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Abstract 

Ship detection remains an important challenge within the government and the commercial 

industry. Current research has focused on deep learning and has found high success with large 

labeled datasets. However, deep learning becomes insufficient for limited datasets as well as 

when explainability is required. There exist scenarios in which explainability and human-in-the-

loop processing are needed, such as in naval applications. In these scenarios, handcrafted 

features and traditional classification algorithms can be useful. This research aims at analyzing 

multiple textures and statistical features on a small optical satellite imagery dataset. The feature 

analysis consists of Haar-like features, Haralick features, Hu moments, Histogram of Oriented 

Gradients, grayscale intensity histograms, and Local Binary Patterns. Feature performance is 

measured using 8 different classification algorithms, including K-Nearest Neighbors, Logistic 

Regression, Gradient Boosting, Extreme Gradient Boosting, Support Vector Machine, Random 

Decision Forest, Extremely Randomized Trees, and Bagging. The features are analyzed 

individually and in different combinations. Individual feature analysis results found Haralick 

features achieved a precision of 92.2% and were computationally efficient. The best combination 

of features was Haralick features paired with Histogram of Oriented Gradients and grayscale 

intensity histograms. This combination achieved a precision score of 96.18% and an F1 score of 

94.23%. 

 

 

KEYWORDS: Ship Detection, Haralick, Histogram of Oriented Gradients, Haar-like.  
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1. Introduction 

Ship detection through satellite imagery has been a major topic of interest in both commercial 

and government domains for reasons such as surveillance, navigation, tourism, and trade [1]. As 

the number of satellite sensors has increased and, consequently, the amount of satellite imagery, 

so has the research on ship detection. Moreover, ship detection has proven to be a very difficult 

task for reasons, including image resolution issues, scene complexity, scene clutter, a lack of 

labeled data, and weather obstruction [2]. There are two main types of satellite imagery used for 

ship detection: optical and synthetic aperture radar (SAR). Unlike optical imagery,  SAR imagery 

is not affected by weather or illumination, which makes SAR more appealing to the ship detection 

community. However, SAR imagery can be tainted by noise, sensitive to sea state, and experience 

ship reflectance issues due to ship material [3]. SAR imagery is also limited by being inherently 

lower resolution, less interpretable by the human eye, and experiences long revisit times 

compared to optical satellite imagery. Although optical imagery is affected by weather, it 

generally provides greater resolution and higher levels of detail [2]. Optical imagery is also more 

abundant than SAR imagery. Therefore, the rest of this paper will focus on ship detection in 

optical satellite imagery.      

Ship or vessel detection research has been ongoing since the late 1970s, but due to problem 

complexity such as scene complexity and weather obstructions, generic ship detection algorithms 

do not exist [3]. Researchers are continuously improving upon ship detection algorithms with 

new features or deep learning [4]–[6], but these improvements fail to focus on explainability or 
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real-time processing. Most ship detection algorithms focus on specific environmental conditions 

such as nearshore detection [7-9], or open ocean [3-4], and therefore perform poorly when given 

a new environment. Another approach with current algorithms is the use of image processing or 

pre-processing techniques in order to extract ship candidates [5,9-10]. The extra steps and 

manual processing make these techniques unrealistic when presented with new imagery or a 

real-time detection scenario.  Lastly, most algorithms to date employ some sort of deep neural 

network or a combination of classification algorithms and deep machine learning [5,11-14]. In 

deep learning, the algorithms require an abundance of data or data augmentation, and the 

architectures act as a black box [15].  Since deep learning consists of multiple layers and, 

consequently, millions of parameters, the ability for humans to trace or recalculate is 

unachievable [15]. Moreover, through the use of adversarial networks, the ability to fool a deep 

network with small input changes causes these networks to collapse [15]. The large data 

requirement becomes unsuitable for applications in which datasets are limited, and the black box 

architecture fails when critical tasks require explainability and resilience.  

 

2. Literature Review 

Traditionally, model development for object detection has been divided into two phases. First, 

extracting candidate regions then performing classification using hand-crafted features for 

machine learning. Therefore the community has introduced ample features and classification 

techniques but has not studied these features in combination or in regards to real-time 
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processing. The following discusses the different handcrafted features used for ship detection. 

Further discussion on specific features used in our research can be found in section 3.3. 

Pietikäinen introduced new areas of image analysis using Local Binary Pattern (LBP) features as 

LBPs are robust against variations in illumination as well as being computationally efficient [16]. 

LBPs work by replacing pixels in a neighborhood with a binary number (0,1), based on a 

comparison of the neighboring pixel intensity with the center pixel intensity. Arguedas developed 

a vessel classifier using LBPs in optical satellite imagery, which reached an accuracy of 85.64% 

[17]. As an extension to LBPs, Zhu et al. focused on ship candidate detection in sea regions using 

Local Multiple Patterns (LMP) [18]. LMP extends LBP by replacing neighboring pixels with an 

integer value instead of a binary value, thus becoming robust against flat image regions or noisy 

regions. Using Support Vector Machines (SVM) for binary classification, Zhu et al. reached a ship 

detection accuracy of 92.1% [18].  Antelo, J., et al. use Hu moment invariants as a statistical 

feature for ship classification [19]. Hu moments are common statistical features used in image 

processing and are an extension of image moment invariants. S. Qi et al. introduced saliency for 

object detection [20], which they later improved upon with a modified Histogram of Oriented 

Gradients (HOG) feature descriptor called Ship Histogram of Oriented Gradients (S-HOG) [4]. HOG 

features are known for characterizing local shape and gradients in images and therefore are a 

useful feature in ship detection. S. Qi et al. achieved 82.8% ship detection precision for cluttered 

environments and 93.4% precision in quiet environments [4]. G. Yang et al. introduced sea 

surface analysis in open ocean environments, where ships are described as anomalies, and thus 

classification is done through anomaly detection [3]. Their sea surface analysis was performed in 
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multiple environments and obtained 98.88% precision in a quiet environment, however, overall 

precision was 89.22%.  

 

Previous ship detection methods can be summed up as segmentation techniques, saliency 

detection, and anomaly detection methods. As deep learning improved upon classification tasks, 

most current research moved to modifications and extensions of neural networks. The following 

is a highlight of current deep learning algorithms used for ship detection. R. Zhang et al. used line 

segmentation and saliency along with ship head and ship body models to detect ship candidates 

on a dataset of 5,720 positive samples [5]. The candidates were subsequently fed into a CNN 

architecture for classification and produced precision results of 95.9% for inshore ship detection. 

In offshore ship detection, their algorithm achieved 99.1% precision [5].  Zou and Shi [21] 

introduced a CNN model with a linear SVM classification called SVDNet, which was based on 

similarities from PCANet [22]. The CNN model extracted the features which were passed to the 

linear SVM classifier. SVDNet was trained on 12,030 positive samples (augmented and non-

augmented) and tested on 7 images, with an average precision of 72.6%. Following PCANet, N. 

Wang et al. used PCANet and LibSVM to perform classification with anomaly detection, as a 

means to prescreen candidates [6]. Their research included data augmentation, which produced 

8,343 positive samples and a precision rate of 85%. S. Zhang et al. improved upon Faster-R-CNN 

by modifying the network structure of VGG16 and reached a precision rate between 92.95% and 

97.64% [11]. Their research also used data augmentation in order to train the CNN model and 

avoid overfitting. Q. Shi et al. used a multi-feature ensemble method with multiple CNNs to 

perform ship detection on three different datasets [14]. Their best accuracy was 98.75% on an 
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augmented dataset, while their worst accuracy was 92.97% on an augmented dataset with a 

reduced training set. Lastly, Y. Yu et al. used Haar-like features in a traditional machine learning 

approach along with a periphery-cropped neural network to perform detection [23]. Their 

periphery-cropped network produced a precision of 91% [23].      

 

As can be seen from the literature review, results can vary between datasets. The advancement 

in deep learning has produced significantly better classification accuracy, but deep learning tends 

to perform poorly on small datasets, real-time processing, and when context changes happen. 

The challenge of providing explainability and adapting to different environments still remains 

open. This research will focus on feature analysis for a small dataset, using traditional machine 

learning methods such as Random Forest (RF), Support Vector Machine (SVM), K-Nearest 

Neighbors (KNN), Logistic Regression (LG), Bagging (BAG), Gradient Boosting (GB), Extreme 

Gradient Boosting (XGB), and Extremely Randomized Trees (ET). The rest of the paper is 

organized as follows: In section 3, we describe the data collection, selected features, feature 

extraction, and classification methods used. Section 4 covers the feature analysis and 

classification results. Finally, section 5 concludes the paper and discusses future work. 

 

3. Methodology 

In this section, we discuss the data collection and data processing performed. We also discuss 

the feature extraction for each algorithm and the machine learning methods applied. 
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Figure 3.1 shows a high-level view of the experiment design. The dataset is processed through 

each feature extraction method. The feature extraction creates a comma-separated values 

feature file. Each feature type and variation create a separate feature file, and thus for the 15 

features and variations used in this research, there are 15 feature files. The individual feature 

files are then processed by the 8 classification algorithms separately, meaning a single feature 

file once trained through the 8 classifiers will have 8 individual classification results. All 8 

classifiers were implemented using 10-fold cross-validation. The classifier training for all 15 

individual feature files produces 120 ( 15 feature files × 8 classifiers) classification result files.  

 

3.1 Data Collection 

For our research, the dataset was collected from DigitalGlobe [24] satellite imagery around the 

Singapore Strait and manually curated. DigitalGlobe is a freely available source for satellite 

imagery. The Singapore Strait was chosen due to its high vessel traffic as a major port. The dataset 

Figure 3.1: This diagram shows the experiment design and process of feature extraction to classifier 
training. 
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consisted of 100 optical satellite images ranging in size from 1033854 pixels to 10837119 

pixels. Each image was manually cropped into 250250 samples which totaled to 1300 samples, 

300 positive multiship samples, and 1000 negative multiship samples. The 300 positive 250250 

samples containing multiple ships were then annotated using a tool called BBox-Label_Tool [25]. 

BBoxLabel is an open-source tool, which opens a simple GUI that allows the user to load a 

directory of positive images and annotate multiple objects as well as multiple classes for each 

image. After labeling our 300 positive samples, they were cropped into single vessel samples of 

size 2424 and totaled 955 positive vessel samples. The 1000 negative samples were also divided 

into a total of 2,000 smaller samples of size 2424. Our dataset contained a mix of calm and 

cluttered environments, including cloud coverage, docks, islands, land, contrast differences, and 

textured surfaces. Figure 3.2 depicts examples of 4 different positive ship samples and 4 different 

negative non-ship samples from the GlobalView dataset. 

 

Figure 3.2: The top row of images represent 4 different positive ship samples in different 
environments. The bottom row of images represent 4 different negative non-ship samples, 
including land and cloud obstruction. These images represent different challenges presented in 
the dataset.  
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3.2 Features 

The following discusses the multiple textures and statistical features used in this research. For 

each positive and negative image, the features extracted were Hu moments, Harlick features 

grayscale histograms, Histogram of Oriented Gradients, Haar-like features, and Local Binary 

Patterns. These features are known to extract patterns, statistical information, and in some 

cases, provide invariance to scale, rotation, and translation, thus containing more information 

than the individual pixels themselves. We discuss each feature below generally as well as 

specifically in regards to our dataset. 

  

 

3.2.1 Hu Moments 

Ming-Kuei Hu introduced moment invariants in 1962 to capture patterns in images while being 

invariant to image transformations [26]. Hu moments are an extension of image moments. Image 

moment invariants are simply a weighted average of image pixel intensities. Hu moments extend 

image moments in order to be invariant to scale, translation, reflection, and rotation. There are 

7 Hu moments, and these moments are based on central moments. Hu introduced 6 absolute 

orthogonal invariants and one skew orthogonal invariant, those have proven to be adequate 

measures of tracing image patterns with the assumption of images being continuous functions 

and noise-free [27]. Of note, Huang et al. analyzed Hu moment invariants with respect to image 

resolution and image transformations to conclude that with adequate resolution, the moment 

invariants change only slightly [27]. We discuss this observation since our dataset is composed of 



9 

 

very small samples and thus may not have the adequate resolution. Figure 3.3 displays a positive 

image sample, a rotation of the positive sample and a different scaled version. Table 3.1 

demonstrates the effectiveness of Hu moments on the 3 images from Figure 3.3 as the values for 

each of the 7 Hu moments across all 3 images are relatively close together. For each image, we 

generate 7 Hu features using OpenCV’s moments and HuMoments functions [28]. 

   

      

 

 

 

 
 

Table 3.1: The 7 Hu moments for the 3 image samples in figure 3.3. The Hu moments for the 3 
images are close in value and reflect the Hu moment’s invariance to scale and rotation.  
 

Hu Moments Figure 3.2A Figure 3.2B Figure 3.2C 

H[1] 2.92409325 2.92403239 2.88520941 

A B C 

Figure 3.3: Starting from the left is a clear positive sample (A) from the dataset, the following 
image (B) is image (A) rotated by 90 degrees. Lastly, image (C) is a different scaled version of image 
(A). 
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H[2] 8.9214574 9.84329869 7.70497829 

H[3] 11.54743336 11.62098777 12.63939981 

H[4] 12.11103466 12.04494061 12.79032651 

H[5] 24.21725739 24.3125476 25.5263543 

H[6] 16.57384259 -16.96660028 16.71029491 

H[7] -24.01138203 -23.90942647 -26.0212579 

 
 

3.2.2 Haralick Features 

R. Haralick introduced Harlick features in 1973 as a general procedure for extracting texture 

features during image analysis [29]. The basis of Harlick features is the gray-level co-occurrence 

matrix, which quantifies the spatial relationship between neighboring pixels. The co-occurrence 

matrix is created by counting the number of instances a pixel value of i is adjacent to a pixel value 

of j then dividing the entire matrix by the number of comparisons. From the co-occurrence 

matrix, the 13 textural properties described in [29] are statistically computed. Harlick features 

are also typically rotation invariant, making them particularly useful in ship detection. Figure 3.4: 

Starting from left to right, the first matrix (A) is an example of an input image consisting of 3 gray 
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values. The second matrix (B) is the gray-level co-occurance matrix displaying the neighboring 

pixel combination frequencies. The third matrix (C) is the normalization of the grey-level co-

occurance matrix. The equations (D) at the end are two of the thirteen Haralick properties that 

are computed from the normalized co-occurance matrix (C).Figure 3.4 is an example diagram 

showing how the grey-level co-occurrence matrix and the Haralick properties are calculated.  
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Figure 3.5 shows two distinctly positive samples and two distinctly negative samples from the 

dataset.  

A B C D 

Figure 3.4: Starting from left to right, the first matrix (A) is an example of an input image consisting 
of 3 gray values. The second matrix (B) is the gray-level co-occurance matrix displaying the 
neighboring pixel combination frequencies. The third matrix (C) is the normalization of the grey-
level co-occurance matrix. The equations (D) at the end are two of the thirteen Haralick properties 
that are computed from the normalized co-occurance matrix (C). 

Figure 3.5: Starting from the left shows two clear positive samples (A and B) followed by two clear 
negative samples (C and D). 

A B C D 
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Table 3.2 displays the 13 Haralick properties of the 4 images in Figure 3.5. Each image generates 

13 Haralick features using a python library called Mahotas [30]. 

 

Table 3.2: Starting from left to right, the first column represents the thirteen different Haralick 
properties. The other 4 columns are the 13 Haralick properties computed for the respective 
images from figure 3.4. The blue rows highlight 3 Haralick features showing large differences 
between the positive images (figure 3.5A and figure 3.5B) against the negative images (figure 3.5C 
and figure 3.5D). 

 

Features 
Figure 3.5A 

(+ve) 
Figure 3.5B 

(+ve) 
Figure 3.5C  

(-ve) 
Figure 3.5D  

(-ve) 

Angular Second 
Moment 

0.001442 0.027341 0.074174 0.426959 

Contrast 536.726882 87.450201 0.312756 0.142348 

Correlation 0.679811 0.796231 0.968199 0.860976 

Variance 836.713522 213.804895 4.950022 0.516260 

Inverse Difference 
Moment 

0.093960 0.442262 0.852058 0.937758 

Sum Average 270.336248 108.765497 194.885732 104.310629 

Sum Variance 2810.127204 767.769379 19.487333 1.922693 

Sum Entropy 6.872061 5.398296 3.927014 1.856617 

Entropy 9.610721 7.264246 4.254310 2.031945 

Difference Variance 0.000146 0.001253 0.005757 0.014024 
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Difference Entropy 5.064218 3.589447 0.880117 0.560308 

Information 
Measures of 
Correlation 1 

-0.440144 -0.451964 -0.642322 -0.587387 

Information 
Measures of 
Correlation 2 

0.997791 0.992648 0.989792 0.898296 

 

In  

Table 3.2 there are 3 Haralick properties highlighted: contrast, variance, and sum variance. These 

3 properties, as seen in the table, show a large range of differences from the positive samples 

and negative samples seen in Figure 3.5. These 3 properties show promising distinctions for ship 

detection while being computationally efficient. 

 

3.2.3 Grayscale Histograms 

Grayscale intensity histograms were used in our research to capture the distribution of grayscale 

pixel intensities. Histograms are a common feature in image processing and object detection. The 

idea behind evaluating the distribution of pixel intensities is that similar images will have similar 

distributions. In our research, we generated normalized histograms with 32 bins, 64 bins, 128 

bins, and 256 bins using the calcHist function from the python library OpenCV [28]. The bins 

capture pixel intensity ranges, or in the case of the 256 bin histogram, can provide a one to one 

mapping of grayscale pixel intensity frequencies. Figure 3.6 shows a comparison of the different 

bin size histograms for a single positive sample. The 32 bin histogram in both the positive and 
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negative case captures the outline of the distribution while condensing the number of features 

or intensity values used. This reduces the computational complexity in the classifier training.  

 

 
 
 
 
 

 

 

 

 

 

Figure 3.6: The 4 histograms displayed are the histograms of the positive sample in Figure 3.5A. 
Top left (A) shows the distribution of the positive sample using 256 bins. Top right (B) shows the 
pixel intensity distribution of the positive sample using 128 bins. Bottom left (C) shows the pixel 
intensity distribution of the positive sample using 64 bins. Bottom right (D) shows the pixel 
intensity distribution of the positive sample using 32 bins.  
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The positive sample histograms have a wider distribution than the negative sample histograms 

and have a tail to the right, suggesting a higher contrast in ship samples.  

 

Figure 3.7: The 4 histograms displayed are the histograms of the negative sample in Figure 3.5C. Top 
left (A) shows the distribution of the negative sample using 256 bins. Top right (B) shows the pixel 
intensity distribution of the negative sample using 128 bins. Bottom left (C) shows the pixel intensity 
distribution of the negative sample using 64 bins. Bottom right (D) shows the pixel intensity 
distribution of the negative sample using 32 bins. 
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3.2.4 Histogram of Oriented Gradients (HOG) 

The HOG feature is a popular descriptor used in computer vision and image processing. The 

technique works by counting the occurrences of gradient orientations within a localized portion 

of an image [31]. The image is divided into small regions or cells, in which a histogram of gradient 

directions is compiled for the pixels within a cell. Therefore shapes are described by the intensity 

of gradients or edge directions. Similar to edge detection, HOG features characterize local object 

appearances as well as shape in an image. Our dataset compared 16×16 pixel cell, 12×12 pixel 

cell, and 8×8 pixel cell sizes for the HOG descriptor. All ships in our imagery were less than 20 

pixels in length. Using the different cell sizes, 16, 12 and 8, on our dataset produced 8, 32, and 

72 HOG features, respectively. The HOG features were computed by the python library Scikit-

Image, using their hog feature function [32]. Interestingly enough, the 16×16 window size with 

the least descriptors performed the best with our regression analysis averaging 88% accuracy 

alone. Figure 3.8 visualizes the different HOG descriptors based on window size. 
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The HOG feature with a 16×16 window captures the gradient changes in the ship sample the 
best, as seen in figure 3.8B. As the window sizes decrease in Figure 3.8C and figure 3.8D, the local 
background gradient changes are picked up.  
 

Figure 3.8: Top left image (A) is a positive sample from the dataset. Top right (B) is a visualization 
of the HOG feature for that positive sample using a window size of 16×16. Bottom left (C) is the 
visualization of the HOG feature using a 12×12 window. Bottom right (D) is the visualization of the 
HOG feature using a 8×8 window. 
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3.2.5 Local Binary Patterns 

In 1996, T. Ojala et al. first described the texture operator known as Local Binary Patterns (LBPs) 

[33]. LBPs have since been used in computer vision as a powerful texture feature. LBPs have been 

used for face recognition [17], and C. Zhu et al. introduced LBPs or an extension of LBPs for vessel 

classification [18]. Moreover, X. Wang et al. propose that HOG and LBP descriptors together can 

increase accuracy for some datasets in classification problems [34]. LBP computations work by 

sub-sectioning an image into smaller windows and comparing a window’s center pixel value with 

the values of its neighboring pixels. The comparison produces binary numbers for a window, 

which is then converted into decimal values. A histogram is then calculated overall window 

decimal values for an image. An extension to the LBP operator is the uniform pattern, which 

reduces the length of the feature vector and provides a rotation-invariant descriptor. In our 

research, we focus on the uniform LBP implementation, which creates 10 features for each image 

in our dataset using Scikit-Image [32]. Figure 3.9 shows an example of the LBP computation. 
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In Figure 3.9 the neighboring pixel values (123, 134, 130, 127, 135, 128, 144, 137) are compared 

to the center pixel value (131). If the neighboring pixel values are greater than or equal to the 

center value, then the neighboring pixel value is changed to 1. Otherwise, the neighboring pixel 

value is changed to 0. Once all the neighboring pixel values are converted into 1 or 0, the 

neighboring pixel values are concatenated into a single binary number. This single binary number 

is computed by starting from the top-left neighboring pixel value and concatenating the next 

neighboring pixel value in a clockwise fashion.  

 

3.2.6 Haar-like Features 

Haar-like features were introduced by Paul Viola and Michael Jones for use in a real-time face 

detector [35]. Haar-like features are based on Haar wavelets and provide subsection categories 

for an image based on average pixel intensity differences among the different regions in an 

image. The advantage of Haar-like features over other features is computational efficiency during 

feature extraction. In our research we studied 5 Haar-like features: type-2-x, type-2-y, type-3-x, 

type-3-y, and type-4. The type 2-x and 2-y represent two rectangles varying in the x and y 

directions, respectively. Type 3-x and 3-y represent three rectangles varying in the x and y 

directions, respectively. Type 4 represents four rectangles varying along both the x and y-axis. A 

Figure 3.9: An example LBP calculation using a 3×3 window. (A) shows the notation for the window 
calculation where 𝑔𝑝(𝑝 = 0, … ,7) represent the neighboring pixel values in the window and 𝑔𝑐 

represents the center pixel value. Matrix (B) is an example 3×3  window and matrix (C) is the 
binary matrix version of (B) after the neighboring pixel comparisons. Matrix (D) displays how the 
binary number is formed for the 3×3 and (E) is the resulting binary number. Lastly, (F) shows the 
decimal version of binary number (E). 
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window size of 12×12 pixels was used, which produced 10,228 features.  Figure 3.10 shows the 

different Haar-like feature descriptors used from Scikit-Image [32]. 

 

Each window is placed in all possible locations of the input image. At each location, the yellow 

and blue region’s pixel intensity values are summed up independently. The difference of the 

yellow region’s sum from the blue region’s sum is calculated and produces a single-valued feature 

Figure 3.10: This figure shows the 5 different Haar-like window types used in this research. Figure 
3.10A represents the Type-2-x Haar-like feature and contains two regions, this window calculates 
the horizontal change in the input image. Figure 3.10B represents the Type-2-y Haar-like feature 
and contains 2 regions, this window calculates the vertical change throughout the input image. 
Figure 3.10C represents the Type-3-x Haar-like feature and contains 3 regions, this window 
calculates the horizontal change throughout the input image. Figure 3.10D represents the Type-
3-y Haar-like feature and contains 3 regions, this window calculates the vertical change throughout 
the input image. Lastly, figure 3.10E represents the Type-4 Haar-like feature and contains 4 
regions, this window accounts for both the horizontal and vertical change throughout the input 
image. 
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for that window at a specific location. The window acts like a sliding window throughout the input 

image in order to calculate the difference feature at all locations. Figure 3.10A and Figure 3.10B 

represent the two regions sliding window Haar-like feature. These two features are commonly 

referred to as edge features. The difference of an edge region will be much larger than the 

difference between a background or a flat region. Figure 3.10C and Figure 3.10D represent a 3 

region window feature and are commonly referred to as line features. Figure 3.10E is the 4 

regions rectangle Haar-like feature.  

 

3.3 Feature Extraction 

There are 15 total individual features and variations used in this research: Hu moments, Haralick 

features, HOG 88, HOG 1212, HOG 1616, Histogram 32-bin, Histogram 64-bin, Histogram 

128-bin, Histogram 256-bin, LBP features, Haar-like type-2-x, Haar-like type-2-y, Haar-like type-

3-x, Haar-like type-3-y, and Haar-like type-4. A feature text file is created for each feature over 

the entire dataset of 2955 images. Each feature file consists of 2955 rows where each row 

represents an image in our dataset. The rows contain the binary classification value and the 

comma-separated feature values depending on the feature extracted. In the case of the LBP 

feature type in which 10 feature values are generated per image, the feature file would contain 

2955 rows with 11 commas separated values per row. The first value of each row is the 

classification value, i.e., 0 for not a ship and 1 for a ship. In the case of combined features, each 

feature’s value is appended to the end of the row after the previous feature extraction. For 

example, the combined features Hu moments and LBP would create a feature file of 2955 rows 
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where each row contained 18 commas separated values. Again, the first value being the 

classification value. This research incorporates an additional 9 combined features. Thus the total 

number of feature variations and combinations used was 24.   

Various image processing and computer vision libraries were used for feature extraction, as 

mentioned previously. Every image was converted into grayscale before each feature extraction, 

and in the case of Haar-like feature extraction, the images were further converted into integral 

images for computational efficiency. For use in the machine learning algorithms, each feature file 

was read into a NumPy array, and the first column was extracted for the true Y values. 

 

3.4 Machine Learning Classifiers 

The following classifiers from Scikit-learn [36] were used for our feature analysis: Support Vector 

Machine, Logistic Regression, Random Decision Forest, Extra Trees Classifier, K Nearest 

Neighbors, Bagging, Gradient Boosting Classifier and eXtreme Gradient Boosting Classifier. Each 

algorithm was implemented with 10-fold cross-validation. 10-fold cross-validation splits the 

dataset into 10 groups, where 9 groups are used for training and 1 group for validation. This 

method is repeated 10 times so that each group will be the validation set. The performance 

results from each repetition are then averaged to provide the overall classification results. A 

further discussion of each algorithm follows. 
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3.4.1 Support Vector Machine (SVM) 

Cortes and Vapnik introduced the standard SVM in 1995 as a supervised machine learning 

technique for a two-group classification problem [37]. The idea behind SVM is to find an optimal 

hyperplane after the input vector is non-linearly mapped to a high-dimensional feature space. 

SVMs can be used for classification or regression problems and remain computationally efficient. 

SVM has been widely used in the literature for either preprocessing [11], in conjunction with 

other algorithms such as neural networks [38], and as a main classifier [39]. 

 

3.4.2 Logistic Regression (LG) 

Joseph Berkson is said to be the developer of logistic regression as a general statistical model in 

1944, but the logistics function dates back to the 1800s [40]. LG is a linear model that attempts 

to model a binary dependent variable through the use of a sigmoid function. It provides a 

probability for classification. Corbane et al. implement a logistic model for their ship detection 

research using wavelets and radon transform [10]. Moreover, Tang et al. add a logistic regression 

layer after their deep neural network as a fine-tuning step [41]. 

 

3.4.3 Random Decision Forest (RDF) 

RDFs are an ensemble learning technique that constructs a multitude of decision trees for 

classification and regression. For classification, the decision trees output a class, and the mode 
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of the classes is used to determine the final class. The algorithm was first introduced by Tin Kam 

Ho in 1995 [42] and later extended to include bagging by Leo Breiman in 2001 [43]. Huang et al. 

and Dong et al. both create an extension of the random forest to perform target detection [38], 

[39].  

 

3.4.4 Extra Trees Classifier (ETC) 

ETCs were introduced by Geurts et al. in 2006 [44]. The extremely randomized trees or ExtraTrees 

classifier is an adaptation of random forest with a few noticeable differences. ETCs are an 

ensemble of individual trees similar to RDFs, but in ETCs, each tree is trained on the whole 

learning sample, and the top-down splitting in the tree learner is randomized.  

 

3.4.5 K-Nearest Neighbors (KNN) 

KNN is a nonparametric pattern recognition algorithm for classification and regression [45]. In 

most cases, Euclidean distance is used as a measure between objects in order to determine the 

k-nearest neighbors. In classification, a plurality vote is used among the k-neighbors of an object 

to determine the class. In the literature, Huang et al. used KNN as a comparison to their modified 

RDF algorithm [46], and Gallego et al. combined a Convolutional Neural Network (CNN) with the 

KNN algorithm for improved performance [13]. 
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3.4.6 Gradient Boosting Classifier (GBC) 

Breiman introduced the idea of gradient boosting in terms of an optimization algorithm for a cost 

function [47]. Gradient boosting is a machine learning technique that produces an ensemble of 

weak prediction models, such as decision trees. The models are additive in that results from 

previous models will change the gradients of the next model in order to optimize classification. 

The idea is that multiple weak classifiers can iteratively build a strong classifier.  

 

3.4.7 Extreme Gradient Boosting Classifier (XGBC) 

EXtreme Gradient Boosting (XGB) started as a research project by Chen in 2016 to create a 

scalable gradient boosting algorithm [48]. XGB builds from GB but incorporates advanced 

regularization as well as computes second-order gradients of the loss function. The advanced 

regularization, L1 and L2, improves model generalization and further reduces overfitting. 

Moreover, the second-order gradients provide more information on gradient direction and 

improve loss function minimization.  

 

3.4.8 Bagging (BAG) 

Bagging, formerly known as bootstrap aggregating, is an ensemble meta-algorithm designed for 

improved stability in classification as well as regression. Bagging was originally developed by Leo 

Breiman in 1994 [49] and later incorporated in his Gradient Boosting technique. Bagging usually 
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implements a decision tree method but can use any method such as SVM as its base estimator. 

The idea is for the base estimator to fit on random subsets of the dataset and then aggregate the 

predictions to form a final decision. This randomization ensemble typically reduces variance with 

black-box estimators such as decision trees.  

 

4. Results 

Results for our dataset consisting of 955 positive samples and 2000 negative samples are now 

discussed. After individual feature type evaluation, the top-performing feature types were 

chosen for further analysis in different combinations. 

 

4.1 Feature Comparison 

We evaluated 6 features with parameter variations in 3 features, totaling 15 features. All 15 

features were trained individually using the 8 classification algorithms. Precision, recall, and F1 

score are the main evaluation metrics employed in this study. Precision, recall, and F1 score are 

defined in Table 4.1. 

Table 4.1: Name and definition of performance evaluation metrics. 

Name of Metric Definition 

True Positive (TP) Correctly predicted ship images 

True Negative (TN) Correctly predicted non-ship images 

False Positive (FP) Incorrectly predicted ship images 

False Negative (FN) Incorrectly predicted non-ship images 
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Recall/True Positive Rate (TPR) 
TP

TP + FN
 

Specificity /True Negative Rate (TNR) 
TN

TN + FP
 

Accuracy (ACC) 
TP + TN

FP + TP + TN + FN
 

Precision 
TP

TP + FP
 

F1 score  
2TP

2TP + FP + FN
 

 

Precision and recall are better indicators of performance than accuracy when the dataset is 

asymmetric because they both take into account the type of prediction. Precision calculates the 

proportion of predicted ships over the number of actual ships. Recall calculates the proportion 

of actual ships that are correctly classified as ships. Accuracy, on the contrary, calculates the total 

number of correctly predicted ships and non-ships overall ship/non-ship samples. Hence, if the 

classes are unevenly distributed, then one class can significantly skew the performance measure. 

This study also uses an F1 score because it calculates the weighted average of precision and recall 

and thus provides a balance between the two metrics. These metrics were chosen due to having 
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an asymmetric dataset but also because they are commonly used in similar analyses [3]–[6], [21]. 

The 14 features and each classifier’s precision score is plotted in Figure 4.1. 

 

The best individual feature type was the Haar-like features, which focus on local, regional 

intensity differences. The Haar-like feature type had high precision scores between 90%-96% for 

most of the classifiers, the best precision being 95.56% for Haar-like type-2-x using RDF 

classification. LG classification had the lowest precision scores for the Haar-like features, where 

scores fell in the 83%-85% range. Although the Haar-like feature types performed well, the 

10,228 feature vector size incurred a high computational cost. We continued further feature 

Figure 4.1: The x-axis represents the 14 individual features and the y-axis represents the precision 
score. For each feature the precision scores for each 8 classification algorithm is plotted.  
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analysis with the Haar-like type-2-x feature in our feature combination analysis. The next best 

feature type was the Haralick features, with most classifiers reaching between 91%-93% 

precision. Haralick features achieved a max precision of 92.93% through RDF classification. 

Among the low performing classifiers for the Haralick feature type were LG and KNN, reaching 

precision scores of 72.43% and 67.52%, respectively. The LBP feature type had an average 

precision of 83.64% among the 8 classifiers, with SVM performing the best at 87.80% precision 

and LG performing the worst at 79.33%.  

Figure 4.1 shows the HOG feature type with a window size of 8x8 performs the best out of the 

HOG features, but this feature is misleading when looking at precision alone. An analysis of the 

precision-recall curve for each HOG variation shows better performance with the larger window 

HOG feature, HOG 16. Therefore, we used HOG 16 for further feature analysis.  Figure 4.2 shows 

the three HOG precision-recall curves. HOG 16 had an average precision score of 83.64%, with 

SVM reaching the highest precision of 86.71% and LG scoring a low 79.33% precision. 
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Figure 4.2: The graph shows the precision and recall balance between the 3 variations of HOG 
features. The hog_16 feature provides the best balance between precision and recall.  

 

Among the histogram feature type, the 256-bin histogram has better precision performance, but 

the 32-bin histogram feature has slightly better precision-recall performance as the precision-

recall curves in Figure 4.3 indicate. Histogram 32-bin averaged 74.01% precision, with RDF scoring 

the highest precision of 84.18% and LG scoring the lowest precision at 38.67%. 
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Figure 4.3: The graph shows the precision and recall balance between the 4 variations of grayscale 
histogram features. The hist_32 feature provides the best balance between precision and recall. 

 

Lastly, the least efficient predictor was the Hu moments with a 43.62% average precision, 

significantly below the other features. This could be due to the low resolution of our images, 

which can cause Hu moment performance to decline [27]. Hu moments were consequently 

removed from further feature analysis.  
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Although the F1 score is our primary metric, we also measure specificity, accuracy, precision, and 

recall for each feature. Of note, the Haralick features had the best average F1 score of all 14 

features, while Haar-like Type-2-X had the best average precision and second-best averaged F1 

score. The Haar-like type-2-x had the best average F1 score among the Haar-like feature types. 

The HOG 16 feature had the best average F1 score among the other HOG variations. The 32-bin 

histogram feature had the best average F1 score among the histogram variations. Lastly, the Hu 

moments had the lowest performance among all 14 features, with an averaged F1 score of 

25.71%. Table 4.2 shows a summary of the 8 classifiers averaged precision, recall, and F1 scores 

for each feature type and variation. We also note the number of features, as that can hinder 

computational efficiency. 

Table 4.2: Averaged metrics across all 8 classifiers for each of the 14 individual features. The 
haralick feature had the highest average F1 score.  

Feature 
Number of 
Features 

Specificity Accuracy Precision Recall 
F1 

Score 

Hu Moments 7 85.94% 65.50% 43.62% 22.70% 25.71% 

Haralick 13 93.64% 90.41% 86.49% 83.64% 84.99% 

LBP 10 93.42% 86.26% 83.48% 71.27% 76.80% 

Histogram 32-
bin 

32 90.29% 82.56% 74.01% 66.35% 69.35% 

Histogram 64-
bin 

64 90.08% 81.60% 73.02% 63.84% 67.50% 

Histogram 128-
bin 

128 89.56% 81.24% 72.20% 63.81% 67.22% 

Histogram 256-
bin 

256 89.31% 80.56% 71.78% 62.24% 66.23% 
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HOG 8 72 95.45% 87.50% 88.70% 70.86% 77.47% 

HOG 12 32 94.26% 87.80% 86.07% 74.27% 79.57% 

HOG 16 8 92.79% 87.94% 83.64% 77.80% 80.44% 

Haar 2-x 10228 97.16% 90.55% 92.55% 76.71% 83.45% 

Haar 2-y 10228 97.09% 90.50% 92.40% 76.69% 83.37% 

Haar 3-x 10228 97.13% 90.51% 92.47% 76.66% 83.39% 

Haar 3-y 10228 97.09% 90.52% 92.40% 76.74% 83.40% 

Haar 4xy 10228 97.08% 90.49% 92.37% 76.69% 83.36% 

 

Lastly, we briefly comment on the classification algorithms and their predictive performance. 

Figure 4.4 plots the classifier performance according to precision for the top 6 feature types. 
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As previously mentioned, the Haar-like feature type and Haralick feature type perform the best. 

The precision scores are fairly consistent across BAG, ETC, GBC, RDF, SVM, and XGBC. In almost 

all cases, the poorest classifiers were KNN and LG. If we disregard KNN and LG, our performance 

improves considerably. 

 

Figure 4.4: Precision scores for Hu moments, Haralick, HOG 16, Histogram 32-bin, LBP and Haar-
like type-2-x features by the individual classifiers. This plot demonstrates classifier performance 
for the 6 feature types.  
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4.2 Combined Features 

After individual feature comparisons, a few feature type combinations were tested with the 8 

classifiers. Our base feature became the Haralick feature over the Haar-like feature because of 

the better precision/recall performance and computational efficiency. In terms of real-time or 

human-in-the-loop processing time complexity becomes important. The haar-like features in 

some cases required hours of training time. In contrast, the Haralick features worst case training 

time was 150 seconds. Table 4.3 shows classifier training times in seconds for the Haralick and 

Haar-like type-2-x features. 

Table 4.3: Training times by classifier for the Haar-like Type-2-x feature and the Haralick feature. 
The Haar-like features, in some cases, are computationally infeasible for real-time processing.  

Feature BAG ETC GBC KNN LG RDF SVM XGB Average 

Haar 2-x 
49145 
(sec) 

588 
(sec) 

14121 
(sec) 

71 
(sec) 

579 
(sec) 

619 
(sec) 

4846 
(sec) 

679 
(sec) 

8831 
(sec) 

Haralick 
150 
(sec) 

31 
(sec) 

91 
(sec) 

5 
(sec) 

5 
(sec) 

59 
(sec) 

37 
(sec) 

13 
(sec) 

49 (sec) 

 

We excluded Hu moments due to their poor performance individually but included LBP as Wang 

et al. suggest performance improvements when paired with HOG features [34]. We note that the 

combinations are not a robust analysis of all possible feature combinations but were selected 

based on individual performance. The 9 feature combinations studied were: 
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● Haralick, Haar Type-2-X 

● Haralick HOG 16 

● Haralick, LBP 

● HOG 16, LBP 

● Haralick, HOG 16, LBP 

● Haralick, HOG 16, Histogram 32 

● Haralick, HOG 16, Haar Type-2-X 

● Haralick, HOG 16, Haar Type-2-X, LBP 

● Haralick, HOG 16, Histogram 32, LBP 

 

Figure 4.5 visualizes the precision scores for each combination by the classifier. The best average 

precision of 93.72% can be seen from the Haralick with Haar-like features combination. Haralick 

and Haar-like features combination had the best precision score of 96.95% using GBC. Following 

Haralick and Haar-like features, the next best average precision was the Haralick, HOG 16, and 

Haar-like features combination at 93.05%. This combination also had the best precision of 96.95% 

using GBC. Average results for all feature combinations can be summarized in Table 4.4. The least 

performing combination with an average precision of 88.33% was Haralick and LBP features. Even 

though this combination performed poorly compared to the other feature combinations, the best 

precision score for this feature combination still reached 93.64% with RDF classification. All 

feature combinations had multiple classifiers reaching scores in the ’90s. Lastly, as was seen with 

the individual feature analysis, the lessor performing classifiers were KNN and LG for all feature 

combinations. 



38 

 

  

 

Table 4.4 below shows the average classifier accuracy for 9 different feature combinations. 

Although Haralick with Haar-like features had the best average precision, this combination did 

not have the best recall/precision ratio or average F1 score. The best average F1 score was with 

the HOG 16 and Haralick features, combination 2 below. 

 

Features 

Figure 4.5: The x-axis represents the 9 different combination features and the y-axis represents 
the precision score. For each feature the precision scores for each 8 classification algorithm is 
plotted. 
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Table 4.4: Averaged metrics across all 8 classifiers for each of the 9 different combination features. 
The haralick and HOG 16 combination had the highest average F1 score, but the highest precision 
was the combination of Haralick and Haar-like Type-2-x features. 

 

 

# Feature 
Number of 
Features 

Specificity Accuracy Precision Recall F1 Score 

1 Haralick, Haar 2-x 10241 97.59% 91.78% 93.72% 79.61% 85.61% 

2 Haralick, HOG 16 21 95.63% 92.86% 90.91% 87.04% 88.88% 

3 Haralick, LBP 23 94.45% 91.28% 88.33% 84.63% 86.39% 

4 HOG 16, LBP 18 96.96% 92.61% 92.89% 83.51% 87.83% 

5 
Haralick, HOG 16, 

LBP 
31 94.89% 91.86% 89.29% 85.51% 87.30% 

6 
Haralick, HOG 16, 
Histogram 32-bin 

53 94.99% 91.62% 89.36% 84.58% 86.84% 

7 
Haralick, HOG 16, 

Haar 2-x 
10249 97.18% 92.21% 93.05% 81.79% 86.92% 

8 
Haralick, HOG 16, 

Haar 2-x, LBP 
10259 97.11% 92.32% 92.92% 82.30% 87.15% 

9 
Haralick, HOG 16, 

LBP, Histogram 
32-bin 

63 95.06% 91.59% 89.47% 84.35% 86.76% 
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Combinations 4, 5, and 8 reach average F1 scores just under combination 2, with combination 8 

and 4 reaching better average precision scores of 92.92% and 92.89%, respectively.  

 

5. Conclusion 

Multiple features and combinations were studied using multiple classifiers for ship detection in 

optical satellite imagery. A curated dataset that consisted of 955 positive samples and 2000 

negative samples, including multiple environments such as near shore, clouds, ship wakes, and 

islands, were created. There were 24 different features and combinations studied, and 8 different 

classification algorithms implemented. The focus of this research was on feature analysis for 

explainability and performance, specifically in limited datasets and human-in-the-loop 

applications. The feature combination of Haralick, Haar-like, HOG, and LBP features achieved the 

best metrics with 97.07% precision, 93.51% recall, and a 95.25% F1 score. The best feature 

combination though in terms of performance and computational efficiency was the Haralick, 

HOG, and Histogram combination, which achieved a precision of 96.18%, a recall score of 92.36%, 

and a 94.23% F1 score. Moreover, removing the Haar-like feature only slightly lowered 

performance metrics. The Haralick features, which have not been used in ship detection 

previously, were the best performers in terms of the balance between precision and recall.   

 

In future studies, feature analysis of LMP features, as well as implementing the top-performing 

features in this study for human-in-the-loop training applications, would be pursued. Also, an in-

depth analysis of Haralick properties for ship detection could provide better means for 
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explainability. Lastly, I’d like to provide a comparison of the features within this research against 

the state-of-the-art algorithms.  
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 Appendix 

A list of the 7 Hu Moments and their formulae: 

ℎ𝑢[0] = 𝑛20 + 𝑛02 

ℎ𝑢[1] = (𝑛20 − 𝑛02)2 + 4𝑛11
2 

ℎ𝑢[2] = (𝑛30 − 3𝑛12)2 + (3𝑛21 − 𝑛03)2 

ℎ𝑢[3] = (𝑛30 + 𝑛12)2 + (𝑛21 + 𝑛03)2 

ℎ𝑢[4] =  (𝑛30 − 3𝑛12)(𝑛30 + 𝑛12)[(𝑛30 + 𝑛12)2 − 3(𝑛21 + 𝑛03)2] + (3𝑛21 − 𝑛03)(𝑛21 +

𝑛03)[3(𝑛30 + 𝑛12)2 − (𝑛21 + 𝑛03)2]  

ℎ𝑢[5] = (𝑛20 − 𝑛02)[(𝑛30 + 𝑛12)2 − (𝑛21 + 𝑛03)2] + 4𝑛11(𝑛30 + 𝑛12)(𝑛21 + 𝑛03) 

ℎ𝑢[0] = (3𝑛21 − 𝑛03)(𝑛21 + 𝑛03)[3(𝑛30 + 𝑛12)2 − (𝑛21 + 𝑛03)2] − (𝑛30 − 3𝑛12)(𝑛21 +

𝑛03)[3(𝑛30 + 𝑛12)2 − (𝑛21 + 𝑛03)2]  

𝑤ℎ𝑒𝑟𝑒 𝑛𝑗𝑖  𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑠 ∶: 𝑛𝑢𝑗𝑖  

 

A list of Haralick features and their formulae:  

𝑝(𝑖, 𝑗) - (𝑖, 𝑗)th entry in a normalized gray-tone spatial dependence matrix, = 𝑃(𝑖, 𝑗)/𝑅. 

𝑝𝑥(𝑖) -  ith entry in the marginal-probability matrix obtained by summing the rows of 𝑝(𝑖, 𝑗), =

 ∑ 𝑃(𝑖, 𝑗)
𝑁𝑔

𝑗=1
. 
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Ng – Number of distinct gray levels in the quantized image. 

𝑝𝑦(𝑗) = ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔

𝑖=1
 

𝑝𝑥+𝑦(𝑘) = ∑ ∑ 𝛿𝑖+𝑗,𝑘𝑝(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
    where k = 2,3,….,2𝑁𝑔.  

𝑝𝑥−𝑦(𝑘) = ∑ ∑ 𝛿|𝑖−𝑗|,𝑘𝑝(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
    where k = 0,1,2,3,….,𝑁𝑔 − 1 and the Kronecker delta function 

𝛿𝑚,𝑛is defined by 𝛿𝑚,𝑛 = {
1 𝑤ℎ𝑒𝑛 𝑚 = 𝑛 
0 𝑤ℎ𝑒𝑛 𝑚 ≠ 𝑛

  

Angular Second Moment: 𝑓1 =  ∑ ∑ {𝑝(𝑖, 𝑗)}2
𝑗𝑖   

Contrast: 𝑓2 = ∑ 𝑛2{∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
}

𝑁𝑔−1

𝑛=0 , where |i-j|=n 

Correlation: 𝑓3 =
 ∑ ∑ (𝑖𝑗)𝑝(𝑖,𝑗)−𝜇𝑥𝜇𝑦𝑗𝑖

𝜎𝑥𝜎𝑦
 

Sum of Squares (Variance): 𝑓4 =  ∑ ∑ (𝑖 − µ)2𝑝(𝑖, 𝑗)𝑗𝑖  

Inverse Difference Moment: 𝑓5 =  ∑ ∑
1

1+(𝑖−𝑗)2 𝑝(𝑖, 𝑗)𝑗𝑖  

Sum Average: 𝑓6 =  ∑ 𝑖𝑝𝑥+𝑦(𝑖)
2𝑁𝑔

𝑖=2
 

Sum Variance: 𝑓7 =  ∑ (𝑖 − 𝑓8)2𝑝𝑥+𝑦(𝑖)
2𝑁𝑔

𝑖=2
 

Sum Entropy: 𝑓8 = − ∑ 𝑝𝑥+𝑦(𝑖)log {𝑝𝑥+𝑦(𝑖)
2𝑁𝑔

𝑖=2
} 

Entropy: 𝑓9 = − ∑ ∑ 𝑝(𝑖, 𝑗)log (𝑝(𝑖, 𝑗))𝑗𝑖  

Difference Variance: 𝑓10 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑝𝑥−𝑦 

Difference Entropy: 𝑓11 = − ∑ 𝑝𝑥−𝑦(𝑖)log {𝑝𝑥−𝑦(𝑖)
𝑁𝑔−1

𝑖=0
} 

Information measures of Correlation 1: 𝑓12 =
𝐻𝑋𝑌−𝐻𝑋𝑌1

max {𝐻𝑋,𝐻𝑌}
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Information measures of Correlation 2: 𝑓13 = (1 − exp [ −2.0 (𝐻𝑋𝑌2 − 𝐻𝑋𝑌)])2, where 

𝐻𝑋𝑌 = − ∑ ∑ 𝑝(𝑖, 𝑗)log (𝑝(𝑖, 𝑗))𝑗𝑖  
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