133 research outputs found

    Proceedings

    Get PDF
    Proceedings of the NODALIDA 2011 Workshop Constraint Grammar Applications. Editors: Eckhard Bick, Kristin Hagen, Kaili Müürisep, Trond Trosterud. NEALT Proceedings Series, Vol. 14 (2011), vi+69 pp. © 2011 The editors and contributors. Published by Northern European Association for Language Technology (NEALT) http://omilia.uio.no/nealt . Electronically published at Tartu University Library (Estonia) http://hdl.handle.net/10062/19231

    A Finite State Constraint Grammar Parser

    Get PDF
    Proceedings of the NODALIDA 2011 Workshop Constraint Grammar Applications. Editors: Eckhard Bick, Kristin Hagen, Kaili Müürisep, Trond Trosterud. NEALT Proceedings Series, Vol. 14 (2011), 35–40. © 2011 The editors and contributors. Published by Northern European Association for Language Technology (NEALT) http://omilia.uio.no/nealt . Electronically published at Tartu University Library (Estonia) http://hdl.handle.net/10062/19231

    Tehokas sisäänpäindeterministisiin automaatteihin perustuva Constraint Grammar -jäsennin

    Get PDF
    Proceeding volume: 14 (2011)Pappret conceptualizes parsning med Constraint Grammar på ett nytt sätt som en process med två viktiga representationer. En representation innehåller lokala tvetydighet och den andra sammanfattar egenskaperna hos den lokala tvetydighet klasser. Båda representationer manipuleras med ren finite-state metoder, men deras samtrafik är en ad hoc -tillämpning av rationella potensserier. Den nya tolkningen av parsning systemet har flera praktiska fördelar, bland annat det inåt deterministiska sättet att beräkna, representera och räkna om alla potentiella tillämpningar av reglerna i meningen.Paperi uudelleenkonseptualisoi Constraint Grammarin sellaisena viitekehyksenä, jossa säännöt tarkentavat paikallisen ambiguiteetin tiivistä esitysmuotoa samalla kun sääntöjen ehdot sovitetaan piirrevektoreita vasten, jotka esittävät tiivistetyjen esitysmuotojen summia. Molemmat näkökulmat monitulkintaisuuteen käsitellään käyttäen puhtaita (pure) äärellistilaisia operaatioita. Tiivis esitysmuoto kuvataan piirrevektoreihin rationaalisten potenssisarjojen avulla. Tämä yhteys ei ole yhtään vähemmän puhdas kuin aikaisemmin vallalla ollut tulkinta, jonka edellyttää että leksikaalisen transduktorin tuottama sanan luentajoukko maagisesti linearisoidaan merkatuksi luentojen peräkkäinasetteluksi, joka syötetään puhtaille (äärellistilaisille) transduktoreille. Esitetyllä lähestymistavalla on useita käytännöllisiä etuja: mm. sisäänpäin deterministinen tapa laskea, esittää ja ylläpitää kaikki mahdolliset kohdat, joissa säännöt voivat soveltua virkkeeseen.The paper reconceptualizes Constraint Grammar as a framework where the rules refine the compact representations of local ambiguity while the rule conditions are matched against a string of feature vectors that summarize the compact representations. Both views to the ambiguity are processed with pure finite-state operations. The compact representations are mapped to feature vectors with the aid of a rational power series. This magical interconnection is not less pure than a prevalent interpretation that requires that the reading set provided by a lexical transducer is magically linearized to a marked concatenation of readings given to pure transducers. The current approach has several practical benefits, including the inward deterministic way to compute, represent and maintain all the applications of the rules in the sentence.Peer reviewe

    Contributions to the Theory of Finite-State Based Grammars

    Get PDF
    This dissertation is a theoretical study of finite-state based grammars used in natural language processing. The study is concerned with certain varieties of finite-state intersection grammars (FSIG) whose parsers define regular relations between surface strings and annotated surface strings. The study focuses on the following three aspects of FSIGs: (i) Computational complexity of grammars under limiting parameters In the study, the computational complexity in practical natural language processing is approached through performance-motivated parameters on structural complexity. Each parameter splits some grammars in the Chomsky hierarchy into an infinite set of subset approximations. When the approximations are regular, they seem to fall into the logarithmic-time hierarchyand the dot-depth hierarchy of star-free regular languages. This theoretical result is important and possibly relevant to grammar induction. (ii) Linguistically applicable structural representations Related to the linguistically applicable representations of syntactic entities, the study contains new bracketing schemes that cope with dependency links, left- and right branching, crossing dependencies and spurious ambiguity. New grammar representations that resemble the Chomsky-Schützenberger representation of context-free languages are presented in the study, and they include, in particular, representations for mildly context-sensitive non-projective dependency grammars whose performance-motivated approximations are linear time parseable. (iii) Compilation and simplification of linguistic constraints Efficient compilation methods for certain regular operations such as generalized restriction are presented. These include an elegant algorithm that has already been adopted as the approach in a proprietary finite-state tool. In addition to the compilation methods, an approach to on-the-fly simplifications of finite-state representations for parse forests is sketched. These findings are tightly coupled with each other under the theme of locality. I argue that the findings help us to develop better, linguistically oriented formalisms for finite-state parsing and to develop more efficient parsers for natural language processing. Avainsanat: syntactic parsing, finite-state automata, dependency grammar, first-order logic, linguistic performance, star-free regular approximations, mildly context-sensitive grammar

    A Hybrid Environment for Syntax-Semantic Tagging

    Full text link
    The thesis describes the application of the relaxation labelling algorithm to NLP disambiguation. Language is modelled through context constraint inspired on Constraint Grammars. The constraints enable the use of a real value statind "compatibility". The technique is applied to POS tagging, Shallow Parsing and Word Sense Disambigation. Experiments and results are reported. The proposed approach enables the use of multi-feature constraint models, the simultaneous resolution of several NL disambiguation tasks, and the collaboration of linguistic and statistical models.Comment: PhD Thesis. 120 page

    Part-of-speech Tagging: A Machine Learning Approach based on Decision Trees

    Get PDF
    The study and application of general Machine Learning (ML) algorithms to theclassical ambiguity problems in the area of Natural Language Processing (NLP) isa currently very active area of research. This trend is sometimes called NaturalLanguage Learning. Within this framework, the present work explores the applicationof a concrete machine-learning technique, namely decision-tree induction, toa very basic NLP problem, namely part-of-speech disambiguation (POS tagging).Its main contributions fall in the NLP field, while topics appearing are addressedfrom the artificial intelligence perspective, rather from a linguistic point of view.A relevant property of the system we propose is the clear separation betweenthe acquisition of the language model and its application within a concrete disambiguationalgorithm, with the aim of constructing two components which are asindependent as possible. Such an approach has many advantages. For instance, thelanguage models obtained can be easily adapted into previously existing taggingformalisms; the two modules can be improved and extended separately; etc.As a first step, we have experimentally proven that decision trees (DT) providea flexible (by allowing a rich feature representation), efficient and compact wayfor acquiring, representing and accessing the information about POS ambiguities.In addition to that, DTs provide proper estimations of conditional probabilities fortags and words in their particular contexts. Additional machine learning techniques,based on the combination of classifiers, have been applied to address some particularweaknesses of our tree-based approach, and to further improve the accuracy in themost difficult cases.As a second step, the acquired models have been used to construct simple,accurate and effective taggers, based on diiferent paradigms. In particular, wepresent three different taggers that include the tree-based models: RTT, STT, andRELAX, which have shown different properties regarding speed, flexibility, accuracy,etc. The idea is that the particular user needs and environment will define whichis the most appropriate tagger in each situation. Although we have observed slightdifferences, the accuracy results for the three taggers, tested on the WSJ test benchcorpus, are uniformly very high, and, if not better, they are at least as good asthose of a number of current taggers based on automatic acquisition (a qualitativecomparison with the most relevant current work is also reported.Additionally, our approach has been adapted to annotate a general Spanishcorpus, with the particular limitation of learning from small training sets. A newtechnique, based on tagger combination and bootstrapping, has been proposed toaddress this problem and to improve accuracy. Experimental results showed thatvery high accuracy is possible for Spanish tagging, with a relatively low manualeffort. Additionally, the success in this real application has confirmed the validity of our approach, and the validity of the previously presented portability argumentin favour of automatically acquired taggers

    Understanding the structure and meaning of Finnish texts: From corpus creation to deep language modelling

    Get PDF
    Natural Language Processing (NLP) is a cross-disciplinary field combining elements of computer science, artificial intelligence, and linguistics, with the objective of developing means for computational analysis, understanding or generation of human language. The primary aim of this thesis is to advance natural language processing in Finnish by providing more resources and investigating the most effective machine learning based practices for their use. The thesis focuses on NLP topics related to understanding the structure and meaning of written language, mainly concentrating on structural analysis (syntactic parsing) as well as exploring the semantic equivalence of statements that vary in their surface realization (paraphrase modelling). While the new resources presented in the thesis are developed for Finnish, most of the methodological contributions are language-agnostic, and the accompanying papers demonstrate the application and evaluation of these methods across multiple languages. The first set of contributions of this thesis revolve around the development of a state-of-the-art Finnish dependency parsing pipeline. Firstly, the necessary Finnish training data was converted to the Universal Dependencies scheme, integrating Finnish into this important treebank collection and establishing the foundations for Finnish UD parsing. Secondly, a novel word lemmatization method based on deep neural networks is introduced and assessed across a diverse set of over 50 languages. And finally, the overall dependency parsing pipeline is evaluated on a large number of languages, securing top ranks in two competitive shared tasks focused on multilingual dependency parsing. The overall outcome of this line of research is a parsing pipeline reaching state-of-the-art accuracy in Finnish dependency parsing, the parsing numbers obtained with the latest pre-trained language models approaching (at least near) human-level performance. The achievement of large language models in the area of dependency parsing— as well as in many other structured prediction tasks— brings up the hope of the large pre-trained language models genuinely comprehending language, rather than merely relying on simple surface cues. However, datasets designed to measure semantic comprehension in Finnish have been non-existent, or very scarce at the best. To address this limitation, and to reflect the general change of emphasis in the field towards task more semantic in nature, the second part of the thesis shifts its focus to language understanding through an exploration of paraphrase modelling. The second contribution of the thesis is the creation of a novel, large-scale, manually annotated corpus of Finnish paraphrases. A unique aspect of this corpus is that its examples have been manually extracted from two related text documents, with the objective of obtaining non-trivial paraphrase pairs valuable for training and evaluating various language understanding models on paraphrasing. We show that manual paraphrase extraction can yield a corpus featuring pairs that are both notably longer and less lexically overlapping than those produced through automated candidate selection, the current prevailing practice in paraphrase corpus construction. Another distinctive feature in the corpus is that the paraphrases are identified and distributed within their document context, allowing for richer modelling and novel tasks to be defined
    corecore