3,204 research outputs found

    Weighted LDA techniques for I-vector based speaker verification

    Get PDF
    This paper introduces the Weighted Linear Discriminant Analysis (WLDA) technique, based upon the weighted pairwise Fisher criterion, for the purposes of improving i-vector speaker verification in the presence of high intersession variability. By taking advantage of the speaker discriminative information that is available in the distances between pairs of speakers clustered in the development i-vector space, the WLDA technique is shown to provide an improvement in speaker verification performance over traditional Linear Discriminant Analysis (LDA) approaches. A similar approach is also taken to extend the recently developed Source Normalised LDA (SNLDA) into Weighted SNLDA (WSNLDA) which, similarly, shows an improvement in speaker verification performance in both matched and mismatched enrolment/verification conditions. Based upon the results presented within this paper using the NIST 2008 Speaker Recognition Evaluation dataset, we believe that both WLDA and WSNLDA are viable as replacement techniques to improve the performance of LDA and SNLDA-based i-vector speaker verification

    Support vector regression in NIST SRE 2008 multichannel core task

    Full text link
    Actas de las V Jornadas en Tecnología del Habla (JTH 2008)This paper explores two alternatives for speaker verification using Generalized Linear Discriminant Sequence (GLDS) kernel: classical Support Vector Classification (SVC), and Support Vector Regression (SVR), recently proposed by the authors as a more robust approach for telephone speech. In this work we address a more challenging environment, the NIST SRE 2008 multichannel core task, where strong mismatch is introduced by the use of different microphones and recordings from interviews. Channel compensation based in Nuisance Attribute Projection (NAP) has also been investigated in order to analyze its impact for both approaches. Experiments show that, although both techniques show a significant improvement over SVC-GLDS when NAP is used, SVR is also robust to channel mismatch even when channel compensation is not used. This avoids the need of a considerable set of training data adapted to the operational scenario, whose availability is not frequent in general. Results show a similar performance for SVR-GLDS without NAP and SVC-GLDS with NAP. Moreover, SVR-GLDS results are promising, since other configurations and methods for channel compensation can further improve performance.This work has been supported by the Spanish Ministry of Education under project TEC2006-13170-C02-01

    Compensation of Nuisance Factors for Speaker and Language Recognition

    Get PDF
    The variability of the channel and environment is one of the most important factors affecting the performance of text-independent speaker verification systems. The best techniques for channel compensation are model based. Most of them have been proposed for Gaussian mixture models, while in the feature domain blind channel compensation is usually performed. The aim of this work is to explore techniques that allow more accurate intersession compensation in the feature domain. Compensating the features rather than the models has the advantage that the transformed parameters can be used with models of a different nature and complexity and for different tasks. In this paper, we evaluate the effects of the compensation of the intersession variability obtained by means of the channel factors approach. In particular, we compare channel variability modeling in the usual Gaussian mixture model domain, and our proposed feature domain compensation technique. We show that the two approaches lead to similar results on the NIST 2005 Speaker Recognition Evaluation data with a reduced computation cost. We also report the results of a system, based on the intersession compensation technique in the feature space that was among the best participants in the NIST 2006 Speaker Recognition Evaluation. Moreover, we show how we obtained significant performance improvement in language recognition by estimating and compensating, in the feature domain, the distortions due to interspeaker variability within the same language. Index Terms—Factor anal

    Multilevel and session variability compensated language recognition: ATVS-UAM systems at NIST LRE 2009

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. J. Gonzalez-Dominguez, I. Lopez-Moreno, J. Franco-Pedroso, D. Ramos, D. T. Toledano, and J. Gonzalez-Rodriguez, "Multilevel and Session Variability Compensated Language Recognition: ATVS-UAM Systems at NIST LRE 2009" IEEE Journal of Selected Topics in Signal Processing, vol. 4, no. 6, pp. 1084 – 1093, December 2010This work presents the systems submitted by the ATVS Biometric Recognition Group to the 2009 Language Recognition Evaluation (LRE’09), organized by NIST. New challenges included in this LRE edition can be summarized by three main differences with respect to past evaluations. Firstly, the number of languages to be recognized expanded to 23 languages from 14 in 2007, and 7 in 2005. Secondly, the data variability has been increased by including telephone speech excerpts extracted from Voice of America (VOA) radio broadcasts through Internet in addition to Conversational Telephone Speech (CTS). The third difference was the volume of data, involving in this evaluation up to 2 terabytes of speech data for development, which is an order of magnitude greater than past evaluations. LRE’09 thus required participants to develop robust systems able not only to successfully face the session variability problem but also to do it with reasonable computational resources. ATVS participation consisted of state-of-the-art acoustic and high-level systems focussing on these issues. Furthermore, the problem of finding a proper combination and calibration of the information obtained at different levels of the speech signal was widely explored in this submission. In this work, two original contributions were developed. The first contribution was applying a session variability compensation scheme based on Factor Analysis (FA) within the statistics domain into a SVM-supervector (SVM-SV) approach. The second contribution was the employment of a novel backend based on anchor models in order to fuse individual systems prior to one-vs-all calibration via logistic regression. Results both in development and evaluation corpora show the robustness and excellent performance of the submitted systems, exemplified by our system ranked 2nd in the 30 second open-set condition, with remarkably scarce computational resources.This work has been supported by the Spanish Ministry of Education under project TEC2006-13170-C02-01. Javier Gonzalez-Dominguez also thanks Spanish Ministry of Education for supporting his doctoral research under project TEC2006-13141-C03-03. Special thanks are given to Dr. David Van Leeuwen from TNO Human Factors (Utrech, The Netherlands) for his strong collaboration, valuable discussions and ideas. Also, authors thank to Dr. Patrick Lucey for his final support on (non-target) Australian English review of the manuscript

    Intersession Variability Compensation in Language and Speaker Identification

    Get PDF
    Variabilita kanálu a hovoru je velmi důležitým problémem v úloze rozpoznávání mluvčího. V současné době je ve velkém množství vědeckých článků uvedeno několik technik pro kompenzaci vlivu kanálu. Kompenzace vlivu kanálu může být implementována jak v doméně modelu, tak i v doménách příznaků i skóre. Relativně nová výkoná technika je takzvaná eigenchannel adaptace pro GMM (Gaussian Mixture Models). Mevýhodou této metody je nemožnost její aplikace na jiné klasifikátory, jako napřílad takzvané SVM (Support Vector Machines), GMM s různým počtem Gausových komponent nebo v rozpoznávání řeči s použitím skrytých markovových modelů (HMM). Řešením může být aproximace této metody, eigenchannel adaptace v doméně příznaků. Obě tyto techniky, eigenchannel adaptace v doméně modelu a doméně příznaků v systémech rozpoznávání mluvčího, jsou uvedeny v této práci. Po dosažení dobrých výsledků v rozpoznávání mluvčího, byl přínos těchto technik zkoumán pro akustický systém rozpoznávání jazyka zahrnující 14 jazyků. V této úloze má nežádoucí vliv nejen variabilita kanálu, ale i variabilita mluvčího. Výsledky jsou prezentovány na datech definovaných pro evaluaci rozpoznávání mluvčího z roku 2006 a evaluaci rozpoznávání jazyka v roce 2007, obě organizované Amerických Národním Institutem pro Standard a Technologie (NIST)Varibiality in the channel and session is an important issue in the text-independent speaker recognition task. To date, several techniques providing channel and session variability compensation were introduced in a number of scientic papers. Such implementation can be done in feature, model and score domain. Relatively new and powerful approach to remove channel distortion is so-called eigenchannel adaptation for Gaussian Mixture Models (GMM). The drawback of the technique is that it is not applicable in its original implementation to different types of classifiers, eg. Support Vector Machines (SVM), GMM with different number of Gaussians or in speech recognition task using Hidden Markov Models (HMM). The solution can be the approximation of the technique, eigenchannel adaptation in feature domain. Both, the original eigenchannel adaptation and eigenchannel adaptation on features in task of speaker recognition are presented. After achieving good results in speaker recognition, contribution of the same techniques was examined in acoustic language identification system with 1414 languages. In this task undesired factors are channel and speaker variability. Presented results are presented on the NIST Speaker Recognition Evaluation 2006 data and NIST Language Recognition Evaluation 2007 data.
    corecore