932 research outputs found

    Design, Implementation, and Evaluation of a Fluorescence Laminar Optical Tomography Scanner for Brain Imaging

    Get PDF
    Implementation of new instrumentation and techniques for neuroscience research in recent years has opened new avenues in the study of the dynamics of large-scale neural networks such as the brain. In many of these techniques, including fluorescence recordings and optogenetic stimulation, a combination of photonics and molecular genetic methods are exploited to manipulate and monitor neural activities. Such techniques have been proven to be highly efficient in unraveling the mysteries of data processing in the micro circuits of the brain and as a result these techniques are widely used nowadays in most neuroscience labs. In optogenetics, cell-types of interest are genetically modified by expressing light-sensitive proteins adapted from microbial opsin. Once these proteins are expressed, we are able to use light of appropriate wavelengths to manipulate, increase or suppress neural activity of specific neurons on command. With a high temporal resolution (in the order of milliseconds) and cell-type-specific precision, optogenetics is able to probe how the nervous system functions in real-time, even in freely-moving animals. Currently, whenever genetic modifications are employed in the study of nervous systems, fluorescence proteins are also co-expressed in the same cells as biological markers to visualize the induced changes in the targeted cells. Despite its importance to trace the signal of such markers in-vivo, capabilities of the developed fluorescence tomography instrumentation are still limited and researchers mostly document the fluorescence distribution and expression of proteins of interest after euthanizing the animal and dissection of the tissue. In this project, we present our effort in implementing a fluorescence laminar optical tomography (FLOT) system which is specifically designed for non-invasive three dimensional imaging of fluorescence proteins within the brain of rodents. The application of the developed technology is not limited to optogenetics, but it can be used as a powerful tool to help improving the precision and accuracy of neuroscience and optogenetic experiments. In this design, a set of galvanometer mirrors are employed for realization of a fast and flexible scanner while a highly sensitive camera records the produced fluorescence signals. Fluorescence laminar optical tomography (FLOT) scanner has shown promising results in imaging superficial areas up to 2mm deep from the surface, with the resolution of ~200µm. Details of the design of the hardware and reconstruction algorithms are discussed and samples of experimental results are presented

    Image reconstruction in fluorescence molecular tomography with sparsity-initialized maximum-likelihood expectation maximization

    Get PDF
    We present a reconstruction method involving maximum-likelihood expectation maximization (MLEM) to model Poisson noise as applied to fluorescence molecular tomography (FMT). MLEM is initialized with the output from a sparse reconstruction-based approach, which performs truncated singular value decomposition-based preconditioning followed by fast iterative shrinkage-thresholding algorithm (FISTA) to enforce sparsity. The motivation for this approach is that sparsity information could be accounted for within the initialization, while MLEM would accurately model Poisson noise in the FMT system. Simulation experiments show the proposed method significantly improves images qualitatively and quantitatively. The method results in over 20 times faster convergence compared to uniformly initialized MLEM and improves robustness to noise compared to pure sparse reconstruction. We also theoretically justify the ability of the proposed approach to reduce noise in the background region compared to pure sparse reconstruction. Overall, these results provide strong evidence to model Poisson noise in FMT reconstruction and for application of the proposed reconstruction framework to FMT imaging

    Development of a radiative transport based, fluorescence-enhanced, frequency-domain small animal imaging system

    Get PDF
    Herein we present the development of a fluorescence-enhanced, frequency-domain radiative transport reconstruction system designed for small animal optical tomography. The system includes a time-dependent data acquisition instrument, a radiative transport based forward model for prediction of time-dependent propagation of photons in small, non-diffuse volumes, and an algorithm which utilizes the forward model to reconstruct fluorescent yields from air/tissue boundary measurements. The major components of the instrumentation include a charge coupled device camera, an image intensifier, signal generators, and an optical switch. Time-dependent data were obtained in the frequency-domain using homodyne techniques on phantoms with 0.2% to 3% intralipid solutions. Through collaboration with Transpire, Inc., a fluorescence-enhanced, frequency-domain, radiative transport equation (RTE) solver was developed. This solver incorporates the discrete ordinates, source iteration with diffusion synthetic acceleration, and linear discontinuous finite element differencing schemes, to predict accurately the fluence of excitation and emission photons in diffuse and transport limited systems. Additional techniques such as the first scattered distributed source method and integral transport theory are used to model the numerical apertures of fiber optic sources and detectors. The accuracy of the RTE solver was validated against diffusion and Monte Carlo predictions and experimental data. The comparisons were favorable in both the diffusion and transport limits, with average errors of the RTE predictions, as compared to experimental data, typically being less than 8% in amplitude and 7% in phase. These average errors are similar to those of the Monte Carlo and diffusion predictions. Synthetic data from a virtual mouse were used to demonstrate the feasibility of using the RTE solver for reconstructing fluorescent heterogeneities in small, non-diffuse volumes. The current version of the RTE solver limits the reconstruction to one iteration and the reconstruction of marginally diffuse, frequency-domain experimental data using RTE was not successful. Multiple iterations using a diffusion solver successfully reconstructed the fluorescent heterogeneities, indicating that, when available, multiple iterations of the RTE based solver should also reconstruct the heterogeneities

    Light propagation from fluorescent probes in biological tissues by coupled time-dependent parabolic simplified spherical harmonics equations

    Get PDF
    We introduce a system of coupled time-dependent parabolic simplified spherical harmonic equations to model the propagation of both excitation and fluorescence light in biological tissues. We resort to a finite element approach to obtain the time-dependent profile of the excitation and the fluorescence light fields in the medium. We present results for cases involving two geometries in three-dimensions: a homogeneous cylinder with an embedded fluorescent inclusion and a realistically-shaped rodent with an embedded inclusion alike an organ filled with a fluorescent probe. For the cylindrical geometry, we show the differences in the time-dependent fluorescence response for a point-like, a spherical, and a spherically Gaussian distributed fluorescent inclusion. From our results, we conclude that the model is able to describe the time-dependent excitation and fluorescent light transfer in small geometries with high absorption coefficients and in nondiffusive domains, as may be found in small animal diffuse optical tomography (DOT) and fluorescence DOT imaging

    Three-Dimensional Quantitative Cerenkov Luminescence Imaging

    Get PDF
    Cerenkov luminescence imaging (CLI) is an up-and-coming optical technique for in vivo imaging of beta-emitting radioisotopes. CLI relies on measurements of the Cerenkov radiation emitted when high-energy beta-particles travel through tissue. Compared to the well-established methods for radionuclide imaging, SPECT and PET, CLI has a potentially higher throughput for superficial measurements. The detection device used for CLI, usually a CCD, is in general cheaper and more flexible than the gamma cameras required for SPECT and PET. As the Cerenkov radiation is emitted in the UV-NIR range the imaging capabilities of CLI is however very depth limited. In this work a forward model for the emission and propagation of Cerenkov radiation induced by beta-particles originating from radioactive decay is presented. From the forward model an inverse model for the reconstruction of the radioisotope’s distribution is formulated. The models has been tested with both simulated data and measurements from in vitro phantom studies. Good results has been observed for the forward model as well as reconstructions based on simulated data. Reconstruction from the experimental measurements has however proven difficult

    Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates

    Get PDF
    Time-resolved fluorescence optical tomography allows 3-dimensional localization of multiple fluorophores based on lifetime contrast while providing a unique data set for improved resolution. However, to employ the full fluorescence time measurements, a light propagation model that accurately simulates weakly diffused and multiple scattered photons is required. In this article, we derive a computationally efficient Monte Carlo based method to compute time-gated fluorescence Jacobians for the simultaneous imaging of two fluorophores with lifetime contrast. The Monte Carlo based formulation is validated on a synthetic murine model simulating the uptake in the kidneys of two distinct fluorophores with lifetime contrast. Experimentally, the method is validated using capillaries filled with 2.5nmol of ICG and IRDye™800CW respectively embedded in a diffuse media mimicking the average optical properties of mice. Combining multiple time gates in one inverse problem allows the simultaneous reconstruction of multiple fluorophores with increased resolution and minimal crosstalk using the proposed formulation

    Adaptive stochastic Gauss-Newton method with optical Monte Carlo for quantitative photoacoustic tomography

    Get PDF
    SIGNIFICANCE: The image reconstruction problem in quantitative photoacoustic tomography (QPAT) is an ill-posed inverse problem. Monte Carlo method for light transport can be utilized in solving this image reconstruction problem. AIM: The aim was to develop an adaptive image reconstruction method where the number of photon packets in Monte Carlo simulation is varied to achieve a sufficient accuracy with reduced computational burden. APPROACH: The image reconstruction problem was formulated as a minimization problem. An adaptive stochastic Gauss-Newton (A-SGN) method combined with Monte Carlo method for light transport was developed. In the algorithm, the number of photon packets used on Gauss-Newton (GN) iteration was varied utilizing a so-called norm test. RESULTS: The approach was evaluated with numerical simulations. With the proposed approach, the number of photon packets needed for solving the inverse problem was significantly smaller than in a conventional approach where the number of photon packets was fixed for each GN iteration. CONCLUSIONS: The A-SGN method with a norm test can be utilized in QPAT to provide accurate and computationally efficient solutions
    • …
    corecore