow is the first analysis framework It is an intraprocedural analysis and its

ability to identify suitable objects for miming is restncted to the boundanes of a single

method It is a fast technique but very limited m its applicability The success of the

nCFA analysis to inline objects is dependent on n, which is the number of levels of

calling context [Shivers, 1991] There is an exponential growth in the cost of the

analysis if you increase n Only small values of n are therefore practical

The adaptive analysis is a powerful analysis which has the ability to direct effort to

specific portions of a program It can vary the depth of its context sensitivity A

number of iterations can be performed, splitting contours where necessary A new

method contour is created when two calls to the same method have different tags for

the same argument A vanable is tagged with the details of the object fields to which

47

they are assigned or from which they are read The analysis may decide to split a

method depending on the method contours within the program Object contours are

examined and the analysis may deem it necessary to split an object contour, when a

value with different tags flows into an object’s contour state The analysis is similar to

nCFA except its contours are defined for objects rather than classes and it selectively

creates new contours

An empirical study was earned out in [Dolby & Chien, 1998] to evaluate the three

analysis frameworks on eleven moderate-sized C++ programs It states that the

adaptive analysis technique is the most successful at identifying suitable mlmable

objects The nCFA analysis is as effective on some programs but not all The study

establishes that the local analysis is very ineffective The number of contours necessary

for each method and class measures the cost of the analysis The adaptive and local

analysis were consistent across the different programs while the cost of the nCFA

analysis increased as the program size grew

The benefits of miming are estimated by the reduction in the number of field accesses

and object allocations dunng program execution The nCFA and adaptive analysis

vaned in their ability, it is estimated that the average number of reads and allocations

eliminated were between 37-43% respectively The local analysis is extremely

ineffective There are run-time performance improvements of up to 50% measured by

the adaptive analysis, but on average it is 10% The average for nCFA is 3% and the

local analysis showed no noticeable difference The average reduction in memory

allocation is 3% for nCFA and 13% for adaptive analysis It also establishes that a

programs code size following transformation is almost identical to its onginal size

3.2.1 5 A Second Evaluation of Automatic Object Inlinmg

[Dolby & Chien, 2000] earned out a further evaluation of the automatic object miming

technique presented in [Dolby, 1997] and [Dolby & Chien, 1998] A number of new

contnbutions can be attnbuted to this research The first contnbution was the

development of a formal model for object miming This formal model was augmented

with the special conditions necessary for semantics preservation This formal definition

of object inlinmg defines when the safety of the miming transformation can be ensured

The formal model is well defined only in the case of a one-to-one field A field f is a

one-to-one field if every container object corresponds to exactly one child object

through f, in a given execution of a program This child object can be mimed within

48

the container object and the conditions of this transformation can be proven to be

semantics preserving The safety of this transformation is ensured if it can be proven to

be semantics preserving

The adaptive analysis algorithm is extended to have the capability to identify when it is

possible to safely inline objects There are two criteria which must be adhered to, to

guarantee safe miming

1 Inlming is allowed only when it can identify child objects which are one-to-one,

2 It must accurately identify all uses of the child object in the program This is

pertinent because all these uses will have to be redirected to use the container’s

new mimed state

This extended algorithm is presented in this paper and it helped to expose several

significant flaws with the earlier techniques Subsequently, these could be corrected

The second contribution is a revised algorithm for miming a child object within a

container object It was considered necessary to improve the structure of fused child

and container objects, because of inadequacies with the previous method A good

structure is critical to reduce the number of methods which will need to be cloned

during the transformation An empirical study was conducted in [Dolby & Chien,

2000] and it was estimated that 30% of objects could be mlined within a program and

there was only a 20% increase in code size as a result of method cloning

The third contribution was the more detailed empincal study It was earned out on a

wider range of programs, including large programs The results of this evaluation were

impressive It estimated that 28% of field reads, 58% of object creations and 12% of all

data loads could be eliminated This was an improvement over the previous paper

[Dolby & Chien, 1998] which calculated that 40% of object accesses and allocations

could be eliminated The run-time performance also increased from an average 10% to

14%

49

3.2 1 6 Extending the Automatic Object Inlinmg Technique

[Laud, 2001] presents an analysis technique for object inlinmg This work was greatly

influenced by the automatic object inlinmg technique developed and implemented in

[Dolby, 1997], [Dolby & Chien, 1998] and [Dolby & Chien, 2000] It extends their

accomplishments by generalizing their analysis technique

A number of contributions can be attributed to this research

1 It presents a semantic model of the heap and the analysis technique is based on

it,

2 It is the opinion of the author, Peeter Laud, that his technique is superior to that

of [Dolby, 1997] for establishing when a field access does not require a

dynamic dispatch It differs m the way that it clearly separates the issues of

preserving shanng patterns from statically deducing how object fields are

accessed This is especially relevant when analyzing complex recursive data

structures,

3 This analysis investigates the possibility of several objects being mimed within

a single field in succession Simply, this means miming a child object within

the field of a parent object, even if this child object is replaced by a different

one at a later stage in the program It is necessary to determine if there is type

compatibility between the mlinable child objects The mlinable object(s) are

mimed within the parent if there is This is a very significant contnbution and

was made possible by the accurate type information extracted by the technique

The central aim of the analysis technique is to identify as many objects as possible to

inline and to establish which of these field stores can be changed to deep copies A

deep copy means that the fields of the object pointed to are recursively mimed It

explains the conditions necessary to make a deep copy possible A forward data flow

analysis is used to analyse the heap which gathers the necessary information on how the

different objects are accessed and used It lays down the criteria for when it is safe to

mime an object These are similar to the criteria used by Dolby and Chien

The transformation process preserves the shanng patterns established by the analysis

technique There is one situation that enables further miming, which is allowed to

break these shanng patterns, and that is permitting a constant object to be mlined A

constant object is one which has been initialized at its creation and is only read

50

afterwards Several references to this constant object can be created and it is still safe

to mime it

3.2.2 Comparison of the Object Inlimng Techniques

The Emerald object system is a simple graph based analysis system The type

inference algorithm is not as complicated or sophisticated as the adaptive analysis

algorithm in [Dolby, 1997] The type inference can identify immediate types which are

suitable for inlimng when it has enough precise type information An intermediate type

is an object whose contents are important but the identity of the object is not

Consequently, it is a straightforward process to inline this object Finally, the

Emerald’s object miming analysis technique could be summarized by stating that it is a

very simple and basic system, which has insufficient power to tackle the analysis

challenges of miming other types of objects The type inference algorithm has great

difficulty dealing with aliasing relationships

The techniques in [Budimhc & Kennedy, 1997] do not require knowledge of the whole

program to perform its optimization, while [Dolby, 1997] does This is a very

important advantage as a whole program optimization technique severely limits the

resulting program, as it could never be even partially extended There are also

situations where it is not possible to obtain the entire program and these programs could

not be optimized It should be noted, however, that the success of [Budimhc &

Kennedy, 1997] increases if a major portion of the code is available for analysis The

object miming technique in [Budimhc & Kennedy, 1997] is very restrictive, as it can

only inline objects which are created within a method A significant limitation of this

technique is the fact that an object cannot be mlined within a method if a reference to

the mimed object is passed as a parameter to other objects or methods within the

program A solution was presented and discussed m section 3 2 12 but may not be

feasible m practice A disadvantage of the method and object miming techniques m

[Budimhc & Kennedy, 1997] is they increase the program code size The percentage

increase was not documented when an empirical study was conducted in [Budimhc &

Kennedy, 1998]

[Dolby, 1997] presents an interprocedural object inlimng technique which can inline

objects within other objects It is not limited to inlimng within methods, consequently

51

more objects are suitable for miming The technique in [Budimhc & Kennedy, 1998]

on the other hand mimes an object within a method, which eliminates the need to

allocate heap space for the object and instead converts the object into local variables

which can be allocated on the stack The technique in [Dolby, 1997] requires complex

analysis while [Budimhc & Kennedy, 1998] analysis is simpler The technique in

[Budimhc & Kennedy, 1998] states that it has limited ability to inline arrays of objects

It is restricted to inhning an array which is local to a method and to which a number of

preconditions apply The technique in [Dolby, 1997] also states that it is difficult to

inline objects within arrays because of the difficulty of establishing concrete alias

information

Dolby’s technique, however, is more sophisticated and powerful as it has the ability to

deal with aliases and is capable of handling polymorphic containers A polymorphic

container is an object which must store fields of multiple types It could be deduced

from the wide range in performance gains in [Budimhc & Kennedy, 1998] that success

at miming is more acutely affected by the complexity of the program than Dolby’s

technique Inlinmg is severely limited, for example, if there is complex aliasing within

the program or arrays of objects are allocated within the program [Dolby & Chien,

2000] extends the work earned out by [Dolby, 1997] and [Dolby & Chien, 1998] by

presenting a formal model of object miming from which correctness conditions for safe

object inhning can be determined

In [Dolby, 1997], it is stated that object inhning does not increase the size of the

program code and should in fact decrease its size It states two reasons for this, the first

is the fact that object inhning removes object allocations and heap references The

second is that it shnnks the size of specialized methods compared to the onginal

program and these could be mimed [Dolby & Chien, 1998] states that an empincal

study done revealed that the size of a program after miming is almost identical to its

onginal size In [Dolby & Chien, 2000] it is stated that following a revised algonthm

to improve the way child and container objects are mimed, there is a 20% increase in

the size of a program This contradicts with the earlier research which predicts little or

no increase in code size There is also a discrepancy between calculated improvements

to the run-time performance estimated in [Dolby, 1997], [Dolby & Chien, 1998] and

[Dolby & Chien, 2000]

52

A major contribution that [Laud, 2001] has over previous object miming techniques is

that it has the ability to inline a number of successive child objects into a particular

field of a parent object The analysis technique in [Laud, 2001] has not been

implemented and as a result an empincal study was not earned out It is, therefore,

difficult to determine the power of this technique to identify new opportunities for

object miming and it limits the ability to compare it with other object miming

techniques [Laud, 2001] investigates and states the conditions necessary to carry out a

deep copy when miming, as opposed to the standard mime A deep copy has the

advantage of recursively miming objects into their parent object This should reduce

the time and analysis cost of identifying object miming opportunities because it has the

potential of miming a number of objects together

3.3 Other techniques suitable for the optimization of

object-oriented languages

There have been many different techniques researched and developed to optimize

object-onented programs Three areas of research are presented, improved memory

usage, partial redundancy elimination (PRE) and eliminating dynamic dispatches Each

technique has its own particular way of optimizing a program and they have had

considerable success in doing so It is important to present other optimization

techniques as there are similanties between them and the compile-time garbage

collection and the compile-time garbage avoidance techniques

The central aim of the improved memory usage technique is to reorganize the cache

memory to improve its efficiency For example, in [Chilimbi & Hill & Larus, 1999B]

the structure splitting technique reduces the size of Java classes, in order to store a

greater number of contemporaneously accessed classes together in one cache block

Two structure elements are contemporaneously accessed dunng the execution of a

program if they are read from, wntten to or both within a short time interval of each

other This should result in greater memory efficiency as it reduces the number of

cache misses The central aim of the object miming technique is similar It tnes to

maximize the number of memory dereferences it eliminates, in order to reduce the

pressure on the memory subsystem This is achieved by fusing container and child

objects and thereby reducing the number of objects the program needs to create and

maintain

53

PRE differs significantly from the improved memory usage and object miming

techniques in the particular technique it uses to optimize a program It is similar in the

way it is used to reduce the number of memory dereferences by eliminating partially

redundant access path expressions It has had success in improving the run-time

performance of programs

Eliminating dynamic dispatches is the third technique and it has had considerable

success in improving the run-time performance of object-oriented software This is

achieved by reducing the number of dynamic dispatches implemented in a program

This is also a benefit of the object miming technique as miming results m the methods

of the child object becoming local to the container object Consequently, these

methods can be statically bound For example, an empincal study revealed that the

selective specialization technique [Dean & Chambers & Grove, 1995B] eliminated 54-

66% of the dynamic dispatches and the class hierarchy analysis technique [Dean &

Grove & Chambers, 1995] eliminated 33-54% of them

3.3.1 Improved Memory Usage

It has been identified that there is a significant difference between the speed of the

computer’s CPU and access to its memory subsystem The aim of this research is to

change the organization and layout of how structures are stored in the computer’s cache

memory Cache utilization and locality can be significantly improved in this way The

main benefit of this research is greater memory efficiency as it reduces the number of

cache misses and increases cache performance Ultimately this will lead to an

improvement in the run-time performance of the program

[Ciemiak & Li, 1997] presents a number of memory hierarchy optimization techniques

to optimize Java bytecodes It recovers the high-level structure of a program from the

information obtained m the bytecode class file This information is combined with the

knowledge of the target architecture on which the bytecodes will be run, to facilitate a

more effective computer memory usage The Bnki compiler implements these

optimization techniques but it is proposed that it should be integrated with a Java

virtual machine A high-level intermediate representation is created from the Java

bytecode A number of problems were experienced such as the necessity to convert

54

branches such as loops, conditional statements, break and continue statements, to a

high-level structure Building the correct control flow within the intermediate

representation (IR) to represent the branch statements is a difficult task

The central aim of these optimization techniques is to remap the data within memory to

improve the memory locality An example of one of these techniques is transforming

how a multi-dimensional array is stored Information on the multi-dimensional array is

not available directly in the bytecode and it must be recovered In doing so it can

reduce the number of cache misses and significantly increase the program execution

speed This optimization technique concentrates on rearranging a multi-dimensional

array in the context of a nested loop Optimizations m the Java language are

complicated greatly by its exception handling mechanism Consequently, loop

transformations are difficult, as Java requires that the execution of a loop nest be

performed in a specific order Data transformations are performed instead of loop

transformations, as they do not change the order of execution within a loop Arrays in

Java are widely used to store objects Another example of one of these techniques is to

store the most frequently used object fields m consecutive memory locations It was

established from an empirical study on a number of benchmark programs, that the

performance of a program could be increased by 10-50% by applying [Ciemiak & Li,

1997] optimization techniques

The research in [Chilimbi & Hill & Larus, 1999B] extends the previous work which

was earned out in [Chilimbi & Hill & Larus, 1999A] The research in [Chilimbi & Hill

& Larus, 1999A] investigates how to improve the way data structures created by

pointer manipulating programs are organized and accessed within the computers

memory Empmcal tests estimated that the speed improvement of applying a cache­

conscious reorganization strategy to a program, is between 3-138% over the successful

technique prefetching [Mowry & Lam & Gupta, 1992] Inspired by these results,

research was earned out to improve the performance of object-onented programs

Structure
hot cold

f3 f l f2 f4f l f2 f3 f4

Figure 3 3 Structure Splitting

55

The structure splitting optimization technique was developed [Chilimbi & Hill & Larus,

1999B] It is ideal for applying to object-oriented programs with structure instances

that are comparable in size to a cache block Java programs are suitable for

transformation by this technique The goal is to reduce the size of the Java classes by

splitting them into a hot and a cold portion This is illustrated in Figure 3 3 The hot

portion should contain the most frequently accessed attributes of the class, while the

cold contains the rarely accessed attributes By reducing the size of the Java class it is

possible to store a greater number of contemporaneously accessed hot portions in the

one cache block This should result in a reduction in the number of cache misses and

consequently an improvement in program performance

A program’s static bytecode is analysed and instrumented using BIT [Lee & Zorn,

1997] to obtain enough information to identify the class objects, their field names,

types and sizes The program is executed and a dynamic profile is built The static and

dynamic data that have been gathered are used by the technique to decide which class

objects should be split Classes that do not provide a sufficiently large cold portion are

not split The hot and cold portions become two separate classes Any accesses made

to the fields stored in the hot object class remain unchanged The cold attributes are

removed from the hot class, they are then labelled with the public access modifier and

stored separately in a cold class A number of disadvantages are evident as a result of

class splitting These include, the creation of more objects and extra indirection when

accessing cold object fields A serious disadvantage is the size of the program will

increase to accommodate the extra objects which are created

Experiments estimated that the cache misses were reduced by 10-27%, as a result of the

splitting technique A significant benefit is that it improved the run-time performance

of the Java programs by between 6-18%, beyond the benefits of the other cache­

conscious reorganization techniques, such as the one discussed in [Chilimbi & Hill &

Larus, 1999A]

Partial redundancy elimination (PRE) eliminates computations which are only partially

redundant, that is, they are redundant only on some but not all access paths to some

later re-computation The result of the first computation is evaluated and the value is

stored When the same computation occurs again, it should not be re-evaluated, as the

previously evaluated result should be used PRE is therefore responsible for

eliminating the later evaluation, and replacing it with the stored value instead In

Figure 3 4 the computation a+b is redundant on one of the access paths This

computation is evaluated and stored in a value t and reused when the same computation

occurs again The aim of implementing PRE is to reduce the number of computations

to be evaluated during the execution of a program The result of this should be an

improvement in the run-time performance of the program

a
a b

a+b b t <-a+b t <-a+b

3.3.2 Partial Redundancy Elimination

a+b t

Before PRE After PRE

Figure 3.4 Partial redundancy elimination

3.3.2.1 History of PRE

Code motion is equivalent to PRE, as its central aim is to avoid unnecessary re-

computations of values during program execution The code motion algorithm in

[Morel & Renvoise, 1979] will move computations even if there is no performance gam

during the run-time execution Code-motion could have a negative effect on program

performance as it could lead to register pressure, as a result of the extra temporary

variables created during code motion [Knoop et a l , 1994] presents a code motion

algorithm which will optimally transform lazy functional programs It is based on the

algorithm researched and developed by [Knoop & Steffen, 1992], which was

influenced by [Morel & Renvoise, 1979] His algorithm has the ability to calculate the

benefits of particular code motions within a program It may suppress the code move if

57

it will cause unnecessary register pressure This is a very important benefit over earlier

code-motion algorithms This algorithm can guarantee that a program which has been

transformed by this code motion algorithm is equivalent to the unoptimized program

[Bodik et a l , 1998] presents a PRE algonthm which has the capability to remove all

partially redundant expressions within a program It is achieved by integrating three

transformation techniques code motion, program restructuring and speculative code

motion A program is analysed to identify any redundant or partially redundant

expressions The control flow paths to each expression are investigated and the

necessary information is gathered to deduce if simple code motion can be used or if

program restructuring is required The program may need to be restructured to remove

the obstacles to code motion An empirical study was conducted in [Bodik et a l , 1998]

and it was found that the complete PRE algonthm yields twice the benefits of an

optimization technique which uses only code motion

3 3 2 2 Partial Redundancy Elimination for Object-Oriented Languages

[Hosking et a l , 1999] extends the previous research earned out on PRE Most PRE

algonthms previously researched and developed concentrated on optimizing imperative

and functional languages, examples are given in section 3 3 2 1 [Hosking et a l , 1999]

develops a technique to optimize Java programs, by eliminating partially redundant

access path expressions This technique could be applied to other object-on ented

languages [Hoskmg et a l , 1999] ’s technique is an intraprocedural technique Inter­

procedural analysis should greatly increase its capacity to recognize partial redundant

access path expressions Other techniques such as [Dolby, 1998] are more powerful as

they have the ability to perform interprocedural analysis

Type-based alias analysis (TBAA) [Diwan, 1998] is a technique used to obtain type

information It can be performed on statically typed programs, which are wntten in a

type-safe language such as Java Each vanable is a storage location and will have an

associated type, sometimes referred to as its compile-time type TBAA is vital in

reducing the number of possible aliases an access path expression could have TBAA

is made more difficult because of exception handling and threads It is identified in

[Hosking et a l , 1999] that the traversal of objects in an object-onented program results

in a significant overhead to the execution of the program This is because every access

to an object’s state requires a pointer dereference, which is expensive on CPU

58

resources It also increases the pressure on the memory subsystem, as it is necessary to

read and/or write to an object's state, which is stored there Any reduction in the

number of accesses to the memory subsystem would be an eminent advantage

a.b[i].c

a.b[i].c
Before PRE

t <-a.b[i].c t <-a.b[i].c

After PRE

Figure 3.5 Illustrates an example of PRE for access path expressions

Access expressions refer to the variables that compnse an object’s state An access

path expression is the term used in this paper to mean the non-empty sequence of

accesses to the field attributes of objects and the elements of an array In Figure 3 5, a

holds a reference to an object, b is an array field and c is an object field The variable i

is an index Traversing the access path expression in the example given requires

successively loading the pointers at each memory location until the desired attribute of

the object is accessed

The complexity of PRE is increased when it is used m association with objects, because

objects can be aliased The PRE of access paths cannot be performed if there is a

danger that a change has been made to a b[i] c between the first time it was evaluated

and the second This could occur if there are explicit stores to a or i, or an alias to this

object performs a store operation which modifies its contents An empirical study was

conducted in [Hosking et a l , 1999] and the experiments show significant

improvements in the execution of optimized programs in different execution

environments For example, the Neural program m this study shows a reduction from

9% to 5% of 'getField' bytecodes

59

3.3.3 Eliminating Dynamic Dispatches

The fundamental aim of this optimization technique is to replace some of the dynamic

dispatches in object-oriented languages with direct procedure calls (1 e statically

bound) The programs are analysed to obtain precise and detailed information and this

is used to infer the class types a message receiver could have Static class analysis,

method specialization and profile-guided receiver class prediction are some of the

schemes, which are used to obtain the necessary information to implement this

optimization

Profile-guided receiver class prediction is a scheme which not only uses information

gathered from the static structure of the program but also dynamic profile information,

gathered from the execution of the program This profile information is very valuable

in predicting what the receiver class of a message will be A number of techniques

have been researched and developed to gather and manipulate profile information

[Holzle & Ungar, 1994], [Grove et a l , 1995] [Grove et a l , 1995] estimated, following

an empirical study, that 70% or more of dynamic dispatches are sent to the most

common receiver class The run-time performance was improved by 18-86% over a

program optimized by standard static optimizations such as class hierarchy analysis

[Dean & Grove & Chambers, 1995] Section 3 3 3 1 and 3 3 3 2 present some of the

research earned out to implement the first two schemes

The aim of the static class analysis scheme is to analyse programs at compile-time to

identify places where dynamic dispatches can be eliminated Information is gathered

on vanables to identify the types of classes which can be stored in them Some

techniques also use information on the layout and structure of the program Method

Specialization involves examining the possible argument classes of each method and

creating specialized methods The central aim of this scheme is to replace some of the

dynamic calls to methods within a program with statically bound calls to specialized

methods

There are similanties and differences between these schemes but their goal is to enable

the static binding of dynamic dispatches The mam benefit of this should be an

increase in the run-time performance of object-onented programs

60

There are two significant factors arising from the removal of dynamic dispatches

1 Method calls can be statically bound, which saves the expense of performing

costly method lookups,

2 It is easier to apply other optimization techniques to the code, for example

object and method miming

3 3 3 1 Static Class Analysis Techniques

Static class analysis techniques [Chambers et a l , 1989], [Chambers & Ungar, 1989]

and [Chambers & Ungar, 1990] are successful m analyzing programs They examine

the receivers of each message to identify the types of classes that are involved

Sometimes it is determined that the receiver object can be of only one class In this

situation the dynamically dispatched message can be replaced with a direct procedure

call at compile-time If it is determined that the receivers of the message are a small

number of classes, the dynamically dispatched message can be replaced with a number

of run-time tests At run-time, the class instance is compared in the tests and the

appropriate direct procedure call is taken

Class hierarchy analysis is the technique presented in [Dean & Grove & Chambers,

1995], which examines the inheritance structure of a program to increase the number of

statically bound method calls Statically and dynamically typed languages are

supported by the class hierarchy analysis technique It also has the ability to analyse

and transform languages with multi-methods A message in a multi-method language

could be dispatched to one or more receiver classes It examines the layout and

structure of all the classes and the location of the methods defined within the program,

dunng compilation A class hierarchy graph is built to store this information The

compiler can use this valuable inheritance information when the available static class

information is not precise enough It could be used to identify the exact class type, a

receiver of a message could be

61

Figure 3.6 Illustrates the hierarchy information which could be stored about a

program

In Figure 3 6, consider the method p m class C This method could be ovemdden by

C’s subclass class E If the instruction this p is within the program and the class E is

the receiver of that message, static class analysis will not be able to determine if class

E, C or A are the receivers of that message Class inheritance analysis, however, will

have determined that class E has not ovemdden method p It will therefore deduce that

the only receiver of the message could be class C, as it has implemented the method p

The dynamic dispatch can be consequently replaced by a direct procedure call to the

method p in class C. Other dynamic message dispatches can be eliminated, by using

the valuable information gathered from the inheritance structure of a program

An empirical study m [Dean & Grove & Chambers, 1995] estimated that augmenting a

compiler that has standard static intraprocedural analysis with class hierarchy analysis,

will result m a 23-89% increase in the run-time performance of a program It is also

estimated that the executable code size of a program will reduce by 12-21%

3 3.3 2 Method Specialization Techniques

Customization is a type of specialization that has been implemented previously by

compilers for object-oriented languages [Chambers & Ungar, 1989] and [Lim &

Stolcke, 1991] This strategy involves creating a specialized version of a method for all

possible class receivers It is possible to statically bind some of the specialized

methods and eliminate the dynamic dispatches An important benefit of this is an

62

improvement in the run-time performance of the program It is estimated that it will

run 1 5 to 5 times faster as a result of customization

The selective specialization technique [Dean & Chambers & Grove, 1995B] was

researched to overcome some of the problems associated with customization Selective

specialization obtains the necessary information to carry out its program

transformations in two ways It analyses the static structure and layout of a program to

identify the creation and uses of classes and methods Profiling is also earned out to

gather information on the dynamically dispatched messages within the program

Selective specialization analyses the parts of the program which are most heavily used

It focuses on eliminating the dynamic message dispatches within this portion of the

program, by replacing them with statically bound calls to specialized methods It also

uses this information to obtain precise data on the method arguments and receivers

This is crucial when specializing a version of a method, which could be used by a

number of receiver classes This relieves the necessity of creating a specialized method

for every possible receiver of the method A weighted call graph is constructed from

the profile data This will illustrate the different methods and the number of times each

one is invoked Any method which is invoked a large number of times is considered

suitable for specialization

Part (a) Part (b)

* Statically-bound call site

* Dynamically-bound call site

Figure 3 7 Illustrates a weighted call graph for a program

63

For example, ml method (caller) m Figure 3 7 can statically call method m2 (callee)

m2 will use dynamic dispatches to bind to methods A m3, A m4 and B m3 It will

depend on the arguments given to the m2 method as to which method it will call The

technique could specify that any method which is dynamically dispatched more than

500 times is eligible for specialization In this example the arc from m2 to B m3 is a

target and a specialized version of the method B m3 is created, B m3-spec The

general-purpose version of B m3 will remain and can be called in other parts of the

program B m3-spec can now be statically bound to the method m2 and will be called

by m2 when it receives specific arguments This is illustrated in part (b) of Figure 3 7

As a consequence of specializing a part of the program, method calls higher up in the

hierarchy of the program can be affected For example as a result of specializing the

B m3 method, it may be no longer possible to statically bind ml to m2 This will occur

if the selective specialization algorithm determines that it is necessary to create a

specialized version of the call site, in this case m2, to enable static binding to the

specialized method B m3 A solution to this which ameliorates the effect of creating

new dynamic dispatches, is to specialize caller methods to match the specialized callee

methods The procedure’s aim is to recursively specialize methods in this way, moving

up through the call graph An empirical study in [Dean & Chambers & Grove, 1995B]

estimated that selective specialization increases the performance of the program by 65-

275%

3.3.4 Comparison of the object-oriented techniques

The technique m [Chilimbi & Hill & Larus, 1999B] concentrates on restructuring the

internal layout of objects by splitting a class into hot and cold portions The technique

presented m [Ciemiak & Li, 1997] involves the manipulation of external data structures

created m the Java language The [Chilimbi & Hill & Larus, 1999B] technique can

only be applied to structures which are comparable in size to a cache block The

[Ciemiak & Li, 1997] technique does not have this limitation Some of the

optimization techniques presented in [Ciemiak & Li, 1997] are machine dependant as

they require low-level information on the architectural structure of the machine on

which the program will be run This restricts the portability of the bytecode following

optimization

64

[Bodik et a l , 1998] presents an algorithm which incorporates program restructunng to

achieve the complete removal of redundant expressions [Morel & Renvoise, 1979],

[Knoop & Steffen, 1992] and [Knoop et a l , 1994] algorithm’s are based on simple

code motion and do not have the sophistication to change the control flow of a program

to facilitate the removal of partially redundant computations No previous research

algonthms combined code motion and program restructunng to achieve this A

disadvantage of this technique is that there is an increase in the code size of a program

following optimization [Bodik et a l , 1998] states that this increase is small The

technique [Hosking et a l , 1999] established through an empincal study that it rarely

, increased the static size of a program and in some cases it reduced the size

The class hierarchy analysis technique [Dean & Grove & Chambers, 1995] extends the

basic static class analysis technique It is implemented using cone sets, these use the

computer’s storage space more economically than the static class analysis’s class sets

The intraprocedural class hierarchy analysis technique [Dean & Grove & Chambers,

1995] does not require knowledge of the whole source program when carrying out its

optimization, though it is most effective with whole program optimization This is an

important benefit as there are situations when only a portion of the program is available

for analysis Other optimization techniques such as [Dean & Chambers & Grove,

1995B] and [Dolby, 1997] require that the whole program is available for analysis

They implement mterprocedural algonthms which result in more opportunities for

optimization

The selective specialization technique presented in [Dean & Chambers & Grove,

1995B] extends the work earned out by customization techniques A significant

advantage which selective specialization has over customization, is that it does not

blindly specialize every method in the program It creates a specialized method which

is applicable to a subset of the possible argument classes of the method Customization

techniques have a very senous disadvantage, they increase the code size of a program

by a factor of 3 or 4 This is particularly evident in large programs which have deep

inhentance hierarchies or programs with a large number of methods Consequently,

applying selective specialization may be the only practical technique m these situations

The selective specialization technique only results in a 4-10% increase in the program

code space Selective specialization can be used to optimize object-onented languages

with multi-methods, unlike customization

65

The class hierarchy analysis and selective specialization techniques are similar in the

way they are both competing for the same type of information to enable the

optimization of a program An empirical study was conducted in [Dean & Grove &

Chambers, 1995] to compare the two techniques and it was established that the

selective specialization algorithm’s performance is supenor It should be noted

however, that class hierarchy analysis is a necessary component of the selective

specialization algorithm A salient disadvantage of selective specialization is that it

enlarges a program’s compiled code This is not a disadvantage associated with the

class hierarchy analysis technique

3.4 Benefits of compile-time garbage avoidance

techniques

The compile-time garbage avoidance techniques presented can be used to detect and

eliminate intermediate structures within a program, and the program should

subsequently require less memory to execute For example, the higher-order

deforestation algorithm [Hamilton, 1996] can eliminate intermediate structures within a

program which has been written in a higher-order functional language This relieves

the pressure on the memory subsystem, which is a very important benefit This is

because bottlenecks occur here during program execution especially in object-oriented

programs

A program that has been transformed by a compile-time garbage avoidance technique

will spend less time allocating, traversing and deallocating intermediate structures at

run-time This source to source transformation should result in a more efficient

program which should execute more quickly than the original program For example,

the object inlinmg technique aims to inline objects within other objects and thereby

eliminate the necessity of creating all the objects in the heap memory The object

miming technique [Dolby, 1997] results in programs running up to 3 times as fast

Functional programs are often written in a style that uses many intermediate structures

Individual functions will build an intermediate structure or decompose one into its

constituent elements Programs that use intermediate structures are often easier to read

and understand, but they result in loss of efficiency at run-time Object-oriented

66

languages provide a uniform model and encourage the use of many objects and

methods Programs that are written in this way are easier to write and simpler to

analyse and associate with real life experiences Functional and object-oriented

programs can be transformed by compile-time garbage avoidance techniques to

improve their run-time performance This transformation is earned out without any

user intervention The programmer can wnte his program in whatever style he chooses

without worrying about the loss of efficiency his style might cause

Extra time will not be required dunng the execution of the program to execute the

special instructions inserted as a result of a compile-time garbage collection technique

For example, extra time would be required dunng the execution of a program, which

has been annotated by a compile-time garbage marking technique, to check each cell to

see if it is marked A disadvantage associated with the explicit deallocation technique

is that it restncts the type of run-time garbage collector you can use Section 2 14

presents some other disadvantages associated with compile-time garbage collection

techniques The compile-time garbage avoidance techniques do not have these

overheads It should be noted however, that in some situations compile-time garbage

collection techniques and compile-time garbage avoidance techniques could be

complementary A program which has been transformed by a compile-time garbage

avoidance technique, could be further optimized by a compile-time garbage collection

technique [Hamilton & Jones, 1991 A] stated however, that the majonty of garbage

which would be detected at compile-time can be avoided by transforming the program

The ability of a compile-time garbage avoidance technique to transform a program to

eliminate all garbage is rare and has only occurred in a few specific cases Therefore,

there will always be a need for a run-time garbage collection system However, the

overhead of running a run-time garbage collection system should be reduced as the

amount of garbage remaining m the transformed program has been decreased

67

3.5 Summary

This chapter presents the compile-time garbage avoidance techniques for functional and

object-oriented languages It also illustrates the benefits of this approach A wide

range of optimization techniques have been researched and developed for object-

oriented languages and a number of other techniques which are successful in

optimizing object-oriented languages are presented m section 3 3 Improved memory

usage, PRE and eliminating dynamic dispatches are the three areas of research that are

discussed It is important to introduce some of them in order to show how they

compare and contrast with the object miming techniques Chapter 4 presents the

analysis algorithm for the declassification technique

68

Chapter 4 Analysis

Static analysis can be used to provide a wealth of information about type, data and

control flow in programs Providing concrete and precise analysis information for

programs written in object-oriented languages is inherently difficult to obtain but it is

vitally important that it is available Some of the features which increase this difficulty

are, inheritance, polymorphism, exception handling and dynamic class loading These

features and the fact that object-onented programming encourages the use of many

objects when designing software [Calder & Grunwald & Zorn, 1994] results in many

objects being created on the heap The widespread use of polymorphism and the fact

that many methods are encouraged when designing software results in the increased

dependence on dynamic dispatching These issues result m significant overheads and

were discussed in chapter 1

Because of these overheads it is vitally important that object-oriented programs are

aggressively optimized to reduce the pressure on the memory subsystem and improve

the run-time performance Accurate and detailed information on the type, data and

control flow of a program are essential to support the work of the optimization

techniques Section 4 1 describes the type inference research which has been earned

out The results of this research have been used in the declassification technique It

expounds the difficulties expenenced with earlier type inference algonthms and how

they were extended and changed to overcome these problems This thesis presents the

declassification optimization technique whose central aim is to improve the

performance of programs wntten in the Java language The objective of this

optimization is to automatically inline certain classes within their enclosing class

Consequently, this should reduce the number of classes which are instantiated and used

in a program dunng its execution This is accomplished by eliminating the need to

create and maintain these ‘intermediate classes’ and instead extend the enclosing class

with the fields and methods of the mlined class

69

4.1 Type inference of object-oriented languages

[Palsberg & Schwartzbach, 1991] present a new approach to obtaining type information

for programs written in an object-oriented language The particular language used for

this research resembles Smalltalk [Goldberg & Robson, 1983] and has as a result the

following properties, dynamically typed, late-binding and single inheritance It differs

from Smalltalk in the way that it prohibits the use of metaclasses, blocks and primitive

methods A primitive method is one which has been written in assembly language

This algorithm constructs a trace graph which is annotated with a finite set of type

constraints for each program analysed The type information is induced from the

constraint network and the ability of the algorithm to type a program is dependent on its

ability to solve the constraints identified This type inference algorithm can infer types

in most common programs including programs with polymorphic and recursive

methods

It has however, two significant disadvantages

• It is limited in the range of programs it can type, as it is restricted to a single level of

discrimination, and it is unable to infer types in programs that use collection classes

A collection class is a data structure which can store a group of objects according to

a particular retneval scheme,

• A theoretical evaluation of this algorithm estimates that there will be a substantial

increase m the size of the program being analysed The worst-case scenario predicts

that the constraint network could grow exponentially

Previous work which has been earned out on type inference [Goldberg & Robson,

1983], [Milner, 1978], [Kaplan & Ullman, 1978], [Suzuki, 1981], [Boming & Ingalls,

1982], [Cardelh, 1984] is similar to this algonthm [Palsberg & Schwartzbach, 1991] in

their use of type constraints There is a prominent difference in that their algonthms are

unable to handle the most common programs wntten m a dynamically typed language

The benefit of this research is its potential to be used as part of an optimizing compiler

It would be able to type check most common programs and thus would eliminate the

need for run-time type checking dunng execution This safety guarantee should

improve the run-time execution of programs

Further research was earned out in [Oxh0j et a l , 1992] to extend, improve and

implement the algonthm presented in [Palsberg & Schwartzbach, 1991] This algonthm

70

is again used to safely approximate concrete types for programs written in a language

which resembles Smalltalk It builds a similar constraint network in order to infer type

information but its complexity has been dramatically improved

The two main contnbutions of this paper are

• The improved algonthm has the ability to infer types m programs which contain

collection classes,

• Changes were made to the way type inference is earned out, predominantly to how

the constraint network is processed and stored This revised inference algonthm

was implemented The complexity of the algonthm is estimated to be reduced from

exponential time to low polynomial time

The inability to handle collection classes is a fundamental flaw of the previous

algonthm in [Palsberg & Schwartzbach, 1991] Consequently, if a program declared

two list classes, one of type integer and the other of type stnng, the algonthm would not

be able to successfully type this program To solve this problem the algonthm is

extended and more type vanables are introduced by code duplication To illustrate

simply what happens consider the example above, every time a new List is created, the

algonthm creates a copy of the entire class List This would be done for both the

integer and stnng List classes Duplicating classes m this manner causes an increase in

program size, this is estimated to be at worst a quadratic increase An incremental

approach is presented to improve the efficiency of the implementation This involves

incrementally constructing the trace graph, identifying the sets of constraints and

computing the solution It also eliminates the necessity of representing intermediate

results and unreachable parts of the trace graph This has resulted in two eminent

benefits, it has reduced the space requirements of the algonthm and also greatly

improved the speed performance

Plevyak and Chien researched and developed an algonthm m [Plevyak & Chien, 1994]

which is capable of precisely defining concrete type information for programs wntten m

the Concurrent Aggregates (CA) [Chien, 1993] object-onented language Concurrent

Aggregates is a dynamically typed, single inhentance object-onented language This

algonthm also uses a constraint-based network, similar to the one developed m [Oxh0j

et a l , 1992] but extends this network to allow the incremental development of

precision In the past type inference has been inferred by pnncipal or most general

types [Bruce et a l , 1993], [Mitchell et a l , 1993], [Milner et a l , 1990] These ensure

71

that a program is a legal composition of data types and operations, but they are not

powerful enough to precisely type object-oriented languages

Other work was earned out in [Oxh0j et a l , 1992] to approximate concrete types but is

limited to a single level of discnmination There are two salient disadvantages

associated with this technique The first is the fact that it can be expensive in

computational time and space The second is its inability to type many common

program structures which results m imprecise type information Imprecise type

information occurs when the algonthm is unable to determine the exact concrete type of

a vanable, an example would be a program with deep polymorphic structures The

limitations of this technique, and others, motivated Plevyak and Chien to develop an

algonthm which is capable of precisely defining concrete type information for object-

onented languages These programs are not limited to one level of discnmination but

can have arbitranly deep polymorphic structures The algonthm in [Plevyak & Chien,

1994] has the ability to extend type inference where necessary in a program and it can

produce precise information in proportion to the complexity of a program It analyses a

program to identify areas of imprecision using an incremental approach Further

iterations of the algonthm will concentrate on these specific areas, until precise

information is obtained

There are three major contnbutions of this paper and they are as follows

• It has the ability to infer precise concrete type information on previously untypable

object-onented programs,

• It achieves this using an efficient iterative algonthm,

• An empincal study was conducted and it confirmed the algonthm's ability to

efficiently and precisely type object-onented programs of varying degrees of

complexity

The algonthm has been implemented as part of the Concert System and it uses a

flexible extensible labelling scheme in the form of entry and creation sets The

labelling scheme labels type vanables Type vanables are used to distinguish different

uses of program vanables For example, a type vanable is labelled with the different

run-time instances of a program vanable When it is identified that an imprecision

occurs in a program the labels are extended to trace the ongin of this imprecision

Entry sets are specifically designed to deal with functional polymorphism Functional

polymorphism refers to a function which can operate on arguments with a vanety of

72

types In Figure 4 1 calculateArea() can operate on both integer and float number

types Entry sets summarize the different calling environments of methods in a

program This environment is impacted by the type of arguments passed to a method

and the type of the object which is dispatching the method

Square mySquare = new Square(),
mySquare calculateArea(3, 9), (a)
mySquare calculateArea{3 4, 5 7), (b)

Figure 4 1 Polymorphic Function

Creation sets are specifically designed to deal with data polymorphism This is the

ability of a variable to hold a number of objects of different concrete types It also

includes container polymorphism which is the ability of an object to hold other objects

of different concrete types Creation sets summarize the different types of run-time

objects created at particular creation points within a program A creation point is the

program statement and execution environment where an object was created Type

variables are labelled with entry and creation sets where appropriate

calculateArea(3, 9) calculateArea(3 4, 5 7)

{integer} {float}
{integer} {float}

f y r

calculateArea(i , j)

l {integer, float)
j {integer, float}

Figure 4 2 Entry set for the method calculateArea()

Entry and creation sets provide the invaluable concrete type information needed by the

declassification optimization technique Figure 4 2 illustrates the entry set for the

method calculateArea() The entry set has two different concrete types {integer and

float} because the function is passed two different parameters

(new fllledSquare{1)) getA(), (a)
(new fllledSquare(1 1)) getA(), (b)

Figure 4 3 Polymorphic Container

73

Figure 4 3 illustrates an example of where creation sets are necessary A creation set is

created at the creation points (a) and (b) to specify the type of objects which should be

instantiated as a result of the call to the method fiUedSquare() This type inference

algorithm is extended to include splitting Splitting is used to increase the precision

Entry and creation sets can be split when the algorithm locates an area of imprecision in

the program Each split introduces more type variables, which has the potential of

eliminating imprécisions from the inferred type Deciding where the best place to split

a set, is a very important decision The precise and concrete type information needed by

the declassification technique is available in the entry and creation sets and splitting is

not necessary Splitting would be necessary if you were implementing a cloning

optimization technique Cloning is a technique which makes new copies of a method to

enable the replacement of a dynamic dispatch with a statically bound method call

A salient advantage of the algorithm m [Plevyak & Chien, 1994] is its ability to handle

deeply nested polymorphic methods and data structures and recursive versions of each

Previous type inference algorithms such as [Bruce et a l , 1993], [Mitchell et a l , 1993],

[Milner et a l , 1990] and [Oxh0j et a l , 1992] had difficulty practically typing such

structures The constraint-based type inference algorithm presented in [Oxh0j et a l ,

1992] is safe The algorithm in [Plevyak & Chien, 1994] is also safe because it uses a

constraint-based network It refines the analysis by splitting and summarizing type

variables within the constraints of the network but it does not change the values of the

constraint network It can ensure that the analysis will terminate because there are only

a finite number of iterations performed A recursive program will also terminate

because a limit is put on the amount of analysis earned out It is vital that the algorithm

is guaranteed to terminate because it ensures that it will never fall into an infinite loop

when analyzing programs for optimization

The empirical study which was conducted in [Plevyak & Chien, 1994] proved that this

algorithm provides more precise and detailed type information than the previous

algorithms mentioned This incremental type inference algorithm does so efficiently

without unnecessanly splitting type variables

74

4.2 Ways in which this information can be used

The availability of concrete type, data and control flow information will provide

essential information to facilitate certain safety checks to be earned out dunng

compilation For example, it makes it possible for the compiler to carry out type

checking which will detect errors m the program code The programmer could then be

informed of these possible problems Another reason and one which could be just as

important as the safety guarantee, is that concrete type information can be used for

program optimization For example, the results of the type inference could ensure that a

number of type-checks are unnecessary and can therefore be removed This should

improve the run-time performance of the program

Method cloning is another optimization technique m [Plevyak, 1996] which can make

valuable use of the concrete type information available on the methods defined and used

in a program Cloning involves making new copies of a method for different invocation

contexts It would examine, for example, the entry set information available in

[Plevyak & Chien, 1994] and clone methods to eliminate dynamic dispatches m a

program A test was earned out to estimate the numbers of clones necessary to

eliminate dynamically dispatched messages in [Plevyak & Chien, 1994] It was

estimated that creating between 1 5 and 2 5 as many methods, would eliminate the

majonty of dynamic dispatches Other optimization techniques are also facilitated such

as global constant propagation and dead code elimination

4.3 Analysis for the Declassification technique

The central aim of the declassification technique is to identify suitable classes for

miming A suitable class is a class which is used exactly once within the program The

fields and methods of each inhnable class are inhned within its enclosing class The

declaration of the inhned class can now be removed from the source code

Consequently, this technique will change the hierarchical structure of the program by

eliminating these inhnable classes The enclosing class will now create an instance of

the inhnable classes superclass

75

It is essential for the correct operation of the declassification technique that exact and

definite information is available on the usages of the different classes within the

program This requires a very sophisticated type inference algorithm as Java programs

like other object-oriented programs are difficult to reason about This is because of

object-oriented properties like inheritance and dynamically bound methods that make

the analysis process very complex The context-sensitive flow analysis algorithm in

[Plevyak & Chien, 1994] provides the necessary type information to allow us to apply

the declassification technique This algorithm is efficient as it allocates additional

effort incrementally to the areas of the program where imprecise results are obtained

The algorithm was wntten to provide concrete type information for programs written in

the Concurrent Aggregates language Although it has been wntten for a specific

language, the algonthm is general enough that it could be easily extended to facilitate

other object-onented languages

The algonthm has not been extended to facilitate the Java language, as a result, the

analysis of a Java program by Plevyak & Chien’s algonthm is applied by hand The

algonthm determines for each vanable the set of classes to which it may be instantiated

at run-time It provides information on different types of vanables, these include fields

of objects, local vanables, method parameters and return types This information is

then used to determine how many possible usages of each class there may be within a

program

4.3.1 Analysis Process

The objective of this optimization is to reduce the number of classes which are

instantiated and used in a program dunng its execution This optimization technique is

divided into two parts, analysis and transformation The job the analysis has to fulfill in

order to achieve this objective is to identify classes which are used exactly once within

the program Each such class is a suitable candidate for declassification By

declassification we mean miming the fields and methods of the class into its enclosing

class It should be noted that the enclosing class is the only class to use the mlinable

class The enclosing class could instantiate this class one or more times within the

program even though it uses it exactly once It should be remembered however, that

each instance of the enclosing class is associated with only one instance of the mlinable

class at any point in the program execution This situation is illustrated in Figure 4 13

76

The declaration of the inhned class can then be removed from the program as it is no

longer needed By miming the class in this way we are eliminating the need to create

and maintain these ‘intermediate classes’ and instead we are extending the size of their

enclosing class The analysis examines all top-level classes in the program to establish

their suitability for miming

To aid the exposition of this technique, consider the example below

Picture

Circle

Shape

Circle

(a) (b)

Figure 4 4 The Picture and Circle classes

The Picture class has a field which stores an instance of the Circle class The Circle

class extends the superclass Shape This is illustrated in Figure 4 4 (a) and (b) The

Circle class is a potential candidate for miming, if it is established by the analysis

algorithm that this class is used once in the program The Picture class is the enclosing

class which uses it The Circle classes fields and methods are inhned within the

enclosing class Picture The class declaration of the Circle class is then eliminated

from the source program, as it is no longer needed An instance of the Circle classes

superclass is created in the enclosing class

Figure 4 5 illustrates the example of the Picture and Circle classes in a simple Java

program There are four classes m the program, Picture, Circle, Square and Shape

The Circle and Square classes are subclasses of the Shape class Each class has its own

associated fields and methods Again the Circle is used exactly once by the Picture

class and is a suitable class for lnlinmg The Square class is not a suitable class

because it is used twice by the Picture class The fields radius and area will be added

to the Picture class The methods getArea() and printDetails() will also be added to

the Picture class An instance of the superclass Shape will be created and stored in the

van able my Circle.

11

class Picture
{

private double area,
private Circle myCircle = new Circle(),
private Square redSquare = new Square{),
private Square blueSquare = new Square(),

void mitialPictureCircle()
{

myCircle radius = 2,
myCircle colour = "Brown",

}

double getArea()
{

return area,
}

}

class Shape
{

private float XCoOrdmate,
private float YCoOrdmate,
String colour,

}

class Circle extends Shape
{

float radius = 1 0 ,
private double area = 0,

double getArea()
{

if (area == 0)
area - Math PI * (radius * radius),

return area,
}

void pnntDetails ()
{

System out pnntln ("Radius of circle is
System out pnntln ("Colour of circle is

}
}

class Square extends Shape
{

private float width = 1 0 ,
private double area = 0,

double getArea()
{

if (area == 0)
area = width * width,

return area,
}

}

Figure 4 5 Program code

+ radius),
+ colour),

78

4.3.2 Intermediate Representation

Following the analysis of the Java program by applying the algonthm in [Plevyak &

Chien, 1994] by hand, precise and concrete type information will be available It will

determine for each variable the set of classes to which it may be instantiated Type data

can be extracted from these sets and combined with our analysis to identify suitable

classes for declassification Our analysis algonthm is used to gather information on the

class structure within a Java program It is necessary to gather detailed and exact

information on the different aspects of a class declaration Some of the details which

are gathered include, class name, super classes, interfaces used, fields and methods, and,

member classes A Java parser [JavaCC, 1999] has been augmented with Java

statements which gather this information on classes, as the program is parsed

The central objective of the declassification technique is to identify classes which are

used once within the program The type information in the sets created by the algonthm

in [Plevyak & Chien, 1994] is interrogated and is supplemented with information

gathered on the layout and structure of the classes in the Java program The combined

information is interpreted and a count is made of the number of times each class is used

in the program The pseudocode for the analysis algonthm is illustrated in Figure 4 6, it

specifies the cntena by which usage counts are calculated for all top-level classes A

class with a count of one has been determined by the analysis as having only one use

within the program This class is deemed an ‘intermediate class’ and should be

removed from the program The main program class is not a potential class for miming

and will not be chosen by the analysis algonthm

79

Start with the main program class
Count
Begin

Add 1 to the usage count of current class
If current class not marked
Begin

Mark current class
For each class in the set determined for each

field perform count
For each class in the set determined for each

local variable perform count
For each class in the set determined for each

method parameter perform count
For each class in the set determined for each

method return type perform count
For each class in the set determined for each

anonymous object perform count
For each superclass perform count

End
End

Initialize all usage counts to zero

Figure 4 6 The pseudocode for the analysis algorithm

This analysis algorithm is O(n) for a program of size n The length of the analysis

algorithm can therefore be simply calculated by the size of the program and the degree

of program complexity does not have to be taken into account It is of paramount

importance that the declassification technique is safe Its safety is assured by the fact

that a class is only mimed within another class if there is only one use of that class in

the program This guarantees that there are no alias relationships with the inhned class

in the program, as such an alias would be considered a use of the class Inhning is

greatly complicated by alias relationships and it is more difficult to guarantee that such

a program transformation will not result in invalid results Consequently, the

declassification technique does not have to deal with aliases and its analysis and

transformation is significantly simplified The analysis algorithm could therefore be

considered to be simple and straightforward as there are no complex calculations

required to deal with alias relationships The issue of semantic relationships and aliases

are discussed in the next section

80

4.3.3 Sharing Semantics

It is essential that the declassification technique’s analysis and transformation algorithm

does not change the shanng semantics of the program to such an extent that the

optimized program is not equivalent to the unoptimized program It is vital that the

shanng semantics of the mhnable class are changed to use the enclosing classes new

mimed state correctly

A class e is suitable for miming because it has exactly one use within the program Its

enclosing class r has declared this use, which is the use of the class in a fie ld / This

field/is used to store an instance of the class e

It is essential to prove that the analysis algonthm upholds the following statement

The only operation of stonng a reference to the mlinable object e is when it is

stored m its enclosing object r/, that is, r f - e

The statement is true because

There are no other vanables in the program which can store a reference to the object e

A vanable could be a local vanable, class field, method parameter or return type This

is correct because the analysis algonthm checks and counts these vanables in all the

classes within the program

class
{

}

Picture

private Circle blueCircle = new Circle(),
private Square redSquare = new Square(),
private Square yellowSquare = new Square(),

{Circle}
{Square}
{Square}

class
{

Circle extends Shape (Shape)

}

class
{

Square extends Shape {Shape}

}

Figure 4 7 Program code

The algonthm in [Plevyak & Chien, 1994] determines for each vanable the set of

classes to which it may be instantiated at run-time The analysis algonthm interrogates

the type information available in the sets and combines it with information on the class

81

structure of the program From these sources it is able to determine the usage counts of

each class within the program Figure 4 7 illustrates the type information in sets which

would be available after running Plevyak and Chien’s algorithm The Circle and

Square classes are subclasses of the Shape class This is the case for all the other

examples given in section 4 3 3 It is determined that the variable blueCircle is

instantiated to a Circle object at run-time A usage count of two is calculated for the

Shape class because it is the superclass for both the Circle and Square classes There

are no other uses made of this class in the program shown in Figure 4 7 The class

Circle is used exactly once by the Picture class and the Square is used twice

Class name

Usage count

Figure 4.8

The usage count of the Circle class is one because there is a field in the Picture class of

this type The usage count of the Square is two because there are two fields of type

Square created within the Picture class The usage count for the program in Figure 4 7

is illustrated in Figure 4 8 The Picture class is not considered a suitable class for

lnlining even though it has a usage count of one because it is the mam program class

Following the analysis we are definite that there is just one reference to the mlinable

class Circle within the program We are therefore assured that the field blueCircle of

the enclosing class Picture is the only reference to the instantiation of the class Circle

and that there are no aliases to this class object

The semantics of the Java language complicate the analysis which calculates the usage

counts of classes Consider the following situations

1 A variable is declared which is the same type as the super class of a class e An

instance of the class e is stored m the variable by casting to its superclass type

It is essential that this variable is counted as an instance of the class e An

example of this situation is illustrated in Figure 4 9 An instance of the class

Circle is created and stored in a variable blueCircle This instance is then cast

to its superclass instance and stored in a van able aShape

Shape Picture Circle Square

2 1 1 2

Usage Counts

82

class Picture
{

private Circle blueCircle = new Circle(), {Circle}
private Shape aShape = blueCircle, {Circle}

}

Figure 4.9 Program code

The type inference algorithm in [Plevyak & Chien, 1994] is able to deal with this

situation It will infer that the van able aShape in Figure 4 9 is used to reference a

Circle object The usage count of the Circle class will therefore be two because

there are two usages of the class Circle, blueCircle and aShape The aShape

van able is an alias to the Circle object and no aliases are allowed if transformation

is to take place All references to the Circle object through its superclass are

counted

2 Interfaces complicate the identification of the usage counts of mlinable classes If an

mlinable class implements an interface then vanables could be declared of the

interface type to store an instance of that class An example is illustrated m Figure

4 10 The Circle and Square classes implement the interface drawable A van able

classicDraw is declared of type drawable and an instance of the class Circle is

stored there An instance of Square is also stored in the interface vanable

impressDraw because this class implements this interface also The type inference

algonthm in [Plevyak & Chien, 1994] is able to deal with interfaces To adequately

deal with them requires a powerful algonthm because other classes in the program

could implement the same interface

classr Picture
I

)

private drawable classicDraw = new Circle(),
private drawable impressDraw = new Square{),

{Circle}
{Square}

class
{

Circle implements drawable

}

class
{

}

Square implements drawable

Figure 4 10 Program code

83

The type inference algorithm infers the type of classes which are stored in the

interface variables and the sets are filled accordingly The algorithm determines that

there is one usage count for the Circle and Square classes By using this algorithm

it simplifies the process of dealing with interfaces

3 Method parameters are counted as a use of the mlinable class This is because it

would complicate the declassification technique and a number of limitations would

have to be placed on the inhnmg of classes which are passed as a parameter The

program in Figure 4 11 would have a usage count of one for the mlinable class

Circle if you did not count parameters Transforming such a program could result in

a compile-time error if there was another method in the enclosing class Picture or

one of its superclasses with the same name, number and type of parameters as the

transformed method draw(Shape) This is illustrated in the transformed program in

Figure 4 11 Return types are counted for similar reasons as parameters An

example of a limitation that would have to be placed on this transformation process

is that a method with polymorphic return types could not be inhned

class Picture
{

private Circle myCircle,

void draw{Circle aCir)
{

float temp = aCir radius,
String aCol = aCir colour,

}
}

Transforms to:
class Picture
{

private Shape myCircle,

void draw(Shape aCir)
{

float temp = radius,
String aCol = aCir colour,

}
}

void draw(Shape aShape)
{

}

void draw(Shape aShape)
{

}

Figure 4.11 Program code before and after transformation

84

4 Other situations which complicate the process of counting the number of possible

usages are collection classes and arrays A collection class stores a group of objects

according to a particular retrieval scheme A hashtable and vector class are an

example A hashtable is like a dictionary because it stores and retrieves elements

with key values Hashtables operate on elements of type object A vector is a

dynamic array which can store different kinds of objects It is as a result, very

difficult to determine what the exact type of the object is, when it is being stored or

retrieved from these collection classes Arrays can also be difficult to analyse

Take for example, an array of type object which can store different types of objects

An instance of the object Circle and Shape could be cast to their superclass object

and stored in this array It is stated in [Plevyak & Chien, 1994] that the type

inference algorithm is unable to deal with programs which store a vanety of types in

a single array Consequently, the declassification analysis algonthm also has this

limitation and is unable to deal with arrays and collection classes which are used m

this way

Consequently, the statement r f= e is only operation stonng a reference to the mlinable

object e in the program if the analysis algonthm determines that the usage count of a

class e is one This ensures that the field /of the class r is the only vanable which can

store a reference to the mlinable class e There are as a result, no alias relationships to

the class e Without this confirmation, there could be a number of alias relationships to

the object e, which could distort the shanng semantics of the program Alias

relationships would greatly complicate the declassification process It would be

difficult to inline an object e into the enclosing class r if another vanable g had a

reference to this object We would have to change the shanng semantics to inline the

class e and the vanable g would also have to be changed Any alias to this vanable g

would also have to be tracked and changed In this way a chain of aliases could be

created and it is very complicated to infer by type inference what aliases there are and

how they should be changed

85

class Picture
{

private Circle blueCircle = new Circle() , {Circle}
private Circle redCircle blueCircle, {Circle}
private Shape aShape

}

= blueCircle, {Circle}

Figure 4 12 Program code

Figure 4 12 illustrates an example of a program where there are a number of alias

relationships to the object blueCircle Inlinmg the Circle class would be very difficult

as the sharing semantics of these aliases would have to be changed The process of type

inference is greatly simplified if it is established that there is only one reference to the

mhnable class object Inlinmg these classes into their enclosing class will require the

sharing semantics to be changed but it will not distort them with the danger of leaving

the program in an incorrect state

[Dolby & Chien, 2000] presents a formal model of object miming which has the ability

to identify one-to-one fields This model proves that the process of miming a one-to-

one field is semantics preserving This ensures that the inlinmg is safe and that the

program is correct following the transformation A one-to-one field consists of a

container and mhnable object (r,e) Two conditions must be adhered to m order to

qualify for one-to-one field status

a The only operation of stonng a reference of the object e in the program, is

rf=e ,

b The only operation of stonng a reference where r f stands on the left-hand side

is r f = e

The first condition has already been discussed in relation to the declassification

technique It venfied that field /of an enclosing object r is the only van able to store a

reference of the object e> if e has been chosen for declassification The second

condition specifies that the only operation of stonng a reference, where the enclosing

object r f stands on the left hand side, is r f = e This condition ensures that no other

child object is stored in the field / of the enclosing object r This condition is not

enforced because the declassification technique permits the field of a container object to

be instantiated to one or more child objects This is illustrated in Figure 4 13

86

class Picture
{

private Circle aCircle,

encloseMethod()
{

aCircle = new Circle(),
double firstArea = aCircle getArea(),

aCircle = new Circle("Yellow",4 5),
double secondArea = aCircle getArea(),

}

class Circle extends Shape
{

float radius = 1 0 ,
private double area = 0,

{
setXCoOrdmate (9 2) ,
setYCoOrdmate {15 7)

Circle (String aColour, float aRadius)
{

super(aColour),
radius = aRadius,

}

Figure 4 13 Program code

An instance of the Circle class is created and stored in the aCircle field Another

instance of the mlinable class Circle is created and stored in this field at a later state in

the program Two different instances are consecutively stored in the same field of the

enclosing class There is, however, only one use of the Circle class through the aCircle

reference The transformation will result in the fields and methods of the Circle class

being mimed within the Picture class A declaration of the superclass Shape is declared

in place of the Circle class

The sharing semantics of the program are not distorted following the transformation

phase This is because the field aCircle is the only variable which stores a reference to

the Circle object This condition is still true even though the field aCircle stores two

instances of the class in succession Inlining this class will change the semantics of the

program to reference the enclosing classes new mimed state but the optimized program

87

is still equivalent to the unoptimized program The formal model in [Dolby & Chien,

2000] as a result, cannot be applied to the declassification technique to prove the

correctness of its transformation The declassification technique can, therefore,

transform a program which has consecutive instances of the same class stored m the

same van able There is a limitation on this transformation, the van able which is used to

store the instance of the mlinable class cannot be used to store an instance of any other

class To inline the mlinable class in this situation could result in the distortion of the

program The results of the algonthm in [Plevyak & Chien, 1994] can be used to

establish this

4.4 Summary

In this chapter we have outlined the analysis phase of the declassification technique

The algonthm m [Plevyak & Chien, 1994] provides us with concrete and precise type

information on programs with many levels of polymorphism in functions and data

structures The way the analysis algonthm uses this type information to identify

suitable classes for declassification and how the shanng semantics are affected by this

optimization technique are discussed A number of sample programs are given in order

to demonstrate how the analysis algonthm gathers the information it requires, to

identify suitable classes for miming Chapter 5 discusses how the source program is

transformed to inline these intermediate classes into their enclosing class

Chapter 5 Transformation

The analysis algorithm will identify suitable classes for miming The transformation

algorithm will make the necessary changes to transform the source code to eliminate

these ‘inlinable’ classes In discussing the transformation, the following terms are

used, the mimed class variable is the field which is used to store the instance of the

inlinable class within the enclosing class The mlined state constitutes the fields and

methods being added to the enclosing class

The transformation involves miming the fields and methods of each inlinable class

within the enclosing class that has declared the instance The declaration of the mimed

class instance is removed and replaced with a declaration of a variable of the inlinable

classes superclass type The layout of the enclosing class is restructured m this way

and further changes are necessary to ensure that all uses of the mlined fields and

methods are redirected to the enclosing classes’ new mimed state The transformed

source code could then be further transformed by other optimization techniques There

are a wide variety of different optimization techniques suitable for object-oriented

programs, some of these are outlined in chapter 3

5.1 Transformation Algorithm

Changes are necessary to the fields and methods of the inlinable and enclosing classes

This is because the sharing semantics between the two classes has now changed

5.1.1 Fields

It may be necessary to change a field’s name in the inlinable class if there is a name

clash A name clash occurs when an inlinable field has the same name as one of the

following

1 One of the fields in the enclosing class,

2 One of the fields in any of the superclasses of the enclosing class,

89

3 One of the local variables in an enclosing class method,

4 One of the field constants of any of the interfaces the enclosing class or any

of its superclasses implement

A compiler error would occur if an mimed field clashes with a field in the enclosing

class The incorrect execution of the program could result if it clashes with a field in

the enclosing classes’ superclass Another error could occur if the mlined field clashed

with one of the local variables in an enclosing class method This is because local

variables take precedence over fields A reference to the mlinable classes field could

after transformation reference a local variable if their names clashed Finally, a clash

with a field constant of one of the enclosing classes’ interfaces would result in the

mlined field taking precedent over it This would cause the incorrect execution of the

program The resolution of the clash is achieved by concatenating each clashing

mlinable field name with a randomly generated number An mlinable field name that

does not clash is left unchanged

The changed and the unchanged fields of the mlinable class are then mimed within the

enclosing class A number of changes are necessary to both the mlinable and enclosing

class to account for the new mlined fields If a field name has changed it is essential

that changes are made to the field initializers and methods of the mlinable class If a

field name has not changed, no changes are necessary to the mlinable class to account

for that particular field

Changes are necessary to the enclosing class to reference the new fields in its mlined

state, even if the field names remain the same The instantiation of the mlined class is

removed and a declaration of a van able of its superclass type is created in its place

Any references to fields belonging to this superclass can remain unchanged Any

references to fields not belonging to the superclass must be changed to reference the

enclosing classes’ new mlined state instead The position in the enclosing class where

the mlined fields are placed is important They must be mimed immediately after the

declaration of the mlined class vanable This is important for two reasons Firstly, a

field(s) of the mlinable class could be used to initialize a field(s) of the enclosing class

It is vital, therefore, that this mlinable field(s) is declared before the initialization takes

place Secondly, a field(s) of the enclosing class could be used to initialize an mlinable

classes field(s) and if so, it must be declared before the initialization A compile-time

90

error could occur if the inhnable classes fields are not mlined in the correct position

The position where the methods are placed is not important

5.1.2 Methods

Similarly, it is necessary to change the name of a method m the inhnable class if there

is a name clash A name clash occurs when an inhnable method has the same name and

number of parameters as one of the following

1 One of the methods in the enclosing class,

2 One of the methods in any of the enclosing classes’ superclasses

The ability of passing object references to methods complicates the task of identifying

when two methods clash A method parameter could be used to store references to

classes that are subclasses of it For example, the classes Circle and Square are

subclasses of the class Shape A reference to Circle or Square could be passed to a

method with a parameter of type Shape Figure 5 1 (a) illustrates two methods which

clash Figure 5 1 (b) illustrates two methods which do not clash because the number of

parameters differ

void draw(Object aShape),

void draw(Shape aShape),

void draw(Object aShape),

void draw(Object aShape, Shape aShape),

(a) A clash occurs (b) A clash does not occur

Figure 5.1 Method Clashes

To inline a method which has the same name and number of parameters could result in

the incorrect execution of the program Any clash that is identified is resolved by

changing the inhnable classes’ method name This is done by concatenating each

method name with a randomly generated number The references m the inhnable class

must be changed to reference any new method names No changes are necessary to the

inhnable class if the method name remains the same The enclosing class must be

again changed to reference its new mlined state

It is necessary to check if the new field or method name clashes The new name is

again compared with the enclosing class under the criteria specified above for name

91

clashes If a clash occurs a new randomly generated number is concatenated with the

field or method name This new name is again checked A conservative approach has

been taken to deal with the problem of field and method clashes No effort, for

example, is made to determine if the înlinable classes field that clashes with a field in

the superclass will result in a reference to the field of the superclass being wrongly

directed to the new field Approaching the problem in this way reduces the amount of

analysis required to transform the program

5.1.3 Transformation Example

Figure 5 2 illustrates the example given in Figure 4 4 after transformation The Circle

class was identified as a suitable class for miming The fields and methods of this class

are inhned within the Picture class Figure 5 2 (a) illustrates the aggregate association

between the Picture and Shape classes, following the transformation The Circle class

has been eliminated and the inhentance structure of the Shape class is illustrated in

Figure 5 2 (b)

Picture

Shape
Shape

(a) (b)

Figure 5.2 The Picture and Shape classes

The Picture class now creates an instance of the Circle classes’ superclass Shape

Figure 5 3 illustrates the example program given in Figure 4 5 following the

transformation

92

class Picture
{

private double area,
private Shape myCircle,

{
circle35223{),

}

float radius,
private double area45143,
private Square redSquare = new Square(),
private Square blueSquare = new Square(),

void mitialPictureCircle()
{

radius = 2,
myCircle colour = "Brown",

}

double getArea()
{

return area,
}

double getArea67454()
{

if <area45143 == 0)
area45143 = Math PI * (radius * radius)

return area45143,
}

void pnntDetails ()
{

System out println("Radius of circle is " +
System out pnntln ("Colour of circle is " +

myCircle
}

circle35223()
{

myCircle = new Shape(),
radius = 1 0 ,
area45143=0,

}

}

class Shape
{

private float XCoOrdmate,
private float YCoOrdmate,
String colour,

}

radius),

colour),

93

class Square extends Shape
{

private float width = 1 0 ,
private double area = 0,

double getArea()
{

if (area == 0)
area = width * width,

return area,
}

}

Figure 5 3 Transformed program code

5.1.4 Pseudocode for the transformation algorithm

This is illustrated in Figure 5 4 The technique assumes there is a clash of field and

method names between the mlinable and enclosing classes The algorithm would be

simpler if this was not the case

For each class with a usage count equal to 1

Begin

For each field of the mlinable class which clashes

Concatenate field name with a random integer number

Step A

For each method of the mlinable class which clashes

Concatenate method name with a random integer number

Add mlinable class fields to enclosing class

Add mlinable class methods to enclosing class

Step B

Change mimed class variable to be of the superclass type

Add call to mlinable classes’ changed constructor method
Step C

For each field initializer and method in enclosing class

Perform ReferencesChangesInEnclosingClass
Step D

For each field initializer and method in mlinable class

Perform ReferencesChangesInlnlinableClass

Step E

94

Perform ChangeConstructorMethods Step F

Combine enclosing class finalize method with înlinable class finalize method StepG

Append mlinable interfaces to enclosing class interfaces StepH

End

ReferencesChangesInEnclosingClass

Begin

Change references to mlinable class fields and methods to reference the new mimed fields and methods

References to the mlinable class superclass fields and methods should remain unchanged

Change reference to mlinable superclass object to mimed class variable

End

ReferencesChangesInlnlinableClass

Begin

Change references to mlinable class fields and methods to reference the new names of the fields and

methods

Change references to the mlinable class superclass fields and methods by referencing the mimed class

variable

Change reference to mlinable superclass object to mimed class variable

End

ChangeConstructorMethods

Begin

For each mlinable constructor method

Begin

Concatenate method name with a random mterger number

Instantiate the mlinable classes’ superclass

For each mlinable instance field

Add field body to constructor method body

For each mlinable instance block initializer

Add block initializer body to constructor method body

End

End

Figure 5 4 The pseudocode for the transformation technique

A detailed explanation of the pseudocode is given by explaining how the sample

program in Figure 5 3 is transformed step by step

95

Step A There is a name clash between the field area m the Circle class and the field

area in the enclosing class The field name is changed by concatenating it

with a randomly generated number For example double area45143 All the

other mhnable field names remain unchanged

Step B There is also a name clash between the method name getArea() in the Circle

class and the method getArea() in the enclosing class The method name is

changed by concatenating it with a randomly generated number For

example getArea67454() All the other mhnable method names remain

unchanged The mhnable classes’ fields and methods are added to the

enclosing class Some of the mhnable classes’ methods are not added directly

to the enclosing class but are combined with the enclosing classes’ methods

Examples of these are the constructor, finalize and instance block initializer

methods

Step C In Figure 4 5 the mlined class van able is of type Circle and an instance of this

class is created The transformation process changes the declaration type of

the van able to its superclass Shape This is done to enable the enclosing class

to access the fields and methods of the Circle classes’ superclass The

instantiation of the mhnable class is removed A call is placed to the mhnable

classes’ changed constructor method This method instantiates the superclass

and initializes the mhnable classes’ fields as required

Step D The enclosing class Picture must be changed to reference its new mlined state

The changes are made to the enclosing classes’ field initializers and methods

References to the mlinable class Circle are changed to reference the mlined

field and method names directly No changes are necessary to any references

to the fields and methods of the superclass Shape Any reference to the

superclass object must be changed to reference the mlined class van able

myCircle, within the enclosing classes’ mlined state

Step E Changes must also be made to the mhnable class to account for the changes in

the names of the fields and methods Local vanables in methods complicate

the process of identifying field references Any reference to the mhnable

classes’ superclass object or its fields and methods must be done by

referencing the superclass object stored in myCircle

96

StepF Each of the mlinable classes’ constructor methods are changed to create an

instance of the superclass and store it m the mlined class variable myCircle

Each field body of the mlinable classes’ instance fields are then added If a

call to an instance block initializer follows, its method body is added Static

field bodies or static block initializers are not added to the constructor method

These additions are added to the start of each constructor method

Step G The finalize method of the mlinable class must be combined with that of the

enclosing class

Step H The declassification technique mlines the methods of the mlinable class

withm the enclosing class Any interfaces implemented by the mlinable class

are now implemented by the enclosing class The class declaration of the

enclosing class must be changed by adding these interfaces to it, if it does not

already implement them

5.2 Another example of program transformation

The program illustrated in Figure 4 5 is changed in Figure 4 13 It shows how an

mlinable class can be instantiated one or more times m succession, yet the usage count

of the Circle class is one This class is a suitable class for miming and the transformed

program is illustrated in Figure 5 5 Arguments to constructor methods of the

mlinable class are handled by the transformation algorithm An argument could be

passed to the constructor method in order to initialize the mlinable classes superclass or

it could be used to initialize the field(s) of the mlinable class

An explanation of the steps taken to transform this program is given below

Step A The data type of the aCircle mlined class variable is changed to declare

a field of type Shape

Step C A new method Circle34525() was created because the Circle class does

not contain a default constructor method The Circle34525() method

creates an instance of the Circle classes’ superclass Shape and stores it

in the field aCircle It also initializes the Circle classes’ fields as would

97

be done if an instance of the Circle class was created This is

accomplished by adding the radius and area field initializations An

instance block initializer method follows the declaration of the area

field Its body is mimed within the constructor method It is placed

after the radius and area field initializations

Step D The mlinable classes constructor method illustrates how the

transformation algorithm handles arguments Two arguments are passed

to this constructor The first argument aColour is used to instantiate the

superclass The mlinable classes field initializations and the body of the

instance block initializer method are added to the constructor method as

described in step C The body of the constructor method follows It

contains a statement which assigns the mlinable classes field radius to

the value of its second argument aRadius The instantiation of the

Circle class is transformed by making a call to this changed constructor

method in step B

class Picture
{

private Shape aCircle,
float radius,
private double area45143,

Step A

encloseMethod ()
{

circle34525(),
double firstArea = getArea67454(),

circle34525("Yellow" 4 5)
double secondArea = getArea67454() ,

}
Step B

circle34525()
{

aCircle = new Shape{),
radius = 1 0 ,
area45143 = 0,
aCircle setXCoOrdmate (9 2) ,
aCircle setYCoOrdmate (15 7),

}

Step C

98

circle34525(String aColour, float aRadius)
StepD{

aCircle = new Shape(aColour),
radius = 1 0 ,
area45143 = 0,
aCircle setXCoOrdmate (9 2),
aCircle setYCoOrdmate {15 7) ,

}

radius = aRadius,
}

Figure 5 5 Transformed program code

5.3 Restrictions

It was necessary to place four restrictions on class miming and they are as follows,

method ovemding, abstract parent, self mlining and reflection It would be unsafe to

allow class miming in the above circumstances

1 Method Overriddmg

The mhnable class could have one or more overridden methods Dynamic binding

occurs at run-time to establish which method is being called, whether it is the mhnable

classes’ or the superclasses’ method It is necessary, however, to establish which

method is being called during the transformation process This is because the sharing

semantics have now changed A restriction is therefore placed on class miming to

prevent a class being in lined if it has an overridden method and there is a reference to

one of the ovemdden methods in either the enclosing or mhnable class

A pure polymorphic method could occur in one of the superclasses of the mhnable

class, such a method is abstract and as a result cannot be invoked at run-time

Consequently, there is no ambiguity when dynamic binding occurs in establishing if the

mhnable classes’ or the superclasses’ method is being invoked The case of a pure

polymorphic method is not handled by the transformation algorithm and the restriction

as listed above is enforced It should be noted that a pure polymorphic method

occumng in the immediate superclass of the mhnable class results in this superclass

being abstract The declassification technique prohibits the miming of classes if the

immediate superclass is abstract This is explained in point 2 of this section

99

2 Abstract Parent

To inline an mlinable class which has an immediate abstract superclass would be

wrong This abstract superclass cannot be instantiated and the transformation algorithm

would attempt to do so

3. Self Inlining

It is necessary that the declassification technique places a restriction on the miming of a

class within itself This is because it would have a recursive effect which would cause

the transformation to enter an infinite loop This could happen if the program it is

optimizing is using some classes within a library Self miming could occur m a library

when a class creates an instance of itself and the program does not use this class

4. Reflection

Reflection is not handled by the declassification technique The Class forName()

method could be used in a program to invoke the mimed class I am assuming that the

code being transformed does not use reflection

5.4 Visibility Modifiers

Encapsulation is an important aspect of object-oriented design Encapsulation is a

technique for hiding data and behaviour within a class It seals the data and internal

methods inside the ‘capsule’ of the class where it can be accessed only by the class

itself The ability to use access modifiers allows the programmer to decide what access

classes should have to each other Access modifiers can be associated with classes,

fields, methods and local vanables The declassification technique should not break the

pnvacy of objects and change the visibility of the mimed classes’ fields and methods

within the enclosing class To weaken this visibility would be a change to how the

mimed class is accessed and is considered unsafe Access modifiers are only

considered m the context of an mlinable class being mimed within an enclosing class

within the same package The transformation algorithm does not inline classes from

different packages

The only access modifier that can be associated with local vanables is ‘final’

Transforming an mlinable method with this access modifier will not change its

visibility

100

5.4.1 Class Access Modifiers

We look at what access modifiers an mhnable class could have and when it is suitable

to inline it within an enclosing class

1 An mhnable class with a public access modifier is safe to inline as it is visible to

all classes,

2 An mhnable class with a default access modifier is only accessible to other

classes within its package The enclosing class is in the same package as the

mhnable class,

3 An abstract modifier is not applicable, as an instance of this class cannot be

created,

4 The final access modifier can be inhned safely because the optimized code will

not be extended Any changes required by the user should be made to the

unoptimized program and this modified program can then be optimized

5.4.2 Fields and Methods

We look at what access modifiers fields and methods could have and when it is suitable

to inline them within an enclosing class

1 Public fields and methods will remain public and they are accessible from any

class in any package,

2 The protected modifier allows access by other classes m the package and it also

allows special access permissions for subclasses Protected fields and methods

are visible to subclasses of the class, even if they are defined in a different

package Inhmng protected fields and methods does not change the visibility

because the enclosing class is in the same package as the mhnable class

Theoretically, subclasses of the enclosing class could now have access to these

inhned protected fields and methods This will not occur, however, because the

optimized code will not be extended,

3 Fields and methods with the default access modifier means that classes within

the same package can have access to them It is therefore safe to inline them

within the enclosing class,

101

4 Any private fields and methods in the mhnable class will remain private in the

enclosing class In this way, these fields and methods are accessible only within

the enclosing class,

5 Static fields and methods belong to a class, not an individual object These are

mimed within the enclosing class with the static keyword modifier,

6 The final keyword may be applied to methods and fields Inlining the fields and

methods with this modifier will not change the way they are used and accessed,

7 Any class with an abstract method is automatically abstract itself and must be

declared as such The enclosing class would not be able to instantiate an

abstract class This access modifier is therefore not applicable

Consequently, there is no onus on the transformation algorithm to check the access

modifiers of either the mlinable class or its member fields and methods Inlining a

class with any of the above access modifiers does not change the visibility of the fields

and methods and is considered safe

5.5 Other issues

The inlining of a class within its enclosing class eliminates the need to instantiate this

mhnable class This transformation does not only eliminate one instance of the

mhnable class, the number of instantiations eliminated depends on the number of times

the enclosing class is instantiated within the program The more times the enclosing

class is instantiated the greater the benefits will be to the declassification technique

An mhnable class can be mimed if a static instance of it is created within the enclosing

class Each of the mhnable classes fields and methods are added to the enclosing class

with a static modifier The mhnable classes static fields and methods are added

unchanged The sharing semantics between the mhnable and enclosing class has not

been changed after transformation

102

object inlining optimization techniques

5.6 Comparison of the Declassification technique to the

The concepts of these object miming techniques are worth a more in-depth exposition,

as they most closely resemble our optimization technique Comparisons will be drawn

between them to highlight their weaknesses and strengths I will refer collectively to

the following optimization techniques as object miming techniques [Black et a l , 1986],

[Budimhc & Kennedy, 1997], [Budimhc & Kennedy, 1998], [Dolby, 1997], [Dolby &

Chien, 1998], [Dolby & Chien, 2000] and [Laud, 2001], even though some of these

papers research other issues

The mam objective of the declassification technique and the object miming optimization

techniques is the same, they aim to improve the performance of object-oriented

software by reducing the pressure on the memory subsystem The declassification

optimization technique differs m the method it uses to accomplish this Its method

involves miming a class within its enclosing class This results in changes being made

to the hierarchical structure of the program because the ‘intermediate’ class is removed

and an instance of the mhnable classes’ superclass is created The class declarations of

the ‘intermediate’ class is subsequently removed from the program The aim of the

object miming technique is to inline an object within its enclosing object Changes will

also have to be made to the hierarchical structure of the program, as some objects will

be mimed The class declaration of the mhnable object is not removed from the

program For example, [Dolby, 1997] is an automatic technique for miming objects

within container objects Its central aim is to inline as many objects as possible within

their container objects

There are similarities between the transformation phase of the declassification technique

and the object miming techniques Both involve miming the fields and methods of the

mhnable class/object into their container class/object Similar changes have to be made

to how the mimed attributes are accessed and used

The Emerald object system in [Black et a l , 1986] has a simple type inference algorithm

which is not as sophisticated as the algorithm in [Plevyak & Chien, 1994] The

declassification technique combines its own analysis with that of [Plevyak & Chien,

1994] to provide precise concrete type information to enable class miming to take place

103

The object miming technique in [Budimlic & Kennedy, 1997] and in [Budimlic &

Kennedy, 1998] differs from the declassification technique because its central aim is to

identify and inline objects which are created within a method These are referred to as

local objects The declassification technique has the ability to inline top-level classes

The Budimlic and Kennedy’s technique is considered very limited by [Dolby, 1997]

The declassification technique is also limited as it does not have the ability to inline

local, anonymous or member classes

Budimlic and Kennedy’s technique can be implemented on programs where the

complete program is not available at compilation time This eliminates the ability to

carry out interprocedural optimization The declassification technique and the

technique in [Dolby, 1997] requires that the whole program is available Further work

in the future could provide an extension to the declassification technique to facilitate the

optimization of incomplete programs One of the solutions presented in [Budimlic &

Kennedy, 1998] is as follows a method could be overridden by a method in a new

subclass being introduced because it was optimized as part of an incomplete program

A solution is presented which involves generating two versions of the code One

version contains the code with the method mimed, the second does not Run-time

checks are inserted into the execution environment to decide which version to use The

declassification technique could be extended in a similar manner A serious

disadvantage of this solution is that it increases the size of the program being optimized

Both the declassification technique and Dolby and Chien’s automatic object miming

technique [Dolby, 1997], [Dolby & Chien, 1998], [Dolby & Chien, 2000] use Plevyak

& Chien’s algorithm [Plevyak & Chien, 1994] to obtain precise and concrete type

information Dolby and Chien’s technique is estimated to cause a 20% increase in the

size of a program This issue was highlighted m section 3 2 15 Although they state

that there is a possible 20% increase in code size, it is believed that there could be a

substantially higher increase in the code size Their technique has the ability to inline

an object into multiple container objects and they, therefore, cannot guarantee what the

maximum increase will be This increase in code size is considered a significant flaw

The declassification technique guarantees there is no increase in code size because the

declaration of the class is removed when it has been mimed and it is only mlined once

This is a very important advantage

104

The technique in [Dolby, 1997] is very complicated This complexity is necessary

because it has to deal with alias relationships It is necessary to investigate intricate

alias relationships because an instance of a class could be mimed within the program

many times It is not necessary for the declassification technique to deal with alias

relationships This is discussed in section 4 3 3 This significantly simplifies both the

analysis and transformation parts of the declassification technique There is also no

necessity to investigate and implement possible structures for the fused child and

container objects This is necessary in Dolby’s automatic object miming technique, as a

good structure is critical to reduce the number of methods needed for cloning during

transformation [Dolby & Chien, 2000] discusses a revised algorithm

[Dolby & Chien, 2000] has developed a formal model for object lnlinmg This model

has the ability to identify one-to-one fields and these fields can be safely mimed which

ensures the correctness of the program This formal model cannot be applied to the

declassification technique because the fields chosen for miming are not one-to-one

fields We cannot, therefore, use this model to prove that the transformation is safe

This issue is discussed in section 4 3 3

[Laud, 2001] extends the research on automatic object lnlinmg in Dolby’s papers He

investigates the possibility of several objects being mlined within a single field in

succession The declassification technique is different as it is miming classes It has

however, the ability to inline a number of instances of the same class into the same field

in succession This is handled differently An explanation of how this is earned out is

again given in section 4 3 3

5.7 Implementation of the Declassification Technique

The declassification technique is wntten entirely in Java It consists of 21 files and 22

classes Excluding the parser there are approximately 6100 lines of code The

declassification technique is made up of two parts, the Analysis and Transformation A

Java parser [JavaCC, 1999], which was augmented with extra Java code to gather the

necessary information on the class structures within the program, was used by the

analysis algonthm to parse the program source code It was necessary to assimilate a

considerable amount of information about the classes declared in the program

Examples of the type of information required are, the hierarchical structure of each

105

class, the type and name of each field and method, the instance and static block

initializer methods, the constructor methods used, the interfaces each class implements

and the exceptions thrown by each class

This information was used to calculate the usage counts of all top-level classes The

pseudocode for this algorithm is illustrated in Figure 4 6 It is vital that precise type

information from Plevyak & Chien’s algorithm [Plevyak & Chien, 1994] is used to

supplement the declassification’s analysis algorithm It is documented in section 4 3

that Plevyak & Chien’s algorithm has not yet been written to analyse a Java program

As a result, the algorithm is applied by hand and the necessary type information is

added manually to increment the usage counts of the classes

The transformation algorithm is fully automatic except for its inability to deal with user

interfaces, this is documented below The transformation algorithm inhnes classes that

have a usage count of one, within their enclosing class The pseudocode for this

algorithm is illustrated in Figure 5 4 A number of difficult issues had to be dealt with

to accomplish this These include

• Ensuring that there are no field or method name clashes,

• Ensuring the superclass of the inhnable class is referenced correctly after

transformation,

• Any references to the inhnable classes interfaces must be transformed to ensure

that no clash occurs between an interface field constant of the inhnable and

enclosing classes,

• The transformation of the inhnable classes constructor methods must inline any

instance field initializations and the body of any instance block initializer

methods Static field initializations and static block initializers methods remain

unchanged Any arguments to the constructor method and any calls to other

constructor methods through this() or super() references must be transformed

correctly,

• It is necessary to take local variables into consideration when transforming the

body of a method This is because the sharing semantics of the mimed fields

have changed and they could now clash with local variables in both the

enclosing and inhnable class methods

The declassification technique is a prototype and as such there are a number of

limitations that have not been addressed

106

• It cannot inline classes from different packages, this was documented m section

5 4,

• Information on class interfaces declared m the program must be entered

manually,

• References to the mlmable classes static fields and methods through their

package names must be transformed manually This issue could not have been

addressed until packages had been dealt with,

• The majority of Java statements are being transformed but as this is a prototype

there is no guarantee that every Java statement will be transformed correctly

The declassification technique was used to analyse and transform four programs in the

SPEC98 [SPEC JVM, 1998] benchmark suite and two other programs These programs

are collectively referred to as test programs The results of this empirical study are

documented in chapter 6 The extemally-observable behaviour of the test programs

was examined in detail Each of the unoptimized test programs was run through the

SPEC98 benchmark program 10 times They were then optimized by the

declassification technique and again they were run through the SPEC98 benchmark

program 10 times The benchmark program runs the test program and gathers statistics

on it An example of one of the statistics is the amount of time required to execute the

test program

The outputs from running the unoptimized and optimized versions of the program were

examined and the results established that the extemally-observable behaviour is the

same For example in the test program Check, a test test Array resulted in the output

OK for both the unoptimized and optimized versions of the program Another example

of a type of test earned out is as follows, the declassification test program was

optimized and then the optimized version of the declassification program was used to

optimize an unoptimized version of the declassification program The results of these

optimizations were the same It should be noted, however, that even though thorough

testing was earned out, the extemally-observable behaviour of the transformed

programs is not guaranteed to be exactly the same

The time taken to run the declassification technique is small It takes, for example, on

average 30 seconds to analyse and transform the declassification program itself The

107

source code for the declassification technique is available from the department of

Computer Applications in Dublin City University

5.8 Summary

The transformation algonthm involves miming the fields and methods of each mlinable

class within its enclosing class This algonthm is presented in this chapter and two

example programs are used to help expound it The visibility modifiers were examined

and it was established that they do not restnct the miming process if the two classes are

within the same package A companson is made between object miming optimization

techniques and the declassification technique m section 5 6 An empincal study was

earned out to establish the success of the declassification technique The results are

documented in chapter 6

108

Chapter 6 Evaluation

The declassification technique was evaluated by analyzing and transforming a number

of reasonably sized object-oriented programs in the SPEC98 [SPEC JVM, 1998]

benchmark suite SPEC98 is one of the most commonly used benchmark suites Two

other medium sized Java programs were also evaluated The results of this evaluation

are presented in this chapter and from these results the benefits and costs of the

technique are assessed The benefits of the declassification technique are the run-time

performance gains, reduced memory usage and the fact that there is no increase in code

size The cost could be the fact that the performance gain as a result of the optimization

is not substantial enough when measured against the additional compile-time cost of

carrying out the technique A description of the test programs is given in section 6 1

The results of the analysis and transformation are given in section 6 2 and 6 3 Further

possible extensions to the declassification technique are given m section 6 4 and finally,

the summary is in section 6 5

6.1 Test Programs

The industry standard SPEC98 benchmark suite has been used to conduct this study

The source code for four Java programs is available and a brief description of each is

given below

Check benchmark

This is a simple program to test various features of the JVM to ensure that it provides a

suitable environment for Java programs Two tests that it includes are array indexing

beyond its bounds and creating a super class and its sub class and then accessing the

public, pnvate and protected variables and over-ndden methods

Compress benchmark

This benchmark uses the modified Lempel-Ziv method (LZW), which finds common

substrings and replaces them with a van able size code This is deterministic and can be

done on the fly

109

db benchmark

This benchmark performs multiple database functions on a memory resident database

It reads in a 1 MB file which contains records with names, addresses and phone

numbers of entities and a 19KB file called scr6 which contains a stream of operations

to perform on the records in the file

Raytrace benchmark

This is a variant of _205_raytrace, a raytracer that works on a scene depicting a

dinosaur, where two threads each render the scene in the input file time-test model,

which is 340KB in size

Two other medium sized Java programs are used as test data, the declassification and

deforestation programs described below

Declassification (declass) program

The declassification source program has been written entirely in Java Part of the

source code includes JavaCC (Java Compiler Compiler) [JavaCC, 1999] JavaCC is a

Java parser generator

Deforestation (deforest) program

The source code for the deforestation algorithm as proposed in [Hamilton, 1995B] and

[Hamilton, 1996] This is an algorithm to remove intermediate data structures from

programs written in a higher order functional language

6.2 Analysis

The programs listed in section 6 1 were analysed to calculate the number of suitable

classes for miming The histogram in Figure 6 1 has two bars The first illustrates the

number of top-level classes m each program, the second illustrates the number of

classes which are suitable for declassification in each program It is obvious from these

results that there are very few top-level classes which meet the criteria for miming

110

□ Total number of classes

Figure 6.1 The number of mhnable classes in each program

Three of the test programs, check, compress and db have only one mhnable class The

deforest program has no suitable classes for declassification The percentage of classes

suitable for miming in raytrace and db is 4% The declass program shows the most

promising result with 14% of its classes being mhnable

6.3 Transformation

In order to establish the effectiveness of the declassification technique, it is necessary to

compare the run-time performance and memory consumption of the unoptimized and

optimized versions of each test program From these results, we can extrapolate the

benefits of the declassification technique

6.3.1 Performance

To measure the effectiveness of the declassification technique we transformed the

source code of the test programs Each optimized program was then compiled using

Java 2 SDK standard edition version 1 4 The unoptimized and optimized versions of

each program were measured by the benchmark program available in SPEC98

Measurements were taken on a Pentium 200 with 32 megabytes of RAM and are the

average of 10 runs The percentage improvement (or disimprovement) is calculated by

111

dividing the difference between the optimized and unoptimized measurements (eg run­

time memory usage) by the original unoptimized measurement

The percentage decrease in memory consumption of the optimized programs is

illustrated in Figure 6 2

o
3
■u<D
Co
a
E
3(/)
Coo
5*i.o
Eo
2

10
98
7
6
5
4
3
2
1
0 t---------r

Figure 6 2 Reduction in memory consumption of the test programs

The programs, check, db and deforest show little or no improvement in memory

consumption as a result of optimization This result is expected from the

declassification of the deforest program as no optimization took place because there

were no suitable classes for miming The raytrace program shows a negligible decrease

in memory consumption of 1% There are, however, significant improvements in the

memory consumption of the compress and declass programs The declass program

shows an 8% and the compress shows a 9% reduction in memory use

Figure 6 3 shows the percentage increase m the run-time performance of the optimized

programs

0)oc<0
E
o o
r ¡g
Q) <0a g><D O
E .E
■*?cD

10 n
8
6
4
2

Cĵ <&

o°

SÌ2? vOS JC>é cr <f

Figure 6.3 Percentage increases in run-time performance

The majority of programs tested; check, compress, db, raytrace and deforest show little

or no increase in their run-time performances after declassification. This was expected

from the deforest program as it had no suitable classes for inlining. The check,

compress and db had only one class suitable for inlining. The declass program shows a

very small increase even though three classes were inlined.

6.3.2 Program code size

A major cost of many optimization techniques is an increase in code size. This increase

can often be considerable and may depend on the structure and complexity of the

source program. The object inlining technique in [Dolby,98] estimates that there is a

20% increase in code size as a result of object inlining. It is thought that this increase

could be substantially higher as each object could be inlined within multiple container

objects. Their technique cannot guarantee what the maximum increase in code size will

be. The declassification technique can guarantee that there is no increase in code size

and there may be even a small decrease. This guarantee is possible because of the

transformation algorithm used. Any suitable 'intermediate' class found is inlined within

its enclosing class. The declaration of the intermediate class is then removed from the

program. An intermediate class is not inlined within multiple enclosing classes. Figure

6.4 illustrates the percentage decrease in code size as a result of declassification. It is

obvious that there is no increase in code size in any of the programs tested. The

raytrace program which successfully inlined two classes shows a small reduction of

1%. The declass program shows a significant reduction of 5% in code size.

113

Figure 6.4 Percentage decrease in program code size

6.4 Further extensions

A number of extensions could be made to the declassification technique which should

improve its effectiveness and these are listed in the following subsections The

declassification technique concentrates on top-level classes which are declared and

instantiated as a field of an enclosing class The analysis algorithm identified other top-

level classes that have a usage count of one The declassification technique could be

extended to inline these top-level classes, it could also be extended to mime single

usage inner classes

6.4.1 Local Objects

The empincal study found that there are a considerable number of top-level classes that

are instantiated as local variables in methods A local object cannot be mimed

successfully if a reference to the local object is returned from the method or passed as a

parameter to another class instance Figure 6 5 illustrates only the local objects which

are used m this way 11% of the db program classes and 8% of the compress program

classes are being used as local objects Each of these classes could be mimed within

the method which created them by miming its fields and expanding each of its method

r

8 10 n </>

Figure 6.5 Number of top-level classes created in a method

Figure 6 6 illustrates how a local object could be inhned Figure 6 6 part (a)

illustrates how a class B is instantiated m a method instantiateLocal() This

class could be inhned within the local method, in a similar way to how mlinable

classes are inhned within their enclosing classes In Figure 6 6 part (b) the

necessity of declaring and instantiating the class B has been removed

class A
{

class A
{

public void instantiateLocal()
{

B myB = new B (),
int x = myB count,

}

public void instantiateLocal{)
{

Object myB = new Object(),
m t count = 1,
int x = count,

} }

class B
{

int count = 1,

}

}

(a) Program before declassification (b) Program after declassification

Figure 6 6 A local object is inhned within a method

115

6.4.2 Anonymous objects

An anonymous object which is instantiated in a method could be mimed within the

method in a similar way to how you inline a local object A reference to the

anonymous object cannot be returned from the method or passed as a parameter to

another class instance if inhning is to be successful Anonymous objects that have a

usage count of one have a potential of being mimed Figure 6 7 illustrates the number

of anonymous objects that are used in this way within the test programs Only one of

the six programs has an anonymous object which could be mimed using a technique

similar to the declassification technique

Figure 6.7 Number of top-level classes created as anonymous objects

6.4.3 Superclasses

The declassification technique could be extended to inline superclasses that have a

usage count of one The fields and methods of the superclass could be mimed within its

subclass This eliminates the necessity of creating an instance of this superclass within

the program The declaration of this class could then be removed from the program

The empirical study established that there were no top-level classes whose only use is

as a superclass of another class

116

6.4.4 Inner classes

The declassification technique has the ability to identify and inline suitable top-level

classes The information gathered by the declassification analysis and transformation

algorithms could be extended to facilitate the miming of inner class In Java each inner

class is created as a normal top-level class by the JVM This results in each inner class

requiring space and time to be created on the heap Eliminating inner classes should

result in reduced memory consumption by the program and increased run-time

performance These benefits should occur because of the reasons outlined in section

1 7 and 7 1 The effectiveness will greatly depend on the number of suitable classes

found for miming

6.4.4.1 Member classes

The member class is a suitable class for declassification if it is established by the

technique that there is exactly one use of it m the program Figure 6 8 part (a) illustrates

how a class A has a member class B This member class is suitable for miming if the

analysis algorithm establishes that class A is the only class to use it Figure 6 8 part (b)

displays the transformed program

class A
{

B myB = new B () ,

private class B extends C
{

int x,
}

}

class A
{

C myB = new C ()
int x,

}

(a) Program before declassification (b) Program after declassification

Figure 6 8 A member class is mimed within an enclosing class

117

6 4.4.2 Local Classes

A local class is suitable for miming if it is used exactly once in the program A

reference to the local class cannot be returned from the method or passed as a

parameter to another class instance Figure 6 9 part (a) illustrates how a local class

could be mimed Class A creates and instantiates a local class B in its method

createLocal() This local class could be mimed within the method createLocal() as

illustrated in Figure 6 9 part (b)

class A
{

private void createLocal()
{

B myB = new B (),
myB m c X () ,

class B extends C

private int x,
void m c X {)
{

x++
},

class A

private void createLocal(
{

C myB = new C (),
private int x,
x++,

(a) Program before declassification (b) Program after declassification

Figure 6 9 A local class is mlined within a method

6 4 4 3 Anonymous Classes

The anonymous class is an ideal candidate for declassification as only a single instance

of this class is created each time the containing block is executed Inlinmg should not

be earned out if an anonymous class which is created within a method is returned from

the method or passed as a parameter to another class instance Figure 6 10 part (a)

illustrates how an anonymous class which extends the class C is instantiated and stored

in a field myC Figure 6 10 part (b) shows how the fields and methods of the

anonymous class are mlined within the method createAnonymous()

118

class A class A
{ {

public void createAnonymous() public void createAnonymous()
{ {

C myC = new C { C myC = new C ();
private int x = 1; private int x = 1;
void incX() x++;
{ :

x+ + ; }
} }

};
class C

myC.incX(); {

} }
}

class C
{

}

(a) Program before declassification (b) Program after declassification

Figure 6.10 An anonymous class is created within a method

The results of this analysis show that there are a considerable number of local objects

which could be inlined within the test programs. The declassification technique could

also be extended to encompass inner classes as well as top-level classes. These

extensions have the potential of greatly improving its effectiveness.

6.5 Summary

The empirical study has shown that the declassification technique as it is currently

defined, is not a successful optimization technique because the benefits in terms of

increases in run-time performance and decreases in memory consumption are poor.

Only a small number of classes were identified for inlining in the test programs. The

results from this study showed that when suitable classes are found for inlining it did

not have a positive impact on the run-time performance of these programs. The

optimization of the declass program resulted in three classes being inlined. This only

increased the run-time performance of the program by an average of 1%.

119

The majority of the test programs show a negligible decrease in memory consumption

after optimization Two of the test programs, compress and declass however, have a

considerable reduction in memory consumption as a result of declassification An

important benefit of the declassification technique is the fact that it does not increase

the size of the program code after optimization In all cases it has shown that there is

no increase or a small decrease in code size after optimization A number of further

extensions that have the potential of improving the performance of the declassification

technique, were presented in section 6 4 The effectiveness of the declassification

technique is discussed m the next chapter

120

Chapter 7 Conclusions

Object-oriented programming is becoming increasing popular because it enables

software development to be earned out in a uniform abstract way It also enables

software to be wntten which is independent of the implementation technique that will

be used by the compiler The object-onented approach to software development has

been praised for its ability to create systems that are flexible, maintainable and capable

of evolving to meet changing needs However, it has been adversely cnticized for the

amount of memory it requires dunng execution and the low speed performance of

object-onented languages in companson to imperative languages Consequently,

object-onented programs require more aggressive optimization techniques However

object-onented software is more difficult to reason about and optimize, because of the

use of mhentance and dynamically bound method calls These features were

highlighted in chapter 1

A wide range of optimization techniques have been researched and developed for

object-onented languages Some of these are presented and discussed in chapters 2 and

3 Empmcal studies that have been earned out to assess the benefits of these

techniques, have shown that they have varying degrees of success

7.1 Evaluation of the Declassification Technique

The object miming technique in [Dolby, 1997] has had considerable success in

optimizing an object-onented language The empincal study made in [Dolby & Chien,

1998] estimates that a program will run up to three times as fast following object

miming It is estimated that these gams are as a result of

• Eliminating the need for subroutine calls to access the object methods as they

are now mimed,

• Enabling direct access to the fields of the mimed object because they are now

local to the calling procedure,

121

• Providing better opportunities for other optimization techniques to be earned

out on the mlined object

The aim of the declassification technique is to automatically inline suitable classes

within their enclosing class A suitable class is identified by establishing that it is used

exactly once in the program This class is then mimed within the class that uses it,

which is referred to as its enclosing class The fields and methods of the mlined class

become local to its enclosing class The declaration of the mlined class can then be

removed from the program source code This transformation not only eliminates the

necessity of creating this one instance of the mlmable class but the number of

instantiations removed depends on the use of the enclosing class within the program

Each time an instance of the enclosing class is created, the necessity of creating an

instance of its mlmable class has been eliminated The success of the declassification

technique is therefore not only dependent on the number of classes suitable for miming

but is mtnnsically dependent on the number of instantiations of their enclosing classes

and the use of these enclosing classes within the program

It was hoped that the declassification technique would result in a reduction in the heap

space required by the program to run and an improvement in the run-time performance

of the program The empmcal study shows clearly that this is not the case One of the

reasons the results of the evaluation yielded such a small number of suitable mlmable

classes could be the fact that the SPEC98 benchmark suite is not particularly object-

onented Some of the programs in this suite are direct translations of Fortran The

results of the empincal study are discussed in the following subsections

7.1.1 Number of mlmable classes

The empincal study shows that there are very few suitable classes for declassification

Most of the test programs have one mlmable class, check, compress, and db The

deforest program has no mlmable class The raytrace program has two mlmable classes

out of forty one, the percentage of mlmable classes is, therefore, 5% The declass

program was the most suitable for optimization as it has three mlmable classes out of

twenty one, the percentage of mlmable classes is 14%

122

The ‘one use’ constraint of the analysis cntena is too restrictive as very few classes

were found which adhered to it It could be argued that this constraint should be

relaxed in the following manner to enable more classes to be mimed A class that is

used frequently in one particular enclosing class and independently used in another part

of the program should be mlined This would, however, require a substantial change to

the analysis algonthm to facilitate its ability to guarantee that parts of the program are

used independently of other parts of the program It would also break one of the

fundamental constraints of the declassification technique, the fact that there is no

increase in program code size after optimization

Extensions to the declassification technique as discussed in section 6 4 would enlarge

the number of suitable classes This could be done without substantially changing the

analysis algonthm

7.1.2 Memory use

It was hoped that the declassification technique would reduce the number of objects

created by the program because of its ability to mime classes This, however, has only

transpired in a small number of classes The empincal study shows that there are small

differences in memory usage between the optimized and unoptimized programs The

check and db programs show a negligible decrease in memory use after optimization

No declassification has taken place in the deforest program and a decrease m memory

use was not expected The raytrace program had some lnlining opportunities but only a

small reduction in memory use is found between the optimized and unoptimized

raytrace programs The declass program shows an important and significant 8%

reduction in memory use following the miming of three classes The compress

program shows a 9% decrease m memory use following the miming of only one class

It is possible to deduce that if more classes were mlined, the memory usage of the

programs would reduce further

123

7.1.3 Run-time performance

The empirical study shows that there is very little or no difference in the run-time

performance of check, compress, db, ray trace and deforest programs It was hoped that

the performance of the declass and raytrace programs would be increased as a result of

the declassification technique Some classes were mimed and it was hoped that it

would reduce the number of memory dereferences as the fields of the mlinable class

become local to the enclosing class It should also reduce the number of dynamic

dispatches necessary to execute the program The empirical study showed no increase

in the run-time performance of the optimized raytrace program and only a 1% increase

occurred as a result of optimizing the declass program It could be deduced from these

results that the fields and methods of the mlinable classes within the raytrace and

declass programs are not highly referenced by their enclosing classes It could also be

deduced that the overall poor impact on the run-time performance is predominately due

to the small number of classes found suitable for declassification

7.1.4 Code size

An important feature which can be attnbuted to the declassification technique is that it

guarantees that there will be no increase m code size This feature cannot be attnbuted

to many other optimization techniques such as object miming [Dolby, 1997] This is

supported by the empincal study, which shows that there is no increase in code size

after optimization Some programs that had miming capabilities show a small but

important decrease in code size The code size of the declass program reduced by 5%

after declassification

In conclusion, the empincal study has shown that very few classes were found suitable

for mimmg within the test programs and the declassification technique was not

successful in their optimization

124

7.2 Extensions to the declassification technique

A number of possible extensions to the declassification technique were outlined in

section 6 4 The empirical study established that there are a considerable number of

local objects which could be mimed The compress and db programs have two

potential local objects and the check has one, this is an average of 7% of their overall

classes The declass and deforest programs had no suitable local objects which could

be in lined The empirical study showed that there are very few anonymous objects

suitable for declassification It also showed that there are no suitable superclasses for

declassification Consequently, pursuing these two extensions to the declassification

technique are not worthwhile The miming of local objects, however, could

substantially increase the effectiveness of the declassification technique

The declassification technique concentrated on the miming of top-level classes There

are three types of inner classes, member, local and anonymous classes which could be

mimed if it was established that their usage counts are exactly one Java’s JVM treats

each inner class as a normal top-level class Eliminating these inner classes should

therefore provide similar benefits to the ones discussed for top-level classes

7.3 Summary

Optimizing object-oriented languages like Java is a challenging task The ultimate goal

is to improve the efficiency of program execution while incurring the least number of

negative side effects, such as the enlargement of code size

The declassification technique had the potential benefits associated with object miming

which where outlined in section 7 1, but unfortunately very few classes were found

suitable for declassification One of the reasons such a small number of mhnable

classes were found could be the fact that four of the test programs where taken from the

SPEC98 benchmark suite This benchmark suite is not particularly object-oriented as

some of the programs are direct translations from the Fortran language It would be

interesting to see how the results of the declassification technique would alter if a more

extensive empirical study was conducted that had a set of test programs which are

intrinsically object-oriented The empirical study showed that when suitable classes are

125

found for miming it can have a positive effect on the memory consumption of the

program Two of the programs in the empirical study showed a significant reduction of

between 8 and 9% in memory consumption, as a result of declassification The effect

of declassification on the run-time performance of the test programs is negligible It

could be argued, however, that this is largely due to the small number of classes found

suitable for declassification

The benefits of reduced memory consumption and increased run-time performance are

small Taking all the results of this particular empirical study into consideration, it

shows a poor optimization result Although this result is poor there are a number of

significant features associated with this technique One of these is the fact that there is

no run-time cost associated with the technique There is also no increase in the code

size of a transformed program, if anything it will shnnk in size The analysis and

transformation algorithms are less complicated than many other optimization

techniques Another feature is that it automatically mimes suitable classes and deletes

the original class declaration, without any programmer intervention The programmer

does not have to explicitly declare that certain classes should be mimed

Although the declassification technique was not successful m optimizing the test

programs, further extensions to this technique could greatly improve its success Figure

6 5 shows that there are a number of local objects suitable for miming within half of the

test programs and section 6 4 4 discusses further possibilities for extending the

technique by miming inner classes These extensions combined with an intrinsically

object-oriented set of test programs could greatly improve the effectiveness of the

declassification technique

126

References

[Agesen et a l , 1998]

[Baker-Finch, 1992]

[Black et a l , 1986]

[Bodik et a l , 1998]

[Bormng & Ingalls,
1982]

[Briggs & Copper, 1994]

[Briggs et al , 1996]

[Bruce et al , 1993]

[Budimlic & Kennedy
1997]

[Budimlic Sc Kennedy,
1998]

Agesen, O , Detlefs, D , Eliot, j , Moss, B Garbage
Collection and Local Variable Type-Precision and
Liveness in Java Virtual Machines In Proceedings of
the ACM SIGPLAN'98 C o n fe r e n c e on Programming Language
D es ig n and I m p le m e n ta t io n (PLDI), pages 269-279,
Montreal, Canada, 17-19, (1998)

Baker-Finch, C A Relevance and Contraction A
Logical Basis for Strictness and Sharing Analysis
Submitted to the journal of Functional Programming,
(1992)

Black, A , Hutchinson, N , Jul, E , Levy, H Object
structure in the emerald system In proceedings of
OOPSLA '86 pages 7 8-86 ACM September 1986

Bodik, R , Gupta, R , Soffa Mary Complete Removal of
Redundant Expressions Department of Computer Science,
June 1998

Bormng, A , Ingalls, D A type declaration and
inference system for Smalltalk In Ninth Symposium on
Principles of Programming Languages, pages 133-141,
(1982)

Briggs, P , Cooper, K Effective partial redundancy
elimination In Proceedings of the Conference on
Programming Language Design and Implementation pages
159-170, June 1994

Briggs, P , Cooper, K , Simpson, L Value Numbering
Software Practice and Experience, (1996)

Bruce K , Crabtree, J , Murtagh, T , van Gent, R
Safe and decidable type checking m an object-oriented
language In Proceedings of OOPSLA'93 pages 29-46,
(1993)
Budimlic, Z , Kennnedy, K Optimising Java Theory
and Practive Software Practice and Experience 9, 6
pages 445-463, June 1997

Budimlic, Z , Kennnedy, K Static Interproedural
Optimizations in Java Center for Research on Parallel
Computation, Rice University, Technical Report CRPC-
TR98746

127

[Burstall & Darlington,
19773

[Calder & Grunwald &
Zorn 1994]

[Cardelli, 1984]

[Chambers & Dean &
Grove, 1996]

[Chambers & Ungar, 1989]

[Chambers & Ungar, 1990]

[Chambers et a l , 1989]

[Chambers et a l , 1995]

[Chien et al , 1997]

Burstall, R , Darlington, J A Transformation System
for Developing Recursive Programs, Journal of the ACM
24(1) pages 44-67, (1977)

Calder, B , Grunwald, D , Zorn, B Quantifying
differences between C and C++ programs Technical
Report CU-CS-698-94, University of Colorado, Boulder,
January 1994

Cardelli, L A semantics of multiple inheritance In
Gilíes Kahn, David MacQueen and Gordon Plotkin,
editors, Semantics o f Data Types pages 51-68
Spnnger-Verlag (LNCS 173), (1984)

[Chambers, C , Dean, J , Grove, D Whole program
optimization of object-oriented languages University
of Washington Seattle, Technical Report 96-06-02(1996)

Chambers, C , Ungar, D Customization Optimizing
Compiler Technology for Self, A Dynamically-Typed
Object-Oriented Programming Language SIGPLAN
Notices, 24(7) 146-160 In Proceedings of the ACM
SIGPLAN '89 Conference on Programming Language Design
and Implementation, July 1989

Chambers, C , Ungar, D Iterative Type Analysis and
Extended Message Splitting Optimising Dynamically-
Typed Object-Oriented Programs SIGPLAN Notices,
25(6) 150-164 In Proceedings of the ACM SIGPLAN '90
Conference on Programming Language Design and
Implementation, July 1990

Chambers C , Ungar, D , Lee, E An Efficient
Implementation of Self, A Dynamically-Typed Object-
Oriented Programming Language Based on Prototypes In
OOPSLA '89 Conference Proceedings, pages 49-7 0, New
Orleans, LA 1989 Published as SIGNPLAN Notices
24(10) October 1989

Chambers, C , Dean, J , Grove, D A Framework for
Selective Recompilation m the Presence of Complex
Intermodule Dependencies In 17th International
Conference on Software Engineering, Seattle, WA, April
1995

Chien, A , Dolby, J , Ganguly, B , Karamcheti, V ,
Zhang, X Supporting high level programming with high
performance The Illinois concert system In
proceedings of the Second International Workshop on

128

[Chien, 1993]

[Chilimbi & Hill &
Larus, 1999A]

[Chilimbi & Hill &
Larus, 1999B]

[Chin, 1990]

[Chin, 1991]

[Chin, 1992]

[Chow et al , 1997]

[Cierniak & Li, 1997]

[Cytron et a l , 1991]

[Dean & Chambers &
Grove, 1995B]

High-level Parallel Programming Models and Supportive
Environments, April 1997

Chien, A Concurrent Aggregates Supporting
Modularity in Massively-Parallel Programs MIT Press,
Cambridge, MA, (1993)

Chilimbi, T , Hill, M , Larus, J Cache-Conscious
Structure Layout In Proceedings of ACM SIGPLAN'99
Conference on Programming Language Design and
Implementation, (1999)

Chilimbi T , Hill, M , Larus, J Cache-Conscious
Structure Definition In Proceedings of ACM SIGPLAN'99
Conference on Programming Language Design and
Implementation, (1999)

Chin W Automatic Methods for Program Transformation
Ph D thesis, Imperial College, University of London,
July 1990

Chin, W Generalising deforestation for all first-
order functional programs In Journees de Travail sur
L'Analyse Statique en Programmation Equationnelle,
Fonctionnelle et Logique, pages 173-181, (1991)
Chin W Safe fusion of functional expressions, m
Proceeding of the ACM Conference on Lisp and
Functional Programming, pages 11-20, (1992)

Chow, F , Chan, S , Kennedy, R , Liu, S -M , Lo, R ,
Tu, P A new algorithm for partial redundancy
elimination based on SSA form In Proceedings of the
ACM SIGPLAN '97 Conf On Prog Language Design and
Impl , pages 273-2 86, June 1997

[Cierniak, M , Li, W Optimizing Java Bytecodes
Concurrency Practice and Experience 9 6 pages 427-
444, June 1997
Cytron, R , Ferrante, J Rosen, B , Wegman, M ,
Zadeck, F Efficiently Computing Static Single
Assignment Form and the Control Dependence Graph ACM
Transactions on Programming Languages and Systems
(1991)

Dean J Chambers C Grove D Selective
Specialization for Object-Oriented Languages SIGPLAN
Notices In Proceeding of the ACM SIGPLAN '95
Conference on Programming Language Design and
Implementation, June 1995

129

[Dean & Grove &
Chambers, 1995]

[Diwan & McKinley &
Moss, 1998]

[Diwan et a l , 1992]

[Diwan, 1998]

[Dolby & Chien, 1998]

[Dolby Sc Chien, 2000]

[Dolby, 1997]

[Ellis Sc Stroustrup,
1990]

[Gay Sc Steensgaard
1998]

Dean, J , Grove, D , Chambers, C Optimization of
Object-Oriented Programs using Static Class Hierarchy
Analysis In Proceedings ECOOP '95, Aarhus, Denmark
Spnnger-Verlag, August 1995

Diwan, A , McKinley, K , Moss, J Type-based alias
analysis See PLDI[1998], pages 106-117 (1998)

Diwan, A , Eliot, J , Moss, B , Hudson, R Compiler
support for garbage collection in a statically typed
language In Proceeding of SIGPLAN'92 Conference on
Programming Languages Design and Implementation,
volume 27 of ACM SIGPLAN Notices, ACM Press pages 273-
282, (1992)

Diwan, A , McKinley, K , Moss, J Type-based alias
analysis In P r o c e e d in g s o f th e ACM SIGPLAN'98

C o n fe r e n c e on Programming Language D es ign and

I m p le m e n ta t io n (PLDI), pages 106-117, Montreal,
Canada, June, Notices 33 5 May 199 8

[Dolby, j , Chien, A An evaluation of automatic
object inline allocation techniques In Proceedings
of the Thirteenth Annual Conference on Object-Oriented
Programming Languages, Systems and Applications
(OOPSLA), Vancouver, British Columbia, October 1998
Available at http //www-
csag cs uiuc edu/papers/oopsla-98 ps

Dolby, 3 , Chien, A An Automatic Object Inlming
Optimization and its Evaluation Proceedings of the
2000 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 345 - 3 57, Vancouver,
British Columbia Canada, May 2000

[Dolby, J Automatic Inline Allocation of Objects In
Proceedings of the 1997 ACM SIGPLAN Conference on
Programming Language Design and Implementation pages
7-17, Las Vegas, Nevada June 1997

Ellis M , Stroustrup, B The Annotated C++ Reference
Manual Addison-Wesley, (1990)

Gay D , Steensgaard B Stack Allocating Objects m
Java Microsoft Research Technical Reports of the
Advanced Programming Languages Group, (1998)

130

[Goldberg
1983]

[Gosling <
1996]

[Grove et

[Hamilton
1991A]

[Hamilton
1991B]

[Hamilton

[Hamilton,

[Hamilton,

[Hamilton,

[Hamilton,

[Hamilton

Sc Robson, Goldberg, A , Robson, D Smalltalk-80 The Language
and its Implementation Addison-Wesley, (1983)

: Joy Sc Steele, [Gosling, J , Joy, B , Steele, G The Java Language
Specification Addison-Wesley Longman, Inc , (1996)

a l , 1995] Grove, D , Dean, J , Garrett, C , Chambers, C
Proflle-Guided Receiver Class Prediction In
Proceedings of the Tenth Annual Conference on Object-
Oriented Programming Languages, Systems and
Applications (OOPSLA), Austin, Texas United States,
pages 108 - 123, October 1995

Sc Jones , Hamilton, G W , Jones, S Extending deforestation
for first-order functional programs, in Proceedings
of the 1991 Glasgow Workshop on Functional
Programming, pages 134-145, August 1991

Sc Jones , Hamilton, G W , Jones, S Transforming programs to
eliminate intermediate structures, m Journees de
T r a v a i l s u r L 'A n a l y s e S t a t i q u e en Programmation

E q u a t i o n e l l e F o n c t i o n n e l l e e t L o g iq u e , pages 182-188
October 1991

Sc Jones, 1990] Hamilton, G W , Jones, S Compile-time garbage
collection by necessity analysis Proceedings of the
1990 Glasgow workshop on Functional Programming, pages
66-70, Spnnger-Verlag Workshops in Computing (1990)

Hamilton, G W Sharing Analysis of Lazy First-order
fucntional programs Proceedings of the workshop on
Static Analysis, pages 68-78, 1992
Hamilton, G W Compile-time garbage collection for
lazy functional languages Proceedings of the 1995
International Workshop on Memory Management LNCS 986,
(1995)

Hamilton, G Higher-order deforestation Technical
Report 95-07, University of Keele (1995)

Hamilton, G W Higher-order Deforestation, m
Proceedings of the Eighth International Symposium on
Programming, Logics, Implementation and Programs
(PLILP '96), Vol 1140 of Lecture Notes m Computer
Science, pages 213-227, (1996)

Hamilton, G W Usage Counting Analysis for Lazy
Functional Languages Information and Computation
146(2) pages 100-137, (1998)

1992]

1995]

1995B]

1996]

1998]

131

[Harrison & Waldron,
1999]

[HOlzle & Ungar, 1994]

[Hosking e t a l , 1999]

[Hudak, 1987]

[Hughes, 1991]

[Hutchinson, 1987]

[JavaCC, 1999]

[Johnson, 1992]

[Jones & Le [Metayer
1989]

[Kaplan & Ullman, 1978]

[Knoop & Steffen, 1992A]

Harrison, 0 , Waldron, J P r o f i l i n g Java memory

dem o g ra p h ic s f o r Garbage C o l l e c t i o n Purposes Working
paper CA-2299, Dublin City University, (1999)

HOlzle U , Ungar, D Optimizing Dynamically-
Dispatched Calls with Run-Time Type Feedback
SIGNPLAN Notices, 29(6) pages 326-336 In Proceeding
of the ACM SIGPLAN '94 Conference on Programming
Language Design and Implementation, June 1994

Hosking A , Nystrom, N , Whitlock, D , Cutts, Q ,
Diwan, A Partial Redundancy Elimination for Access
Path Expressions In P r o c e e d in g s o f th e I n t e r n a t i o n a l

Workshop on A l i a s i n g m O b j e c t - O r i e n t e d S y s t e m s,
Lisbon, Portugal, June 1999

Hudak, P A Semantic Model of reference counting and
its Abstraction In S Abramsky and c Hankin,
editors, Abstract Interpretation of Declarative
Languages 45-62 (1987)

Hughes, S Static analysis of store use m functional
programs PhD Thesis, University of London (1991)

Hutchinson, N Emerald An Object-Based Language for
Distributed Programming PhD thetis, University of
Washington, Department of Computer Science, Seattle,
Washington TR-87-01-01, (1987)
Java Compiler Compiler version 1 1 (Parser Generator),
copyright © 1996-1999 Sun Microsystems Inc
http //www metamata com URL last accessed on
04/September/2 001

Johnson, R Documenting Frameworks Using Patterns
In Proceedings OOPSLA 92, pages 63-76 Published as
ACM SIGNPLAN Notices, volume 27,number 10, October
1992

Jones, S B , Le Metayer, D Compile-Time Garbage
Collection by Sharing Analysis Proceedings of the
Fourth International Conference on Functional
Programming and Computer Architecture 54-74, (1989)
Kaplan, M , Ullman, J A general scheme for the
automatic inference of variable types In Fifth
Symposium on Principles of Programming Languages,
pages 60-75, (1978)

Knoop, J Sheffen, B The interprocedural
coincidence thoerem In proceedings of the 4th

132

[Knoop & Steffen, 1992B]

[Knoop et a l 1994]

[Laud, 2 001]

[Lee & Zorn, 1997]

[Lim & Stolcke, 1991]

[Lindholm & Yellm,
1996]

[Lmton e t a l , 1989]

[Marlow & Wadler, 1992]

[Marlow, 1996]

[McDowell, 1998]

[Milner et a l , 1990]

[Milner, 1978]

Conference on Compiler Construction (CC) Lecture
Notes m Computer Science, vol 641 Springer-Verlag,
Berlin, pages 125-140, (1992)

Knoop, J , Sheffen, B Optimal interprocedural
partial redundancy elimination Extended abstract In
Addenda to Proceedings of the 4th Conference on
Compiler Construction Lecture Notes m Computer
Science, Springer-Verlag, Berlin, (1992)

Knoop, J , Ruthmg, 0 , Sheffen, B Optimal code
motion Theory and practice ACM Trans On Programming
Languages and Systems, 16(4) pages 1117-1155, (1994)
Laud, P Analysis for Object Inlimng m Java
JOSES Java Optimization Strategies for Embedded
Systems, Genoa, Italy, April 1 2001

Lee, H B ,Zorn B G BIT A Tool for instrumenting
Java Bytecodes In Proceedings of the 1997 USENIX
Symposium on Internet Technologies and Systems
(USITS'97), PAGES 73-83, December 1997

Chu-Cheow, L , Stolcke, A Sather Language Design and
Performance Evaluation Technical Report TR 91-034,
International Computer Science Institute, May 1991
[Lindholm, T , Yellin, F The Java Virtual Machine
Specification Addison-Wesley Longman, Inc , (1996)

Linton, M , Vlissides, J , Calder, P Composing User
Interfaces with Interviews IEEE Computer, 2(2) 8-22,
February 1989
Marlow, S , Wadler, P Deforestation for Higher-Order
Functions, m Proceedings of the Fifth Annual Glasgow
Workshop on Functional Programming, 1992 pp 154-165,
(1992)

Marlow, S Deforestation for higher-order functional
programs Ph D thesis, Glasgow University, (1996)

McDowell, C Reducing garbage in Java SIGNPLAN
Notices, 33(9)pages 84-86 (1998)

Milner, R , Tofte, M , Harper R The Definition of
Standard ML The MIT Press (1990)

Milner, R A theory of type polymorphism m
programming Journal of Computer and System Sciences,
17 348-375 (1978)

133

[Mitchell et a l , 1993]

[Mohnen, 1995]

[Morel & Renvoise, 1979]

[Mowry & Lam & Gupta,
1992]

[Mycroft, 1981]

[Oxh0j e t a l , 1992]

[Palsberg &
Schwartzbach, 1991]

[Plevyak & Chien 1994]

[Plevyak & Chien, 1995]

[Plevyak 1996]

Mitchell, J , Honsell, F , Fisher, K A lambda
calculus of objects and method specialization In
1993 IEEE Symposium on Logic in Computer Science,
pages 2 6-38, June 1993

Mohnen, M Efficient Compile-Time Garbage Collection
for Arbitrary Data Structures University of Aachen,
(1995)

Morel, E , Renvoise, C Global optimization by
suppression of partial redundancies Communications of
the ACM 22 2, pages 96-103, (1979)

Mowry, T , Lam S , Gupta, A Design and evaluation
of a compiler algorithm for prefetching In
Proceedings of the Fifth International Conference on
Architectural
Support for Programming Languages and Operating
Systems, (ASPLOS V), pages 62-73, (1992)

Mycroft, A Abstract Interpretation and Optimising
Transformations for Applicative Programs PhD thesis,
University of Edinburgh, (1981)
Oxh0j, N , Palsberg, J , Schwartzbach, M Making Type
Inference Practical In P r o c e e d in g s o f ECOOP'9 2, Sixth
European Conference on Object-Oriented Programming,
pages 329-349 Spnnger-Verlag (LNCS 615), Utrecht
The Netherlands July 1992

Palsberg, j , Schwartzbach, M Object-Oriented Type
Inference In P r o c e e d in g s o f OOPSLA'91, ACM SIGPLAN
Sixth Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, pages 146-161,
Phoenix, Arizona, October 1991

Plevyak, J , Chien, A Precise concrete type
inference of object-oriented programs In proceedings
of OOPSLA 1994, Object-Oriented Programming Systems,
Languages and Architectures, pages 324-340, (1994)

Plevyak, J , Chien, A Type directed cloning for
object-oriented programs In Proceeding of the
Workshop for Languages and Compilers for Parallel
Computing, pages 566-580, (1995)

Plevyak, J Optimization of Object-Oriented and
Concurrent Programs PhD thesis University of
Illinois at Urbana-Champaign, (1996)

134

[Seidl & Sorensen,

[Seidl, 1996]

[Shivers, 1988]

[Shivers, 1991]

[Simpson, 1996]

[Smetsers e t a l

[SPEC JVM, 1998]

[Steffen, 1996]

[Suzuki, 1981]

[Wadler, 1984]

[Wadler, 1985]

[Wadler, 1990]

1997] Seidl, H , Sorensen, M Constraints to Stop Higher-
Order Deforestation, m Proceedings of the Twelfth
Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 400-413, (1997)

Seidl, H Integer Constraints to Stop Deforestation,
in Proceedings of the European Symposium on
Programming, pages 326-340, (1996)

Shivers, 0 Control flow analysis m scheme In
SIGPLAN Conference on Programming Language Design and
Implementation, pages 164-74 (ACM 1988)

Shivers, O Control-Flow Analysis of Higher-Order
Languages PhD thesis, Carnegie Mellon University
Department of Computer Science, Pittsburgh, PA, May
1991 Also CMU-CS-91-145
Simpson, L Value Numbering Technical Report, Rice
University, Available via ftp, September 1996

1993] Smetsers, S , Barendsen, E , van Eekelen, M ,
Plasmeijer, R Guaranteeing Safe Destructive Updates
through a Type System with Uniqueness Information for
Graphs Technical Report 93-4, University of Nijmegen,
(1993)

SPEC JVM98 Benchmarks http //www spec org/osg/jvm98
URL last accessed on 08/August/2002

Steffen, B Property oriented expansion In
Proceeding of the Int Static Analysis Symposium
(SAS'96), volume 114 LNCS, pages 22-41, Germany 1996

Suzuki, N Inferring types in Smalltalk In Eighth
Symposium on Principles of Programming Languages,
pages 187-199, (1981)

Wadler, P L Listlessness is better than laziness
lazy evaluation and garbage collection at compile-
time Proc ACM Symp On Lisp and Functional
Programming, pages 45-52, (1984)

Wadler, P L Listlessness is better than laziness
II composing listless functions, m Proc Workshop
on Programs as Data Objects, Copenhagen, Lecture Notes
m Computer Science 217 282-305, (1985)

Wadler, P Deforestation Transforming Programs To
Eliminate Trees Theoretical Computer Science 73

135

pages 231-248, (1990)

[Wright Sc Baker-Finch,
1993]

Wright, D A , Baker-Fmch, C C
Natural Reduction Types Third
on Static Analysis, (1993)

Usage Analysis with
International Workshop

136

