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Abstract

Objective: Diagnosis of sleep disorders is an expensive procedure that requires per-

forming a sleep study, known as polysomnography (PSG), in a controlled environment.

This study monitors the neural, eye and muscle activity of a patient using electroen-

cephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) signals which

are then scored in to different sleep stages. Home PSG is often cited as an alternative

of clinical PSG to make it more accessible, however it still requires patients to use a

cumbersome system with multiple recording channels that need to be precisely placed.

This thesis proposes a wearable sleep staging system using a single channel of EEG.

For realisation of such a system, this thesis presents novel features for REM sleep de-

tection from EEG (normally detected using EMG/EOG), a low-complexity automatic

sleep staging algorithm using a single EEG channel and its complete integrated circuit

implementation.

Methods: The difference between Spectral Edge Frequencies (SEF) at 95% and 50%

in the 8-16 Hz frequency band is shown to have high discriminatory ability for detecting

REM sleep stages. This feature, together with other spectral features from single-channel

EEG are used with a set of decision trees controlled by a state machine for classification.

The hardware for the complete algorithm is designed using low-power techniques and

implemented on chip using 0.18µm process node technology.

Results: The use of SEF features from one channel of EEG resulted in 83% of REM

sleep epochs being correctly detected. The automatic sleep staging algorithm, based

on contextually aware decision trees, resulted in an accuracy of up to 79% on a large

dataset. Its hardware implementation, which is also the very first complete circuit-level

implementation of any sleep staging algorithm, resulted in an accuracy of 98.7% with

great potential for use in fully wearable sleep systems.
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1 Introduction

1.1 Overview

Diagnosis and treatment of various medical conditions has traditionally been performed in

a controlled clinical setting under strict supervision of physicians. Typically, this requires

multiple visits to a clinic as well as possible admissions for prolonged periods in cases

where continuous monitoring of the patient is desired. The soaring costs of healthcare

together with rising human population is putting a lot of strain on this healthcare model

resulting in longer waiting times to be seen by a specialist.

The recent advances in biomedical and healthcare technology have shown great poten-

tial in shifting some of the clinical monitoring and diagnosis to the patient’s home. This

would not only relieve some burden from the hospital resources but also provide medical

care to a larger cohort of the population. Realisation of this idea, however, requires

medical equipment and devices that are small in size, lower in cost than their traditional

counterparts, safe, easy and comfortable to use as well as provide reliable results. Conse-

quently, there has been a great deal of research and commercial focus on miniaturisation

of devices to design wearable health systems. An ideal wearable device would not only

monitor the patient’s physiological signals but also be intelligent enough to assist the

physician in decision-making by looking for common patterns and interpreting the re-

sults for speedy diagnosis. It cannot be stressed enough that a wearable medical device

is not a substitute for physicians but rather a tool to complement them by saving their,

as well as, patients’ time.

Wearable devices have the potential to revolutionise healthcare services at the hospitals

as well as homes. For hospital use, the presence of trained clinicians does not require

patients to handle medical devices. However, for home usage, the design of devices should

cater for the absence of clinicians and make it extremely easy for patients to handle the

device with confidence. A typical such device would entail a wireless non-invasive sensor

that transmits data to a small hand-held unit. This unit, which would incorporate

some sort of processing, can then analyse the data and then store or transmit it to a

clinic. Furthermore, such a device should be able to integrate seamlessly in the normal

lifestyle of patients without causing any hindrance or requiring any significant change.

The ubiquity of smartphones with wireless connectivity and powerful processors provides

a useful platform for integration with wearable sensors reducing development costs of

wearable medical devices by lending some of their powerful features to these devices.
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Figure 1.1: The two system design approaches for a wireless wearable device: (a) with signal
processing at the sensor node; (b) with signal processing at the receiver end.

The inherent nature of truly wearable devices that include tiny sensors, wireless trans-

mission and long hours of operation makes them very challenging to design. Their de-

velopment involves work in a resource-constrained environment with extreme limitations

on available power budget, device size and computational resources depending on their

potential target application. On a system level, the various areas of development in-

clude sensor design, human factors, data transmission protocol, signal conditioning and

processing, data integrity and security.

Figure 1.1 shows two possible architectures of a wireless wearable device at a simplistic

level. It includes an analogue front end for data acquisition and signal conditioning, a

signal processing block, wireless data transmitter and a receiver. The only difference

between the two architectures is the placement of the signal processing block in the data

pipeline. Signal processing is a key part of the design that adds intelligence to the sensor

or device to aid in decision-making thereby reducing a physician’s time spent per case,

consequently reducing costs and making healthcare accessible to more people.

The first approach in Figure 1.1(a) allows for signals to be processed on the sensor prior

to transmission. However, with device size being small and having limited power budget,

signal processing techniques ought to be of low-complexity without compromising on

end results. These restrictions make the sensor design more challenging if this approach

is used. However, this architecture has the advantage of reduced data transmission

bandwidth. With the second architecture shown in Figure 1.1(b), most or all of signal

processing is performed at the receiver end. In this case all the raw data is transmitted

to the receiver (e.g. a tablet or smartphone) where complex signal processing techniques

can be applied with the availability of more power and computing resources. However,

the transmission stage consumes more power with this approach due to a higher data

rate.
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This thesis focuses on the development of low power signal processing algorithms that

identify diagnostically useful patterns observed on electroencephalogram (EEG) signals

recorded from the brain during sleep. It primarily focuses on algorithms for the first

architecture but also explores the design considerations required for the transmission of

raw or compressed EEG signals in the second approach. The design of algorithms, their

performances and hardware implementation are discussed in detail.

1.2 Thesis structure

This thesis is organised into five major chapters with four additional appendices. The

main contributions of each are summarised below.

Chapter 2 - Sleep: What is it, why is it important and how is it

monitored?

In this chapter, the different stages of human sleep are introduced. Several health condi-

tions and disorders that can affect sleep are briefly discussed followed by their financial

impact on the economy. The current clinical practice in the diagnosis of sleep disorders

are discussed and the limitations and drawbacks of this are explained. The current prac-

tice involves analysis of a patient’s sleep by monitoring his neural, eye movement and

muscle activities. The signals acquired from these activities are visually analysed and

classified into one of the different stages of sleep. It is argued that this process is costly

and time consuming for both doctors and patients and consequently puts a strain on the

healthcare system resulting in fewer patients getting the required treatment. A compre-

hensive literature review is presented in this chapter to explain how different researchers

have proposed several methods to automate the classification of sleep signals. Further, a

review of commercial systems and their performances is also covered. Finally, a wearable

system for sleep monitoring is proposed that can overcome the limitations of existing sys-

tems. The design and implementation challenges associated with this proposed system

are then discussed in detail.

Chapter 3 - Performance assessment of automatic sleep staging

algorithms

A number of automatic sleep staging algorithms have been proposed in the last four

decades. However, comparison between them is challenging because of varying metrics

used to characterise their performances. The use of different databases or sections of data

from same databases complicates this further since the performance of certain algorithms

are dependent on the source of signals used. The prevalence of two different rules of sleep

classification also adds to this problem.
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In this chapter, a set of recommendations is proposed for uniform performance assess-

ment of sleep staging algorithms. It is argued that public databases should be used to

characterise the performance of an algorithm. Several public databases are briefly dis-

cussed and a set of guidelines is presented to extract data from these databases so that

the same sections of data are used across the board. This is followed by the minimum set

of metrics that should be calculated to highlight the detection accuracy of an algorithm

during the different stages of sleep. A sleep staging algorithm is then presented as an

example to show how these recommendations are to be used. Finally, with this algorithm

three different cases are used to illustrate how seemingly similar results using different

databases can be totally misleading. These cases confirm the need to use standardised

performance metrics for sleep staging algorithms.

Chapter 4 - REM sleep detection using single channel EEG

The push towards low-power and wearable sleep systems requires using the minimum

number of recording channels to enhance battery life, keep processing load small and

be more comfortable for the user. Since most sleep stages can be identified using EEG

traces, enormous power savings could be achieved by using a single channel of EEG.

However, detection of Rapid Eye Movement (REM) sleep - an important sleep stage -

from one channel EEG is challenging due to its electroencephalographic similarities with

N1 and Wake stages. This limitation is one of the bottlenecks in the realisation of the

system proposed in this thesis.

This chapter investigates a novel feature in sleep EEG that demonstrates high discrim-

inatory ability for detecting REM phases. The discriminatory ability of this feature is

quantified and studied in different EEG channels. This feature, which is based on spec-

tral edge frequency (SEF) in the 8–16 Hz frequency band, is then used together with the

absolute power and the relative power of the signal, to develop a simple REM detection

algorithm. The performance of the proposed algorithm is evaluated with overnight single

channel EEG recordings from different sources. Finally, the results are compared against

the performance of other algorithms that have been evaluated on the same database.

Chapter 5 - Automatic sleep staging using state machine-controlled

decision trees

In this chapter a novel sleep staging algorithm is presented to work within the constraints

of a wearable system discussed in Chapter 2. This algorithm uses several frequency do-

main features extracted from one frontal EEG channel including the features investigated

in Chapter 4. These features are then classified using a set of state machine-controlled

decision trees.

In a conventional decision tree there is only one entry point in the tree resulting in

several redundant nodes of analysis during different sleep stages. This results in a long
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path from the entry point to the final classified result. The classifier in this algorithm

has been specifically designed to use simpler features and reduce the number of analysis

nodes required, making it suitable for use in a resource-constrained wearable sleep staging

system. It is essentially a set of contextually aware decision trees that are activated based

on the current stage of sleep. The design of each decision tree and the features required for

them are discussed in detail. Finally, the performance of this algorithm is demonstrated

using two public databases.

Chapter 6 - Integrated circuit design and implementation of an

automatic sleep staging algorithm

This chapter presents the first complete hardware implementation of a sleep staging

algorithm. The algorithm, proposed in Chapter 5, is implemented as a digital application

specific integrated circuit (ASIC) in 0.18µm technology. It has four major blocks: Input

controller, Fourier transform, Feature calculation and Classifier. The design of each block

is covered in complete detail including its constituent modules. Several design techniques

have been used to ensure there is less logic required for arithmetic computations. Further,

the choices made to optimise area, meet timing and reduce power consumption of the

system are also explained.

Later in this chapter, the algorithm performance after its hardware implementation is

compared against the reference algorithm by simulating the hardware. It is then syn-

thesised to produce a gate-level netlist which is formally verified against the hardware

description to ensure its equivalence and simulated again for functional equivalence. Fi-

nally, the netlist of the design is placed and routed to generate the complete layout of

the sleep staging system, which is also verified for logic and functional equivalence.

Appendix A - Databases

It is proposed in Chapter 3 that public databases should be used to evaluate the perfor-

mance of a sleep staging algorithm. Details about the different freely available databases

are presented in this chapter.

Appendix B - An open-source toolbox for standardised use of

PhysioNet sleep EDF expanded database

PhysioNet Sleep EDF database has been the most popular source of data used for de-

veloping and testing many automatic sleep staging algorithms. However, the recordings

from this database have been used in an inconsistent fashion. This includes, for example,

arbitrary selection of start and end times from long term recordings, data-hypnogram mis-

matches and different performance metrics. All these differences result in different data

sections and performance metrics being used by researchers thereby making any direct
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comparison between algorithms very difficult. Recently, a superset of this database has

been made available on PhysioNet, known as the Sleep EDF Expanded Database which

includes 61 recordings. This provides an opportunity to standardise the way in which

signals from this database should be used. With this goal in mind, this chapter presents

a toolbox for automatically downloading and extracting recordings from the Sleep EDF

Expanded database and converting them to a suitable format for use in Matlab. This

toolbox contains functions for selecting appropriate data for sleep analysis (based on the

recommendations in Chapter 3), hypnogram conversion and computation of performance

metrics. Its use makes it simpler to start using the new sleep database and also provides

a foundation for much needed standardisation in this research field.

Appendix C - Automatic detection of sleep spindles

A sleep spindle is an important transient observed on the EEG during a certain stage of

sleep. It is highly useful for the identification of this particular sleep stage and is also

a subject of research to understand its importance. This chapter presents a literature

review of various automatic sleep spindle detection algorithms and then proposes two

algorithms for automatic identification of spindles from a single channel of EEG. The

first algorithm, designed to maximise detection accuracy, uses Teager Energy Operator

(TEO) and Spectral Edge Frequency (SEF) in the frequency band of interest. The

second algorithm is designed to be of low complexity such that it is suitable for use in

wearable devices. For this, line length of the signal is used as the characteristic feature for

spindle detection. It is also implemented on a MSP430 microcontroller to demonstrate its

low power consumption. Finally, the performances of the two algorithms are compared

against the methods reviewed earlier.

Appendix D - Compression in wearable sensor nodes for data

transmission and storage

An alternative approach for designing a wearable sleep scoring system involves performing

signal analysis at the receiver end and either transmitting raw EEG data from the sensor

or storing it on the sensor node itself using flash memory. However, to save transmission

bandwidth and lower the power consumption it is essential to compress this data.

This chapter presents a low power MSP430-based compressive sensing implementa-

tion for providing such compression, focusing particularly on the impact of the sensor

node architecture on the compression performance. Compression power performance is

compared for four different sensor nodes incorporating different strategies for wireless

transmission/on-sensor-node local storage of data.

28



2 Sleep: What is it, why is it important

and how is it monitored?

2.1 Introduction

Sleep is a state of unconsciousness from which a person can be aroused [1]. It is considered

a necessity of life for humans and animals alike and is essential to their physical and

emotional wellbeing. It is a natural state of reduced alertness during which the response

of human body to external stimuli decreases. The complexities of sleep are not well

known but it is understood to be an active state during which there is an increase in

the rate of anabolism. The importance of healthy sleep can be characterised by the fact

that its deprivation leads to reduced physical performance, mental awareness and body

temperature as well as a decrease in immune system function and an increase in heart

rate variability [2]. Sleep accounts for approximately one-third of our lifetime and poor

sleep leads to an overall decrease in the quality of life.

Stages of sleep

Human sleep is broadly classified into two distinct oscillatory phases based on the eye

movements during sleep. These are known as Rapid Eye Movement (REM) and Non-

Rapid Eye Movement (NREM). The NREM phase is further divided into different stages.

According to Rechtschaffen and Kales (R&K) rules for classification of sleep stages [3],

published in 1968, NREM is further classified into Stages 1, 2, 3 and 4 known as S1,

S2, S3 and S4 respectively. In 2007 the American Academy of Sleep Medicine (AASM)

published a set of revised guidelines [4] based on which NREM is subdivided into N1, N2

and N3 stages. Both R&K and AASM classifications include Wake (W) and REM (R)

stages while the former also includes an additional Movement Time (MT) stage. The

complete cycle from the start of N1 to the end of REM stage takes about 90 minutes.

The cycle then repeats depending on the duration of sleep, typically 4 to 5 times during

a full night’s sleep. The transition from one sleep state to another and the duration of

each state gives useful insight when performing sleep analysis to diagnose sleep disorders.
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2.1.1 Sleep disorders

Overview

It is estimated that more than 3.5 million people in the United Kingdom [5] and more

than 70 million people in United States suffer from some sort of sleep disorder [6], having

a huge financial impact on the economy stemming from expensive treatments, reduced

productivity, road accidents and many other areas that involve alertness and quick judge-

ment. Common sleep disorders include obstructive sleep apnea (OSA) causing disruption

of sleep by interruption of breathing; REM Sleep Behaviour Disorder (RBD) involving

abnormal behaviour during REM phase of sleep and Circadian Rhythm Disorders related

to jet lag, shift work, etc. These may manifest in the form of sleep deprivation, disruptive

sleep, excessive sleepiness and other sleep-related abnormalities and can be fatal if left

untreated.

Diagnosis

Diagnosis of sleep disorders is an expensive procedure that requires performing a sleep

study in a controlled environment, usually at specialised sleep clinics, to monitor mul-

tiple parameters and physiological signals during sleep. These may include neural ac-

tivity (EEG), eye movements (EOG), muscle activity (EMG), heart rhythms (ECG)

and breathing functions. Together these signals, or a combination of them, are used to

perform sleep scoring and identify, or rule out, the presence of multiple sleep disorders.

The sleep studies performed at clinics invariably involve a long waiting time before

a patient can be seen. This is because of the limited spaces at such specialised clinics

where resources need to be freed up before new patients can be taken in. In the United

Kingdom, the waiting period from a GP referral to an actual sleep study can be as long

as three years [7]. For this reason, some studies are increasingly being performed at the

home of patients with the help of portable devices to do early screening and, in some

cases, full testing. The different types of sleep studies are discussed in the next section.

2.1.2 Types of sleep studies

The AASM has classified sleep studies into four types based on where the study is per-

formed and which signals are monitored. The different types and the signals recorded

for each are shown in Figure 2.1 and further explained below.

Type 1

This is the gold standard of sleep studies that is performed at sleep clinics in the presence

of trained personnel at all times. The signals monitored in this type of study include

EEG, EOG, EMG, ECG, airflow, oxygen saturation and more if required.
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Figure 2.1: Types of PSG and their application [8]

Type 2

This type involves recording of all signals as in Type 1 but is performed out of the clinic

at a patient’s home. It does not require the presence of trained personnel but needs the

patient to put on all the electrodes and probes appropriately.

Type 3

In this type, a subset of only four physiological signals are recorded. These include two

respiratory signals together with the ECG and oxygen saturation using a portable device

at home without the need for trained personnel.

Type 4

This is the simplest level of sleep study that is useful for early screening that may lead

to a complete sleep study later. In this type, a maximum of two signals are recorded

(airflow and/or oxygen saturation) using a portable device at home without the need for

the presence of trained personnel.

Discussion

Type 1 sleep study, which involves recording maximum information and is the clinical gold

standard is known as Polysomnography (PSG). Recently, several commercial portable

devices have been available that make it possible to perform PSG at home (Type 2).

This type of study is commonly referred to as Home PSG (HPSG). Of the four types of

sleep studies only the first two types (1 and 2) record the EEG, EOG and EMG signals

that are needed to determine the different stages and parameters of sleep accurately.
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This thesis focuses on scoring of sleep stages for both Type 1 and Type 2 studies. The

next section discusses PSG in detail and looks at the characteristics of signals required

for sleep scoring.

2.2 Polysomnography

Polysomnography is usually performed at sleep clinics in the presence of trained tech-

nicians, typically using four to six EEG electrodes, two EOG electrodes, four EMG

electrodes, two ECG electrodes and additional sensors such as pulse oximeter, sound

probes, etc. All these sensors monitor various body functions and are connected to a

central processing device where the signals are recorded and stored for future analysis.

The types and quantities of sensors used may differ depending on the sleep disorder that

the physician is attempting to diagnose. Figure 2.2 shows an illustration of a patient

with all sensors attached for PSG.

Figure 2.2: Illustration of a patient with sensors attached for PSG [9]

Recordings from all sensors are grouped together and analysed by trained technicians in

blocks of 30-second epochs. An example of PSG analysis waveforms is shown in Figure 2.3.

The technicians use visual analysis of key waveform patterns and signal characteristics

such as frequency content information and peak-to-peak voltage to mark the 30-second

epochs. The sleep stages are determined by analysing the EEG, EOG and EMG signals.

These are briefly discussed in the remainder of this section.

32



F
ig
u
re

2
.3
:
A

ty
p
ic
a
l
se
t
o
f
P
S
G

a
n
a
ly
si
s
w
a
ve
fo
rm

s
[1
0
]

33



2.2.1 EEG

Electroencephalography is a method of recording the neural activity of the brain. The

electrical signal recorded is known as an electroencephalogram or EEG. To record EEG,

electrodes are placed on the scalp with a front end system involving differential amplifiers

and filters. EEG provides vital information for diagnosis of numerous disorders and the

overall health of brain.

Configuration

Electrodes to record EEG signals are placed on the scalp according to the standard

International 10-20 system as shown in Figure 2.4. For sleep staging, four to six electrodes

are used to acquire signals from different locations on the scalp.

Figure 2.4: EEG electrode placement according to 10-20 system [4]

2.2.2 EOG

An electrooculogram (EOG) is a signal that provides information about the eye move-

ment activity. The technique used to produce this signal is called electrooculography. It

involves placement of electrodes near the eyes and recording the electrical activity pro-

duced due to their movement. Electrode placement configurations to record EOG signals

from left and right eye are shown in Figure 2.5. During the REM stage of sleep these

signals become very important since they indicate major eye movement activity which

is mostly absent during the NREM stages. The eye movements are also observed during

Wake stages and tend to slow down with the onset of sleep.
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(a) (b)

Figure 2.5: Electrode placement configurations for EOG recording [4]

2.2.3 EMG

An electromyogram (EMG) is a signal that provides information about the muscle move-

ment activity. A full PSG study involves recording the leg movement and chin EMG. The

former is useful for diagnosis of periodic limb movement disorder while the latter helps in

identifying Wake and REM stages and differentiating them from other sleep stages with

similar EEG characteristics.

2.3 Sleep staging rules

The EEG, EOG and EMG signals are segmented into epochs of 30 seconds. These epochs

are visually analysed based on a set of rules and consequently assigned a sleep stage. The

first set of rules for scoring of sleep were published in 1968 by Rechtschaffen and Kales,

and are commonly known as R&K rules [3]. These rules were revised in 2007 and some

changes were recommended to address and overcome some of their inherent limitations.

The updated set is known as the AASM (American Academy of Sleep Medicine) rules [4].

However, despite the revised rules, R&K rules are still widely used while the AASM rules

are gradually being adopted. The two sets of rules of briefly explained below.

2.3.1 R&K rules of sleep staging

Wake

An epoch is classified as Wake (W) if the EEG derivations show the presence of alpha

(8-13 Hz) activity together with low voltage and mixed frequency activity.

S1

Stage 1 is characterised by the presence of low voltage and mixed frequency activity on

the EEG but without the presence of eye movements on the EOG.
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S2

Stage 2 is identified by the presence of sleep transients known as sleep spindles and

k-complexes observed on the EEG signals. Spindles are defined as a burst of 12-14 Hz

waves with a duration of at least 0.5 seconds. A K-complex is defined as an isolated sharp

negative wave followed by a positive component and duration of more than 0.5 seconds.

The presence of either of these two transients and a lack of slow wave activity is used to

classify an epoch as Stage 2 of sleep.

S3

An epoch is marked as Stage 3 when its EEG content consists of between 20-50% of high

amplitude delta (0.5-2 Hz) waves. The amplitude of these slow waves are more than

75 µV.

S4

Stage 4 is similar to S3 except that the EEG contains delta waves for more than 50% of

the epoch duration. Together S3 and S4 stages are are also known as slow wave sleep

(SWS).

REM

REM sleep is identified with the presence of low voltage and mixed frequency EEG similar

to what is seen during Stage 1. It is differentiated with the presence of eye movements

on the EOG.

Movement Time

An epoch is classified as Movement Time (MT) when the EEG and EOG signals are

obscured for more than half of the epoch duration.

2.3.2 AASM rules of sleep staging

Wake

An epoch is classified as W when more than 50% of it visibly consists of alpha (8-

13 Hz) activity. If there is a large amount of artefact in an epoch (suggesting significant

movement of body) it will be marked as W if the alpha rhythms are visible, otherwise it

is scored as the stage that follows this epoch.

N1

If an epoch consists of less than 50% of alpha (8-13 Hz) rhythms and more than 50% of

theta (4-7 Hz) rhythms, it will marked as stage 1 of NREM sleep, known as N1.
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N2

This stage of sleep is identified by the presence of either or both of two distinct features

of sleep: sleep spindles and k-complexes. K-complex is defined as “a well delineated

negative sharp wave immediately followed by a positive component standing out from

the background EEG with total duration ≥ 0.5 seconds” [4]. Sleep spindle is defined

as “a train of distinct waves with frequency 11-16 Hz (most commonly 12-14 Hz) with

a duration ≥ 0.5 seconds” [4]. N2 stage can be marked with the appearance of sleep

spindles and/or K-complexes.

N3

This stage is scored when more than 20% of an epoch consists of waves in the range

of 0.5-2 Hz, with peak-to-peak amplitude of 75 µV or more as an optionally additional

criterion. It is also known as slow wave sleep (SWS).

REM

An epoch is scored as REM when eye movement activity can be observed on data sourced

from EOG electrodes while the EEG activity is similar to that observed during N1 stage.

Additionally, chin EMG tone falls during this stage, which can also be used for classifi-

cation of REM.

2.3.3 Limitations and drawbacks of PSG

A single night’s sleep study is usually not enough for the purpose of diagnosis. This is

because the patients undergoing sleep studies may not be able to have sound sleep in a

new environment with many sensors attached to them. Further, more monitoring may

be required owing to insufficient information obtained from one night of sleep analysis.

Therefore, sleep clinics are increasingly giving patients more time to acclimatise in the

alien conditions to get comfortable with the cumbersome load of sensors attached to

their body. Since the PSG analysis performed at specialised sleep centres require the

patients to come out of their habitat, the consequential altered sleeping environment

can also affect the resultant sleeping pattern and hence add bias to the diagnosis. The

whole process of a patient having to come out of his home environment, spend hours at a

specialised centre, requiring an attendant, recording large amounts of data and the time

taken to analyse and mark this huge chunk of sleep recordings is not only exhaustive for

the patient but also an economically expensive diagnosis method.

The costs associated with PSG coupled with the necessity of clinical admission and

long waiting lists [7] limits its usage despite the high prevalence of sleep disorders [5].

Home Polysomnography (HPSG), classified as a type 2 portable monitoring device by

AASM [11], offers full unattended PSG at patients’ homes. It has recently been shown

37



to be useful to rule in or out Obstructive Sleep Apnea (OSA), results in better sleep

quality of patients and reduces overall costs [12]. However, even if the PSG recording is

performed at the patient’s home, sleeping with the hardware and electrodes connected

is not a very pleasant experience. A typical PSG recording involves the patient being

wrapped in a bundle of wires originating from the electrodes on his head, face, chest and

legs, and terminating on to the recording/monitoring unit that may be placed in close

proximity of the bed. Moreover, this large number of electrodes on the scalp adds physical

mass, and therefore causes discomfort during sleep. The mesh of wires and electrodes

limits the movement of patients during sleep while any interruption of sleep that requires

getting out of bed (e.g. use of toilet) means removal and readjustment of electrodes.

Since HPSG requires at least seven channels (including multiple EEG, EOG and EMG

channels), the complexity imposed by the requirement of the patient precisely placing

these multiple electrodes limits its adoption despite the benefits over clinical PSG.

Following a complete night’s recording, the signals are then analysed in blocks of 30-

second epochs. Manual analysis and scoring of sleep from PSG traces (acquired in clinic

or at home) is a tedious task that can take 2 to 4 hours for scoring data from an entire

night sleep [13]. An eight-hour sleep will, therefore, consist of 960 epochs that need to be

looked at and classified into different stages of sleep resulting in a hypnogram. Although

not a factor in modern times, but earlier paper tracing of overnight signals could be as

long as 400 meters making the whole process of scoring a challenge [14]. The marking of

epochs is performed by trained eyes but adds an element of human error and perception

that reduces agreement rate among different scorers. The inter-scorer agreement rate

among eight different scorers was found to be between 77-82% [15], [16].

The core issues and limitations associated with both clinical and home PSGs can be

summarised as follows:

• PSG at sleep clinics is expensive.

• HPSG, while saving cost and allowing patient the comfort of home, still requires

the patient to meticulously attach a number of electrodes in different positions.

• The sheer number of sensors makes sleep uncomfortable during PSG.

• It is laborious and time consuming to manually score the epochs.

• Manual scoring is error-prone and can lead to disagreement rate of up to 23%

between different scorers.

In order to address some of the issues highlighted above, active research is ongoing in

the field of sleep analysis primarily to reduce the amount of time (and data) required

for analysis; and lessen the human error introduced due to inter-scorer variability. In

the various proposed systems and solutions, the idea is to mimic the visual analysis
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of epochs using a machine that can identify different features and patterns of signals

(EEG/EOG/EMG) and classify them automatically. This idea of automating the mark-

ing of epochs is commonly referred to as automatic sleep staging or automatic sleep

scoring. An automatic sleep staging method would help alleviate both inter-rater and

intra-rater disagreements, reduce analysis time and lower the cost of PSG tests.

Additionally, PSG systems would greatly benefit from reduction in the number of

channels, simplification of user experience and incorporation of automated sleep scor-

ing methods without affecting clinical outcomes. Traditionally, three EEG channels are

required in PSG systems together with EOG and EMG channels. Ruehland et al. [17]

reported no significant differences in sleep scoring reliability when using a single EEG

channel, so this number can potentially be reduced to one. It can also be noted from the

definition and marking criteria of each stage of sleep that most of the useful information

is contained within the EEG subset of the overall PSG test. However, the EOG and

EMG channels are still required since identifying REM stage epochs involves observing

the chin muscle and eye activity [4]. Several researchers have attempted extraction of

features in different domains to see whether sleep classification could be performed using

only a single channel of data.

The next section looks at the various algorithms and systems that have been published

in the academic literature and others that are commercially available to address the cur-

rent limitations and bottlenecks in PSG analysis. The focus will be on signal processing

methods for automated scoring of sleep stages and the number of channels required.

2.4 Literature review of automatic sleep staging algorithms

Efforts to automate the scoring of sleep stages started almost 50 years ago soon after

the first set of rules for scoring sleep were published by Rechtschaffen and Kales in

1968 [3]. These were broadly based on the level of spectral content present in each sleep

epoch being analysed. One of the natural approaches taken by researchers is to mimic

the sleep staging rules defined by R&K and, later, AASM. To gauge the performance

of an automatic sleep scoring method, the results from the automatic classification are

compared against a reference hypnogram that is usually scored by a human expert. The

percentage of correctly detected epochs by the algorithm in all the stages of sleep is

referred to as the overall accuracy. The percentage of correctly detected epochs in each

stage is generally referred to as the sensitivity, true detection rate or the accuracy of

detection in that stage. The rest of this section briefly discusses the various automatic

sleep staging methods proposed in academic literature over the years.

The simplest and most natural approach to tackle this problem was to design matched

filters for the required frequency bands and use logic circuits to make decisions based on

the output of these filters. This approach was taken by Smith et al. [18] in 1969. They

used matched filters to detect alpha, delta, spindle and k-complex features on small sec-
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tions of EEG signals and assigned a sleep score based on logic circuits that were designed

to emulate the sleep scoring rules. Their method used data from four EEG channels

of a single night recording. This was split into five parts with each part of two hours

and resulted in an overall classification accuracy of 86.2%. Another early sleep classi-

fication method, proposed by Itil et al. [19] around the same time, used baseline cross,

first derivative and amplitude of EEG signals to extract 20 features for the classification

of each epoch. Larsen and Walter [20] compared two preliminary sleep staging methods

based on multiple regression and discriminant analysis. Their main conclusion was that

the spectral power features extracted from the EEG signals were enough for classification

of sleep stages except for Stage 1 and REM.

Frost [21] presented a rule-based real-time sleep scoring system using EEG and EOG

signals. This was implemented using level detectors to indicate different amplitude

thresholds and trigger pulses when these threshold conditions were met. This was also

one of the earliest circuit level implementation of a sleep scoring algorithm using discrete

components. Shortly afterwards, Smith and Karacan [22] also presented a circuit for

real-time sleep scoring. This consisted of spindle, alpha, delta and artefact detectors

designed using analogue circuits followed by a block of logic circuits to assign a sleep

stage based on the output of preceding detectors. Their system required the use of EEG

and EOG channels and achieved an accuracy of about 84%.

While these simple approaches showed promising results, researchers also started to

explore other probabilistic techniques for classifying sleep signals to obtain better per-

formance. Kumar [23] presented a method using clustering in amplitude subspace and

achieved an agreement of 85% in all stages except REM (which was not scored) for two

nights of PSG recording. Gath and Bar-On [24] also developed a clustering method for

real-time sleep scoring using fuzzy partitioning. Their method was intended for use in

sleep laboratories with the help of two EOG, one EEG and one EMG channels, how-

ever no results indicating the accuracy of the method were given. Kemp et al. [25] then

proposed a method where EEG, EOG and EMG signals were modelled using statistical

processes and sleep stages were assigned based on their maximum likelihood resulting

in 71% agreement with manual scoring. Stanus et al. [26] presented two online sleep

staging algorithms based on a deterministic and a stochastic classifier and compared the

performances of the two classifiers. They used EEG, EOG and EMG signals and showed

75% reliability between the two methods when tested on normal subjects and 70% when

those with certain pathological conditions were used. Kuwahara et al. [27] proposed a

method of identifying characteristic patterns on EEG, EOG and EMG signals using an

interval histogram method. The results from this pattern recognition stage was then

used with a rule-based classifier resulting in an accuracy of 89% between the proposed

method and consensus scoring of three experts. Principe et al. [28] used the theory of

evidence to automate sleep staging in real-time with EEG, EOG and EMG signals. The
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spectral information extracted from different frequency bands were fuzzified and used as

partial belief based on which a further set of rules were devised. They used a finite state

machine with each state corresponding to a sleep stage and the machine would change

state based on the outcome of the heuristic rules. They achieved an average agreement

rate of almost 85% after testing with five different records.

Almost fifteen years after Smith et al. [22] presented the earliest circuit implementation

of their algorithm, Principe and Smith [29] presented the first fully digital implementa-

tion of a sleep analysis system to perform identification of alpha, sigma, theta and delta

waveforms, sleep spindles as well as eye movement activities. They used digital filters

and zero crossing detectors with thresholding - all of which were implemented on a mi-

croprocessor (which was a novelty at that time). Jansen and Dawant [30] then presented

a feasibility study of using an object-oriented knowledge-based approach for the identi-

fication of sleep spindles and k-complexes which could later be extended for use in sleep

stage classification.

The early 90s saw the availability of computing facilities in different research labs. This

was the start of the digital revolution which meant more complex techniques could be used

for signal analysis with the help of computers. The algorithms published from this time

onwards saw a rise in the number of features being used. Further features other than those

extracted from time and spectral domains saw mainstream adoption while sophisticated

rule-based classifiers, decision trees, support vector machines, artificial neural networks,

unsupervised clustering and many other classification techniques were also explored.

Decision Trees and Rule-based Classifiers

Prinz et al. [31] presented an algorithm called C STAGE that used spectral energies

with a set of rules for human-assisted classification. Validated on 45 elder subjects,

they reported high correlation between the algorithm and manual scores in SWS and

Wake stages while a lower correlation was observed in the other sleep stages. A similar

approach was proposed by Pacheco et al. [14] using a set of bandpass filters to detect

different frequency bands of interest (alpha, beta, etc.) using the amplitude and period

of EEG signals. The thresholds based on which any given epoch would be classified were

predefined. However, no results for the accuracy of the algorithm were reported in their

publication.

Hanaoka et al. [32] used a method involving waveform recognition followed by the

determination of the amplitude and frequency of the recognised wave. The latter param-

eters were compared with pre-defined thresholds to determine if the recognised waveform

was one of the characteristic waves. The features were extracted using two EEG, two

EOG and a single EMG channel while a decision tree was used to classify the features

and assign one of the sleep stages. The algorithm achieved an accuracy of about 81%

but was tested using only one recording of eight hour duration. The highest accuracy
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was achieved in S2 stage (92%). S3 and REM were classified with accuracies of 73% and

76% while S1, Wake and S4 achieved 60%, 53% and 46% respectively.

Virkkala et al. [33] used two facial electrodes (one channel) for sleep stage classification.

In this algorithm, the power in beta frequency band and peak-to-peak amplitude in 0.5-

6 Hz band were calculated using DFT and used as the two primary features. A decision

tree was used to classify the segments into either Wake, REM, SWS or S1/S2 (combined).

Using a large database of 132 subjects for training and 131 subjects for testing, the

algorithm resulted in an overall accuracy of 73.8% for the four-class classification. The

sensitivity in S1/S2 stages was about 81%. This was probably due to S2 stage masking

the number of S1 epochs being correctly detected. In Wake, REM and SWS stages,

the sensitivities were between 60-70%. This method was further improved to lower its

complexity and enhance the accuracy [34]. Using recursive IIR filter instead of DFT

to calculate the features resulted in a slightly improved overall accuracy of about 77%.

Garcia-Molina et al. [35] also used signals from two EOG channels to classify NREM

stages of sleep. Their algorithm used the spectral energy features together with eye blink

and movement detection. With a rule-based classifier and a small dataset consisting of

673 epochs they achieved an overall accuracy of 84%.

McPherson et al. [36] showed that there exists a high correlation between the bispec-

tral index (BIS) values during sleep and the different sleep stages. These values can

potentially be mapped on to the different stages of sleep. However, they also noted great

deal of inter-subject variability making this non-trivial. Swarnkar et al. [37] later used

bispectrum estimation from a single channel of EEG in a sleep staging algorithm. A

set of thresholds were used to classify the EEG segments into either Wake, NREM or

REM stages. Their method was tested using overnight recordings from 23 subjects and

managed to achieve overall sensitivity of 75% with 66%, 78% and 73% in Wake, NREM

and REM stages respectively.

Liang et al. [38] used a classical rule based method to classify several different features

extracted from a single EEG, EOG and EMG channels. A total of 12 features were

extracted that were fed to a decision tree. Although the total number of nodes in this

tree were only 13 the actual number of comparisons were higher. This is because several

features were being compared against their thresholds at each node. The output of the

tree was further smoothed out using 11 contextual rules. The method resulted in an

overall accuracy of about 87% using a database with 13 subjects. Apart from N1, which

had a low sensitivity of only 35% all other sleep stages showed detection rates between

87-91%. However despite having a sensitivity of 88% in Wake stage, the selectivity value

was low (44%) indicating a very high number of false positives. In other words, every

other epoch classified as Wake was a misclassification. Further, the overall accuracy

dropped to 78% when sleep data from PhysioNet Sleep EDF database (see Appendix A

for a discussion on public databases) was used with sensitivities in Wake and N2 stages
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also being reduced to 57% and 76% respectively. The same research group published

another sleep stage classification algorithm where 21 features were extracted using multi-

scale entropy (MSE) and autoregressive (AR) modelling [39]. With a linear discriminant

analysis (LDA) classifier and further contextual smoothing the best case overall accuracy

achieved was about 88%. The sensitivities in Wake, N2 and N3 stages were over 85%.

The sensitivity for REM stage was very high (97.6%) but that for N1 was only 28%. The

accuracy dropped again to 83.6% when signals from the PhysioNet Sleep EDF database

were used for testing.

Figueroa Helland et al. [40] proposed a sleep staging algorithm that used spectral

power ratios in different frequency bands of one EEG channel as feature input into a

LDA classifier. They tested the method with 10 different subjects and reported an

accuracy of 90% for epochs in which there was agreement among three scorers. For

ambiguous epochs where there were disagreements between scorers, the accuracy was

found to be 61%. Sanders et al. [41] compared the sleep scoring performance of their

algorithm using three different feature extraction methods. They used average spectral

power, peak power and cross frequency coupling features with a LDA classifier. On its

own, the average spectral power features were shown to have the highest classification

accuracy amongst the three methods while a combination of features resulted in the best

case overall accuracy of about 75%. They used a single channel of EEG data of ten

subjects from the PhysioNet Sleep EDF Expanded database (see Appendix A).

Fraiwan et al. [42] used wavelet packet transform (WPT) coefficients extracted from

one EEG channel that were classified using regression trees. They extracted 54 features

initially that were later reduced down to 20 by removing the redundant ones. Testing

with 32 PSG recordings, their method resulted in an overall accuracy of 74%. The same

group later presented another method [43] using a random forest classifier to score sleep

stages from a single channel of EEG data. This consisted of ten individual decision trees

each having the same weight. The final output was considered to be the mode of the

result from all decision trees. Spectral energy features in the conventional frequency

bands were used as input to this classifier. Three different methods for feature extraction

were used, namely Choi-Williams Distribution (CWD), Continuous Wavelet Transform

(CWT) and Hilbert-Huang Transform (HHT). A total of 13387 30-second epochs from 16

subjects were used to test the method which resulted in overall accuracies of 83%, 78%

and 75% using CWT, CWD and HHT based feature extraction methods respectively.

Radha et al. [44] compared a large number of temporal, spectral, linear and non-linear

features extracted from various EEG channels. They used Random Forest and Support

Vector Machine (SVM) classifiers to identify the best combination for a single-channel

online sleep staging algorithm. They determined that the relative spectral powers in

conventional EEG frequency bands extracted from the frontal channels were the highest

performing features. Using a test database of overnight sleep recordings of ten subjects
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they achieved 80% accuracy with a random forest classifier, 77% with a one-versus-one

SVM classifier and 69% with a one-versus-all SVM classifier.

Support Vector Machines

Although Radha et al. [44] achieved better results using a random forest classifier as

compared to SVM, other researchers have shown high classification accuracies using SVM

using different feature sets.

Khaligi et al. [45] used six EEG and two EOG channels to extract a large number

of features including skewness, kurtosis, Hjorth parameters, Autoregressive coefficients

and others. They also extracted wavelet based features using maximum overlap discrete

wavelet transform (MODWT) [46]. A total of 570 features were initially extracted across

all eight channels of which 176 were selected using minimum Redundancy Maximum

Relevance (mRMR) feature selection method. These features were then classified using

a support vector machine. With a database comprising of 14 subjects and using leave-

one-out cross validation (LOOCV) they determined the overall accuracy of the algorithm

to be 78% with highest sensitivity in Wake stage (93%). The sensitivities in REM and

N1 stages were 71% and 53% respectively while that in N2 and N3 stages was 86%.

An adaptive method to account for inter-subject differences was presented by the same

authors [47] that used six EEG, two EOG and one EMG channels. In this case, a

total of 176 features were used that included spectral power, skewness, percentiles and

MODWT time-frequency features. Three different classifiers were used to demonstrate

the performance and compare the results of kernel logistic regression (KLR) classifier

with that of SVM using data from eight subjects. Although the SVM was found to be

the best classifier, the KLR classifiers came very close to matching its performance in

all stages except Wake where SVM was by far superior. In N1, all classifiers resulted

in sensitivity close to 40% while in N2 and REM they were close to 75%. N3 had the

highest sensitivity in all classifiers which was around 88%.

Koley and Dey [48] developed a sleep scoring algorithm using a single EEG channel.

They extracted a total of 39 time, frequency and non-linear features which were reduced

to 21 using SVM-RFE method to remove redundant features. A separate one-versus-all

SVM classifier was then designed for each sleep stage. The classifier with the highest

discriminant function value output represents the winning class and the corresponding

sleep stage is then assigned to the epoch under analysis. They reported classification ac-

curacy close to 90% on two test sets involving seven non-apnoea and five apnoea subjects

respectively.

Kempfner et al. [49] proposed a three-class sleep staging algorithm to distinguish be-

tween Wake, REM and NREM stages. They used three EEG and one EOG channels to

extract 23 features for each subject using an epoch size of three seconds. These features

were then used as input for three one-versus-all SVM classifiers (one for each class) that
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resulted in sensitivity of 95%, 88% and 77% for NREM, REM and Wake stages respec-

tively. Note that these results are for small epoch sizes of three seconds only. This may

appear to show a somewhat inflated accuracy. Gudmundsson et al. [50] developed an

algorithm for sleep staging in children under the age of 5 years. They combined N1 and

N2 stages to form light sleep stage and used one EEG channel to perform 4-state clas-

sification using SVM and k-Nearest Neighbour (kNN) classifiers. They extracted Hjorth

parameters, spectral ratios and histogram features from the signal and achieved best case

accuracy of 81% using histogram features with SVM.

Sousa et al. [51] used a combination approach with six EEG and two EOG channels to

develop a sleep staging algorithm. Although their classifier was a decision tree, each node

of the tree itself was an SVM classifier. They devised a further set of rules for classifying

dubious epochs in order to improve the algorithm’s accuracy. The algorithm used 40

features extracted from each channel including MODWT, relative power and harmonic

parameters. With a test database including 14 subjects they achieved sensitivity of over

90% in Wake, REM and N3 stages, 84% in N2 and 71% N1 stage. Lajnef et al. [52] also

proposed a method using SVM classification based on a decision tree approach. They

initially extracted 102 features across five EEG, EOG and EMG channels which were

later reduced to 32 to include only those with high discriminatory power. These features

mainly included relative spectral powers and their ratios. For each SVM classifier, they

selected a subset of features from this reduced pool. They used recordings from ten

subjects for classifier training and five for testing and obtained high sensitivities of 90%

and 97% in Wake and REM stages. In N1, N2 and N3 the sensitivities were 41%, 70%

and 76% respectively.

Bajaj and Pachori [53] represented EEG signals as a time frequency image and per-

formed segmentation based on histogram and frequency bands. These were classified

using SVM and resulted in 88% accuracy when tested on PhysioNet EDF database.

They achieved more than 80% sensitivity in Wake, S2, S4 and REM stages while those

in S1 and S3 stages were 62% and 76% respectively. Wu et al. [54] used unique signal

processing methods namely synchrosqueezing transform and empirical intrinsic geometry

to extract features from four EEG channels together with one respiratory channel. They

also used an SVM classifier and achieved an overall accuracy of 82%. Huang et al. [55]

used power spectral density features extracted from the two frontal EEG channels with

a relevance vector machine (RVM), which is a learning algorithm based on SVM. They

used data from 10 test subjects and reported an overall accuracy of 77%. They achieved

over 80% sensitivity for all sleep stages except N1, where it was only 22%.

Artificial Neural Networks

Frank Rosenblatt published the theory behind an artificial neural network (ANN) in

1958 [56] after which several researchers used such networks for classification in various
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applications. However, it was not until the early 90’s when computers became main-

stream that artificial neural networks started being used popularly and consistently. The

computational power available allowed researchers to construct multilayer neural net-

works with a large number of features. Unsurprisingly, artificial neural networks were

also explored for use in automated classification of sleep stages.

Roberts and Tarassenko [57] were amongst the earliest to study the applicability of

neural networks in sleep classification. They used Kalman filter coefficients extracted

from one EEG and EMG channels that were fed into an unsupervised multilayer neural

network. The self organising map revealed the presence of eight clusters and three possible

trajectories between them. In other words, the unsupervised classifier showed that there

were distinct stages of sleep and the transitions between them corresponded to Wake,

REM and NREM sleep.

Schaltenbrand et al. [58] then presented a complete algorithm for sleep staging using

an ANN classifier. They used one EEG, EOG and EMG channels from which ten, four

and three spectral features were extracted respectively giving a total of seventeen input

features. The classifier was supervised but an additional unsupervised neural network

was also used at its output to improve the classification accuracy. On a dataset consisting

of 20 normal subjects, the algorithm achieved an overall accuracy of 84.5%. S1 and S3

stages had the lowest classification accuracies of 22% and 55%, Wake and S2 had 84%

and 88% while REM and S4 had an accuracy of over 90%. The algorithm was also tested

using data from 20 depressed and 20 insomniac subjects. In these cases the classification

accuracy was reduced to 81.5% and 81% respectively.

Pacheco and Vaz [59] used three EEG with one EOG and EMG channels to extract

spectral and Hjorth features which were classified with an ANN. They used a dataset

consisting of only two hours recording from eight subjects and reported the classification

accuracy to be 89%.

Park et al. [60] proposed a hybrid system using a rule-based classifier followed by

an additional neural network for cases where a reasonable result was not achieved with

the former classifier. They extracted 58 features from single EEG, EOG and EMG

channels and used recordings from two subjects for training and two subjects for testing.

Using only the rule-based classifier, they achieved an accuracy of 83%. This increased

to 86% when neural network classifier was added to the output stage. A different hybrid

method was proposed by Tian and Liu [61] that used a neural network classifier for broad

classification followed by fuzzy rule-based reasoning for refinement. Several spectral

features were extracted from EEG and EMG channels that were roughly classified using

a supervised self organising feature map into Wake, Light or Deep sleep. This was then

refined using a rule-based approach resulting in an overall accuracy of 85% using test

data from eight subjects. The sensitivity in each stage of classification ranged between

70-87%. Pinero et al. [62] presented a method based on fuzzy rules for classification of
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sleep stages followed by rule-based inference corrector to improve its accuracy. They used

data from two EOG, one EEG and two EMG channels of four subjects. From this, 30%

epochs were used to test the algorithm achieving an overall accuracy of 82% on average.

Shimada et al. [63] explored the classification of characteristic sleep waves rather than

sleep stages directly. These could subsequently be used for sleep staging. They used

several time-frequency features extracted from a single EEG channel using data only

from Wake, N1 and N2 stages. Their neural network classifier was shown to be capable

in discriminating between spindles, humps and slow waves when tested with a small

recording of ten minutes duration. Schwaibold et al. [64] followed a similar approach

of identifying characteristic patterns from two EEG, two EMG and one EOG channels.

They used a neural network for pattern recognition to identify known waves and then

used a set of rules to assign one of the sleep stage based on the detected patterns.

They used partial data from four subjects and reported the classification accuracy to be

around 80%. Held et al. [65] performed sleep staging of infants with data extracted from

four EEG, one EMG and one EOG channels. They also performed pattern recognition

to identify sleep spindles, delta waves, theta activity, rapid eye movements and muscle

activity. These were then classified using a neurofuzzy classifier which resulted in an

overall accuracy of 84% on daytime nap recordings from five infants.

Oropesa et al. [66] used WPT coefficients from EEG signals as feature input to a neural

network classifier achieving an accuracy of 78%. Their data set was small, consisting of

590 epochs, and they considered classification in S1, S2, Wake and REM stages while

ignoring the SWS stage. For these stages, the sensitivities were 75%, 91%, 74% and

65% respectively. A sleep staging algorithm by Zoubek et al. [67] involved extracting

relative energy features and wavelet coefficients together with some time domain features

including entropy, standard deviation and skewness from one EEG, EOG and EMG

channels. These features were then used with two different Bayes rule-based and a

neural network classifier. Using 10,000 epochs selected from 47 recordings, the best

classification accuracy was obtained with the neural network classifier. N3 stage had

the highest sensitivity of 93%, N1 had the lowest of 65% while others were between

70-85%. Ebrahimi et al. [68] also extracted WPT coefficients from one channel EEG of

seven subjects from PhysioNet EDF database and used them as the input feature set to

a multilayer neural network. They achieved sensitivities between 80-88% for four sleep

stages where the results of REM and N1 stages were pooled together. Using 64 spectral

and wavelet features, Sinha [69] managed an accuracy of 95% for classifying spindles,

REM and Wake epochs. However, their dataset used to obtain the test results was very

small.

Kim and Park [70] extracted 120 features (of which 110 were spectral) of an epoch from

single EEG channel for its classification. They used a feature selection method to reduce

the number of features down to 32 which were used with a genetic algorithm together
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with a neural network. However, the performance of their algorithm was not reported.

Jo et al. [71] used relative powers from one EEG channel with a genetic algorithm and

fuzzy classifier. They reported an accuracy of 84% with four test subjects for 4-state

classification i.e. Wake, REM, Light and Deep sleep.

Charbonnier et al. [72] used a two stage algorithm where the first stage consisted of

artefact rejection method while the second stage included four different neural network

classifiers. Each classifier used a different combination of EEG, EOG and EMG signals

from 46 recordings that were obtained from 13 adults. A total of 33 spectral and time

domain features were extracted across the three channels and the overall accuracy of

their algorithm was found to be 85.5%. N3 stage had the highest sensitivity of 95% while

N1 had the lowest at 65%. The Wake, REM and N2 stages had sensitivities of 78%, 80%

and 87% respectively. Ronzhina et al. [13] used the PSG recordings from PhysioNet EDF

database to demonstrate the performance of their algorithm which used relative spectral

power features extracted from one channel of EEG. Using different ANN configurations

they achieved the highest overall accuracy of 77% with 30 input nodes, 11 hidden nodes

and 6 output nodes. The sensitivities in Wake, S2, S4 and REM stages were between

77-90% while S1 and S3 were 31% and 29% respectively. Liu et al. [73] extracted spectral

energy features using Hilbert-Huang Transform from single channel EEG recordings in

the PhysioNet EDF database. Their neural network classifier achieved accuracy of 95%

in Wake, 82% in N2, 93% in N3 and 87% in N1 and REM stages combined together.

Ma et al. [74] designed an artificial neural network-based decision tree where each

node of the tree consisted of a neural network. They extracted 19 features including

relative powers, central frequency, sample entropy and correlation dimension from one

EEG channel. Their test results involving 14 subjects showed an overall accuracy of 74%

with 100% sensitivity in REM and N3 stages, between 70-80% in N2 and poor detection

in Wake and N1 stages.

Hsu et al. [75] proposed a method that also used energy features from one EEG channel

but used a recurrent neural network (RNN) classifier and compared that with probabilis-

tic and feedforward neural networks (PNN and FNN). They used recordings from the

PhysioNet Sleep EDF database and reported superior accuracy of 87% with RNN as com-

pared to FNN and PNN classifiers where the accuracies were 81% and 82% respectively.

For N2, N3 and REM stages they achieved sensitivities of over 90% while for Wake and

N1 the true positive rate was 71% and 37% respectively.

While most of the ANN based methods use either use spectral, entropy or wavelet

features, some researchers also explored the use of less common features. McGrogan et

al. [76] used a single channel EEG data from which reflection coefficients were extracted

to be used as the input feature set for an ANN. Their algorithm was designed to classify

an epoch into one of the three following stages: Wake, REM/Light sleep or Deep sleep.

They used overnight recordings from nine subjects to train the algorithm and achieved
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an accuracy of 72%. Sun and Cheng [77] used complexity measure features as input to a

neural network and reported an average accuracy of over 90%. However, they used a test

set consisting of 20 epochs of each sleep stage from six subjects which is very small to be

of any statistical significance. Nevertheless, their method is still an example of using a

different set of features with an ANN classifier. Tagluk et al. [78] used a neural network

with 120 features derived from one EEG, two EOG and one EMG channels. They selected

a small sample of epochs from 21 subjects and achieved an accuracy between 70-80% for

all sleep stages.

It is quite clear that a properly designed neural network with a relatively large num-

ber of features results in a reasonably high classification accuracy. Ronzhina et al. [13]

published an extensive review of neural network-based sleep staging algorithms and dis-

cussed the practical issues involved in their development. Becq et al. [79] compared five

different classifiers for sleep staging and concluded that artificial neural networks are best

suited for this application. In yet another paper, Gabran et al. [80] also reported neural

networks to be the best classifier for sleep staging when used with wavelet features from

a single EEG channel. However, neural networks are computationally expensive and may

not be suitable for use in all situations.

Clustering, Statistical and Other Classifiers

A semi-automatic approach for sleep staging was proposed by Agarwal and Gotman [81]

where initial clustering was performed automatically by an algorithm. Each cluster was

then assigned a sleep stage by a reviewer. They used two EEG, two EOG and one EMG

channels from twelve overnight recordings and extracted 13 features from the signals that

included information on spindles, eye movements and spectral powers. These features

were then used to generate unsupervised clusters. A reviewer then assigned a sleep stage

to each of the automatically generated clusters and additional post-processing to the

hypnogram could be optionally applied. This method yielded an overall accuracy of

80%, highest of 93% in S4 and lowest of 39% in S1. The REM stage had an accuracy

of 73% while others were between 80-90%. Van Hese et al. [82] also followed a similar

approach where Hjorth parameters, harmonic parameters and relative energy features

were extracted from one EEG channel. These features were then automatically grouped

into 20 clusters by k-means clustering. From this, the sleep stages are identified by visual

analysis of clusters.

Flexer et al. [83] used hidden Markov models (HMM) to develop a continuous sleep

staging algorithm with data from two EEG and one EMG channels. They achieved over

80% sensitivity in Wake and Deep sleep and less than 30% in all other stages. However,

their main focus was identifying Wake, SWS and REM only. Improving their method,

Flexer et al. later used data from one EEG channel with their classifier [84]. This was

tested with 68 recordings across two sleep labs. For recordings from one lab they achieved
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sensitivities of 79%, 82% and 68% for Wake, Deep sleep and REM respectively while for

the other lab the sensitivities were 25%, 87% and 61% for these stages. For S1, S2 and

S3, the detection accuracy was less than 40%. Based on these results, they concluded

that recordings from different sleep labs are not directly comparable.

Doroshenkov et al. [85] used spectral features from two EEG channels with HMM

classification. They tested their method using data from PhysioNet Sleep EDF database

and reported sensitivities of 86% and 92% in REM and S4 stages, 60-70% in S2 and S3

stages, 51% in Wake and only 5% in S1 stage. HMM was also used by Pan et al. [86] for

sleep classification. They extracted 13 temporal and spectral features from multiple EEG,

EOG and EMG channels. Their test dataset consisted of recordings from 10 subjects

and resulted in an overall accuracy of 85%. All sleep stages had sensitivities over 80%

except S1 which had a lower accuracy of 34%. Yaghouby et al. [87] used 22 different

subjects from the PhysioNet Sleep EDF Expanded database to perform unsupervised

sleep staging using HMM. They used a single EEG channel for feature extraction and

reported sensitivity in N1 stage to be 42%, about 85% in N2 and REM stages and about

70% in Wake and N3 stages. They also demonstrated the HMM method to be superior to

other unsupervised methods such as k-means clustering and Gaussian Mixture Modelling

(GMM). Garcia-Molina et al. [88] also used GMM to estimate the probability density

function for spectral features extracted from a central EEG channel. They reported

moderate agreement with manual scoring with the maximum kappa value of 0.63.

Malinowska et al. [89] used matching pursuit algorithm for identification of k-complexes

and spindles as well as the amplitude and relative duration of alpha, theta and delta

waves. This was followed up with a rule-based classifier to assign sleep stages. They used

EEG, EOG and EMG recordings from 20 subjects and obtained about 80% sensitivity in

REM and S2 stages, 71% in S4, 63% in S3 and under 40% in Wake and S1 stages. Gunes

et al. [90] used k-means clustering to identify groups which would later be classified using

k-Nearest Neighbour and decision tree classifiers. They extracted 129 features from one

channel of EEG initially which were later reduced down to only the four most relevant

ones. Their method resulted in an overall accuracy of 82%. The accuracies in Wake,

REM and N2 stages were close to the overall value at 80%, 81% and 89% respectively

while those in N3 and N1 were lower at 65% and 17%. Vivaldi et al. [91], [92] showed

that frequency domain features can be used with principal component analysis (PCA)

to determine clusters that can be mapped on to sleep stages. Langkvist et al. [93]

addressed the issue of selecting relevant features by using deep belief network (DBN) for

unsupervised feature selection. Their method used features from one EEG, EOG and

EMG channels and used HMM for classification. Using leave-one-out cross validation

with 25 subjects, they reported the sensitivities of 68%, 33%, 77%, 89% and 60% in

Wake, N1, N2, N3 and REM stages respectively.

An unsupervised clustering approach was recently proposed by Rodriguez-Sotelo et
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al. [94] using entropy features extracted from two channels of EEG data. They used 39

recordings from PhysioNet Sleep EDF Expanded database and computed a total of ten

features including Fractal Dimension, Detrended Fluctuation Analysis, Shannon Entropy,

Approximate Entropy, Sample Entropy and Multiscale Entropy. Using an unsupervised

classifier they reported mean sensitivity in N2 and Wake stages to be 91% and 84%

respectively. However, the sensitivities in N3, REM and N1 stages were quite low at 59%,

38% and 15% respectively. They also compared their algorithm’s performance using the

same features with a supervised neural network classifier which resulted in slightly better

performance in REM, Wake and N1 stages but worse in N2 and N3 stages.

2.4.1 Validation of commercial sleep staging softwares and systems

While new algorithms are continually being developed by researchers, a number of soft-

wares and systems have already been introduced commercially to perform either assisted

or fully automated sleep staging. Some of the automated tools are available as part of

the complete PSG signal acquisition systems while others are available as a standalone

program or software as a service (SaaS). These tools have been used in some studies to

validate their performance and test their effectiveness in clinical environments.

Kubicki et al. [95] evaluated one of the earliest commercial sleep staging system. This is

known as the Medilog Sleep Stager by Oxford Medical Systems. For this study, they used

PSG data from ten subjects and found the agreement between automatic and manual

scoring to be 73%. They also noted that the software had difficulty identifying REM,

Wake and S2 stages resulting in higher classification of S1, S3 and S4 sleep stages. Ferri

et al. [96] also evaluated the same system comparing it with manual scoring from nine

different sleep labs. They came to the same conclusion about REM and Wake stages as

Kubicki et al. but also noted some difficulty in automatic scoring of S1 stage rather than

S2.

White and Gibb [97] evaluated the performance of Healthdyne ALICE 3 system for

automatic sleep scoring. Their study consisted of 5 patients for epoch-by-epoch scoring

analysis using four EEG, two EOG and one EMG channels. The automatically generated

hypnogram was edited by a technician and then compared against manual paper-based

scoring which resulted in an accuracy of 76%. The conclusion from this study was that

automatically scored hypnograms still requires some technician editing to have a good

enough accuracy for clinical usage.

Anderer et al. [98] discussed an internet-based sleep analysis software called Somon-

lyzer 24×7 that requires submission of the complete PSG recording through a secure

connection. The software, described earlier in detail [99], used more than 20 different

methods for sleep analysis. It requires one EEG, two EOG and one EMG channels from

which a large number of features are extracted. It uses a decision tree structure for

classification where each node of the tree is an LDA classifier and uses features which
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are extracted earlier. It was validated for both R&K [99] and AASM rules of classifi-

cation [100]. For R&K, they achieved an overall accuracy of about 80% using 286 PSG

recordings. For AASM, 72 PSG recordings were used and the accuracy was increased

slightly to 82%.

Pittman et al. [101] evaluated the performance of Morpheus I Sleep Scoring System

(WideMed Ltd.) in people with sleep-disordered breathing. They used four EEG with

single EOG and EMG channels recorded from 31 subjects. The automatic scoring from

the software was compared against manual scoring performed by two different scorers.

The results showed agreement of 78% and 73% between the automatic system and the two

scorers. Svetnik et al. [102] looked at the scoring performances of both the Morpheus

and Somnolyzer 24x7 systems. They used 164 PSG recordings from 82 subjects and

determined that the agreement between fully automated scoring of the two systems and

manual scoring was between 70-73%.

Caffarel et al. [103] evaluated the performance of BioSleep, an ANN-based automatic

sleep scoring system, and found it to have poor accuracy when compared to manual

scoring based on R&K rules. They concluded that the software, although good for

micro-arousal scoring, is not suitable for classifying sleep according to R&K rules.

Berthomier et al. [104] published the performance of a commercial sleep staging soft-

ware known as ASEEGA. They used single channel overnight EEG recordings from 15

adults that were scored with this software. This software performs artefact rejection

at the initial stage and then uses a set of individually tailored filter banks for feature

extraction. A fuzzy classifier followed by contextual rule-based smoothing then assigns

a sleep stage to the EEG segment under analysis. The software achieves classification

accuracy of more than 80% in all stages except N1 where the sensitivity is 36%.

Kaplan et al. [105] evaluated the performance of a sleep-wake algorithm called Z-ALG,

used in Zmachine (a commercial portable single channel EEG acquisition system). The

algorithm uses data obtained from the mastoids, A1-A2 channel, and extracts six time

and frequency domain features for each epoch. The frequency features are separated

using hyperplane partioning. Two detectors are then used in parallel with different sets

of extracted features. An epoch is classified as sleep if either one (or both) of the detectors

classify it as sleep. This study used 99 subjects and the algorithm was reported to have

a 95.5% sensitivity in detecting the sleep state. The Z-ALG algorithm only discriminates

between Wake and Sleep states and does not classify the different stages of sleep.

Shambroom et al. [106] presented an evaluation of a commercial sleep monitoring

device (ZEO), that uses electrodes in wireless headband for data acquisition from the

forehead. The algorithm classified the epochs as either Wake, REM, Light or Deep sleep

and achieved sensitivities of 64%, 86%, 86% and 71% in these stages respectively. The

overall accuracy of the system was found to be 81% in this study and used recordings

from 26 subjects.
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Malhotra et al. [107] evaluated the performance of an automatic sleep scoring system

developed by YST Limited. The proprietary software used two EEG, two EOG and one

EMG channels for scoring and was tested using 70 PSG recordings across different sleep

labs. The results showed 56% accuracy in N1, 84% in N2, 47% in N3 and 64% in REM

stage.

2.5 Review of commercial sleep scoring systems

2.5.1 Introduction

The research efforts of over four decades have resulted in a number of commercially

available portable systems for recording and analysing sleep signals automatically. Using

a very simplistic model, the functionalities of such a system can be divided into two main

parts.

1. Data acquisition and storage

2. Signal analysis and scoring

Some commercial systems provide a full suite of tools including both hardware for

acquiring signals and an integrated software for the analysis and scoring of these signals.

Other systems exist that perform the task of data acquisition and storage and allows for

the possibility of manual analysis or automated analysis of these signals using third-party

softwares. To serve this latter market as well as scoring of signals acquired from clinical

EEG systems, a number of companies have come up with softwares to automatically

analyse and score sleep stages from recorded data. These software packages usually detect

different stages of sleep and other micro-events (e.g. sleep spindles and k-complexes), and

generate a report for the physician. The software packages are generally marketed in one

of the following two ways.

1. A package to be installed on a computer making use of the processing power of the

latest multi-core processors.

2. A web-based system where clinicians can upload their recorded data in standard

EDF format [108]. The data is then marked automatically (or manually in some

cases) using powerful computers, and a report generated within hours. The time

delay in getting the report can be anywhere between 2-48 hours depending on the

service used. This approach requires caution to ensure all patient data privacy

procedures are followed.

In both these cases a strict guideline is usually provided with the software about how

data should be recorded and which channels may be required for analysis by each software.
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All the PSG systems in the market aim to perform the same task of getting and

classifying the sleep signals. However, there are factors and functions that set one apart

from the other. The following is a non-exhaustive list of important features that are

helpful in differentiating the PSG systems and comparing them.

Number of channels: The minimum set of channels required for sleep scoring is 3 for

EEG, 2 for EOG and 1 for EMG. However, a number PSG devices come with the

ability to record from many more channels varying from 2 to 256.

Power source and operating lifetime: The clinical PSG recording units are powered by

the mains while the ambulatory PSG units are generally battery powered (with the

ability to power them from mains). Depending on the size of the battery and the

number of channels recorded (and other factors such as wireless transmission, etc.),

a system can last several hours on a single charge. In most cases it is acceptable

to have a system that can last an entire night on a single charge. That, however,

is the minimum requirement and a longer lifetime would make it more convenient

for the end user.

Communications and Data storage: The recording unit should be able to store recorded

data or transmit it somehow to another system for storage and analysis. This may

be achieved by storage on flash memory devices, such as an SD-card, or transmission

via local area network (LAN) or a wireless transmitter.

Sampling frequency: This has an effect on the quality of signal acquired and the com-

mercial devices available may have a range of 200-2000 Hz in the sampling frequency

depending on the environment in which they are to be used.

Weight and size: Ambulatory/portable devices must be light and small whether used in

a clinical or an in-home setting. The device is expected to be worn by the patient

and carried around at night without the need to unplug it. So the size and weight

are crucial in determining how portable a system is.

Analysis software: Some kind of analysis software is always bundled with the PSG sys-

tems. It may simply be a viewer to see the recorded signal or have advanced features

such as automatic event and stage detection.
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2.5.2 PSG systems

With the above points serving as the important distinguishing characteristics, this sec-

tion presents a review of the commercially available portable/ambulatory PSG systems.

Although most PSG systems also have the ability to record other physiological signals

such as ECG, pulse rate, air flow, etc., those will not be discussed. Instead, the focus

will be on the three signals that are needed for sleep staging. Therefore, only systems

that record these signals will be considered in this review.

Somté PSG by Compumedics [109]

An ambulatory PSG device that has wired electrodes connected to a patient input box

that transmits wirelessly over Bluetooth to the recorder placed up to 10 metres away.

The system weighs 205g without batteries. It uses 2 AA batteries for operation and lasts

for up to 24 hours of recording. It allows for the recording of six EEG, two EOG and

two EMG channels. It is not clear whether this is the combined weight of the two units

or just that of the patient input box. The recorder size is 113mm × 65mm × 30mm

while that of patient input box is 53mm × 133mm × 25mm. The system comes with an

analysis software that helps to automate scoring of sleep stages.

Siesta by Compumedics [109]

This system consists of a small data recorder with a 32-channel input. It weighs 300g

with battery and has dimensions of 142mm × 80mm × 40mm. It can record data on a

memory card or transmit it wirelessly to a computer for real-time analysis.

Sapphire PSG by Clevemed [110]

A type I and II PSG device capable of recording six EEG, two EOG and two chin EMG

channels along with other signals. The recording device is powered using 4 AA batteries,

weighs 538g and provides 12 hours of continuous recording. It transfers data wirelessly to

a base station, up to 100 feet away, attached to a computer. Its size is 216mm × 97mm

× 36mm and has an option of recording data to a memory card. The data can be scored

manually and analysed with the Crystal PSG software that comes with this recorder.

DREAM by Medatec [111]

This polysomnography system allows 33 channels to be recorded and has dimensions

of 120mm × 60mm × 30mm. It does mention wireless transmission but it is not clear

where that feature is integrated. It comes with an analysis software called Brainnet that

performs automatic sleep analysis.
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Morpheus by Micromed [112]

This PSG recorder can be used as a wired/wireless head-box for on-line analysis as well

as an ambulatory recorder while storing data on a memory card. It has 12 EEG channel

inputs, weighs 250g and has the dimensions of 110mm × 80mm × 30mm. In ambulatory

recording mode the batteries last for over 24 hours. Its analysis software allows for

viewing data on a computer.

Embletta Gold by EMBLA [113]

A portable PSG system that allows a single EEG and an EOG channel to be recorded

for up to 24 hours. It weighs 218g and has dimensions of 23mm × 71mm × 140mm. It

is bundled with an analysis software that allows sleep staging with custom defined rules

and has advanced features to allow for networking and remote access of data.

Xltek PSG - Home Sleep by Natus [114]

An ambulatory PSG device operating on two AA batteries with internal memory to store

up to 96 hours of data (battery lifetime is not provided). Recorded data is extracted by

connecting the device with a computer via a USB cable. It weighs less than 300g and has

24 EEG channels input. Its analysis software, Sleepworks, can be used to review data,

however automatic scoring is not provided.

AURA PSG Ambulatory Systems by Grass Technologies [115]

This PSG system has three EEG, one EOG and two EMG channel inputs and can connect

to an additional base station wirelessly via Bluetooth for real-time data acquisition. It

can also be used in ambulatory mode to store data on a memory card that can be read

via TWin software that comes with this system. Its dimensions are 89mm × 149mm ×

25mm and its weight is 280g. It comes with a rechargeable 3.6 V battery that lasts for

up to 10 and 12 hours in wireless and ambulatory modes respectively.

NOX-T2 Portable Sleep Monitor by CareFusion [116]

This is a very compact device weighing only 88g. It has dimensions of 79mm × 63mm

× 21mm and is powered using a single AA battery. It can record any two of the bipolar

EEG and EMG channels that can be downloaded on a computer via USB connectivity.

It can record data for up to 24 hours on a single charge of battery.

SOMNOwatch plus EEG6 by SOMNOmedics [117]

A miniaturised unit that can record four EEG, two EOG and one EMG channel for up

to 46 hours. Powered by a rechargeable battery, it consists of two small units. The
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SOMNOwatch (30g in weight) is the central unit which is attached to a head-box (60g).

The electrodes are then connected to the body from the head-box which is very compact

and has the dimensions of 61mm × 56mm × 13mm. Recorded data can be transferred to

a computer via USB port and can be analysed using the bundled software that supports

limited detection of sleep events. SOMNOmedics also makes another PSG device for

ambulatory and online data acquisition called SOMNOscreen plus that weighs 220g with

the battery and can provide 36 hours of continuous recording using the same head-box

add-on.

Easy III PSG by Cadwell [118]

This comes as an ambulatory amplifier which weighs about 140g with a recorder weighing

770g including batteries. It can record 32 channels of data that can be scored manually

in real-time while data is being acquired. This is more suitable for clinical use than for

in-home testing.

Vitaport 4 PSG-lite by Temec [119]

Another PSG system with a single EEG, EOG and EMG channel inputs and a software

viewer to manually score sleep stages. The dimensions and weight information is not

provided. It can record up to 16 hours of data on a single charge of its battery.

eXea PSG 3 by Bitmed (Sibel Group) [120]

This ambulatory PSG device allows for 12 ExG differential channels to be recorded for

up to 29 hours using a rechargeable battery.

Sleep&Go by Bitmed (Sibel Group) [120]

This is a type III PSG device that has an additional ExG module to record 3 channels for

up to 24 hours of data on a memory card using 2 AA batteries. It weighs 140g without

battery and has compact dimensions of 86mm × 86mm × 24mm.

BW3 PSG by Sleepvirtual [121]

Another type I PSG device that comes as a separate head-box and amplifier to record

up to 50 channels and has ethernet connectivity to analyse data using the accompanying

BWAnalysis PSG software.

Harmonie-S PSG System by Stellate (Natus) [114]

This is an advanced PSG system with 44 channels of input and has networking capabilities

to analyse the data in real-time on a computer with its software. The software can detect
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some sleep events such as spindles and rapid eye movements and can adapt to the scoring

style of the technologist to make manual sleep staging efficient.

TREA Ambulatory EEG System [122]

An ambulatory EEG system that can record 25 EEG channels for 72 hours at a sampling

rate of 200 Hz. It is powered by 3 Lithium AA batteries and the unit weights about 140g

without the batteries.

g.Nautilus by g.tec [123]

A wireless EEG acquisition system capable of up to 10 hours continuous recording with

a range of 10 metres. It can be used with either 8, 16 or 32 channel configurations. The

recording unit is attached to a cap so using the device is simply a matter of putting on

the cap with the attached unit.

ENOBIO32 by Neuroelectronics [124]

This is also a wearable wireless EEG acquisition device attached to a cap which has the

sensors. It can record 32 channels at a resolution of 24 bits and has the option of storing

the data on SD card or transmit via Bluetooth for up to 14 hours. The weight of this

device is 65g.

Mobita Wireless EEG by BIOPAC [125]

This is a 32 channel ExG acquisition system with the ability to store data locally or

transmit using WiFi. It can be attached to the electrode cap and has a battery lifetime

between 8-10 hours on a single charge.

72-Channel Dry EEG Headset System by Cognionics [126]

This is a wireless headset for high density recordings and weighs 350g with the batteries.

It can operate for 6 hours when using the Bluetooth transmission mode or 10 hours when

data is stored on a SD card.

Stat X-Series Mobile EEG by Advanced Brain Monitoring [127]

These are wireless EEG acquisition systems available 4, 10 and 24 channel configurations.

Their transmission range is up to 20 metres however the battery lifetime of these devices

is not known.
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Sleep Profiler by Advanced Brain Monitoring [128]

This device has the ability to record three frontal EEG channels using a band that is worn

on the forehead. The recorded data is analysed and scored via a web-based interface.

Zeo Sleep Manager [129]

Featuring a wireless headband collecting data from the forehead, Zeo provides information

about different stages of sleep classified as Wake, Light sleep, Deep sleep and REM. It is

not a medical device and has been designed for consumer use for sleep tracking.

EPOC+ by Emotiv [130]

A 14-channel EEG acquisition headset with wireless transmission of either 6 or 12 hours

using Bluetooth or a proprietary transmitter respectively.

2.5.3 Sleep scoring softwares

In this section, offline and web-based software services for automated sleep scoring are

briefly reviewed.

Michele Sleep Scoring [131]

A web-based sleep scoring service that allows sleep technologists to upload recorded data.

It returns the scored data in 15 minutes which can be edited or reviewed manually before

generating the final report.

Aseega [132]

Aseega Online is a also web-based service targeted towards researchers to get a detailed

report on uploaded sleep data. Once data is uploaded, Aseega takes 5 minutes to perform

the analysis and generate reports. Aseega can score sleep stages using one or more

channels of EEG.

Somnolyzer 24×7 [133]

Another web-based service that adds expert review process on top of automated scoring

to minimise errors and includes full sleep staging with micro-events detection.

N2 Sleep [134]

This is also a web-based service which returns the scored data with reports in 48 hours.

However, data is scored manually at the back-end and therefore the turnaround time is

high.
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FASS [115]

FASS (Fully Automated Sleep Stager) is a software by Grass Technologies that performs

sleep staging using EEG, EOG and chin EMG data and allows the thresholds to be

manually changed for each subject. It, however, works with the PSG systems made by

Grass Technologies only.

Morpheus - Automated Sleep Testing Management [135]

Morpheus by WideMed provides a completed web-based solution to manage and auto-

matically score sleep data that is accessible from anywhere using internet.

SleepView Web Portal [110]

This is a web-based solution by CleveMed for manual scoring of sleep stages by certified

sleep physicians.

2.5.4 Conclusions

All the PSG systems discussed in this section have a similar design in that they have a

portable recording unit to which wired electrodes are attached. The unit itself is mostly

powered by a rechargeable battery that can last for 7-48 hours. A number of factors

affect the battery lifetime including:

• Number of channels recorded.

• Wireless transmission of data or local storage.

• Size (capacity) of battery

The recording units available weigh in the range of 250g and also have small sizes. In

most of the systems, the recorders are either strapped around the waist or chest region

or placed next to the bed. They require some form of communication method from

the device to a computer for further analysis of data and the options include wireless

transmission, ethernet connection or local memory storage.

The systems reviewed in this section provide few different features to improve the PSG

tests. However, there are still certain limitations including usability, wearability, power

consumption, reduction in number of channels and more. The next section looks at the

challenges associated with improving these systems in detail and proposes a solution that

can help alleviate the limitations of existing systems.

60



2.6 Proposed solution and challenges

PSG in its existing form suffers from a number of drawbacks including high cost, dif-

ficulty in usage and requirement of a lot of time for recording and analysis. HPSG is

the obvious potential alternative of clinical PSG in cases where possible. Even if it is

not an alternative it can serve as a potential screening step in many cases. However,

asking a patient to correctly place a large number of recording electrodes is not practical.

Hence, researchers have explored a number of algorithms to potentially extract data from

a reduced number of channels. Such methods are often very complex and require imple-

mentation on processors that are not suitable for resource-constrained wearable systems.

A variety of commercial systems have been introduced that try to mitigate for some of

the shortcomings of the existing PSG, however it is clear that there is a need to do more.

This thesis proposes the development of a completely wireless single-channel sleep

scoring system that is easy to put on, comfortable to sleep with, gives instant results and

can be used anywhere. Such a system can be implemented in one of the two following

ways.

Signal processing and sleep staging on the sensor node (Approach 1)

Using this approach, data is continuously processed at the sensor end and only the sleep

stage information is required to be transmitted. The primary advantage in this case is

the hugely reduced data rate. If the epoch size is 30 seconds then there are only few

bits of payload that must be transmitted after that time. This scenario is ideal for the

ultra-low power transmitters such as Bluetooth Low Energy (BLE) [136]. Since BLE

is now widely available in most smartphones, there is no need for additional hardware

to receive data and act as an intermediary between the sensor and a different display

device. It also does not drain the battery of a smartphone and can lead to a superior

user experience.

In systems using this architecture, algorithms for scoring sleep are constrained by the

processor capability. This is because complex algorithms running on these processors

directly result in higher power consumption and a reduced battery life of the system.

The two key stages in all sleep staging methods are feature extraction and classification.

The number and types of features extracted and the choice of classifier used depend on

the target application of an algorithm. For example, it may be acceptable to use 200

features with a multistage neural network in an analysis software running on a computer

but the limitations of a wearable battery-powered system prohibits the use of complex

features and classifiers consequently leading to a reduction in performance. Therefore

a trade-off between acceptable levels of performance and algorithm complexity must be

made to meet system specifications.
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Raw data transmission or storage with signal processing at the receiver end

(Approach 2)

In this approach, data is continuously acquired and transmitted to a base station nearby

where they are received and processed to extract relevant sleep staging information.

There are a number of advantages of this system architecture. The primary advantage is

that all the computational load of an automated classification algorithm can be pushed

to the receiver end since no data is to be processed at the sensor. The receiver has to

be within the range at all times which is not an issue while performing sleep recordings.

However, continuous data transmission comes with a whole host of design issues such as

the data rate, security, reliability and transmission power. Further, the computational

power available at the receiver depends on the type being used. For example, a desk-

top computer may be able to run much more complex algorithms in comparison to a

smartphone.

Rather than transmitting data continuously, it is also possible to save them on local

memory and retrieve later to perform sleep analysis. Further, a lightweight compression

scheme can also be incorporated prior to transmission. However, regardless of whether

data is being transmitted or stored, compressed or uncompressed, it does not make a

difference to the design of sleep algorithms since they will still be running on machines

that can cope with high computational requirements. This system architecture, with its

feasibility and other system considerations, is discussed in great detail in Appendix D.

Which approach is better?

There are pros and cons of implementing the system in either of the two architectures

discussed and the best choice can be made depending on the application and setting in

which such a system is to be used. Hence, it is impossible to recommend one over the

other. However, keeping in mind the growing trend of mobile device usage it is safe to

say that, at least from the perspective of user experience, it makes sense to have a system

that can communicate with a smartphone where the latter can act as the receiver and

processor for the second approach and receiver in case of the first approach.

While the first approach definitely requires a low complexity algorithm for the afore-

mentioned reasons, limiting the second approach to cases where the receiver is a smart-

phone also puts some constraints on the algorithm development. This is because, com-

pared to a desktop computer, a smartphone will have lower processing power and band-

width available. Therefore, regardless of the chosen approach there is a definite need for

low complexity sleep staging algorithms that can be run on a sensor node (Approach 1)

or a smartphone (Approach 2). Thus, this thesis focuses on exploring novel features

and developing algorithms for sleep stage classification that can be useful in both these

approaches.
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2.6.1 Challenges of the proposed approach

The design of a wearable system with automatic sleep staging poses a number of chal-

lenges both in hardware and software development. These inter-related challenges are

explained in detail below.

Number of channels

Based on the AASM recommendations, three EEG channels are required in PSG systems

together with EOG and EMG channels. Ruehland et al. [17] reported no significant

differences in sleep scoring reliability when using a single EEG channel, so this number

can potentially be reduced to one. However, the EOG and EMG channels are still

required since identifying REM stage epochs involves observing the chin muscle and eye

activity [4]. A number of researchers have attempted to use only the EEG component for

sleep staging in order to further reduce the total number of channels down to one. This

reduction has many advantages including lower power consumption, smaller data rate,

easier to put on and more comfortable to use. Having a single channel results in a few

downsides as well. The first and most important one being the reliability since any loss in

electrode contact means there are no backup electrodes to fall upon. Another downside is

perhaps a reduction in accuracy since EOG and EMG channels are not available to help

in ambiguous cases where EEG may not be enough to classify an epoch. Nevertheless, the

advantages of single EEG channel, if implemented properly outweigh these downsides and

can result in a system that has the potential to benefit a much wider group of population.

Power consumption

The power budget of a wearable system is extremely small which in turn limits the

computational load that can be put on to the processing unit. A reduction in the number

of channels is directly beneficial for saving power since there is less data to acquire and

process. Even with that, the algorithm still has to be of sufficiently low complexity to

run on the low power system. The other system component that often requires more

power is the transmitter. This could be tackled by following one of the two approaches

above depending on the application. Overall, at the very least, the system should be able

to run for about eight to ten hours (average duration of a night sleep) without the need

for changing or recharging the battery. The size and capacity of the battery will then

set the limit on the maximum power budget available for the system and will dictate the

design of algorithm and transmission protocols.

Performance metrics

Although a large number of sleep staging algorithms already exist in the literature and

achieve varying degrees of accuracy it is very difficult to compare them because of the
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inconsistent metrics used to report their performance. The use of data from different

sources while selecting different sections as well also affect these reported accuracies. It is

entirely possible that an algorithm that uses data from source A and achieves an accuracy

of 90% obtains a much lower accuracy when using data from source B. In this thesis, prior

to any algorithm design, a set of recommendations is therefore proposed for consistent

and standardised performance assessment of automatic sleep staging algorithms (see

Chapter 3).

Detection of REM sleep

One of the greatest bottlenecks in reducing the number of channels is the need for EOG

and/or EMG channels to discriminate between REM and N1/Wake stages that appear

very similar on EEG. Therefore, in order to realise a single-channel EEG based solution,

novel features that are able to detect REM sleep epochs from EEG are required. This

involves analysis using multiple features and using them in a way that gives them the

highest discriminatory ability.

Detection of sleep microevents

Sleep spindles are important microevents that occur mostly during N2 and N3 stages of

sleep. They are not only helpful for identifying the aforementioned sleep stages but are

also an important research subject. It is therefore helpful to have an algorithm for their

detection that can either be integrated with the larger sleep classification algorithm or be

used on its own for research on spindles. This algorithm will also have to be constrained

by the same limitations as the low complexity sleep staging algorithm (see Appendix C).

Data storage and transmission

As discussed earlier in Section 2.6, it is possible to either store the data locally or transmit

wirelessly to a nearby receiver. In the case of raw data transmission, it is helpful to

compress this data to reduce the transmission bandwidth and save some power. The

amount of data, transmission rate, payload size, power consumption, data integrity and

security are all factors that must be taken care of when designing this component of the

system.

Algorithm accuracy

A small power budget limits the complexity of an algorithm and dictates the kind of signal

processing methods that can be used for its design. The lower complexity algorithm will

then be able to work within the constraints but has the downside of lower accuracy

compared to an algorithm that has no such restrictions. There is a tradeoff between the
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algorithm complexity (and hence its power consumption) and the maximum accuracy

that can be achieved with it and this needs to be looked at in detail.

User experience

The need for wearable sleep staging systems stem from the desire to make them com-

fortable for the patients to use and easy to handle. The systems should allow patients

to sleep better during the test and provide an improved overall user experience. All of

the challenges stated above directly or indirectly affect the user experience since they are

related to the design of the system.

2.7 Conclusion

This chapter introduced the different characteristics and stages of human sleep and dis-

cussed how the lack of sleep can lead to certain fatal disorders. The PSG test used to

diagnose sleep orders was discussed in detail together with its limitations and drawbacks

in its existing form. A wealth of academic literature and latest commercial PSG systems

were then reviewed and discussed to see what different research groups are doing to tackle

these limitations. The concept of Home PSG was discussed in detail highlighting various

system aspects that are needed to make this system work. This led to the proposal of

a single channel wearable sleep scoring system. The design challenges of this proposed

system were then discussed which forms the basis of the work presented in the next

chapters.
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3 Performance assessment of automatic

sleep staging algorithms

The research presented within this chapter is an edited version of research previously

published in:

S. A. Imtiaz and E. Rodriguez-Villegas, “Recommendations for performance

assessment of automatic sleep staging algorithms,” in proceedings of the 36th

international conference of the IEEE Engineering in Medicine and Biology So-

ciety, Chicago, August 2014, pp. 5044–5047, c© IEEE.

3.1 Introduction

There have been a large number of automatic sleep scoring algorithms published in the

last four decades. This is because visual analysis of PSG signals is a costly, tedious and

error-prone task. It can take between 2-4 hours to analyse an overnight PSG recording [1]

with the scoring agreement between different experts about 82% on average [2]. There-

fore, automation of this analysis is desirable not only to save time and costs but also

to improve uniformity between different scoring sessions and experts. Automatic sleep

staging has always been an actively growing research area. However, the recent consumer

focus on wearable devices for sleep tracking has further accelerated research in this area

resulting in the use of other signals such as heart rate variability, body movements, etc.,

that are not conventionally used for the classification of sleep stages. Further, there is

also a push towards using the least number of sensors for scoring sleep. For example,

the use of single channel EEG or EOG and classification based on respiratory signals

exclusively have received recent attention. Unsurprisingly, the number of research pa-

pers published in this area has increased steadily over the past few years. Figure 3.1

charts this rise for papers indexed in IEEEXplore that present features and/or methods

for automatic classification of at least one stage of sleep.

Despite the existence of a large number of automatic sleep staging algorithms (reviewed

in Chapter 2), a direct comparison between them is extremely difficult due to a number

of reasons. This includes the use of varying performance metrics, such as defining the

agreement rate of an algorithm as well as the accuracies in each sleep stage in many

different ways. Further, there are instances when certain sleep stages, e.g. REM and N1

or N1 and N2, are lumped together when reporting the results. This can mask the true
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Figure 3.1: Number of papers published in IEEEXplore over the last 25 years related to auto-
matic sleep staging algorithms.

accuracy of those sleep stages. The use of both R&K and AASM classification as well

as different databases for evaluating the algorithm performance also makes it difficult to

compare the results directly. Finally, the selection of limited or partial test signals from

the same database also contribute to this problem.

It is, therefore, imperative to have a standard set of guidelines using which an algorithm

is tested and its performance reported. This chapter discusses a set of recommendations

and performance metrics to promote uniform testing and direct comparison of different

algorithms. It describes some readily available polysomnography databases that are

available at no cost and therefore accessible to all researchers. It proposes a set of

guidelines for the usage of these databases so that consistent sections of data are being

used across the board. It further shows how adopting these usage guidelines and uniform

performance metrics would allow fair comparison of the strengths and weaknesses of

sleep staging algorithms. Later in the chapter, the use of proposed recommendations and

performance metrics is demonstrated with a simple sleep staging algorithm using data

from two different polysomnography databases. It is illustrated how seemingly similar

results using two different databases can have contrasting accuracies in different sleep

stages and how selection of different training and test subjects from the same database

can alter the final performance results.

3.2 Polysomnography databases

This section introduces five PSG databases that are widely available and can be used to

develop and test sleep staging algorithms. Further details about these databases can be

found in Appendix A.
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3.2.1 PhysioNet Sleep EDF Database

The PhysioNet Sleep EDF database [3], [4] was made available online over 10 years ago

and many algorithms have reported their detection performance using certain sections of

this database. It consists of PSG recordings from 8 subjects, of which four were recorded

overnight (cases starting with ST ) while the others were recorded during a 24-hour period

(starting with SC ). All the recordings in this database include hypnograms scored using

R&K classification.

3.2.2 PhysioNet Sleep EDF Expanded Database

This is the superset of the previously described PhysioNet Sleep EDF Database and

has recently been published in full [5]. It consists of 61 subjects, including some with

overnight recordings and others with up to 24 hours of recordings, scored using R&K

classification.

3.2.3 DREAMS Subjects Database

This database from University of MONS — TCTS Laboratory and Université Libre de

Bruxelles — CHU de Charleroi Sleep Laboratory consists of overnight PSG recordings

of 20 subjects [6]. It includes hypnograms for each subject that have been scored using

both R&K and AASM classification of sleep stages.

3.2.4 DREAMS Patients Database

This dataset, also from the same source as above, has 27 PSG recordings of subjects

with various sleep disorders including insomnia, PLMS and others [7]. It also contains

hypnograms that have been scored using both R&K and AASM classification of sleep

stages.

3.2.5 Montreal Archive of Sleep Studies

This is an open-access database and currently offers 200 PSG recordings and consists of

sleep scoring annotations using both R&K and AASM rules of classification [8].

3.3 Recommendations for using PSG databases

An algorithm’s performance may be reported on either of the databases listed in the

previous section since they are available online and free of cost. It is impossible to suggest

or recommend one particular database to use for testing sleep staging algorithms. In fact,

ideally a method should be tested on all of them.

It should be noted that the PhysioNet Sleep EDF database has been the most popular

amongst all that have been listed. This database has now been made deprecated and its
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use should be discouraged. Further, since the new PhysioNet database is a superset of

the previous, the same records will already be included in it. However, if the intention is

to compare against a method that used the previous database there is no reason not to

use the older database.

Regardless of the chosen database, enough details about how it has been used should

be provided so that the results could be reproduced by other researchers. This section

lists and explains a minimum set of recommendations that is proposed to be followed

in conjunction with the publicly available databases (even including those are not listed

above). These would simplify the comparison and reproduction of results leading to

improvement in the algorithms already published.

3.3.1 Classification: AASM and R&K

The AASM classification of sleep stages was published in 2007 and until then all sleep

staging algorithms, naturally, reported their performance using the R&K classification.

The adoption of R&K classification is so widespread that it is still in use in many clinics

as well as some recent research publications. The major reason for publications still using

the R&K instead of the AASM classification is that the PSG databases they have were

scored before 2007 using the former classification. Since AASM classification is the newer

standard, overcomes some of the limitations in the R&K classification [9], [10] and will

eventually replace the R&K rules completely, it is recommended to use this for all future

sleep staging algorithms.

From the databases listed in Section 3.2, the PhysioNet databases include hypnograms

with the R&K classification while others have hypnograms scored using AASM rules.

However, PhysioNet databases are the most popular ones and are used widely. To report

results using these databases according to the AASM classification, care must be taken

not to ignore epochs from stages which are not part of the AASM classification. In most

publications MT stage (movement) of R&K is ignored when using the AASM classifi-

cation to present results. This can lead to incorrect or biased results since major body

movements commonly transition to wakefulness [10]. The AASM manual of classification

states that an epoch with major body movements should be classified as Wake if alpha

rhythms are present in the epoch or if a Wake epoch precedes or follows the epoch under

analysis even if there are no alpha rhythms. If neither of the two conditions are true,

then the epoch should be assigned the same sleep stage as the epoch that follows it [11].

To roughly convert a R&K hypnogram to AASM, S3 and S4 stages should be marked

as N3 while Wake and MT together should be marked as Wake (as shown in Table 3.1). If

using either of the two DREAMS or Montreal Archive of Sleep Studies (MASS) databases,

the accompanying AASM hypnogram should be used without any need of conversion from

R&K.
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Table 3.1: Conversion from R&K to AASM classification

R&K S1 S2 S3 S4 REM Wake MT

AASM N1 N2 N3 REM Wake

3.3.2 Epoch size and signal duration

The standard epoch size for scoring of sleep stages according to both R&K and AASM

classifications is 30 seconds. Some scorers and algorithms have also used different epoch

sizes in the past with 20 seconds being a popular choice in some sleep labs. PhysioNet

database includes hypnograms with standard 30s epoch size while the two DREAMS

databases listed earlier have been scored at a non-standard interval of 5 s.

If the DREAMS databases are used then it is recommended to convert the hypnogram

into 30s epoch scoring size using the following method. Starting from time zero, each 30s

epoch will have six scores in the original hypnogram for every block of 5s. The modal

value of these six scores should be determined and assigned as sleep stage of the 30 second

epoch. There may be some epochs with equal number of different sleep stages assigned

to the constituent subepochs. This results in a tie between the sleep stages making it

impossible to assign the modal value. In such cases, the sleep score of the preceding

epoch should be assigned to the current epoch. Additionally, in cases where the last or

first scored epoch of the complete recording has a duration of less than 30 seconds it

should be removed. In other words, partial epochs towards the end and beginning of the

recording should not be analysed and the total signal duration should be a multiple of

30 (epoch size).

3.3.3 Selecting data from long term recordings

The PhysioNet databases consist of recordings from two different studies. The recordings

prefixed with ST are overnight sleep recordings while a person is in bed. The other set,

prefixed with SC, consist of 24-hour recordings from each subject including the day

time as well as their overnight sleep. To use this latter set, most of the wake sections

during the day is usually removed to select only overnight sleep data. However, this

selection of data is not consistent as some research groups use data from the start of

sleep removing all of the pre-sleep wake sections while others include greater periods of

wake. It is possible that an algorithm using data with a lot more wake sections is suffering

performance loss or reporting high overall accuracy only because of the higher number

of wake epochs. Therefore, it is important to use consistent sections of data to better

reflect the performance of an algorithm and also to make a fair comparison between the

results of different algorithms.

For selecting the signals, it is proposed that the lights off time should be used as the

start time for these longer recordings. In cases where this is not available, 15 minutes
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of wake period prior to the first scored sleep epoch should be used. Similarly, to mark

the end of a recording lights on time should be used, if available. Otherwise, 15 minutes

of wake period after the last scored sleep epoch should be used as the end time. This

selection of data is not required for DREAMS Subjects and Patients databases as they

contain only the overnight recordings.

3.3.4 Training and test set

Most algorithms split the database into two sets: a training set for learning and a test

set for performance validation. However, this split is often not clearly described and

can have a big impact on the performance. It is, therefore, important to know how the

database is split and which recordings were used for training and which ones for testing.

It is difficult to reproduce the results of an algorithm without this knowledge, therefore

the subjects used in each set should be clearly stated.

3.3.5 Unscored epochs

All the databases listed in Section 3.2 have some epochs that were not assigned any of the

known sleep stages. These epochs are considered unscored and it is proposed to remove

them from the results when reporting the performance. Further, the number of unscored

epochs removed should be stated to bring it to the attention of other researchers.

3.3.6 Channels

Some sleep staging algorithms use a combination of multiple EEG, EOG and EMG

channels while others use only a subset of these. It should always be ensured that the

channel(s) being used by an algorithm are clearly specified.

3.4 Performance metrics

The overall performance of an algorithm is commonly represented by its accuracy, that

is, the fraction of epochs correctly classified by the algorithm.

Accuracy =
no. of true detections

total no. of epochs
(3.1)

However, not all stages of sleep occur for similar periods of time and the individual

detection performances during each stage may vary considerably. Most papers present

a further confusion matrix (or a contingency table) that provides details of the epochs

correctly and incorrectly classified. Along with this, the fraction and rate of correctly

detected epochs should also be computed for each sleep stage to give a better under-

standing of an algorithm’s performance. For a hypothetical sleep stage X, the following

terms represent the epochs that are either correctly or falsely detected/rejected.
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True Positives (TP): Number of epochs correctly scored as X.

False Positives (FP): Number of epochs incorrectly scored as X.

True Negatives (TN): Number of epochs correctly rejected as not X.

False Negatives (FN): Number of epochs incorrectly rejected as not X.

The performance of an algorithm can then be characterised for each sleep stage by

calculating the following metrics.

Sensitivity

It represents the fraction of correctly detected epochs in a sleep stage X, where X can

be any of the five sleep stages.

Sensitivity =
true positives in stage X

true positives in stage X + false negatives in stage X
(3.2)

Selectivity

It refers to the proportion of true detections of X amongst the epochs classified by the

algorithm and is also known as the true positive rate.

Selectivity =
true positives in stage X

true positives in stage X + false positives in stage X
(3.3)

Specificity

It is the measure of an epoch of stage other than X being correctly rejected by the

algorithm.

Specificity =
true negatives in stage X

true negatives in stage X + false positives in stage X
(3.4)

Discussion

Of the performance metrics described above, the accuracy of an algorithm is often its

highlight performance number. The sensitivity and selectivity in each stage are important

to determine how good the algorithm is in detecting the epochs in each sleep stage

correctly. The specificity of a sleep stage is useful only in the context when the detection

of a specific sleep stage is desired while rejecting epochs of other sleep stages. It does not

give any meaningful information in the context of a complete sleep staging algorithm.
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3.5 Demonstration of the performance assessment

recommendations using a sleep staging algorithm

In this section an automatic sleep staging algorithm is presented and its performance

is characterised using two PSG databases: PhysioNet EDF and DREAMS Subjects

databases. The signals from these databases are used by following the recommendations

in Section 3.3. Three cases are used to illustrate how different databases and different

subjects from the same database can affect the performance results.

Case 1: Performance assessment using DREAMS Subjects Database.

Case 2: Performance assessment using PhysioNet Sleep EDF Database.

Case 3: Performance assessment using different training and test subjects from Phys-

ioNet Sleep EDF Database.

Algorithm Overview

The algorithm uses data from one EEG (frontal) and one EOG channel which are split

into epochs of 30 seconds. Each epoch is further divided into 2-second blocks and trans-

formed to frequency domain using Fast Fourier Transform (FFT). For each block of 2s

EEG, spectral power in every 2 Hz frequency bin from 0-30 Hz range is calculated i.e. 0-

2 Hz, 2-4 Hz, 4-6 Hz and so on. For the corresponding EOG block, spectral power within

0-6 Hz is also calculated similarly for every 2 Hz frequency interval. Subsequently, the

average of every feature is calculated within a 30s epoch. Since each feature is calculated

for a 2s block, there are 15 such values within an epoch to calculate the average. This

results in 18 features overall (15 EEG and 3 EOG) computed for an epoch and are clas-

sified using a Support Vector Machine (SVM). The SVM is implemented using LIBSVM

package [12] in Matlab (ver. R2010a) with a third degree radial basis kernel function.

3.5.1 Case 1: Using DREAMS Subjects Database

In this case, data from channels Fp1-A2 and EOG1 is used from the DREAMS subjects

database. It is partitioned such that subjects 1-10 were used in the training set while

subjects 11-20 formed the test set. The database includes hypnograms that were scored

using the AASM classification with epoch size of 5 seconds. This is converted into a

30s scoring interval by using the modal value of the sleep score in every 30s epoch (as

explained in Section 3.3.2). Further, it is ensured that the total duration of recording in

each subject contains a whole number of 30s epochs discarding any remaining seconds at

the end that formed an incomplete epoch. As a result, there are a total of 10178 epochs

in the training set and 10087 epochs in the test set including 3 and 20 unscored epochs

in the training and test sets respectively.
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The algorithm achieved an overall accuracy of 82.7% on the training set. With the test

data, the overall accuracy was found to be 77%. The confusion matrix for the algorithm

performance on the test dataset is shown in Table 3.2. It shows that the sensitivity

for stages W and N3 are more than 86% whereas only 17% of N1 epochs are correctly

detected. This case illustrates how a high overall accuracy can easily mask the poor

performance of the algorithm in one or more sleep stages.

Table 3.2: Case 1: Results using DREAMS Subjects Database

REFERENCE

A
L
G
O
R
IT

H
M

W N1 N2 N3 R Sen(%) Sel(%)

W 1599 226 112 15 60 87.0 79.5

N1 52 142 75 0 201 17.2 30.2

N2 132 326 3340 249 156 82.5 79.5

N3 9 5 334 1627 1 86.0 82.3

R 47 126 187 0 1046 71.5 74.4

3.5.2 Case 2: Using Sleep-EDF Database

In this case data from all 8 subjects in the PhysioNet Sleep EDF database is used. It

includes signals from Fpz-Cz and horizontal EOG channels. The database consists of

two kinds of recordings (described in Section 3.2.1). The ST recordings are used as is

while data from SC recordings is selected using the recommendation in Section 3.3.3.

The eight subjects are partitioned to include two of each kind of recording in both the

training and test dataset. The training set included SC4002, SC4102, ST7022, ST7121

and the test set included SC4012, SC4112, ST7052, ST7132. In total there are 8905

epochs (4650 in training and 4295 in test set) of which 1133 are unscored (589 in training

and 544 in test set).

The overall accuracies achieved on the training and test sets are 79.5% and 73.4%

respectively. This overall result appears to be very similar to that obtained in Case 1.

However, the confusion matrix shown in Table 3.3 paints a different picture. The sensitiv-

ity in each sleep stage is actually quite different compared to the first case. In particular,

the results show improved sensitivities in REM, N1 and N2 stages. There is a reduction

in N3 sensitivity while the algorithm fails to classify any of the Wake epochs at all.
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Table 3.3: Case 2: Results using PhysioNet Sleep EDF Database

REFERENCE

A
L
G
O
R
IT

H
M

W N1 N2 N3 R Sen(%) Sel(%)

W 0 0 0 0 0 0 0

N1 117 98 30 7 17 30.6 36.4

N2 36 55 1562 83 25 85.1 88.7

N3 72 9 166 392 24 80.0 59.1

R 111 158 78 8 703 91.4 66.5

3.5.3 Case 3: Using Sleep-EDF Database with different training and

test set

In this case the same database as in Case 2 is used with the difference that all four SC

recordings are part of the training set (3929 epochs with no unscored epochs) while the

other four ST recordings are part of the test set (5016 epochs including 1133 unscored

epochs). An overall accuracy of 86.6% is achieved for the training set while the test set

resulted in an overall accuracy of only 61.6%. The confusion matrix and individual sleep

stage performances are shown in Table 3.4. In contrast to Case 2, the sensitivity in Wake

stage is now close to 80% while in REM stage it has gone down from 91% to 19%. The

overall accuracy is also less than that achieved in Case 2. This illustrates how using

different groups of training and test cases from the same database can result in a vastly

different performance result.

Table 3.4: Case 3: Results using PhysioNet Sleep EDF Database with a different training and
test set

REFERENCE

A
L
G
O
R
IT

H
M

W N1 N2 N3 R Sen(%) Sel(%)

W 265 178 14 4 134 79.6 44.5

N1 1 17 2 0 61 5.4 21.0

N2 43 102 1293 117 427 81.6 65.2

N3 24 16 276 649 82 84.3 62.0

R 0 5 0 0 164 18.9 97.0
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3.6 Discussion

In this chapter, a set of guidelines and recommendations were proposed for using the

common PSG databases that are freely available on the internet. To this end, five

common databases were listed and explained. The recommendations being proposed

here are not restricted to these databases only but will apply equally to other databases

that may become available in future. Of all the databases listed, PhysioNet databases

are the most popular. With the availability of the new PhysioNet Sleep EDF Expanded

database, it is expected that this will be widely used by sleep researchers. An open

source Matlab toolbox has been developed as part of this research work to extract and

use the signals from this database. The toolbox includes functions that implement the

recommendations proposed in this chapter making it easy for everyone to adhere to these

guidelines. This toolbox is explained in further detail in Appendix B.

To demonstrate how different databases can alter an algorithm’s performance a sleep

staging algorithm, based on spectral features and SVM classifier was used in this chapter.

Evaluating the performance of this algorithm in three different cases, it was shown that

the results can easily change when different databases are used or even if different set of

training and test subjects are used from the same database. It was also shown that even

if the classification accuracy using different databases is similar, the results of detection

in each sleep stage can be very different. It is therefore important that the classification

performance of an algorithm in each of the individual sleep stages is also reported.

In some instances, the only reported performances are for two-stage or three-stage

classification where two stage is Sleep-Wake and three-stage is Sleep-REM-NREM. The

overall accuracies of these algorithms cannot be directly compared with the overall accu-

racy of a complete sleep staging algorithm. Some algorithms classify only the sleep stages

without including Wake while few also combine REM and N1 together. REM and N1 are

similar in EEG but combining their detection performance does not give any meaningful

information, since it is impossible to determine what fraction of REM and N1, if any, are

being individually detected.

This chapter recommended using the AASM classification in all future work and ex-

plained how to roughly convert the hypnograms scored with R&K classification. It also

described a method to convert non-standard epoch size hypnograms to the standard 30s

scoring interval. It is hoped that the recommendations proposed in this chapter will allow

researchers to fairly compare different methods subsequently leading to improvements in

already existing sleep staging algorithms.
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4 REM sleep detection using single

channel EEG

The research presented within this chapter is an edited version of research previously

published in:

S. A. Imtiaz and E. Rodriguez-Villegas, “A Low Computational Cost Algorithm

for REM Sleep Detection Using Single Channel EEG,” Annals of Biomedical

Engineering, vol. 42, no. 11, pp. 2344–2359, 2014.

4.1 Introduction

Rapid Eye Movement (REM) is a distinct phase of human sleep that accounts for about

5-20% of an adult’s entire night’s sleep [1]. Its detection, both onset and duration, are

very important for the diagnosis of certain sleep disorders including narcolepsy and REM

behaviour disorder (RBD). Traditional clinical and home PSG systems are constrained

by the minimum number of channels that can be used. Even if the number of EEG

channels can potentially be reduced, the EOG and EMG channels are still required since

identifying REM stage epochs involves observing the chin muscle and eye activity [2].

Other than its detection for being a significant fraction of sleep, analysis of REM

sleep also helps to serve as an important marker for certain sleep disorders. Observing

the muscle activity during REM stage is often used for the diagnosis of RBD, which is

also an early marker for neurological disorders including Parkinson’s disease [3]. The

duration of REM sleep in the first cycle has been shown to correlate negatively with

mood improvement on wake-up in patients with major depression [4]. It has also been

shown that the number of REM sleep periods is higher, with a shorter average duration,

in trauma-exposed people who go on to develop post-traumatic stress disorder [5]. The

latency from Wake to the onset of first REM cycle and the pattern of occurrence of

subsequent cycles throughout the night is commonly used in the diagnosis of narcolepsy.

Vogel et al. [6] reported that REM sleep deprivation can be used therapeutically for the

improvement of depression symptoms. Using a wearable REM sleep detection system,

this could be achieved by raising an alarm to awaken the patients whenever they enter

the REM sleep phase.

Apart from REM, all the stages of sleep can be identified from EEG channels only.

This is because REM sleep has many electroencephalographic similarities with Wake and
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N1 stages [1], [7], [8]. According to both R&K [9] and AASM [2] sleep scoring manuals,

the presence of low amplitude, mixed frequency EEG is characteristic of both N1 and

REM stages making its visual identification using EEG challenging. However, with most

of the sleep stages identifiable with EEG it makes sense to attempt to score REM phases

using the same signal to obviate the need of using extra electrodes. This could be very

helpful in making HPSG systems easier and comfortable to use.

There are two main objectives of the work described in this chapter. The first is to

find features and trends in sleep EEG that can distinguish REM phase from all other

stages of sleep, particularly N1 and Wake. The second objective is to use these EEG

features for developing a simple algorithm capable of detecting REM stage epochs. Both

these objectives ultimately aid the development of a sleep staging algorithm that could

be used as part of a truly wearable sleep system.

4.2 Literature review of REM detection algorithms

Several research groups have been working on automatic sleep staging using signals from

PSG and EEG based systems. In this section a review of these methods is presented to

show the different features and classifiers being used and their detection performance.

The performances reported below are limited to the REM detection part of systems and

their corresponding accuracy.

There are multiple signal processing methods for automatic identification of REM sleep

alone or as part of wider sleep staging systems that already exist in literature. These

algorithms tend to use a set of frequency and time-domain features extracted from one

or more of EEG, EOG and EMG channels. These features are then classified using a

variety of classifiers such as decision trees, LDA classifiers, fuzzy classifiers, support vector

machines, artificial neural networks and more. These were discussed in detail earlier in

Chapter 2, and a summary of their REM detection performance is shown in Table 4.1.

Of all the methods listed in this table, less than half use EEG signals only for detection

of REM (along with other sleep stages). Most methods use at least one EOG or EMG

channels with the EEG channels for detection.

Estrada et al. [10] concluded that EMG and EOG are both important in sleep staging,

particularly in REM stage. Similarly, Charbonnier et al. [11] reported a jump in REM

detection accuracy from 63% to 83% when EMG signal was added to their analysis. It is

evident from the sleep staging literature that algorithms using inputs from EEG, EOG

and EMG channels are able to achieve a better REM detection performance while using

just one EEG channel makes the task more challenging. Further, those that eventually

achieve an impressive accuracy for REM detection using EEG only tend to use com-

plex feature extraction and classification methods that are not suitable for a low power

implementation on resource-constrained systems.
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Table 4.1: Literature review summary for automatic REM stage detection as part of sleep staging
algorithms.

Ref Channels Method Result

[12]

2×EEG

2×EOG

1×EMG

Waveform recognition and

rule-based classification
Sen: 76%

[13] 1×EOG
DFT features with

decision tree classification
Sen: 62% Sel: 79%

[14] 1×EEG Bispectrum estimation Sen: 73%

[15]

1×EEG

2×EOG

1×EMG

Decision tree with power

and energy features and

contextual smoothing

Sen: 91% Sel: 85%

[16] 1×EEG
Multiscale entropy and

autoregressive modelling
Sen: 95% Sel: 80%

[17]
6×EEG

2×EOG

MODWT features with

SVM
Sen: 71% Sel: 91%

[18]
6×EEG

2×EOG

Decision tree and multiple

SVMs
Sen: 93%

[19]

2×EEG

2×EOG

1×EMG

Decision trees and SVM Sen: 97%

[20] 2×EEG
Time-frequency image

representation with SVM
Sen: 85%

[21]

1×EEG

1×EOG

1×EMG

ANN and rule-based

hybrid system
Sen: 85%

[22]

2×EEG

2×EOG

1×EMG

Pattern recognition with

ANN
Sen: 79%

[23]
EEG

EMG

ANN and fuzzy classifier

with rule-based

post-processing

Sen: 85% Sel: 95%

[24]

4×EEG

1×EOG

1×EMG

Neuro-fuzzy classifier with

five input patterns
Sen: 72%

[25] EEG
WPT coefficients with

ANN
Sen: 65%
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Table 4.1: Literature review summary for automatic REM stage detection as part of sleep staging
algorithms.

Ref Channels Method Result

[11]

1×EEG

1×EOG

1×EMG

ANN with 33 spectral,

entropy and statistical

features

Sen: 63-83%

[26] 1×EEG
ANN with relative power

and power spectral density
Accuracy: 82%

[27]

2×EEG

2×EOG

1×EMG

k-means clustering Sen: 73% Spe: 88%

[28] 1×EEG Hidden Markov Model Sen: 68% Sel: 50%

[29] 2×EEG Hidden Markov Model Sen: 86%

[30]

EEG

EOG

EMG

Hidden Markov Model Sen: 90%

[31] 1×EEG Hidden Markov Model Sen: 85%

[32]

EEG

EOG

EMG

Matching pursuit and

rule-based classification
Sen: 80%

[33] 1×EEG

Spectral features, k-means

clustering and kNN

classifier

Sen: 81%

[34]

1×EEG

1×EOG

1×EMG

Hidden Markov Model Sen: 60%

[35] 2×EEG
Entropy features with

unsupervised classification
Sen: 38%

[36] 1×EEG

Multiple spectral and

temporal features with

fuzzy classification and

contextual smoothing

Sen: 83% Sel: 89%
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4.3 Material

For studying different features, data from polysomnography recordings of healthy subjects

in the DREAMS Subjects Database from University of MONS - TCTS Laboratory and

Université Libre de Bruxelles - CHU de Charleroi Sleep Laboratory was used [37]. This

database has twenty whole night recordings in EDF format including two EOG, three

EEG (Fp1-A2, Cz-A1 and O1-A2) and one submental EMG channel for each subject. It

is described in detail in Appendix A.

Before being used for any analysis, data from each EEG channel was first resampled to a

sampling frequency of 256 Hz using the resample function in Matlab. The signals were

then filtered with a first order 0.16 Hz high pass filter to remove dc offset and bandlimited

using a second order 50 Hz Butterworth low pass filter. The EEG data was split into

2-second long non-overlapping blocks (subepochs) and subsequently transformed to the

frequency domain with a 512-point Fast Fourier Transform (FFT), hence obtaining a

resolution of 0.5 Hz. The magnitude and frequency coefficients were then used to compute

various features for REM detection in different frequency bands.

From the pool of twenty subjects, the first five (Subjects 01-05) were arbitrarily selected

for data analysis, feature selection and training of the proposed algorithm. Subjects 06-

20 were later used to test the performance of the algorithm without any parameter

adjustment. The total number of epochs in Wake, REM and NREM stages for the

training and test set are shown in Table 4.2.

Table 4.2: The number of Wake, REM and NREM epochs in training and test datasets.

Number of Epochs

No. of Subjects Wake NREM REM

Training 5 679 3573 798

Test 15 2880 10091 2221

Once the algorithm was finalised, its performance was evaluated using recordings from

PhysioNet Sleep EDF database. This was done to compare against the performances

of other algorithms in literature that have been evaluated on the same database. This

database consists of eight subjects and is described in Appendix A.
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4.4 Methodology

4.4.1 Frequency range of analysis

It has been shown that there exists some differences in spectral power during REM stage

around a certain frequency range. Corsi-Cabrera et al. [7] studied the spectral power

differences during REM, N1 and Wake stages. They reported similar N1 and REM

spectral powers between 13 Hz and 17 Hz, higher N1 power in the 10-13 Hz band and

lower N1 power between 1 Hz and 9 Hz. Uchida et al. [38] looked at the frequency bands

potentially capable of distinguishing between REM and NREM sleep. They showed

spectral power in REM to be lowest in the 12-16 Hz band when compared to NREM

stages (except N1).

Since the 10-13 Hz band appears to be able to discriminate between REM and N1

while the 12-16 Hz band helps distinguishing REM from other stages, the analysis in this

work was performed with more focus on these bands while also including other frequency

bands. This is done to determine the best frequency range where the discriminatory

ability of different features are most prominent. The frequency spectrum for REM and

non-REM epochs in the 8-16 Hz range is shown in Figure 4.1 for all five training subjects.

It can be seen that the spectral power during non-REM stages are higher than that during

REM stages between about 9-15 Hz in all subjects while the values are similar at around

8 Hz and 16 Hz frequency. This ties in with the results in both [38] and [7]. Therefore

the frequency range of 8-16 Hz is selected for analysis in this work.

The choice of the frequency band for the detection of REM stage epochs is primarily

motivated by the discriminatory ability of the features within this band. Since the

traditional sleep analysis is performed in the 0.5-50 Hz range any results obtained from

a feature in the limited frequency band will also be compared against the performance

of the same feature in the 0.5-50 Hz range.

4.4.2 Spectral Edge Frequency

Spectral Edge Frequency (SEF ) is the frequency below which a certain fraction of the

signal power is contained. It is generally written as SEFxx where xx is the fraction of

signal power for which the edge frequency is calculated. An illustration of spectral edge

frequency at 50% and 95% of the signal power is shown in Figure 4.2.

SEF can be useful in estimating how the spectral power is spread in a given frequency

range. Spectral edge frequencies at 50% and 95% are the most common measures used in

different applications. However they can be estimated at any percentage point depending

on the information desired.
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Figure 4.1: Frequency spectrum of REM and non-REM epochs in 8-16 Hz range for different
training subjects 01-05 on plots (a)-(e).
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Figure 4.2: An illustration of Spectral Edge Frequency (SEF) at 50% and 95% of the signal
power in the 0-20 Hz frequency range.

SEF50

SEF at 50% (SEF50 ) is the lowest frequency below which half of the signal power is

present and is equivalent to the median frequency of a signal. It is computed from the

FFT coefficients as shown below, where n is the total number of FFT coefficients and x

is the index to solve the equation for. The required frequency is then the xth frequency

from the array of FFT frequency components.

x
∑

i=1

|magi|
2 = 0.50×

n
∑

i=1

|magi|
2 (4.1a)

SEF50 = freq(x) (4.1b)

Figure 4.3 shows the SEF50 values for Subject01 in 0.5-50 Hz and 8-16 Hz frequency

bands for an overnight recording on top of the corresponding hypnogram. For an epoch e,

its SEF50 value is calculated by taking the mean from the fifteen 2-second subepochs

that make up the epoch. A 9-point moving average filter is then applied to the final

SEF50 value which is then plotted with the hypnogram.

The graphs in Figure 4.3 show that during the REM stages, the SEF50 values are

observed to be amongst the lowest when calculated in the 8-16 Hz range in Figure 4.3(b).

However, this is not the case in Figure 4.3(a) when the entire frequency range is used

and the SEF50 values during REM stages overlap with those during N2 stages.

97



0 200 400 600 800 1000

N1

N2

N3

Wake

REM

S
le

e
p

 S
ta

g
e

0 200 400 600 800 1000
0

2

4

6

8

Epoch Number

S
E

F
5

0
 (

H
z)

(a)

0 200 400 600 800 1000

N1

N2

N3

Wake

REM

S
le

e
p

 S
ta

g
e

0 200 400 600 800 1000
8

10

12

Epoch Number

S
E

F
5

0
 (

H
z)

(b)

Figure 4.3: Hypnogram and SEF50 in the (a) 0.5-50 Hz and (b) 8-16 Hz band of the EEG signal
for one training subject.
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SEF95

SEF at 95% (SEF95 ) is the lowest frequency below which 95% of the signal power is

present. It is computed from the FFT coefficients, similar to the SEF50 calculation.

x
∑

i=1

|magi|
2 = 0.95×

n
∑

i=1

|magi|
2 (4.2a)

SEF95 = freq(x) (4.2b)

Figure 4.4 shows the SEF95 values obtained in Subject01 together with the hypnogram

and have been calculated similar to SEF50 by taking the mean of the values from the

subepochs. The plots show how SEF95 varies in different sleep stages for this subject

in the two frequency ranges. The SEF95 values in the 0.5-50 Hz analysis range during

REM stages are neither highest nor lowest and stay close to the 12 Hz mark. In the

8-16 Hz range, however, SEF95 values are usually highest during the REM stages.

SEFd

Both SEF95 and SEF50 features appear to have high and low values respectively during

REM stages that can potentially be used for separating REM from other stages. These

two features can be combined by taking their difference which would further amplify their

discriminatory power during REM sleep. The difference between SEF95 and SEF50 is

explored as a novel feature for REM stage detection in this work. This difference is

hereon referred to as SEFd. For an epoch e, it is determined by first calculating the

SEFd values of fifteen 2 s subepochs in the 30 s EEG epoch (i.e. the difference between

SEF95 and SEF50 of the subepochs). The mean of these differences is taken to be the

SEFd of the epoch being processed as shown below, where se is the subepoch and n is

its index. A 9-point moving average filter is then applied to the final SEFd value.

SEFd(e) =
1

15
×

15
∑

n=1

(SEF95[sen]− SEF50[sen]) (4.3)

In Figure 4.5 the SEFd values during different sleep stages are shown in both traditional

and bandlimited frequency ranges. The figure shows clear peaks during REM stages when

the analysis is restricted to the 8-16 Hz range. However no such characteristic pattern is

observed when the entire frequency band is analysed.
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Figure 4.4: Hypnogram and SEF95 in the (a) 0.5-50 Hz and (b) 8-16 Hz band of the EEG signal
for one training subject.

100



0 200 400 600 800 1000

N1

N2

N3

Wake

REM

S
le

e
p

 S
ta

g
e

0 200 400 600 800 1000
6

7

8

9

10

11

12

13

14

15

16

Epoch Number

S
E

F
d

 (
H

z)

(a)

0 200 400 600 800 1000

N1

N2

N3

Wake

REM

S
le

e
p

 S
ta

g
e

0 200 400 600 800 1000
2

3

4

5

6

Epoch Number

S
E

F
d

 (
H

z)

(b)

Figure 4.5: Hypnogram and SEFd in the (a) 0.5-50 Hz and (b) 8-16 Hz band of the EEG signal
for one training subject.
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Figure 4.6 shows the SEFd overlaid on the hypnogram of all training subjects in the 8-

16 Hz range and illustrates that the values of SEFd are consistently high during all REM

phases for the entire sleep duration of all subjects. It confirms that the results obtained

earlier were not random but actually a general trend that is clearly visible from the SEFd

and hypnogram plots of all training subjects. The plots show that, in general, all N2

and N3 phases appear to have lower SEFd values. N1 stages have a slightly higher value

but still lower than REM stages in most cases. This pattern of high SEFd values during

REM phase in the 8-16 Hz frequency band could be a useful feature to discriminate it

from other sleep stages.

It is not a coincidence that the SEFd values are high during REM stages only. The

reason for this is a result of lower SEF50 and higher SEF95 values during REM stages.

The two trends in SEF can be explained by the observations in Figure 4.1 which shows

how the power within the 8-16 Hz band changes during both REM and non-REM stages

(including Wake). The signal power is similar in both REM and non-REM around

8 Hz. Following this, the power in REM is lower than non-REM from 9-15 Hz with the

difference being highest around the 12 Hz mark. Uchida et al. [38] reported the absence

of 12-16 Hz activity during REM stages which is causing the power to be lower than

non-REM. Therefore the median frequency (SEF50 ) in 8-16 Hz range is expected to be

lower during REM stages. The trend of higher SEF95 values during REM suggests an

increase in the higher frequency components of the 8-16 Hz band. In Figure 4.1, apart

from 4.1(e), all cases demonstrate an increase in the power spectrum of REM around

the 15 Hz mark. Further, the activity in the neighbouring beta frequency band is also

highest during REM sleep [38]. This causes the SEF95 values to be higher during REM

within the 8-16 Hz range. SEFd essentially represents both these changes in SEF50 and

SEF95, and is observed to be greatest when the frequency band is limited between 8 Hz

and 16 Hz.

4.4.3 Quantifying the discriminatory power of SEFd

The plots in Figure 4.6 appear to show SEFd having clearly discernible values that can

be used to detect REM epochs. However the performance of the feature still needs to be

quantified by using real data. For this, the feature will be used with a simple thresholding

classifier and its classification performance examined at various thresholds. This section

explains how a Receiver Operating Characteristics curve can be used to analyse the

performance of a classifier. This method will then be used to quantify the discriminatory

power of SEFd compared to SEF50 and SEF95 in 8-16 Hz and 0.5-50 Hz frequency

bands.
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Figure 4.6: Hypnogram and SEFd in the 8-16 Hz band of the EEG signal for training subjects
01-05 on plots (a)-(e) respectively. The plots show clear peaks during all the REM
phases for every case.
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Receiver Operating Characteristics Curve

A Receiver Operating Characteristics (ROC) curve is used to show the performance of

a classifier at various thresholds. It is a plot of the sensitivity of the algorithm against

the false positive rate computed as 1− specificity. Each point on the curve corresponds

to the performance of the classifier at a fixed threshold value.

As an example, some ROC curves are shown in Figure 4.7. The green curve shows

the ideal classifier performance, such that the sensitivity of the classifier is always 1.

The important point here is the one on top left, corresponding to a sensitivity of 1 and

1 − specificity (false positive rate) of 0. The blue curve is an example of a realistic

classifier. The red line corresponds to a classifier that has an equal chance of detecting

either a true positive or rejecting it [39]. Hence, any ROC curve below the red line is

useless. Generally the objective is to get as close as possible to the ideal classifier and

the point (0,1) on the curve [40].

A ROC curve is also used to find the optimum threshold to maximise the performance

of an algorithm. This depends on what is actually considered as optimum. For example,

in cases where sensitivity is required to be high without worrying about specificity, the

optimum threshold is different compared to cases where specificity is of prime impor-

tance. In this work, both these measures are given equal weight. The optimum threshold

is then computed by finding the point on the ROC curve that is closest to (0, 1) on the

curve [40], [41]. The optimum point for the example classifier is also shown on Figure 4.7.

The area under the curve (AUC) gives an indication of the performance of the algorithm

and is used to compare its performance with other classifiers. For the three classifiers

shown in Figure 4.7, the AUC of the ideal classifier is 1 while that of the chance classifier

and example classifier are 0.5 and 0.91 respectively. The closer the AUC can get to one,

the better a classifier is to being ideal. Similarly, a classifier with higher AUC is better

than the one with lower AUC.

SEFd vs. SEF95 and SEF50

To quantify the discriminatory ability of SEFd as compared to both SEF50 and SEF95

features individually in the 8-16 Hz frequency range as well as in the 0.5-50 Hz frequency

range, all the three different features were used to classify REM epochs in both frequency

ranges. A simple thresholding classifier was used and the ROC curves were plotted in

each case by sweeping the detection threshold. For each of the three features, assume

that a given epoch E(n) is classified as REM when it has an SEFx value greater than a

certain threshold SEFx th (SEFx can be any of three features that is being analysed).

E(n) =







REM, if SEFx(n) ≥ SEFxth

non−REM, otherwise
(4.4)
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Figure 4.7: An illustration of ideal, example and worst-case ROC curves. Also shown is the
optimum threshold for the example ROC curve.

The AUC for the three features in both frequency ranges is shown in Table 4.3. Two

important points can be noted from this result. First, the AUC values confirm that all

features perform better when limited to the 8-16 Hz frequency range. Second, it can be

clearly seen that SEFd, as a feature, is far superior to both SEF50 and SEF95 with a

much higher AUC value.

Therefore, SEFd in the 8-16 Hz band is used as the main feature for REM detection in

this work. The step of limiting the analysis band to 8-16 Hz also has an added advantage

of reducing the number of CPU cycles and resources to generate the value of the feature.

When the algorithm is implemented on resource-constrained hardware, the number of

cycles and registers required to compute SEF from 8-16 Hz, as compared to 0.5-50 Hz,

will be at least 3 times smaller. Having said that, although the reduction in number of

cycles is a desirable outcome of limiting the analysis frequency it is not the main reason of

doing so. The primary reason is to obtain a more robust feature capable of discriminating

REM with a simple classifier.

Table 4.3: AUC values for the three features in different frequency ranges.

Feature / Frequency Range 0.5-50 Hz 8-16 Hz

SEF50 0.7023 0.7530

SEF95 0.7082 0.7390

SEFd 0.6930 0.9247
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Figure 4.8: ROC Curves and AUC for three EEG channels using SEFd feature from the training
dataset.

4.4.4 Channel selection

All the analysis so far has been performed using data from the Fp1-A2 channel. However,

that selection is arbitrary and the discriminatory power of the SEFd feature from other

channels needs to be studied. The DREAMS database used for analysis consists of data

from three EEG channels. The aim of this work is to use only a single channel of EEG

for sleep analysis hence it needs to be determined which channel gives the best result.

For each of the three EEG channels, a ROC curve can be plotted by sweeping the

threshold SEFd in small steps across a wide range and then determining the sensitivity

and specificity of the classifier. The AUC of each plot can then be used to compare the

three channels. The ROC curves for three different EEG channels and the AUC for each

are shown in Figure 4.8.

Using all five training subjects, the thresholding classifier achieved its highest detection

performance using data from the frontal (Fp1-A2) channel. The performance degraded

when the C3-A1 channel was used while it was worst using the O1-A2 channel. This

suggests the the performance steadily reduces when moving away from the frontal region

of the brain. Looking at the results from each individual subject, the AUC values are

higher when using the channel Fp1-A2 for all training subjects except Subject05 where

the value is slightly lower when Fp1-A2 channel is used. Table 4.4 shows the AUC values
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for all training subjects for the three different channels.

Table 4.4: AUC values for all training subjects using the three EEG channels.

Subject Fp1-A2 Cz-A1 O1-A2

1 0.8491 0.8341 0.6159

2 0.9663 0.9353 0.8441

3 0.9740 0.8970 0.3025

4 0.8650 0.8413 0.6063

5 0.9574 0.9762 0.9698

There is a very clear trend in SEFd feature performing better when data from the

frontal channel is used. This can be explained by the conclusions of Corsi-Cabrera et

al. [42] that REM sleep exhibits uncoupled EEG activity between frontal and posterior

regions of brain. Thus, features present in the frontal region during REM sleep may be

completely absent in the posterior region. The close proximity of Fp1-A2 channel to the

EOG could also result in some eye movement activity being picked up in the frontal EEG

thus resulting in better performance.

Since the largest AUC is for channel Fp1-A2, it is selected as the one to use for further

analysis.

4.4.5 Further features

It has been demonstrated so far that the frequency range of 8-16 Hz is of interest for the

separation of REM sleep epochs from others. A novel feature, SEFd, has also been shown

to have high discriminatory power for this purpose and the feature tends to perform well

when frontal channels of EEG are used.

The SEFd shows clear peaks during REM sleep phases for all the subjects, however,

occasional peaks are also observed during other phases of sleep in some cases. For ex-

ample, Subject01 in Figure 4.6(a) shows high values of SEFd during Wake stage (similar

to those during REM) while this is not the case for Subject03, in Figure 4.6(c). The

frequency distribution plot for the training data in Figure 4.9 also shows that while most

of the REM epochs have SEFd values of more than 4.5 Hz, there are still some epochs

from other stages overlapping in this frequency range.

As a result, two further features are investigated in the same frequency band to reduce

potential false detections occurring in other sleep stages from the use of SEFd. These

features are the absolute and relative powers in the 8-16 Hz frequency band.
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Figure 4.9: Frequency distribution of SEFd values at different sleep stages across all training
subjects.
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Absolute Power

The absolute power (AP) of a signal in a fixed frequency range, f1 − f2 Hz, is calculated

by summing the magnitudes obtained from Fourier coefficients between these frequencies.

AP = 20× log(

n(f2)
∑

i=n(f1)

|magi|) (4.5)

In the equation above, f1 and f2 are 8 Hz and 16 Hz respectively and n(f1) and n(f2)

are the indices at these frequencies. AP is calculated for each 2 second subepoch and

averaged over the standard 30 second epoch. Figure 4.10 shows the absolute power with

hypnogram for Subject01. REM stage was observed to have the lowest AP in 8-16 Hz

range. Further, AP values during Wake and N1 stages were higher than REM. These

results are in line with the observations in [38] and [7]. AP hence, could be used as

an extra differentiating feature for REM, Wake and N1 stages. Similar trends were also

observed for the other training subjects.
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Figure 4.10: Hypnogram and AP in the 8-16 Hz band of the EEG signal for Subject01. AP
values can be seen to be lowest during each REM phase.

Relative Power

The relative power (RP) of a signal in a fixed frequency range, f1 − f2 Hz (8-16 Hz) is

calculated by taking the ratio of the absolute powers of the signal in the range of interest

and the entire signal bandwidth.
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Figure 4.11: Hypnogram and RP in the 8-16 Hz band of the EEG signal for Subject01. RP
values can be seen to be stable around -8 dB mark.
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(4.6)

RP is also calculated first for 2 second subepochs and then averaged over 30 second

epochs. Figure 4.11 shows the relative power in 8-16 Hz for Subject01 together with its

hypnogram. During REM stage, RP does not exhibit any characteristic peak or trough

unlike SEFd or AP plots. However, the values stay close to -8 dB range approximately

for all subjects and are also different from those during N3 and Wake stages. This makes

the feature useful for reducing potential false detections.
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4.5 REM detection algorithm

4.5.1 Overview

Figure 4.12 shows a complete flowchart of the proposed REM detection algorithm. A

single channel EEG input is first transformed into the frequency domain using the FFT. In

the first stage FFT coefficients are used to compute SEF95 and SEF50 within the 8-16 Hz

band. The difference between these two spectral edge frequency measures, SEFd, is then

taken for every epoch. If SEFd is found to be greater than a certain maximum threshold

SEFd th, the epoch under analysis is marked as a candidate REM epoch (cREM), and

further checks are applied at the next stage. Otherwise, the epoch is rejected as non-REM

and not analysed any further.

E(n) =







cREM, if SEFd(n) ≥ SEFdth

0, otherwise
(4.7)

The second stage of the algorithm is used to reject false positives amongst the candidate

REM epochs. If an epoch satisfies the condition in Equation 4.7, its AP and RP values

are evaluated in the 8-16 Hz range for further analysis. Only when both AP and RP

values satisfy the conditions below, a candidate REM epoch is considered a true detection.

Otherwise it is rejected as non-REM.

AP ≤ APmax (4.8)

RPmin ≤ RP ≤ RPmax (4.9)

The algorithm works in two stages where the first stage is highly sensitive and detects

candidate REM epochs. The second stage is specific and helps in reducing the number of

false detections. The choice of features used at each of the two stages was determined by

their discriminatory ability in detecting REM epochs. SEFd was found to be the most

sensitive feature and was therefore used at the first stage of the algorithm (to shortlist

as many REM epochs as possible) followed by AP and RP. This two-stage process also

helps in keeping the computational load low since AP and RP features are calculated

only when there is a candidate REM epoch identified in the first stage.

4.5.2 Establishing the threshold values

The detection thresholds (SEF th, APmax, RPmax and RPmin) were tuned to achieve the

best average performance for REM detection in terms of both sensitivity and specificity.

For this, a ROC curve was plotted of sensitivity against (1− specificity) with varying

thresholds.

On the ROC curve, the optimum operating point for the first stage of the algorithm

111



EEG Signal

SEFd
(SEF95-SEF50)

AP ≤ APmax

RPmin ≤ RP ≤ RPmax

REM Stage

Reject Epoch

Candidate REM Epoch

Yes

No

No

No

FFT

SEF95 SEF50

SEFd ≥ SEFdth

Yes

Figure 4.12: Block diagram of the REM detection algorithm.
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(SEFth) is established by giving equal weight to both sensitivity and specificity and

determining the minimum distance of the curve from the (0, 1) coordinate [41], [43]. This

is the point on the curve closest to the (0, 1) coordinate. Using this optimum threshold,

the candidate REM epochs (with SEFd greater than this threshold) are analysed. For

these epochs, a second ROC curve is plotted by sweeping the RP and AP thresholds. The

optimum operating point for these features is also established by determining the shortest

distance of the second curve from the (0, 1) coordinate. The thresholds corresponding to

the optimum points for both stages of the algorithm are shown in Table 4.5. It should

be noted that a different operating point could be selected depending on whether higher

sensitivity at the cost of more false positives is tolerable or if a lower false positive rate

is desired at the cost of sensitivity.

Table 4.5: Best performing thresholds for SEFd, AP and RP.

Parameter Value

SEFth 4.54 Hz

APmax 15.5 dB

RPmax -6.08 dB

RPmin -13.03 dB

To ascertain whether the use of fixed thresholds is a good option for this application,

the standard deviation of the three features in an epoch is analysed in great detail. The

standard deviation is calculated for all subjects in each sleep stage and then in all of

them combined. The average values are shown in Table 4.6 and the deviations appear to

be small and similar in all stages.

Table 4.6: Standard deviation of the three features in different sleep stages.

Wake N1 N2 N3 REM All

SEFd 1.222 1.058 1.253 1.162 0.972 1.171

AP 3.057 2.747 2.971 2.635 1.996 2.741

RP 2.498 2.414 2.695 2.915 2.172 2.593

113



4.6 Results

4.6.1 Performance metrics

The performance of the algorithm is evaluated by quantifying the sensitivity and selec-

tivity of REM detection, specificity of REM rejection and the overall accuracy of REM

classification. These metrics have already been discussed in Chapter 3 of this thesis and

are briefly repeated below.

1) Sensitivity, which represents the fraction of REM epochs that are correctly iden-

tified by the algorithm.

Sensitivity =
TP

TP + FN
(4.10)

2) Specificity, which represents the fraction of non-REM epochs being correctly re-

jected.

Specificity =
TN

TN + FP
(4.11)

3) Selectivity, which is the fraction of correct detections of REM with respect to the

total number of automatic REM detections (also known as positive predictive value or

PPV).

Selectivity =
TP

TP + FP
(4.12)

4) Accuracy, which is the fraction of the total number of correct detections and

rejections of REM epochs in the sleep recording.

Accuracy =
TP + TN

TP + FP + TN + FN
(4.13)

In the equations above and the following sections, TP (True Positives) is the number of

epochs correctly scored as REM, FP (False Positives) is the number of epochs incorrectly

scored as REM, TN (True Negatives) is the number of epochs correctly rejected as non-

REM, and FN (False Negatives) is the number of epochs incorrectly rejected as non-REM.

4.6.2 Training data results

The individual as well as average subject performance of the algorithm using the fixed

optimum thresholds obtained above is shown in Table 4.7. All the five subjects showed

sensitivity greater than 89% individually and around 94% on average. Only 46 out of

the total 798 REM epochs are not detected by the algorithm while the number of false

positives is recorded as 475 epochs from a total of 5050 epochs across all five subjects.

Most of the Wake and NREM epochs are correctly rejected giving an average specificity

of 89%. The overall accuracy of the system is found to be close to 90%.
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Table 4.7: Performance of algorithm on training database.

Subject REMtot REMdet TP Sen (%) Spe (%) Sel(%) Acc(%)

1 113 158 103 91.15 93.51 65.19 93.24

2 122 242 119 97.54 85.75 49.17 87.21

3 212 224 189 89.15 95.60 84.38 94.25

4 155 324 146 94.19 80.18 45.06 82.24

5 196 279 195 99.49 90.08 69.89 91.85

Total 798 1227 752

Average 94.31 89.03 62.74 89.76

REMtot - REM epochs in the test; REMdet - REM epochs detected by the algorithm.

TP - true positives; Sen - sensitivity; Spe - specificity; Sel - selectivity; Acc - accuracy.

4.6.3 Test data results

The algorithm is then tested using the detection thresholds in Table 4.5 on complete

night EEG recordings of the 15 test subjects. Results of the individual and average

performance are shown in Table 4.8. The average sensitivity for these test subjects is

reduced to 83%. Apart from Subject12 and Subject14, all have a sensitivity of more than

70% and even in these cases where sensitivity is on the lower side, the accuracy is still

greater than 92%. Subject12, with the lowest sensitivity, has a large Wake period in the

middle of sleep and sporadic Wake epochs throughout the night. The exact cause of this

Wake period is not known but it leads to the presence of movement artefacts, making

the detection of REM difficult. The average specificity, selectivity and accuracy values

of the test set are, however, similar to the training results.

The first stage of the algorithm uses SEFd to detect most of the REM epochs while the

second stage uses AP and RP to eliminate false detections later. In order to illustrate

this, the performance of the algorithm is quantified in both stages: it is first run using

the SEFd feature only and then the AP and RP features are added to it. Results in

Table 4.9 show an increase in specificity, selectivity and accuracy when the AP and RP

are used together with the SEFd. Furthermore, the number of false positives is reduced

from 2534 to 1395 when these features are added. However this performance boost comes

at the cost of reduction in average sensitivity from 88.7% to 83% when the AP and RP

features are added. Depending on the application, a suitable trade-off must be achieved

to reduce the number of false positives up to a point where reduction in the number of

true positives is acceptable. Conversely, both specificity and selectivity can be traded off

to achieve higher sensitivity if a higher number of false positives can be tolerated.
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Table 4.8: Performance of algorithm on test database.

Subject REMtot REMdet TP Sen (%) Spe (%) Sel(%) Acc(%)

6 187 297 186 99.47 86.28 62.63 88.76

7 131 285 107 81.68 79.8 37.54 80.04

8 162 284 120 74.07 79.68 42.25 78.74

9 131 184 124 94.66 93.91 67.39 94

10 146 153 113 77.4 95.48 73.86 92.92

11 212 268 203 95.75 91.83 75.75 92.66

12 87 64 52 59.77 98.63 81.25 95.11

13 89 267 88 98.88 82.42 32.96 83.74

14 163 118 105 64.42 98.45 88.98 92.93

15 123 113 92 74.8 97.06 81.42 93.79

16 147 164 105 71.43 92.8 64.02 89.56

17 162 259 137 84.57 85.16 52.9 85.06

18 166 274 166 100 87.37 60.58 89.42

19 162 303 150 92.59 82.43 49.51 84.03

20 153 225 115 75.16 88.91 51.11 87.07

Total 2221 3258 1863

Average 82.98 89.35 61.48 88.52

REMtot - REM epochs in the test; REMdet - REM epochs detected by the algorithm.

TP - true positives; Sen - sensitivity; Spe - specificity; Sel - selectivity; Acc - accuracy.

Table 4.9: Algorithm performance analysis at output of first and second stages.

Features TP FP TN FN Sen (%) Spe (%) Sel(%) Acc(%)

SEFd only 1996 2534 10437 225 88.67 80.52 48.40 81.91

SEFd, AP and RP 1863 1395 11576 358 82.98 89.35 61.48 88.52

TP - true positives; FN - false negatives; TN - true negatives; FP - false positives; (numbers are total for 15 test

subjects).

Sen - sensitivity; Spe - specificity; Sel - selectivity; Acc - accuracy; (numbers are average for 15 test subjects).
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A breakdown of the false detections in Table 4.10 shows the sleep stages in which these

false positives occur, as well as the fraction of each stage falsely scored as REM. Across

the 15 test subjects, only 18.5% of the total Wake epochs are misclassified as REM.

Amongst these, almost a quarter of false positives in Wake stage come from Subject08

alone. Similarly, about a third of total N1 epochs are misclassified as REM (424 out

of a total of 1157 N1 epochs). Since N1 and REM have similarities in EEG, this is

to be expected. It is however still a positive result since it does show a discriminatory

ability that can be used to distinguish between REM and N1 stages using EEG. Only 431

out of the total 5936 N2 epochs are misclassified as REM (about 7%) where Subject07

contributes almost a fifth to the false positives in N2. Finally, only 7 N3 epochs across

all 15 test subjects are misclassified by the algorithm as REM and 5 of those come from

Subject07.

Kappa agreement

The agreement rate between the algorithm and the visual scorer is also evaluated using

Cohen’s kappa (κ) values. These are shown in Table 4.11 for different combinations of

sleep stages. For the test sleep data including all sleep stages, κ was found to be 0.61.

WhenWake stage was removed κ increased to 0.69. When only REM,Wake and N1 stages

of data were considered κ was 0.57. According to Landis and Koch’s classification [44],

these κ values represent moderate to substantial agreement in all cases.

Patient-specific thresholds

The REM detection algorithm uses fixed thresholds to classify REM epochs for all test

subjects. This simplifies the classification stage thus reducing the algorithm’s complexity.

However, the use of patient-specific thresholds is also investigated by plotting a ROC

curve for one subject at a time and then finding the best thresholds for it from the

curve. The individual results for each subject using patient-specific thresholds are shown

in Table 4.12. The use of patient-specific thresholds results in sensitivity of over 80% in

all the cases with the average sensitivity increasing to 90%, specificity 94%, selectivity

73% and accuracy of about 94%. The average results using fixed thresholds and patient-

specific thresholds are compared in Table 4.13. All the performance measures using

patient-specific thresholds are higher compared to the use of fixed thresholds with the

greatest improvement seen in sensitivity and selectivity.

The detailed breakdown of the misclassified epochs is shown in Table 4.14. The increase

in sensitivity is a consequence of using patient-specific SEFd threshold that resulted in

132 more REM epochs being correctly identified. Adjusting the AP threshold reduced

the number of false detections by almost 50% (down from 1395 to 752 epochs) thereby

improving the overall selectivity. The most notable reduction is in the number of mis-

classified epochs in Wake stage followed by N1 and N2 stages.
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Table 4.10: Breakdown of all false detections in test database.

Subject TP FN TN FP FPW (W) FPN1(N1) FPN2(N2) FPN3(N3)

6 186 1 698 111 48(179) 25(51) 38(355) 0(224)

7 107 24 703 178 50(394) 31(49) 92(283) 5(155)

8 120 42 643 164 119(181) 41(95) 4(324) 0(207)

9 124 7 926 60 5(216) 33(71) 22(515) 0(184)

10 113 33 845 40 23(71) 8(66) 8(411) 1(337)

11 203 9 731 65 1(122) 6(67) 57(401) 1(206)

12 52 35 862 12 6(393) 3(90) 3(234) 0(157)

13 88 1 839 179 69(181) 73(112) 37(432) 0(293)

14 105 58 828 13 0(208) 5(46) 8(417) 0(170)

15 92 31 693 21 1(114) 20(98) 0(294) 0(208)

16 105 42 761 59 4(258) 23(88) 32(370) 0(104)

17 137 25 700 122 60(67) 20(45) 42(564) 0(146)

18 166 0 747 108 54(169) 40(87) 14(420) 0(179)

19 150 12 718 153 17(129) 70(131) 66(460) 0(151)

20 115 38 882 110 76(198) 26(61) 8(456) 0(277)

Total 1863 358 11576 1395 533(2880) 424(1157) 431(5936) 7(2998)

TP - true positives; FN - false negatives; TN - true negatives; FP - false positives.

FPX(X) shows false positives in stage X and the total number of epochs from stage X in parentheses.

Table 4.11: Level of agreement (Cohen’s kappa values) when using different sleep stages

Sleep stages Cohen’s kappa (κ)

REM, Wake and NREM 0.61

REM and NREM 0.69

REM, Wake and N1 0.57

REM and Wake 0.65

REM and N1 0.48
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Table 4.12: Performance of algorithm on test database using patient-specific thresh-
olds.

Subject REMtot REMdet TP Sen (%) Spe (%) Sel(%) Acc(%)

6 187 223 179 95.72 94.56 80.27 94.78

7 131 159 117 89.31 95.23 73.58 94.47

8 162 207 120 74.07 89.22 57.97 86.69

9 131 198 129 98.47 93 65.15 93.64

10 146 162 116 79.45 94.8 71.6 92.63

11 212 260 200 94.34 92.46 76.92 92.86

12 87 101 81 93.1 97.71 80.2 97.29

13 89 169 83 93.26 91.55 49.11 91.69

14 163 176 152 93.25 97.15 86.36 96.51

15 123 154 119 96.75 95.1 77.27 95.34

16 147 207 136 92.52 91.34 65.7 91.52

17 162 192 133 82.1 92.82 69.27 91.06

18 166 182 158 95.18 97.19 86.81 96.87

19 162 195 146 90.12 94.37 74.87 93.71

20 153 162 126 82.35 96.37 77.78 94.5

Total 2221 2747 1995

Average 90 94.19 72.86 93.57

REMtot - number of REM epochs in the test; REMdet - number of REM epochs detected by the

algorithm.

TP - true positives; Sen - sensitivity; Spe - specificity; Sel - selectivity; Acc - accuracy.

Table 4.13: Comparison of results when using fixed versus patient-specific thresholds.

Fixed Thresholds Patient-specific Thresholds

Sensitivity (%) 82.98 90.00

Specificity (%) 89.35 94.19

Selectivity (%) 61.48 72.86

Accuracy (%) 88.52 93.57
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Table 4.14: Breakdown of all false detections in test database using patient-specific thresholds.

Subject TP FN TN FP FPW (W) FPN1(N1) FPN2(N2) FPN3(N3)

6 179 8 765 44 18(179) 12(51) 14(355) 0(224)

7 117 14 839 42 2(394) 10(49) 30(283) 0(155)

8 120 42 720 87 49(181) 34(95) 4(324) 0(207)

9 129 2 917 69 6(216) 39(71) 24(515) 0(184)

10 116 30 839 46 28(71) 9(66) 8(411) 1(337)

11 200 12 736 60 1(122) 4(67) 54(401) 1(206)

12 81 6 854 20 13(393) 4(90) 3(234) 0(157)

13 83 6 932 86 16(181) 50(112) 20(432) 0(293)

14 152 11 817 24 2(208) 7(46) 15(417) 0(170)

15 119 4 679 35 2(114) 27(98) 6(294) 0(208)

16 136 11 749 71 4(258) 28(88) 39(370) 0(104)

17 133 29 763 59 14(67) 11(45) 34(564) 0(146)

18 158 8 831 24 8(169) 9(87) 7(420) 0(179)

19 146 16 822 49 1(129) 23(131) 25(460) 0(151)

20 126 27 956 36 9(198) 17(61) 10(456) 0(277)

Total 1995 226 12219 752 173(2880) 284(1157) 293(5936) 2(2998)

TP - true positives; FN - false negatives; TN - true negatives; FP - false positives.

FPX(X) shows false positives in stage X and the total number of epochs from stage X in parentheses.
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The mean and median averages and the standard deviation of all patient-specific

thresholds are shown in Table 4.15. The mean and median values of the SEFd threshold

are 4.54 Hz and 4.5 Hz respectively which are close to the fixed threshold being used. For

APmax and RPmax, both mean and median values are close to each other, but slightly

less than the fixed threshold value used. For RPmin the difference between mean and

median averages is the largest and both these values are lower than their fixed-threshold

counterpart. The relative standard deviation is lowest for SEFth at 4% while for the

other three thresholds it is between 12-17%.

Table 4.15: Mean, median and standard deviation of the patient-specific thresholds.

Threshold Mean Median Std Dev

SEFth (Hz) 4.54 4.50 0.18

APmax (dB) 15.07 15.30 2.12

RPmax (dB) -6.19 -6.60 0.75

RPmin (dB) -13.41 -14.30 2.31

A clear example of the improvement by using patient specific thresholds can be ob-

served in Subject14. In this case, the best performance is achieved when SEFd threshold

is lowered to 4.38Hz. The detection results of Subject14 using the two SEFd thresholds,

is contrasted in Table 4.16 and shows a drastic improvement in detection sensitivity when

the threshold is lowered.

Table 4.16: Comparison of fixed versus patient-specific SEFd thresholds in Subject14

SEFdth = 4.54 Hz SEFdth = 4.38 Hz

Sensitivity (%) 64.42 93.25

Specificity (%) 98.45 97.15

Selectivity (%) 88.98 86.36

Accuracy (%) 92.93 96.51

Similarly, the use of patient-specific thresholds reduces the number of misclassified

N2 epochs in Subject07 and Subject19 (Table 4.17). Further, patient-specific thresholds

also reduce the number of misclassified Wake epochs in Subject06, Subject08, Subject13,

Subject07, Subject18 and Subject20 as summarised in Table 4.18. In all test subjects

combined, the proportion of misclassifications in Wake stage reduced from 18.5% down

to 6%.
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Table 4.17: Number of misclassified N2 epochs using fixed and patient-specific thresholds.

Subject
Number of N2

epochs

Misclassified N2

epochs with fixed

threshold

Misclassified N2 epochs

with patient-specific

threshold

07 283 92 30

19 460 66 25

Table 4.18: Number of misclassified Wake epochs using fixed and patient-specific thresholds.

Subject
Number of

Wake epochs

Misclassified Wake

epochs with fixed

threshold

Misclassified Wake

epochs with

patient-specific threshold

06 179 48 18

08 181 119 49

13 181 69 16

17 67 60 14

18 54 54 8

20 76 76 9
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These results show that apart from movement artefacts (which is an obvious cause

of lower performance) some subjects may exhibit a slightly lower/higher overall spectral

edge frequency. This suggests that the use of adaptive thresholds that can adjust to in-

dividual subjects can further improve the results and should be explored in future work.

However, this improvement in performance will come at the cost of additional algorithm

complexity. Nevertheless, the use of fixed thresholds still achieves a performance compa-

rable to other algorithms thus highlighting the strength of the fixed-threshold approach.

4.6.4 Performance comparison

There are very few single-channel EEG-based sleep scoring methods in literature. The

review in Section 4.2 revealed only eight such methods giving their REM detection per-

formance. It is difficult to compare the results of different algorithms due to the varying

databases used to test each of them. However, since some of these methods also report

their performance on the publicly available PhysioNet Sleep-EDF database [45], the al-

gorithm in this chapter is also evaluated using the same database for a fair comparison

with them.

This PhysioNet database consists of PSG recordings from 8 healthy subjects with two

channels of EEG recorded for each (see Appendix A for details about the database). A

single frontal EEG channel (Fpz-Cz) is used to evaluate the algorithm using leave-one-

out cross validation (LOOCV) on over 8800 scored epochs across all 8 subjects consisting

of about 9 hours overnight recording for each subject with the exception of movement

(MT) and unscored epochs.

The performance of the algorithm in this work and those of other one-channel EEG-

based methods on the same database for REM detection is shown in Table 4.19. The

algorithm in this work achieved similar sensitivity and selectivity, compared to others,

while using only three features. Not only are the number of features used in other

algorithms much higher (at least 7 times more), the classifiers used in them are also

much more complex.

If there are processing and power constraints attached with the system being designed

then the algorithm presented in this chapter could prove to be useful for achieving REM

detection performance that is similar to other methods using a much smaller number of

features and a simple classifier. However, if there are no such limitations either of the

methods listed in Table 4.19 would achieve similar results. Further, the Fpz-Cz channel

was used to evaluate the algorithm’s performance since the main feature used in this

work (SEFd) exhibits strongest discriminatory ability in the frontal channels. The other

algorithms listed in Table 4.19 used the channel Pz-Oz because this was closest to their

algorithm requirements and gave the best results.
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Table 4.19: Performance comparison with other single-channel EEG methods that have been
evaluated using PhysioNet Sleep-EDF Database.

Method Features Classifier Sen (%) Sel(%)

This work Spectral power 3 Thresholding 80.6 74.8

Ref. [16] MSE, AR model 21 LDA and contex-

tual smoothing

85.4 78.8

Ref. [26] Spectral power 30 Neural network 82.3 -

Ref. [36] Spectral and tem-

poral features

Multiple Fuzzy classifier

and contextual

smoothing

63.0 91.7

4.7 Discussion

Automatic detection of REM stages in sleep is desirable to aid in the development of

a fully automated sleep staging system. The bulk of sleep staging is performed using

EEG signals while EOG and EMG signals are generally required to mark REM stages.

During the REM phases there are characteristic bursts of eye movements observed on

EOG traces that are used to score them. However these eye movements are present

for only up to 27% of the total REM sleep time [46]. This suggests that EOG signals,

albeit helpful, may not be able to detect all REM stage epochs. For a wearable sleep

staging system, size and power are the main constraints. A reduction in the number

of channels directly helps in power saving by reducing the amount of signals to process

thereby minimising processor load and size and consequently improving battery life. It

also leads to a physical system that is lighter in weight and easier to use. Identification

of REM stage from one channel of EEG with reliable performance, therefore, could go a

long way in system processing, power and size reduction.

In this chapter, the difference between spectral edge frequencies (SEF95 and SEF50 )

in the 8-16 Hz frequency band is introduced as a novel feature that exhibits clear discrim-

inatory abilities for scoring REM epochs. On a test database of 15 subjects, this feature

alone was able to detect 88.7% of the total REM epochs. The database was used as is,

without removing any movement artefacts or stages, to reflect real world recording con-

ditions. Absolute and relative powers in the same spectral band were used as additional

features to further analyse the candidate REM epochs at the first stage. This helped in

reducing the number of false detections by more than 40%. The final two-stage algorithm

resulted in sensitivity of 83% within a 95% confidence interval range of 81.4% to 84.5%
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for a total of 2221 test REM epochs while the Cohen’s kappa value showed substantial

agreement between visual and automatic detection of REM. The performances were even

higher when patient-specific thresholds were used resulting in a sensitivity of 90%. The

algorithm also resulted in similar performance compared to other single-channel EEG-

based methods when evaluated on the same database.

The REM detection algorithm presented here has several advantages. First, its per-

formance is comparable to most of the methods in literature including those that use

multiple EEG, EOG and EMG channels. Second, it uses a simple thresholding method

with fixed thresholds to mark REM epochs in contrast to some other systems that use

complex neural networks with a large input feature set. This low-complexity classifier

is advantageous for portable and wearable systems with limited processing cycles and

power budget. Third, results from automatic sleep staging systems of other research

groups [47]–[49] suggest overlap of REM stage with N1 in various feature spaces. These

two stages have similar EEG and are difficult to differentiate. The feature used here

also successfully distinguishes between the majority of N1 and REM epochs. About

63% of the total N1 epochs were correctly distinguished from REM despite their strong

EEG similarities. The misclassification proportion in Wake stage was much smaller, at

18.5%. This is, even with the inclusion of the movement epochs (which are marked as

Wake according to AASM rules). This number could go down further with the use of

an artefact rejection method at the front end of the algorithm as well as using adaptive

thresholding at the classification stage. About 7% of N2 epochs were wrongly detected

as REM while only 7 out of 2998 N3 epochs were misclassified. The total number of

false positive epochs was 1395 which may seem like a large number. However, the total

epochs under test were 15192 from all stages of sleep. Considering this, the fraction of

false positives is actually less than 10%. Ideally, the number of false positives should be

even smaller. The use of patient-specific thresholds reduces it to 752 epochs (less than

5% false positives). Finally, the REM detection algorithm in this chapter uses data from

only one EEG channel and therefore keeps the data rate and processing load small.

Overall the investigations in this study illustrate that spectral edge frequency in the

8-16 Hz band of EEG can be a useful feature for the detection REM sleep phase as demon-

strated with a simple algorithm. Although this algorithm showed a good performance,

the main objective of this work was not to present the best performing REM detection

algorithm but to introduce and evaluate a novel feature that could be used with a simple

algorithm or as an added feature in a different algorithm. The heuristic classifier used in

this work is very simple and may not represent the most optimal approach. Other classi-

fiers such as decision trees, SVMs, etc., may result in an improved detection performance.

Nevertheless, the results presented in this chapter will be useful for sleep EEG system

designers by helping to reduce the number of channels, computational cost, device size

and power consumption for future truly wearable and automated sleep staging systems.
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[8] R. Bódizs, M. Sverteczki, and E. Mészáros, “Wakefulness-sleep transition: Emerging

electroencephalographic similarities with the rapid eye movement phase,” Brain Res.

Bull., vol. 76, no. 1, pp. 85–89, 2008.

[9] A. Rechtschaffen and A. Kales, A manual of standardized terminology, techniques

and scoring system for sleep stages of human subjects. Washington D.C.: Public

Health Service, U.S. Government Printing Office, 1968.

[10] E. Estrada, H. Nazeran, J. Barragan, J. R. Burk, E. A. Lucas, and K. Behbehani,

“EOG and EMG: two important switches in automatic sleep stage classification,”

in IEEE EMBC, New York, September 2006.

[11] S. Charbonnier, L. Zoubek, S. Lesecq, and F. Chapotot, “Self-evaluated automatic

classifier as a decision-support tool for sleep/wake staging,” Comput. Biol. Med.,

vol. 41, no. 6, pp. 380–9, 2011.

126



[12] M. Hanaoka, M. Kobayashi, and H. Yamazaki, “Automated sleep stage scoring by

decision tree learning,” in IEEE EMBC, Chicago, July 2000.

[13] J. Virkkala, R. Velin, S. Himanen, A. Varri, K. Muller, and J. Hasan, “Automatic

sleep stage classification using two facial electrodes,” in IEEE EMBC, Vancouver,

August 2008.

[14] V. Swarnkar, U. R. Abeyratne, and C. Hukins, “Automatic estimation of macro-

sleep-architecture using a single channel of EEG,” in ICIIS, Sri Lanka, December

2009.

[15] S.-F. Liang, C.-E. Kuo, Y.-H. Hu, and Y.-S. Cheng, “A rule-based automatic sleep

staging method,” J. Neurosci. Methods, vol. 205, no. 1, pp. 169–76, 2012.

[16] S.-F. Liang, C.-E. Kuo, Y.-H. Hu, Y.-H. Pan, and Y.-H. Wang, “Automatic stage

scoring of single-channel sleep EEG by using multiscale entropy and autoregressive

models,” IEEE Trans. Instrum. Meas., vol. 61, no. 6, pp. 1649–1657, 2012.

[17] S. Khalighi, T. Sousa, D. Oliveira, G. Pires, and U. Nunes, “Efficient feature selection

for sleep staging based on maximal overlap discrete wavelet transform and SVM,”

in IEEE EMBC, Boston, September 2011.

[18] T. Sousa, A. Cruz, S. Khalighi, G. Pires, and U. Nunes, “A two-step automatic

sleep stage classification method with dubious range detection,” Comput. Biol. Med.,

vol. 59, no. 1, pp. 42–53, 2015.

[19] T. Lajnef, S. Chaibi, P. Ruby, P.-E. Aguera, J.-B. Eichenlaub, M. Samet, A. Ka-

chouri, and K. Jerbi, “Learning machines and sleeping brains: Automatic sleep stage

classification using decision-tree multi-class support vector machines,” J. Neurosci.

Methods, no. 0, 2015.

[20] V. Bajaj and R. B. Pachori, “Automatic classification of sleep stages based on the

time–frequency image of EEG signals,” Comput. Methods Programs Biomed., vol.

112, no. 3, pp. 320–328, 2013.

[21] H. Park, K. Pa, and D.-u. Jmn, “Hybrid neural-network and rule-based expert

system for automatic sleep stage scoring,” in IEEE EMBC, Chicago, July 2000.

[22] M. Schwaibold, T. Penzel, J. Schochlin, and A. Bolz, “Combination of AI com-

ponents for biosignal processing application to sleep stage recognition,” in IEEE

EMBC, Istanbul, October 2001.

[23] J. Y. Tian and J. Q. Liu, “Automated sleep staging by a hybrid system compris-

ing neural network and fuzzy rule-based reasoning,” in IEEE EMBC, Shanghai,

September 2005.

127
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5 Automatic sleep staging using state

machine-controlled decision trees

The research presented within this chapter is an edited version of research previously

published in:

S. A. Imtiaz and E. Rodriguez-Villegas, “Automatic sleep staging using state

machine–controlled decision trees,” in proceedings of the 37th international con-

ference of the IEEE Engineering in Medicine and Biology Society, Milan, August

2015, c© IEEE.

5.1 Introduction

A typical automatic sleep staging algorithm involves using some kind of signal process-

ing technique to extract representative features followed by a classifier to assign one of

the sleep stages based on the extracted features. Researchers have used support vector

machines, hidden Markov models, linear discriminant analysis, artificial neural networks,

decision trees and others for classification with a variety of time, frequency, entropy and

wavelet based features.

A comprehensive review of various sleep staging algorithms published in literature was

presented in Chapter 2. It can be concluded from this review that spectral features are by

far the most popular choice when it comes to selecting the best discriminating features

for sleep classification. This is not unexpected since both R&K and AASM rules of

sleep analysis describe most stages of sleep in terms of the frequency content in different

spectral bands. For classifiers, however, there is no clear winner although artificial neural

networks tend to provide the highest accuracy in most cases.

In a resource-constrained wearable system, spectral features can be extracted using

different filters or with Fourier transforms. This does not leave much room to implement

a complex classifier such as an SVM or ANN. As a result, simpler classifiers such as

decision trees are preferable to reduce design complexity.

Decision trees are commonly used for sleep stage classification. In such trees, at each

node of the tree, one of the features is tested against a threshold. The result of this test

determines the next node, and hence, the feature to be tested. This process continues

until the end of the tree is reached and an epoch is classified. In a balanced tree with about

20-30 features, the classification of each epoch may require more than 15 comparisons.
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Decision trees, in comparison to more complex classifiers, are only beneficial when the

number of nodes in the tree is relatively small. This also means using smaller number

of features. It is therefore important to design a decision tree that satisfies all the

requirements in order for it to be useful. However, limiting the number of nodes and

features directly impacts the performance that can be achieved by the classifier. An

alternative approach is therefore needed that can potentially reduce the number of nodes

and features of a decision tree while keeping its performance level intact.

This chapter presents a novel sleep staging classifier that uses a combination of small

decision trees contextually driven by a state machine. The aim of this design is to develop

a classifier that can work within the constraints discussed above. The approach used in

this classifier is inspired by the combination of state machine and decision trees used in

artificial intelligence for game development [1]. The idea here is to change the decision

nodes that are to be executed based on the current sleep stage.

For sleep staging, when a certain stage of sleep is prevalent, it normally goes on to stay

for a few epochs before transitioning to the next stage. This means that an epoch only

needs to be tested to check whether it is of the same sleep stage of not. For example, if

the current sleep stage is N3, the new epoch will be checked to see it is N3 or not. This

can be achieved by a one-versus-all decision tree, which in this case is N3-versus-others.

If the result indicates that the epoch is indeed N3 no further tests are needed. However,

the opposite result indicates that the sleep stage has changed. Hence, four one-versus-

one decision trees are needed to determine the new sleep stage. The order of these trees

must be based on the likelihood of the next sleep stage.

This approach allows designing smaller decision trees and results in an overall shorter

worst case path for individual trees in comparison to the traditional decision trees. The

rest of this chapter explains the design of this novel sleep stage classifier in detail. Sec-

tion 5.2 describes the database used as a source of sleep data and discusses the features

extracted. Section 5.3 explains the complete algorithm showing how the trees are linked

up together while Section 5.4 covers the design steps for each individual tree. The per-

formance of this algorithm is evaluated in Section 5.5 followed by a discussion on future

development and improvements in Section 5.6.

5.2 Material and methods

5.2.1 Database

Recordings from the DREAMS Subjects database [2] are used for the training and test-

ing of the proposed sleep staging algorithm. This database consists of overnight sleep

recordings of 20 subjects and has been classified according to the AASM rules. The

details of this database can be found in Appendix A. The training dataset consists of

recordings from the first ten subjects while the latter ten subjects will be used to test
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the algorithm. Three EEG channels are available in all recordings, however, only Fp1-A2

(frontal channel) will be used in this work.

5.2.2 Features

At the initial stages of development, spectral features in several frequency bands will be

extracted to study their effectiveness. The frequency bands that will be used and their

corresponding ranges are shown in Table 5.1.

Table 5.1: EEG frequency bands and their range.

Name Frequency Range (Hz)

alpha 8-13

alpha1 8-10

alpha2 10-13

beta 16-30

delta 0.5-4

delta1 0.5-2

delta2 2-4

gamma 30-40

sigma 11-16

theta 4-8

total 0.5-50

The ratio between the powers of all frequency bands listed in Table 5.1 are computed

and added to the initial feature set. This results in having the relative powers in each

frequency band (when the ratio is between a certain frequency band with respect to

the power in the total band) as well as the power ratio between other frequency bands,

for example, sigma/beta, alpha/delta, etc. Further, the three quantifications of spectral

edge frequencies in Chapter 4 (SEF50, SEF95 and SEFd) are calculated in 0.5-8 Hz,

0.5-30 Hz, 4-12 Hz and 8-16 Hz bands.

The initial set consists of a large number of features, some of which may not have

any discriminatory ability while some may be duplicating the effects of other features.

Because of this, the features with redundancies and low discriminatory power must be

removed. This is done using sequential feature selection. As a result, 28 features remain

that are shown in Table 5.2.

The reduced feature set will be used to design the decision trees in the next section as

part of the sleep staging algorithm. However, it is possible that not all features from this

set are required, further reducing the number of features that are needed for classification.

The final list of features will be shown in Section 5.4.3 once all the decision trees have

been designed.
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The spectral powers for a 30-second epoch in each frequency band are calculated by

taking the sum of these powers within its fifteen 2-second sub-epochs. The ratio between

powers is taken at the end of this computation i.e. at the epoch level but not at the sub-

epoch level. This has been done to make the feature calculation suitable for hardware

implementation. As an example, the ratio between spectral powers in A and B in an

epoch e is calculated as follows:

RelativePower(e) =

15
∑

n=1
(AbsolutePower A)[sen]

15
∑

n=1
(AbsolutePower B)[sen]

(5.1)

SEF50 and SEF95 for an epoch e are calculated by taking the mean of its fifteen

sub-epoch values.

SEFxx(e) =
1

15
×

15
∑

n=1

(SEFxx[sen]) (5.2)

Finally, SEFd is calculated by taking the difference between the averages of SEF50

and SEF95.

SEFd(e) =
1

15
×

15
∑

n=1

(SEF95[sen]− SEF50[sen]) (5.3)

Table 5.2: Initial list of the most relevant features for use in the
sleep staging algorithm.

Features

rel. delta rel. alpha1 beta/alpha SEF50(0.5-30)

rel. delta1 rel. alpha2 SEF50(8-16) SEF95(0.5-30)

rel. delta2 rel. theta SEF95(8-16) SEFd(8-16)

rel. beta sigma/beta SEF50(4-12) SEFd(4-12)

rel. sigma beta/delta SEF95(4-12) SEFd(0.5-8)

rel. gamma theta/alpha SEF50(0.5-8) SEFd(0.5-30)

rel. alpha delta/alpha SEF95(0.5-8)

rel. - relative power in a frequency band with respect to the total bandwidth

(0.5-50 Hz)
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5.3 Sleep staging algorithm

The sleep staging algorithm proposed in this chapter consists of several decision trees

and their order of execution is controlled by a state machine. It is designed in such a way

that the state machine starts with a pre-defined initial state and must satisfy two levels

of checks in order to transition into another state. The first level is the core test which is

a one-versus-all decision tree. It checks to determine whether the epoch being analysed

is of the same sleep stage as the previous epoch or not. In other words it checks whether

the current state of the machine needs to change. If the core test determines that the

current epoch may potentially be of a different sleep stage then a series of peripheral tests

are applied, otherwise the state machine remains unchanged. These peripheral tests are

very small one-versus-one decision trees. Since there are only five possible sleep states

including the current state, there can always be a maximum of four peripheral tests

required. The order of these peripheral tests is important and determined during the

training stage based on the likelihood of the next sleep stage. If one of these tests is

passed, the sleep stage corresponding to that test is assigned to the current epoch, no

further peripheral tests are executed and the state machine transitions to the new state.

If, however, the peripheral tests also fail to assign a different sleep stage to the current

epoch, the state of the machine remains unchanged and the last known sleep stage is

assigned to the current epoch under analysis. The pseudocode of the complete algorithm

is shown in Listing 5.1.

Listing 5.1: Pseudocode of the proposed sleep staging algorithm

Initial Condition: current state is Wake

if current state =Wake then

if CoreTest(Wake,Others) =Wake then

current state =Wake

else

if PeriTest(Wake,N2) = N2 then

current state = N2

else if PeriTest(Wake,N1) = N1 then

current state = N1

else if PeriTest(Wake,REM) = REM then

current state = REM

else

current state =Wake

end if

end if
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else if current state = N1 then

if CoreTest(N1, Others) = N1 then

current state = N1

else

if PeriTest(Wake,N1) = N1 then

current state =Wake

else if PeriTest(N1, REM) = REM then

if CoreTest(REM,Others) = REM then

current state = REM

else

current state = N1

end if

else if PeriTest(N1, N2) = N2 then

current state = N2

else if PeriTest(N1, N3) = N3 then

current state = N3

else

current state = N1

end if

end if

else if current state = N2 then

if CoreTest(N2, Others) = N2 then

current state = N2

else

if PeriTest(N2, REM) = REM and CoreTest(REM,Others) = REM then

current state = REM

else if PeriTest(Wake,N2) =Wake then

if CoreTest(Wake,Others) =Wake then

current state =Wake

else

current state = N2

end if

else if PeriTest(N1, N2) = N1 then

current state = N1

else if PeriTest(N2, N3) = N3 then

current state = N3

else

current state = N2

end if
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end if

else if current state = N3 then

if CoreTest(N3, Others) = N3 then

current state = N3

else

if PeriTest(N2, N3) = N2 then

current state = N2

else if PeriTest(Wake,N3) =Wake then

current state =Wake

else if PeriTest(N1, N3) = N1 then

current state = N1

else if PeriTest(N3, REM) = REM then

current state = REM

else

current state = N3

end if

end if

else if current state = REM then

if CoreTest(REM,Others) = REM then

current state = REM

else

if PeriTest(N2, REM) = N2 and CoreTest(N2, Others) = N2 then

current state = N2

else if PeriTest(N1, REM) = N1 then

if PeriTest(Wake,N1) =Wake then

current state =Wake

else

current state = N1

end if

else if PeriTest(Wake,REM) =Wake then

current state =Wake

else if PeriTest(N3, REM) = N3 then

current state = N3

else

current state = REM

end if

end if

end if
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The algorithm starts initially with the state machine in the Wake state. For an in-

coming new epoch, the CoreTest(Wake,Others) determines whether a state change is re-

quired. If it is required, then a series of four peripheral tests are used to determine the new

state of the machine. For the Wake state, the peripheral tests are: PeriTest(Wake,N1),

PeriTest(Wake,N2), PeriTest(Wake,N3) and PeriTest(Wake,REM). If one of these de-

termine the epoch to be other than Wake then the epoch is assigned that sleep stage

and the machine transitions to that state, otherwise the state remains unchanged. If the

state of the machine is changed, then based on the newly assigned state, the next epoch

will be classified by starting at a different core test following a similar pattern.

There are a few exceptions made to an otherwise symmetrical structure of the algo-

rithm. If the PeriTest(N1,REM) determines an epoch to be REM (in case of current state

being N1) then the CoreTest(REM,Others) is used additionally to confirm the epoch as

REM. If the latter test returns false, the state of the machine remains N1. This is used

because of the EEG similarities in N1 and REM stages. This strategy of using core tests

to confirm a stage is also used in PeriTest(N2,REM) and PeriTest(Wake,N2). In these

cases, CoreTest(REM,Others) and CoreTest(Wake,Others) are used to check whether the

epochs are indeed of REM and Wake stages respectively. Further when the current state

is REM and the PeriTest(N1,REM) is executed resulting in N1, there is a likelihood

of the output being Wake instead. Therefore PeriTest(Wake,N1) is used to determine

whether the epoch should be classified as Wake or N1.

5.4 Design of decision trees

The core and peripheral tests were designed as decision trees using the ClassificationTree

class in Matlab. This class provides a fitctree function that constructs a binary clas-

sification tree based on a set of input features and their corresponding labels. At the

very least, the function requires input features and their labels and to return a decision

tree, however several options such as misclassification cost, pruning criterion and split

criterion can be specified. Matlab does not provide details of how this function is im-

plemented internally only stating that it is based on the CART algorithm described in

the Classification and Regression Trees book by Breiman et al. [3].

All the core and peripheral trees in this section are binary trees designed with equal

misclassification cost for both classes of the tree. The split criterion used is Gini’s diver-

sity index (which is a measure of impurity, like entropy) and the pruning criterion is set

to error as the option. Once a decision tree is returned by the function, it can be pruned

down to contain a smaller number of nodes merging the leaf nodes at deeper levels. This

is because the classification approach proposed here is only beneficial if the core and

peripheral decision trees are small in comparison to the traditional decision trees used

for sleep classification. For this reason, the core and peripheral trees are designed with

a restricted number of nodes in them. Pruning can reduce the overall accuracy of a tree
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since some of the nodes get merged. Therefore, it is performed only up to a level where

the performance of each tree is still acceptable. The number of nodes, features and all

the considerations to design these trees and their resulting performance are explained

below.

5.4.1 Core tests

The core tests are the first line of tests since they are responsible to determine whether

a state transition is required or not. Every new epoch will first be tested with one of

these core tests hence they have to be designed with a high specificity. There will be a

total of five core tests (one for each sleep stage). Each decision tree will be designed to

use the minimum number of nodes possible to achieve the highest specificity and making

this approach beneficial.

Wake vs. Others

This tree, shown in Figure 5.1, is designed to check whether the epoch under test is still of

Wake stage or belongs to one of the four other sleep stages i.e. N1, N2, N3 and R. It has

a total of 6 comparison nodes and five features: SEF50(4-12), SEFd(0.5-30), beta/alpha,

sigma/beta and relative theta power. Its longest and shortest paths to decision require

four and two nodes respectively. Using the training set, this tree achieves a sensitivity of

89% for detecting Wake and specificity of 94.8% for rejecting other stages.

N1 vs. Others

This decision tree is designed to discriminate N1 from N2, N3, W and R stages and is

shown in Figure 5.2. It uses relative powers in gamma, sigma and delta2 bands together

with SEF50(4-12) and SEFd(8-16) as the features for classification. The shortest path in

this tree requires only one comparison while the longest path has six nodes of comparisons.

The results on training set shows this tree having a sensitivity of only 64.9% in detecting

N1 stages and a specificity of 82% for rejecting others. The low sensitivity is expected

since N1 is generally difficult to detect.

N2 vs. Others

This decision tree is used to classify an epoch as either N2 or one of the other stages

(N1, N3, R and W). The shortest and longest paths in this tree require two and five

comparisons respectively. The tree uses relative powers in alpha, beta and alpha1 bands,

SEF50 and SEFd in 0.5-30 Hz band and sigma/beta power ratio at different nodes. It is

shown in Figure 5.3 and results in sensitivity of 88.6% and specificity of 75.7%.
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N3 vs. Others

This decision tree discriminates N3 stage from others and uses two and five comparisons

in its shortest and longest paths respectively. The features needed are relative powers in

beta, gamma and delta2 bands, sigma/beta, SEF50(0.5-30) and SEF95(4-12). Shown in

Figure 5.4, it has an N3 detection sensitivity of 85.1% while its specificity is 91.3%.

REM vs. Others

This tree detects whether the epoch being analysed is of REM stage or of others stages.

Shown in Figure 5.5, it uses SEFd(8-16) as the most discriminatory feature amongst

others. This coincides with the results in Chapter 4 where this feature was shown to

have high REM discriminatory ability. Other features in this tree include sigma/beta,

beta/delta and relative powers in delta2 and alpha1 bands. The shortest path in this

tree requires only two comparisons while the longest path requires four comparisons. The

sensitivity and specificity for this tree are 86.3% and 87.9% respectively.
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SEF50(4-12)

sigma/beta

SEF50(4-12)

WOthers

< 8 ≥ 8

W

< 3.370 ≥ 3.370

beta/alpha

rel theta

SEFd(0.5-30)

WOthers

< 14.43 ≥ 14.43

W

< 0.166 ≥ 0.166

Others

< 0.395 ≥ 0.395

< 6.683 ≥ 6.683

Figure 5.1: Core decision tree to discriminate between Wake and other sleep stages.
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rel gamma

SEF50(4-12)

OthersSEFd(8-16)

rel sigma

rel gamma

N1rel delta2

OthersN1

< 0.344 ≥ 0.344

< 0.013 ≥ 0.013

Others

< 0.026 ≥ 0.026

Others

< 5.97 ≥ 5.97

< 7.083 ≥ 7.083

Others

< 0.007 ≥ 0.007

Figure 5.2: Core decision tree to discriminate between N1 and other sleep stages.
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sigma/beta

SEF50(0.5-30)

SEF50(0.5-30)

OthersN2

< 5.517 ≥ 5.517

rel beta

N2Others

< 0.004 ≥ 0.004

< 1.35 ≥ 1.35

rel alpha

Otherssigma/beta

SEFd(0.5-30)

rel alpha1

OthersN2

< 0.044 ≥ 0.044

Others

< 5.15 ≥ 5.15

Others

< 1.406 ≥ 1.406

< 0.102 ≥ 0.102

< 2.05 ≥ 2.05

Figure 5.3: Core decision tree to discriminate between N2 and other sleep stages.
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SEF50(0.5-30)

rel gamma

OthersSEF50(0.5-30)

Otherssigma/beta

N3SEF95(4-12)

OthersN3

< 9.3 ≥ 9.3

< 4.68 ≥ 4.68

< 2.08 ≥ 2.08

< 0.004 ≥ 0.004

rel beta

rel gamma

Othersrel delta2

N3Others

< 0.159 ≥ 0.159

< 0.004 ≥ 0.004

N3

< 0.004 ≥ 0.004

< 1.55 ≥ 1.55

Figure 5.4: Core decision tree to discriminate between N3 and other sleep stages.
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SEFd(8-16)

beta/delta

rel delta2

sigma/beta

OthersR

< 2.47 ≥ 2.47

Others

< 0.218 ≥ 0.218

Others

< 0.01 ≥ 0.01

sigma/beta

Othersrel delta2

rel alpha1

ROthers

< 0.055 ≥ 0.055

Others

< 0.225 ≥ 0.225

< 2.50 ≥ 2.50

< 4.43 ≥ 4.43

Figure 5.5: Core decision tree to discriminate between REM and other sleep stages.
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5.4.2 Peripheral tests

The peripheral tests are one-versus-one decision trees that are designed to detect sleep

stage transitions. They are evaluated only when a core test determines that an epoch

under analysis is not of the same sleep stage as the previous one. The order of these

tests is determined based on the likelihood of the occurrence of next sleep stage. Not all

peripheral tests are always needed. If the first peripheral test successfully determines the

next sleep stage then the others are not executed. However, if all tests fail to find the

transition, then the sleep stage remains unchanged.

The peripheral decision trees are designed to be very small. They are constrained to

have a maximum of two levels and three decision nodes (two nodes in the longest path).

At the time of training these trees, equal weight is assigned to the two sleep stages that

are being distinguished with any of the trees. The features used and training accuracy

of each of these trees is explained below.

Wake vs. N1

TheWake vs. N1 peripheral test is used to determine if the sleep state is to be transitioned

to N1 when current state is W or when the current state is N1 and it needs to be

transitioned to W. It uses SEF50(4-12) and SEF95(0.5-8) as the two features and has a

total of two nodes. The sensitivities of this tree in detecting W and N1 stages are 88%

and 78.3% respectively.

SEF50(4-12)

WSEF95(0.5-8)

N1W

< 5.517 ≥ 5.517

< 6.617 ≥ 6.617

Figure 5.6: Peripheral decision tree to discriminate between Wake and N1 sleep stages.

Wake vs. N2

This tree is the only exception to the constraint of having a maximum of two levels in

the tree. It has an extra level to achieve the required levels of accuracy. However, it still

has a maximum of three nodes and uses sigma/beta and relative powers in gamma and

delta2 bands as the features. It has a sensitivity of 92% and 92.6% for detecting N2 and

146



Wake respectively. This test is used when the current state of the state machine is either

W or N2.

rel gamma

Wsigma/beta

N2rel delta2

N2W

< 0.182 ≥ 0.182

< 1.696 ≥ 1.696

< 0.011 ≥ 0.011

Figure 5.7: Peripheral decision tree to discriminate between Wake and N2 sleep stages.

Wake vs. N3

This is a simple decision tree with only one node and tests the value of relative power

in gamma frequency band. It has a sensitivity of 97.6% for detecting N3 and 92.4% for

detecting Wake.

rel gamma

WN3

< 0.005 ≥ 0.005

Figure 5.8: Peripheral decision tree to discriminate between Wake and N3 sleep stages.

Wake vs. REM

This peripheral test uses relative power in delta2 and SEF50 in 8-16 Hz frequency band

to determine if the epoch is of Wake or REM stage. The tree has a total of two decision

nodes and detects Wake and REM with sensitivity of 90.4% and 87.5% respectively.
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rel delta2

SEF50(8-16)

WR

< 10.05 ≥ 10.05

W

< 0.223 ≥ 0.223

Figure 5.9: Peripheral decision tree to discriminate between Wake and REM sleep stages.

N1 vs. N2

This test uses relative powers in gamma and alpha1 bands with two nodes to classify an

epoch as either N1 or N2. It detects N2 with a sensitivity of 97.7%. However, its N1

sensitivity is low at only 44.8%.

rel gamma

rel alpha1

N1N2

< 0.065 ≥ 0.065

N2

< 0.105 ≥ 0.105

Figure 5.10: Peripheral decision tree to discriminate between N1 and N2 sleep stages.

N1 vs. N3

This tree uses the spectral power ratio between beta and delta bands and SEF50 in 0.5-

8 Hz range with two decision nodes to classify an epoch as N1 or N3. It detects N1 with

sensitivity of 94.3% and N3 with sensitivity of 96%. It is used to test if the epoch under

analysis is to be classified as N3 when the current state is N1 or if it is to be classified as

N1 when the current state is N3.

148



beta/delta

N1SEF50(0.5-8)

N1N3

< 1.883 ≥ 1.883

< 0.015 ≥ 0.015

Figure 5.11: Peripheral decision tree to discriminate between N1 and N3 sleep stages.

N1 vs. REM

This peripheral tree detects REM epochs with a sensitivity of 91.8%. Its sensitivity for

N1 is low at 43.4%. This is to be expected due to the EEG similarities between these

sleep stages. It has two decision nodes and uses SEF50 in 8-16 Hz and 0.5-30 Hz bands

as the two features.

SEF50(8-16)

N1SEF50(0.5-30)

N1R

< 4.05 ≥ 4.05

< 9.817 ≥ 9.817

Figure 5.12: Peripheral decision tree to discriminate between N1 and REM sleep stages.

N2 vs. N3

This tree uses only one decision node with SEF50(0.5-30) as the feature. It classifies N2

and N3 epochs with sensitivity of 89.8% and 71.9% respectively.

SEF50(0.5-30)

N2N3

< 1.35 ≥ 1.35

Figure 5.13: Peripheral decision tree to discriminate between N2 and N3 sleep stages.
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N2 vs. REM

This peripheral test uses relative theta power and the ratio of sigma/beta powers with

two decision nodes to classify an epoch as either N2 or REM. Its sensitivity for detecting

N2 and REM are 91.1% and 80.5% respectively.

sigma/beta

N2rel theta

RN2

< 0.185 ≥ 0.185

< 2.309 ≥ 2.309

Figure 5.14: Peripheral decision tree to discriminate between N2 and REM sleep stages.

N3 vs. REM

This test uses relative gamma power with only one decision node and classifies N3 and

R epochs with sensitivity of 96.7% and 92.2% respectively.

rel gamma

RN3

< 0.005 ≥ 0.005

Figure 5.15: Peripheral decision tree to discriminate between N3 and REM sleep stages.

5.4.3 Final set of features

Of the 27 features in the reduced feature set (Table 5.2), only 18 were needed to design

all the decision trees. This final set of features is listed in Table 5.3.
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Table 5.3: Final list of the most relevant features for use in the
sleep staging algorithm.

Features

rel. delta2 rel. alpha1 SEF50(8-16) SEF50(0.5-30)

rel. beta rel. theta SEF50(4-12) SEFd(8-16)

rel. sigma beta/delta SEF95(4-12) SEFd(0.5-30)

rel. gamma sigma/beta SEF50(0.5-8)

rel. alpha beta/alpha SEF95(0.5-8)

rel. - relative power in a frequency band with respect to the total bandwidth

(0.5-50 Hz)

5.5 Results

Ordering of decision trees

In order to determine the optimum internal order of evaluation of the peripheral decision

trees, all the different combinations were run in Matlab using the training data set.

The resulting sensitivity and selectivity of the algorithm were calculated for every single

iteration. The harmonic mean of these two metrics gives the F-score which is used to

compare the performances in different iterations.

F–score = 2×
Sensitivity × Selectivity

Sensitivity + Selectivity
(5.4)

The ordering or trees that results in the highest F-score is then used to evaluate the

performance on the training and test data sets.

Training data results

Of the 10130 epochs in the training set, the best performance of the algorithm resulted in

7916 epochs being correctly classified giving an overall accuracy of 78.14%. The detection

performance for all stages, except N1 and N3, showed a sensitivity of more than 80% and

is shown in Table 5.4.

The performance of the algorithm is further validated by performing leave-one-out

cross validation. In this method, the classifier is trained using a large part of the training

data and tested with the remaining data from the training set. For this, the training

set is divided into ten equal parts. In each iteration, nine parts (90% of data) are used

to train the algorithm and the remaining part is used to validate its performance. As a

result, there are a total of ten iterations. Each iteration uses a separate section of data

for testing hence covering the entire test database at the end. This method resulted in

an average accuracy of 80.3% with a standard deviation of only 3.3% between results of

different iterations.
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Table 5.4: Algorithm performance using the training data set

ALGORITHM

R
E
F
E
R
E
N
C
E W N1 N2 N3 R Sen(%) Sel(%)

W 1448 52 99 9 73 86.1 86.0

N1 129 123 222 0 241 17.2 54.0

N2 80 34 3763 215 260 86.5 77.8

N3 11 0 573 1264 3 68.3 84.9

R 16 19 177 1 1318 86.1 69.6

Testing data results

The test dataset consists of 10135 epochs in total of which 7440 were correctly classified

by the algorithm with an overall accuracy of 73.41%. This is, expectedly, slightly lower

than the accuracy obtained using the training set. The results for each sleep stage are

shown in Table 5.5. Comparing the sensitivity in each sleep stage with that obtained

using the training set, it can be seen that the accuracies for stages W, N1 and N2 are

very similar. However, there is a noticeable reduction in the sensitivity for REM stage

and an increase in N3 accuracy as well.

Table 5.5: Algorithm performance using the test data set

ALGORITHM

R
E
F
E
R
E
N
C
E W N1 N2 N3 R Sen(%) Sel(%)

W 1584 87 121 6 103 83.3 81.6

N1 178 116 158 16 197 15.2 40.7

N2 116 26 3175 399 183 81.4 71.7

N3 30 0 514 1534 4 73.7 78.2

R 34 56 360 7 1031 69.3 67.9

5.6 Discussion

It is generally difficult to compare the performance of algorithms that have been evaluated

using different, and sometimes private, databases. It is for this reason that DREAMS

Subjects database, which is freely available, was used to test the algorithm in this chapter.

However, since this database is fairly recent there is no other algorithm yet that has been

evaluated using this database.

Until recently, the most popular sleep database has been the PhysioNet Sleep EDF

database [4]. This comprises of 8 overnight sleep recordings. A superset of this database,
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the Sleep EDF Expanded database [5], is now available with 61 sleep recordings (see

Appendix A). The performance of the algorithm proposed in this chapter is thus also

evaluated using signals from this newer database to enable comparisons with other al-

gorithms. The entire database is split into training and test sets of 30 and 31 subjects

respectively. The overall accuracy using the training set is 82.22% while that using the

test is 78.85%. The sensitivity in other sleep stages were similar with poor detection rate

of N1 stage. This is not unexpected since certain spectral similarities between N1, REM

and Wake stages are well documented [6], [7].

The algorithm proposed in this chapter is the first algorithm evaluated on all recordings

from the PhysioNet Sleep EDF Expanded database. Only four other methods have used

the Sleep EDF Expanded database for performance evaluation. Of these, Yaghouby

et al. [8] obtained similar results to this method but used only a subset of the complete

database (ST subjects). Sanders et al. [9] also used only the ST subjects and reported an

overall accuracy of 75%, which is lower than that obtained in this work. Rodriguez-Sotelo

et al. [10] used both SC and ST subjects. For SC subjects, they reported a maximum

accuracy of 80% for individual test subjects separately. However, this dropped to 51%

when these subjects were combined. They also used ST subjects for validation separately

which resulted in a lower accuracy. Finally, Aboalayon et al. [11] also used a subset of

this database however their method only discriminated between Wake and N1, and not

all the stages of sleep.

There is potential for further improvement to the proposed algorithm. At present,

all the binary peripheral decision trees are designed with equal misclassification cost

for either stage. For example, the peripheral decision tree corresponding to N1 vs. N2

classification is the same whether the current state is N1 or N2. Initial work involving

training of trees with different misclassification cost based on the current state has shown

promising results with improved classification accuracy. Further, the results can also

potentially be improved by adding better discriminatory features.

The core and peripheral decision trees are constrained to have a limited number of

nodes in their longest path. Although, this limits the maximum accuracy that can be

achieved, it is done to realise an algorithm with smaller processing requirements making

it suitable for being used in a wearable environment where limited processing resources

are available.

Overall the results in this chapter suggest that the approach of combining state ma-

chines and decision trees in the context of sleep staging can be highly useful for the

classification of sleep. This approach allows for the use of multiple small decision trees

that get activated depending on the current sleep stage. It also results in better usage of

processor resources on which the algorithm may be implemented. This is because only a

subset of features are computed each time depending on the current sleep stage. Further,

since the starting decision trees change based on the current state, not all of them are re-
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quired at all times. This saves several nodes of comparison that would have been required

in an approach using conventional decision trees alone. Although the algorithm showed a

good overall performance, sensitivity in N1 stage was found to be lacking. Nevertheless,

the approach presented in this chapter will be highly useful for designers of automatic

sleep scoring systems and can be further improved with the use of more discriminative

features and better design of decision trees.
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6 Integrated circuit design and

implementation of an automatic sleep

staging algorithm

6.1 Introduction

An automatic sleep staging algorithm was presented in Chapter 5 which works by extract-

ing spectral features from a single EEG channel and using contextually aware decision

trees to classify them into one of the sleep stages. The algorithm has been specifically

designed to be suitable for a low-power hardware implementation by using low complex-

ity features and a classifier that is mostly idle with few active sections only when needed.

This chapter presents the complete integrated circuit design and implementation of the

algorithm using AMS 0.18µm process technology.

The architecture of the sleep staging algorithm hardware has four main blocks:

1. Input Controller

2. Fast Fourier Transform

3. Feature Calculation

4. Classifier

The input controller buffers up the EEG samples as they are received from external

sources. This data is passed on to a block that computes the Fast Fourier Transform

of 2-second subepochs and saves their magnitudes. These magnitudes are then used to

perform the feature calculation. Finally, the classifier takes in the features for each epoch

and assigns a sleep score to it which can be read out externally. The following sections

explain the hardware implementation of these blocks in detail and discuss the design

considerations that were taken into account during their implementation.

6.2 Input Controller

The sampling frequency of the EEG signals used by the sleep staging algorithm is 256 Hz.

This means that a new sample is available at the input every 1/256th of a second. The
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samples need to be buffered until 512 of them are received i.e. equivalent to the number

of samples in a 2-second subepoch. It is for this storage and control of data samples that

an input controller block is needed.

The input controller block, shown in Figure 6.1, has been designed to be able to receive

data from two sources. Firstly, it gets data from an on-chip analogue front end (AFE)

that includes an ADC. Secondly, it can also get digitised bits of data directly on digital

input ports. This latter option is used so that it is possible to test the system directly

bypassing the AFE and also make it compatible with other front ends. The source of

input can be selected using a a sel input that controls a multiplexer. Setting this input

would use data from an on-chip ADC while resetting it would use data from digital input

ports.

Regardless of the mode chosen, an input data sample is valid only when the valid in

control signal at the input is also high. The sample is read when valid in goes from

high to low and stored at the appropriate place in the register bank. An internal counter

generates the address of the location where the sample is to be stored in the bank. This

counter is initially zero when the circuit resets and is incremented each time a valid

sample is received. When 512 samples are received the counter reaches its maximum

limit and is reset to zero to start over again. At the same time a valid out pulse is

generated from the input controller block to the FFT block which acts as an instruction

to read data and start computation. This frees up the register bank so that the input

controller can continue receiving data for the next subepoch without any interruption

even while computations are taking place by other blocks.

+1

input_dig

count
=512?

input_adc

sel

valid_in

valid_out

data_outRegister

Bank
...

Figure 6.1: Block diagram of the Input Controller.

157



6.3 Fast Fourier Transform

6.3.1 Overview

The Discrete Fourier Transform (DFT) is used to extract the spectral properties of a sig-

nal. The calculation of N -point DFT requires N2 multiplications which can be extremely

inefficient and time-consuming. Fast Fourier Transform (FFT) is an algorithm to speed

up the computation of DFT by making use of certain symmetrical properties, greatly

reducing the number of multiplications required, resulting in an algorithmic complexity

of O(N log N) compared to O(N2) when using the original DFT. The FFT of an input

signal x is computed as shown below, where X(k) is the transformed output at index k

and N is the length of the signal.

X(k) =
1

N

N−1
∑

n=0

x(n)e
−j2πnk

N =
1

N

N−1
∑

n=0

x(n)ωnk
N (6.1)

The most popular algorithm to compute FFT is the Cooley-Tukey FFT algorithm [1].

Radix-2 Decimation in Time (DIT) is the simplest variant of the Cooley-Tukey FFT

algorithm. This is a recursive algorithm that breaks down the entire calculation into

a number of 2-point DFTs. Figure 6.2 shows the implementation of an 8-point FFT

using the Radix-2 DIT algorithm. There are eight input samples that are rearranged in

a certain order. The input values are combined in pairs to perform some mathematical

operations resulting in a pair of complex values as outputs. For the eight input samples,

four such pair-wise operations are needed at the first level. The next level then uses

the outputs from the computations of previous level to perform similar mathematical

operations using the inputs in a different order. This process continues for three levels

and the results from the final stage are the required FFT coefficients.

Each unit of mathematical operation using two input values is commonly known as the

butterfly operation. Assuming that the two input values for this operator are complex

numbers A and B while ω is a twiddle factor that depends on the input values and level

of FFT is being computed, then the two complex output values X and Y are as follows.

X = A+Bω (6.2a)

Y = A−Bω (6.2b)

For an N -point FFT, where N = 2n, there are N/2 butterfly operations performed at

each level and there are a total of n levels. As a result, Nn/2 butterfly operations are

needed to perform the complete FFT. The twiddle factor for each computation can be

represented as wk
N where 0 ≤ k < N . The twiddle factors can either be computed on the

fly or stored in memory and accessed using a lookup table.
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The FFT is a complex arithmetic transform requiring several multiplications, additions

and registers to hold the results before the final result can be produced. With a large

number of multiplications needed it is not feasible to use a separate multiplier for each

computation in hardware since that will result in a design with huge area, complexity

and redundancy. Further, since the FFT algorithm is recursive, all butterfly operations

are independent of each other in every stage. This means that a single butterfly unit can

be used to perform the computations for different input pairs in a multi-cycle operation.

Consequently, the total number of cycles required to get the final result will be Nn/2

assuming that each butterfly operation can be performed in one clock cycle.

For the specific sleep staging algorithm being implemented in this chapter, a 512-point

FFT is required. This is implemented using fixed-point representation of numbers. The

integer and fraction bits of the fixed point representation are decided by performing a

large number of Matlab simulations. The maximum absolute value of a sample within

the EEG database is under 500, which can be represented by 10 bits (for a signed repre-

sentation). Using this as the minimum, multiple simulations were carried out to find out

the number of integer bits needed that would prevent overflows resulting from a large

number of multiplication and addition operations that are performed in FFT. From this,

it was determined that 12 bits would be sufficient to represent the integer part without

overflows.

The fractional bits in the fixed-point numbers determine the accuracy of the overall

output. Using 12 bits for integer, the Matlab simulations for FFT were performed

again this time sweeping the number of fractional bits from 1 to 20 and the RMS error

determined for each. The results are shown in Figure 6.3. It can be seen that increasing

the number of fractional bits steadily reduces the RMS error until a point after which

any increase in the number of bits results in a very small decrease in error. That point

corresponds to 12 fractional bits. Together, this results in a 24-bit fixed-point number

used for the FFT implementation.

Figure 6.4 shows the block diagram of the FFT implementation at the top level. The

input data to be transformed is read when a valid in signal indicates the availability of

samples at the port. These data samples are rearranged immediately in the bit reversal

block and stored in the register bank. An address generation module counts the number

of cycles and the levels for which the calculations are being performed and uses them

to compute two addresses so that correct data can be fetched from and saved to the

register banks. This address is also used to calculate the twiddle factors for each stage of

calculation. The butterfly module uses the fetched data and twiddle factors to compute

its output, both real and imaginary parts, which are then saved in the register banks

overriding the previous values. This process is repeated in each clock cycle until the final

output is available after 2304 clock cycles. The design of each module in the FFT block

is explained in detail in the following sections.

160



0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of fractional bits

R
M

S
 E

rr
o
r

Figure 6.3: RMS error with respect to the number of fractional bits in a fixed-point number.

6.3.2 Data Input & Bit Reversal

In order for the FFT algorithm to follow the computations in Figure 6.2 the inputs

need to be rearranged at the beginning. This requirement of the DIT algorithm ensures

that the output samples are available in the correct order when the FFT computation

is complete. As can be seen from Figure 6.2, the indices of the input data follow a bit

reversal pattern. This means that the new position of an input data sample is determined

by flipping the binary bits of its original index and the resultant binary value gives the

new index. Some examples of bit reversal for a 512-point FFT are shown in Table 6.1.

Bit reversal can be performed on the hardware to determine the new index for each

data sample. However, since the number of points in the FFT being implemented here

is fixed, the hardware for reordering the input samples can also be fixed. In terms of

hardware, this does not add any logic and translates to data bits being wired to their

new locations as shown in Figure 6.5.
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Figure 6.5: Block diagram of the Data Input & Bit Reversal module.
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Table 6.1: Bit reversal examples for 512-point FFT.

Input index Bit reversed index

Decimal Binary Binary Decimal

0 000000000 000000000 0

1 000000001 100000000 256

2 000000010 010000000 128

3 000000011 110000000 384

4 000000100 001000000 64

5 000000101 101000000 320

. . . . . . . . . . . .

506 111111010 010111111 191

507 111111011 110111111 447

508 111111100 001111111 127

509 111111101 101111111 383

510 111111110 011111111 255

511 111111111 111111111 511

6.3.3 Register Banks

The FFT computation involves complex numbers having real and imaginary parts. They

are both represented as signed fixed-point numbers. This means that each of the 512 data

samples correspond to one real and one imaginary part resulting in 1024 values. These

values need to be stored for intermediate processing and for final output. For this, two

register banks are used; one for real and one for imaginary parts of the complex numbers.

The register banks are identical and are designed to be 24-bit wide with a depth of 512.

At the start of a new FFT computation, the reordered real-valued data inputs are

stored in the real register bank while the imaginary register bank is initialised to zero

for all values. Each register within the bank also has an enable signal to control when

data can be written on to it. Initially, when the input is valid, the enable signals of all

registers are set to high so that all the spaces can be initialised in the bank with the input

samples or zeroes. After that, an internal busy signal indicates that an FFT computation

is ongoing and the values in only two registers will be overwritten in each bank at the

end of every clock cycle.

The two register banks store the reordered input values (and zeroes) initially. Once

the Transform begins, they hold the intermediate values, overwriting the previous ones.

Finally, at the end of the Transform, the output of the FFT computation is also available

in these register banks in the correct order and can be read out when indicated by the

valid out signal.
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6.3.4 Address Generator

This module keeps a count of how many cycles and levels of computations have been

performed. Based on the current cycle and level count, it generates addresses for the

register banks to retrieve data from correct locations for each butterfly computation and

subsequently save the result on to the same location. It also provides information to the

twiddle generator, save magnitudes and valid control modules.

Consider the 8-point FFT operation shown earlier in Figure 6.2. In this example, N

is 8 therefore the number of computation cycles required in each level is N/2 while the

number of levels is log2(8) = 3, designated as n. The number of cycles range from 0 to

N/2− 1 while the number of levels range from 0 to n− 1.

Each cycle of butterfly computation uses two input values. During the first level, these

are adjacent values in the register bank i.e. in the first cycle of first level x(0) and x(1)

are used, in the second cycle x(2) and x(3), and so on. This relationship of inputs for

each cycle is not constant and changes during every level of computation. For example,

in the first cycle of second level inputs x(0) and x(2) are used while the same cycle in the

last level uses x(0) and x(4) inputs. Due to this, a pair of addresses need to be generated

based on the current FFT cycle and level to provide correct input values. If the current

cycle and current level are assumed to be C and L, then the two addresses ADDR1 and

ADDR2 can be determined as follows [2]:

ADDR1 = RotateLeft(2C,L) (6.3a)

ADDR2 = RotateLeft(2C + 1, L) (6.3b)

The address generator hardware, shown in Figure 6.6, consists of two incrementing

counters. First is the cycle counter which is incremented every clock cycle (up to its

maximum value after which it is reset) and the second is the level counter is incremented

when cycle counter reaches its maximum value. Using the output from the two counters

an address calculation submodule performs the circular left shift on the binary represen-

tation of 2C and 2C + 1 by L bits. The resultant outputs are the two addresses which

are passed to the other modules within the FFT block.

6.3.5 Fetch Data

This module is used to fetch correct data from the two register banks for the butterfly

computation in each cycle. It gets two addresses from the address generator module and

uses them with a set of multiplexers to output the stored values at those two addresses

in both real and imaginary register banks as shown in Figure 6.7.
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Figure 6.6: Block diagram of the FFT Address Generator module.
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Figure 6.7: Block diagram of the FFT Fetch Data module.
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6.3.6 Twiddle Generator

The twiddle factor needed for each butterfly computation depends on the cycle and level

of operation. From the earlier FFT definition in Equation 6.1, the twiddle factors are

defined as:

e
−j2πnk

N = ωnk
N (6.4)

For a 16-point FFT, Table 6.2 shows the twiddle factors for all butterfly computations

as well as the corresponding cycle and level numbers. During the first level, N = 2 for

each butterfly operation since the output is only dependent on the two inputs. The next

level uses four inputs to produce its output hence N = 4 followed by N = 8 in the next

level and N = 16 in the final level.

Table 6.2: Twiddle factors during each cycle and level of a 16-point FFT.

Cycle Count Level

Decimal Binary 0 1 2 3

0 0000 ω0
2 ω0

4 ω0
8 ω0

16

1 0001 ω0
2 ω0

4 ω0
8 ω1

16

2 0010 ω0
2 ω0

4 ω1
8 ω2

16

3 0011 ω0
2 ω0

4 ω1
8 ω3

16

4 0100 ω0
2 ω1

4 ω2
8 ω4

16

5 0101 ω0
2 ω1

4 ω2
8 ω5

16

6 0110 ω0
2 ω1

4 ω3
8 ω6

16

7 0111 ω0
2 ω1

4 ω3
8 ω7

16

All these twiddle factors can be represented as ω16 by simply multiplying the exponen-

tial numerator with a where a = 16/N (using corresponding N for each level).

ωank
16 = ωnk

N (6.5)

The resulting twiddle factors with the same exponential denominator of 16 are shown

in Table 6.3.

Let z equal to the index (ank) of each twiddle factor in equation Equation 6.5. This

index changes with the cycle and level of FFT computation and thus needs to be deter-

mined. IF C is the current cycle and L is the current level, the index z can be calculated

by taking the L+ 1 most significant bits of C and shifting it left by n− L− 1, where n

is equal to the total number of levels.

z = ShiftLeft((L+ 1 bits of C), n− L− 1) (6.6)
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Table 6.3: Twiddle factors during each cycle and level of a 16-point FFT revised to have the
same denominator.

Cycle Count Level

Decimal Binary 0 1 2 3

0 0000 ω0
16 ω0

16 ω0
16 ω0

16

1 0001 ω0
16 ω0

16 ω0
16 ω1

16

2 0010 ω0
16 ω0

16 ω2
16 ω2

16

3 0011 ω0
16 ω0

16 ω2
16 ω3

16

4 0100 ω0
16 ω4

16 ω4
16 ω4

16

5 0101 ω0
16 ω4

16 ω4
16 ω5

16

6 0110 ω0
16 ω4

16 ω6
16 ω6

16

7 0111 ω0
16 ω4

16 ω6
16 ω7

16

Calculation and storage of twiddle factors

A twiddle factor ωz
N is simply the polar representation of a complex number. It is

evaluated as below:

ωz
N = cos(

2πz

N
)− j sin(

2πz

N
) (6.7)

Computing the sinusoidal values on hardware is both complex and time consuming.

A more efficient solution is to store the already computed values in a ROM from where

they can be fetched using a look up table. For an N -point FFT, the total number of

twiddle factors needed are N/2. Each twiddle factor itself consists of two values: a cos

component and a sin component, corresponding to the real and imaginary values of the

complex number respectively. As a result, the actual number of values to be stored in

ROM are N .

For a 512-point FFT the number of constants to be stored is quite large. However, cos

and sin values are related:

cos(x) = sin(x+
π

2
) (6.8)

This means that a separate value for the sin component does not need to be stored

and can be looked up by adding an offset to the cos index. This will reduce the number

of constants to be stored down to N/2.

As an example, consider the twiddle factors needed in each cycle of the last level for a

16-point FFT in Table 6.4. In this case N = 16, hence N/2 cycles are needed. Observing

the twiddle value in each cycle shows that the imaginary value at cycle C is the same as

the real value at C +N/4. This illustrates the cos and sin relationship explained earlier.

Further, the real values also repeat in reverse (with a negative sign) after N/4 cycles.
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Hence, the second half of these values need not be stored and can be determined from

the first N/4 values.

Table 6.4: Twiddle factor values for a 16-point FFT.

Cycle Twiddle Factor Twiddle Value

0 ω0
16 1.0000 - 0.0000j

1 ω1
16 0.9239 - 0.3827j

2 ω2
16 0.7071 - 0.7071j

3 ω3
16 0.3827 - 0.9239j

4 ω4
16 0.0000 - 1.0000j

5 ω5
16 -0.3827 - 0.9239j

6 ω6
16 -0.7071 - 0.7071j

7 ω7
16 -0.9239 - 0.3827j

As a result of these symmetry and periodicity properties, and knowing which quadrant

the FFT computation is in, the number of constant values to be stored in ROM is reduced

to only N/4. Hence, for the implementation of 512-point FFT only 128 constant values

are needed to be stored.

Hardware implementation

Figure 6.8 shows the block diagram of the complete twiddle generator. The two inputs

to this block are current cycle and current level from the address generator. These

are used by the index calculator module to calculate the indices of the sin and cos com-

ponents of the current twiddle factor. The two indices are used to fetch the values from

a ROM which consists of 128 constant values. These values are the real and imaginary

components of the current twiddle factor.

Index
Calculator

ROM

Fetch Twiddle
Values

current_cycle

current_level

cos

sin

twiddle_re

twiddle_im

Figure 6.8: Block diagram of the FFT Twiddle Generator module.
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6.3.7 Butterfly

The butterfly operation is the heart of the Cooley-Tukey FFT algorithm. It takes in two

data points and performs certain arithmetic operations on them to produce two complex

output values in every clock cycle. The arithmetic of this operation is shown in Figure 6.9

and can be broken down into three stages:

• The complex input B is multiplied by complex twiddle factor ω resulting in a

complex output Bω.

• The sum of complex numbers A and Bω results in the first output.

• The difference between complex numbers A and Bω gives the second output.

A

B
w

Y

X

-1

Figure 6.9: A radix-2 butterfly operation with complex inputs A and B with twiddle factor ω.

Complex multiplication

Multiplication of two complex numbers, C = c + jm and D = d + jn, is performed as

follows:

(c+ id)(t+ iu) = (a ∗ c− b ∗ d) + j(b ∗ c+ a ∗ d) (6.9)

In a fixed-point implementation, this requires four integer multipliers and three integer

adders to multiply both real and imaginary parts of the two complex numbers. A block

diagram of the implementation of this complex multiplier is shown in Figure 6.10.

Complex addition/subtraction

Addition of two complex numbers involves adding their real and imaginary parts. Sim-

ilarly, complex subtraction is simply a matter of taking the difference between the real

and imaginary parts of the two numbers. This arithmetic operation requires using two

adders or subtractors and a block diagram of its implementation is shown in Figure 6.11.

C +D = (c+ d) + j(m+ n) (6.10a)

C −D = (c− d) + j(m− n) (6.10b)
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Figure 6.10: Block diagram of the complex multiplier.

+/-
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c
m

d
n

out_real

out_imag

Figure 6.11: Block diagram of the complex adder/subtractor.

Butterfly operation

The butterfly module uses the three complex arithmetic components described above to

produce its output. A functional diagram showing how these three components are put

together in this combinatorial module is shown in Figure 6.12.
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Figure 6.12: Block diagram of the FFT Butterfly module.

6.3.8 Save Data

Each computation in the butterfly module results in two outputs that need to be saved,

either as intermediate values or as the final result in order to compute the magnitudes.

The results are saved in the register bank at the same address from which they are read

in each cycle. Consequently, the two addresses from the address generator are used by

this module to generate an array of enable signals for the register banks. These enable

signals ensure that the new values are written into the register banks only at the two

generated addresses. Within the register banks, a multiplexer uses the two enable signals

to direct the correct value into each register as shown in Figure 6.13.

addr1

busy

addr2

generate 

enable 

signal

valid_addr1

valid_addr2

Figure 6.13: Block diagram of the FFT Save Data module.
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6.3.9 Save Magnitudes

The output of the FFT computation is a set of complex numbers. The magnitude of

these numbers correspond to the power at each frequency bin. It is the set of magnitudes

that is used as feature input into the feature calculation block. Therefore, the magnitudes

need to be computed and saved after the final results are available. One method to do

this is to wait for all computations to complete, calculate the magnitudes and store them

in a different set of registers. However, in the final level of computations, the magnitude

at each point can be calculated immediately when the result at that point is available,

saving few clock cycles. Further, the bandwidth of the EEG signal for feature calculation

is up to 50 Hz and the FFT frequency resolution is 0.5 Hz. This means that only the

first 100 magnitude coefficients need to be stored since others are not used.

The save magnitudes module consists of two submodules. The first is a magnitude

calculator that uses the real and imaginary parts of the complex number computed by

the butterfly operation to calculate its magnitude. The magnitude of complex number,

C = c+ im, is normally computed by summing the square of its real and imaginary parts

and then taking the square root of this sum.

mag(C) =
√

c2 +m2 (6.11)

The square root operator involves complicated arithmetic hence the staging algorithm

in this work was designed using features that were computed using the square of the

magnitude so that this operator would not be needed at hardware level. The result is

normalised by dividing with N = 512, which is simply a shift operation and does not

require any datapath component.

mag(C) =
c2 +m2

512
(6.12)

The second submodule within save magnitudes is a register bank that can store 100

values of magnitudes. The address where a value of magnitude is to be saved is provided

by the address generator. The magnitudes are only calculated and saved when the final

level of computation is being performed. During this, the enable bit of the currently

addressed register is set to high when data at that address is available. Otherwise, all

enable bits are zero during previous levels to prevent storing any magnitudes prior to the

last level.

The complete implementation of calculating and saving the magnitudes is shown in

Figure 6.14. It requires a total of two multipliers and an adder to calculate the magnitude

value and some support logic to determine where this data needs to be saved in the

magnitude register bank.
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Figure 6.14: Block diagram of the FFT Save Magnitudes module.

6.3.10 Valid Out and Subepoch Address

When the last butterfly computation in the final level is complete, the register banks

hold the resultant FFT coefficients and the magnitudes are available in the magnitudes

register bank. At this time, a valid out signal is raised to indicate that the FFT data

is ready to be read by the feature calculation block. A counter within the valid out

module keeps track of how many subepochs have been processed. It counts up to 15 and

is incremented each time FFT computation is complete. This value is also passed on to

the feature calculation block as the subepoch address. Finally, the busy status signal

is set to low which indicates to the input controller that the FFT block is free to start

the next cycle of transformation if valid data is available at its input.

6.4 Feature Calculation

After the FFT block finishes its execution, the magnitude values saved at each frequency

bin are used to calculate the features that are required for classification. These features

were earlier listed in Chapter 5. Observing this list closely reveals that there are essen-

tially two kinds of features that need to be calculated in different frequency bands. These

are the power ratios and spectral edge frequencies. From the hardware point of view, the

calculation is not dependent on the frequency band but only on the input i.e. the exact

same hardware can calculate the power in two different frequency bands if the correct

magnitudes are provided at the input. This means that generic blocks for the two kinds

of features can be designed and instantiated with the required input corresponding to

the frequency bands in which the features are desired.

174



6.4.1 Power calculation

A functional block diagram of the power calculation module is shown in Figure 6.15 and its

design is explained by using alpha frequency band as an example which has the frequency

range between 8-13 Hz. The FFT block produces an output with a granularity of 0.5 Hz

which means that there exists a magnitude value at every 0.5 Hz interval. Consequently,

between 8-13 Hz, there are 11 magnitude values that need to be added together in order

to obtain the absolute power in this range. From the magnitudes register bank, these are

the consecutive outputs from index 16 up to 26. These 11 values are wired as inputs to

this module and are summed together to produce the final output. The power calculation

module has been designed to be multi-cyclic so that only one adder is required which

can be reused every cycle. This means that only one addition is performed in each cycle.

Hence, it will take 11 clock cycles to produce a valid output for calculating power in

alpha frequency band.

The power calculation module is normally idle and begins calculation on receiving

ready signal from the FFT block. In the first clock cycle, a register is loaded with the

first input from the magnitudes array. In the next cycle, the second input is added to

this registered value and an internal counter gets incremented. This continues until the

counter value reaches the maximum (equal to the total number of inputs) which also

corresponds to the last input value being added. The value in the register is then the

power value for the current subepoch and a valid signal is raised to signify that it is ready

to be read. This value is valid as long as the magnitudes register bank of the FFT block

is not overwritten by the results from the next subepoch. The resultant power values for

all the fifteen subepochs of an epoch are also accumulated within this module. This is

controlled by the subepoch address provided by the FFT block and is the feature that is

eventually used by the classifier.

To make this module suitable for calculating power in various frequency ranges, a

generic INPUT LENGTH integer needs to be defined for each instance of the module. This

integer is used to control the number of data inputs for the instance and also serves as

the constant for comparison to check if all inputs have been added. An accumulator is

also used at the end which sums up the power values for each subepoch when they are

valid and thus holds the power value for an epoch.

6.4.2 Spectral edge frequency calculation

The calculation of spectral edge frequency, firstly, requires the sum of the total power in

the desired frequency range. This is multiplied by the desired percentage (edge) and the

resulting value is used as the maximum power threshold. The individual power values

at each frequency range are then summed until this maximum value is reached. The

corresponding frequency value at that point is the required spectral edge frequency.

In the sleep staging algorithm being implemented, spectral edge frequencies are re-
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Figure 6.15: Block diagram of the Power calculation module.

quired at 50% and 95% (SEF50 and SEF95 ). From the hardware point of view, the

design of both SEF50 and SEF95 modules are exactly the same with one key difference.

The total power value in SEF50 is to be multiplied by 0.5 while in SEF95 the multiplica-

tion factor is 0.95 to obtain the maximum threshold. In the former case, multiplication

by 0.5 is essentially division by 2 which can be achieved easily by shifting one bit to

the right. For multiplication by 0.95, an unsigned fixed-point multiplier is used with

one input set to the constant value. This is the only difference in the design of the two

modules while rest of the details that follow are exactly the same.

The calculation of SEF95 in any frequency band requires the total power in that band.

Therefore, a power calculation block (described in the previous section) is also used with

the SEF module. The input to the module, in this case, are the FFT magnitudes in

8-16 Hz range (which is a total of 17 values). A valid signal enables the module after

which the first step is the calculation of power. When the power calculation block finishes

its computation it raises a flag which starts the iterative calculation of SEF95. The total

power value is first multiplied by 0.95 to obtain the maximum threshold. This is followed

by a multi-cycle operation in which the power at each frequency bin is subtracted from

the total power until it goes below the threshold.

In the first cycle, the power value at 16 Hz is subtracted from the total power and stored

in a register. The result is then compared against the result of the multiplier output. If

it is found to be greater, the process continues and the next magnitude value (at 15.5 Hz)

is subtracted from the earlier registered result and compared against the threshold. At

the same time, 0.5 is subtracted every cycle from an initial frequency constant (16 in this

case). This tracks the frequency up to which the comparison is performed. This way

when the subtracted value falls below the threshold the spectral edge frequency will be

the value stored in this register.

When the subtracted power value falls below the output of the multiplier, the compu-
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tation of SEF95 (or SEF50 ) is complete. The final value is stored in a register and a

valid flag is raised. The sum of SEF values of all the subepochs are also accumulated in a

register to be used by the classifier. Two versions of the SEF blocks have been designed.

The first one is for the computation of SEF95 which includes a multiplier while the

second one is for SEF50 computation and uses bit shifting to perform multiplication by

0.5. Both of these are made generic by defining INPUT LENGTH and INITIAL FREQUENCY

integers. INPUT LENGTH controls the number of data inputs while INITIAL FREQUENCY

sets the value from which the comparison begins and is equal to the highest frequency in

any range for which the computation is taking place.

6.4.3 Data validity

Both power calculation and spectral edge frequency calculation modules take very small

number of clock cycles to produce the result in comparison to the number of cycles needed

for FFT computation. This means that magnitude values at their input will still be valid

long after they have finished calculation. As a result they will start recalculating the

same value again since inputs to them are valid. This behaviour is not desirable and the

modules should stay in idle mode once they have finished calculation for a subepoch.

To tackle this, both the modules have an internal counter that determines the expected

subepoch address at the input. This is compared with the current subepoch address that

is provided by the FFT block. If the two addresses match, the feature is calculated. Once

this is complete, the expected address counter is incremented and the valid output value

is held until the subepoch address changes. The modules stay in idle mode until the next

valid input is available with the address that matches the expected one. A block diagram

of this operation is shown in Figure 6.16.

+ =
expected_se_address

subepoch_address

enable_calculation

valid

Figure 6.16: Block diagram of the logic to check input data validity and prevent recalculation of
the features for same inputs.

6.4.4 Block level implementation

As discussed earlier in this section, there are two kinds of features that need to be

calculated in multiple frequency bands: relative powers and spectral edge frequencies.
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The relative power features are of two types. First, the relative power in a certain

frequency band is calculated as the absolute power in that band divided by the total

power in 0.5-50 Hz which is the total frequency range used. The second type is the ratio

between two spectral bands, for example the ratio between alpha and beta frequency

bands. In this case, the absolute power in alpha band is divided by that in the beta band.

For both of these types the absolute power needs to be calculated in two frequency bands

and their ratio taken. The power calculation module is used to calculate the absolute

power while the ratio between the frequency bands is taken in the classifier block later.

This is done so that the powers for an epoch are calculated only once and the classifier

can derive whatever feature is needed simply by using the absolute power values.

From the list of features in Chapter 5, in order to compute the relative power features,

the absolute powers need to be calculated for the following frequency bands:

• total

• sigma

• beta

• theta

• alpha

• alpha1

• gamma

• delta

• delta2

Further, absolute powers are also needed for the calculation of spectral edge frequencies

in the following frequency bands:

• 0.5-30 Hz

• 8-16 Hz

• 4-12 Hz

• 0.5-8 Hz

As a result, there are a total of 13 instantiations of the power calculation module, one

for each frequency band. For each of these instances, relevant input from the FFT mag-

nitudes register bank must be provided and the generic constant needs to be initialised

to the total number of input taps for each instance.
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The spectral edge frequency features are of three types: SEF50, SEF95 and SEFd. The

latter is a derivative feature that is calculated by taking the difference between SEF95

and SEF50. To avoid having to store this difference, SEFd is calculated in the classifier

block when required. The SEF50 and SEF95 features are calculated by instantiating the

two modules with the correct input frequency bands and setting the generics for input

length and initial frequency. The following SEF features need to be calculated for the

sleep algorithm:

• SEF50(0.5-30)

• SEF95(0.5-30)

• SEF50(8-16)

• SEF95(8-16)

• SEF50(4-12)

• SEF95(4-12)

• SEF50(0.5-8)

• SEF95(0.5-8)

Hence, four instances of SEF50 and four instances of SEF95 modules are instantiated

to cover all the cases. Each instance gets its inputs from the power calculation module

and the FFT magnitudes module in the required frequency range.

The complete feature calculation block then consists of multiple instances of SEF50,

SEF95 and power calculation modules in different configurations and is shown in Fig-

ure 6.17. This block is connected to the output of the FFT block and gets triggered on

receiving a valid signal from it to indicate that new data is ready to be read. The features

are calculated for every subepoch and accumulated for each epoch. A block-level valid

pulse is generated when all the features have been calculated and the subepoch address

is 15 (i.e. last subepoch of the current epoch). This pulse indicates to the classifier that

all the features for the current epoch have been calculated and are ready to be used for

classification.
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Figure 6.17: Implementation of the complete Feature Calculation block.
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6.5 Classifier

The classifier block is the final stage within the algorithm pipeline. Its task is to assign

a valid sleep stage to each epoch based on a set of thresholds. It sits in an idle state

while all the data accumulation and feature extraction goes on for each subepoch. The

classification of an epoch begins when the features for all its subepochs are calculated

and a valid pulse generated by the feature calculation block.

The classifier is an implementation of the state machine-controlled decision trees intro-

duces in Chapter 5. There are several different states in the finite state machine designed

to implement the classifier. These states are listed below:

• WAITING FOR VALID

• CORE W

• CORE N1

• CORE N2

• CORE N3

• CORE R

• PERI W N1

• PERI W N2

• PERI W N3

• PERI W R

• PERI N1 N2

• PERI N1 N3

• PERI N1 R

• PERI N2 N3

• PERI N2 R

• PERI N3 R

Initially the classifier is idle which corresponds to the WAITING FOR VALID state. Its

next state depends on the score of the last classified epoch and can be one of CORE W,

CORE N1, CORE N2, CORE N3 or CORE R. Each of these states correspond to a core test that

determines if the epoch belongs to that particular sleep stage or one of the others. On
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entering one of these core states, an enable signal for the corresponding core test is set

to high which switches it on from an otherwise idle state.

The FSM remains in the same state and waits until it receives a valid signal from the

core test which signifies that its output is ready to be read. If the core test classifies the

epoch having the same sleep stage as the previous epoch then the FSM goes back to the

initial WAITING FOR VALID state since there are no further tests required. If the sleep

stage is Others, then the next state of the FSM is one of the peripheral tests.

The peripheral tests are implemented exactly the same way as the core tests and are

enabled only when they are needed. The corresponding enable signals for the peripheral

tests must be set to high until it produces a valid output. The result of each peripheral

test determines the next state of the FSM until the epoch is assigned a sleep stage.

6.5.1 Design of each test

All core and peripheral tests are essentially the same in design since they have an identical

structure. They all take a fixed number of features as inputs, perform one or more

comparisons and produce one of the sleep stages as output. However, there are few

differences between them such as the number of comparisons needed, the input features

and the thresholds corresponding to each feature. This dictates how many clock cycles

are required by each test to produce an output.

Each node in the decision tree performs a comparison of only one feature against its

specific threshold. The feature at the node can have one of the three types:

• Relative power in a frequency band. This is the power in a certain frequency band

divided by the power in the entire frequency of interest.

• Ratio of power in different frequency bands. This is the power in a certain frequency

band divided by the power in a different frequency band.

• Mean spectral edge frequency. This is obtained by dividing SEFxx by 15 (which is

the number of subepochs).

It should be noted that all the three feature types are obtained in a similar fash-

ion by dividing two numbers and then comparing this result against a threshold. The

mathematical operation at each node can be described as:

A

B
< THRESHOLD (6.13)

This can be rearranged as below, where THRESHOLD INV is 1/THRESHOLD.

A× THRESHOLD INV < B (6.14)
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This rearrangement gets rid of the division operation and replaces it with multipli-

cation. The inverted threshold can be stored on chip instead of its original value to

implement this equation.

At any given point in time only one node of the tree is being used. This means that

rather than having many multipliers and comparators for any core or peripheral test, only

one of each component can be shared across the tree. Figure 6.18 shows a block diagram

of the mathematical operation at each node. By changing the A, B and T (threshold)

inputs using a multiplexer, based on the clock cycle, a single multiplier and comparator

can be used to perform all the operations of a given decision tree.

A

B
OUT

T
Multiplier

Comparator

Figure 6.18: Mathematical operation at one node of the decision tree.

As an example, consider the decision tree shown in Figure 6.19 with fictitious thresh-

olds. In this tree, there are three nodes using the three kinds of features for comparison.

The A, B and T inputs in each cycle of execution is shown in Table 6.5. In the first cycle,

the relative power in gamma band is checked against the threshold. The result of this

comparison then determines the next step. The second cycle can use either of the two

features depending on the output from the first cycle. When SEF50 feature is used, it

is multiplied by 1/15 (a constant) to obtain the mean value.

rel gamma

SEF50(8-16)

N1N2

< 10 ≥ 10

sigma beta

N1N2

< 0.2 ≥ 0.2

< 0.06 ≥ 0.06

Figure 6.19: An example decision tree to illustrate its multi-cycle operation.

6.5.2 Further optimisations

The previous section establishes that each core and peripheral test can be implemented

using one multiplier and one comparator. However, it is also observed that at any given

time only one of the tests is enabled. The next test is only enabled when the current

core or peripheral test finishes execution and produces a valid output. This means that
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Table 6.5: Multiplier and comparator inputs in each clock cycle.

Cycle A T B

1 gamma 1/0.06 total

2 sigma 1/0.2 beta

2 SEF50(8-16) 1/15 10

at any instance in time, only one multiplier and comparator is required across all core

and peripheral tests.

All core and peripheral tests only need to provide the correct values of A, B and T

in each clock cycle when they are enabled. These can then be fed to a single multiplier

and comparator which is shared across all tests using a multiplexer that selects the

appropriate input based on which test is currently enabled. This optimisation reduces a

lot of datapath area by using only one multiplier at the cost of additional multiplexers.

This takes less area in comparison to the design that uses several multipliers (one for

each test).

6.5.3 Block level implementation

Figure 6.20 shows the block diagram of the classifier implementation at the top level.

It connects directly to the output of feature calculation block and takes all the features

and a valid signal as input. The valid signal is used to enable the classifier whenever the

features have been calculated and are ready to be read.

Within the classifier block there are instances of the various core and peripheral tests.

Each test is provided with relevant subset of features that are needed for decision making

and an enable signal that activates the test. The output of these tests are connected to a

multiplexer that controls the inputs to a single multiplier and a comparator. Figure 6.20

also shows a state machine controller that determines which test needs to be activated

at any time, establishes the state of the machine and also provides the control signal for

the multiplexer to allow correct inputs for the shared datapath.

When the classification of an epoch is complete, the result is available on the output

port. At the same time, a valid signal is raised to signify that the data on the port is

ready to read. This output is encoded as shown in Table 6.6 and remains valid until the

next epoch is available at the input of the classifier block.

6.6 Top level system

The top level of the complete sleep staging system is shown in Figure 6.21. The system

can receive input data samples either directly from the ports (din port) or from the
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Table 6.6: Encoding of the output from the classifier block.

Sleep Stage Output Encoding

Wake 000

N1 001

N2 010

N3 011

REM 100

Others/Unknown 111

output of an on-chip ADC (din adc). In either case the corresponding valid signals,

vin port or vin adc must be high whenever data from the ports have to be read. The

sel input is used to select the data source within the input controller. The outputs

of this block are a set of 512 data samples data ic and a valid ic status signal that

indicates this data is ready to be read by the FFT block. The FFT block finishes its

computation and provides a set of magnitudes on the data fft internal port as well as

a valid fft status signal. This signal is used by the feature calculation block to start

reading magnitude values and calculate the desired features. Once all the features are

calculated, a valid fc signal tells the classifier to read them from data fc. The final

result of classification is available on the output port dout and is only valid as long as

the vout output signal remains high.

All the modules and blocks within the complete system use a single clock source which

is provided at the clk port. Finally, the entire system can be reinitialised by providing

a low signal at the rstn input port. This resets all the internal registers and the system

starts in normal operation again once the low signal at the rstn port is removed.

6.7 RTL simulation

The VHDL description of the complete sleep staging algorithm is simulated using Cadence

Incisive Simulator (version 12.10) [3] for its functional verification. The testbench is

designed to mimic real world conditions such that an input sample is made available to

the system after every 1/256th of a second. EEG samples from all twenty test subjects

in the DREAMS Subjects database [4] are used. For each test, EEG samples are stored

in a text file as hexadecimal numbers. The testbench writes out an output file with the

sleep scores. This will be compared against the reference hypnogram that was generated

when the algorithm was run in Matlab. The number of correctly classified epochs can

then be used to determine the accuracy of hardware implementation.

Table 6.7 shows the number of misclassified epochs and the accuracy obtained for each

test case. The overall classification accuracy of the hardware implementation compared
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to the reference is 98.72%. Ideally, this should be 100% but there are a number of

factors that makes the hardware different from the algorithm that is implemented in

a numerical software (such as Matlab). The major difference between the two is the

number representation. In Matlab each number is represented as a 64-bit floating-point

number while the hardware has been designed to represent a number as 24-bit fixed-point

number. This adds certain truncation and round-off errors that can lead to misclassified

epochs when any feature value is very close to a predefined threshold. It must be noted

that in most cases a misclassified epoch does not cost the algorithm significantly in

terms of the overall accuracy. Once an epoch is incorrectly classified the state machine

controlling the decision trees goes into the wrong state. However, it is expected that the

next set of core and peripheral tests will bring it back to the correct state.

From Table 6.7, it can also be seen that only subjects 10 and 15 have a relatively

higher number of misclassified epochs while in all other cases this number is very low.

The reason for more classifications in these two subjects is that the feature values remain

close to the threshold consistently during a certain section of the recording. This is a

limitation of the algorithm since the thresholds are fixed and hence can not adapt to the

changing nature of the signals.
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Table 6.7: RTL simulation results of the sleep staging algorithm hardware.

Subject Total Epochs Misclassified Epochs Accuracy (%))

01 961 3 99.69

02 985 0 100

03 1008 7 99.31

04 1053 5 99.53

05 1043 10 99.04

06 997 1 99.90

07 1012 17 98.32

08 970 13 98.66

09 1117 10 99.10

10 1032 85 91.76

11 1008 9 99.11

12 961 8 99.17

13 1111 15 98.65

14 1004 2 99.80

15 840 43 94.88

16 967 4 99.59

17 997 8 99.20

18 1021 2 99.80

19 1033 10 99.03

20 1145 8 99.30

Total 20265 260 98.72
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6.8 Synthesis

Synthesis is the step of mapping RTL design to technology-specific logic gates available

in the library provided by the foundry. The synthesis tool first reads in the design,

elaborates it (i.e. create a database) and then begins the process of mapping to the

gates. This is an iterative process that is driven by a set of constraints which may be

timing or area constraints. In this work, Cadence RTL Compiler (version 11.21) [5] is

used to perform design synthesis. The clock frequency is set to 1 MHz i.e. a period of

1 µs. This frequency is well over the maximum at which the design is intended to run.

The synthesis process resulted in a design that met the timing requirements easily with

a slack of 935592ps. The area required by sequential and combinational logic as well as

datapath modules as reported by RTL Compiler is shown in Figure 6.22 and Figure 6.23.

Type Instances Area Area %

----------------------------------------

sequential 41247 2900360.333 53.2

inverter 5044 42702.912 0.8

buffer 7 279.418 0.0

logic 127129 2505416.256 46.0

----------------------------------------

total 173427 5448758.918 100.0

Figure 6.22: RTL Compiler report summary of the gates used in the netlist.

Type CellArea Percentage

---------------------------------------

datapath modules 374261.53 6.87

external muxes 0.00 0.00

others 5074497.39 93.13

---------------------------------------

total 5448758.92 100.00

Figure 6.23: RTL Compiler report summary of the datapath modules used in the netlist.

6.9 Formal verification

A number of optimisations are applied to the design during synthesis stage to get the

desired result for meeting area and timing constraints. During this process any unused

logic is removed and anything that the tool considers redundant may be merged, opti-

mised or removed. The final netlist may look nothing like the original RTL description

therefore it is important to verify it against the reference RTL description to ensure it is

logically and functionally identical.
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6.9.1 Logic equivalence check

The synthesised netlist is checked for logical equivalence against the reference RTL using

Cadence Encounter Conformal Equivalence Checker (version 11.10) [6]. The comparison

is performed in a hierarchical fashion such that the inner modules are verified first before

moving on to the top level. The final result of this comparison from the runfile is shown

in Figure 6.24.

Processed 23 out of 23 module pairs EQ: 23 NEQ: 0 ABORT: 0

================================================================================

Module Comparison Results

--------------------------------------------------------------------------------

Equivalent 23

--------------------------------------------------------------------------------

Total 23

--------------------------------------------------------------------------------

Hierarchical compare : Equivalent

================================================================================

// Command: usage

CPU time : 13548.33 seconds

Memory usage : 1392.55 M bytes

Figure 6.24: Conformal LEC report summary for formal verification of the synthesised netlist.

6.9.2 Gate-level simulation

The synthesised netlist is also checked for functional equivalence to ensure that it pro-

duces the same output for an input as it did when performing RTL simulation. For this

purpose, the same testbench and input set is used as in Section 6.7. The hypnogram

written out for each subject is then compared against the earlier one during RTL simula-

tion. The hypnograms were found to be completely identical for all test cases indicating

functional equivalence of the netlist.

6.10 Place and route

The final layout is generated at the place and route stage using Cadence Encounter

Digital Implementation System (version 11.12) [7]. The tool automates the process of

generating the layout however a comprehensive set of timing and floorplanning constraints

and instructions need to be provided to it in order to get the desired result. For this

reason, several iterations may be required to get the constraints right. The steps required

to perform the placement and routing of the design are summarised as follows:
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• Floorplanning to set the aspect ratio of the design

• Place I/O pins appropriately

• Power planning to create a power ring around the core and other power stripes

• Routing the power connections

• Placing all the required standard cells from the library

• Clock tree synthesis

• Filling the empty spaces in the core

• Routing the design

• Verifying the design to ensure all the design rules are met

The final layout generated for the sleep staging algorithm is shown in Figure 6.25 and

measures 8.35 mm2 in size. After the design is fully placed and routed, the final netlist

with additional buffers, inverters, filler cells, etc., is generated. This netlist is also verified

for logical and functional equivalence using the same procedure as in Section 6.9. Once

the equivalence is established and all the design rules are met, the design is ready to be

taped out for fabrication.

6.11 Discussion

This chapter presented the complete IC design of the sleep staging algorithm that was

proposed in Chapter 5 using the requirements and features discussed in earlier chap-

ters. This design used several techniques to reduce the gate count, area and power

consumption. For example, multi-cycle operations have been used extensively to reduce

the number of datapath modules required. However, with this being the first iteration of

the design there is still room for further improvement.

The register banks used in the FFT block could be replaced by RAM macros. These

would not only reduce the power consumption but also reduce the area needed to store the

array of real and complex numbers. The circuit is intended to run at a clock frequency of

around 1 kHz but was synthesised with a target frequency of 1 MHz. Despite the higher

frequency the large positive slack showed that meeting the timing is not a problem. If a

different process technology with smaller node is used, the area of the chip can be almost

linearly reduced while the large slack will still allow the timing to be met in the new

technology.

Apart from further improvements, there are several things that need to be done in

the near future once the fabricated chip is received from the foundry. The most obvious

next step is to test the actual chip and verify its functionality. The debug ports added
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Figure 6.25: Final layout of the automatic sleep staging algorithm integrated circuit measuring
2890µm× 2890µm
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to the chip will help determine if all blocks are correctly working or if there is something

wrong. Finally, the power consumption of the entire circuit in real-world conditions need

to be assessed. It is expected that the power consumption will be quite low which allows

further complexity to be added to the algorithm in future while still remaining within

the power budget.

Although an integrated circuit implementation of the sleep staging algorithm greatly re-

duces the power consumption requirement, it also makes the system less flexible compared

to a micro-controller implementation. For example, if implemented on a micro-controller

the algorithm can be easily updated allowing the thresholds and the order of decision

trees to be modified if needed. It also allows an improved version of the algorithm to be

easily tested in the field without incurring any additional hardware cost. Another advan-

tage of using a micro-controller is the availability of common communication peripherals

which enables the system to be integrated with other standard devices.

However, the main advantage of using a custom integrated circuit as compared to a

micro-controller implementation is the difference in power requirements. Using a custom

integrated circuit reduces the power by an order of magnitude freeing up space to per-

form more complex arithmetic operations. This saving in power also means that a small

battery can be used to power up a system for a long duration of time. It also allows for

the possibility of having the complete system on a single chip consisting of both the algo-

rithm processor as well as the analogue front end. This reduces the area requirements on

a circuit board making the final package small thereby suitable for wearable use. On the

other hand, with a micro-controller based solution, further circuitry and additional com-

ponents will be needed to create a low noise amplifier (as well as an ADC in some cases).

Finally, an ASIC implementation also demonstrates the potential of this particular sleep

staging algorithm to be part of a broad-based multi-purpose EEG system on chip that

is not limited to sleep monitoring but also useful for other neurological conditions such

as epilepsy.
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7 Conclusions

7.1 Contributions

This thesis has presented an automatic sleep staging algorithm for use in real-time wear-

able polysomnography systems. These systems are wireless, small in size and comfortable

to use with a small battery thus having a very limited power budget. Hence any signal

processing performed in them to extract information from sleep signals must be very

limited and have low computational complexity to fit within this budget while giving

meaningful results at the same time.

Chapter 2 reviewed the existing practice of clinical polysomnography in detail and

discussed its importance in the diagnosis of sleep disorders. This was followed up with

a discussion about the limitations and shortcomings of PSG in its existing form. It was

concluded that HPSG, while being an attractive alternative or complementary solution

still suffers from the requirements of using multiple channels for recording EEG, EOG

and EMG data. Based on the sleep staging rules and multiple sleep staging algorithms

it was concluded that the realisation of a reduced channel system for sleep staging is

limited by the requirement of at least one of EOG and EMG channels to help in the

scoring of REM sleep which is similar to N1 and Wake stages. A comprehensive review of

various automatic sleep staging algorithms proposed in the literature was then presented

together with several commercially available sleep acquisition and scoring systems that

have tackled certain aspects of the limitations of PSG.

A wearable single channel EEG system was proposed as a solution to make the PSG

systems easy-to-use for the patients from the comfort of their homes. Such a system

would have to be very small with low power budget and will thus be limited in the

computational power it contains for processing any EEG data. Its size, weight, power

and complexity are cited as the core constraints, which leads to the requirement of a low-

complexity sleep staging algorithm capable of running on a resource-constrained system

with only a single channel of EEG data. As a result, the three most important objectives

of this thesis are finding features that can detect REM sleep from a single EEG channel

(without requiring EOG/EMG), developing a low-complexity sleep staging algorithm and

realising the algorithm as a low power system.

The literature review of sleep staging algorithms revealed several discrepancies in the

way their detection performances were reported. This means that comparison of different

algorithms is non-trivial since different metrics and databases were being used. As a
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result, Chapter 3 proposed a set of recommendations that would lead to standardised

assessment of these algorithms. The main proposals were to use the publicly available

databases, selecting consistent sections of data from them and using same selectivity and

accuracy metrics. A simple sleep staging algorithm based on spectral features and an

SVM was also used to demonstrate how the lack of standardisation leads to misleading

results being reported.

Chapter 4 explored the spectral power of EEG signals in 8-16 Hz frequency range.

Within this range, spectral edge frequencies at 95% and 50% appeared to be distinctly

different during REM sleep. The difference between these features, termed SEFd, was

used as a novel feature with a simple thresholding classifier. This showed SEFd to have a

high discriminatory ability for detecting REM stages. This ability was further studied in

three different EEG channels and the frontal channels resulted in the best performance.

The low computational complexity of the SEFd feature with its high REM detection

ability makes it suitable for use in a single EEG channel sleep scoring system.

Using this novel feature for REM detection and the requirements set out in Chapter 2,

a novel sleep staging algorithm was presented in Chapter 5. This algorithm has been

designed using a set of small decision trees that are controlled using a state machine

that activates them when required in a contextually driven order. The algorithm works

fundamentally on the principle that a simple test should first be used to determine

whether the sleep stage has changed or not. Only if it has changed, the other tests

should be used to determine the next sleep stage. This way, although the algorithm used

several spectral features only a handful are needed to classify an epoch, since not all trees

are needed at all times. Further, an average of three to five comparisons are needed in

most cases to classify an epoch. The computational complexity of this approach with

respect to traditional decision trees and its suitability for implementation on a low power

system is also discussed in this chapter. Finally, it was reported that the algorithm

achieved an overall accuracy of 73% and 79% using two separate sleep databases.

Chapter 6 presented a full digital integrated circuit implementation of the sleep staging

algorithm designed in Chapter 5. Several low power design techniques and optimisations

were used to reduce the area and power consumption of the system. The algorithm was

implemented using AMS 0.18µm technology and consisted of a multiplexed I/O inter-

face allowing it to connect with an analogue front end for real-time data acquisition or

a microcontroller for debugging purposes. The three major blocks designed specifically

for this algorithm were FFT, Feature Calculation and Classifier. All of these were im-

plemented as multi-cycle operations to share as many datapath resources as possible.

The design was synthesised and laid out using industry-standard IC design tools and

verified for both logical and functional equivalence with the reference design. The classi-

fication performance of the hardware implementation was also compared against that in

Chapter 5 resulting in an accuracy of 98.7%.
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7.2 Further work

The hardware implementation of the sleep staging algorithm has been taped out fabri-

cation. The immediate next step, once the packaged IC arrives, is to test and verify the

operation of all the circuits. This can be done by providing known input EEG values and

observing the values at all intermediate (debug) and final output ports. After verifying

the functionality of the complete algorithm, its power performance needs to be charac-

terised. Although the power simulations do show low current consumption, it still needs

to be performed in real-world conditions to get a more accurate figure.

The work presented in this thesis is the very first fully digital circuit-level implementa-

tion of a sleep staging algorithm. This means that the power consumption of the circuit

cannot be compared against any reference. However, any hardware that can run off a

small coin cell for at least eight hours (average night sleep duration) can be classed as a

suitable wearable device.

Although the circuit-level implementation of a complete sleep staging algorithm is a big

leap towards the realisation of a fully wearable sleep system, there is still significant work

required before such a system can land in the hand of consumers or medical practitioners.

First, the algorithm designed in this work is quite simplistic. The idea was to have a

system capable of running in such a low-power environment. After characterising the

circuits, if the power consumption is found to be very low, more complexity can be

added to the algorithm to improve the classification accuracy. Second, there is room

for improvement in the sleep staging algorithm itself. For example, design of peripheral

tests with different weights depending on the sleep stage can lead to improvement in

accuracy during stage transitions. Third, the chip area can be significantly reduced

by using a different technology. Use of 65nm technology instead of 180nm will reduce

the chip area by more than a half. Fourth, the FFT implementation can be improved

by using dual port RAM, rather than simple register banks, further reducing area and

power consumption. Fifth, more characteristic features can be explored to improve the

algorithm classification accuracy in various sleep stages. Finally, in the long run, the

circuit should be packaged appropriately and tested with real patients, with the help of

doctors, to get proper feedback on how the system can be improved in terms of user

experience and human factors.
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A Databases

The performances of different algorithms in this thesis were evaluated using freely avail-

able databases that are widely used among sleep researchers. This allows the results to

be compared against the performance of other algorithms that have already been pub-

lished in literature in the past and also in future. The following sections list out several

databases that can be used for testing sleep algorithms.

A.1 PhysioNet Sleep EDF Database

For more than ten years the PhysioNet Sleep EDF database [1], [2] has been used to test

and report the performances of various sleep staging algorithms. It consists of recordings

from eight Caucasian males and females with an age range of 21–35 years. Four of

these recordings, beginning with the letters SC were part of a study where signals were

recorded for over 20 hours at subjects’ homes. The other four recordings, beginning with

letters ST, were obtained as part of a study looking at the effects of temazepam on sleep.

In this study, the signals were recorded at a hospital while the subjects were sleeping at

night typically between 8-10 hours. The EEG signals in both cases were sampled with

a frequency of 100 Hz and scored using R&K rules for sleep classification. The list of

subjects, their age, sex and the total recording duration for each is shown in Table A.1.

Table A.1: Detail of the recordings in PhysioNet Sleep EDF Database.

Name Age Sex Recording Duration (HH:MM:SS)

SC4002E0 33 F 23:35:00

SC4012E0 33 F 23:45:00

SC4102E0 26 M 23:49:00

SC4112E0 26 M 23:10:00

ST7022J0 35 F 11:03:10

ST7052J0 32 F 10:45:10

ST7121J0 21 M 10:21:30

ST7132J0 22 M 09:38:40
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A.2 PhysioNet Sleep EDF Expanded Database

This is a superset of the PhysioNet Sleep EDF Database and consists of recordings from

the same two studies described in the previous section [3]. It consists of 61 PSG recordings

with hypnograms scored using R&K rules. Of these, 22 are overnight ST recordings while

the others are SC recordings of over 20 hours each. The complete list with details on

each subject is shown in Table A.2.

Table A.2: Detail of the recordings in PhysioNet Sleep EDF Expanded Database.

Name Age Sex Recording Duration (HH:MM:SS)

SC4001E0 33 F 22:05:00

SC4002E0 33 F 23:35:00

SC4011E0 33 F 23:21:00

SC4012E0 33 F 23:45:00

SC4021E0 26 F 23:22:00

SC4022E0 26 F 22:58:00

SC4031E0 26 F 23:30:00

SC4032E0 26 F 22:46:00

SC4041E0 34 F 21:25:00

SC4042E0 34 F 23:16:00

SC4051E0 28 F 22:41:00

SC4052E0 28 F 23:23:00

SC4061E0 31 F 23:05:00

SC4062E0 31 F 23:35:00

SC4071E0 30 F 23:25:00

SC4072E0 30 F 23:05:00

SC4081E0 25 F 23:18:00

SC4082E0 25 F 21:57:00

SC4091E0 25 F 22:46:00

SC4092E0 25 F 23:49:00

SC4101E0 26 M 22:40:00

SC4102E0 26 M 23:49:00

SC4111E0 26 M 22:01:00

SC4112E0 26 M 23:10:00

SC4121E0 26 M 23:13:00

SC4122E0 26 M 21:43:00

SC4131E0 27 M 23:27:00

SC4141E0 27 M 22:58:00

SC4142E0 27 M 23:07:00
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Table A.2: Detail of the recordings in PhysioNet Sleep EDF Expanded Database.

Name Age Sex Recording Duration (HH:MM:SS)

SC4151E0 31 M 21:50:00

SC4152E0 31 M 23:52:00

SC4161E0 32 M 21:53:00

SC4162E0 32 M 22:56:00

SC4171E0 31 M 22:51:00

SC4172E0 31 M 22:42:00

SC4181E0 28 M 22:58:00

SC4182E0 28 M 23:41:00

SC4191E0 28 M 23:07:00

SC4192E0 28 M 21:45:00

ST7011J0 60 M 09:58:20

ST7022J0 35 F 08:32:40

ST7041J0 18 F 08:39:20

ST7052J0 32 F 09:07:10

ST7061J0 35 F 09:02:50

ST7071J0 51 F 07:37:40

ST7082J0 66 F 07:55:30

ST7092J0 47 M 08:01:10

ST7101J0 20 F 09:09:20

ST7112J0 21 F 08:31:10

ST7121J0 21 M 08:40:00

ST7132J0 22 M 07:29:40

ST7141J0 20 M 07:40:10

ST7151J0 66 F 10:41:50

ST7162J0 79 F 08:20:40

ST7171J0 48 F 08:02:10

ST7182J0 53 F 09:25:40

ST7192J0 28 F 09:08:20

ST7201J0 24 M 08:05:20

ST7212J0 34 F 08:47:00

ST7221J0 56 M 09:09:20

ST7241J0 48 F 09:03:30
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A.3 DREAMS Subjects Database

This database is part of the DREAMS project [4] which aims to reduce variability in the

analysis and classification of sleep signals [5]. It consists of 20 overnight PSG recordings

from healthy subjects (16 females and 4 males) between 20-65 years in age. Each record-

ing includes three EEG (CZ-A1 or C3-A1, FP1-A1 and O1-A1), one EMG and two EOG

channels sampled with a frequency of 200 Hz. Additionally, separate hypnogram scores

using both R&K and AASM rules are available with each recording in this database.

The details of each recording are shown in Table A.3. It should be noted that since

this is a recent project there are no algorithms that have been characterised using this

database. The sleep staging algorithm in this thesis uses this database to report results

in Chapter 4 and Chapter 5.

Table A.3: Detail of the recordings in DREAMS Subjects Database.

Name Age Sex Recording Duration (HH:MM:SS)

Subject1 23 F 08:00:40

Subject2 47 F 08:12:30

Subject3 24 F 08:24:20

Subject4 48 F 08:46:30

Subject5 46 F 08:51:30

Subject6 65 F 08:18:40

Subject7 45 F 08:26:00

Subject8 22 F 08:05:00

Subject9 21 F 09:18:40

Subject10 20 F 08:36:20

Subject11 30 F 08:24:10

Subject12 54 F 08:00:40

Subject13 23 F 09:15:40

Subject14 57 F 08:22:10

Subject15 20 F 07:00:00

Subject16 27 F 08:03:50

Subject17 23 M 08:18:30

Subject18 27 M 08:30:40

Subject19 27 M 08:36:50

Subject20 20 M 09:32:30
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A.4 DREAMS Patients Database

This database is also part of the DREAMS project [4] but includes PSG recordings from

subjects with sleep disorders (SAHS, PLMS, insomnia, dysomnia, apnoea) [6]. There are

a total of 27 overnight recordings from patients that are between 19-73 years old and

their details are shown in Table A.4. These also include hypnograms using both R&K

and AASM rules for each recording.

Table A.4: Detail of the recordings in DREAMS Patients Database.

Name Age Sex Recording Duration (HH:MM:SS)

Patient1 72 M 08:01:40

Patient2 50 F 08:32:00

Patient3 52 F 09:07:50

Patient4 42 M 08:41:10

Patient5 40 M 08:22:40

Patient6 74 F 08:21:20

Patient7 52 M 08:13:30

Patient8 31 M 09:30:30

Patient9 53 F 08:26:50

Patient10 61 F 09:00:30

Patient11 73 M 08:59:50

Patient12 47 M 08:38:40

Patient13 38 M 08:08:10

Patient14 48 M 08:52:10

Patient15 53 M 07:55:00

Patient16 45 F 09:32:40

Patient17 57 M 09:20:20

Patient18 52 F 10:25:20

Patient19 53 F 08:58:30

Patient20 19 M 08:13:50

Patient21 44 M 09:20:30

Patient22 38 M 09:12:40

Patient23 60 M 08:07:30

Patient24 50 M 07:43:30

Patient25 27 F 08:59:40

Patient26 71 M 08:20:30

Patient27 69 F 08:54:10
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A.5 Montreal Archive of Sleep Studies

This is a fairly new database with 200 PSG recordings from 97 males and 103 females

with an age range between 18 and 76 years [7]. The recordings, sampled at 256 Hz, are

obtained from three different sleep labs. These are split into five sets of which two sets

are scored using AASM rules while the rest are scored using R&K rules.
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B An open-source toolbox for

standardised use of PhysioNet sleep

EDF expanded database

The research presented within this chapter is an edited version of research previously

published in:

S. A. Imtiaz and E. Rodriguez-Villegas, “An open–source toolbox for standard-

ised use of PhysioNet Sleep EDF Expanded database,” in proceedings of the

37th international conference of the IEEE Engineering in Medicine and Biology

Society, Milan, August 2015, c© IEEE.

B.1 Introduction

The performance of automatic sleep staging algorithms are usually evaluated using data

that has been acquired as part of their research work or by using publicly available sleep

databases. The advantage of using the latter approach is that it not only helps to show a

method’s own detection performance but also makes it possible to compare it with other

existing methods that have been tested using the same database.

PhysioNet Sleep EDF database [1], consisting of eight recordings, has been the most

popular publicly available sleep database used by multiple automatic sleep staging al-

gorithms for development. One of the problems with the use of this database has been

the lack of consistency in which data is extracted. This is because there are two kind

of recordings in the database: one set containing only overnight recordings while the

other consisting of recordings over a period of 24 hours. Different criteria have been used

by research groups to establish the sleep start and end times for extracting the sleep

part from the 24 hour recordings. This results in different sections of data being used.

Together with varying performance metrics, this makes the comparison between various

algorithms very difficult.

More recently, the Sleep EDF database has been made deprecated and a much larger

superset of this database, known as the PhysioNet Sleep EDF Expanded database [2]

(also referred to as Sleep EDFx database), has been made available which includes 61 well

annotated sleep recordings. Some other freely available databases have also been made

available in the recent past including [3] and [4] with 200 and 20 recordings respectively.
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It is still early days in the use of the new EDF Expanded database. Results of analysis

using this database have slowly started coming in with only four papers published so

far [5]–[8] using this database. However, with the existing popularity of PhysioNet it is

likely that EDF Expanded database will remain very popular in the coming years.

In Chapter 3, a set of recommendations were proposed to minimise the aforementioned

problems and the use of public databases amongst sleep researchers was encouraged. Of

course, it is not possible to go back and try to standardise the practices in already pub-

lished work. However, the availability of a new database, which is potentially going to be

widely used, presents a unique opportunity to establish a set of rules for its usage, partic-

ularly in the context of automatic sleep scoring. This chapter builds upon the previously

proposed recommendations, by providing their implementation and making it freely avail-

able as an open source toolbox for Matlab [9]. This will make the sleep data more acces-

sible to researchers starting in this area, result in consistent data being used and the final

algorithm performances also being uniformly assessed across different research groups.

This toolbox is available at https://github.com/anas-imtiaz/sleep-edfx-toolbox/.

B.2 Getting the data

B.2.1 Downloading PhysioNet data

The first, and often the most tedious, step in using the Sleep EDF Expanded database

is to download each of the 61 recordings separately from the PhysioNet website. These

data files are in EDF format [10] and require conversion to a suitable format before being

used for any further signal processing. To save time and simplify this initial step, all of

the EDF data files can be downloaded from the PhysioNet website by executing a single

function, shown below, and optionally providing a download location. These files are

downloaded in newly created directories having the same name as the recording.

[saved_file,status]=downloadEDFxData(download_dir)

B.2.2 Conversion to Matlab format

Once the EDF data files are successfully downloaded they need to be converted to a

format that is readable in Matlab environment. This is achieved using the function

below that takes the recording directory (which contains the source EDF file) as its

argument.

convertEDFxToMat(saved_file, status)

The conversion of EDF files requires the use of EEGLAB, an open source toolbox for

EEG analysis [11]. An error will be shown if EEGLAB is not found on the user’s system.

The resulting .mat data files are stored in a folder named matlab under the test directory.
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Time Date Sample # Type Sub Chan Num Aux

[16:13:00.000 24/04/1989] 0 " 0 0 0 ## time resolution: 100

[16:13:00.000 24/04/1989] 0 " 0 0 0 Sleep_stage_W duration: 30630

[00:43:30.000 25/04/1989] 3063000 " 0 0 0 Sleep_stage_1 duration: 120

[00:45:30.000 25/04/1989] 3075000 " 0 0 0 Sleep_stage_2 duration: 390

Figure B.1: An example section of hypnogram annotations from the recording SC4001E0

Additionally, the list of channels for which data are available is also saved in the same

folder.

B.2.3 Downloading and processing annotations

The next step is downloading the hypnogram annotations for each recording. Multiple

methods are available on PhysioNet to get the hypnogram annotations. In this case, the

files as obtained from PhysioBank ATM are used due to easier processing. These files

have some important information including the start time of the recording, the sample

number in data to be considered as the first valid sample (with reference to the start

time) and the duration (in seconds) for which each sleep stage has been classified until

the end of recording. An example section of one such file is shown in Figure B.1

In this annotation, the start time is stamped as 16:13:00.000 with the sample number

being 0 at that time. It also shows that data has been classified as Sleep stage W for

30630 seconds (until time 00:43:30.000) and then as Sleep stage 1 for 120 seconds

followed by Sleep stage 2 for 390 seconds. Considering an epoch size of 30 seconds, it

can be seen that from the starting point 1021 epochs are classified as Wake followed by

4 epochs as Stage 1 and 13 epochs as Stage 2. This is used later to create a vector in

Matlab for the hypnogram where each value in the vector represents the sleep stage

assigned to a 30-second epoch. The hypnogram annotations are downloaded using the

function below.

downloadEDFxAnnotations()

processEDFxHypnogram(hypnogram)

This function downloads not only the annotation files but also extra information in-

cluding the text files with lights off time so that they do not have to be read off the

spreadsheet. Files with end time are also provided to follow a consistent convention for

data end times where these are not available (explained in Section B.3). Once down-

loaded, the annotations are converted to a Matlab-compatible file with the same code

for each sleep stage as the original on PhysioNet.

The process of initial downloading of source files and conversion to compatible data files

needs to be performed only once and can together be automated with the initialSetupEDFx
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function which calls all the functions described above sequentially.

initialSetupEDFx(download_dir)

B.3 Using the data

The downloaded data files can be easily opened as a normal file in Matlab. However,

recordings have different start and end times that do not necessarily correspond to the

hypnogram scoring times. Further, the lights off time may also have a positive or negative

offset from the recording start time. This section explains how data and hypnogram files

are loaded using the multiple time annotation files and by following the recommendations

in Chapter 3.

Start and end times

It was recommended in Chapter 3 to use the annotated lights on and lights off times

as start and end times respectively. Where these are not available then the time from

15 minutes before the first scored sleep epoch and 15 minutes after the last scored sleep

epoch should be used as start and end times.

For all the subjects in the EDF Expanded database, the lights off times are recorded

in two different spreadsheets available on the PhysioNet website. From the hypnogram

annotations, the recording start time is also known, which may be different from the

lights off time. The annotations file also has the sample number from which hypnograms

have been scored so the hypnogram start time can be deduced from this. For example in

case of recording ST7212J0, the data recording starts at 24:43:00, hypnogram marking

starts at 23:43:30 while lights off time is 23:44:00. As a result there are three different

times: recording start time, hypnogram start time and lights off time. But the question

is which of these should serve as the time from which data is to be read. The hypnogram

start time will be either the same as recording start time or it will be after this time

(since there can be no hypnogram without data). So if the lights off time comes after the

hypnogram start time, then it is used as the start time otherwise the hypnogram starting

time is used as the start time from which data is to be read.

The end time for reading each data file would ideally be the lights on time but these

are not provided in the EDF Expanded database and hence need to be deduced. The

method will be different for SC and ST subjects since the former consists of full day

recordings of nearly 24 hours while the latter includes overnight sleep recording. For

SC subjects, end time is taken as the time 15 minutes after the last scored sleep epoch

(these have already been saved in a text file are downloaded with the hypnogram). For

ST subjects, end time is considered the same as the recording stop time in most cases

unless the hypnogram scoring ends before the data recording end time. For the same
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example of ST7212J0, data recording stops at 08:30:00 but the hypnogram scoring ends

at 08:08:30. For such cases, the hypnogram end time is taken as the time up to which

data is to be extracted. The hypnogram end times for ST subjects, extracted from the

main annotation files, and the time 15-minute after the last scored sleep epoch for SC

subjects are stored in the lights on time text file. The time offsets are then calculated

such that data and hypnogram files are both read starting from this new start time and

finish at the new end time. The number of epochs between the new start and end times

is also calculated.

All these steps of determining the time offsets and fully mapped data and hypnogram

files are performed within the loadEDFx function using which any particular recording

from the database can be easily loaded by providing in the path of the data directory

and the classification scheme (AASM or RK) to use for hypnogram.

An example of loading data for case SC4001E0 is shown in the code listing below.

loadEDFx(‘SC4001E0’, classification_mode)

The result is a container with key-value pairs for each channel of data loaded, an array

with a list of channels available to use, hypnogram, total number of 30-second epochs,

sampling frequency of data and the start and end times between which data is read.

The hypnogram supplied with the PhysioNet EDF Expanded database uses R&K rules

of sleep stage classification. In Chapter 3, a method was proposed for approximate

conversion from R&K to AASM scoring (shown in Table B.1). The classification mode

switch can be set to AASM if this conversion is required.

Table B.1: Conversion from R&K to AASM classification

R&K S1 S2 S3 S4 REM Wake MT

AASM N1 N2 N3 REM Wake

Viewing the data with hypnogram

After the files for a particular recording have been loaded, any signal from it can be viewed

as a plot together with its hypnogram as a function of clock time. This is achieved

using the viewEDFxSignals() function by providing the signal to be plotted and the

hypnogram. A subsection of a signal may also be plotted by providing the start and end

times of the section provided they are between the lights off and lights on times of the

recording.

viewEDFxSignals(signal, ref_times, start_time, end_time, f_samp, hypnogram)
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B.3.1 Performance evaluation

The performance of any new automatic sleep staging method can be evaluated by com-

paring the hypnogram generated by the new method against the reference hypnogram.

Often, the performance metrics computed vary between different research groups mak-

ing direct comparisons difficult. To have a uniform method to evaluate performances of

different algorithms, it was proposed in Chapter 3 to use the overall accuracy, sensitivity

and selectivity of each sleep stage along with the confusion matrix of the epochs correctly

and incorrectly classified. These metrics are shown in the equations below.

Accuracy =
no. of true detections

total no. of epochs
(B.1)

Sensitivity =
no. of true detections in stage X

no. of reference epochs in stage X
(B.2)

Selectivity =
no. of true detections in stage X

no. of all detections in stage X
(B.3)

The toolbox includes a function to facilitate the computation of these metrics. It

requires the hypnogram to be saved in the same format as the reference (i.e. as a vector

of characters for each sleep stage) and is used as follows.

computeEDFxPerformance(test_hypnogram, ref_hypnogram, classification_mode)

The function takes in the new hypnogram, reference hypnogram and the classification

scheme as its three arguments and prints out the overall accuracy and confusion matrix

of the new algorithm as well as the sensitivity and selectivity obtained in each sleep stage

separately. The use of this function can be helpful to compare different algorithms by

employing a consistent method for performance analysis.

B.4 Discussion

The Sleep EDF Expanded Database is still relatively new which provides an opportunity

for sleep researchers to set some consistent rules for getting, using and analysing the

results from this database. The toolbox described in this chapter aims to make it easy for

researchers to adhere to such rules. The functions listed here are by no means exhaustive

and there are many aspects in sleep research that require standardisation [12]. However,

the toolbox does provide a good starting point for, at least, using the signals from a

popular database in a uniform manner. By making the code open source, and available

on GitHub [13], it is hoped that other researchers could contribute to it by adding more

functionality to the toolbox.

The use of this toolbox will ensure that the same segment of data is being analysed

by different researchers. It also helps in standardising the way this data is sliced and

211



the performance metrics are reported. This makes the comparison of various algorithms

fair and prevents the common problems associated with the usage of previous PhysioNet

Sleep EDF database. Further, the toolbox also saves time by providing quick and easy

access to the PhysioNet Sleep EDFx database. This, in turn, means more time spent

on data analysis rather than getting and preparing the data for use. It is important to

adopt standard guidelines while the EDFx database is still in its infancy to prevent a

repeat of earlier problems where different sections of data get used by different researchers

together with varying performance metrics making their comparison almost impossible. It

is hoped that the use of this toolbox provides a platform for much-needed standardisation

of sleep data usage, which in turn will also help advance the development of algorithms

for automatic sleep staging.
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C Automatic detection of sleep spindles

The research presented within this chapter is an edited version of research previously

published in:

S. A. Imtiaz and E. Rodriguez-Villegas, “Evaluating the use of line length for

automatic sleep spindle detection,” in proceedings of the 36th international con-

ference of the IEEE Engineering in Medicine and Biology Society, Chicago,

August 2014, pp. 5024–5027, c© IEEE.

S. A. Imtiaz, S. Saremi-Yarahmadi and E. Rodriguez-Villegas, “Automatic de-

tection of sleep spindles using Teager energy and spectral edge frequency,” in

proceedings of the IEEE Biomedical Circuits and Systems Conference (BioCAS),

Rotterdam, October 2013, pp. 262–265, c© IEEE.

C.1 Introduction

Sleep spindle is a micro-event of sleep EEG and is a characteristic of NREM stages of

sleep. It is a transient waveform with waxing-waning morphology and exhibits strong

presence in stage 2 of NREM sleep (N2), although it may be present in N3 stage with a

lower rate of occurrence. According to the American Academy of Sleep Medicine, a sleep

spindle is defined as “a train of distinct waves with frequency 11-16 Hz (most commonly

12-14 Hz) with a duration ≥ 0.5 seconds” [1]. An example of typical sleep spindles in

stage 2 of NREM sleep is shown in Figure C.1.

The number of sleep spindles observed during an overnight sleep is in the range of

200-1000 [2]. They are used by sleep specialists as one of the characteristic features
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Figure C.1: A typical sleep spindle (between dashed lines)
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when determining the appropriate stage of sleep. Identification of sleep spindles are

of particular interest because of their role in classifying N2 stage of sleep. They need

to be identified in order to mark the beginning and continuation of N2 phase of sleep.

Scoring them, however, is a laborious task and prone to human error. There may be

subjective differences in multiple spindles scored by a single scorer and between different

scorers. A previous study showed the variability between different scorers to be around

20% [3]. Hence automatic detection of spindles is desirable in order to save time and

reduce variability.

Although the use of spindles for sleep staging is frequent and well established, their

significance as a sleep event, otherwise, is less commonly known and is an area of active

research. They are known to play a fundamental role in memory consolidation during

sleep [4], and are believed to be related to the secretion of melatonin, that helps in

maintaining circadian rhythms in the body [5]. They are also understood to be sleep

maintaining events having an active role in the progression of sleep to slow wave stages.

It has been suggested that sleep spindles may be a relevant indicator for early stage

development of CNS [6]. A study exploring the link between spindle activity and major

depressive disorder (MDD) found decreased spindle activity during sleep in youths with

MDD and those with high risk for the disorder. It concluded that youths with reduced

spindle activity show vulnerability to depression [7]. A number of studies have shown

sleep spindles to be an indicator of intellectual ability in individuals. A good review of

such studies appears in [4] and [6]. Another study showed direct correlation between

the number of sleep spindles and IQ scores where individuals with more sleep spindles

showed higher IQ scores [8].

Automatic identification of sleep spindles is, therefore, not only highly useful for sleep

scoring but also for research studies looking at the general role and significance of spindles.

This chapter presents the literature review of various automatic sleep spindle detection

methods. Next, two different algorithms for automatic detection of sleep spindles using

a single channel of EEG are presented. The first algorithm focuses on achieving high

performance and uses Teager energy and spectral edge frequency to mark sleep spindles.

The second algorithm evaluates the use of line length, an efficient and low-complexity time

domain feature, for automatic detection of sleep spindles. This second algorithm is also

implemented on a MSP430 microcontroller to demonstrate its low power consumption

which can be suitable for use in wearable and resource-constrained systems. Finally, the

performances of both these algorithms are also compared against other spindle detection

methods evaluated on the same dataset.
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C.2 Literature review of spindle detection algorithms

Researchers have applied various analysis methods to study sleep spindles in order to

elicit suitable features for their automated detection. Techniques such as matching pur-

suit [9], [10], higher order statistics [11] and independent component analysis [12] have

been used to show characteristic features of sleep spindles that could be useful for their

identification. These methods, and many others, have been used to develop complete

algorithms for automatic sleep spindle detection and will be discussed briefly in this sec-

tion together with their detection performance. A summary of these methods is shown

in Table C.2.

Gorur et al. [13] used artificial neural networks and support vector machines for de-

tection of sleep spindles using STFT to extract input features. They used an ANN

architecture with 32 input nodes and 60 nodes in the hidden layer. Their test data com-

prised of 1142 30-second epochs and achieved an accuracy of 88.7%. They compared

the performance of ANN and SVM classifiers and concluded that SVM results in better

detection rate with an average of 95.4%. Acır et al. [14] used autoregressive modelling

coefficients with ANN and SVM independently to identify spindles and reported sensi-

tivity of 89.1% and 94.6% respectively for the two classifiers. They used multi-channel

EEG and tested on 6 subjects having a total of 264 sleep spindles.

Causa et al. [15] described an intensive method for sleep spindle detection in children.

They used fixed power threshold in frequency domain to find candidate spindle zones and

then used amplitude and duration criteria to remove false detections and mimic expert

analysis. They used 40412 sleep spindles to test their method and reported an impressive

sensitivity of 88.2% together with specificity and selectivity values of 89.7% and 88.1%

respectively.

Devuyst et al. [16] used two detection schemes in parallel for spindle detection. In this

method, they first filter the input signal in the spindle frequency range, use duration

information and variable amplitude threshold based on signal’s statistical properties to

mark a candidate spindle. They also use FFT to check if the maximum signal frequency

lies in a narrow spindle frequency range. Both conditions have to be true in order to

mark a spindle. This method gives a sensitivity of 78.4%. The same group used bandpass

filtering and level detection with autoregressive modelling and reported spindle detection

sensitivity and specificity values at 70.2% and 98.6% respectively [17].

Schönwald et al. [18] used matching pursuit and reported both sensitivity and speci-

ficity at 81.6% for detecting 725 sleep spindles. Bodizs et al. [19] used an individual

adjustment method for bandpass filtering and achieved a sensitivity of 92.9% with selec-

tivity of 41.6% only when tested on 2140 sleep spindles. An individualised approach is

also taken in the PRANA software package by PhiTools [20] that detects sleep spindles

based on the input provided by the user for the average amplitude of spindles. The

user input makes the detections more accurate and adaptable at the cost of the system
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being not fully automatic. The software’s performance was validated to show sensitivity

and specificity of 98.96% and 88.49% respectively when tested on a subset of N2 stage

segments from 10 subjects [21].

Duman et al. [22] used multiple approaches including Teager energy, harmonic de-

composition and normalised amplitude at 12 Hz to identify spindles automatically. A

detection is considered valid if all three methods have a positive output. They reported

sensitivity and specificity of 96.2% and 95.5% respectively and tested on 16 subjects.

The performance metrics, however, appear flawed such that they are marking a true pos-

itive when the algorithm detects the presence of spindles in a 30-sec epoch of N2 stage.

Ahmed et al. [23] also used Teager energy as a feature for spindle detection together with

Wavelet packet energy ratio and reported a sensitivity of 93.9% by testing their method

on 95 sleep spindles.

Methods based on amplitude and frequency characteristics to mimic visual detection

are by far the most common approach used in literature. Huuppopen et al. [24] de-

scribed and compared the performance of four sleep spindle detection methods. The best

performing method used FFT spectrum and spindle amplitude analysis and was tested

on 12 subjects with 6043 spindles. They reported 70% sensitivity and 98.6% specificity

for spindles in N2 stage. Wendt and Christensen [25] used bandpass filtering with level

detection and power features in two EEG channels. Their method yields sensitivity and

specificity values of 84.6% and 95.3% respectively. They used a test database of 882

spindles in 375 epochs but did not consider Wake segments of sleep. Nonclercq et al. [26]

used normal modelling of spindle distribution based on amplitude and frequency features

and tested the algorithm on two datasets, one for children and the other for adults. They

reported sensitivity/specificity values of 78.5%/94.2% and 75.1%/96.7% respectively for

the two datasets.

Table C.1: Literature review summary for automatic sleep spindle detection.

Ref Data Channels Method Result

[13]

689 epochs,

344.5

minutes

1×EEG
STFT features with

ANN and SVM

Accuracy

(ANN):

88.7%

Accuracy

(SVM):

95.4%

[14]
6 subjects,

264 spindles
Multiple

AR modelling

coefficients with ANN

and SVM

Accuracy

(ANN):

89.1%

Accuracy

(SVM):

94.6%
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Table C.1: Literature review summary for automatic sleep spindle detection.

Ref Data Channels Method Result

[16]
6 subjects,

575 spindles
1×EEG

Bandpass filtering with

a varying amplitude

threshold and

maximum frequency

range

Sen: 78.4%

Spe: 88.6%

[6] 725 spindles 5×EEG Matching pursuit
Sen: 81.6%

Spe: 81.6%

[24]

12 subjects,

6043

spindles

4×EEG
FFT spectrum and

amplitude analysis

Sen: 70%

Spe: 98.6%

[19]

12 subjects,

2140

spindles

multiple
Individually adjusted

bandpass filtering

Sen: 92.9%

Sel: 41.6%

[22] 16 subjects 1×EEG

Max frequency, Teager

energy and harmonic

decomposition

Sen: 96.2%

Spe: 95.4%

[23] 95 spindles N/A

Teager energy and

wavelet packet energy

ratio

Sen: 93.9%

[21] 10 subjects 1×EEG

Manual amplitude

threshold for PRANA

software

Sen: 99%

Spe: 88.5%

[15]

56 children,

40412

spindles

2×EEG

FFT, power

thresholding, EMD

signal decomposition,

HHT

Sen: 88.2%

Spe: 89.7%

Sel: 88.1%

[17]
6 subjects,

537 spindles
1×EEG

Bandpass filtering with

thresholding, relative

power, AR modelling

Sen: 70.2%

Spe: 98.6%

[25]
13 subjects,

882 spindles
2×EEG

Bandpass filtering with

thresholding and power

features

Sen: 84.6%

Spe: 95.3%

[26]

5 children

(1), 6 adults

(2)

1×EEG
Amplitude-frequency

normal modelling

Sen1: 78%

Spe1: 94%

Sen2: 75%

Spe2: 97%

Most of the methods cited above achieved good performance with sensitivity of at least

70%. However direct comparison between them is difficult because of the varying dataset

and performance metrics used in each.
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C.3 Issues with automatic spindle detection

The previous section covered a number of automatic spindle detection methods. There

appears to be a lack of standard reporting metric and that makes comparing algorithms

a difficult task. Other than that, although the frequency range of spindles have been

defined in the AASM scoring manual, it is rarely used in practice. Furthermore, since

the amplitude range of spindles is not defined it is very subjective. Such issues of selecting

the ranges and metrics, and other detection challenges will be discussed in this section.

C.3.1 Frequency range of spindles

Sleep spindles are defined to have a frequency range of 11-16 Hz (most commonly 12-

14 Hz) [1]. However, different methods use a wider or narrower range for detection.

Himanen et al. [27] showed that the frequency of spindles varies throughout the night

and shows a U-turn within the first four NREM episodes. They remain within the range

of 10.3-15.6 Hz during N2 stage of sleep. Nonclercq et al. [26] provide a comprehensive

list of different frequency ranges selected by various authors. These ranges include, 12-

14 Hz, 11.5-16 Hz, 10-16 Hz, 11-15 Hz, 12-16 Hz and more. This gives an idea of the

variability in frequency ranges that exist in literature.

C.3.2 Amplitude

Similar to the variable frequency range, the amplitude of spindles is also a varying quan-

tity in literature with authors having used values ranging from 8 µV to 25 µV in order to

determine a suitable threshold for detection. Huupponen et al. [28] proposed a method

to extract an optimal detection threshold for spindles.

C.3.3 Performance metrics

A quick glance at the last column of Table C.2 reveals the different metrics being used

by researchers to report the performance of their algorithms. Moreover, some of those

characterise the performance only in N2 stage assuming the existence of spindles in that

very stage. Some choose to ignore the Wake stage while few count the presence of spindle

within a standard epoch of 30 seconds good enough to be marked as a valid detection.

Devuyst et al. [17] attempt to tackle this problem by proposing a standard assessment

method for spindle detection. They also advocate the use of a common database (that

they provide) for easier and more accurate comparison of algorithms.

C.3.4 Alpha rhythms

The variable frequency range of spindles was discussed in Section C.3.1. Even when the

defined range of 11-16 Hz is used there may be spindle-like alpha (8-13 Hz) intrusions
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resulting in false detections. These common occurrences have been discussed by several

researchers [17], [28] and have to be taken care of during the development of any spindle

detection algorithm.

C.3.5 Complexity

If a spindle detection needs to be incorporated in a wearable or real-time device then it

goes without saying that it has to have low complexity to run within real-time constraints

and keep the power requirements down.

C.4 Material

Polysomnography data from the DREAMS Sleep Spindles Database of University of

MONS - TCTS Laboratory and Universite Libre de Bruxelles - CHU de Charleroi Sleep

Laboratory [29] was used for the analysis and development of algorithms. The data

consists of 30-minute excerpts from six subjects (3 males and 3 females, average age 45.7

years) with various sleep pathologies. The excerpts have been marked visually by two

scorers for sleep spindles and the union of their markings is taken as the reference set.

Data was originally recorded using two EOG, three EEG and one EMG channels. The

sampling frequency is 200 Hz and the annotated channel is Cz-A1 except for subjects

1 and 3, for whom the annotated channel is C3-A1 and the sampling frequency 100 Hz

and 50 Hz respectively. All signals were first resampled to have a uniform sampling

frequency of 256 Hz using the Matlab function resample. Of the entire 180 minutes of

data available for testing, an average of 56% was part of N2 stage sleep, confirmed by

the hypnogram provided with the data. No attempt was made to exclude either noisy

data segments, or data from any other stages of sleep or wakefulness.

Each subject’s data is a 30 minute segment from an overnight PSG recording. The

percentage of all sleep stages in the test segment is shown in Table C.2. The total number

of spindles for each subject and the sleep stage in which they were marked are given in

Table C.3.

Table C.2: Percentage of sleep stages in test data

Subject / Sleep Stage % W N1 N2 N3 R

1 15.56 3.33 61.11 20 0

2 1.11 5.56 55.56 37.78 0

3 8.89 24.44 62.22 4.44 0

4 30 22.22 40 7.78 0

5 11.11 2.22 57.78 38.89 0

6 3.33 3.33 61.11 32.33 0
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Table C.3: Sleep spindles in each stage of the test data

Subject / Spindles Total W N1 N2 N3 R

1 134 0 0 101 33 0

2 77 0 1 68 8 0

3 44 4 0 38 2 0

4 63 31 5 25 2 0

5 103 0 0 82 21 0

6 117 0 0 90 27 0

It should be noted particularly from Table C.2 that subject 4 has a high Wake stage

content (30%) in the recording. Additionally, Table C.3 shows that almost half of the

spindles visually scored in this record are part of the Wake stage. All other cases have

most spindles distributed among N2 and N3 stages.

C.5 Performance metrics

The spindle detection algorithms proposed in this chapter are tested on 30-minute EEG

excerpt from six subjects. The union of spindles scored visually by two scorers is taken

as the reference to compare the results against. The metrics proposed by Devuyst et

al. [17] are used to characterise the performance of the two algorithms. These metrics

are briefly explained in this section.

An automatically detected spindle is marked as True Positive (TP) if it overlaps at

least partially with the reference spindle at that time. If no point of the detected spindle

overlaps with the reference, it is considered as a false detection and marked as False Pos-

itive (FP). The number of spindles that went undetected by the algorithm are classified

as False Negatives (FN). The number of True Negatives (TN) is approximated as shown

below, where the average duration of the detected spindles must be computed separately

for each subject.

TN =
Total record duration

Avg. detected spindle duration
− TP − FP − FN (C.1)

The performance of the algorithms will be characterised by finding the Sensitivity and

Specificity for each subject individually as well as for all of them combined.

Sensitivity =
TP

TP + FN
(C.2)

Specificity =
TN

TN + FP
(C.3)

221



C.6 Spindle detection: Algorithm I

An algorithm for automatic sleep spindle detection is presented in this section using only

one channel of EEG input.

C.6.1 Methods

In this section, the various features required for the sleep spindle detection algorithm are

defined.

Teager energy operator

Teager energy operator (TEO) is a non-linear operator that can estimate the energy of a

signal on-the-fly [30], [31]. It is particularly useful in highlighting the abrupt transitions

in a signal while suppressing the soft transitions. For a discrete-time signal, its Teager

energy is computed as follows [31]:

ψ[x(n)] = x2(n)− x(n+ 1)x(n− 1) (C.4)

Teager energy operator, ψ, when applied to EEG signals, appropriately filtered for

sleep spindle detection, demonstrates a rise in energy level when a spindle appears. The

sudden change in frequency and the waxing and waning amplitude of sleep spindles is

well tracked by the Teager energy operator.

Spectral edge frequency - 50%

Spectral edge frequency at 50% (SEF50 ) is the frequency below which half of the signal

power is present. This is equivalent to the median frequency of the signal. It can be

computed from the magnitude of FFT coefficients (mag) as shown below, where n is the

total number of FFT coefficients and x is the index to solve the equation for. The required

frequency is then the xth frequency from the array of FFT frequency components.

x
∑

i=1

|mag|2 = 0.50×
n
∑

i=1

|mag|2 (C.5a)

SEF50 = freq(x) (C.5b)

In this work, SEF50 is analysed in the 8-15 Hz frequency range since it covers both

alpha (8-13 Hz) and spindle frequency range. It is found that spindle-like alpha rhythms

have lower median frequency in this range and therefore this feature will be used to

reduce the number of false detections.
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C.6.2 Algorithm

In this section an algorithm for automatic detection of sleep spindles is developed using

the two features described in the previous section.

A block diagram of the complete spindle detection algorithm is shown in Figure C.2.

EEG input signal is first filtered using a first order high-pass filter with a cut-off frequency

of 0.16 Hz, followed by a second order low-pass filter with 50 Hz as the cut-off frequency

at the preprocessing stage. This bandlimited signal is used as input to the main spindle

detection algorithm. The input signal is then filtered with a fourth order Butterworth

band-pass filter with lower and upper cutoff frequencies 11 Hz and 16 Hz respectively,

which is the spindle frequency range. This step gets rid of all the frequency content that

is not of interest for spindle detection. This filtered signal is then segmented into epochs

of 0.25 seconds with 50% overlap between successive ones. Teager Energy of the filtered

signal is then determined in each epoch using Equation C.4. If the Teager energy values

of all samples within the epoch are greater than a certain varying threshold, the epoch

is marked as a candidate spindle. Because of the segmentation of epochs it is possible

that a potential sleep spindle detected in one epoch may have started in the previous

epoch or carried over into the next epoch. For this reason, when an epoch is marked as

a candidate spindle, the epochs immediately preceding and succeeding the current epoch

are also marked as part of the current spindle thus creating a candidate spindle zone.

The threshold for an epoch to be marked as a valid candidate spindle is determined

by taking the mean value of the Teager energy over 60 previous epochs. The threshold

is then established as 2.19 times this mean value i.e. all samples in an epoch have to

be greater than the running mean of last 60 epochs by a factor of 2.19 to be considered

as a valid spindle. The number of epochs and multiplication factor for threshold are

determined empirically. Establishing the threshold based on the data itself obviates the

need for any manual patient specific adjustments.

At this stage, minimum and maximum spindle duration constraints are also applied

prior to spectral analysis. If the duration of a candidate spindle is found to be greater

than 3 seconds or less than 0.5 seconds, the candidate is discarded and not subject to

any further analysis.

The next stage in the algorithm is enabled only when a candidate spindle is detected

at first stage and obeys the duration constraints. Frequency content of each epoch in the

preprocessed signal, corresponding to the epoch in candidate spindle zone, is analysed

using a 512-point FFT. SEF50 for each epoch in the 8-15 Hz band is computed using

Equation C.5 and its average determined for all epochs in the candidate zone. If SEF50

is less than a fixed threshold the candidate spindle is rejected otherwise the candidate

spindle is deemed to be a positive detection. This stage is highly specific and helps in

removing false spindles and alpha rhythms that may have been erroneously detected at

the first stage. The threshold for SEF50 is fixed at 10.7 Hz for all test cases. This was
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determined experimentally by analysing the frequency content of true spindles and false

detections from the first stage.

The output from each stage of the algorithm is shown in Figure C.3 where the Teager

energy block identifies four candidate spindles. One of them is a false detection which is

subsequently rejected by analysing the frequency of the candidate spindles.

C.6.3 Results

The algorithm is tested on sleep data excerpts that included all sleep stages to reflect real

world conditions. Its performance is evaluated at the output of each of the two stages

to show the effect in performance of adding the second feature (SEF50 ) in addition to

TEO. The detection results obtained using only TEO (i.e. stage one only) are shown in

Table C.4. The results show a high sensitivity of TEO in detecting sleep spindles but

there is also a high number of false positives. The highest contribution of false positives

comes from subject 4.

Table C.4: Performance of spindle detection using TEO (Algorithm I)

Sub Total TP FP Sen(%) Spe(%)

1 134 119 107 88.81 95.65

2 77 59 64 76.62 97.53

3 44 41 100 93.18 96.06

4 63 40 128 63.49 95.59

5 103 89 104 86.41 96.04

6 117 107 80 91.45 96.79

Total 538 455 583

Avg. 83.33 96.28

The results in Table C.5 show the final performance of the algorithm with the second

stage added. Of the 538 visually scored sleep spindles, the algorithm successfully detects

432 spindles yielding a sensitivity of 80.3% within ± 3.36% for a 95% confidence interval.

The rejection of most of the background EEG as true negatives also leads to a high

specificity of almost 98%.

The individual results are similar for all test cases except for a lower sensitivity in the

case of subject 4. It was mentioned in Section C.4 that this subject has a high Wake

stage content (30%) in the recording. Additionally, almost half of the spindles visually

scored in this record were found to be part of the Wake stage when compared against

the hypnogram provided with the database. The algorithm falsely detects only 14 of the

31 spindles in Wake stage while the other 24 true positive detections were part of NREM

stages. With the Wake stage removed from analysis, sensitivity for subject 4 goes up to

75%.
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Figure C.3: (a) EEG input with three spindles marked between vertical lines; (b) 11-16 Hz
filtering output; (c) TEO output showing high activity in the spindle areas; (d)
detected candidate spindles; (e) SEF50 for each epoch in the candidate spindle
zone; (f) correctly detected spindles (removing one false candidate spindle)
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Table C.5: Spindle detection performance of Algorithm I

Subject Total Spindles True Pos. Sens. (%) Spec. (%)

1 134 111 82.8 96.7

2 77 58 75.3 98.3

3 44 39 88.6 97.7

4 63 38 60.3 97.8

5 103 87 84.5 97.1

6 117 99 84.6 98.1

All 538 432 80.3 97.6

The results are further analysed to determine the corresponding sleep stage in which

each of the spindle is detected. Table C.6 shows the total number of sleep spindles

detected by the algorithm for each subject and the number of detections in each sleep

stage (classified according to AASM [1] rules). It can be seen that most of the sleep

spindles detected are from N2 stage (about 69%) and more than 91% of spindles detected

are from stages N2 and N3 combined. These are also the two stages where sleep spindles

are most often observed.

Table C.6: Sleep Spindles (SS) detected in each sleep stage - Algorithm I

Sub SStot SSW SSN1 SSN2 SSN3 SSR

1 190 10 3 135 42 0

2 101 0 0 77 24 0

3 91 5 8 75 3 0

4 104 32 8 54 10 0

5 164 4 0 110 50 0

6 146 0 0 97 49 0

Total 796 51 19 548 178 0

The performance of this algorithm will be further discussed and compared against

other methods in the literature in Section C.8.
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C.7 Spindle detection: Algorithm II

In this section, the use of line length, an efficient and low-complexity time domain feature,

for automatic detection of sleep spindles is evaluated.

C.7.1 Methods

Esteller et al. [32] introduced line length as a low-complexity feature for seizure onset

detection. It is the sum of absolute differences between subsequent samples and is defined

by the following equation where LL is the line length, x is the input signal and N is the

number of samples in the signal (or a block of signal under analysis).

LL =
N
∑

n=1

|x(n− 1)− x(n)| (C.6)

Figure C.4(a) shows an EEG signal with two sleep spindles. The line length corre-

sponding to this signal, calculated in blocks of 1 second (with 50% overlap) is shown in

Figure C.4(b). It can be seen on the figure that the occurrence of a spindle in the original

signal leads to a rise in the line length. This lasts approximately until the end of spindle

duration and returns to a lower level thereafter. This effect of line length having higher

values during spindle occurrence can be used as a characteristic feature in an algorithm

to demonstrate its utility for detecting spindles.

C.7.2 Algorithm

A block diagram of the algorithm with line length as the analysis feature is shown in

Figure C.5. EEG signal for a single channel is used as input to the algorithm. At the first

stage, a second order Butterworth bandpass filter is applied to the input signal to limit it

in the 11-16 Hz frequency range, which is the spindle range of interest. The filtered signal

is then partitioned into blocks of 1 second epochs with 50% overlap between subsequent

epochs. The line length for each epoch is calculated using Equation C.6. It is normalised

by a factor which is obtained by taking the median line length value of the last 80 epochs.

This step obviates the need of any patient-specific adjustments. The number of epochs to

use in the computation of the median was determined empirically by trying out various

values. Initially when the number of epochs processed is less than 80, the median of

all available previous values is taken. This normalised value is then compared against a

detection threshold K. If the value is found to be greater than K, the epoch is marked

as spindle. The detection threshold also controls the sensitivity of the algorithm, with

higher values resulting in stricter classification criterion.
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Figure C.4: (a) EEG signal with two sleep spindles marked between vertical lines; (b) Line
length of the EEG signal showing higher values during spindle occurrence

C.7.3 Hardware implementation

The algorithm is implemented on Texas Instruments MSP430F5438A microcontroller [33]

to measure its online performance and power consumption. All arithmetic operations are

performed in fixed point arithmetic to make use of the hardware multiplier on the chip

and the microcontroller is put to idle mode (LPM3) whenever there was no data to

process. The coefficients of the bandpass filter are represented as fixed point numbers

in Q15 format and the entire filtering operation requires only three 16-bit multiplication

and addition operations. The line length is calculated by taking the absolute difference

between each new and previous filtered sample and accumulating the result in a register

which is initialised to zero at the start of an epoch. This way it is updated with each new

sample without the need to store all previous samples in an epoch. The median is then

computed using a linked list method described by Phil Ekstrom [34] that has a sorting

complexity of N . The resulting value is used to normalise the line length. Finally, a

detection flag is raised and time noted whenever the normalised line length is found to

be greater than the threshold K.
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Figure C.5: Block diagram of sleep spindle detection Algorithm II
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C.7.4 Results

Leave-one-out cross validation (LOOCV) is used to determine the detection performance

of the algorithm on each subject while training it on the five remaining subjects. A

receiver operating characteristic (ROC) curve is plotted for average sensitivity against

specificity by varying the detection thresholdK in small steps using five training subjects.

The best performing threshold is determined from the curve as the point that maximised

both sensitivity and specificity. This threshold is then used to test the performance of the

remaining sixth subject. This procedure is carried out six times such that each subject

becomes the test case once with other five being used for training.

The total number of spindles visually scored and those detected by the algorithm for

each subject are shown in Table C.7. The average sensitivity of the algorithm is 83.6%

and its 95% confidence interval range is between 80.5% and 86.8%. The sensitivity

results are consistently greater than 80% for all cases except subject 4 where less than

half of reference spindles are automatically detected (as in Algorithm I). In this case, the

sensitivity is low because of the high proportion of Wake stages and artefacts present

in the signal making detection difficult. The specificity in all the subjects is close to

the overall average of 87.9% which shows that most of the non-spindle data has been

successfully rejected.

Table C.7: Spindle detection performance of Algorithm II

Subject Total Spindles True Pos. Sens. (%) Spec. (%)

1 134 121 90.3 83.4

2 77 62 80.5 94.0

3 44 44 100 85.8

4 63 28 44.4 88.1

5 103 87 84.5 88.2

6 117 108 92.3 86.5

All 538 450 83.6 87.9

A breakdown of the spindles detected in each sleep stage is shown in Table C.8. Of the

841 spindles detected by the algorithm (SSdet) 61.5% true positives are in N2, 58.2% in

N2 and N3 combined and 53.5% across all sleep stages. The proportion of false positives

is highest in subjects 3 and 4. From the total detections made by the algorithm, 90% are

in N2 and N3 combined and less than 6% are recorded in the Wake stage.
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Table C.8: Sleep Spindles (SS) detected in each sleep stage -
Algorithm II

Sub SSdet SSWake SSN1 SSN2 SSN3 SSREM

1 202 13 1 141 47 0

2 99 0 2 84 13 0

3 126 11 11 95 9 0

4 87 16 23 42 6 0

5 154 7 0 103 44 0

6 173 0 1 114 58 0

Total 841 47 38 579 177 0

C.7.5 Power consumption

The epoch size used for processing is 1 second with a 50% overlap between subsequent

epochs. This means that two epochs are required to be processed every second. The

microcontroller was found to be active for only 10% of the time to perform all of the

signal processing needed for the algorithm while spending the rest of the time in idle

mode until a new sample arrives. Operating at a clock frequency of 1 MHz and supply

voltage of 1.8 V the power consumption for the algorithm was found to be 56.7 µW with

one channel of EEG input.

C.8 Discussion

For the two algorithms, all signals from the DREAMS spindles database are used as is

in the analysis, including those with artefacts and noisy segments. The addition of any

artefact removal preprocessing stage is likely to help improve the performance in such

cases.

The first algorithm using Teager energy has been developed to achieve a high detection

performance. Its first stage involves a highly sensitive and simple non-linear operator

and with a normalised threshold it obviates the need for any patient specific adjustment

externally. The second stage which is highly specific and involves computation of FFT

is called upon only when there are candidate spindles thus reducing the processing load

making this algorithm suitable for online implementation.

The second algorithm has been developed with power consumption as the main con-

straint as well as demonstrating the use of line length as a novel feature for spindle

detection. Its spindle detection sensitivity was slightly higher (with more false posi-

tives) than the first algorithm. It was also implemented on a MSP430 microcontroller

to measure its power consumption and determine its computational load. The overall

system power consumption was 56.7 µW with only 10% of microcontroller active time
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operating at clock frequency of 1 MHz. This shows that line length is not only useful for

getting a good spindle detection performance but also a very efficient feature for use in

resource-constrained wearable systems.

The performances of the two algorithms presented in this chapter are compared against

other sleep detection methods that report their results on the same database. This

comparison is shown in Table C.9. In contrast to Devuyst et al. [17], both algorithms

detected a higher number of spindles overall. Algorithm I resulted in similar specificity

highlighting its better performance both in terms of true positive detections and false

positive rejections. Algorithm II, despite a better sensitivity, also resulted in a higher

proportion of false positives resulting in a lower specificity. In another method, Nonclercq

et al. [26] reported a sensitivity of 75.1% after normal modelling however they were not

able to detect any spindles in subject 4 and averaging the results including this case

reduces their method’s sensitivity to 62.6% only. Nevertheless, they obtained specificity

of more than 90% for other test subjects.

Table C.9: Comparison of this work with other sleep spindle detection algorithms

Method Sens. (%) Spec. (%)

Devuyst et al. [17] 70.2 98.6

Nonclercq et al. [26] 75.1 96.7

Algorithm I 80.3 97.6

Algorithm II 83.6 87.9

The results using Algorithm I show superior overall performance. Further, the results

of the second algorithm, based on line length, show a higher sensitivity but a slightly

reduced specificity. This reduction is because the average duration of detected spindles

is higher in the latter case. In Algorithm I, average duration is approximately 1 second

where as in Algorithm II, it is 2.7 seconds. This reduces the number of estimated true

negatives in equation Equation C.1 and, consequently, the specificity. However, despite

a lower specificity, using only one feature with a simple algorithm without any artefact

rejection still demonstrates line length as a very useful feature for spindle detection.
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D Compression in wearable sensor nodes

for data transmission and storage

The research presented within this chapter is an edited version of research previously

published in:

S. A. Imtiaz, A. J. Casson and E. Rodriguez-Villegas, “Compression in Wear-

able Sensor Nodes: Impacts of Node Topology,” IEEE Transactions on Biomed-

ical Engineering, vol. 61, no. 4, pp. 1080–1090, 2014, c© IEEE.

D.1 Introduction

It is not always possible to perform all signal processing at the sensor node. In such cases

raw data is either wirelessly transmitted to a nearby receiver or stored on local memory

for offline usage and analysis later pushing the algorithm complexity to the receiver end.

Even when this system architecture is used the data rate may be prohibitively high to

be transmitted within the available power budget. It is widely accepted that the power

consumption of sensor nodes can potentially be reduced by the inclusion of online, real-

time, data compression embedded in the node itself [1]–[3]. The challenge lies in having

compression algorithms that provide a high level of data reduction while introducing

little error into the recorded signal and which require very little power to operate.

This chapter presents a Texas Instruments MSP430 based sensor architecture for pro-

viding such compression, and in particular investigates the impact of the overall sensor

node topology on the compression performance. Both wireless sensor nodes, where the

sensor incorporates a wireless transmitter for passing the collected data to a processing

smartphone or computer in real-time, and local memory sensor nodes, where memory

incorporated in the sensor is used to store the data until the node is physically connected

to the processing computer, are widely used sensor node topologies. However these two

different types of back-end have widely different requirements, constraints and impacts

on the compression to be used. The reconstruction accuracy and power consumption

in four different sensor nodes, two from each topology type, will be investigated in this

chapter to provide a real system comparison of state-of-the-art compression for sensor

nodes.

Compressive sensing is used as the compression basis as it is a relatively new technique

very suitable for use in power constrained sensor nodes: the computational complexity
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of the different compression stages naturally fit within the power budgets available in

the different stages of wearable sensor systems [4]. The fundamental compression step is

simply a random sampling of the input signal and so has a low complexity for running

online in the very power constrained sensor node. This low computational complexity is

traded-off against having a higher complexity when the input signal needs to be recon-

structed from the compressed samples. However, this stage can be run on a smartphone

or fixed computer installation with much relaxed power constraints compared to the sen-

sor itself. Compressive sensing itself can be implemented in either analogue or digital

domains. In the former case, an ADC with a sub-Nyquist frequency is used to reduce the

sampling rate (and consequently reduce data) while the latter uses a standard Nyquist

ADC followed by a sparse sensing matrix for data reduction. A complete comparison of

these two compressive sensing implementations and their merits is discussed in [5]. In

this chapter, compressive sensing in the digital domain is used for EEG signals that are

generally sampled at low frequencies in the range 200-1000 Hz. Since these sampling

rates are easily achievable, no further reduction in sampling frequency is desired (which

is the main motivation for using analogue-domain compressive sensing) hence digital

compressive sensing is preferred for data reduction.

The underlying theory of compressive sensing has been established previously [6], [7],

as has the reconstruction performance in a number of applications [8]–[13]. In this work,

compressive sensing will be evaluated in terms of both reconstruction performance and

power consumption of the system including the back-end. The impact on power con-

sumption of using different wireless transceiver and local storage configurations will be

analysed. Further, the reconstruction accuracy performance by using fixed/floating point

realisations and different processing frame sizes will also be studied.

Section D.2 outlines the four prototype sensor nodes used, all of which are MSP430

based, with this being connected to a wireless transmitter on the same chip, an external

wireless transmitter chip, a NAND flash memory chip, and a microSD card incorporating

a FAT16 file system. Section D.3 details the performance assessment of these different

nodes using scalp EEG signals as an example medical application. Section D.4 presents

detailed results for the performance of different compressive sensing configurations in

terms of both reconstruction accuracy and power consumption, and these are discussed

in Section D.5 to provide an overview of the relative performance, advantages, and dis-

advantages, of the different sensor node topologies.

D.2 Sensor platforms

D.2.1 Hardware set up

Due to its ultra low power consumption the Texas Instruments MSP430 family [14]

is a popular hardware platform for wearable sensor nodes (for example it is used in
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the TinyNode, Tmote Sky, and Shimmer systems [15]–[17]) and it is the basis of the

sensor nodes used in this work. Three of these prototypes use the MSP430F5438A

microcontroller connected to different back-end systems as discussed below, while the

fourth uses the CC430F6147. This is a single system-on-chip solution combining both

an MSP430 core and a wireless transceiver on the same microchip allowing significant

miniaturisation and cost savings. The set up of these four systems is shown in Figure D.1.

The four different prototypes across the two wireless and local memory topologies are

implemented using:

1. A Nordic nRF2401+ wireless transmitter.

2. A Texas Instruments CC430 wireless transmitter.

3. A microSD card.

4. A Hynix NAND flash memory.

Wireless node topologies (1 and 2) provide flexibility, ease of use, and allow real-time

access to the collected signals. Local memory topologies (3 and 4) do not provide real-time

access to the data being collected, but are still of significant interest as there is no risk of

missing packets, and due to their low power operation. Generally, with no compression

present, local memory based systems have a lower average current consumption than

wireless systems and this is demonstrated here in Section D.4.

D.2.2 Wireless nodes

The wireless nodes are set up as:

Nordic nRF2401+

The first prototype wireless node uses a Nordic Semiconductor nRF2401+ transceiver [18]

set with a transmit power of 0 dBm, 2 Mbps over-the-air data rate, and 2.4 GHz operation

frequency. Each time a frame of samples is passed to the transmitter by the MSP430

the data is transmitted as quickly as possible over the 2 Mbps link with the transmitter

turned off the rest of the time to save power. The Nordic Shockburst protocol is used

with a 32 byte payload size and five preamble, address and CRC (Cyclic Redundancy

Check) bytes. It operates from a 2 V supply.

TI CC430 wireless transmitter

The CC430 node is based upon the CC430F6147 [19] which incorporates both an MSP430

core and a CC1101 sub-GHz wireless transceiver. It is set to operate at 868 MHz, with

a transmit power of 0 dBm, 64 byte payload size and three preamble and CRC bytes.

This node is powered using a 3 V supply.
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Figure D.1: Physical set up of the prototype sensor nodes with the four different back-ends. (a)
Nordic transmitter; (b) CC430 transmitter; (c) microSD card; (d) NAND flash
memory chip.
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D.2.3 Local memory nodes

The local memory sensor nodes are set up as below. In these there is a choice of both

the type of memory and the file system used. All microSD cards require a file system

hence FAT16 is used for universal support across many commercial PCs with integrated

card readers, making additional reader software unnecessary. In contrast the NAND

memory node uses no standardised file system with data stored as simple binary files.

The absence of a file system simplifies the data writing process and reduces the processing

and memory burden on the microcontroller during the collection of data. This simplicity

comes at the cost of more complexity when passing the data to an interpreting computer,

but the sensor node can generally be powered by the interpreting computer during these

operations.

microSD card

The microSD based sensor makes use of a class 4 microSD card and the MSP430 im-

plements a customised version of the freely available Fatfs library [20] to access it. This

allows cards up to 2 GB in size to be written to, enough space for at least a day of

continuous operation. As more compression is employed in the system this duration will

increase. A 3.3 V supply is required.

Hynix NAND flash memory

The NAND sensor node uses a Hynix NAND HY27UF081G2A flash chip [21]. This is

a standard large block sized NAND device and so is representative of all large memory

NAND units, although the precise model used at present only has a 128 MB capacity. It

operates from a 2.7 V supply.
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D.2.4 Compression design

The MSP430 is responsible for the set up and access of the back-end, and for performing

low power digital compressive sensing to minimise the amount of data that needs to be

transferred. For each input signal x—in this case an EEG channel recorded from the

human scalp—a compressively sensed representation is generated in the digital domain

by carrying out the matrix multiplication

y = Φx. (D.1)

Here x is a non-overlapping frame of N EEG samples, and Φ is anM×N sensing matrix.

y has dimensions M × 1 and so if M < N data compression is achieved. Provided that

Φ is correctly chosen, reconstruction of x from y is possible even though y has fewer

samples than a signal sampled at the Nyquist rate. It is this vector y that is actually

stored in the local memory or wirelessly transmitted from the sensor.

In either case, once the samples of y have been passed to a receiving computer the orig-

inal vector x needs to be reconstructed so that the original EEG signal can be inspected

and used. This reconstruction is carried by solving the optimisation problem

min
s∈ℜN

||s||l1 subject to y = ΦΨs (D.2)

r = Ψs (D.3)

where Ψ is a basis function in which the input x can be represented sparsely as s (x =

Ψs). That is, most entries in s should be zero, or near zero. r is then the reconstructed

estimate of the original input x.

The key criteria for successful compressive sensing are that Φ and Ψ are incoherent

and that s is a good sparse representation of the signal [6], [7]. The first condition

is satisfied by drawing entries in Φ from a random distribution. Ψ can then be any

suitable choice for obtaining a sparse s, and it can be changed during the reconstruction

stage; knowledge of Ψ is not required during the initial sampling process. Depending

on the precise choices for Φ, Ψ, and the reconstruction minimisation method, many

different compressive sensing implementations are possible with differing reconstruction

performances and characteristics.

To minimise the sensor node power consumption, Bernoulli distribution (p = 0.6)

is used with values of only 0 and 1 for Φ. This Φ reduces the matrix multiplication

Equation D.1 to an accumulation, greatly reducing the processing load. The fixed point

output is accumulated into the MSP430 16 bit registers avoiding any potential overflow.

On-the-fly generation of random numbers is an intensive process therefore to reduce the

processing load non-adaptive compressive sensing [12] is used where a fixed sampling

matrix is used for each frame, with the same matrix used for all EEG channels. This

242



matrix is generated a priori in Matlab via the randn function and stored in the local

flash memory of the MSP430.

For the signal reconstruction, which is carried out on a standard desktop computer, a

Basis Pursuit optimisation procedure is used [22], [23] with a cubic B-spline dictionary

[24], [25] for Ψ. These settings correspond to the best reconstruction case for EEG signals

as reported in [11].

D.2.5 Other system aspects

All nodes are set up assuming the collection of 16 channels of 200 Hz sampled EEG

data. To provide a fair comparison platform, front-end signal conditioning and analogue-

to-digital conversion affects all cases uniformly and so is not included in the analysis

here which measures only the current consumption of the MSP430 and back-end unit.

Suitable front-end systems for EEG applications include [3], [26] and a complete review

of low power ADCs is in [27]. Instead of the front-end blocks, 16 channels of pre-recorded

EEG data are stored in signed 16 bit fixed-point format (Q3.12) in the internal MSP430

flash memory. This is loaded a sample at a time into the MSP430 and once N samples

from all 16 channels have been loaded the compressive sensing operation is performed.

This produces M compressively sensed samples per channel which are passed out of

the MSP430 to the transmitter/memory unit. The MSP430 can operate with a supply

voltage anywhere between 1.8 V and 3.6 V. To minimise the power consumption, and to

require only one regulator in each system, this voltage is set to match requirements of

the back-end being used, as given in Section D.2.1.

D.3 Analysis methods

In this section, a number of different factors affecting the performance of compressive

sensing in wearable sensor nodes are investigated. Firstly, the current consumption to

quantify the power benefits of the on-sensor-node compression is investigated. The sensor

node current is measured using a 500 MHz oscilloscope and a 10 Ω sense resistor placed in

series between the power supply and the system. This allows the current to be measured

as the system moves through the stages: MSP430 active and doing compressive sensing;

MSP430 and back-end active and writing/sending out data; and the MSP430 and back-

end idle. The total average current is then easily calculated.

Secondly, the reconstruction accuracy is investigated which demonstrates that the in-

put physiological signal can be accurately recorded. A section of scalp EEG signals is

used as the example application for this. While a number of studies have investigated the

reconstruction performance of compressive sensing applied to EEG signals previously [11],

[28]–[31] these do not take account of the compressive sensing hardware platform and its

constraints. In particular, [11] presented a comprehensive evaluation of the reconstruc-

243



tion performance of multiple compressive sensing implementations for scalp EEG signals.

It is not the intention here to repeat this analysis. Instead, it is noted that [11] used a

fully Matlab based, floating point, implementation of compressive sensing.

Thirdly it is verified here that a fixed point implementation suitable for the MSP430

is not substantially worse than the previous floating point one. The input EEG signals

are stored offline as 16 bit EDF files [32] and are converted for a 16 bit fixed-point

compressive sensing implementation. The results for the reconstruction error using the

fixed point implementation are presented and compared with the fully Matlab based

implementation used in [11]. The reconstruction and error calculation procedures are

the same for both, only the compressively sensed samples change. Using the fixed point

toolbox Matlab can accurately simulate both the floating and fixed point compressive

sensing implementations and the performance is found offline, not by connecting sensor

nodes to subjects. Although the MSP430 based compressive sensing assumes a full 16

channel EEG system, for compactness and visualisation here the reconstruction results

for only seven channels are presented. These are Fp1, Fp2, T3, Cz, T4, O1, O2 all

recorded at 200 Hz with an FCz reference. Thirty minutes of data from one subject are

used.

The reconstruction performance is characterised through the RMS (Root-Mean-Square)

error calculated using 10 s of reconstructed data, allowing maximum, minimum and me-

dian values over time to be found. The reconstruction performance was also characterised

through the PRD (Percentage RMS Difference) error and similar trends were observed.

All of these performance measures are calculated for a range of compression ratios (CR)

and frame sizes (N) where

CR =
M

N
. (D.4)

Lower CR values represent more data compression. This allows investigation of the opti-

mal compressive sensing set up for each sensor node topology as a function of compression

ratio CR and frame size N .

D.4 System performances

D.4.1 Reconstruction accuracy

Figure D.2 shows the reconstruction performance of the fixed point compressive sensing

across the different regions of the head. It can be seen that reconstruction is possible,

with the general result similar across all channels. As observed in [11], better performance

is achieved along the midline (Cz here) and the performance is approximately symmetric

across the midline except in T3/T4 where higher maximum errors are seen in T4. This

occurs due to a period of asymmetric EMG artefact in the EEG (with more artefact

present on T4 than T3) most likely due to chewing/jaw action. The test EEG data
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Figure D.2: Reconstruction performance of the fixed point compressive sensing scheme as the
compression ratio (CR) is varied. Values for the median, minimum and maximum
RMS error values found from analysing 30 minutes of EEG data are shown. Results
are arranged for each EEG channel as they are located on the head, and generated
using frame size N = 200.

is taken from out-patient, ambulatory EEG recordings in uncontrolled environments to

reflect real-world sensor node operation. As such the results demonstrate the absolute

performance bounds obtained during prolonged free-running EEG recording. In some use

cases, if the entire free-running EEG is not wanted and artefact sections can be removed,

these results are thus a pessimistic bound.

In all cases in Figure D.2 as the compression ratio is reduced the median, maximum

and minimum of errors all get worse, and the impact of frame size N on this is shown in

Figure D.3. Here, the larger N = 200 frame size performance is slightly better, but it is

not a large effect. The reconstruction performance is principally only a function of the

compression ratio.
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Figure D.3: Reconstruction performance of the fixed point compressive sensing scheme in chan-
nel Cz using four different frame sizes (N). Each vertical line plots the median,
minimum and maximum RMS error found from analysing 30 minutes of EEG data.
(a) against the compression ratio (CR); (b) against the number of compressed sam-
ples (M).
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D.4.2 Comparison to floating point

The differences in RMS error between the Matlab simulated fixed point and floating

point implementations are shown in Figure D.4 for two channels. Channel Cz, which

achieved the best overall performance in Figure D.2, now achieves the worst performance

of all of the analysed channels, although the differences are never large. In addition,

in Cz there is a strong correlation between the compression ratio and how well the two

implementations match: smaller compression ratios have less error between them. This

effect is not seen in any of the other channels where the error is essentially independent

of the compression ratio used. The origin of this is currently unknown but highlighted

here as a systematic effect which may become significant to future researchers. It is

noted that Cz is the closest electrode to the reference at FCz, but it is not clear why this

would systematically impact the fixed-point vs floating-point operation of the compressive

sensing.

Overall from Figure D.4 it is clear that the use of a fixed point implementation has no

meaningful impact on the compressive sensing performance. As with the reconstruction

accuracy results the frame size used has little consistent impact on reconstruction.

D.4.3 Peak current consumption

For classical systems with high average current draws, or which use physically large bat-

teries, the average current consumption of the system is the only power consumption

factor of interest. However many physically small batteries, in addition to having low

total amounts of energy storage have low maximum peak draws [33]. For low power

systems the peak current can thus be the limiting factor determining the battery size,

not the energy density. Hence the measured peak currents from the entire system, and

their durations, are given in Table D.1 for the four sensor nodes. The maximum cur-

rent ever drawn by MSP430 alone is also listed. The maximum current drawn by the

MSP430 alone (3.8 mA) is much smaller than that drawn when both the MSP430 and

back-end are considered (which varies from 14–57 mA). The MSP430 can therefore be

clocked at 16 MHz where it is more efficient per clock cycle to give a lower average power

consumption. Ordinarily such operation might have been avoided if the increase in peak

current was not acceptable. Similarly, both wireless back-ends have lower peak current

requirements than the local memory units, highlighting a further potential advantage of

moving to wireless sensor node topologies in low power, low size sensor nodes.

Typical timing diagrams for the four sensor nodes are shown in Figure D.5 illustrating

very different current profiles. For the wireless transmitters distinct bursts are present

corresponding to the transmission of individual packets. These are interspersed with

the compressive sensing of the input signals and a small amount of set up time for the

transmitter. In contrast for both the NAND memory and microSD card there is a broad

increase in current as all of the data is written out with local peaks present during
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Figure D.4: Difference in the RMS reconstruction errors between the fixed point MSP430 suit-
able and fully floating point compressive sensing implementations for different
frame sizes (N). (a) in channel Cz; (b) in channel O2.
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Table D.1: Peak currents and their duration for the MSP430 compressive sensing and for the
complete system with four different back-ends.

Operation Peak current draw / mA Duration / µs

MSP430 compressive sensing (1 MHz clock) 0.32 –

MSP430 compressive sensing (16 MHz clock) 3.8 –

Nordic wireless transmitter 14 205

CC430 wireless transmitter 18 220

microSD card 57 250

NAND flash memory chip 19 230

the card access times. The microSD card takes considerably longer to write 50 samples,

approximately 2.5 ms. The Nordic and CC430 transmitters require approximately 1.5 ms

and 1.2 ms respectively while the NAND flash memory only 300 µs.

D.4.4 Average continuous current draw

Assuming that the battery used can provide the required peak current, the average con-

tinuous current consumption is the main power design factor. This current requirement is

shown for the four nodes in Figure D.6 as a function of the compression ratio used. Hor-

izontal lines show the power consumption of the system when no compression is present

and all of the input data is sent to the back-end. For compressive sensing to be power

beneficial the current consumption with compressive sensing turned on must be below

these lines.

When no compression is present it is clearly beneficial to process the data in as large

a frame size as possible, with larger frame sizes always requiring the least current. In

line with the traditional motivation for the use of local memory sensor nodes, in the

no compression case the average current of the Nordic system is approximately 1 mA,

whereas for the NAND system it is only 0.2 mA, nearly an order of magnitude lower.
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Figure D.5: Current measured during a compress, transmit/store, idle cycle of the sensor node
for M = 50, N = 100. Only a portion of the compressive sensing period is shown.
Actual duration is 31 ms (for 16 channels) and the remainder of the cycle is spent
in the idle state. (a) Nordic transmitter; (b) CC430 transmitter; (c) microSD card;
(d) NAND flash memory chip.
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Figure D.6: Average continuous current draw for the three sensor nodes. Horizontal lines show
the current consumption in the direct sampling cases when no compressive sensing
is used and all data is passed to the back-end. (a) Nordic transmitter; (b) CC430
transmitter; (c) microSD card; (d) NAND flash memory chip.
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However compressive sensing is much more beneficial for the wireless transmitter cases

(Figure D.6(a) and Figure D.6(b)) than for the local memory cases. In particular for the

microSD card, although there are cases where the use of compressive sensing is beneficial,

the improvement in current consumption is in general small. This is because the setting

up of the file system dominates the system power consumption, not the process of actually

writing data. The frame size N used therefore dominates the system design: if N is large

the file system is set up, addressed and accessed fewer times for writing out the same

amount of data.

In both wireless systems, compressive sensing decreases the system current require-

ments significantly, and at the lowest compression ratios it can be brought to the same

power ranges as the local memory topologies. Moreover, with the wireless transmitters

compressive sensing is power beneficial for essentially all of the frame sizes and com-

pression ratios used. In all cases the lowest absolute power consumption is achieved by

using larger frame sizes. However the system needs to operate at the lowest compres-

sion ratios to achieve this and the increase in the reconstruction error (Figure D.2) must

be tolerated. For more practical compression ratios in the 0.2–0.5 range, using smaller

frame sizes is a more appropriate design strategy. For the wireless transmitter at these

compression ratios it is the smaller frames that give the lowest current consumption and

correspondingly the largest percentage improvement in current consumption.

D.4.5 Relative current consumptions

The motivation for on-sensor-node data compression is due to the presence of a high power

transmitter/storage stage. This dominates the power consumption and thus expending

some power on data compression to give less data to transmit can remove this dominance

and lead to overall power savings [1]–[3]. To evaluate the impact of compressive sensing

on this Figure D.7 breaks down the measured average current values from Figure D.6 into

the three main stages of operation: idle, compressive sensing, and transmission/storage

of the data; and shows the percentage of the current used during each stage. For clarity

only results for two frame sizes, N = 50 and N = 200, are shown.

To minimise power consumption the sensor nodes have been designed to spend as much

time as possible in the idle mode and this results in a considerable amount (up to 20%) of

the total system current being used in this mode. Indeed the sensor node with the highest

absolute consumption (the CC430 node) is the one which spends the minimum amount

of power in idle. For the Nordic transmitter (Figure D.7(a)) at N = 200 the transmission

and the compressive sensing both use approximately equal percentages (∼50%) of the

total current at all compression ratios and so the transmitter dominance has been re-

duced compared to the compression costs. Nevertheless lower absolute consumptions are

achieved at lower compression ratios due to the substantial increases in idle time possible

as less data passes through the system.
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Figure D.7: Break-down of the current consumptions from Figure D.6 showing the percentage
of the total consumption used in each of the main stages of operation. (a) Nordic
transmitter; (b) CC430 transmitter; (c) microSD card; (d) NAND flash memory
chip.
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In all of the cases in Figure D.7 there is a direct trade-off with the frame size (N)

used: large frames push towards using proportionally more current on compression, while

smaller frame sizes push towards transmission/storage. Minimum power realisations of

compressive sensing can thus use this to optimise the system power consumption with-

out substantial impacts on the reconstruction performance (Figure D.2). This minimum

power realisation is best achieved at low compression ratios. However for the local mem-

ory sensor nodes, and the microSD card in particular, the percentage of current used for

storage actually increases as more data reduction is provided.

D.5 Discussion

Low power data compression is an essential part of wearable sensor nodes for monitoring

the human body. Compressive sensing is an emerging technique for use in these and

it has shown utility in a number of physiological sensing applications [8]–[13]. Recent

results have also suggested that compressive sensing applied within the sensor node could

relax the noise specification for the front-end amplifier [5], provide a level of encryption

[30], or potentially allow the number of bits in the analogue-to-digital converter to be

reduced [34].

However compressive sensing is a lossy compression technique and although the re-

quirement for minimum power implementations is well established, its performance is

often only assessed in terms of reconstruction accuracy [13]. [35] presented a compres-

sive sensing implementation using a MSP430 microcontroller and produced a complete

working wireless ECG sensor. [5] presented a fully custom implementation of the digital

multiplier required for the sampling process and provided the first fully on-chip imple-

mentation of sensor node compressive sensing. These however focused on the power

minimisation of the compressive sensing stage only. The motivation for on-sensor-node

data compression is due to the presence of a high power transmitter/storage stage and its

power changes under different compressive sensing arrangements must also be accounted

for. This chapter has therefore investigated compressive sensing in terms of both re-

construction performance and power consumption taking into account different back-end

technologies. Four different sensor nodes have been presented comprising of both wireless

and local memory topologies.

Local memory sensor nodes are often used as, without on-node data compression,

they have lower average current draws than wireless nodes. The NAND memory based

system used here required nearly an order of magnitude less current than the wireless

transmitter systems. However wireless data collection is highly advantageous as it allows

real-time access to the data. The results showed that both wireless systems benefited

substantially from the use of compressive sensing and in the Nordic transmitter case it

successfully brought down the average current consumption to a comparable level to the

NAND system.
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Therefore, assuming that the reconstruction error of the compressive sensing can be

tolerated for the given application, there is now no intrinsic reason to prefer local storage

based sensor nodes from a current consumption point of view. Indeed, once the average

consumption of the wireless system is comparable to the NAND, the overall system can

benefit from the lower supply voltage required by the wireless transmitter and the lower

peak current requirement. Both of these allow the use of physically smaller batteries

to power the overall system. This is made possible because the raw EEG data rate is

only 25.6 kbps and is low compared to the 2 Mbps data rate of the wireless transmitter

and so it can be significantly duty cycled. Although 16 channel EEG data was used as

the example application, this comparatively low data rate will also apply to many other

physiological parameters such as the EOG, EMG and ECG.

The reconstruction error was found to be independent of whether a fixed or floating

point compressive sensing implementation was used, and also independent of the frame

size N . As a result, considering the signal processing perspective only these are free

choices. When combined with the current consumptions presented here however the

power consumption is strongly dependent on the frame size and the back-end technol-

ogy used. Indeed the frame size controls the power balance present in the system: larger

frames shifted power towards compression while smaller sizes shifted power towards trans-

mission. Far from a free choice, this is therefore a critical parameter for optimising the

compressive sensing power consumption, and compressive sensing schemes for sensor

nodes must be evaluated in terms of both reconstruction and power performance. This

power trade-off has been illustrated for four different types of back-end.

Inevitably there are other practical factors in addition to the current consumption

to consider when selecting between the use of wireless sensor nodes and local memory

sensor nodes. For example, the wireless sensor nodes use a minimum latency transmission

scheme where data is sent as soon as possible to keep the system real-time. It is possible to

potentially reduce power consumption further by choosing a transmission scheme where

data is accumulated for some time and then sent out in larger packets. This, and other

techniques for transmitter power optimisation are discussed in [36]. It is also possible

to use a memory card in series with a wireless transmitter to buffer the data before

transmission if latency can be tolerated in the node. Further, the regulations governing

transmit power and interference are much more stringent for wireless nodes, and the

impacts of bit errors and missing packets need to be accounted for. For local memory

systems, the microSD node required a FAT16 file system and the set up of this dominated

the power consumption, not the process of actually writing out data. The NAND memory

node did not use this to save power, but as a result the memory cannot be directly read

by a host PC without requiring additional software, impacting the ease of use. Finally

the results do not control for the semiconductor process size used in the microSD card

and NAND memories. While the general form of these results will be unchanged, this
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parameter will affect the precise currents drawn by these memory units, with smaller

process nodes requiring less current.

Nevertheless the results give a practical overview of the performance of state-of-the-art

sensor node systems and will be highly informative for others selecting between the differ-

ent sensor node topologies. For optimising the compression implementation, for practical

compression ratios in the 0.2–0.5 range smaller frame sizes offer lower current consump-

tion, and a greater percentage improvements in the current consumption, although the

lowest absolute current consumptions were achieved with larger frame sizes. The recon-

struction error was independent of this and so the compressive sensing design must be

governed by the back-end considerations; it is not possible to consider the compression

design and sensor topology design in isolation.

References

[1] B. Gyselinckx, C. Van Hoof, J. Ryckaert, R. F. Yazicioglu, P. Fiorini, and V. Leonov,

“Human++: autonomous wireless sensors for body area networks,” in IEEE CICC,

San Jose, September 2005.

[2] A. J. Casson, D. C. Yates, S. J. Smith, J. S. Duncan, and E. Rodriguez-Villegas,

“Wearable electroencephalography,” IEEE Eng. Med. Biol. Mag., vol. 29, no. 3, pp.

44–56, 2010.

[3] N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, and A. P. Chandrakasan,

“A micro-power EEG acquisition SoC with integrated feature extraction processor

for a chronic seizure detection system,” IEEE J. Solid-State Circuits, vol. 45, no. 4,

pp. 804–816, 2010.

[4] A. M. Abdulghani, A. J. Casson, and E. Rodriguez-Villegas, “Quantifying the fea-

sibility of compressive sensing in portable electroencephalography systems,” in HCI

international, San Diego, July 2009.

[5] F. Chen, A. P. Chandrakasan, and V. M. Stojanovic, “Design and analysis of a

hardware-efficient compressed sensing architecture for data compression in wireless

sensors,” IEEE J. Solid-State Circuits, vol. 47, no. 3, pp. 744–756, 2012.

[6] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, vol. 52, no. 4,

pp. 1289–1306, 2006.

[7] E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE

Signal Processing Mag., vol. 25, no. 2, pp. 21–30, 2008.

[8] U. Gamper, P. Boesiger, and S. Kozerke, “Compressed sensing in dynamic MRI,”

Magn. Reson. Med., vol. 59, no. 2, pp. 365–373, 2008.

256



[9] T. V. Sreenivas and W. B. Kleijn, “Compressive sensing for sparsely excited speech

signals,” in IEEE ICASSP, Taipei, April 2009.

[10] Y. Zhang, S. Mei, Q. Chen, and Z. Chen, “A novel image/video coding method

based on compressive sensing theory,” in IEEE ICASSP, Las Vagas, April 2008.

[11] A. M. Abdulghani, A. J. Casson, and E. Rodriguez-Villegas, “Compressive sensing

scalp EEG signals: implementations and practical performance,” Med. Biol. Eng.

Comput., vol. 50, no. 11, pp. 1137–1145, 2012.

[12] A. M. R. Dixon, E. G. Allstot, D. Gangopadhyay, and D. J. Allstot, “Compressed

sensing system considerations for ECG and EMG wireless biosensors,” IEEE Trans.

Biomed. Circuits Syst., vol. 6, no. 2, pp. 156–166, 2012.

[13] Z. Zhang, T.-P. Jung, S. Makeig, and B. D. Rao, “Compressed sensing of EEG for

wireless telemonitoring with low energy consumption and inexpensive hardware,”

IEEE Trans. Biomed. Eng., vol. 60, no. 1, pp. 221–224, 2013.

[14] Texas Instruments. (2012) MSP430 ultra-low power 16-bit microcontrollers.

[Online]. Available: http://www.msp430.com/.

[15] H. Dubois-Ferrière, L. Fabre, R. Meier, and P. Metrailler, “TinyNode: a compre-

hensive platform for wireless sensor network applications,” in Proc. IPSN, Nashville,

April 2006.

[16] M. Johnson, M. Healy, P. van de Ven, M. Hayes, J. Nelson, T. Newe, and E. Lewis,

“A comparative review of wireless sensor network mote technologies,” in IEEE Sen-

sors, Christchurch, October 2009.

[17] A. Burns, B. R. Greene, M. J. McGrath, T. J. O’Shea, B. Kuris, S. M. Ayer,

F. Stroiescu, and V. Cionca, “ShimmerTM — a wireless sensor platform for nonin-

vasive biomedical research,” IEEE Sensors J., vol. 10, no. 9, pp. 1527–1534, 2010.

[18] Nordic Semiconductor. (2012) Home page. [Online]. Available:

http://www.nordicsemi.com/.

[19] Texas Instruments. (2013) CC430 RF SOC series. [Online]. Available:

http://www.ti.com/lsds/ti/microcontroller/16-bit msp430/rf soc/overview.page.

[20] FatFs Generic FAT File System Module. (2012) Home page. [Online]. Available:

http://elm-chan.org/fsw/ff/00index e.html.

[21] Hynix. (2012) Home page. [Online]. Available: http://www.hynix.com/.

[22] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis

pursuit,” SIAM Rev., vol. 43, no. 1, pp. 129–159, 2001.

257

http://www.msp430.com/.
http://www.nordicsemi.com/.
http://www.ti.com/lsds/ti/microcontroller/16-bit_msp430/rf_soc/overview.page.
http://elm-chan.org/fsw/ff/00index_e.html.
http://www.hynix.com/.


[23] SparseLab. (2012) Home page. [Online]. Available: http://sparselab.stanford.edu/.

[24] M. Andrle and L. Rebollo-Neira, “Cardinal B-spline dictionaries on a compact in-

terval,” Appl. Comput. Harmon. Anal., vol. 18, no. 3, pp. 336–346, 2005.

[25] Highly nonlinear approximations for sparse signal representation. (2012) Home

page. [Online]. Available: http://www.nonlinear-approx.info/.

[26] J. Xu, R. Yazicioglu, P. Harpe, K. Makinwa, and C. V. Hoof, “A 200µw eight-channel

acquisition ASIC for ambulatory EEG systems,” in IEEE ISSCC, San Francisco,

February 2011.

[27] B. Murmann. (2013) ADC Performance Survey 1997-2013. [Online]. Available:

http://www.stanford.edu/∼murmann/adcsurvey.html.

[28] S. Aviyente, “Compressed sensing framework for EEG compression,” in IEEE/SP

SSP, Madison, August 2007.

[29] S. Senay, L. F. Chaparro, M. Sun, and R. J. Sclabassi, “Compressive sensing and

random filtering of EEG signals using slepian basis,” in EUSIPC, Lausanne, August

2008.

[30] A. M. Abdulghani and E. Rodriguez-Villegas, “Compressive sensing: From “com-

pressing while sampling” to “compressing and securing while sampling”,” in IEEE

EMBC, Buenos Aires, September 2010.

[31] Q. Hao and F. Hu, “A compressive eletroencephalography EEG sensor design,” in

IEEE Sensors, Kona, September 2010.

[32] B. Kemp and J. Olivan, “European data format ‘plus’ (EDF+), an EDF alike stan-

dard format for the exchange of physiological data,” Clin. Neurophysiol., vol. 114,

no. 9, pp. 1755–1761, 2003.

[33] G. Chen and E. Rodriguez-Villegas, “System-level design trade-offs for truly wear-

able wireless medical devices,” in IEEE EMBC, Buenos Aires, September 2010.

[34] Igor Carron. (30th January 2010) CS: Q&A with Esther Rodriguez-Villegas on a

compressive sensing EEG. [Online]. Available: http://nuit-blanche.blogspot.com/.

[35] H. Mamaghanian, N. Khaled, D. Atienza, and P. Vandergheynst, “Compressed sens-

ing for real-time energy-efficient ECG compression on wireless body sensor nodes,”

IEEE Trans. Biomed. Eng., vol. 58, no. 9, pp. 2456–2466, 2011.

[36] A. Y. Wang, “Low power RF transceiver modelling and design for wireless microsen-

sor networks,” PhD thesis, Massachusetts Institute of Technology, 2005.

258

http://sparselab.stanford.edu/.
http://www.nonlinear-approx.info/.
http://www.stanford.edu/~murmann/adcsurvey.html.
http://nuit-blanche.blogspot.com/.

	Abstract
	List of Figures
	List of Tables
	List of Publications
	Acknowledgements
	Declaration of Originality
	Copyright Declaration
	Terms and Abbreviations
	Introduction
	Overview
	Thesis structure

	Sleep: What is it, why is it important and how is it monitored?
	Introduction
	Sleep disorders
	Types of sleep studies

	Polysomnography
	EEG
	EOG
	EMG

	Sleep staging rules
	R&K rules of sleep staging
	AASM rules of sleep staging
	Limitations and drawbacks of PSG

	Literature review of automatic sleep staging algorithms
	Validation of commercial sleep staging softwares and systems

	Review of commercial sleep scoring systems
	Introduction
	PSG systems
	Sleep scoring softwares
	Conclusions

	Proposed solution and challenges
	Challenges of the proposed approach

	Conclusion
	References

	Performance assessment of automatic sleep staging algorithms
	Introduction
	Polysomnography databases
	PhysioNet Sleep EDF Database
	PhysioNet Sleep EDF Expanded Database
	DREAMS Subjects Database
	DREAMS Patients Database
	Montreal Archive of Sleep Studies

	Recommendations for using PSG databases
	Classification: AASM and R&K
	Epoch size and signal duration
	Selecting data from long term recordings
	Training and test set
	Unscored epochs
	Channels

	Performance metrics
	Demonstration of the performance assessment recommendations using a sleep staging algorithm
	Case 1: Using DREAMS Subjects Database
	Case 2: Using Sleep-EDF Database
	Case 3: Using Sleep-EDF Database with different training and test set

	Discussion
	References

	REM sleep detection using single channel EEG
	Introduction
	Literature review of REM detection algorithms
	Material
	Methodology
	Frequency range of analysis
	Spectral Edge Frequency
	Quantifying the discriminatory power of SEFd
	Channel selection
	Further features

	REM detection algorithm
	Overview
	Establishing the threshold values

	Results
	Performance metrics
	Training data results
	Test data results
	Performance comparison

	Discussion
	References

	Automatic sleep staging using state machine-controlled decision trees
	Introduction
	Material and methods
	Database
	Features

	Sleep staging algorithm
	Design of decision trees
	Core tests
	Peripheral tests
	Final set of features

	Results
	Discussion
	References

	Integrated circuit design and implementation of an automatic sleep staging algorithm
	Introduction
	Input Controller
	Fast Fourier Transform
	Overview
	Data Input & Bit Reversal
	Register Banks
	Address Generator
	Fetch Data
	Twiddle Generator
	Butterfly
	Save Data
	Save Magnitudes
	Valid Out and Subepoch Address

	Feature Calculation
	Power calculation
	Spectral edge frequency calculation
	Data validity
	Block level implementation

	Classifier
	Design of each test
	Further optimisations
	Block level implementation

	Top level system
	RTL simulation
	Synthesis
	Formal verification
	Logic equivalence check
	Gate-level simulation

	Place and route
	Discussion
	References

	Conclusions
	Contributions
	Further work

	Appendices
	Databases
	PhysioNet Sleep EDF Database
	PhysioNet Sleep EDF Expanded Database
	DREAMS Subjects Database
	DREAMS Patients Database
	Montreal Archive of Sleep Studies
	References

	An open-source toolbox for standardised use of PhysioNet sleep EDF expanded database
	Introduction
	Getting the data
	Downloading PhysioNet data
	Conversion to Matlab format
	Downloading and processing annotations

	Using the data
	Performance evaluation

	Discussion
	References

	Automatic detection of sleep spindles
	Introduction
	Literature review of spindle detection algorithms
	Issues with automatic spindle detection
	Frequency range of spindles
	Amplitude
	Performance metrics
	Alpha rhythms
	Complexity

	Material
	Performance metrics
	Spindle detection: Algorithm I
	Methods
	Algorithm
	Results

	Spindle detection: Algorithm II
	Methods
	Algorithm
	Hardware implementation
	Results
	Power consumption

	Discussion
	References

	Compression in wearable sensor nodes for data transmission and storage
	Introduction
	Sensor platforms
	Hardware set up
	Wireless nodes
	Local memory nodes
	Compression design
	Other system aspects

	Analysis methods
	System performances
	Reconstruction accuracy
	Comparison to floating point
	Peak current consumption
	Average continuous current draw
	Relative current consumptions

	Discussion
	References


