407 research outputs found

    Low-complexity algorithms for automatic detection of sleep stages and events for use in wearable EEG systems

    Get PDF
    Objective: Diagnosis of sleep disorders is an expensive procedure that requires performing a sleep study, known as polysomnography (PSG), in a controlled environment. This study monitors the neural, eye and muscle activity of a patient using electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) signals which are then scored in to different sleep stages. Home PSG is often cited as an alternative of clinical PSG to make it more accessible, however it still requires patients to use a cumbersome system with multiple recording channels that need to be precisely placed. This thesis proposes a wearable sleep staging system using a single channel of EEG. For realisation of such a system, this thesis presents novel features for REM sleep detection from EEG (normally detected using EMG/EOG), a low-complexity automatic sleep staging algorithm using a single EEG channel and its complete integrated circuit implementation. Methods: The difference between Spectral Edge Frequencies (SEF) at 95% and 50% in the 8-16 Hz frequency band is shown to have high discriminatory ability for detecting REM sleep stages. This feature, together with other spectral features from single-channel EEG are used with a set of decision trees controlled by a state machine for classification. The hardware for the complete algorithm is designed using low-power techniques and implemented on chip using 0.18μm process node technology. Results: The use of SEF features from one channel of EEG resulted in 83% of REM sleep epochs being correctly detected. The automatic sleep staging algorithm, based on contextually aware decision trees, resulted in an accuracy of up to 79% on a large dataset. Its hardware implementation, which is also the very first complete circuit level implementation of any sleep staging algorithm, resulted in an accuracy of 98.7% with great potential for use in fully wearable sleep systems.Open Acces

    EEG sleep stages identification based on weighted undirected complex networks

    Get PDF
    Sleep scoring is important in sleep research because any errors in the scoring of the patient's sleep electroencephalography (EEG) recordings can cause serious problems such as incorrect diagnosis, medication errors, and misinterpretations of patient's EEG recordings. The aim of this research is to develop a new automatic method for EEG sleep stages classification based on a statistical model and weighted brain networks. Methods each EEG segment is partitioned into a number of blocks using a sliding window technique. A set of statistical features are extracted from each block. As a result, a vector of features is obtained to represent each EEG segment. Then, the vector of features is mapped into a weighted undirected network. Different structural and spectral attributes of the networks are extracted and forwarded to a least square support vector machine (LS-SVM) classifier. At the same time the network's attributes are also thoroughly investigated. It is found that the network's characteristics vary with their sleep stages. Each sleep stage is best represented using the key features of their networks. Results In this paper, the proposed method is evaluated using two datasets acquired from different channels of EEG (Pz-Oz and C3-A2) according to the R&K and the AASM without pre-processing the original EEG data. The obtained results by the LS-SVM are compared with those by Naïve, k-nearest and a multi-class-SVM. The proposed method is also compared with other benchmark sleep stages classification methods. The comparison results demonstrate that the proposed method has an advantage in scoring sleep stages based on single channel EEG signals. Conclusions An average accuracy of 96.74% is obtained with the C3-A2 channel according to the AASM standard, and 96% with the Pz-Oz channel based on the R&K standard

    Sleep Stage Classification: A Deep Learning Approach

    Get PDF
    Sleep occupies significant part of human life. The diagnoses of sleep related disorders are of great importance. To record specific physical and electrical activities of the brain and body, a multi-parameter test, called polysomnography (PSG), is normally used. The visual process of sleep stage classification is time consuming, subjective and costly. To improve the accuracy and efficiency of the sleep stage classification, automatic classification algorithms were developed. In this research work, we focused on pre-processing (filtering boundaries and de-noising algorithms) and classification steps of automatic sleep stage classification. The main motivation for this work was to develop a pre-processing and classification framework to clean the input EEG signal without manipulating the original data thus enhancing the learning stage of deep learning classifiers. For pre-processing EEG signals, a lossless adaptive artefact removal method was proposed. Rather than other works that used artificial noise, we used real EEG data contaminated with EOG and EMG for evaluating the proposed method. The proposed adaptive algorithm led to a significant enhancement in the overall classification accuracy. In the classification area, we evaluated the performance of the most common sleep stage classifiers using a comprehensive set of features extracted from PSG signals. Considering the challenges and limitations of conventional methods, we proposed two deep learning-based methods for classification of sleep stages based on Stacked Sparse AutoEncoder (SSAE) and Convolutional Neural Network (CNN). The proposed methods performed more efficiently by eliminating the need for conventional feature selection and feature extraction steps respectively. Moreover, although our systems were trained with lower number of samples compared to the similar studies, they were able to achieve state of art accuracy and higher overall sensitivity

    Sleep Stages Classification Using Spectral Based Statistical Moments as Features

    Get PDF
    In the pursuit of highly effective and efficient portable sleep classification systems, researchers have been testing a massive number of combinations of EEG features and classifiers.  State of art sleep classification ensembles achieve accuracy in the order of 90%.  However, there is presently no consensus regarding the best setof features for sleep staging with single channel EEG, leading researchers to modify feature selection according to the number of classification stages. This paper introduces a reduced set of frequency-domain features capable of yielding high classification accuracy (90.9%, 91.8%, 92.4%, 94.3% and 97.1%) for all 6- to 2-state sleep stages.  The proposed system uses fast Fourier transform (FFT) to convert data from Pz-Oz EEG channel into the frequency domain. Afterwards, eight statistical features are extracted from specific frequency ranges and fed into a random forest classifier

    Automated analysis of sleep study parameters using signal processing and artificial intelligence.

    Get PDF
    An automated sleep stage categorization can readily face noise-contaminated EEG recordings, just as other signal processing applications. Therefore, the denoising of the contaminated signals is inevitable to ensure a reliable analysis of the EEG signals. In this research work, an empirical mode decomposition is used in combination with stacked autoencoders to conduct automatic sleep stage classification with reliable analytical performance. Due to the decomposition of the composite signal into several intrinsic mode functions, empirical mode decomposition offers an effective solution for denoising non-stationary signals such as EEG. Preliminary results showed that through these intrinsic modes, a signal with a high signal-to-noise ratio can be obtained, which can be used for further analysis with confidence. Therefore, later, when statistical features were extracted from the denoised signals and were classified using stacked autoencoders, improved results were obtained for Stage 1, Stage 2, Stage 3, Stage 4, and REM stage EEG signals using this combination

    Usefulness of Artificial Neural Networks in the Diagnosis and Treatment of Sleep Apnea-Hypopnea Syndrome

    Get PDF
    Sleep apnea-hypopnea syndrome (SAHS) is a chronic and highly prevalent disease considered a major health problem in industrialized countries. The gold standard diagnostic methodology is in-laboratory nocturnal polysomnography (PSG), which is complex, costly, and time consuming. In order to overcome these limitations, novel and simplified diagnostic alternatives are demanded. Sleep scientists carried out an exhaustive research during the last decades focused on the design of automated expert systems derived from artificial intelligence able to help sleep specialists in their daily practice. Among automated pattern recognition techniques, artificial neural networks (ANNs) have demonstrated to be efficient and accurate algorithms in order to implement computer-aided diagnosis systems aimed at assisting physicians in the management of SAHS. In this regard, several applications of ANNs have been developed, such as classification of patients suspected of suffering from SAHS, apnea-hypopnea index (AHI) prediction, detection and quantification of respiratory events, apneic events classification, automated sleep staging and arousal detection, alertness monitoring systems, and airflow pressure optimization in positive airway pressure (PAP) devices to fit patients’ needs. In the present research, current applications of ANNs in the framework of SAHS management are thoroughly reviewed

    Machine learning with ensemble stacking model for automated sleep staging using dual-channel EEG signal

    Get PDF
    Abstract Sleep staging is an important part of diagnosing the different types of sleep-related disorders because any discrepancies in the sleep scoring process may cause serious health problems such as misinterpretations of sleep patterns, medication errors, and improper diagnosis. The best way of analyzing sleep staging is visual interpretations of the polysomnography (PSG) signals recordings from the patients, which is a quite tedious task, requires more domain experts, and time-consuming process. This proposed study aims to develop a new automated sleep staging system using the brain EEG signals. Based on a new automated sleep staging system based on an ensemble learning stacking model that integrates Random Forest (RF) and eXtreme Gradient Boosting (XGBoosting). Additionally, this proposed methodology considers the subjects' age, which helps analyze the S1 sleep stage properly. In this study, both linear (time and frequency) and non-linear features are extracted from the pre-processed signals. The most relevant features are selected using the ReliefF weight algorithm. Finally, the selected features are classified through the proposed two-layer stacking model. The proposed methodology performance is evaluated using the two most popular datasets, such as the Sleep-EDF dataset (S-EDF) and Sleep Expanded-EDF database (SE-EDF) under the Rechtschaffen & Kales (R&K) sleep scoring rules. The performance of the proposed method is also compared with the existing published sleep staging methods. The comparison results signify that the proposed sleep staging system has an excellent improvement in classification accuracy for the six-two sleep states classification. In the S-EDF dataset, the overall accuracy and Cohen's kappa coefficient score obtained by the proposed model is (91.10%, 0.87) and (90.68%, 0.86) with inclusion and exclusion of age feature using the Fpz-Cz channel, respectively. Similarly, the Pz-Oz channel's performance is (90.56%, 0.86) with age feature and (90.11%, 0.86) without age feature. The performed results with the SE-EDF dataset using Fpz-Cz channel is (81.32%, 0.77) and (81.06%, 0.76), using Pz-Oz channel with the inclusion and exclusion of the age feature, respectively. Similarly the model achieved an overall accuracy of 96.67% (CT-6), 96.60% (CT-5), 96.28% (CT-4),96.30% (CT-3) and 97.30% (CT-2) for with 16 selected features using S-EDF database. Similarly the model reported an overall accuracy of 85.85%, 84.98%, 85.51%, 85.37% and 87.40% for CT-6 to CT-2 with 18 selected features using SE-EDF database
    corecore