1,112 research outputs found

    Automatic refocus and feature extraction of single-look complex SAR signatures of vessels

    Get PDF
    In recent years, spaceborne synthetic aperture radar ( SAR) technology has been considered as a complement to cooperative vessel surveillance systems thanks to its imaging capabilities. In this paper, a processing chain is presented to explore the potential of using basic stripmap single-look complex ( SLC) SAR images of vessels for the automatic extraction of their dimensions and heading. Local autofocus is applied to the vessels' SAR signatures to compensate blurring artefacts in the azimuth direction, improving both their image quality and their estimated dimensions. For the heading, the orientation ambiguities of the vessels' SAR signatures are solved using the direction of their ground-range velocity from the analysis of their Doppler spectra. Preliminary results are provided using five images of vessels from SLC RADARSAT-2 stripmap images. These results have shown good agreement with their respective ground-truth data from Automatic Identification System ( AIS) records at the time of the acquisitions.Postprint (published version

    Investigating SAR algorithm for spaceborne interferometric oil spill detection

    Get PDF
    The environmental damages and recovery of terrestrial ecosystems from oil spills can last decades. Oil spills have been responsible for loss of aquamarine lives, organisms, trees, vegetation, birds and wildlife. Although there are several methods through which oil spills can be detected, it can be argued that remote sensing via the use of spaceborne platforms provides enormous benefits. This paper will provide more efficient means and methods that can assist in improving oil spill responses. The objective of this research is to develop a signal processing algorithm that can be used for detecting oil spills using spaceborne SAR interferometry (InSAR) data. To this end, a pendulum formation of multistatic smallSAR carrying platforms in a near equatorial orbit is described. The characteristic parameters such as the effects of incidence angles on radar backscatter, which support the detection of oil spills, will be the main drivers for determining the relative positions of the small satellites in formation. The orbit design and baseline distances between each spaceborne SAR platform will also be discussed. Furthermore, results from previous analysis on coverage assessment and revisit time shall be highlighted. Finally, an evaluation of automatic algorithm techniques for oil spill detection in SAR images will be conducted and results presented. The framework for the automatic algorithm considered consists of three major steps. The segmentation stage, where techniques that suggest the use of thresholding for dark spot segmentation within the captured InSAR image scene is conducted. The feature extraction stage involves the geometry and shape of the segmented region where elongation of the oil slick is considered an important feature and a function of the width and the length of the oil slick. For the classification stage, where the major objective is to distinguish oil spills from look-alikes, a Mahalanobis classifier will be used to estimate the probability of the extracted features being oil spills. The validation process of the algorithm will be conducted by using NASA’s UAVSAR data obtained over the Gulf of coast oil spill and RADARSAT-1 dat

    Space-based Global Maritime Surveillance. Part I: Satellite Technologies

    Full text link
    Maritime surveillance (MS) is crucial for search and rescue operations, fishery monitoring, pollution control, law enforcement, migration monitoring, and national security policies. Since the early days of seafaring, MS has been a critical task for providing security in human coexistence. Several generations of sensors providing detailed maritime information have become available for large offshore areas in real time: maritime radar sensors in the 1950s and the automatic identification system (AIS) in the 1990s among them. However, ground-based maritime radars and AIS data do not always provide a comprehensive and seamless coverage of the entire maritime space. Therefore, the exploitation of space-based sensor technologies installed on satellites orbiting around the Earth, such as satellite AIS data, synthetic aperture radar, optical sensors, and global navigation satellite systems reflectometry, becomes crucial for MS and to complement the existing terrestrial technologies. In the first part of this work, we provide an overview of the main available space-based sensors technologies and present the advantages and limitations of each technology in the scope of MS. The second part, related to artificial intelligence, signal processing and data fusion techniques, is provided in a companion paper, titled: "Space-based Global Maritime Surveillance. Part II: Artificial Intelligence and Data Fusion Techniques" [1].Comment: This paper has been submitted to IEEE Aerospace and Electronic Systems Magazin

    JRC – Elbit Systems Coupled UAS and Spaceborne SAR Campaign in Israel

    Get PDF
    The European maritime area is one of Europe’s most important assets with regard to resources, security and ultimately prosperity of the Member States. A significant part of Europe’s economy relies directly or indirectly on it. It is not just the shipping or fisheries industries and their related activities. It is also shipbuilding and ports, marine equipment and offshore energy, maritime and coastal tourism, aquaculture, submarine telecommunications, blue biotech and the protection of the marine environment. The European maritime area faces several risks and threats posed by unlawful activities, such as drugs trafficking, smuggling, illegal immigration, organised crime and terrorism. Piracy in international waters also constitutes a threat to Europe since it can disrupt the maritime transport chain. These risks and threats can endanger human lives, marine resources and the environment, as well as significantly disrupt the transport chain and global and local security. It is anticipated that these risks and threats will endure in the mid and long run. In order to keep Europe as a world leader in the global maritime economy, an effective integrated/interoperable, sustainable maritime surveillance system and situational awareness are needed. A significant number of unlawful maritime activities, such as illegal immigration, drugs trafficking, smuggling, piracy and terrorism involve mainly small boats, because small boats are faster and more difficult to detect using conventional means. Hence, it is very important to find out the feasibility of using Unmanned Aerial Systems (UAS) for small boat detection, tracking, classification and identification, as well as to study the potential of UAS for maritime surveillance. Since 2010 the EC-JRC has carried out a number of UAS maritime surveillance campaigns to study the potential of UAS for maritime surveillance, in particular for small boat detection. This report presents the results and conclusions of the JRC – Elbit Systems Coupled UAS and Spaceborne SAR campaign carried out in Dec. 2010 in Haifa, Israel.JRC.G.4-Maritime affair

    Ocean remote sensing techniques and applications: a review (Part II)

    Get PDF
    As discussed in the first part of this review paper, Remote Sensing (RS) systems are great tools to study various oceanographic parameters. Part I of this study described different passive and active RS systems and six applications of RS in ocean studies, including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH), Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD). In Part II, the remaining nine important applications of RS systems for ocean environments, including Iceberg, Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery are comprehensively reviewed and discussed. For each application, the applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML) techniques, and several case studies are discussed.Peer ReviewedPostprint (published version

    Active microwave users working group program planning

    Get PDF
    A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured

    Estimation of the Degree of Polarization for Hybrid/Compact and Linear Dual-Pol SAR Intensity Images: Principles and Applications

    Get PDF
    Analysis and comparison of linear and hybrid/compact dual-polarization (dual-pol) synthetic aperture radar (SAR) imagery have gained a wholly new importance in the last few years, in particular, with the advent of new spaceborne SARs such as the Japanese ALOS PALSAR, the Canadian RADARSAT-2, and the German TerraSAR-X. Compact polarimetry, hybrid dual-pol, and quad-pol modes are newly promoted in the literature for future SAR missions. In this paper, we investigate and compare different hybrid/compact and linear dual-pol modes in terms of the estimation of the degree of polarization (DoP). The DoP has long been recognized as one of the most important parameters characterizing a partially polarized electromagnetic wave. It can be effectively used to characterize the information content of SAR data. We study and compare the information content of the intensity data provided by different hybrid/compact and linear dual-pol SAR modes. For this purpose, we derive the joint distribution of multilook SAR intensity images. We use this distribution to derive the maximum likelihood and moment-based estimators of the DoP in hybrid/compact and linear dual-pol modes.We evaluate and compare the performance of these estimators for different modes on both synthetic and real data, which are acquired by RADARSAT-2 spaceborne and NASA/JPL airborne SAR systems, over various terrain types such as urban, vegetation, and ocean

    Ship Detection Feature Analysis in Optical Satellite Imagery through Machine Learning Applications

    Get PDF
    Ship detection remains an important challenge within the government and the commercial industry. Current research has focused on deep learning and has found high success with large labeled datasets. However, deep learning becomes insufficient for limited datasets as well as when explainability is required. There exist scenarios in which explainability and human-in-the-loop processing are needed, such as in naval applications. In these scenarios, handcrafted features and traditional classification algorithms can be useful. This research aims at analyzing multiple textures and statistical features on a small optical satellite imagery dataset. The feature analysis consists of Haar-like features, Haralick features, Hu moments, Histogram of Oriented Gradients, grayscale intensity histograms, and Local Binary Patterns. Feature performance is measured using 8 different classification algorithms, including K-Nearest Neighbors, Logistic Regression, Gradient Boosting, Extreme Gradient Boosting, Support Vector Machine, Random Decision Forest, Extremely Randomized Trees, and Bagging. The features are analyzed individually and in different combinations. Individual feature analysis results found Haralick features achieved a precision of 92.2% and were computationally efficient. The best combination of features was Haralick features paired with Histogram of Oriented Gradients and grayscale intensity histograms. This combination achieved a precision score of 96.18% and an F1 score of 94.23%
    • 

    corecore