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Abstract 
 

The variability of the channel and environment is one of the most important factors 
affecting the performance of text-independent speaker verification systems.  

The best techniques for channel compensation are model based. Most of them have 
been proposed for Gaussian Mixture Models, while in the feature domain blind channel 
compensation is usually performed. 

The aim of this work is to explore techniques that allow more accurate intersession 
compensation in the feature domain. Compensating the features rather than the models 
has the advantage that the transformed parameters can be used with models of a different 
nature and complexity, and for different tasks. 

In this paper, we evaluate the effects of the compensation of the intersession variability 
obtained by means of the channel factors approach. In particular, we compare channel 
variability modeling in the usual Gaussian Mixture model domain, and our proposed 
feature domain compensation technique. We show that the two approaches lead to similar 
results on the NIST 2005 Speaker Recognition Evaluation data with a reduced 
computation cost. 

We report also the results of a system, based on the intersession compensation 
technique in the feature space that was among the best participants in the NIST 2006 
Speaker Recognition Evaluation. 

Moreover, we show how we obtained significant performance improvement in language 
recognition by estimating and compensating, in the feature domain, the distortions due to 
inter-speaker variability within the same language. 
 
Index terms 
Speaker Recognition; Language Recognition; Factor Analysis; Feature Compensation 
EDICS: SPE-MULT Multilingual Recognition and Identification; SPE-SPKR 
Speaker Recognition and Characterization 
 
 
 

I. INTRODUCTION 
 
One of the main causes of relevant performance degradations in automatic speech 

recognition systems is the acoustic mismatch that occurs between training and test 
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environment. The variability of the channel and environment is one of the most important 

factors affecting the performance of text-independent speaker verification systems. 

Speaker variability is an additional nuisance factor for language recognition. 

In this work, we evaluate the effects of the compensation of the nuisance factors obtained 

by means of the factor analysis approach. We propose an intersession compensation 

technique in the feature domain for speaker recognition, and we apply the same approach 

to the compensation of inter-speaker variations within the same language. 

In speaker recognition, errors are due not only to the similarity among voiceprints of 

different speakers, but also to the intrinsic variability of different utterances of the same 

speaker. Moreover, the performance of a system is severely affected when a model 

trained in a set of conditions, is used to test speaker data collected from different 

microphones, channels, and environments. In this paper, we will refer to all these 

mismatching conditions as intersession or channel variability. 

Cepstral Mean Subtraction (CMS) [1], can be used to mitigate the linear filtering effects 

of the transmission channel. RASTA processing [2] has been shown to improve the 

recognition performance in presence of convolutional distortions and additive noise. 

Another interesting proposal to contrast channel distortions that affect the distribution of 

features is feature warping to a standard normal distribution through short-time 

gaussianization [3,4]. 

These feature transformations do not rely on a specific model. However, this blind feature 

normalization does not exploit a priori knowledge of the condition as is done in the 

feature mapping approach [5], or in other approaches that exploit information obtained by 

a more detailed analysis of the variations of the speaker parameters in the acoustic space.  

Feature mapping uses the a priori information of a set of models trained in known 

conditions to map the feature vectors toward a channel independent feature space. The 

drawback of this approach is that it does require labeled training data to identify the 

conditions that one wants to compensate.  A data-driven feature mapping technique has 
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been proposed in [6] to deal with this drawback, but it still relies on a discrete number of 

conditions, and requires the corresponding models in testing. 

Model-based techniques have been recently proposed that are able to compensate speaker 

and channel variations without requiring the explicit identification and labeling of 

different conditions. These techniques share a common background: modeling the 

variability of speaker utterances constraining them to a low dimensional space. This 

approach has proved to be effective for speaker adaptation both in speech [7] and speaker 

recognition [8,9], and for intersession compensation [10-13]. All these methods are 

generative, and use MAP adapted Gaussian Mixture Models (GMM) [14] for modeling 

the speakers.  

Discriminative models based on Support Vector Machines (SVMs) are able to produce 

comparable results with respect to the state of the art GMM based systems and to improve 

the performance of speaker recognition systems that combine the scores produced by the 

generative and discriminative modeling approaches [15,16]. An approach to channel 

compensation in the model space of the SVMs has been proposed in [17]. It evaluates the 

projection of the expanded vectors in a subspace removing the nuisance dimensions that 

carry information not related to the speaker but only to the channel and to the 

environment. This approach, as well as the ones proposed in the model space of the 

GMMs, do not need the labeling of a discrete combination of conditions referring to the 

handset type, the transmission channel, the environment, and so forth, but only the 

speaker identity. 

In this work we mainly refer to [13] for intersession compensation in the model domain. 

We present our modifications to this method using the NIST 2005 Speaker Recognition 

Evaluation data (SRE-05) [18] as a testbed. 

The main objective of this work, however, was to find a solution for compensating the 

observation features rather than the Gaussian means. We will show that our approach 

based on feature domain compensation obtained similar or slightly better results with a 

reduced computation cost on the SRE-05 data. Moreover, we report the results of a 
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system, based on the intersession compensation technique in the feature space, which was 

one of the best participants in the NIST 2006 Speaker Recognition Evaluation. 

Compensating features rather than models has the advantage that we can use the 

transformed parameters as observation vectors for classifiers of a different nature and 

complexity, and for different tasks such as language or speech recognition.  We present 

an example of the use of feature domain compensation with a different classifier 

modeling the speakers by means of Support Vector Machines, and using as kernel 

features the polynomial expanded cepstral parameters. Although the intersession 

compensation is estimated in a GMM framework, the performance of a SVM classifier on 

the SRE-05, using compensated features, increases by 18% compared to the 

corresponding classifier trained and tested with the raw features. We show also that 

significant performance improvements can be obtained in language recognition by 

estimating and compensating the distortions due to inter-speaker variability within the 

same language. 

The paper is organized as follows: the model based channel factors adaptation approach 

and our modifications are described in Section II, together with our proposed intersession 

factors feature adaptation technique. Section III summarizes the parameters of our 

baseline GMM systems. In Section IV, we present several results of speaker recognition 

experiments with different training and testing approaches. The experiments with a SVM 

classifier, including the use of the compensated features, are presented in Section V. 

Section VI illustrates the feature compensation approach for language recognition. 

Finally, in Section VII we present our concluding remarks. 

  

 

II. ADAPTATION OF THE INTERSESSION FACTORS 
 

Gaussian Mixture Models (GMMs) used in combination with Maximum A Posteriori 

(MAP) adaptation [14] represent the core technology of most of the state-of-the-art text-
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independent speaker recognition systems. In these systems, the speaker models are 

estimated, by means of MAP adaptation, from a common GMM root model, the so-called 

world model or Universal Background Model (UBM). Usually, only mean vector 

adaptation is performed during model training. Thus, a speaker is represented by the set 

of mean vectors of all the Gaussians of the UBM, adapted using the speaker training data, 

and shares with the other speaker models the remaining UBM parameters.  

A supervector that includes all the speaker specific parameters is simply obtained by 

appending the adapted mean value of all the Gaussians in a single stream. The same 

procedure allows the UBM supervector to be obtained. The speaker model can be seen as 

a point in a high dimensional space, whose coordinates are the supervector parameters. 

When some kind of mismatch, i.e. the use of different microphones or communication 

channels, affects the input speech, all the speaker supervector parameters are possibly 

modified. 

The idea behind the methods proposed in [10-13], and in this paper, is that a small 

number of parameters - the channel factors [19] - in a lower dimensional subspace can 

summarize the distortions in the large supervector space. 

 
A. Adaptation in model domain 

Intersession adaptation for an utterance i and a supervector k is performed, in the 

supervector model space, as follows:  

    (1) 

where ( , )i kμ and ( )kμ are the adapted and the original supervector of GMM k respectively. 

U is a low rank matrix projecting the channel factors subspace in the supervector domain. 

The N-dimensional vector ( , )i kx  holds the channel factors for the current utterance i and 

GMM k. 

In the approach proposed in [13],  ,i kx  is a function of speaker model k, session i, and 

session observation sequence 1 ( )T io . During training,  ,i kx and ( )kμ  are jointly estimated 

( , ) ( ) ( , )i k k i k  μ μ U x
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using a small number of iterations of an EM algorithm. We refer to this approach as 

Speaker Dependent Intersession Compensated MAP estimation (ICM-Training). In 

testing, ( )kμ is assumed to be known and fixed, and the session dependent supervector 

( , )i kμ  is obtained by applying (1) after estimating the channel factors  ,i kx . 

 

B. Training of the intersession subspace 

 
The intersession subspace, modeled by the low rank matrix U, is assumed to represent the 

distortion due to the intersession variability. This distortion can be estimated by analyzing 

how the models of the same speaker are affected when trained using utterances collected 

from different channels or conditions. Thus, the intersession factor subspace is computed 

off-line according to the following steps. For each utterance of the same speaker collected 

from different sessions, a supervector is estimated by MAP adaptation of the UBM 

model. Then, the set of the differences among the supervectors of the same speaker is 

collected for all the available speakers [12]. Finally, the matrix U is obtained performing 

Principal Component Analysis (PCA) using as features these difference supervectors. The 

set of the supervector differences, and the dimension of the supervectors are very large, 

but we are interested only in the subspace spanned by the N leading eigen-

transformations. Thus, the estimate of U can be effectively done by using an EM training 

algorithm [20]. The number of columns N of matrix U, which defines the channel 

subspace dimension, is usually less than 50. 

It is worth noting that the corpus used for the estimation of the matrix U must differ 

from the one used for training the target speaker model. Otherwise, the intersession 

factors would be biased to that specific speaker set, the recognition performance would be 

over optimistic, and it would not generalize to different speaker sets.  

 
C. Estimation of the channel factors  
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To perform intersession adaptation through (1), vector x must be estimated for each 

utterance. A Maximum Likelihood Eigen-Decomposition (MLED) solution to a similar 

problem has been proposed for speaker adaptation in [7]. In this approach, speaker 

adaptation factors are estimated using an EM-algorithm to maximize the probability of 

the session observations with respect to a subspace representing the so-called eigenvoices.  

A slight variant of this solution proposed in [9] for speaker verification is: 

-1x = A b       (2) 

 
where the elements of matrix A and vector b are:  
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In these equations, T is the number of observation frames, M is the number of Gaussians 

in the supervector, mμ  and mσ  are the mean and the diagonal covariance of the UBM 

respectively, and  m to  represents the posterior probability of  Gaussian m at time t 

given the compete observation sequence. In addition, in [9] a technique called 

Probabilistic Subspace Adaptation (PSA), which uses MAP estimation of x has been 

presented. It assumes that the a priori distribution of x is Gaussian with zero means and 

diagonal covariance matrix E including the N leading eigen-values of the subspace U. In 

this approach x is obtained by the iterative application of: 

  11
MAP

  x A E b     (5) 

 

To perform intersession compensation, not only we use a different matrix U, but also we 

apply two variants to the approach in [9].  In testing, the estimation of the channel factors 

is performed using (3), (4), and (5), but the mean vector mμ in (4) refers to the speaker 

GMM, rather than to the UBM. In training, speaker dependent intersession compensation 

is more complex because it requires alternating between the estimation of x and MAP 
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reestimation of mμ according to a procedure illustrated in [13]. In our experiments, we 

initially set mμ  to the UBM. 

 

D. Simplified intersession compensation in model domain  

 

The approach that we use for model domain compensation is similar to the one proposed 

in [13] with the difference that we do not perform channel compensation during training 

but we apply (1) only at testing time. The speaker supervector ( )kμ  is obtained by the 

usual MAP speaker adaptation, without any additional computation. Moreover, we 

perform a single estimation of x for the Probabilistic Subspace Adaptation through (5), 

rather than iterate the application of (5) and (1).  

At testing time, the verification scores are computed as the log-likelihood ratio of the test 

utterance, using compensated speaker and UBM means. This produces good performance 

improvements even without any normalization of the raw scores. 

As a further simplification, we tried to drop the model dependency of the channel factor 

vector. Since ( , )i kx should account for the distortions produced in the supervector space 

by the intersession variability, we expect that ( , )i kx depends on the utterance i, but only 

slightly on the speaker model k. To verify this hypothesis we ran several tests estimating 

the intersession factors x by using the UBM rather than the GMM k to compute the 

posterior probability  m to  in (3) and (4).   

Thus, we set: 

( , ) ( )      i k i k x x       (6) 

and we apply the same compensation: 

( , ) ( ) ( )i k k i  μ μ U x      (7) 

for each model k that must be scored against utterance i.  
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As we report in Section IV-C, the obtained results are almost equivalent to the ones 

obtained with speaker-model dependent estimation using (1), but with significant saving 

of computation time, in particular when score normalization is performed by T-Norm 

[21], which would require the estimation of a different  
 ,i kx  for every impostor model k. 

Moreover, the good results obtained with this last simplification, suggest the possibility of 

applying the intersection compensation directly in feature domain. 

 

E. Adaptation in feature domain  

 
Intersession adaptation in the model domain has proved to improve the performance of 

GMM speaker recognition systems. However, it is not readily applicable to GMMs with a 

different number of Gaussians, to other types of classifiers, like SVM or Artificial Neural 

Networks (ANNs), or to other tasks requiring more complex models, for example HMMs 

for speech recognition. 

It is possible to perform feature domain intersession compensation by projecting every 

observation feature ( ) ( )i to towards the session independent space. The method that we 

propose exploits the nuisance factors to map the compensation supervector ( )iU x to the 

acoustic features. We rely on the hypotheses that led to (7), i.e. we assume that the 

acoustic space distortion, characterized by the vector ( )ix can be estimated using the UBM 

rather than the speaker dependent model GMM k. Neglecting, for the sake of conciseness, 

the model index k, we rewrite (7) for each Gaussian component m of a supervector as: 

 
( ) ( )           i i
m m m m   μ μ U x    (8) 

The number of rows of the mean vectors and of the subspace matrix mU  is equal to the 

dimension of the input feature vector. 

The adaptation of the feature vector at time frame t, ( )ˆ ( )i to , is obtained by subtracting 

from the observation feature a weighted sum of the intersession compensation offset 

values: 
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( ) ( ) ( )ˆ ( ) ( ) ( ) i i i
m m

m

t t t   o o U x    (9) 

where ( )m t is the Gaussian posterior probability, and ( )i
m U x is the intersession 

compensation offset related to the m-th Gaussian of the UBM model. In the actual 

implementation, the right side summation of (9) is limited, for the sake of efficiency, to 

the first best contributions only (1 to 5 in our experiments). Feature domain compensation 

is performed both in training and in testing. 

Equation (8) allows adapted feature vectors to be obtained, suitable as front-end 

parameters to any further classification process. We verified the quality of the 

transformed features using them for different classifiers and tasks as reported in Sections 

IV, V, and VI. 

This approach, referred to in the following as Feature Domain Intersession Compensation 

(FDIC), has been introduced in [22]; a similar approach for feature normalization was 

independently developed for speech recognition in [23], with the goal of removing both 

speaker and channel effects from individual utterances. 

 
III. SYSTEM DESCRIPTION 

  
Two GMM systems have been trained and tested in this work: a Phonetic GMM 

(PGMM), and a classical GMM. The system based on the PGMM has been used to 

produce the results submitted to the SRE-05 evaluations [18]. A simple linear 

combination of the results of two systems - a PGMM and a GMM - was our primary 

system for the SRE-06 evaluation.  

 

A. The Phonetic GMM system 

The PGMM system decodes the speaker utterance, both in enrollment and in verification, 

producing phonetic labeled segments. The decoder is a hybrid Hidden Markov Model –

Artificial Neural Network (ANN) model trained to recognize 11 language independent 

broad phone classes: silence, liquids, nasals, fricatives, affricates, voiced and unvoiced 

plosives, diphthongs, front, central, and back vowels. Each phone class, excluding the 
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silence, is modeled by a three state left-to-right automaton with self-loops. The ANN is a 

Multilayer Perceptron that estimates the posterior probability of each phone class state, 

given an acoustic feature vector. The ANN has been trained using 20 hours of speech in 

10 different languages using corpora not specifically collected for speaker recognition 

evaluations – the Macrophone [24] for US English, and the SpeechDat(II) corpora [25] 

for (Dutch, French, German, Greek, Italian, Portuguese, Spanish, Swedish, and UK 

English).  

The UBM and the voiceprints consist of a set of phonetic GMMs: each state of a phone 

class has an associated GMM.  For each state, the maximum number of (diagonal 

covariance) Gaussians per mixture is 64, and the total number of Gaussians of this system 

is 1954. This gender– independent, and almost language–independent, UBM has been 

trained on the same data that were used for training the ANN model. 

In enrollment, the labels and the boundaries of the phonetic segments are used for MAP 

adaptation of the parameters of the class-dependent GMMs. In recognition, the 

phonetically labeled audio segments are scored against their corresponding GMMs. Thus, 

the likelihood of a given observation vector is computed by selecting the GMM 

corresponding to the phone class decoded at that time frame.  

The system uses 19 Mel Frequency Cepstral Coefficients (MFCC). We perform feature 

warping to a Gaussian distribution, for each static parameter stream, on a 3 seconds 

sliding window excluding silence frames [3,4]. Each observation frame includes 36 

parameters obtained by discarding the C0 cepstral parameter, and computing the usual 

delta parameters on a symmetric window of 5 frames. Session compensation in either the 

model or the feature domain is performed using these features and the UBM supervector 

including 1954 Gaussians. 

 

B. The GMM system 

The second system is based on the classical GMM approach [14]. The GMM system is 

characterized by a reduced set of mixtures (512), and features (the first 12 cepstral and 
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their delta parameters). Again, a gender independent UBM has been trained with the same 

database that was employed for training the PGMM world model, but using the reduced 

set of features. 

 

IV. EXPERIMENTS 
 
The techniques described in this paper have been evaluated on the NIST SRE-05 data, 

and then applied to the SRE-06 evaluation. All the experiments refer to the NIST defined 

core test condition, including all trials in the enrollment and verification lists. There are 

2771 true speaker and 28472 impostor trials for the SRE-05 evaluation set, whereas the 

SRE-06 evaluation set includes 3612 true speaker and 47836 impostor trials. The core test 

condition consists of four wire conversations lasting approximately five minutes. Each 

side of a conversation is recorded on a separate channel, and silences are not removed 

from the recordings.  

The evaluation has been performed with and without score normalization. First, the raw 

scores are speaker-normalized by means of Z-norm [21]. The Z-norm parameters for each 

speaker model have been estimated using a subset of speaker samples included in the 

NIST SRE-04 database. Separate statistics have been collected for the female and male 

speakers, using two conversations of 80 speakers for each gender.  

Test dependent normalization is performed using T-norm [21]. A fixed set of impostor 

models was selected among the voiceprints enrolled with data belonging to the SRE-04 

evaluation. The T-norm parameters for each test sample were estimated using the Z-

normalized scores of the impostor voiceprints. We refer to the Z-Norm followed by T-

Norm as ZT-Norm. 

The performance of the systems was measured in terms of Equal Error Rate (EER) and 

minimum normalized Detection Cost Function (DCF) as defined by NIST [18]. The 

Equal Error Rate (EER) is the error of the speaker recognition system when the detection 

threshold is set so that the probability of False Alarms equals the Miss Detection 
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probability. The DCF is the main performance measure in NIST evaluations; it is a 

weighted sum of the Miss Detection and False Alarm rates. 

TargetMiss Miss|Target

TargetFalseAlarm FalseAlarm|NonTarget

DCF = (C  * P  * P ) +

 C  * P  * (1 - P )
      (10) 

 
where the evaluation parameters, MissC  = 10 , TargetP  = 1, and FalseAlarmC  = 0.01 have 

been selected as reasonable values for a possible application. A normalized DCF is 

actually used, i.e. the DCF cost is normalized by the best cost that could be obtained 

without processing the input data. 

Comparative results are also illustrated by means of the Detection Error Tradeoff curves 

(DET) [26]. In the DET plots, the False Alarm and Miss Detection probabilities are 

plotted using a normal deviate scale for each axis. A DET curve shows the performance 

of the system on the test set for all the operating points, i.e. for different detection 

thresholds. 

0.2

0.5

1.0

2

5

10

20

30

40

50

60

70

0.2 0.5 1.0 2 5 10 20 30 40 50 60 70

M
is

s 
pr

ob
ab

ili
ty

 [
%

]

False Alarm probability [%]

GMM raw
PGMM raw

GMM ZTNorm
PGMM ZTNorm

 
Fig. 1. DET plots for GMM and PGMM baseline systems, with and without score 
normalization, on NIST SRE-05 core test data. 
 
 

Table I 
EER (%)  AND MINIMUM DCF FOR GMM AND PGMM BASELINE SYSTEMS, 

WITH AND WITHOUT SCORE NORMALIZATION, 
 ON NIST SRE-05 CORE TEST DATA 

System Normalization Train Compensation EER  DCF 
GMM No MAP No 13.8 0.548 
PGMM No MAP No 10.8 0.468 
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GMM ZT-Norm MAP No 10.7 0.404 
PGMM ZT-Norm MAP No 9.2 0.343 

 
 

A. GMM versus PGMM 

  
Figure 1 shows the DET plots of the GMM baseline systems. The figure includes the 

results of the standard (GMM) and of the Phonetic (PGMM) Gaussian Mixture 

recognizers, obtained without and with ZT-Norm score normalization. The related scores, 

in terms of Equal Error Rate and minimum normalized DCF are given in Table I. 

The difference in accuracy of the two systems depends on the several diversities they 

present. The number of acoustic features is 36 for the PGMM and 24 for the GMM, and 

the number of Gaussians is 1954 versus 512 respectively. Moreover, the two systems use 

different procedures for removing silences. The PGMM exploits the silence classification 

of the ANN. In the GMM system, instead, speech-silence discrimination is performed 

collecting the histogram of the energy values in the utterance, fitting two Gaussians, and 

using them for the classification.  

All the results of the experiments that will be presented in the following sections have 

been obtained with ZT-normalized scores. 

 

B. Simplified intersession compensation in model domain  
 
In this section, we show that our modifications to standard training lead to similar results 

with a reduced computation costs. We compare the results of the simplified approach with 

the ones obtained with an Intersession Compensated MAP (ICM) training approach 

similar to the one presented in [13]. 

In the simplified compensation, as said in section II-D, ( )kμ and  ,i kx are not jointly 

estimated in training. Instead, the supervector ( )kμ  is trained by classical MAP, without 

any additional computation. Moreover, in our experiments, we perform a single iteration 

of the PSA estimation, obtaining one vector  ,i kx for each tuple {test utterance i, speaker 
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model k} in (1). Intersession compensation is performed in testing only. We refer to this 

approach as MAP training and Model Domain, Speaker Dependent compensation. 

The intersession subspace has been estimated using all the data in the NIST SRE-04 

database. It includes 308 speakers and ~8 sessions per speaker. We computed all the 

differences among the supervectors of the same speaker from different sessions. From 

these 10315 vectors we derived an intersession subspace with dimension 20. 

Figure 2 shows the DET plots corresponding to the standard and to the simplified 

approach. With ZT-Norm score normalization, the two techniques perform similarly. The 

computation requirements of the Intersession Compensated MAP approach do not seem 

to justify its use.  

The simplified procedure was also effective even for larger amounts of training data, such 

as the ones provided by the 3 or 8 conversation sides of other SRE-05 trials. 

  

Fig. 2. DET plots for the GMM system with speaker dependent (SD) channel factors 
compensation, in model domain. Training MAP compared with Intersession 
Compensated MAP (ICM) on NIST SRE-05 core test data. 

 
TABLE II 

EER (%) AND MINIMUM DCF FOR THE GMM AND THE PGMM SYSTEMS WITH 
SPEAKER DEPENDENT (SD) MODEL DOMAIN COMPENSATION. TRAINING 

MAP COMPARED WITH INTERSESSION COMPENSATED MAP (ICM) ON NIST 
CORE TEST SRE-05 DATA 

System Train Compensation Estimation of x EER  DCF 
GMM MAP No No 10.7 0.404 
GMM ICM Model Domain Speaker Dep. 7.49 0.244 
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GMM MAP Model Domain Speaker Dep. 7.02 0.240 
PGMM MAP Model Domain Speaker Dep. 6.82 0.231 

 
 

Similar results were obtained using the PGMM system. Table II summarizes the scores of 

the GMM and PGMM systems with intersession compensation in model domain. The 

PGMM system with MAP training and intersession compensation is only slightly better 

than the equivalent GMM system, reducing the appreciable gap on the uncompensated 

systems. 

 

C. Feature domain intersession compensation  
 

In this section, we show the improvement obtained with the Feature Domain Intersession 

Compensation (FDIC),  applied to GMM and PGMM systems. 

The intersession factors were computed using the UBM and kept fixed for all the speaker 

models verified against a given test trial, according to (7). Figure 3 shows the DET curves 

of the baseline GMM system without compensation, compared with the GMMs obtained 

by applying the UBM intersession factors both in model domain (MD) and in feature 

domain (FD). 
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Fig. 3. DET plots for the GMM system with Speaker Dependent (SD) or UBM based 
compensation, in model (MD) and in feature (FD) domain, on NIST SRE-05 core test 
data. 
 
 

Table III 
EER (%) AND MINIMUM DCF FOR THE GMM SYSTEM WITH SPEAKER 

DEPENDENT OR UBM BASED COMPENSATION, IN MODEL AND IN FEATURE 
DOMAIN, ON NIST SRE-05 CORE TEST DATA 

System Train Compensation Estimation of x EER  DCF 
GMM MAP No No 10.7 0.404 
GMM MAP Model Domain UBM 8.07 0.280 
GMM MAP Model Domain Speaker Dep. 7.02 0.240 
GMM MAP Feature Domain UBM 6.80 0.241 
PGMM MAP Model Domain Speaker Dep. 6.82 0.231 
PGMM MAP Feature Domain UBM 6.79 0.231 

 
 

Comparing the second and third rows of Table III it can be observed that performing the 

intersession compensation in model domain, the Speaker Dependent estimation of 
 ,i kx is 

more expensive but slightly better than the UBM based Speaker Independent estimation 

of 
 ix . However, as shown in the fourth row of Table III, feature domain compensation, 

estimated on the UBM, recovers this gap and achieves the same performance as speaker 

dependent model domain compensation. An explanation for this behavior is that in feature 

domain the same adaptation is performed both in enrollment and in verification. In the 

model domain, instead, intersession compensation is performed only in testing, while the 

models are trained using the conventional MAP adaptation, because no improvement was 

obtained by including channel factors compensation in training as reported in Table II. 

Similar results were obtained using the PGMM system. It is worth noting, however, that 

the GMM and the PGMM give complementary results. The simple linear combination, 

with equal weights, of the results of the GMM and PGMM systems with feature domain 

compensation shown in Table III, gives a significant performance improvement both of 

the EER (5.94% versus 6.79%) and of the DCF (0.202 versus 0.231). This is due to the 

differences between the two systems that have been listed in section IV-A. 
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The excellent performance of our feature domain compensation technique has been 

confirmed in the 2006 NIST evaluation.  The results shown in Figure 4 and Table IV refer 

again to the core test – all trials. The first result in Table IV, labeled PGMM-2005 also in 

Figure 4, was obtained with our “mothballed” system used for the NIST 2005 evaluation. 

This system did not include intersession compensation. The use of “mothballed” systems 

is encouraged by NIST to have a comparison of the performance improvement achieved 

in successive evaluations. As shown in the next two rows of Table IV, the feature  

 

 

Fig. 4. DET plots for the PGMM and GMM systems using FDIC on NIST SRE-06 core 
test evaluation. 

 

 

Table IV 
PERFORMANCE OF THE PGMM AND GMM SYSTEMS USING FDIC ON NIST 

SRE-06 CORE TEST EVALUATION  
System Compensation EER (%) DCF 

PGMM-2005 No 8.72 0.406 
PGMM FDIC 6.06 0.277 
GMM FDIC 5.90 0.271 
PGMM+GMM FDIC 4.96 0.236 

 
compensated GMM and PGMM systems produce almost equivalent results, with a 

significant 30% reduction of the Equal Error Rate and of the Detection Cost Function. 

Applying again a simple linear combination, with equal weights, of the results of the 

PGMM and GMM systems we have a further 10% reduction of the ERR and of the DCF. 
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The results of the fusion of these two systems were the ones we submitted for the 15 

combinations of train and test conditions defined in the SRE-06 evaluation plan [18]. In 

all conditions, our system was among the best participants in this evaluation. 

 

V. Channel compensation  using SVM classifiers 
 
The channel compensated features of (9) can be readily used as observation vectors for 

SVM classifiers. Our work draws on the results of the generalized linear discriminant 

sequential (GLDS) kernel approach of [15]. However, since for computational reasons the 

autocorrelation matrix R in [15] is usually approximated by its diagonal elements, it is 

possible to feed the SVM with polynomial features where each component is properly 

normalized by its standard deviation. 

In particular, the channel factors  ix  are estimated for each test or training utterance i, of 

target or impostor speakers. Using  ix , every frame of the utterance is channel 

compensated according to (9). A polynomial expansion of the third order is then 

performed, and the mean and variance of every component of all the expanded vectors are 

evaluated. The expanded mean vector of an utterance – variance-normalized – is the 

channel compensated pattern for the SVM classifiers. 

The observation vectors for the SVM classifiers, in these experiments, are the same 24 

parameters of the GMM system, and their expansion up to the third order polynomial.  

TABLE V 
EER (%) AND MINIMUM DCF FOR A GLDS SVM CLASSIFIER WITH FDIC, ON  

NIST SRE-05 CORE TEST DATA 
SYSTEM  EER DCF 

SVM  9.81 0.362 
SVM FD COMP 8.65 0.299 

SVM + PGMM FD COMP. 6.18 0.211 
 

The gender independent impostor set required to train the SVM models includes the 

utterances of 1619 speakers obtained from the train splits of the NIST SRE-00 and SRE-

04 databases. 
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Table V shows the EER and minimum DCF rates of the SVM system with and without 

feature compensation on the same evaluation data used for the PGMM and GMM tests. 

Although the intersession factors are estimated in the framework of the GMMs, the 

feature domain compensation reduces the EER and the minimum DCF, by 12% and 18% 

respectively. The linear combination of the SVM and PGMM systems improves the 

performance of the latter by 9%. However, since our SVM approach, either alone or in 

combination with the PGMM system, was less accurate than the GMM system using the 

same parameters, we did not employ the SVM system for the SRE-06 evaluation. 

 

VI. Nuisance compensation in language recognition 
 
To verify the quality of the nuisance compensated features in a different task, we 

performed a set of experiments on language recognition.  

All the experiments have been performed on the NIST 1996, 2003, and 2005 Language 

Recognition Evaluation (LRE) data according to NIST evaluation rules [27]. The first two 

test corpora include 12 target languages: American English, Arabic, Canadian French, 

Farsi, German, Hindi, Japanese, Korean, Mandarin, Spanish, Tamil, Vietnamese. Russian 

has been used as the out-of-language in the 2003 tests. In these evaluations there are three 

duration settings: 3, 10, and 30 seconds. The 1996 evaluation database consists of 1503, 

1501 and 1492 sessions of 3, 10, and 30 seconds, respectively. The 2003 evaluation has 

1280 trials for each duration setting. 

The LRE-05 corpus includes seven languages and two dialects: English-American, 

English-Indian, Hindi, Japanese, Korean, Mandarin-Mainland, Mandarin-Taiwan, 

Spanish, and Tamil. The evaluation data consists of 3662 trials for each duration setting. 

In all the experiments we used the Shifted Delta Cepstral (SDC) features [28]. The SDC 

coefficients are computed, for a cepstral frame at time t, according to: 

          
( , ) ( ) ( )

0, 1 0, 1
n n nc t i c t iP d c t iP d

n N i k

      
   

   (11) 
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where n is the n-th MFCC, d is the lag of the delta coefficients, P is the distance between 

successive delta computations, and 0, 1i k  , is the SDC block number. The final 

feature vector is the concatenation of k blocks of N parameters. The configuration 7-1-3-7 

for N-d-P-k is normally used for language recognition. We append these features to the 

first 7 static cepstral coefficients obtaining a 56 parameter observation vector. 

 

A. Language recognition with channel compensated GMMs  
 
In the first set of experiments, we compared the performance of a gender dependent 

GMM classifier [14] using either the original or the channel compensated features. The 

UBM and the language GMMs consist of mixtures of 512 Gaussians. 

To compensate channel distortions, we reused the same list of files that was employed for 

estimating the intersession subspace in the speaker recognition experiments. 

The U matrix, although computed on a different set of parameters - 7 cepstral plus 49 

SDC,  rather than 12 cepstral parameters plus their derivatives -  represents the same 

channel subspace, which can be considered task independent.  

We then created a gender-dependent model for each of the 12 target languages in the 

NIST corpora using the training and development sets of the CallFriend corpus [24] 

including a total of 1174 speakers. The number of factors used for frame compensation 

was fixed to 20.  

During testing, the UBM gender model that produces the best likelihood for the current 

utterance is selected, together with the set of its corresponding gender-dependent GMM 

language models. The final score for each language includes both the T-normalization, 

performed on the L-1 alternative language GMMs, and the log-likelihood normalization 

[29]: 
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where 1, ,l L   and ls are the index and the log-likelihood score of the l th language 

GMM respectively. 

Comparing the results, shown  in the first two rows of Table VI, obtained with the raw 

and channel compensated models respectively, it is clear that channel compensated 

features provide significant performance improvement, increasing with the duration of the 

utterances, up to 57.6% for the 30 seconds trials of the 1996 evaluation. 

This result not only shows that the channel compensation approach in feature space can 

be effectively applied to other tasks modeled within the GMM framework, but also that 

the channels subspace is fairly task and language independent. 

 

B. Language recognition with speaker compensated GMMs  
 

For improving language recognition, however, we are interested in compensating not only 

the channel nuisances, but also the inter-speaker variations within the same language. 

Thus, we estimate another inter-speaker subspace matrix sU  with a large set of 

differences between models generated using different speaker utterances of the same 

language. In particular, we trained a gender independent sU  matrix reusing the same 

CallFriend database of 1174 speakers employed for training the two gender dependent 

UBMs.  The differences between the supervectors were computed among speakers of the 

same gender, but matrix sU was estimated by pooling all the difference supervectors    

(limited to 25000) in the same set. Since there are few different sessions for the same  

 

TABLE VI 
EER (%)  AND RELATIVE IMPROVEMENT (%), IN PARENTHESES,  

FOR A GMM CLASSIFIER WITHOUT AND WITH NUISANCE COMPENSATION 
ON THE NIST LRE TASKS 

CORPUS 1996 2003 2005 

NUISANCE 
COMPENSATION 

DURATION DURATION DURATION 
3s 10s 30s 3s 10s 30s 3s 10s 30s 

NO 17.34 9.00 5.10 19.33 11.25 7.02 22.05 14.87 11.57 

CHANNEL 15.94 6.13 2.16 17.50 8.41 4.08 21.72 13.91 9.64 
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(8.1) (31.9) (57.6) (9.5) (25.2) (41.9) (1.5) (6.5) (16.7)

SPEAKER 
15.35 5.47 2.01 16.75 7.85 3.60 21.25 12.60 8.19 
(11.5) (39.2) (60.6) (13.3) (30.2) (48.7) (3.6) (15.3) (29.2)

 

speaker, the main compensation is inter-speaker, but it possibly includes session 

variations. 

Compensating the features for the inter-speaker variations, we obtained a 30% to 60% 

reduction of the EER in the 30s duration tests, depending on the database, as shown in the 

last row of Table VI. 

 

C. Language recognition with speaker compensated GMM-SVMs  
 

Finally, we used speaker compensation in a discriminative language classifier approach 

that has been proposed in [30] for speaker recognition, rather than for language 

recognition. We adapted, from a gender independent UBM, a GMM for each utterance in 

every language. The adapted mean values of these GMMs, properly normalized, can be 

used as the supervector kernels for SVM based language recognition. This approach is 

referred to in the following as GMM-SVM.  

The results of this approach are shown in the first row of Table VII. Compared with the 

corresponding performance of the GMM classifier (last row of Table VI) it can be noticed 

that the GMM-SVM system obtains far better results for the tests of 30s duration. For 

shorter durations, however, the estimation of the utterance GMMs is not robust enough, 

due to the lack of data compared with the number of parameters of the GMMs. Thus, the 

GMM system gives better results in these conditions. 

 

D. Language recognition with phonetic models  
 
The systems presented so far exploit acoustic features only. Since the combination of 

acoustic based systems with phonetic systems produced excellent performances in the last 

formal NIST evaluations [31,32], this section briefly describes the contribution to 

language recognition of our phonetic system.  The system we use is based on the Parallel 
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Phone tokenizer-SVM recognition approach that has been proposed in [33], again for 

speaker recognition. It uses phone sequences provided by multiple recognizers in 

different languages. We used 6 different phone recognizers for the following languages: 

Catalan, German, Italian, Spanish, Swedish, and UK English.  

Our phone recognizer is the standard Loquendo-ASR decoder, which has been employed 

in combination with a phone-class loop grammar, in the first step of the PGMM speaker 

recognition system, presented in section III-A. Using a phone-loop grammar with diphone 

transition constraints, this recognizer produces either the best-decoded phone string or a 

phone lattice for each utterance. In these experiments only the best decoded string was 

used to collect the statistics of the n-gram phone occurrences of each utterance (n limited 

to 3).  

 

TABLE VII 
EER (%) OF THE ACOUSTIC GMM-SVM AND OF THE PHONETIC-SVM 

CLASSIFIERS, COMPARED WITH “STATE-OF-THE-ART” PERFORMANCE ON 
THE NIST LRE TASKS 

Corpus 1996 2003 2005 

Model 
Duration duration duration 

3s 10s 30s 3s 10s 30s 3s 10s 30s 

GMM-SVM 19.29 6.60 1.20 21.16 8.32 2.16 23.17 12.40 5.92 

PHONETIC-SVM 14.91 4.32 0.94 18.15 6.08 1.99 20.19 10.00 5.22 

Fusion 12.46 3.07 0.53 15.63 4.50 1.07 17.06 7.77 3.97 

MMI-GMM - - - 14.8 5.5 2.1 17.2 8.6 4.6 

PHONETIC-LM - - - 18.8 6.6 1.8 21.4 10.7 5.3 

Fusion - - - 11.8 3.0 0.8 14.1 6.4 2.9 

 

The results of the test on the NIST evaluation data, reported in the second row of Table 

VII, show that the phonetic-SVM approach produces better performance than the GMM-

SVM in all tests. The linear combination of the two systems with equal weight allows the 

overall performance to be increased in most tests by more than 20%. 
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The three rows in the bottom half of Table VII report the results given in [32] and [34] for 

the LRE-03 and LRE-05 evaluation data respectively. In these experiments, the acoustic 

system is based on GMMs trained by Maximum Mutual Information Estimation (MMIE), 

and the phonetic system exploits three phoneme recognizers and a lattice based language 

model. In our knowledge, these results are among the best achieved so far on these data. 

Although our work was not focused on language recognition, the reader may have an 

indication of the quality of our models by comparison with these “state of the art” results. 

We expect that better performance can be achieved by training larger GMM-SVM models 

and by exploiting the information in the phonetic lattices, rather than the best hypotheses, 

produced by our phonetic decoders. 

 

 
VII. CONCLUSION 

 
The main contribution of this work is the observation that the distortions produced in the 

supervector space by the intersession variability should depends on the current utterance, 

but only slightly on the speaker model.  Based on this assumption, we have shown that 

the acoustic space distortion can be estimated using the UBM rather than the speaker 

dependent models without accuracy loss. This result allowed us to propose a feature 

domain intersession compensation approach (FDIC) that projects every observation 

feature towards the session independent space.  

This nuisance compensation approach in feature domain gives the same benefits as the 

model domain approach, but with reduced computation costs. Moreover, the transformed 

parameters can be used as observation vectors for classifiers of a different nature, and for 

different tasks. This has been confirmed using the FDIC approach as a front-end for 

Support Vector Machine classifiers, and for compensating inter-session distortions and 

the inter-speaker variations in language recognition experiments. 

All these experiments show that performing variability compensation as a front-end 

process for speaker and language recognition systems is always beneficial, even if the 
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compensation is estimated in a GMM framework and the new features are given as input 

to another classifier. In the GMM framework, it is also possible to use a model for feature 

compensation and another one, with a larger number of parameters, for recognition, but 

the best performance is achieved if  variability estimation and classification is performed 

using the same GMM. 

Two techniques based on SVMs that have been proposed for speaker recognition - the 

GMM-SVM and the Parallel Phone tokenizer-SVM - have been shown to produce good 

performance in language recognition as well, the former taking advantage of inter-speaker 

frame compensation. 

Compared with our model, the model in [19] is richer, and the joint factor analysis 

estimation procedure proposed by the same authors for intersession compensation in 

model domain in successive papers is more elegant and general because it takes into 

account both speaker and channel variability. Future work will be devoted to compare the 

effectiveness of the two approaches. 
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