8 research outputs found

    Staggered oriented airfoil shaped pin-fin heat sink: Investigating the efficacy of novel water based ferric oxide-silica hybrid nanofluid

    Get PDF
    © 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)Nowadays, electronic components are one of the essential parts of almost every smart device. To efficiently transfer the desired amount of heat, recent studies have focused on investigating the potential of advanced thermal coolants and heat sink configurations. Current study reveals the potential of novel water-based hybrid nanofluid of silica (SiO2) and ferric oxide (Fe2O3) for cooling high-heat-generating electronic devices. The experimental work was conducted to inspect the heat transfer characteristics of a uniquely designed staggered oriented airfoil shaped pin-fin heat sink employing Fe2O3-SiO2 hybrid nanofluid with different mixture ratios (25%:75%), (50%:50%), (75%:25%). Airfoil shaped pin-fins offer less resistance to fluid flow and maximum effective area due to their unique shape and delayed separation of fluid at the rear end. All the mixture ratios were tested at three different heating powers (75, 100, 125 W) with varying Reynolds number in laminar flow regime. Experimental results revealed that the fluid having a mixture ratio of 50:50 showed the least thermal resistance followed by 25:75 and 75:25. Maximum enhancement of 17.65% in average Nusselt number was observed against the heating power of 75W. Pumping power was found to increase with the supplementation of nanoparticles in base fluid, while a little variation was observed among different mixture ratios. Finally, the results were compared with recently published studies, which revealed that the airfoil shaped fins have better thermal characteristics and offer less resistance to fluid flow.Peer reviewe

    Serpentine minichannel liquid-cooled heat sinks for electronics cooling applications

    Get PDF
    The increasing density of transistors in electronic components is leading to an inexorable rise in the heat dissipation that must be achieved in order to preserve reliability and performance. Hence, improving the thermal management of electronic devices is a crucial goal for future generations of electronic systems. Therefore, a complementary experimental and numerical investigation of single-phase water flow and heat transfer characteristics of the benefits of employing three different configurations of serpentine minichannel heat sink (MCHS) designs has been performed, to assess their suitability for the thermal management of electronic devices. These heat sinks are termed single (SPSMs), double (DPSMs) and triple path serpentine rectangular minichannels (TPSMs), and their performance is compared, both experimentally and numerically, with that of a design based on an array of straight rectangular minichannels (SRMs) in terms of pressure drop (ΔP), average Nusselt number (Nuavg) and total thermal resistance (Rth). The results showed that the serpentine channel bends are very influential in improving heat transfer by preventing both the hydrodynamic and thermal boundary layers from attaining a fully-developed state. The SPSM design provides the most effective heat transfer, followed by the DPSM and TPSM ones, both of which out-performed the SRM heat sink. The SPSM heat sink produced a 35% enhancement in Nuavg and a 19% reduction in Rth at a volumetric flow rate (Qin) of 0.5 l/min compared to the conventional SRM heat sink. These improvements in the heat transfer are, however, achieved at the expense of significantly larger ΔP. It was found that the incorporation of serpentine minichannels into heat sinks will significantly increase the heat-removal ability, but this must be balanced with the pressure drop requirement. Therefore, an experimental and numerical investigation of the benefit of introducing chevron fins has been carried out to examine the potential of decreasing pressure drop along with further thermal enhancement. This novel design is found to significantly reduce both the ΔP across the heat sink and the Rth by up to 60% and 10%, respectively, and to enhance the Nuavg by 15%, compared with the SPSM heat sink without chevron fins. Consequently, the design of the SPSM with and without chevron fins was then optimised in terms of the minichannel width (Wch) number of minichannels (Nch) and chevron oblique angle (θ). The optimisation process uses a 30 (without chevron fins) and 50 (with chevron fins) point Optimal Latin Hypercubes Design of Experiment, generated from a permutation genetic algorithm, and accurate metamodels built using a Moving Least Square (MLS) method. A Pareto front is then constructed to enable the compromises available between designs with a low pressure drop and those with low thermal resistance to be explored and appropriate design parameters to be chosen. These techniques have then been used to explore the feasibility of using serpentine MCHS and heat spreaders to cool GaN HEMT

    On the role of nanofluids in thermal-hydraulic performance of heat exchangers - a review

    Get PDF
    Heat exchangers are key components in many of the devices seen in our everyday life. They are employed in many applications such as land vehicles, power plants, marine gas turbines, oil refineries, air-conditioning, and domestic water heating. Their operating mechanism depends on providing a flow of thermal energy between two or more mediums of different temperatures. The thermo-economics considerations of such devices have set the need for developing this equipment further, which is very challenging when taking into account the complexity of the operational conditions and expansion limitation of the technology. For such reasons, this work provides a systematic review of the state-of-the-art heat exchanger technology and the progress towards using nanofluids for enhancing their thermal-hydraulic performance. Firstly, the general operational theory of heat exchangers is presented. Then, an in-depth focus on different types of heat exchangers, plate-frame and plate-fin heat exchangers, is presented. Moreover, an introduction to nanofluids developments, thermophysical properties, and their influence on the thermal-hydraulic performance of heat exchangers are also discussed. Thus, the primary purpose of this work is not only to describe the previously published literature, but also to emphasize the important role of nanofluids and how this category of advanced fluids can significantly increase the thermal efficiency of heat exchangers for possible future applications

    Computational Fluid Dynamics 2020

    Get PDF
    This book presents a collection of works published in a recent Special Issue (SI) entitled “Computational Fluid Dynamics”. These works address the development and validation of existent numerical solvers for fluid flow problems and their related applications. They present complex nonlinear, non-Newtonian fluid flow problems that are (in some cases) coupled with heat transfer, phase change, nanofluidic, and magnetohydrodynamics (MHD) phenomena. The applications are wide and range from aerodynamic drag and pressure waves to geometrical blade modification on aerodynamics characteristics of high-pressure gas turbines, hydromagnetic flow arising in porous regions, optimal design of isothermal sloshing vessels to evaluation of (hybrid) nanofluid properties, their control using MHD, and their effect on different modes of heat transfer. Recent advances in numerical, theoretical, and experimental methodologies, as well as new physics, new methodological developments, and their limitations are presented within the current book. Among others, in the presented works, special attention is paid to validating and improving the accuracy of the presented methodologies. This book brings together a collection of inter/multidisciplinary works on many engineering applications in a coherent manner

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    Sustainable energy for a resilient future: proceedings of the 14th International Conference on Sustainable Energy Technologies

    Get PDF
    Volume I, 898 pages, ISBN 9780853583134 Energy Technologies & Renewables Session 1: Biofuels & Biomass Session 5: Building Energy Systems Session 9: Low-carbon/ Low-energy Technologies Session 13: Biomass Systems Session 16: Solar Energy Session 17: Biomass & Biofuels Session 20: Solar Energy Session 21: Solar Energy Session 22: Solar Energy Session 25: Building Energy Technologies Session 26: Solar Energy Session 29: Low-carbon/ Low-energy Technologies Session 32: Heat Pumps Session 33: Low-carbon/ Low-energy Technologies Session 36: Low-carbon/ Low-energy Technologies Poster Session A Poster Session B Poster Session C Poster Session E Volume II, 644 pages, ISBN 9780853583141 Energy Storage & Conversion Session 2: Heating and Cooling Systems Session 6: Heating and Cooling Systems Session 10: Ventilation and Air Conditioning Session 14: Smart and Responsive Buildings Session 18: Phase Change Materials Session 23: Smart and Responsive Buildings Session 30: Heating and Cooling System Session 34: Carbon Sequestration Poster Session A Poster Session C Poster Session D Policies & Management Session 4: Environmental Issues and the Public Session 8: Energy and Environment Security Session 12: Energy and Environment Policies Poster Session A Poster Session D Volume III, 642 pages, ISBN 9780853583158 Sustainable Cities & Environment Session 3: Sustainable and Resilient Cities Session 7: Energy Demand and Use Optimization Session 11: Energy Efficiency in Buildings Session 15: Green and Sustainable Buildings Session 19: Green Buildings and Materials Session 24: Energy Efficiency in Buildings Session 27: Energy Efficiency in Buildings Session 28: Energy Efficiency in Buildings Session 31: Energy Efficiency in Buildings Session 35: Energy Efficiency in Buildings Poster Session A Poster Session D Poster Session

    Recent Development of Hybrid Renewable Energy Systems

    Get PDF
    Abstract: The use of renewable energies continues to increase. However, the energy obtained from renewable resources is variable over time. The amount of energy produced from the renewable energy sources (RES) over time depends on the meteorological conditions of the region chosen, the season, the relief, etc. So, variable power and nonguaranteed energy produced by renewable sources implies intermittence of the grid. The key lies in supply sources integrated to a hybrid system (HS)
    corecore