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Abstract

Design, Implementation, and Evaluation of a Fluorescence
Laminar Optical Tomography Scanner for Brain Imaging

by

Mahya Sheikhzadeh

The University of Wisconsin–Milwaukee, 2016
Under the Supervision of Professor Ramin Pashaie

Implementation of new instrumentation and techniques for neuroscience research in recent

years has opened new avenues in the study of the dynamics of large-scale neural networks such

as the brain. In many of these techniques, including fluorescence recordings and optogenetic

stimulation, a combination of photonics and molecular genetic methods are exploited to

manipulate and monitor neural activities. Such techniques have been proven to be highly

efficient in unraveling the mysteries of data processing in the micro circuits of the brain and

as a result these techniques are widely used nowadays in most neuroscience labs.

In optogenetics, cell-types of interest are genetically modified by expressing light-sensitive

proteins adapted from microbial opsin. Once these proteins are expressed, we are able to use

light of appropriate wavelengths to manipulate, increase or suppress neural activity of specific

neurons on command. With a high temporal resolution (in the order of milliseconds) and

cell-type-specific precision, optogenetics is able to probe how the nervous system functions

in real-time, even in freely-moving animals.

Currently, whenever genetic modifications are employed in the study of nervous systems,

fluorescence proteins are also co-expressed in the same cells as biological markers to visualize

the induced changes in the targeted cells. Despite its importance to trace the signal of such

markers in-vivo, capabilities of the developed fluorescence tomography instrumentation are

still limited and researchers mostly document the fluorescence distribution and expression

of proteins of interest after euthanizing the animal and dissection of the tissue.
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In this project, we present our effort in implementing a fluorescence laminar optical tomogra-

phy (FLOT) system which is specifically designed for non-invasive three dimensional imaging

of fluorescence proteins within the brain of rodents. The application of the developed tech-

nology is not limited to optogenetics, but it can be used as a powerful tool to help improving

the precision and accuracy of neuroscience and optogenetic experiments.

In this design, a set of galvanometer mirrors are employed for realization of a fast and

flexible scanner while a highly sensitive camera records the produced fluorescence signals.

Fluorescence laminar optical tomography (FLOT) scanner has shown promising results in

imaging superficial areas up to 2mm deep from the surface, with the resolution of ∼ 200µm.

Details of the design of the hardware and reconstruction algorithms are discussed and samples

of experimental results are presented.

iii



c© Copyright by Mahya Sheikhzadeh, 2016
All Rights Reserved

iv



Table of Contents

1 Introduction and Background 1
1.1 Medical Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Light-Tissue Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Light Propagation Models in Turbid Media . . . . . . . . . . . . . . . . . . . 10
1.3.1 Radiative Transport Theory . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Diffusion Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.3.1 General Procedure in MC Modeling . . . . . . . . . . . . . . 15
1.3.3.2 MC modeling of Fluorescence Propagation . . . . . . . . . . 19

2 Overview of Optical Imaging Approaches 21
2.1 Confocal Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Two-photon Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Optical Coherence Tomography . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Diffuse Optical Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Fluorescence Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Laminar Optical Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Optogenetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Instrumentation and detection principles 36
3.1 Measurement Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Software Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Experimental Results and Data Analysis 55
4.1 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Phantom Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Design and Fabrication method of tissue phantoms . . . . . . . . . . 59
4.2.2 Measuring the Optical Properties of Phantoms . . . . . . . . . . . . . 63
4.2.3 Measuring the Phantom Thickness . . . . . . . . . . . . . . . . . . . 65
4.2.4 Phantom Experimental Results . . . . . . . . . . . . . . . . . . . . . 67

4.3 In-vivo Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.1 Animal Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

v



4.3.2 In-vivo Experimental Results . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Conclusion and Future Directions 81

Bibliography 83

vi



List of Figures

1.1 Light-tissue interactions. The chromophore is used to imply that a molecule
absorbs light, while the fluorophore indicates that a molecule emits light. 1:
Incident Light 2: Scattering 3: Reflectance 4: Diffuse Reflectance 5: Absorp-
tion 6: Fluorescence Emission [17]. . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 The optical properties of tissue and their inter-relationships; where θ is the
deflection angle of scatter and Ψ is the azimuthal angle of scatter [19]. . . . 6

1.3 Jablonski energy diagram. After an electron absorbs a high energy photon the
system is excited electronically and vibrationally (from S0 to S1). The system
relaxes vibrationally, and eventually fluoresces at a longer wavelength. The
thicker lines represent electronic energy levels, while the thinner lines indicate
various vibrational energy states [20]. . . . . . . . . . . . . . . . . . . . . . 9

1.4 Stokes shift is the difference (in wavelength or frequency) between positions
of the band maxima of the excitation and emission spectra in an electronic
transition [26]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 An overview of different light propagation models in tissue, a comparison
between their accuracy and mathematical simplicity [29]. . . . . . . . . . . 11

1.6 Terms included in the RTE. (a) Photons lost through the boundary (radiance).
(b)Photons lost due to absorption and scattering off of the direction s. (c)
Photon gain by scattering in direction s. (d) Photon gain through sources
within the volume dV [29]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Flow chart for MC modeling of the propagation of a single photon packet.
After initializing the photon packet and finding the first step size, the photon is
moved. All the photon-tissue interactions (absorption, scattering, refraction,
reflection, transmission) are recorded and the photon weight is adjusted until
the photon exits the tissue or the weight is below some threshold. Then, the
photon packet is terminated and a new photon packet is started [32] . . . . . 16

1.8 Flowchart for the fluorescence Monte Carlo modeling. λexc: excitation wave-
length and λemm: emission wavelength. A photon packet at the excitation
wavelength is launched. The fluorescence photon is generated upon the ab-
sorption of an excitation photon. Fluorescence light propagation with optical
properties at the emission wavelength is simulated [33]. . . . . . . . . . . . . 20

2.1 A comparison between different imaging modalities in terms of spatial resolu-
tion and depth of penetration [34]. . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Excitation and emission spectra of NADH (left) and FAD (right). NADH ex-
citation maximum happens at 340nm and the emission maximum is at 460nm.
FAD excitation maximum is at 448 nm and the emission maximum is at 520nm
[27]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Excitation and emission spectra of Green Fluorescence Protein (GFP) [47] . 26
2.4 A typical fluorescence imaging optical set up [20]. . . . . . . . . . . . . . . . 27

vii



2.5 (a) ChR2 (channelrhodopsin) allows positive sodium (Na+) and potassium
(K+) ions to pass through the channel in response to blue light exposure.
NpHR (halorhodopsin) regulates the flow of negative chloride (Cl−) ions in
response to yellow light. (b) Action spectra for ChR2 and NpHR, separated by
100nm. (c) Spike trains of neurons; blue light flashes cause action potential
in the neuron, while yellow light exposure inhibits the activity of the neurons
[59]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 (a) Optical fiber implanted in the brain tissue through a cannula guide, to
deliver light and stimulate the targeted brain region. (b) A rat receiving two
implants in the motor cortex on both hemispheres [9]. . . . . . . . . . . . . . 33

2.7 Diagrams comparing (a) electric neural stimulation and (b) optogenetic stim-
ulation. In optogenetics, cell-type targeting of the neurons is possible. [59]. . 34

2.8 (a) Schematic of the tagged ChR2 with green fluorescence protein (GFP), (b)
the confocal microscopy image of a rat brain’s slice, which is labeled with GFP. 35

3.1 Banana patterns of light penetration in the medium in the reflection and
transmission geometries. As a rough rule of thumb, the mean depth of light
penetration in the reflection mode is ρ/2 [66]. . . . . . . . . . . . . . . . . . 37

3.2 LOT measurement geometry and source-detector configurations. (a) Point
illumination [25]. (b) Line illumination. . . . . . . . . . . . . . . . . . . . . . 38

3.3 Block diagram of the FLOT system. Collimated laser light passes through
a cylindrical lens for line illumination. Dichroic mirror separates the illumi-
nation from the imaging path. Blue light is focused on the sample using the
scan lens and is scanned and de-scanned using a pair of galvanometers. Emit-
ted light is reflected from dichroic beam splitter and passes through a narrow
band filter then imaged on the CCD camera. . . . . . . . . . . . . . . . . . . 40

3.4 Schematic of the XT2 collimated emission-port adapter [67]. . . . . . . . . . 40
3.5 FLOT system implementation. (1) Laser Diode Drivers (2) EMCCD Camera

(3) Filter Wheel (4) XT2, Collimated Emission-port Adapter (5) Galvanome-
ter Mirrors (6) Galvanometer Drivers (7) Scan Lens (8) DAQ, Data Acqui-
sition Device (9) Lab Jack (10) Acromatic Lens (11) Dichroic Beam Splitter
(12) Cylindrical Lens (13) Collimator (14) Pigtailed laser diode. . . . . . . . 41

3.6 (a) EMCCD camera (no. 2 on Figure 3.5) [67], (b) galvanometer mirrors (no.
5 and 6 on Figure 3.5) [68], (c) data acquisition device (no. 8 on Figure 3.5)
[69]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 (a) Cylindrical lens (no. 12 on figure 3.5) [68], (b) achromatic doublet (no. 10
on figure 3.5) [68], (c) scan lens (no. 7 on figure 3.5) [68], (d) XT2, collimated
emission-port adapter (no. 4 on figure 3.5) [67]. . . . . . . . . . . . . . . . . 43

3.8 Raw data for 7 source-detector separations in FLOT measurements from a
sample with an embedded rectangular channel, 150 × 25 microns in size, lo-
cated at the depth of 1.19mm, and filled with 8µM FAD, after background
correction (color bar shows the fluorescence intensity). . . . . . . . . . . . . 47

3.9 Monte Carlo simulation in a scattering medium for four different SD separa-
tions from 0 to 1.6 mm in logarithmic scale (color bar shows the fluorescence
intensity). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

viii



3.10 2D and 3D reconstruction of a sample with a rectangular channel (150 × 25
microns) at the depth of 0.8 mm. (a) 2D ZX cross-section. (b) 3D volumetric
reconstruction, XYZ view. (c) 3D volumetric reconstruction, YZ (side) view.
(d) 3D volumetric reconstruction, XY (top) view. . . . . . . . . . . . . . . . 53

4.1 Simulation of 3D reconstruction of a square object at the depth of 2 mm. (a)
3D volumetric image of the real object in XYZ view. (b) 3D volumetric image
of the reconstructed object in XYZ view. . . . . . . . . . . . . . . . . . . . . 56

4.2 Simulation of 2D reconstruction of a square object at the depth of 2 mm.
(a) 2D ZX cross-sections of the real object. (b) 2D ZX cross-sections of the
reconstructed object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Phantom fabrication process 1. (a) Plain mold, (b) weighting curing agent
and TiO2, (c) weighting PDMS base and India ink, (d) pouring the mixture
into the mold, (e) vacuum degassing, (f) oven baking. . . . . . . . . . . . . 61

4.4 Phantom fabrication process 2. (g) Demolding and cutting the phantom, (h)
pining the input/output holes, (i) oxygen plasma surface activation, (j) final
phantom and its image under microscope, (k) thickness measurements, (l)
FAD injection using syringe pump. . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Double Integrating Sphere setup used to measure the diffuse reflected and
transmitted light. (a) Schematic (taken and modified from [88]), (b) experi-
mental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Measuring the depth of a phantom with the channel size of 100× 50µm. (a)
and (b) Measuring the depth under the microscope, (c) and (d) measuring
the depth using the OCT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 Optical setup for scanning phantoms. . . . . . . . . . . . . . . . . . . . . . . 67
4.8 A phantom with a rectangular channel (200 × 25 microns) embedded at the

depth of 0.82mm. Images were reconstructed by SART algorithm after 1600
iterations, (a) raw data (color bar shows the fluorescence intensity), (b) 2D ZX
cross-section of reconstructed channel (cross-section no. 30), (c) 3D volumetric
of reconstructed channel, XYZ view. . . . . . . . . . . . . . . . . . . . . . . 68

4.9 A phantom with a rectangular channel (150 × 25 microns) embedded at the
depth of 1.18mm. Images were reconstructed by SART algorithm after 4000
iterations, (a) raw data (color bar shows the fluorescence intensity), (b) 2D ZX
cross-section of reconstructed channel (cross-section no. 30), (c) 3D volumetric
of reconstructed channel, XYZ view. . . . . . . . . . . . . . . . . . . . . . . 69

4.10 A phantom with a rectangular channel (150 × 25 microns) embedded at the
depth of 1.18mm. Images were reconstructed by SART algorithm after 2000
iterations, (a) raw data (color bar shows the fluorescence intensity), (b) 2D ZX
cross-section of reconstructed channel (cross-section no. 30), (c) 3D volumetric
of reconstructed channel, XYZ view. . . . . . . . . . . . . . . . . . . . . . . 70

4.11 A comparison between the results of the OCT and FLOT in finding the depth
of channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.12 Experimental setup in surgery room for in vivo scanning of rat brain. . . . . 72
4.13 Injection sites and rat’s skull before the injection. . . . . . . . . . . . . . . . 74

ix



4.14 Single-fiber probe system [89]. A rat before and during the experiments with
the probe system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.15 Experimental raw data of a rat brain which was injected with GFP in right
hemisphere, at the depth of 0.8mm (color bar shows the fluorescence intensity). 76

4.16 Experimental data of an in-vivo scan of a rat brain with the injection depth
of 0.8mm and injection volume of 0.2µl in the right hemisphere, (a) a con-
focal microscopy image of a slice close to the site of experiment, (b) FLOT
reconstruction result, (c) probe system’s curve showing the fluorescence in-
tensity as a function of the penetration depth, (d) superimposed image of the
reconstruction result and the confocal microscopy image. . . . . . . . . . . . 77

4.17 Experimental data of an in-vivo scan of a rat brain with the injection depth
of 0.8mm and injection volume of 0.2µl in the left hemisphere, (a) a confo-
cal microscopy image of a slice close to the site of experiment, (b) FLOT
reconstruction result, (c) probe system’s curve showing the fluorescence in-
tensity as a function of the penetration depth, (d) superimposed image of the
reconstruction result and the confocal microscopy image. . . . . . . . . . . . 78

4.18 Experimental data of an in-vivo scan of a rat brain for which the gene expres-
sion was not successful, (a) the probe system signal, (b) confocal image of the
corresponding brain slice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

x



List of Tables

1.1 Comparison between some of the medical imaging modalities (adopted and
modified from [16]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

xi



List of Abbreviations

2D Two-dimensional

3D Three-dimensional

ART Algebraic Reconstruction Technique

CCD Charge Coupled Device

ChR2 Channelrhodopsin-2

CM Confocal Microscopy

CT Computed Tomography

DA Diffusion Approximation

DAQ Data Acquisition

DE Diffusion Equation

DOT Diffuse Optical Tomography

EMCCD Electron-multiplying Charge-coupled Device

FAD Flavin Adenine Dinucleotide

FCM Fluorescence Confocal Microscopy

FCT Fluorescence Coherence Tomography

FLOT Fluorescence Laminar Optical Tomography

fMRI functional Magnetic Resonance Imaging

FMT Fluorescence MolecularTtomography

FOV Field of View

FP Fluorescent Proteins

GFP Green Fluorescent Protein

IAD Inverse Adding Doubling

LOT Laminar Optical Tomography

MC Monte Carlo

xii



MPM Multi-photon Microscopy

MRI Magnetic Resonance Imaging

NADH Nicotinamide Adenine Dinucleotid

NpHR Natronomonas Haraonis Halorhodopsin

OCM Optical Coherence Microscopy

OCT Optical Coherence Tomography

PAM Photo-acoustic Microscopy

PAT Photo-acoustic Tomography

PDMS Polydimethylsiloxane

PET Positron Emission Tomography

RT Radiation (Radiative) Transport (Transfer)

RTE Radiative Transfer Equation

SART Simultaneous Algebraic Reconstruction Technique

SD-OCT Spectral-Domain Optical Coherence Tomography

SIRT Simultaneous Iterative Reconstruction Technique

SNR Signal to Noise Ratio

SPECT Single-Photon Emission Computerized Tomography

TiO2 Titanium Dioxide

TPM Two-photon Microscopy

US Ultrasound

YFP Yellow Fluorescent Protein

xiii



Acknowledgements

The research included in this thesis could not have been performed if not for the assis-

tance, patience, and support of many individuals. I would like to extend my gratitude first

and foremost to my advisor Dr. Ramin Pashaie for the continuous support of my Masters

study and research, for his motivation, enthusiasm, and immense knowledge. I was always

amazed, by his patience and approach to the solutions of any problem. Apart from tech-

nical discussions, I had learned from him on how to develop scientific thinking, and more

importantly, how to keep an open mind. I attribute the level of my Masters degree to his

encouragement and effort, while allowing me the room to work in my own way.

I would also like to thank Dr. Chiu Tai Law, and Dr. Yongjin Sung for serving as my

committee members and the assistance they provided at all levels of the research project.

I owe my deepest gratitude to our collaborators, Dr. Woo Jin Chang, Wookkun Kwon,

Demartment of Mechanical Engineering, Dr. Fred J. Helmstetter, and Dr. Patrick Cullen,

Department of Neuroscience, at the University of Wisconsin-Milwaukee, for providing us

with the help in making our phantoms and conducting the in-vivo experiments on rat brains.

Without their collaborations and supports, this work could not reach to this level.

Thanks must go to my fellow lab mates in BIST lab, for the stimulating discussions, and

for all the fun we have had in the last two years. My sincere thanks to Mehdi Azimpour,

who worked on this project with me, for pointing me the direction and giving useful ideas

and sharing his knowledge and experience. Farid Atry also deserves special thanks for many

interesting discussions we had on the hardware of the system and reconstruction schemes.

Last but not the least, I would like to thank my family for the support they provided

me through my entire life, and in particular, I must acknowledge my dear mother for her

unconditioned love, my husband and best friend, Mehdi Gilaki, whom without his love,

encouragement and support, I would not be where I am today.

xiv



Chapter 1

Introduction and Background

Brain imaging using X-ray Computed Tomography (X-ray CT) or Magnetic Resonance

Imaging (MRI) are well accepted clinically these days. However, these methods are limited

in spatial resolution (in the range of submillimeter) and temporal resolution (in the range of

seconds). As a result, there are many unanswered questions on the normal brain functions,

due to its complexity, that makes it difficult to study in details with high resolution and less

scanning time, without damaging its functionality.

Optical brain imaging, as a fast and non-invasive method, allows the living brain to be

closely observed, and many functional interactions and changes, such as hemoglobin oxy-

genation, membrane potential and metabolic processes, to be investigated in details over

different durations. One of the most significant benefits of optical imaging is that it pro-

vides sensitivity to functional changes, either via intrinsic or extrinsic contrast changes in

absorption, fluorescence, or scattering parameters of the tissue under test [1][2].

In spite of the the advantages of in-vivo optical imaging, there are also many challenges.

One significant challenge is the multiple light scattering of photons which distorts the waves

propagating through the tissue, causing the loss of directionality. This can effect the per-

formance of optical imaging, especially in terms of the penetration depth and achievable

imaging resolution [3][4]. While there have been efforts to mitigate the effect of light scat-

tering, by using techniques such as confocal and two-photon microscopy [5][6], that work by

rejecting the scattered light, there also have been interesting studies in which they not only

overcome the effect of light scattering but also make use of the multiple scattering in an

effective way [4].

Laminar Optical Tomography (LOT) [7] was developed to address this need as an optical
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imaging modality that provides non-contact imaging of superficial tissue, offering better

resolution than Diffuse Optical Tomography (100-200 micron), and deeper penetration depth

compared to Laser Scanning Microscopy (> 2mm). The fact that LOT takes advantage of

absorption, scattering and fluorescence contrast, over a large field of view and high acquisition

speeds, makes it suitable for imaging of superficial tissue such as retina, skin, endothelial

tissues and cortical regions of the brain [8].

The aim of this project is to improve the quality and functionality of the latest LOT de-

sign, focusing on fluorescence imaging for optogenetic aplications. Optogenetics is a recently

developed neuromodulation technique, which allows the activity of neurons to be modu-

lated by light, with high spatial and temporal resolution. For this purpose, the targeted

cells are genetically modified to produce light-sensitive proteins [9]. Fluorescent markers

are a common choice for serving as biomarkers in optogenetics. Introducing these proteins

into targeted cells or the brains of live animals provides a systematic mechanism to track

light sensitization of neurons. This project strives to introduce and test a technique for the

brain imaging to extract the location and depth information of the fluorescent distribution

following the gene delivery.

This chapter starts with a brief introduction to medical imaging modalities and the

physics of the light tissue interaction. Then, different models for light propagation in tissue,

relevant to this project, are summarized.

1.1 Medical Imaging

Medical imaging refers to several different technologies and modalities that aim to image

a specific physiological activities (functional imaging) or anatomical structure (structural

imaging). These technologies provides different information based on their applications on

different parts of the body and can be used to study or treat diseases, injuries, screen drugs

and effectiveness of medical treatments. In general, imaging techniques include the fields of
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radiology, nuclear medicine and optical imaging.

Radiological methods render the anatomical and physiological details of the human

body with a very high spatial and temporal resolution [10]. This discipline includes methods

such as Ultrasound (US), X-ray, Computed Tomography (CT) and Magnetic Resonance

Imaging (MRI).

Ultrasound is a noninvasive and effective medical procedure that uses high frequency

sound waves to create images of internal organs. It’s an extremely fast technique, which is

capable of real-time imaging with relatively high spatial resolution and involves no ionizing

radiation [11]. Ultrasound uses a device known as a transducer to send high-frequency sound

waves into the body. Sound waves emitted by the transducer reflect back from internal

structures and are transmitted back to the ultrasound machine to produce images of the

area of interest. Ultrasound technology can also produce audible sounds of blood flow using

Doppler effect, to be used for other applications such as the detection of compromised blood

flow in veins and arteries. However the weakness of this technique is the poor soft-tissue

contrast, that causes certain organs not to be easily imaged.

X-ray technology is the oldest and most frequently used form of medical imaging. It uses

ionizing radiation to produce images of the patient’s internal structure by sending X-ray

beams through the body, and detecting the transmitted beams on the opposite side [12][13].

Contrast in the images between different tissue samples arises from differential attenuation

of X-rays beam in the body, which depends on the density of the organs [11]. X-rays are

especially useful in showing detailed images of skeletal structure. They are more limited

when it comes to injuries or abnormalities in soft tissues such as tendons and ligaments.

CT combines multiple X-ray projections taken from different angles to produce detailed

cross-sectional images (slices) of soft tissues, organs, bones, blood vessels and the brain. The

major disadvantage of both X-ray and CT is the use of ionizing radiation, which is harmful

for the body and as a result, there is a limit on the total radiation dose per year to which a

patient can be exposed [11].
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MRI is a noninvasive, high resolution technology that uses a magnetic field and radio

waves to create detailed images of internal organs and other tissues. MRI is very effective

in diagnosing a number of conditions as it has the ability to show the difference between

the normal and diseased soft tissues of the body. It is also capable of creating images of

biological functions such as cardiac function. However, the deficiency of this technique is

that it’s expensive, lengthy and more susceptible to patient’s motion.

In Nuclear imaging techniques, such as Positron Emission Tomography (PET) and

Single-Photon Emission Computerized Tomography (SPECT), the organ function and struc-

ture of the human body is being investigated as opposed to traditional anatomical imaging

such as CT or MRI. It involves the application of radioactive substances, introduced into

the body in very small amounts, to locate a disease within the body and deliver treatment

directly to targeted anatomical sites. Nuclear medicine images can be superimposed with CT

or MRI to produce detailed, computerized pictures of areas inside the body. This is known

as image fusion or co-registration and can lead to more precise information and accurate

diagnoses [14].

Optical imaging uses light and properties of photons to obtain detailed images of or-

gans, tissues or even smaller structures like cells or molecules. Unlike most other medical

imaging techniques, optical imaging is non-invasive as it uses non-ionizing radiation to excite

electrons without harming the tissue. As a result, it is much safer for patients and signif-

icantly faster so that it can be used for lengthy and repeated procedures to monitor both

static characteristics and dynamic events in the tissue or organ in real time [15].

Table 1.1 gives a quick comparison between some of the medical imaging techniques

discussed in this section.
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Table 1.1: Comparison between some of the medical imaging modalities (adopted and modified
from [16]).

Imaging Technique Portion of EM Ra-

diation

Spatial Resolution Depth Temporal Resolu-

tion

Magnetic resonance imaging

(MRI)

radiowaves 25 − 100µm no limit minutes to hours

Computed tomography (CT) X-rays 50 − 200µm no limit minutes

Ultrasound high-freq sound 50 − 500µm mm to cm seconds to min-

utes

Positron emission tomography

(PET)

high-energy γ rays 1-2 mm no limit 10 sec to minutes

Single photon emission computed

tomography (SPECT)

lower-energy γ

rays

1-2 mm no limit minutes

Optical fluorescence imaging visible light or

NIR

2-3 mm < 1cm seconds tomin-

utes

Imaging Technique Ability of hu-

man imaging

Advantages Disadvantages Cost

Magnetic resonance imaging

(MRI)

yes high spatial res., morphologi-

cal & func. imaging

low sensitivity, long scan and

post processing time, mass

probe

$$$$

Computed tomography (CT) yes bone, tumor & anatomy

imaging

limited soft tissue res., radia-

tion

$$

Ultrasound yes real-time, low cost limited spatial res. $$

Positron emission tomography

(PET)

yes high sensitivity, isotopes

can substitute naturally oc-

curring atoms, quantitative

translational research

PET cyclotron or generator

needed, relatively low spatial

res., radiation to subject

$$$$

Single photon emission computed

tomography (SPECT)

yes can image multiple probes,

adapted to clinical imaging

relatively low spatial res. be-

cause of sensitivity, collima-

tion, radiation

$$$

Optical fluorescence imaging yes but limited high sensitivity, detects flu-

orochrome in live and dead

cells

low spatial resolution,

surface-weighted

$-$$

1.2 Light-Tissue Interactions

Optical properties of a tissue can be characterized by studying the interaction of light

with a medium. It can also help us to extract important information about the structure and

dynamics of the materials. When light (laser beams) transport within scattering tissues such

as skin, breast, brain and vessels, different scenarios might happen. This includes absorption,

scattering, luminescence (fluorescence and phosphorescence), reflection from boundaries and

transmission through boundaries. These interactions are shown in Figure 1.1.
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Figure 1.1: Light-tissue interactions. The chromophore is used to imply that a molecule absorbs
light, while the fluorophore indicates that a molecule emits light. 1: Incident Light 2: Scattering
3: Reflectance 4: Diffuse Reflectance 5: Absorption 6: Fluorescence Emission [17].

Multiple scattering and absorption are the cause of laser beam broadening and decaying,

whereas bulk scattering is the main reason for beam dispersion in the backward direction.

As a result, light propagation within a tissue depends on the absorption and scattering

properties of its components. The size, shape, concentrations and refractive index of the

tissue’s particles as well as the polarization states of the incident light, all have major impacts

on the propagation of light in tissue [18].

Determining the optical properties of a tissue (absorption, scattering, anisotropy, reduced

scattering, refractive index) is the first step toward properly designing a device. Figure 1.2

shows the optical properties of tissue and their inter-relationships [19]. These properties can

be measured through a combination of experiments and optical theory, which will be covered

in more details in chapter 4.

Figure 1.2: The optical properties of tissue and their inter-relationships; where θ is the deflection
angle of scatter and Ψ is the azimuthal angle of scatter [19].
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1.2.1 Absorption

Absorption of light is the way in which the energy of a photon is taken up, typically

by transferring to the atoms and molecules of the matter, when light wave is propagating

through a medium. The overall effect of absorption is a reduction in the transmitted light

intensity which is often called attenuation [20].

The absorption coefficient µa[cm
−1], is a parameter that gives the probability for a photon

to be absorbed per unit path length. The reciprocal of absorption coefficient (1/µa) is

called the mean absorption length [21]. It determines how far into a material, light with a

particular wavelength, can penetrate before it is absorbed [22]. A large absorption coefficient

means that the beam is quickly attenuated as it passes through the medium while a small

absorption coefficient means that the medium is relatively transparent to the beam [20][23].

The absorption coefficient depends on the material and also on the wavelength of light which

is being absorbed. This may be related to other properties of the object through the Beer-

Lambert law:

I(L) = I0e
−µa.L, (1.1)

where I(L) is the intensity of light after passing through the sample, I0 is the initial light

intensity before passing through the sample, L is the path length and µa is the absorption

coefficient of the medium.

Chromophores are the structures of the tissue that absorb photons. They have different

absorption wavelengths [24]. According to Beers law, the absorption coefficient of a tissue can

be determined using the chromophore extinction coefficient (εi), chromophore concentrations

(ci), and the wavelength of light (λ) [25]:

µa(λ) =
∑
i

εi(λ)ci. (1.2)

As mentioned before, absorption is one of the sources of optical imaging contrast. Many
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substances in the body such as oxy-hemoglobin (HbO2) and deoxy-hemoglobin (HbR) in the

blood or melanin in the skin are highly absorbing. Therefore, absorption forms a basis for

many imaging techniques.

1.2.2 Scattering

In a scattering event, photons change the direction of propagation. This effect makes the

light broadening and decaying and therefore limits the depth of penetration and introduces

uncertainty in the path that light travels. The amount of scattering is inversely proportional

to the wavelength of the light [24].

The scattering coefficient µs[cm
−1], gives the probability for a photon to be scattered in

a matter per unit path length. The reciprocal of scattering coefficient (1/µs) is referred to

as the scattering mean free path [21], which is the step-size that photons can travel in tissue

before the scattering happens. Scattering coefficient can be expressed using Beer’s law:

T (L) = e−µs.L, (1.3)

where T(L) is the ballistic transmittance, L is the path length and µs is the scattering

coefficient of the medium.

Usually in biological tissues, each photon undergoes several scattering events. In this

case, the reduced scattering coefficient µ′s[cm
−1] can be defined along with the anisotropy

of the scatterer (g), the average cosine of the scattering angle, to describe this multiple

scattering process:

g = 〈cosθ〉, (1.4)

µ′s = µs(1− g), (1.5)

where θ is the deflection angle of scattering. Depending on the value of θ, g can get values

between 0 (for completely isotropic scattering, θ = 90◦) to 1 (for heavy forward scattering,
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θ = 0◦). For photon scattering in biological tissues, g is typically between 0.8 − 1. Similar

to the absorption, scattering is another source of optical contrast in tissue.

1.2.3 Fluorescence

Another fundamental mechanism of interaction between light and tissue is fluorescence,

which occurs upon the absorption of a photon energy by a fluorophore molecule at excita-

tion wavelength, followed by the emission of a secondary photon (fluorescence) at a longer

wavelength. Fluorescence is the result of a three-stage process: excitation of a molecule by

an incoming photon, vibrational relaxation of excited state electrons to the lowest energy

level, emission of a longer wavelength photon and return of the molecule to the ground state

[26]. These three events are classically presented by the Jablonski energy diagram in Figure

1.3 [20].

Figure 1.3: Jablonski energy diagram. After an electron absorbs a high energy photon the system
is excited electronically and vibrationally (from S0 to S1). The system relaxes vibrationally, and
eventually fluoresces at a longer wavelength. The thicker lines represent electronic energy levels,
while the thinner lines indicate various vibrational energy states [20].

9



In most cases, the emitted light has a longer wavelength (lower energy) than the ab-

sorbed radiation. This phenomenon is known as the Stokes shift (named after Irish physicist

George G. Stokes) and is measured as the difference between the maximum wavelengths or

frequencies in the excitation and emission spectra. The size of the stokes shift (Figure 1.4)

can range from just a few nanometers to over several hundred nanometers, depending on the

molecular structure [26]. Fluorescence process can provide valuable information about the

optical imaging contrast.

Figure 1.4: Stokes shift is the difference (in wavelength or frequency) between positions of the
band maxima of the excitation and emission spectra in an electronic transition [26].

1.3 Light Propagation Models in Turbid Media

The development of a reliable optical instrument requires precise understanding of the

light propagation in biological tissue. Therefore, modeling and simulation of photon propa-

gation in different structures is an important step toward any optical device’s design.

In one aspect, light propagation in tissue can be classified in two categories: particle

models and wave models. First category describes light propagation in terms of photon
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transport and includes methods such as radiation transport (RT) theory, diffusion theory

and Monte Carlo (MC). Second category uses wave propagation theory such as Maxwell

equations. For all these methods, we need to have a prior knowledge of the optical properties

of tissue. Figure 1.5 shows an overview of these approaches and gives a comparison between

them in terms of accuracy and mathematical simplicity.

Figure 1.5: An overview of different light propagation models in tissue, a comparison between
their accuracy and mathematical simplicity [29].

In this work, we only consider particle models of transport theory, which describes en-

ergy transport through a medium containing randomly distributed absorbing and scattering

particles. Describing light propagation in terms of photon transport allows to use a number

of mathematical simplifications to model complex mediums such as tissue, in compare with

the mathematically and analytically complex theory of Maxwell [28].

Photon transport in biological tissue can be equivalently modeled either analytically by

the radiative transfer equation (RTE) or numerically with Monte Carlo (MC) simulations.

RTE is difficult to solve and some approximations need to be taken into account. It is often

simplified by a diffusion approximation (DA). Overall, solutions to the diffusion equation
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for photon transport are more computationally efficient, but less accurate than Monte Carlo

simulations [21]. In this section, we mainly focus on Monte Carlo method, which best suited

for our application.

1.3.1 Radiative Transport Theory

Photons transport through turbid media can be expressed by the Radiative Transfer

Equation (RTE). RTE is derived by considering light to be a number of independently moving

particles (photons), and expressing the energy balance of incoming, outgoing, absorbed and

emitted photons of a small area element in the medium. Here, only the intensity of the light

is considered and interference effects (loss or gain in photon energy due to the interaction)

are not included in the model.

One approach to defining the RTE is based on a continuity equation for the photon

density per solid angle, N(r,s,t) [1/m3sr]. It describes the number of photons at the position

r and time t with velocity v in the direction s. Then, the radiance L(r,s,t) [W/m2sr] can be

defined as the propagation of photon power per unit area and solid angle [29]:

L(r, s, t) = N(r, s, t)
hv

λ
.c, (1.6)

where h is Plank’s constant and c is the speed of light in the medium. The RTE (also

called Boltzmann equation) can then be expressed in terms of the radiance L [21]:

∂L(r, s, t)

c∂t
= −s.5L(r, s, t)−(µa+µs)L(r, s, t)+µs

∫
4π

L(r, s, t)P (s′.s)dΩ′+S(r, s, t). (1.7)

Terms on the right hand side in the RTE can be interpreted as: flow through the bound-

aries, absorption and scattering off the direction of s, scattering into the direction of s and

sources S(r,s,t) [W/m3sr] located within the volume element, respectively [29]. Figure 1.6

shows a small volume v with photons traveling in the direction s:
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Figure 1.6: Terms included in the RTE. (a) Photons lost through the boundary (radiance).
(b)Photons lost due to absorption and scattering off of the direction s. (c) Photon gain by scattering
in direction s. (d) Photon gain through sources within the volume dV [29].

As mentioned before, RTE equation is difficult to solve numerically and exact solutions

to it only exist for relatively simple problems. The fact that biological tissue scatters light

strongly in the forward direction also makes the situation worse. Therefore, RTE is simplified

using few approximations.

1.3.2 Diffusion Approximation

A formal method to solve RTE is to find the solution to its homogeneous part and expand

the general solution in terms of the homogeneous solution obtained. In this regard, a simple

approach would be to expand the radiance using appropriate function series. A well-known

method is diffusion approximation (DA), which expresses the radiance L in equation 1.7 in

terms of the fluence rate. The time-dependent diffusion equation (DE) is often written as

[21]:

∂Φ(r, t)

c∂t
= −µaΦ(r, t) +D52 Φ(r, t) + S0(r, t), (1.8)
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where S0(r, t) is source term, Φ(r, t) [W/m2] is the fluence rate and indicates net radiant

energy or energy flow per unit area at position r at a given time t, and D is diffusion

coefficient:

Φ(r, t) =

∫ ∫
L(r, t)dΩ, (1.9)

D =
1

3(µa + µs(1− g))
. (1.10)

The diffusion approximation is only applicable when light propagates diffusely i.e. almost

isotropically where (1− g)µs � µa. This implies that the DE is not valid close to the light

source as the condition for having an almost isotropic source is for the light to efficiently

travel at least for a distance of 1/µ′s.

However, as we will cover later in more details, for our application (i.e. FLOT), the

diffusion approximation cannot be employed since none of these conditions are applicable

to FLOT and light cannot be assumed to be diffuse. Here an alternative approach is using

Monte Carlo Simulation.

1.3.3 Monte Carlo

Monte Carlo (MC) simulation provides a flexible yet rigorous approach for modeling the

light propagation in tissues with small dimensions, where the diffusion approximation is not

valid anymore. The required parameters for a MC simulation are the absorption coefficient,

scattering coefficient and the scattering phase function.

Supposing the random walk of photons, MC offers a stochastic model, which uses proba-

bility distributions that describe the step-size of photon movement between sites of photon-

tissue interaction and the angles of deflection in a photon’s trajectory. During the random

walk, depending on the optical properties of the medium, photon can get absorbed and lose

energy, scattered into different direction, refracted or reflected. MC works by tracking all of
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these light-tissue interactions and recording photons histories as they are scattered, absorbed

or reflected. After propagating many photons, the net distribution of all the photon paths

yields an accurate approximation to reality [20][30][31].

Figure 1.7 shows the flow chart of a general procedure of MC modeling. It starts with

lunching a photon packet with an initial assigned weight. Once launched, the photon is moved

a distance ∆s, step-size, which will be sampled randomly based on the optical properties of

the tissue. As the photon propagates in the tissue it may be scattered, absorbed, internally

reflected, or transmitted out of the tissue. At the end of each step, the photon packets weight

is updated. If the photon escapes from the tissue, the reflection or transmission of the photon

is recorded. If the photon is absorbed, the position of the absorption is recorded. Meanwhile,

the new step-size and scattering angle for the next step is sampled randomly based on their

respective probability distributions. The photon packet repeatedly moves in the tissue model

step-by-step until it either escapes from tissue or is completely absorbed. Then, another

photon packet is lunched and this process is repeated until the desired number of photons are

propagated. The process continues until the recorded reflection, transmission, and absorption

profiles approach some accurate approximation close to the real values [32][33].

1.3.3.1 General Procedure in MC Modeling

Photon Initialization [32]: N number of photons are launched, each with a photon

weight initially set to 1, which is computationally efficient. Starting coordinates for each

photon is identical and a photon initial direction is chosen via convolution with the beam

shape.

Propagation distance [32]: Choosing an efficient step-size, ∆s, is quite important.

A very small step might cause rare photon-tissue interactions while a very large one gives

us a wrong estimation of the real photon movements. In general, step-size must be small

relative to the average mean free path of a photon in tissue. The mean free pathlength is

the reciprocal of the total attenuation coefficient:
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Figure 1.7: Flow chart for MC modeling of the propagation of a single photon packet. After
initializing the photon packet and finding the first step size, the photon is moved. All the photon-
tissue interactions (absorption, scattering, refraction, reflection, transmission) are recorded and the
photon weight is adjusted until the photon exits the tissue or the weight is below some threshold.
Then, the photon packet is terminated and a new photon packet is started [32]

∆s� 1

µt
=

1

µa + µs
. (1.11)

Coordinates update [32]: For tracking photons movement we need the three spatial

coordinates of the position and three directional angles of the movement. First one is defined

with three Cartesian coordinates (x,y,z) and the second one with three direction cosines
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(µx, µy, µz). Then, the new coordinates (x’,y’,z’) are given by:

x′ = x+ µx,

y′ = y + µy, (1.12)

z′ = z + µz.

Internal reflection [32]: The probability that a photon is internally reflected is deter-

mined by the Fresnel reflection coefficient R(θi):

R(θi) =
1

2
[
sin2(θi − θt)
tan2(θi + θt)

+
tan2(θi − θt)
sin2(θi + θt)

], (1.13)

where θi is the angle of incident on the boundary and θt is the angle of transmission

which can be found using Snell’s law:

θi = cos−1 µz, (1.14)

ni sin θi = nt sin θt. (1.15)

A random number (ξ), uniformly distributed between 0 and 1, is used to determine if

the photon is reflected or transmitted. If (ξ) < R(θi) then the photon is internally reflected;

otherwise, the photon exits the tissue and the event is recorded either as backscattered or

transmitted light (depending on the position of the photon.) If the photon is recognized as

reflected, then the coordinates and directions of the photon is updated accordingly.

Photon absorption [32]: After each propagation step, a fraction of the photon packet

is absorbed and the remainder is scattered. The fraction of the packet that is absorbed is:

µa
µa + µs

= 1− µs
µa + µs

= 1− a, (1.16)

17



where a is the single particle albedo. Therefore, the new photon weight (w′) is given by

w′ = aw, which represents the fraction of the packet that is scattered.

Photon termination [32]: A minimum value for the weight of a photon packet is

defined. A technique named roulette is used to terminate a photon when its weight is below

minimum value. The roulette gives a photon a weight of w, one chance in m, of surviving

with the weight mw. Otherwise, w will be set to zero and the photon is terminated.

w =

 mw if ξ ≤ ( 1
m

)

0 elsewhere
(1.17)

Photon scattering [32]: A normalized phase function describes the probability density

function (PDF) for the azimuthal and longitudinal angles of a photon when it is scattered at

angle (θ, φ). If the phase function has no azimuthal dependence, then the azimuthal angle

φ is uniformly distributed between [0, 2π], and may be generated by multiplying a pseudo-

random number ξ ∈ [0, 1] by 2π (i.e. φ = 2πξ). The PDF for the scattered cosine of the

deflection angle (cosθ) in tissue is characterized by the Henyey-Greenstein phase function:

cosθ =
1

2g
{1 + g2 − [

1− g2

1− g + 2gξ
]2}, (1.18)

where


g ∼ −1 reflective

g ∼ 0 isotropic

g ∼ 1 forward

(1.19)

For isotropic scattering, g = 0 so:

cosθ = 2ξ − 1. (1.20)
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1.3.3.2 MC modeling of Fluorescence Propagation

Fluorescence modeling requires the consideration of an additional parameter, fluorescence

quantum yield, to describe the probability of a photon packet to be absorbed by a fluorophore

molecule, which causes the conversion to a fluorescence photon of a different wavelength and

directionality. The initial direction of the fluorescence photon is isotropic because of the

nature of fluorescence emission [33].

Figure 1.8 illustrates the MC modeling of fluorescence propagation in tissues with some

new steps added to the general MC modeling. After launching a photon packet with optical

properties at the excitation wavelength, there is a chance for a fluorescence photon to be

generated upon the absorption of an excitation photon after a time delay. This probability is

defined by the quantum yield and the time-delay is defined by the lifetime of the fluorescence

light. The rest of the procedure involves a general MC simulation to simulate fluorescence

light propagation with optical properties at the emission wavelength. Fluorescence simula-

tion is typically much more time-consuming than the simulation of diffuse reflectance due to

extra fluorescence photon propagation [33].

The theory of MC simulation is briefly explained in this section. The MC method is

necessarily statistical and therefore requires intensive computation time to achieve the desired

precision. However, its flexibility and recent advances in improving the speed, makes it a

standard and powerful tool in the field of tissue optics for simulated measurements of photon

transport. In our work, we used the MC method to simulate the light distribution in the

forward model. For more detailed explanation on MC simulation, the reader is referred to

literatures [30], [32], and [33].

In the next chapter, advantages and disadvantages of some of the optical imaging tech-

niques are reviewed.
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Figure 1.8: Flowchart for the fluorescence Monte Carlo modeling. λexc: excitation wavelength
and λemm: emission wavelength. A photon packet at the excitation wavelength is launched. The
fluorescence photon is generated upon the absorption of an excitation photon. Fluorescence light
propagation with optical properties at the emission wavelength is simulated [33].
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Chapter 2

Overview of Optical Imaging Approaches

Optical imaging techniques have emerged as non-invasive, fast, yet robust alternative

to conventional methods of medical imaging, in both clinical applications or laboratory

research. A main challenge for optical imaging instrumentation is overcoming the effect of

light scattering and absorption by tissue, which limit the penetration depth and degrades

the resolution. Depending on the penetration depth and resolution, imaging technologies

can be categorized into microscopic, mesoscopic and macroscopic scales.

In microscopic imaging technologies, the detected light is only minimally scattered, so

it can provide cellular or subcellular level imaging resolutions (< 1µm) but with a limited

penetration depth of a few hundred microns. This includes: Confocal Microscopy (CM),

Multi-photon Microscopy (MPM), Photoacoustic Microscopy (PAM), and Optical Coher-

ence Microscopy (OCM). On the other side, macroscopic imaging technologies, utilize light

to image large tissue volumes such as a whole organ or even whole body. These technologies

typically have penetration depth of several centimeters, but their resolutions are limited to

several tens to hundreds of micrometers. Macroscopic imaging technologies include: X-ray,

Computed Tomography (CT), Positron Emission Tomography (PET), Single-photon Emis-

sion Computerized Tomography (SPECT), Magnetic Resonance Imaging (MRI), Ultrasound

(US), and Diffuse Optical Tomography (DOT). Finally, Mesoscopic imaging technologies

bridge the gap between microscopic and macroscopic technologies with the imaging depth

of millimeters scale and resolution of few to hundred microns. This regime includes: Op-

tical Coherence Tomography (OCT), Laminar Optical Tomography (LOT), Fluorescence

LOT (FLOT), Fluorescence Coherence Tomography (FCT), and Photoacoustic Tomogra-

phy (PAT) [34][35]. Figure 2.1 shows a schematic comparison between the above mentioned
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techniques in terms of spatial resolution and depth of penetration.

Figure 2.1: A comparison between different imaging modalities in terms of spatial resolution and
depth of penetration [34].

In this chapter, we continue with a quick review of some of the microscopic and mesoscopic

techniques, continuing on reviewing some basics of fluorescence imaging and then will mainly

focus on LOT, a non-contact laser-scanning imaging technique, which incorporates the effect

of scattering to probe fluorescence contrast in living tissues in the range of 2mm with the

resolution of about 200µm. Optogenetics, as one of the applications of Fluorescence LOT is

then reviewed.

2.1 Confocal Microscopy

Confocal microscopy (CM) [37][38] increases optical resolution (< 1µm) by reducing the

amount of scattered light detected, with isolating signal from the focal point of a scanning
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laser beam. It uses a point light source that is focused and scanned on the tissue, with a

pinhole placed in front of the detector. The use of the pinhole rejects out-of-focus multiple

scattered light from reaching out the detector. The fluorescent or reflected light detected,

is then used to build up a high-resolution two dimensional (2D) image of the tissue. It is

possible to reconstruct a three dimensional (3D) structures by stacking individual 2D images

at different depths [36]. However, the limitation of CM is that it cannot image the tissue at

depths of more than 300 microns, as the likelihood of scattering events occurring becomes

too great and the confocal images become blurred once the focus of the beam is positioned

too deeply [35].

2.2 Two-photon Microscopy

Two-photon microscopy (TPM) [39][40] provides high-resolution (submicron) imaging

with deeper tissue penetration (500− 600µm) than confocal microscopy. In the two-photon

process, a molecule simultaneously absorbs two photons, which their individual energies are

only half of the energy state needed to excite that molecule, and then releases the energy

to an emission photon [36]. TPM uses longer wavelength light for excitation (means less

scattering and absorption in tissue) and a pinhole is not needed in the detection path,

therefore it can provide deeper penetration depth than CM [25]. TPM is typically using for

imaging fluorescent contrast and is able to image conventional fluorophores such as green

fluorescent protein (GFP), nicotinamide adenine dinucleotide (NADH) and flavin adenine

dinucleotide (FAD).

2.3 Optical Coherence Tomography

Optical coherence tomography (OCT) [41][42] is a technique for obtaining subsurface

images, up to 1-2mm depth, with high resolution in the range of 1 − 10µm. It uses low-

coherence near-infrared light to record volumetric images of biological tissues. OCT is based
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on the Michelson - Morley interferometer where light is interfered with itself in order to

precisely determine distances. Interferometry facilitates the measurement of the echo time

delay of back-scattered or reflected light from the tissue. When the two path lengths are

exactly same, a constructive interference pattern emerges, which is detected as some increase

in the amplitude. By changing the length of the reference path, it is possible to record

the data from different depth to build up a 3D image of the tissue [43][44]. OCT’s main

mechanism of contrast is back-scattering or back-reflection from interfaces within the tissue,

rather than absorption. The reliance of OCT on the coherence of the detected light makes

it unsuitable for fluorescence imaging [35].

2.4 Diffuse Optical Tomography

Diffuse Optical Tomography (DOT) [45] utilizes light in the near infrared spectral range

(650 − 1000nm) to probe deeper regions (several centimeters) in biological tissues such as

breast or brain. However, as a trade-off between depth and resolution, DOT has lower

resolution, in the order of millimeter or submillimeter, compared with most other imaging

techniques. On the other hand, DOT has the unique advantage of high sensitivity to specific

biomolecules and fluorophores, by probing absorption as well as scattering properties of

biological tissues, so can provide spatial distributions of intrinsic tissue optical properties or

molecular contrast agents through model-based reconstruction [34]. Image reconstruction in

DOT involves both forward and inverse problems, and the diffusion approximation is usually

used to predict the light propagation in the forward model [11].

2.5 Fluorescence Imaging

We covered the basis of fluorescence as a source of imaging contrast in chapter 1. Fluo-

rescence imaging has received particular attention recently due to the increasing availability

of fluorescent dyes, which can be detected at low concentrations without using harmless
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radiations. With fluorescence imaging we are able to investigate the tissue in different ap-

plications, both anatomically or functionally, in a noninvasive manner.

Fluorescence contrast agents, the molecules that produce the fluorescence light, are clas-

sified in two main categories: endogenous and exogenous. Some biological substances possess

intrinsic fluorescence that originates from chromophores, known as endogenous fluorophores

or autofluorescence. Intrinsic fluorescence can be used for diagnostic applications or for

understanding the mechanisms of molecular interactions. Endogenous fluorophores are gen-

erally associated with the structural proteins responsible for flexibility and rigidity of tissues

and organs such as collagen and elastin, or with the cellular metabolism such as FAD (Flavin

Adenine Dinucleotide) and NADH (Nicotinamide Adenine Dinucleotide) [46][48].

Excitation and emission spectra of two of auto-fluorescent coenzymes, NADH and FAD,

are displayed in Figure 2.2. As shown, NADH has a maximum in its excitation spectrum at

340nm and the emission maximum occur at 460nm, where FAD has its excitation maximum

at 448nm and a maximum in the emission spectrum at 520nm [27]. We used the FAD for our

phantom studies. Understanding the difference between these wavelengths is very important

for the proper design of optical systems.

Figure 2.2: Excitation and emission spectra of NADH (left) and FAD (right). NADH excitation
maximum happens at 340nm and the emission maximum is at 460nm. FAD excitation maximum
is at 448 nm and the emission maximum is at 520nm [27].
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The main shortcoming of endogenous fluorophores is that their signals are usually weak

and nonspecific due to their low excitation and emission wavelengths. For shorter wave-

lengths, tissue absorption is relatively high and the depth of penetration is limited. To solve

this problem, exogenous fluorescence probes have been developed to provide distinct fluores-

cence information related to physiological, cellular or molecular processes in living tissues.

The advantage of exogenous probes is that they are extremely diverse and cover a large

spectral range of wavelengths from 250nm to almost 1200nm [48]. Exogenous fluorescence

probes have the ability of targeting specific cellular or subcellular events and this ability dif-

ferentiates them from nonspecific dyes [46]. Two examples of exogenous fluorescence probes

are green fluorescence proteins (GFP) and yellow fluorescence proteins (YFP). Excitation

and emission spectra of GFP, which is used in our in-vivo studies, is shown in Figure 2.3.

Figure 2.3: Excitation and emission spectra of Green Fluorescence Protein (GFP) [47] .

In principle, the basis of fluorescence imaging is fairly straightforward: using an external

light of specific wavelength to excite fluorescent molecules in the sample, which is followed

by the release of longer wavelengths, lower energy light, called emission. The final goal

of fluorescent imaging is the detection of fluorescent emission using appropriate techniques

and optical equipment. Typical components of a fluorescence imaging device are shown in
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Figure 2.4: a light source, the excitation filter, the dichroic mirror or dichroic beamsplitter,

the emission filter, detectors, and objective lens. The dichroic and filters should be chosen

to match the excitation and emission spectra of target fluorophores.

Figure 2.4: A typical fluorescence imaging optical set up [20].

The main challenge here is the delivery of excitation light in a way that it reaches fluores-

cent molecules, despite the inherent absorption and scattering properties of the tissue, and

then detecting the emission light, which is usually a faint and weak signal. The positive side

is that fluorophores can be excited continuously and there is no signal decay limiting the exci-

tation. However, in some cases, photobleaching might happen, which is when the fluorescent

molecules accumulate chemical damage from the electrons excited during fluorescence. Using

more robust fluorophores, minimizing illumination time, or using photoprotective scavenger

chemicals can help reducing photobleaching probability [20].

In vivo fluorescence imaging can provide information at a wide range of resolutions and

imaging depths, from micrometers in subcellular level (microscopy) to centimeters in small-

animal whole-body imaging (fluorescence reflectance imaging and fluorescence molecular

tomography) [49]. In microscopic techniques, fluorescent dyes are usually used for monitoring
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the distribution of chemicals throughout the cell by taking microscopy images of the cell,

loaded with the dye. Viability studies on cell populations (alive or dead), imaging the genetic

material within a cell (DNA and RNA), and viewing specific cells within a larger population

also can be determined using fluorescence microscopy. Macroscopic imaging allows us to

study mostly the interactions between cells and provides a platform much closer to true in

vivo analysis in terms of structural architecture on microscopic and macroscopic scales [46].

In vivo fluorescence imaging is a growing field encompasses a wide range of different

techniques such as fluorescence confocal microscopy (FCM), plan reflectance imaging, flu-

orescence molecular tomography (FMT), and diffuse optical tomography (DOT). For more

information the reader is referred to literatures [46][50][51].

2.6 Laminar Optical Tomography

Laminar optical tomography (LOT) was first implemented in 2004 [7], as a mesoscopic

imaging technique, which incorporates the measurement geometry of DOT with a microscopy-

based setup. LOT performs depth-resolved 3D functional imaging offering 100 − 200µm

resolution and the frame rate of 100 fps, effective over the depth up to 2.5mm. It was ini-

tially developed for multi-spectral imaging of rat cortex where its use on thinned skull rat

cortex was demonstrated in 2007 [2][52]. Since then, several advances have been made to

the technique such as using it for fluorescence imaging [8][53] or integrating it with other

techniques such as OCT [54]. LOT also can be used in other in-vivo imaging applications

such as imaging of skin [55][56], heart [35], retina [57] or dental applications [58].

LOT uses a non-contact laser scanning setup [2][7][8][25] similar to confocal microscopy,

to raster scan a focused beam of light on the surface of the tissue. Laser beam passes

through a couple of lenses and is illuminated on the surface of the tissue using a pair of

moving galvanometer mirrors and again the returning light is descanned using the same

mirrors. Returning light is detected from both the focal point of the scanning beam, and
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also at a series of increasing distances (0 − 1.5mm) from the beams focus, using an array

of seven photodiode detectors. Usually light beams that scatter more in the tissue, travel

deeper through the tissue and are detected further away from the illumination point. This

measurement geometry allows features at different depths to be distinguished for producing

the raw data. Using an appropriate model of light transport and reconstruction method,

raw measurements can be converted into 3D images.

As mentioned, LOT is similar to confocal microscopy in using non-contact laser scan-

ning setup. However, unlike confocal microscopy, it does not have a pin hole for Z-scanning

the ballistic light. Instead, it achieves its depth-resolution by measuring both confocal and

multiply scattered light emerging from tissue, for a variety of source and detector positions

in a similar way to DOT configuration. The light measured in LOT is not diffused yet and

source-detector separations are much less (hundreds of microns) than in DOT (few centime-

ters) [8]. Therefore, LOT is an incorporation between these two techniques by providing

higher resolution than that of DOT (with less penetration) but deeper penetration than

confocal microscopy (with lower resolution) [25].

LOT is able to measure both absorption and fluorescence in the tissue. For absorption

measurements, the illumination light is the same wavelength as the detected light, while for

fluorescence measurements different filters and dichroic mirror should be used to separate

the two different excitation and emission wavelengths. Compared with OCT, LOT has lower

spatial resolution but is able to penetrate deeper well beyond the scattering limits of tissue

and can be used for fluorescent imaging. OCT suffers from poor sensitivity to absorption

contrast because it isolates only coherently backscattered light. It also cannot be used for

fluorescence imaging since it is not sensitive to fluorescence contrast [8][2].

Chapter 3 is devoted to describing the measurement geometry of LOT, the basic compo-

nents of an LOT system, and the analysis of LOT data in more details.
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2.7 Optogenetics

The project presented here, has the final goal of providing a new set of optical tools

for imaging the fluorescence distribution in living tissues. The application of the developed

technology is not limited to optogenetics, but it can be used as a powerful tool to help

improving the precision and accuracy of neuroscience and optogenetic experiments. Many

neuropsychiatric disorders benefit from understanding how specific brain cell types and neu-

rons are connected and function as a part of a larger network of neurons in the brain [59].

Optognetics is a neuromodulation method, which involves genetic and optical techniques

to monitor, control and measure the activities of specific cells or neurons within a living

tissue [9][20][60]. With a high temporal resolution (in the order of milliseconds) and cell-

type-specific precision, optogenetics is able to probe how the nervous system functions in

real-time, even in freely-moving animals.

During optogenetic experiments, a major common challenge that neuroscientists faced is

the need to precisely control one type of cell in the brain, while leaving the activities of oth-

ers unchanged. Methods like using electrodes or drugs were not good enough, as electrodes

cannot be used to precisely target defined cells, especially in moving animals, and drugs act

too slowly. Advances in optogenetics have opened new windows in neuroscience, and even

beyond neuroscience, by addressing and solving the need for controlling defined events in

specific cell types in intact systems [61][62]. Some primary benefits of optogenetic stimula-

tion over the conventional electrical method are: the ability of specific cell-type targeting,

bidirectional control of cellular activity for both activation and inhibition of the neurons and

high spatial and temporal resolutions [9].

In optogenetics, cell-types of interest are genetically modified by expressing light-sensitive

proteins adapted from microbial opsin tagged with a fluorescent protein. Once these proteins

are expressed, we are able to use light of appropriate wavelengths to manipulate, increase

or suppress, neural activity of specific neurons on command [9][61]. For confirming that
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the proteins are expressed within the specific cells, we can combine optogenetics with other

optical devices such as FLOT, which is able to record the fluorescence distribution in the

brain.

In general, optogenetic approach requires: (1) engineered control genetic tools to target

specific cells of interest (such as microbial opsin genes tagged with a fluorescent protein),

(2) appropriate technology for delivering light into tissues under investigation, and (3) ob-

taining compatible readouts and performing analysis on the neural activity using fluorescent

indicators (intrinsic or genetically encoded), electrical recording, fMRI or other technologies

[60][62].

The foundation of the optogenetic technology is based on two microbial opsins, channelrhodopsin-

2 (ChR2) adapted from an algae, and halorhodopsin (NpHR) adapted from a bacteria. Co-

expression of these proteins enables bidirectional control of cellular activities (activation or

inhibition) with high temporal and spatial resolution. ChR2 is a monovalent cation channel,

when illuminated with blue light (∼ 470nm) regulates the flow of positively charged ions by

permitting the entry of sodium (Na+) ions into the cell and exiting the potassium (K+) ions

to the outside of the cell. NpHR is a chloride pump, when stimulated with yellow light (∼

580nm), regulates the flow of negatively charged ions by facilitating the transport of chloride

(Cl−) ions by overcoming the membrane potential of the cell (Figure 2.5(a)). The action

spectra of the ChR2 and NpHR are shown in figure 2.5(b). Since there is a 100nm difference

between the peak sensitivity of the ChR2 and NpHR spectrums, bi-directional control of cells

is possible by using the blue light to drive the action potential and yellow light to suppress

the neural activity without considerable interference (Figure 2.5(c)) [59].

Next requirement to modulate the activity of neurons is finding a suitable method of light

delivery to the region of interest. There are different methods depending on the requirements

of the application, but the most common one is using a thin optical fiber (100 ∼ 200µm

diameter) implanted on the skull through a cannula guide (Figure 2.6). This method is

suitable to stimulate both superficial and deep brain tissue [59]. However, its field of stimu-
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Figure 2.5: (a) ChR2 (channelrhodopsin) allows positive sodium (Na+) and potassium (K+) ions
to pass through the channel in response to blue light exposure. NpHR (halorhodopsin) regulates
the flow of negative chloride (Cl−) ions in response to yellow light. (b) Action spectra for ChR2 and
NpHR, separated by 100nm. (c) Spike trains of neurons; blue light flashes cause action potential
in the neuron, while yellow light exposure inhibits the activity of the neurons [59].

lation is limited to the area close to the fiber tip, due to the light absorption and scattering

inside the tissue. For controlling the light distribution in the brain, more advanced light

delivery mechanisms are needed, such as making an array of channel waveguides where each

waveguide terminates at a different depth or moving an optical fiber inside the tissue [9].

Final step for optogenetic experiments is designing an appropriate readout technology.

A common method for this purpose is by using electrodes. However, one of the deficiencies

of electrical stimulation/recording is that the simultaneous input/output processing is not

typically possible due to artifacts associated with electrical stimulation [62]. Combining

optogenetics with electrodes provides a powerful tool for optical stimulation and parallel

32



Figure 2.6: (a) Optical fiber implanted in the brain tissue through a cannula guide, to deliver
light and stimulate the targeted brain region. (b) A rat receiving two implants in the motor cortex
on both hemispheres [9].

recording of the neural activities. Although, we still need to make sure that the recorded

signal is not an artifact resulting from the direct effects of light and temperature on the

recording electrode [63]. Since the stimulation is based on light, it is now possible to target

individual or large networks of neurons, simply by exposing them to appropriate wavelengths

(Figure 2.7).

Another approach for reading the neural activity during optogenetic stimulation is based

on the fluorescent proteins (FP). Fluorescent proteins can convert a physiological signal in

the form of the changes in the ions concentration, membrane voltage or pH level, to the

fluorescent output [64]. For example, action potential in the cell is associated with influx of

the intracellular calcium (Ca2+), and detection of the calcium ions can be an indicator of

the neural activity [65] .

Fluorescent proteins can also be served as bio-markers to provide a tool for confirming the

expression of the light-sensitive proteins such as ChR2 or NpHR after virally transfection.

Proper expression of the light activated proteins is essential for any successful optogenetic

experiments. For this purpose, microbial opsin genes tagged with a fluorescent protein (such
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Figure 2.7: Diagrams comparing (a) electric neural stimulation and (b) optogenetic stimulation.
In optogenetics, cell-type targeting of the neurons is possible. [59].

as YFP or GFP) are delivered and co-expressed in cells. If the expressed fluorescent proteins

is illuminated with the light of appropriate wavelength (e.g., blue light), they emit fluorescent

light, which indirectly confirms the expression of the light activated proteins.

Figure 2.8 (a) shows the schematic of the tagged ChR2 with green fluorescence protein

(GFP). The GFP can be excited with the blue light and the emitted green fluorescent

signal can be captured for the imaging purpose. The conventional method of confirming the

expression of the light sensitive proteins is by sacrificing the animal, extracting and slicing

the brain tissue and then detecting the fluorescence distribution using common fluorescence

microscopy techniques. In Figure 2.8 (b), the microscopic image of a rat brain slice, which

is labeled with GFP, is shown.

Our developed FLOT has the advantage of being able to monitor and reconstruct the

position and depth of fluorescence distribution in the tissue. In our experiments we excited

the brain using blue light (450nm laser) and were able to monitor and extract the XYZ

coordinates of the GFP distribution to confirm appropriate expression of the light sensitive
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opsins in the brain of small rodents.

Figure 2.8: (a) Schematic of the tagged ChR2 with green fluorescence protein (GFP), (b) the
confocal microscopy image of a rat brain’s slice, which is labeled with GFP.
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Chapter 3

Instrumentation and detection principles

This chapter describes the development of our FLOT system for fluorescence imaging.

We will cover the measurement configuration, hardware design (optical layout), controlling

software, raw data analysis, image reconstruction, and reconstructed data representations.

FLOT provides a relatively simple system to image superficial fluorescent objects in a highly

scattering medium like the brain tissue, up to 2 mm depth.

3.1 Measurement Configurations

As we covered before in sections 1.2.3 and 2.5, in fluorescent imaging, the fluorophore

is excited by light of appropriate wavelength within its absorption spectrum and then the

emitted light, which has a longer wavelength, is detected by a detector. Therefore, the first

step toward the system design is determining source-detector configurations. Typically in

optical tomography, there are two main source-detector configurations for detecting light at

known distances from point sources: reflection and transmission geometries (Figure 3.1).

In reflection geometry, source and detectors are defined on the same side of the medium

at a distance ρ. Usually light is delivered through a fiber connected to a laser source and

is detected by a photo-multiplier tube or an avalanche photo-diode. In the transmission

geometry, sources and detectors are placed on the opposite sides of the sample and light

detection is done using either a fiber or a lens mounted on a CCD camera system [66].

In a LOT system, the reflection geometry is adapted therefore, all of the sources and

detectors are placed on one side of the tissue. The excitation light is delivered in the form

of a point source [7] or line illumination [54]. In both cases, measurements are acquired by
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Figure 3.1: Banana patterns of light penetration in the medium in the reflection and transmission
geometries. As a rough rule of thumb, the mean depth of light penetration in the reflection mode
is ρ/2 [66].

scanning a focused laser beam over the surface of the tissue (source position) and collecting

the returning light at detector positions close to the source coordination. The distance

between the illumination and detection points is known as source-detector (SD) separation.

LOT is able to detect both confocal and multiple scattered light emerging from the

surface of the tissue at various distances away from the illumination point. In our design,

detectors are defined at 7 (or 9) fixed distances away from the scanning spot in the range of

0 to 1.6mm (1 confocal spot and 6 to 8 neighboring spots). For higher SD separations, light

has scattered more and travelled deeper and provides information about the deeper parts of

the tissue. After a full scan, we have the raw data of seven different SD separations, each

with a different weighted depth-sensitivity. Using these measurements with an appropriate

method of light propagation and image reconstruction, we are able to reconstruct 3D images

revealing the fluorescence distribution in the tissue [2].

Our FLOT system is designed based on the line illumination technique (Figure 3.2(b)).

We used an EMCCD camera to acquire data along the lines parallel to the illumination

pattern, which reduces the scanning time significantly, since only 1D scanning is required to

acquire 3D information. Seven (up to nine) lines of source-detectors (D1 to D7) are defined
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with 0.2 mm separation from 0 to 1.2mm (up to 1.6mm). In traditional LOT systems

with point illumination (Figure 3.2(a)), fast photo-detectors are required to acquire high

resolution data and reduce the scanning time. In this case, 3D images are obtained through

2D raster scanning of the illumination point. The SD separations are fixed and limited to

the fiber’s diameter (200µm) in conventional LOT, while in our case we are able to decrease

the SD separations to 16 µm, which is the pixel size of the camera.

Figure 3.2: LOT measurement geometry and source-detector configurations. (a) Point illumina-
tion [25]. (b) Line illumination.

The number of measurement configurations is physically limited because of memory con-

sumption for reconstructing the 3D volumetric images. In our case, each pixel of the EMCCD

camera could be considered as one detector (512×512 pixels). However, only a certain num-

ber of pixels are used in each direction to define the lines of source-detectors. Therefore,

while acquiring as much information as possible, the size of the matrix we will be using for

the reconstruction would not be too large.

3.2 Hardware Design

Figure 3.3 shows the schematic diagram of our FLOT setup. The tissue is excited using

a blue light (450nm single mode pigtailed laser diode, Thorlabs Inc., Newton, NJ) and the
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fluorescent emission (530nm) is captured. The blue laser is collimated and passed through

a cylindrical lens (LJ1695RM, Thorlabs Inc., Newton, NJ) to be expanded for line-field

illumination, and then hits a dichroic mirror (FF440/520-Di01, Semrock, Rochester, NY).

Wavelengths shorter than a threshold (excitation light) pass through the dichroic mirror, and

wavelength longer than that threshold (emission light) reflect toward the imaging components

of the system. The excitation light, after passing through the dichroic mirror, hits on a

pair of moving X and Y galvanometer mirrors (GVS212, Thorlabs Inc., Newton, NJ). The

galvanometer mirrors are controlled by the computer software prepared under LabVIEW

(National Instruments, Austin, TX) to steer the collimated beam through a scan lens. The

scan lens (LSM03-VIS, Thorlabs Inc., Newton, NJ) focuses the line-beam on the surface of

the tissue to scan the defined field of view by converting the angular changes on one of the

galvanometer mirrors into a horizontal translation of the scanning line.

The re-emitted light from the fluorophores inside the tissue travels back through the same

scan lens and is de-scanned by the galvanometer mirrors. To this point, the excitation and

detection path are the same; however, after reaching the dichroic beam splitter, only the

emitted fluorescence light is reflected toward the light detection components of the system.

To completely remove the unwanted wavelengths, we used a narrow band green optical

filter in front of the EMCCD camera (Evolve 512, Photometrics, Tucson, AZ). The light

entering the optical filter is a converging beam. Therefore, to prevent any error in the

imaging system, a two-piece collimated emission-port adapter (XT2, Photometrics, Tucson,

AZ) is used, which provides a collimated (infinity) space allowing us to place the filter wheel

for using any type of optical filters in the system without sacrificing the performance or

introducing optical aberrations. The architecture of the XT2 is shown in Figure 3.4. Finally,

an EMCCD camera is used to acquire data along the lines parallel to the illumination pattern.

Consequently, photons that travel through various depths are detected simultaneously within

a shorter scanning time. The FLOT system implementation is shown in Figure 3.5 from

different angles.
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Figure 3.3: Block diagram of the FLOT system. Collimated laser light passes through a cylindrical
lens for line illumination. Dichroic mirror separates the illumination from the imaging path. Blue
light is focused on the sample using the scan lens and is scanned and de-scanned using a pair of
galvanometers. Emitted light is reflected from dichroic beam splitter and passes through a narrow
band filter then imaged on the CCD camera.

Figure 3.4: Schematic of the XT2 collimated emission-port adapter [67].
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Figure 3.5: FLOT system implementation. (1) Laser Diode Drivers (2) EMCCD Camera (3) Filter
Wheel (4) XT2, Collimated Emission-port Adapter (5) Galvanometer Mirrors (6) Galvanometer
Drivers (7) Scan Lens (8) DAQ, Data Acquisition Device (9) Lab Jack (10) Acromatic Lens (11)
Dichroic Beam Splitter (12) Cylindrical Lens (13) Collimator (14) Pigtailed laser diode.
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The hardware, including the EMCCD camera, galvanometer mirrors, and data acquisition

device, were all chosen to be compatible for the required imaging speeds. The process of

scanning and data acquisition for one scan varies depending on the exposure time, field of

view, and the number of images we capture. For example, one full scan including 200 images

of 512 × 512 pixels in a 3mm × 3mm field of view with the exposure time of 50ms, takes

about 25 seconds (8 fps). We are able to increase our system’s speed using a smaller field of

view, lower exposure time, less number of images or less number of pixels on the camera.

The CCD camera we chose (Evolve 512, Photometrics, Tucson, AZ [67]) is implemented

with 10MHz, 5MHz and 1.25MHz digitization speeds (pixels per second). The highest full

frame (512× 512) rate is at 10MHz, which gives approximately 31fps. With either digitizer,

increased frame rate can be achieved by choosing a subregion or applying the binning. The

galvanometer mirrors we chose (GVS212, Thorlabs Inc., Newton, NJ [68]), have the response

time of the 400µs for the smallest angle steps (0.2 degree); therefore, we are able to scan 2500

points/lines per second at best, which is equal to the speed of 2500fps. Finally, we have used

a 16 bit DAC (National Instruments, Austin, TX [69]) with the speed of 400,000 samples

per second. Considering that, the limitation comes from the speed of camera; however, the

speed of 100fps can be reached easily for a 256 × 256 frames without sacrificing the image

quality.

Figure 3.6: (a) EMCCD camera (no. 2 on Figure 3.5) [67], (b) galvanometer mirrors (no. 5 and
6 on Figure 3.5) [68], (c) data acquisition device (no. 8 on Figure 3.5) [69].
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The lensing design of the FLOT system is fairly simple. As described above, in the

illumination path, the collimated laser beam is reshaped to a line pattern using a cylindrical

lens (LJ1695RM, Thorlabs Inc., Newton, NJ [68]) with the focal length of f1 = 50mm.

After passing through the dichroic mirror and before reaching the scan lens, an achromatic

doublet lens (AC254-060-A-ML, Thorlabs Inc., Newton, NJ [68]) with the focal length of

f2 = 60mm was placed in a way that the distance between the cylindrical and achromatic

lens is equal to f1 +f2. Therefore, a collimated line-shape laser beam is delivered to the scan

lens (LSM03-VIS, Thorlabs Inc., Newton, NJ [68]) with the focal length of f3 = 39mm. The

scan lens focuses the illumination light at the sample, and collect the emitted photons.

In the imaging path, the fluorescence signal is passed through the same scan lens and

achromatic doublet before reaching the Photometrics XT2 [67] lens system. As mentioned

earlier, the XT2 provides a collimated space between two built-in lenses and provides space

for the optical filter in the system without sacrificing the resolution of the scanner. The

EMCCD camera is placed in the focal plane of the second lens of the XT2. Therefore, the

output light from XT2 is imaged on the EMCCD camera sensor.

Figure 3.7: (a) Cylindrical lens (no. 12 on figure 3.5) [68], (b) achromatic doublet (no. 10 on
figure 3.5) [68], (c) scan lens (no. 7 on figure 3.5) [68], (d) XT2, collimated emission-port adapter
(no. 4 on figure 3.5) [67].
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3.3 Software Development

After recording the images by the EMCCD camera, they are sent to a computer for

storage and processing. Data acquisition (DAQ) is performed through a custom software

developed using LabVIEW (National Instruments, Austin, TX). A data acquisition device

is used as an interface between the hardware and software for controlling the camera and

galvanometer mirrors movement and recording or displaying all the necessary data. The

software was developed to have a user friendly front panel. It consists of two panels.

The first panel gives the operator the opportunity for evaluating the system performance

before using the main program during scanning, by applying the changes on the camera and

galvo settings. On the camera settings, the region of interest (ROI) on the camera in both

X and Y coordinates can be defined. Default values are 0 to 511 pixels, which covers the

whole 512× 512 pixels of the camera. Exposure time (ms), gain, and binning also can be set

by the operator. On the galvanometer settings, the position of X-Y galvo mirrors can be set

by writing the desired voltage on them. With a scaling of 0.5 volts per degree of mechanical

movement, which is the default value for our galvo system, min/max mechanical scan angle

is −20◦ to +20◦ for the full −10V to +10V input. Based on the applied voltage the galvo

driver sets each mirror position to the command input value.

The main panel displays the same settings on the previous panel but with some more

options added. To acquire less noisy data-sets, the user can define the number of full scans

and get the average of the measurements when processing the data. On the galvo settings,

the number of images in each scan can be defined. This is actually the number of steps at

each full scan that we collect during measurements. Since we are implementing a line-pattern

laser scanning, only one galvo mirror (Y) is needed and the other one (X) has a fixed position

at 0 degree, which is not shown here. The min/max voltage written on the galvo depends

on the field of view we need to cover over the sample. Default values are −0.6V to +0.6V ,

which covers a 3mm× 3mm field of view. The display shows a live view of the sample while
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scanning. The number of images captured, the total number of images and the total scan

time (ms) are also shown at the top of this panel.

The EMCCD camera and galvo are synchronized by inner program signals, so that the

camera captures the images every time the galvo is repositioned. At the end of the scan-

ning process, we have the measurements based on the number of scans and number of steps

defined at each scan. All raw images are loaded to MATLAB (The MathWorks Inc., Nat-

ick, MA) for post processing and image reconstruction. A set of preprocessing algorithms

should be applied before image reconstruction to generate a cross-sectional or volumetric

frame. This process involves reading the images, producing the raw data for the 7 source-

detectors, background removal and finally reconstruction using a reconstruction algorithm

and an appropriate method to model light propagation in the sample.

Next sections will cover the processing chain of data processing algorithms, along with

the algorithm we used in this project for image reconstruction including the forward model,

inverse problem and the model of light propagation.

3.4 Data Analysis

As previously mentioned, after transferring the data to the hard drive, a set of preprocess-

ing and then image reconstruction algorithm had to be applied. This covers the process of

how the recorded images from the top view were processed and turned into the cross-sectional

or 3D volumetric images of fluorescence distribution in the tissue. Since the measurements

contain the images of the sample from different positions relative to the laser focal point,

the first step in processing the data is transforming the raw data.

Data collected from the CCD camera includes the information of all the 7 source-detectors

in each image as the laser beam scans the tissue surface. For example, 200 steps or mea-

surements is equal to 200 images (at 200 laser positions), while all the source-detectors’

measurements are recorded in each image. First part of the process is to rendering 7 useful
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images of raw data for each of the 7 SD separations based on the measurement geometry

we covered earlier in section 3.1. An example of the raw data of a sample consisting a rect-

angular channel with the size of 150 × 25 microns at the depth of 1.19mm filled with 8µM

FAD is shown in Figure 3.8. SD1 separation (i.e. first source-detector separation) is 0 and

SD7 separation (i.e. last source-detector separation) is 1.2mm.

The raw data on its own, and even before attempting to apply any image reconstruction,

gives us a great deal of information. It can be examined by eye to infer information about the

shape and depth of structures within the tissue. The raw data of SD1, where the source and

detector are exactly on top of each other, has the most similar shape to the real channel and

is equivalent to the confocal image of the sample’s surface. As the SD separation increases,

the more information from the depth is retrieved and a shadow of the channel appeares.

However, this data does not represent true depth of the scattering medium and is only a

weighted sum of signals from the shallower and deeper parts of the tissue [35]. Looking at

the raw data, under two conditions we have the strongest signals detected. When the laser

source is on top of the channel and when the detector is on top of the channel. Under first

condition only one channel appears since the source and detector are exactly on top of each

other.

There is a fixed pattern overlaid on the images caused by the intrinsic fluorescence of

the sample, back reflections from different parts of the system (fiber couplers, lenses, etc.)

and noise pixel bias in the camera. Noise background can be improved by scanning the

sample more than once and taking the average of the measurements. Back reflections can

be removed by placing a polarizer in a plane perpendicular to the incident beam to block

the light with the same polarization of the excitation light.

To reduce the intensity of autofluorescence light caused by the intrinsic fluorophores,

we used the fact that most autofluorescence signals have broad excitation and emission

spectrums while specific fluorescence probes, like GFP (Green Fluorescence Proteins), have

a more narrow spectrum [70]. The sample was scanned using two wavelengths, blue (450nm)
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and red (653nm), over the same FOV and using the same filter settings. The blue laser is

able to excite both intrinsic fluorescence and GFP (or FAD in the phantom experiments), but

the red laser is only able to excite the intrinsic fluorescence. Therefore, we have a constant

background of intrinsic fluorescence in all 7 source-detectors, which can be subtracted from

the raw data.

The subtraction suppresses noise, helping to improve the signal to noise ratio (SNR).

Another step to improve the SNR is to set appropriate exposure-time depending on the

source-detector separations and detected signals. For example, exposure-times were set

between 5ms to 50ms for SD separations of 200µm to 1200µm. This specifically has a

noticeable effect on the SNR for samples which have deeper fluorescence distributions.

Figure 3.8: Raw data for 7 source-detector separations in FLOT measurements from a sample
with an embedded rectangular channel, 150× 25 microns in size, located at the depth of 1.19mm,
and filled with 8µM FAD, after background correction (color bar shows the fluorescence intensity).
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After background correction and exposure compensation, if needed, the cross-sectional

images and the 3-D structure are reconstructed from the raw images. This involves using an

image reconstruction algorithm along with an appropriate model of light propagation, which

are covered in the next section.

3.5 Image Reconstruction

After raw data acquisition and analysis, next step is image reconstruction from the raw

data. Tomographic image reconstruction, which creates cross-sectional images from a series

of projection measurements, can be divided into two subproblems: developing a forward

model to find the sensitivity distribution of each projection measurement, described by the

light propagation models in the medium; and the inverse problem to reconstruct unknown

parameters (hidden objects or underlying information) based on the experimental measure-

ments and the forward model.

In LOT, the sensitivity of each measurement path is a function of the optical properties

of the tissue being imaged. As a result, in order to determine the spatial sensitivity of each

measurement, before image reconstruction is attempted, a model of photon transport in

tissue is required to simulate the behavior of light scattering in tissue [25][72].

We covered three models of light propagation inside tissue (RTE, DA and MC) in section

1.3. As discussed, the RTE is difficult to solve numerically and exact solutions only exist for

relatively simple cases. Therefore, the RTE is simplified by a set of approximations to reach

the famous diffusion approximation (DA). However, DA cannot be employed since this model

is not suitable for small source-detector separations similar to our FLOT configuration, where

light cannot be assumed to be diffused.

Consequently, Monte Carlo simulation [30][32] is employed to simulate the sensitivity

matrix of each source-detector pair. Simulated sensitivity matrices for four different source-

detector separations (0 to 1.6mm) are shown in Figure 3.9. In our work, the Monte Carlo
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code written by Steven Jacques is used [30]. MC simulation requires advanced knowledge of

the refractive index, the reduced scattering coefficient µ′s, and the absorption coefficient µa

of the sample. Later in chapter 4, we will cover the double-integrated spheres optical setup

that we used to measure the optical properties of our samples.

Figure 3.9: Monte Carlo simulation in a scattering medium for four different SD separations from
0 to 1.6 mm in logarithmic scale (color bar shows the fluorescence intensity).

By developing the forward model we can generate the sensitivity matrix WSD(r) (also

called the Jacobian or weight matrix), which relates the change in measurements ∆MSD

for a source and detector position (SD) to the internal optical properties or in our case the

change in the spatial distribution of the fluorophore concentration ∆F (r) at the position r:

WSD(r) =
∆MSD

∆F (r)
, (3.1)
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∆MSD = WSD(r)∆F (r). (3.2)

This equation can be reconfigured in the form of a set of linear equations, which leads

to a discrete matrix representation of the linearized problem, by using m linear equations

(number of measurements) with n variables (number of voxels):



M1

M2

...

Mm


=



W11 W12 · · · W1n

W21 W22 · · · W2n

...
...

. . . · · ·

Wm1 Wm2 · · · Wmn


×



F1

F2

...

Fn


. (3.3)

In this equation, matrix M is the experimental measurements, each row of W corre-

sponds to a different source-detector pairing sensitivity matrix simulated by the Monte

Carlo method, and F is the spatial distribution of the fluorophore concentration in each

voxel. Then, the unknown parameters ∆F (r) are obtained by inverting the weight matrix

and solving the inverse problem:

∆F (r) = W−1
SD(r)∆MSD. (3.4)

The inverse problem in multidimensional space, corresponding to light propagating in

tissues, is generally under determined and ill-posed due to absorption and scattering in the

medium and the limitations on the data acquisition [46]. In other words, the limited number

of sources and detectors results in limited number of measurements less than the number of

voxels to be reconstructed (unknown). In ill-posed problems, small perturbations of the data

potentially leads to large fluctuations of the solution. As a result, finding a unique solution

representing a true reconstruction of the object may not be possible.

Some useful results do exist; however, they required using different analytical and nu-

merical algorithms. These techniques differ in the regularization method used for matrix in-
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version, which is needed to suppress the influence of measurement noise and modeling errors

[73]. The most popular techniques are singular value decomposition (SVD) [74], Tikhonov

regularization [75], and the iterative techniques such as algebraic reconstruction technique

(ART) [76], simultaneous iterative reconstruction technique (SIRT) [77] and simultaneous

algebraic reconstruction technique (SART) [78].

Writing the forward problem in the form of Ax = b, a common way to regularize the

solutions is by using the Tikhonov regularization method, since it has a closed form and is

easy to implement. This method attempts to find a useful approximation to the solution

(x) by replacing the minimization problem (‖Ax− b‖) by a penalized least-squares problem

(‖Ax−b‖2+λ2‖x‖2), where λ is the regularization parameter. The drawback; however, is that

it over-penalizes the pixels with near-zero coefficients, causing many pixels with unwanted

small coefficients to be produced [79]. This results in a blur reconstructed image with poor

spatial resolution, specially in our case, where many images are usually sparse, and most

weight coefficients in matrix W are zero or close to zero.

Another approach to solve the inverse problem is by using iterative algorithms, which

seek to determine the correct solution through multiple iteration steps. This results in a

better reconstruction at the cost of higher computation time. In general, the procedure

for algebraic reconstruction is starting with an initial guess for the solution, computing

successive projections on the hyperplanes represented by rows of the linear system until

eventually yielding the correct answer [77]. In terms of the convergence of the algorithms in

ill-posed problems, where the number of measurements is less than the number of unknowns

(m < n), such as the one we are considering, infinite number of solutions are possible. But

the iterative approach converges to a solution such that the difference between the initial

guess and the solution we found is minimized.

In this work, we used the Simultaneous Algebraic Reconstruction Technique (SART) [78],

which is well-documented, robust, and straightforward in its implementation. Using the non-

negativity constraint and a regularization scheme (accomplished by limiting the number of
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iterations) helps to stabilize the convergence of the ill-conditioned problem by SART. The

implementation of SART in MATLAB (The MathWorks Inc., Natick, MA) is based on the

code written by P. C. Hansen et al. [80]. For arbitrary initial vector x0 ∈ Rn, the algorithm

for SART takes the following form:

xk+1 = xk + λkV
−1ATW−1(b− Axk). (3.5)

In this iterative equation, K is the iteration number, λ is the relaxation parameter, V is

the diagonal matrix with row sums of A (V = diag(‖ai‖1), where ai is the i-th row of the

matrix A), and W is the diagonal matrix with column sums of A (W = diag(‖aj‖1), where

aj is the j − th column of the matrix A).

SART is a flexible and fast algebraic method. It allows incorporation of prior infor-

mation, e.g., non-negativity or box constraints. Several methods are available for choosing

the optimal relaxation parameter λ. Regularization is achieved by limiting the number of

iterations K; however, the choice for the number of iterations is a challenging topic for all

algebraic methods, which using prior knowledge of the true solution can help to choose the

best regularization (optimal truncation) [81].

Prior knowledge of the anatomy, physics or the physiology of the problem (for example

in our case fluorophore localization information and internal structure of the tissue), can

increase the accuracy of the forward model by representing the measurements more pre-

cisely, and also can be incorporated into the inverse problem, thereby improving the image

reconstruction quality and accuracy [73][82] .

3.6 Data Representation

The theory of LOT is developed for 3D reconstruction. However, 3D volumetric re-

construction of a region of tissue is computationally intensive and challenging, specially in

under determined systems. One way to deal with this problem is by assuming that all
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inhomogeneities are confined to a known horizontal slab, and performing two dimensional

reconstructions [81]. Then, a 3D structure of the object can be obtained by stacking all

2D cross-sectional images together. This way, the number of unknowns reduces and, geo-

metrically, the inverse problem scales down to estimation of fluorescence concentration in a

two-dimensional slice.

Figure 3.10 shows an example of the 2D and 3D reconstruction of a sample with a

rectangular channel (150×25 micron) at the depth of 0.8mm, filled with 8µM FAD. Part (a)

represents a local 2D ZX cross-section of the sample. Parts (b)(c)(d) are 3D reconstructions

from stacking all the 2D cross-sectional images, from different views. The scan’s FOV is

3mm × 3mm. 200 measurements with the size of 512 × 512 pixels were used in each scan,

but then down sampled to 60× 60 pixels in favor of reducing the computation time.

Figure 3.10: 2D and 3D reconstruction of a sample with a rectangular channel (150×25 microns)
at the depth of 0.8 mm. (a) 2D ZX cross-section. (b) 3D volumetric reconstruction, XYZ view. (c)
3D volumetric reconstruction, YZ (side) view. (d) 3D volumetric reconstruction, XY (top) view.
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3.7 Summary

This chapter described the design and implementation of our system for both hardware

design and software development. Measurement geometry and demonstration of data acqui-

sition and raw data analysis for a less noisy data-set and reducing the intrinsic fluorescence

and back reflections have been presented. Finally, image reconstruction, including the for-

ward model (light propagation in tissue) and inverse problem (SART algorithm), have been

covered. In the next chapter, results of this study will be shown which demonstrate the

ability of our system in detecting fluorescence distributions in superficial regions of tissue.
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Chapter 4

Experimental Results and Data Analysis

The performance of our FLOT system was demonstrated by using three test models with

increasing levels of difficulty. First, a series of simulations were carried to demonstrate the

performance of the reconstruction algorithm using MC simulations for the defined measure-

ment geometry. In these simulations, optical properties were well defined and the level of

noise was under control. The second model was for the measurements we acquired using

our silicone-based phantoms. In this step effects of the experimental noise and systematic

errors were included, yet we were able to achieve a good estimation of the optical proper-

ties of phantoms using double integrating sphere system. The final set of experiments were

performed in lab rats with fluorescent injections in the brain, bringing the full complexity of

the fluorescence tomography experiments.

4.1 Simulation Studies

In our simulations, we created a mathematical model of the system to explore the behavior

of the reconstruction model. The objective of our simulations was to understand the effect

of changing parameters of the algorithm on the final results, as well as testing the ability

of the system on establishing the existence of fluorescence object in a tissue model. Figures

4.1 and 4.2 show the results in both 2D cross-sectional and 3D volumetric representations.

The Monte Carlo simulation were conducted on a medium of 100 × 250 × 250 voxels with

optical properties close to brain tissue, but then down sampled to 20 × 50 × 50 voxels in

favor of reducing the computation time. The tissue was defined with 15 × 10 × 10 voxels

(4 × 10 × 10mm3) with a fluorescence object of size 2 × 2 × 2 voxels (0.5 × 1 × 1mm3) at
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the depth of 2mm. SART algorithm was used with 5000 iterations. Comparing the real

object with the reconstructed image, it is evident that the reconstruction shows a rough but

reasonable image of the object’s depth and distribution.

Figure 4.1: Simulation of 3D reconstruction of a square object at the depth of 2 mm. (a) 3D
volumetric image of the real object in XYZ view. (b) 3D volumetric image of the reconstructed
object in XYZ view.
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Figure 4.2: Simulation of 2D reconstruction of a square object at the depth of 2 mm. (a) 2D ZX
cross-sections of the real object. (b) 2D ZX cross-sections of the reconstructed object.
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4.2 Phantom Studies

Tissue-simulating optical phantoms are commonly used to mimic light distributions in

living tissue to calibrate or evaluate the performance of optical instruments under exper-

imental conditions [83][84]. We are interested in developing optical phantoms suitable for

FLOT imaging applications. We used these phantoms to determine fluorescence quantum

yields in the visible spectrum, with predefined optical properties at two wavelengths, 450nm

and 530nm. These phantoms are made from four components: a base material and its curing

agent, scattering agent, absorbing agent, and fluorophores.

Several types of phantoms such as homogenized milk, suspensions of oils/fats in an aque-

ous solution, or suspensions of Intralipid and India ink in agarose, were used to simulate

the optical properties of biologic tissues. Using liquid phantoms has the difficulty of creat-

ing inhomogeneities or fine structures like blood vessels. Identifying a tube or container to

encapsulate the fluorescence material such that the difference in refractive indices does not

create reflections is another issue. To tackle these problems, we decided to use silicone-based

microfluidic phantoms, which are robust, cost effective, easy to transport and use, and have

a long shelf life. Another main advantage is their flexibility in design, so that we do not

need to use an extra structure like a tube or container, instead we can make the channel

structures inside the phantoms to inject the fluorescence solutions.

The phantoms were fabricated by using pure polydimethylsiloxane (PDMS) and its asso-

ciated curing agent (Sylgard 184 silicone elastomer kit, Ellsworth Adhesives, Germantown,

WI), at room temperature. To introduce scattering and absorption, titanium dioxide (TiO2,

Sigma Aldrich, St. Louis, MO) and India ink (Chartpak Inc., Leeds, MA) were chosen

respectively. The method of preparation of the samples is described in the next section.

The absorption and scattering properties of the created phantom is a primary design fac-

tor. Inverse Adding-Doubling (IAD) method was used to find the scattering and absorption

of a thin slab of the material using total reflection and total transmission measurements
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reference. This method is described in more details in section 4.2.2.

4.2.1 Design and Fabrication method of tissue phantoms

Our phantom is developed by mixing the correct portions of the base material, scattering

and absorbing media, so that the resulting suspension has the optical properties close to

the simulated tissue. According to [85], typical optical properties of gray matter are around

µa = 1mm−1, µs = 30mm−1 and g = 0.9, for 450nm wavelength. Our chosen scattering

medium, TiO2, and the absorption agent, India Ink, have been employed in other phantom

investigations, but have not been completely characterized in PDMS base phantom at 450nm.

However, referring to the available literatures [83][86] for other wavelengths, and the fact that

tissue absorption and scattering is higher for shorter wavelengths, we can start with an initial

weight and change it if needed after measuring the real optical properties.

The first step in PDMS molding is mold design. Such molds come in a variety of shapes

and sizes. The molds we used had rectangular channels with different widths and heights.

The surface conditioning of the mold is an important factor in preventing PDMS from

sticking (Figure 4.2(a)). Different ratios of the PDMS base versus the curing agent help to

produce different hardnesses. We used the traditional 10:1 ratio which results in a solid yet

flexible structure. We combined 12 grams of PDMS and 1.2 grams of the provided curing

agent to make a 13.2 grams phantom. Scattering is achieved by adding TiO2 powder to the

mixture. TiO2 is a highly effective scatterer due to its high index of refraction while has

negligible absorption. Absorber is added in the form of India ink.

The whole procedure [83][87] of fabricating the phantoms is shown in Figures 4.3 and

4.4. To begin, 1.2g curing agent is poured in a plastic beaker. TiO2 is measured by weight

(24.8mg) and added to the curing agent (Figure 4.3(b)). This is manually mixed for about 10

minutes. The solution should be stirred several times during this period to prevent the TiO2

from precipitating. We also used the ultrasonic bath to make sure that TiO2 is completely

mixed with the curing agent. During this period, the bulk PDMS (12g) and India ink (10mg)
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is combined (Figure 4.3(c)). In the next step we mixed these two solutions again for about

10 minutes manually and then pour it into the mold (Figure 4.3(d)). For removing any

entrapped bubbles, we place the mixture with a cover on top into a vacuum chamber for at

least 30 minutes (Figure 4.3(e)). After degassing, the molds were set onto a level surface in

the 80 degree Celsius heated chamber (oven) for at least 3-4hrs and then we let them rest

for about 24hrs (Figure 4.3(f)). Then the sample could be removed from the molds and cut

out.

After demolding and cutting the phantom (Figure 4.4(g)), the next step is to pin the holes

for the inputs/outputs of the channels using a microscope and special drillers with desired tip

size. We chose 0.5 mm and 0.75 mm pin size (Figure 4.4(h)). The same procedure was done

to make a base using the same materials and ratio for covering the channels. This way, we

made a uniform phantom without using a piece of glass on top of the channels, which causes

the reflection problem. These two pieces can be bonded together using the oxygen plasma

surface activation (Figure 4.4(i)). PDMS is hydrophobic, with a low energy and non-reactive

surface. Therefore, it is difficult to bond it with other surfaces. By exposing PDMS layers

to oxygen plasma, its surface becomes hydrophilic and more reactive. This results in each

sheet to be stacked on another easily without the use of any intermediary contact gels or air

gaps [83]. Contact should be made quickly after plasma exposure since the PDMS surface

undergoes reconstitution to its hydrophobic and non-reactive state within hours. The final

rectangular-shaped phantoms are shown in Figure 4.4(j).

The thickness of each phantom can be measured directly by calipers or more precisely

under the microscope. Taking measurements at multiple locations of each sheet can give a

gross estimation of possible thickness variation (figure 4.4(k)). In our lab, we also have access

to an OCT (Optical Coherence Tomography) scanner. With this technology, we were able

to determine the exact phantom thickness. For fluorescent imaging we can inject different

concentrations of FAD into the channels using a syringe pump (Genie Plus, Kent Scientific

Corporation, Torrington, CT) (Figure 4.4(l)).
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Figure 4.3: Phantom fabrication process 1. (a) Plain mold, (b) weighting curing agent and
TiO2, (c) weighting PDMS base and India ink, (d) pouring the mixture into the mold, (e) vacuum
degassing, (f) oven baking.
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Figure 4.4: Phantom fabrication process 2. (g) Demolding and cutting the phantom, (h) pining
the input/output holes, (i) oxygen plasma surface activation, (j) final phantom and its image under
microscope, (k) thickness measurements, (l) FAD injection using syringe pump.
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4.2.2 Measuring the Optical Properties of Phantoms

A method is needed to determine the optical properties of phantoms (absorption and

scattering coefficients and the anisotropy factor). These parameters were calculated based

on the Inverse Adding-Doubling (IAD) method, by measuring the diffuse reflectance and

transmittance using two integrating spheres optical setup [88]. The schematic and a pic-

ture of the optical setup is shown in Figure 4.5. This includes two integrating spheres (one

two-port, 6-in. CVI Melles Griot BPS integrating sphere with 1.5-in. sample port diameter,

and one four-port, 6-in. Spectraflect Integrating Sphere, with 1-in. sample port diameter,

Newport Corporation, Irvine, CA), a collimated laser beam (450nm single mode pigtailed

laser diode, Thorlabs Inc., Newton, NJ), a photodetector (PDA36A, Si switchable gain de-

tector, Thorlabs Inc., Newton, NJ) mounted on the top sphere, and a second photodetector

(APD110A2/M, avalanche photodetector, Thorlabs Inc., Newton, NJ) installed on the bot-

tom sphere.

Figure 4.5: Double Integrating Sphere setup used to measure the diffuse reflected and transmitted
light. (a) Schematic (taken and modified from [88]), (b) experimental setup.
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After preparing the PDMS sample, it was placed between two integrating spheres. Using

a laser source, we launched 450nm beam to the entrance port of the top integrating sphere

which passes through to the bottom sphere. About 90◦ from the entrance ports, photodetec-

tors are mounted on the detector ports. Different measurements are needed with samples as

total reflector and total absorber to calibrate the system and measure the diffuse reflectance

and diffuse transmittance. The diffuse reflected light intensity, R(rdirects , rs), was measured

using the photodetector mounted on the top sphere, and diffuse transmitted light intensity,

T (tdirects , rs), was measured by the second photodetector installed on the bottom sphere at

the presence of the sample. The total reflectance, R(rstd, rstd), is measured with a total

reflector from top detector, where rstd is the wall reflectance coefficient of the integrating

sphere. Calibration parameters were also measured which include the R(0, 0) at the presence

of a total absorber, T (0, 0) and Tdark where spheres are close to each other without anything

in between, with the laser source be on and off respectively [88].

Once the dataset was prepared, these measurements were fed to the IAD code to extract

the optical properties of the sample. This method is an iterative algorithm which starts

with some random values assigned to the optical properties, and then, in each iteration, the

algorithm solves the radiative transport equation to calculate the transmission and reflec-

tion of the sample and compares these results with the experimental data. The iterations

continue until the calculated values of the reflection and transmission match the measured

ones and the error is minimized. Some experimental results are shown below. The phan-

tom we used is made of PDMS, TiO2, and India ink with the amount detailed in section 4.2.1.

Dataset (measurements):

Diffuse reflected light intensity R(rdirects , rs), with sample, top photodetector = 0.6832

Diffuse transmitted light intensity T (tdirects , rs), with sample, bottom photodetector = 1.4853

Total reflectance R(rstd, rstd), with a total reflector, top photodetector = 2.9120

Calibration parameter R(0, 0), with a total absorber, top photodetector = 0.0735
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Calibration parameter T (0, 0), no sample, laser on, bottom photodetector = 1.5914

Calibration parameter Tdark, no sample, laser off, bottom photodetector = 1.3944

Calculated optical properties:

Absorption coefficient: µa = 0.1552mm−1

Reduces scattering coefficient: µ′s = 0.9938mm−1

4.2.3 Measuring the Phantom Thickness

In order to confirm the reconstruction results with real channel depth, we tried two

different methods. First, using a microscope and a thin cut of the top layer of the sample,

second, by scanning the sample with an OCT system [71]. An example of the results for

a sample with channel size of 100 × 500µm at the depth of 0.8mm, is shown in Figure

4.6. In general, scanning the sample with the OCT is more reliable and precise. With the

microscope, we can only have a rough estimation of the depth as we are not able to cut

through all parts of the sample to take the measurements. In contrast, with the OCT, we

are able to scan any desired part of the sample with no limitation. In addition, the OCT

can provide complimentary data regarding the channel width and height.
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Figure 4.6: Measuring the depth of a phantom with the channel size of 100× 50µm. (a) and (b)
Measuring the depth under the microscope, (c) and (d) measuring the depth using the OCT.
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4.2.4 Phantom Experimental Results

A picture of the setup used for scanning the phantom is shown in Figure 4.7. The position

of the incident light can be specified by the user with the convention that illumination line

is along the Y axis. Therefore, illumination direction lying in XZ plane and the acquired

measurements are series of YX images. The results of the Monte Carlo simulations easily

exceeded the capacity of our computer; therefore, we reduced the grid size to 3× 3× 3mm3

(60×60×60 voxels with the voxel size of 50µm) for all the tests we conducted in this project.

The reconstruction typically needed 3000 SART iterations to obtain a reasonable result.

Figure 4.7: Optical setup for scanning phantoms.

Figures 4.8, 4.9 and 4.10 show some experimental results for three samples with a rect-

angular channel at depths of 0.82mm, 1.18mm and 1.64mm, respectively. Obviously, as we

move further in depth, the raw data and reconstructions get noisier.
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Figure 4.8: A phantom with a rectangular channel (200× 25 microns) embedded at the depth of
0.82mm. Images were reconstructed by SART algorithm after 1600 iterations, (a) raw data (color
bar shows the fluorescence intensity), (b) 2D ZX cross-section of reconstructed channel (cross-
section no. 30), (c) 3D volumetric of reconstructed channel, XYZ view.
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Figure 4.9: A phantom with a rectangular channel (150× 25 microns) embedded at the depth of
1.18mm. Images were reconstructed by SART algorithm after 4000 iterations, (a) raw data (color
bar shows the fluorescence intensity), (b) 2D ZX cross-section of reconstructed channel (cross-
section no. 30), (c) 3D volumetric of reconstructed channel, XYZ view.
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Figure 4.10: A phantom with a rectangular channel (150×25 microns) embedded at the depth of
1.18mm. Images were reconstructed by SART algorithm after 2000 iterations, (a) raw data (color
bar shows the fluorescence intensity), (b) 2D ZX cross-section of reconstructed channel (cross-
section no. 30), (c) 3D volumetric of reconstructed channel, XYZ view.
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As mentioned before, to confirm the real depth with our reconstruction results, we

scanned our phantoms with an OCT system. Our results illustrate a good match between

these two techniques.

Figure 4.11: A comparison between the results of the OCT and FLOT in finding the depth of
channels.

4.3 In-vivo Studies

In addition to computer simulations and phantom experiments, in-vivo experiments were

also performed on rat brains, to test our device and the developed reconstruction methods

under realistic experimental condition. The geometry of source-detectors, and all of the con-
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ventions were the same as the ones used for the phantom studies. Monte Carlo simulation

were adapted similar to the phantom experiments; nevertheless, we used the optical proper-

ties of the gray matter, µa = 1mm−1, µs = 30mm−1, according to [85] and [90]. The FLOT

system next to a surgery station for an animal experiment is displayed in Figure 4.12. The

FLOT scanner head is positioned on the experiment table, right above the animal.

Figure 4.12: Experimental setup in surgery room for in vivo scanning of rat brain.
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4.3.1 Animal Preparation

All procedures were carried out in a facility accredited by the Association for Assess-

ment and Accreditation and Laboratory Animal Care and approved by the University of

Wisconsin-Milwaukee Institutional Animal Care and Use Committee (IACUC) and con-

ducted within the ethical guidelines of the National Institutes of Health (NIH).

Subjects: We used 12 näıve male Long-Evans rats (300-400g; Harlan, WI) housed

individually in shoebox cages with free access to food and water in a room maintained

on a 14:10 light/dark cycle. All experiments took place during the light portion of the

cycle. Spring-Fill Crinkle Cut Kraft (Quality Packaging, WI) paper bedding was provided

as environmental enrichment.

Surgical procedures/Virus injection: Animals were anesthetized with isoflurane in

100% oxygen (induction occurred with 4% isoflurane and maintained with 2%). Rats were

mounted in a stereotaxic apparatus (Kopf Instruments). Purified AAV9-CAG-GFP was

infused into the primary somatosensory cortex (forelimb) (A/P -1.0mm, M/L + 3.8 mm)

and the primary visual cortex (A/P -5.3mm, M/L -3.8mm). The depth of injection was

systematically varied to include 0.8mm, 1.0mm, 1.5mm, and 2.0mm. The injection volume

was also systematically varied to include 0.2µl, 0.5µl, and 0.75µl. The virus was infused

using a 10µl syringe with a 34-gauge needle mounted to a stereotaxic automated injector at

a rate of 0.05µl/min. The injector was left in place for 10 minutes, following the injection,

to allow diffusion of the virus away from the injector. One to four weeks later, animals are

ready to perform the experiments.

Tissue Extraction/Sectioninig: Immediately following the completion of experiments,

animals were deeply anesthetized with isoflurane, transcardially perfused with 0.2MPBS fol-

lowed by 10% buffered formalin. Brains were removed and post-fixed in 10% formalin for

24-hours before being transferred to 30% sucrose/PB. The brains were then frozen, sec-

tioned into coronal slices of 200µm thickness, then mounted on glass slides, and coverslipped
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with UltraCruz mounting medium (Santa Cruz, CA) containing 1.5µg/ml DAPI (for nuclear

counter staining).

Figure 4.13 shows an example of the injection sites with identical volumes and depths,

and a rat’s skull before drilling the holes for the injections.

Figure 4.13: Injection sites and rat’s skull before the injection.

4.3.2 In-vivo Experimental Results

Similar to the phantom studies, to confirm our results, we tried two methods. First, we

used our fiber-optic-based probe system [89] for the precise delivery of excitation light pulses

and detection of fluorescence signals, all done in-vivo. Next, we used a confocal microscope

to image the fluorescence distribution in brain slices tissue after sacrificing the animal.

The probe system [89] is shown in Figure 4.14. The system works by inserting a thin

optical fiber into the brain of the animal to deliver light pulses to the region of interest and

recording the intensity of the corresponding emission signals. The excitation light and the

associated emission signals are frequency modulated by chirp pulses, which is a sinusoidal
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function with constant amplitude, but linearly swept frequency. This way, the system pro-

vides a mechanism to read fluorescence signals at the tip of the fiber with the optimized

signal to noise ratio (SNR).

Figure 4.14: Single-fiber probe system [89]. A rat before and during the experiments with the
probe system.

Figure 4.15 shows the experimental raw data collected from the right hemisphere of a rat

brain which received injection at the depth of 0.8mm. Again, the raw data can be examined

by eye to infer information about the shape and depth of structures within the tissue and

therefore can give us a great deal of information regarding the distribution of fluorescence

within the tissue.
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Figure 4.15: Experimental raw data of a rat brain which was injected with GFP in right hemi-
sphere, at the depth of 0.8mm (color bar shows the fluorescence intensity).

Figures 4.16 and 4.17 display some experimental results collected from the brain of the

same rat who has received injections at depths of 0.8mm and injection volumes of 0.2µl, in

both right and left hemispheres. Figures show the superimposed images of reconstruction

results and the fluorescence image of a slice close to the site of the experiment. The probe

system signal is also shown as a curve displaying the fluorescence intensity as a function of

the penetration depth. As it can be seen, there is a good match between the FLOT result

and what we get from the confocal microscopy and the single-fiber probe system.
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Figure 4.16: Experimental data of an in-vivo scan of a rat brain with the injection depth of
0.8mm and injection volume of 0.2µl in the right hemisphere, (a) a confocal microscopy image of
a slice close to the site of experiment, (b) FLOT reconstruction result, (c) probe system’s curve
showing the fluorescence intensity as a function of the penetration depth, (d) superimposed image
of the reconstruction result and the confocal microscopy image.
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Figure 4.17: Experimental data of an in-vivo scan of a rat brain with the injection depth of
0.8mm and injection volume of 0.2µl in the left hemisphere, (a) a confocal microscopy image of
a slice close to the site of experiment, (b) FLOT reconstruction result, (c) probe system’s curve
showing the fluorescence intensity as a function of the penetration depth, (d) superimposed image
of the reconstruction result and the confocal microscopy image.

FLOT is also able to confirm if the gene expression is not successful for any reason.

Figure 4.18 shows a case that we did not get any fluorescence data scanning with the FLOT

system. The probe system curve and confocal microscopy image of the rat brain also confirm
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that the gene delivery or expression was not successful.

Figure 4.18: Experimental data of an in-vivo scan of a rat brain for which the gene expression
was not successful, (a) the probe system signal, (b) confocal image of the corresponding brain slice.

4.4 Summary

In this chapter, the performance of the developed fluorescent laminar optical tomogra-

phy (FLOT) system was discussed through three test models, and the reconstruction results

were presented. One of the challenges in fluorescent tomography, is finding the accurate

depth of the fluorescent object. In phantom experiments, the actual depth of the micro-

channel buried inside a highly scattering medium was determined using a SD-OCT system

and the reconstruction results using the FLOT system were in a good match with the OCT

measurements. The in-vivo animal experiments were also conducted on rat’s thinned-skull.

Two different mechanisms were employed to compare the FLOT results with the actual ex-

pression of GFP. First one was by using a single optical fiber probe system [89] to define

the axial distribution of the GFP. Then, the animal was sacrificed and the brain tissue was

extracted, sliced and imaged by a confocal fluorescence microscope. Live animal experi-
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ments also showed promising results in using the FLOT system for noninvasive imaging of

fluorescent proteins and the system is particulary useful for optogenetic applications.
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Chapter 5

Conclusion and Future Directions

Fluorescence imaging is a powerful tool for non-invasively investigating biomedical sys-

tems. The tomography technique presented here, the Fluorescence Laminar Optical To-

mography (FLOT), enables us to derive quantitative information clarifying the fluorescence

distribution in three-dimensional structures, with applications in different biomedical re-

search areas. In particular, FLOT targets the reconstruction of fluorescence distributions

in the rat brain for optogenetic applications. The method is non-invasive, fast, sensitive,

and relatively in-expensive; allowing for reasonable throughput to indirectly study neural

activities by confirming the success of gene delivery or protein expression, in-vivo.

The development of FLOT scanner is a step towards filling the gap between microscopic

and macroscopic techniques, offering larger penetration depth than microscopic techniques

and higher resolution than macroscopic techniques. The forward model of the image recon-

struction algorithm is based on Monte Carlo simulation for light propagation in inhomo-

geneous tissue and the inverse problem is solved using an iterative reconstruction method.

The geometry of the sources and detectors were defined for the banana-shaped sensitivity

curves, to efficiently scan the tissue at desired depths. The setup was tested in three test

models: computer simulations, silicon-based microchannel phantoms, and in-vivo imaging

of rat brains. Experiments showed a good match between the actual and reconstructed

fluorophore distributions in all three models.

For future work, the main improvement in the technique can be achieved by developing

a better forward model and image reconstruction schemes. It is possible to reduce the

computational time by using more refined inversion strategies. The quality of reconstructed

images can also be improved by incorporating prior information, which can be obtained by
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considering the physics and the physiology of the problem. Such information potentially

helps to reduce the effect of the ill-posedness by using the measurements obtained in a more

effective way, and therefore improving the accuracy of the model.

Limitations associated with the operation in the visible spectrum, particularly the wave-

length below 500nm, such as the limited depth of penetration of blue light (450nm), or the

autofluorescence caused by the excitation wavelength, can be strongly improved by using

red/near-infrared shifted fluorescence proteins, such as tdTomato and mCherry, instead of

GFP. However, it is worth mentioning that based on the application and specifications of

the experimental setup, some critical factors such as brightness or photostability needs to be

considered before choosing any specific fluorescent protein. For instance, GFP has a higher

brightness factor compared to mCherry, which was one of the reasons we chose GFP for our

experiments.

A potential application of our system is on-line 3D monitoring of neural activity during

optogenetic/electrode-based stimulation. Fluorescent proteins are used to study the dynamic

changes within the cells, e.g., ion concentration via calcium imaging. Nevertheless, such

fluorescent indicators usually have fast kinetics; therefore, recording the fluorescence emission

of these molecules requires a tomography system that offers a fast scanning and recording

mechanism. If the image acquisition time is short enough, compared to the physiological

fluctuations, image time series can be obtained to draw a clear picture of the dynamics under

test and the underlying cellular activity. We believe with some modifications in our system,

we will be able to fulfill the speed requirements and our system can be used for this new

application.
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