106 research outputs found

    Comparison of two PWM schemes for SiC-device-based split output converters in high-switching-frequency applications

    Get PDF

    High-Efficiency NPC Multilevel Converter Using Super-Junction MOSFETs

    Get PDF
    Super-junction MOSFETs exhibit low on-state resistances and low switching losses. However, the reverse recovery behavior of their intrinsic diodes and their output capacitance characteristics make their deployment in freewheeling locations challenging. In this paper, a new snubber circuit arrangement has been proposed for a three-level converter to minimize the effect of the output capacitance. This is used in conjunction with diode deactivation circuitry to address the diode recovery behavior. Results are given for a three-phase three-level neutral point clamped converter running from an input voltage of 720 V and supplying a 3-kVA load. The converter operates with no forced cooling and efficiency is estimated at 99.3%. Apart from lower energy consumption, an advantage of high efficiency is a reduced converter mass due to reduced cooling requirements

    High-efficiency voltage source converters with silicon super-junction MOSFETs

    Get PDF
    High-efficiency power converters have the benefits of minimising energy consumption, reducing costs, and realising high power densities. The silicon super-junction (SJ) MOSFET is an attractive device for high-efficiency applications. However, its highly non-linear output capacitance and the reverse recovery properties of its intrinsic diode must be addressed when used in voltage source converters (VSCs). The research in this thesis aims at addressing these two problems and realising high efficiency. Initially, state-of-art techniques in the literature are reviewed. In order to develop a solution with simple hardware, no major auxiliary magnetic components, and no onerous timing requirements, a dual-mode switching technique is proposed. The technique is demonstrated using a SJ MOSFET based bridge-leg circuit. The hardware performance is then experimentally investigated with different power semiconductor device permutations. The transition conditions between the two switching modes do not have to be tightly set in order to maintain a high efficiency. The dual-mode switching technique is then further investigated with a current transformer (CT) arrangement embedded in the MOSFET’s gate driver circuit in order to control the profile of the MOSFET’s incoming drain current at turn on. The dual-mode switching technique, with or without a CT scheme, is shown to achieve high efficiency with minimal additional hardware.High-efficiency power converters have the benefits of minimising energy consumption, reducing costs, and realising high power densities. The silicon super-junction (SJ) MOSFET is an attractive device for high-efficiency applications. However, its highly non-linear output capacitance and the reverse recovery properties of its intrinsic diode must be addressed when used in voltage source converters (VSCs). The research in this thesis aims at addressing these two problems and realising high efficiency. Initially, state-of-art techniques in the literature are reviewed. In order to develop a solution with simple hardware, no major auxiliary magnetic components, and no onerous timing requirements, a dual-mode switching technique is proposed. The technique is demonstrated using a SJ MOSFET based bridge-leg circuit. The hardware performance is then experimentally investigated with different power semiconductor device permutations. The transition conditions between the two switching modes do not have to be tightly set in order to maintain a high efficiency. The dual-mode switching technique is then further investigated with a current transformer (CT) arrangement embedded in the MOSFET’s gate driver circuit in order to control the profile of the MOSFET’s incoming drain current at turn on. The dual-mode switching technique, with or without a CT scheme, is shown to achieve high efficiency with minimal additional hardware

    Single-phase T-type inverter performance benchmark using Si IGBTs, SiC MOSFETs and GaN HEMTs

    Get PDF
    In this paper, benchmark of Si IGBT, SiC MOSFET and GaN HEMT power switches at 600V class is conducted in single-phase T-type inverter. Gate driver requirements, switching performance, inverter efficiency performance, heat sink volume, output filter volume and dead-time effect for each technology is evaluated. Gate driver study shows that GaN has the lowest gate driver losses above 100kHz and below 100kHz, SiC has lowest gate losses. GaN has the best switching performance among three technologies that allows high efficiency at high frequency applications. GaN based inverter operated at 160kHz switching frequency with 97.3% efficiency at 2.5kW output power. Performance of three device technologies at different temperature, switching frequency and load conditions shows that heat sink volume of the converter can be reduced by 2.5 times by switching from Si to GaN solution at 60°C case temperature, and for SiC and GaN, heat sink volume can be reduced by 2.36 and 4.92 times respectively by increasing heat sink temperature to 100°C. Output filter volume can be reduced by 43% with 24W, 26W and 61W increase in device power loss for GaN, SiC and Si based converters respectively. WBG devices allow reduction of harmonic distortion at output current from 3.5% to 1.5% at 100kHz

    An Isolated Bidirectional Single-Stage Inverter Without Electrolytic Capacitor for Energy Storage Systems

    Get PDF

    Performance evaluation of a 3-level ANPC photovoltaic grid-connected inverter with 650V SiC devices and optimized PWM

    Get PDF
    Photovoltaic (PV) energy conversion has been on the spotlight of scientific research on renewable energy for several years. In recent years the bulk of the research on PV has focused on transformerless grid-connected inverters, more efficient than traditional line transformer-based ones, but more critical from a power quality point of view, especially in terms of ground leakage current. Neutral point clamped (NPC) inverters have recently gained interest due to their intrinsically low ground leakage current and high efficiency, especially for MOSFET-based topologies. This paper presents an active NPC (ANPC) topology equipped with 650 V SiC MOSFETs, with a new modulation strategy that allows to reap the benefits of the wide-bandgap devices. An efficiency improvement is obtained due to the parallel operation of two devices during the freewheeling intervals. Simulations and experimental results confirm the effectiveness of the proposed converter

    Comparative Study of Power Semiconductor Devices in a Multilevel Cascaded H-Bridge Inverter

    Get PDF
    This thesis compares the performance of a nine-level transformerless cascaded H-bridge (CHB) inverter with integrated battery energy storage system (BESS) using SiC power MOSFETs and Si IGBTs. Two crucial performance drivers for inverter applications are power loss and efficiency. Both of these are investigated in this thesis. Power devices with similar voltage and current ratings are used in the same inverter topology, and the performance of each device is analyzed with respect to switching frequency and operating temperature. The loss measurements and characteristics within the inverter are discussed. The Saber® simulation software was used for the comparisons. The power MOSFET and IGBT modeling tools in Saber® were extensively utilized to create the models of the power devices used in the simulations. The inverter system is also analyzed using Saber-Simulink cosimulation method to feed control signals from Simulink into Saber. The results in this investigation show better performances using a SiC MOSFET-based grid-connected BESS inverter with a better return of investment

    Compact electrothermal reliability modeling and experimental characterization of bipolar latchup in SiC and CoolMOS power MOSFETs

    Get PDF
    In this paper, a compact dynamic and fully coupled electrothermal model for parasitic BJT latchup is presented and validated by measurements. The model can be used to enhance the reliability of the latest generation of commercially available power devices. BJT latchup can be triggered by body-diode reverse-recovery hard commutation with high dV/dt or from avalanche conduction during unclamped inductive switching. In the case of body-diode reverse recovery, the base current that initiates BJT latchup is calculated from the solution of the ambipolar diffusion equation describing the minority carrier distribution in the antiparallel p-i-n body diode. For hard commutation with high dV/dt, the displacement current of the drain-body charging capacitance is critical for BJT latchup, whereas for avalanche conduction, the base current is calculated from impact ionization. The parasitic BJT is implemented in Simulink using the Ebers-Moll model and the temperature is calculated using a thermal network matched to the transient thermal impedance characteristic of the devices. This model has been applied to CoolMOS and SiC MOSFETs. Measurements show that the model correctly predicts BJT latchup during reverse recovery as a function of forward-current density and temperature. The model presented, when calibrated correctly by device manufacturers and applications engineers, is capable of benchmarking the robustness of power MOSFETs

    Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems

    Get PDF
    Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications
    • …
    corecore