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1. Introduction

Fluorescence diffuse optical tomography (fDOT) is an imaging modality which goes beyond
well-established techniques such as 2D fluorescence imaging and fluorescence microscopy.
Being a 3D tomographic modality, it seeks to overcome limitations of 2D systems as are: (i)
the determination of the depth of fluorescent objects and (ii) a correction of the broadening of
the fluorescence signal due to the massive scattering of photons.

Compared to high-resolution tomography systems such as CT and MRI, fDOT has the
particular advantage that the optical activity of many fluorophores is influenced by the
chemical milieu in which they are located and, thus, by the biological surrounding.
Researchers have already shown the dependency on the oxygenation of the tissue (Longmuir
& Knopp (1976); Shives et al. (2002)), the pH value (Gannot et al. (2004); Mordon et al. (1992)),
or the temperature (Chen & Wood (2009)), for example. This influence on metabolic processes
and states offers information beyond the visualization of anatomical structures and, therefore,
is termed functional imaging.

In comparison to 2D in-vivo imaging, 3D sensing of fluorescent particles in biological
specimen imposes additional problems:

• Light of lower wavelength (blue and green) is absorbed by many biologically relevant
materials such as hemoglobin. In order to excite deep fluorophore-structures, excitation
light in the far red and near infrared (NIR) range has to be used, which requires suitable
(i.e. NIR-excitable) fluorescent targets.

• Visible and NIR-light is heavily scattered in biological tissue. This compromises the
achievable resolution especially in comparison to CT and MR and requires special
treatment during image reconstruction.

• The light intensity decays exponentially with the probing depth, which infers a
depth-dependent maximum resolution.

The outline of this chapter is as follows: In section 2 the optical properties of tissue
will be introduced. Section 3 deals with possible hardware setups for 3D sensing.
Mathematical models for light propagation are described in section 4. In section 5 nonlinear
image reconstruction methods are compared. An overview about clinical and pre-clinical
applications is given in section 6 and section 7 concludes with an outlook.
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2. Optical properties of tissue

For the determination of the 3D distribution of fluorescent particles inside biological samples,
it is necessary to describe light propagation in tissue with mathematical models. This in
turn requires to quantify typical light-tissue interaction processes in terms of measurable
quantities. The most common processes are certainly absorption and scattering of photons
as well as fluorescence and phosphorescence phenomena.

2.1 Absorption

Absorption is the extinction of a photon, whose energy is stored by the absorbing medium
via excitation of an electron or in rotational or vibrational states of atoms. This physical
processes are stochastic in their nature and therefore should be described by a probability
density measure. However, for most models it is sufficient to give the average occurrence rate
of an absorption event per photon path length. This leads to the definition of the absorption
coefficient µa given in units of inverse length; frequently in cm−1 or mm−1. It specifies
the average number of photons being absorbed when traveling a given distance inside an
absorbing medium. An absorption coefficient of 0.2 cm−1 would mean an average of two
absorption events per 10 cm which the photon travels inside the object. In other words, a
photon can on average travel µ−1

a (= 5 cm for the former example) without being absorbed.
The latter quantity is called the mean absorption-free path length.

2.2 Scattering

Scattering is the deflection of a photon out of its original trajectory into a new direction. In
analogy to absorption, the scattering coefficient µs gives the average number of scattering
events per length of travel. The inverse µ−1

s is the average length a photon can propagate
in tissue without being scattered and is thus known as mean scattering-free path length. To
fully quantify the scattering behavior of some medium, it is not sufficient to know only how
often scattering happens but also the direction into which the photon will be deflected is
of importance. The latter is given by the scattering phase function Θ(ŝ, ŝ′), which is the
probability for a photon arriving from direction ŝ to be scattered into a new direction ŝ′. Two
possible scattering phase functions are depicted in Figure 1. If every scattered direction ŝ′

has the same probability, the scattering is said to be isotropic. This ideal case is not valid
in biological media, where scattering is usually strongly forward biased as displayed on the
right in Figure 1. At this point, it is also worth noticing that most tissue types are much more
scattering than absorbing. Exceptions to this rule are well perfused tissues such as liver and
highly transparent liquids as liquor, for example.

2.3 Scattering anisotropy factor

For many real-world applications the description of the scattering distribution by the
scattering phase function is much too complicated to be useful. Instead, one seeks to
approximate the anisotropic scattering with a scattering coefficient µs through an isotropic
model with another scattering coefficient µ′

s. To this end, the scattering anisotropy factor g is
introduced which is the mean value of the cosine of the scattering angle. This factor is in the
range from -1 to 1. Positive values indicate a preference for forward-scattering while negative
values indicate an imbalance towards photons which are back-scattered. In the isotropic case
g is equal to 0.
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Fig. 1. Visualization of two scattering phase functions. The incoming photons with direction
ŝ are drawn in black, the scattered ones having a direction ŝ′ in red. Left: The scattering
angles are equally distributed; the scattering is isotropic. Right: Nearly all photons are
scattered in a forward direction which is true for most biological tissues.

With the definition of the anisotropy coefficient, one can define the reduced scattering
coefficient µ′

s as µ′
s := (1 − g)µs. The idea is to approximate anisotropic (forward-directed)

scattering with probability µs and anisotropy g by isotropic scattering with a smaller scattering
coefficient µ′

s. This working principle is illustrated in Figure 2. The true path of a scattered
photon is sketched with small arrows. If the anisotropy coefficient of the tissue was g = 0.875,
every (1 − 0.875)−1 = 8 anisotropic steps would be combined into one isotropic step. Thus,
the number of scattering events per length of travel decreases and the mean scattering-free
path length increases. The approximated scattering can be assumed to be isotropic.

Fig. 2. Principle of the anisotropy coefficient: The short arrows represent the path of a
scattered photon in tissue. Each arrow is of length µ−1

s , which is the mean scattering-free
path length. Assuming g = 0.875, every eight anisotropic scattering events are approximated
by one isotropic scattering event which is drawn with red arrows. The isotropic scattering
has a reduced scattering coefficient µ′

s = (1 − g)µs, i.e. the isotropic mean scattering-free path
length is larger than the anisotropic one.
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2.4 Diagnostic window

The tissue’s ability to absorb photons is a highly wavelength-dependent property. In the so
called diagnostic window around 650–1300 nm, most tissues are sufficiently weak absorbers
and light can penetrate deepest. The lower wavelength boundary of this wavelength range
is made up by oxygenated and de-oxygenated hemoglobin; the upper boundary is due to the
absorption of water.

3. Hardware

Since the early days of fDOT a number of different systems has been built, most of them
for research purposes, but meanwhile also commercial systems are available. Regarding
the details of implementation the systems differ considerably, for a good review see e.g.
Leblond et al. (2010). A basic distinction can be made concerning the operation mode in
terms of its temporal behavior. For some applications the reconstruction of intensity images
is sufficient and then the system can operate in continuous-wave (CW) mode, thus leading
to CW fluorescence tomography (CWFT). If, however, also the fluorescence lifetime ought
to be imaged, the response of the sample to either very short light pulses (usually shorter
than 100 ps) or harmonically modulated light with modulation frequencies between several
tens of MHz up to several GHz must be acquired. The respective technologies are termed
time domain fluorescence tomography (TDFT) or frequency domain fluorescence tomography (FDFT).
All three modes can also be used spectroscopically, which requires in addition a dispersive
element or a tunable filter at the detector side.

While the idea of TDFT is intuitively clear (direct measurement of the decay of the light
signal), FDFT is more indirect. It relies on the fact that the complete time domain information
can be recovered from quasi-stationary measurements with sinusoidally modulated light at
many modulation frequencies—thus sampling in Fourier space—and transforming back to
time domain by an inverse Fourier transform. However, the relevant bandwidth of the
time domain signals is up to several GHz (Gibson et al. (2005)) and frequency domain
systems allow sufficiently accurate operation only up to approximately 1 GHz (Chance et al.
(1998)). Thus, currently the equivalence cannot be exploited from the instrumentation point
of view. Typical modulation frequencies range from less than 100 MHz up to little more than
1 GHz (Durduran et al. (2010); Masciotti et al. (2009); Reynolds et al. (1997)). Assuming a
mono-exponential fluorescence decay the lifetime can be recovered from measurements at a
single frequency because a single exponential is Fourier transformed to a low pass of first
order and thus the knowledge of modulus and phase of the light signal is sufficient.

All systems realized so far share three main components: A light source, a sample holder and
a light detection system.

3.1 Light sources

The light source can have a wide spectral range (e.g. xenon arc lamps) in combination with
filters but narrowband sources like lasers and LEDs are increasingly popular due to their
versatility and the relative ease of producing either short pulses or properly modulated light.
As for standard tomography the light should be concentrated to different locations on the
sample surface, collimated beams are required, which favors the use of lasers. In any case the
spectrum of the light source should be matched to the absorption spectrum of the fluorophore,
but in the case of e.g. small Stokes shifts the excitation wavelength may be chosen somewhat
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below the absorption maximum in order to account for the limited steepness of excitation and
emission filters. In order to keep the hardware flexible, usually filter wheels with selectable
cutoff wavelengths are provided in case of wideband sources so as to adapt the system to
different fluorophores.

For CWFT practically any light source with appropriate power and spectral content can be
used. As FDFT typically requires modulation up to several 100 MHz, classical wideband
sources require a fast optical shutter (electro-optic or acousto-optic, see e.g. Lakowicz (2006))
but such technologies are increasingly replaced by laser diodes which can be easily modulated
up to 1 GHz in a useful power range (typically several tens of mW for in vivo applications).
Even wideband sources based on lasers (supercontinuum lasers) and tunable diode lasers
with external cavity are now available. The highest demands on the source are posed by
TDFT. Currently the short light pulses are typically generated by Ti:sapphire lasers but
also diode lasers are available which can deliver sufficiently short pulses (Lakowicz (2006)).
Ti:sapphire lasers provide the unique feature of being tunable, see e.g. Kumar et al. (2008),
where 150 fs-pulses are generated with a repetition rate of 80 MHz in a tuning range between
750 nm and 850 nm. In the same publication the spectral range could still be extended to
500 nm by the use of a super-continuum source based on a poly-crystalline fiber. The 80 MHz
repetition rate is widely used and has also been adopted for pulsed laser diodes, e.g. in
Soloviev et al. (2009).

3.2 Detectors

On the detector side also a large variety of different realizations can be found. Again a
major difference exists between CWFT, TDFT and FDFT. While there is no special restriction
in CW operation, TDFT requires very fast and precise time-gating of the detector or single
photon counting and precise time correlation between excitation and detection (so called time
correlated single photon counting, TCSPC).

The most sensitive and versatile devices are certainly photomultiplier tubes (PMTs),
photomultipliers with microchannel plates (MCP-PMTs) and image intensifiers based on
MCPs with either optical readout on a phosphor screen or electrical readout on a multi-anode
grid. Though comparatively expensive, all these variants of photomultiplier devices offer
wide dynamic range and frequently also single photon counting capabilities thus enabling
TDFT with TCSPC. The possible photon counting rate is primarily limited by the recovery
time after arrival of one pulse which may last several ns.

Avalanche photodiodes (APDs) are also useful detectors but have some limitations: The
aperture is small compared to that of PMTs, therefore yielding poorer light collection
properties. As APDs exhibit a long tail in their pulse response special active quenching of
the avalanche process is necessary in order to arrive at high counting rates. So called single
photon avalanche photodiodes (SPADs) are able to detect single photons and most recently
imaging arrays have been developed for time-resolved optical imaging with a time resolution
of about 100 ps (Li et al. (2010); Niclass et al. (2004); Pavia et al. (2011)).

A very appealing but somewhat exotic detector is the streak camera which, in principle, is
a PMT with an electron deflection stage and a phosphor screen. This allows to distribute
narrowly spaced subsequent pulses on the screen and thus provides an unrivaled high
effective counting rate. Such devices have been used in some instances for spectrally resolved
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TCSPC in phase fluorometers but also to generate tomographic slice images in diffuse optical
tomography (Hebden et al. (1997)).

Several research groups (e.g. Nothdurft et al. (2009); Patwardhan & Culver (2008); Soloviev
et al. (2009); Zhang & Badea (2009)) are using ultrafast time-gated image intensified CCD
cameras (ICCD) which allow to sample photons within 300 ps at repetition rates up to
110 MHz. Such cameras can acquire a sequence of time-delayed frames from which the time
spread function can be approximately reconstructed. The time resolution is not as good
as with TCSPC but the data quality is sufficient for many applications. As reported by
Patwardhan & Culver (2008), the Fourier transform can then provide the equivalent frequency
domain data up to modulation frequencies of more than 1 GHz.

The detectors also differ in their spectral sensitivity. While most PMTs have a high quantum
efficiency at the shorter wavelengths of the visible spectrum (VIS) and even at UV they
perform comparatively poorly in the NIR range, especially above 850 nm. APDs based on
silicon technology are typically more sensitive in the NIR range and can be used up to
1100 nm.

Both TDFT and FDFT require special electronics after the detectors. FDFT is less demanding
and uses either heterodyne or homodyne demodulation of the radio-frequency (RF) signal
which can be achieved with a fast detector (e.g. PMT) and subsequent downmixing in
an RF stage (for basic concepts see Chance et al. (1998)). Alternatively, the downmixing
can also be accomplished directly in the detector by modulating its gain with the local
oscillator frequency. This approach is the method of choice when using image intensifiers
with phosphor screen because due to the afterglow they are too slow for transmitting
the high frequencies. Gain modulation, however, is easily possible at the photocathode,
though precautions have to be made with respect to modulation depth because many
photocathodes exhibit significant heating at high frequencies due to ohmic losses. Systems
operating with this concept usually apply homodyne demodulation (see e.g. Godavarty et al.
(2003); Reynolds et al. (1997); Sevick-Muraca & Rasmussen (2008)). Also slow detectors in
combination with an electro-optic or acousto-optic shutter can be thought of, but their poorer
modulation characteristics usually precludes the use of this technique.

The design of a TSCPC circuitry is non-trivial and comprises two input stages for the reference
light pulse and the sample pulse. The arrival times of the pulses are determined by a so-called
constant fraction discriminators (CFD) and then passed to a time to voltage converter which
is read out by a subsequent analog/digital converter. Only pulses within a certain peak
height window are counted, thus excluding pulses arising from thermal emission and cosmic
rays. TSCPC boards are commercially available and nowadays fairly compact, even for
multidimensional TSCPC with up to 16 channels at prices in the range of several tens of k$,
depending on the specification. The currently fastest commercial boards are specified with
useful count rates up to 20 MHz. As in single photon counting the excitation light levels are
chosen in a way that no more than 1 % of the excitation pulses lead to a detected photon,
the limit is currently posed by the laser pulse repetition rate which is typically 80 MHz. The
required count rate is then at least 800 000 per second, thus current TSCPC speed is more than
sufficient.

Especially older tomographic systems employ PMTs or PMTs with multiple anodes,
(e.g. Schmidt et al. (2000)) and fiber-optic coupling to the specimen. Also fiber-coupling
and cameras as detectors was reported (Godavarty et al. (2003)). However, the coupling is
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a significant source of systematic errors and thus the trend goes towards so-called free-space
systems without any physical contact to the sample (Schulz et al. (2004)). An early hybrid
solution was reported by Graves et al. (2003) where only the excitation side was fiber-coupled.
Free-space systems can still be based on single PMTs, but the light is then collected via
collimators or focusing lenses at a distance of several cm from the object surface (Kepshire
et al. (2009)). Most instruments, however, employ cameras together with an external or
built-in image intensifier. Due to the large number of pixels available on the camera chip,
the number of possible detectors is much higher than in PMT-based systems and hence the
information content in the data is enhanced.

3.3 Sample holder/manipulation stages

Steering of the light beam can be achieved in different ways. The most common ones are
galvanometer-controlled mirrors (galvo scanners, see e.g. Zhang et al. (2009)), movable laser
diode assemblies or bundles of optically multiplexed fibers (Davis et al. (2008)). While fibers
require a more or less direct coupling with the surface of the object/animal, galvo scanners
and movable laser diodes provide free-space scanning. Fiber-based systems usually do not
move the animal but many free-space systems employ rotational and/or linear stages to move
the animal so as to image it from different sides. A recently developed free-space system (Li
et al. (2009)) includes a conical mirror which partially encloses the sample and thus collects
significantly more light than a camera alone or systems with flat mirrors (see e.g. Chaudhari
et al. (2005) in a non-fluorescent application). The conical mirror makes a rotational stage
unnecessary because light can be collected from nearly all sides of the sample at once. The
excitation beam is coupled to the sample via a galvo scanner and auxiliary optics. In addition,
some systems include a laser-based surface scanner in order to provide the outer boundary
shape of the animal under investigation (e.g. Li et al. (2009); Zavattini et al. (2006)).

3.4 Multispectral imaging

Multi- and hyperspectral imaging can improve the depth resolution of fDOT systems due to
the strong wavelength dependence of absorption and scattering properties of tissue (Zavattini
et al. (2006)). Multispectral means the collection of several (e.g. up to 10) different wavelengths
while hyperspectral means the acquisition at many (e.g. 100) different wavelengths (Chaudhari
et al. (2005)). Also excitation spectroscopy, i.e. the use of many excitation wavelengths,
has been proposed and is even considered as preferable because the dependence of the
absorption coefficient on the wavelength is stronger at shorter wavelengths, i.e. on the
excitation side (Chaudhari et al. (2009)). While many fDOT systems developed so far operate
at more than one excitation wavelength, spectroscopic detection is still not very widespread
in tomographic systems. Recent examples were published by Zavattini et al. (2006), Li et al.
(2009) and Zacharakis et al. (2011). Culver et al. (2003) developed a hybrid CW/frequency
domain fDOT system for breast cancer imaging. This system needs a matching fluid and
coupling of 45 detector fibers to the volume under investigation. Excitation is achieved with
four selectable laser diodes with the wavelengths 650, 690, 786 and 830 nm, each of which can
be modulated sinusoidally at 70 MHz. Nine fibers carry light to a PMT based demodulation
stage while simultaneously a transmission image is captured with a CCD camera in CW
mode. Li et al. (2009) published a CW system with two excitation lasers at 650 and 785 nm.
Detection is possible at 9 spectral bands, which are spaced between 680 nm to 840 nm and
have a width of 20 nm, thus allowing for excitation spectroscopy. Zavattini et al. (2006)
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described a CW system with one moving excitation laser at 640 nm and a CCD camera based
spectrograph. The spectrograph consists of a grating and an entrance slit which allows
for a spectral resolution of 3 nm. The camera provides x-λ images, i.e. spatial information
along one dimension (x) and spectral information between 400 nm to 1000 nm. A translational
stage allows scanning along the second spatial dimension (y). Another recently published
CW system comprises a CCD camera and a Czerny-Turner spectrograph as detection unit
while exciting the animal at relatively short wavelengths, i.e. the 488 and 514 nm lines of
an Argon laser (Zacharakis et al. (2011)). Zhang & Badea (2011) presented an improvement
of the system developed by Zhang et al. (2009), thus not only allowing for time-gated time
domain acquisition but also for multi-wavelength-excitation by the introduction of a tunable
Ti:sapphire laser. The tuning range from 690 to 1040 nm provides the unique possibility of
time resolved excitation spectroscopy, though in Zhang & Badea (2011) still no use was made
of the tuning option.

3.5 Hybrid systems: Combining high resolution modalities with fDOT

fDOT images exhibit low resolution due to the massive scattering of photons in most
biological tissues. The integration of good regularizing priors based on anatomical data,
provided by e.g. CT or MRI, can lead to significant improvement of the image quality
(Panagiotou et al. (2009); Zhang et al. (2009)) and is mandatory when following recent trends.
This motivates the development of bimodal imaging systems which combine fDOT with
high-resolution methods.

A laboratory system was described in da Silva et al. (2007); Silva et al. (2009), comprising
an X-ray generator and a flat panel detector as well as a krypton laser (752 nm) and a CCD
camera. The sample is rotated and translated in order to form the projections. In addition,
the laser beam is steered via a movable mirror. A similar concept was used by Aguirre et al.
(2008), i.e. a single laser diode with 675 nm a CCD camera, an X-ray source and flat panel
detector as well as a galvo scanner. In contrast to (da Silva et al. (2007)) all components were
mounted on a rotating gantry with 360° angular steering range.

More recently the optical units were integrated into commercial micro-CT devices: Schulz
et al. (2010) reported a hybrid fDOT-CT system, which employs a free-space CW-fDOT
equipment on the rotating gantry of a micro-CT device. Two fiber-coupled laser diodes (670
and 750 nm) are used as sources, the animal is scanned with an x-y-stage. The detector is a
cooled CCD camera with a 50 mm macro-lens.

Yang et al. (2010) developed an fDOT-CT dual-modality system with a flat panel
detector-based micro-CT for small animals. The CW-fDOT part relies on a 748 nm diode laser
and a cooled CCD camera mounted orthogonally to the micro-CT and the projection images
were acquired without rotation of the sample. Similarly, Lin et al. (2010) employed an X-ray
CT system with 2 lasers at 785 and 803 nm as well as a cooled CCD camera on a rotating
gantry.

All these XCT-fDOT systems operate only in CW-mode.

Only a few attempts have been made so far to build hybrid devices employing MRI as the
high-resolution modality. Some pioneering work was already done in the field of DOT,
e.g. by Ntziachristos et al. (2000) involving a fiber-optic interface for the investigation of the
human breast inside of an MRI scanner. The optical instrumentation comprised a PMT-based
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single-photon counting system. Masciotti et al. (2009) published an 9.4 T MRI small animal
scanner with an animal coil (38 mm diameter) and a fiber-optic interface with 13 source fibers
and 27 detection fibers. The system comprises two lasers at 757 and 828 nm, which can be
modulated up to about 1 GHz. Homodyne demodulation is performed with a modulated
ICCD. Davis et al. (2008) designed a spectroscopic CW fDOT unit, which is coupled to the
animal bed inside a 3 T-MRI body scanner via fibers (8 detectors, 16 sources). The excitation
laser operates at 690 nm. The animal bed is placed inside a specially designed rodent coil for
MR-acquisition.

3.6 Advanced hardware concepts

As scanning time is an important issue in fDOT, reducing the required time for data
acquisition is a challenging task. Wang et al. (2010) applied spatial encoding of the excitation
light in order to reduce the time needed to create different excitation patterns. Several
laser diodes are switched on in a particular pattern and moved in axial direction during the
scanning process.

A completely different approach avoids source multiplexing completely, thus reducing
hardware complexity significantly. In contrast to usual spatial encoding by various
combinations of source/detector locations, only a single macro-illumination light source with
a broad spectrum and a tunable excitation filter is used. The required spatial encoding
is achieved by varying the excitation wavelength and exploiting the frequency-dependent
sensitivity distribution inside of the target for the image reconstruction. A prototype (Klose
& Pöschinger (2011)) consists of a commercial 2D-small animal imager with a white light
source, a tunable filter and a cooled CCD camera. The excitation wavelength was varied
in nine steps from 590 to 660 nm with a bandwidth of 10 nm per step. Fluorescence light
was collected at 700 nm. The price paid for the simpler hardware setup is a more complex
reconstruction algorithm which must contain a valid model of frequency-dependent light
propagation in moderately absorbing tissues, which requires extensions of the popular
diffusion approximation of the radiative transfer equation.

3.7 Comparison of technologies

It is intuitively clear that CW systems do not allow fluorescence lifetime imaging (FLIM) but
besides it is also not possible to separately identify the absorption and scattering coefficients
of the medium under investigation (Arridge & Lionheart (1998)). More sophisticated
investigations thus require either the use of FDFT or TDFT. As the instrumentation is
significantly less expensive and demanding for FDFT it would be desirable to contrast the
two approaches in the context of information content and data quality. As mentioned, the
information content is theoretically equal for both modalities when the same sources and
detectors are applied and when the number of frequencies in FD corresponds to the number of
time steps in TD. However, in time domain spectroscopy there are two apparent advantages
from the instrumentation point of view. These are in particular: (i) Dark noise and PMT gain
noise can be eliminated very effectively which is not the case for FDFT. (ii) Artifacts arising
from e.g. reflections can be frequently sorted out prior to any subsequent data processing just
by time-gating.

A rigorous comparison of the methods is difficult because it should include adequate
noise models and cutting-edge reconstruction techniques, which exploit all the information
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available in the data for both modalities. Moreover, parameters like the effective aperture
of the detectors, power of the light sources and effective measurement time must be taken
into account for a fair comparison. One attempt was made for diffuse optical tomography
(DOT) by Nissilä et al. (2006) where the authors compared the time domain system of the
University College London (UCL) (Schmidt et al. (2000)) and a frequency domain system
developed at Helsinki University of Technology (HUT) (Nissilä et al. (2005)). Both systems
are fiber-coupled but differ in the number of source and detector positions. Both systems
operate in the NIR range at very similar wavelengths, i.e. 780 and 815 nm (UCL) and 760
and 830 nm (HUT), respectively. As the HUT system operates only at one single modulation
frequency of 100 MHz a comparison can only be made in the context of time harmonic image
reconstruction, i.e. in terms of magnitude and phase. Considering this limitation the noise
data of both systems are similar, yielding an amplitude noise of 1.7 % and 0.5 % and a phase
noise of 0.2 and 0.5°, respectively at a detected light power of 1 pW. However, the laser
power was different (8 mW for HUT and 40 mW for UCL) and the acquisition speed was
somewhat shorter in the HUT system. The authors of the article also list some data of
other frequency domain systems and show that the HUT and UCL systems, at that time,
had comparatively good noise performance and could thus serve as reference systems. The
analysis also comprises image reconstruction results from data generated with both systems,
but only based on a frequency domain approach. Therefore, this comparison cannot be
generalized because it neither takes into account the full information content of time domain
data nor the specific advantages of optimized time domain reconstruction algorithms. A
more rigorous and comprehensive comparison including realistic noise models and adequate
solvers for all modalities is still lacking.

4. Mathematical description of light transport

Before we can discuss reconstruction methods to find the fluorophore distribution inside
an object, it is necessary to describe mathematical methods to model how light spreads
inside an object. Nowadays, three models are commonly used which are—with decreasing
accuracy—the Monte Carlo method, the radiative transport equation and its diffusion
approximation.

4.1 Random-walk Monte Carlo method

Random-walk Monte Carlo (MC) methods for solving the forward model have a rather long
tradition in optics and have been implemented in different flavors. In the most simple form,
the path of a single photon throughout the tissue is simulated in every run. As most of the
physical processes like the change of the polarization state or the absorption of photons by
electron excitation are stochastic in their nature, MC methods are well suited to model these
effects. Furthermore, it is comparatively easy to incorporate tissue inhomogeneities, reflection
and refraction at internal boundaries due to variations in the index of refraction, anisotropic
scattering phase functions and so on.

The drawback of MC methods is their slow convergence which is proportional to the square
root of the number of runs. In order to achieve reliable results for three dimensional objects, it
is often necessary to simulate the propagation of millions of photons. The convergence is also
poor when a certain physical process has a very low probability, say it occurs only once in one
thousand trials.
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A series of strategies for speeding up the simulations has been developed, for example,
simulating photon packets rather than individual particles (Wang et al. (1995)) and running
photons in parallel using modern graphics hardware (Fang & Boas (2009)). Still, the
comparatively high computational effort limits the applicability of Monte Carlo methods for
reconstructing fluorophore properties.

4.2 Transport equation

A deterministic solution for light propagation can be found in Boltzmann’s transport equation
which is also frequently called the radiative transport equation (RTE). Rather than modeling each
particle independently, which can be done with Monte Carlo methods, the RTE deals with an
ensemble of photons in an infinitesimal volume. To be more precise, the RTE is a balance
equation for the number of photons per unit volume (i.e. the photon density) Φ(�x, ŝ, t) at a
spatial location �x traveling into an infinitesimal solid angle around a direction ŝ at a time
instance t. The transport equation reads

1

ν

∂Φ(�x, ŝ, t)

∂t
+ ŝ · ∇Φ(�x, ŝ, t) + (µa(�x) + µs(�x))Φ(�x, ŝ, t)

= qint(�x, ŝ, t) + µs(�x)
∫

S2
Θ(ŝ′, ŝ)Φ(�x, ŝ′, t) dŝ′ in Ω, (1)

together with the boundary condition

Φ(�x, ŝ, t) = qbc(�x, ŝ, t) ∀ŝ : ŝ · n̂ < 0 on Γ, (2)

where ν is the speed of light in the tissue, µa and µs are the absorption and scattering
coefficients, respectively, and Θ(ŝ′, ŝ) is the scattering phase function which states the
probability that a photon traveling in direction ŝ′ will be deflected into direction ŝ. In this
equation, S2 is the surface of the unit sphere and thus the integral is taken over all possible
directions. The term qint models sources inside the domain.

The left-hand side of equation (1) models the decrease in photon density due to movement
and absorption, while the right-hand side incorporates the photon gain caused by scattering
and an internal source.

The boundary condition imposes restrictions on the solution only for inward-pointing
directions, i.e. for all ŝ with ŝ · n̂ < 0 where n̂ is the outward-pointing unit normal of the
domain. It states that no light can enter the domain from the outside except at locations where
a boundary source is present, i.e. where qbc(�x, ŝ, t) �= 0.

A limitation of the transport equation is that it cannot handle wave effects. As a consequence,
the wavelength of the light must be much smaller than the dimensions of the structures in the
domain (Gibson et al. (2005)). Furthermore, varying indices of refraction are not included in
equation (1) but can be incorporated.

Despite these insufficiencies, the transport equation would be well suited for biomedical
optics. It is able to handle many different types of tissue whether they are highly scattering
like muscle, as absorbing as the liver or as transparent as liquor, for example. Furthermore,
the boundary equation is physically meaningful.

The reason why the RTE is frequently avoided is the high computational effort required for
calculating an accurate solution. The photon density Φ(�x, ŝ, t) has to be discretised in the
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spatial and angular domain which requires five variables for a 3D problem (three coordinates
and two angles). If too little angular directions are chosen for the discretisation, the resultant
photon field favors propagation along these directions resulting in star-like patterns, where
one would expect a radial symmetric distribution instead. To illustrate the influence of the
angular discretisation on the computational effort, imagine a rather coarse discretisation of
only 32 divisions for both the azimuth and the inclination. This results in 1024 angular
directions, which have to be multiplied by the number of mesh points used for the spatial
discretisation.

4.3 Diffusion approximation

Due to the shortcomings of the previously mentioned models, the most common description
for photon migration is the diffusion approximation. This is a reduced form of the RTE
which first expands the direction-dependent quantities Φ, Θ, qint and qbc into spherical
harmonics. Then, all spherical harmonics except the first one are neglected, i.e. only the
isotropic propagation of photons is considered. Some additional constraints are imposed on
the photon flux and the scattering phase function Θ. A thorough derivation is found in the
review article by Arridge (1999). The model is valid in the regime where photon propagation
is diffuse, which is the case in tissues which are much more scattering than absorbing, at a
sufficient distance from the source. Problems arise if the tissue is either strongly absorbing
such as in the liver or nearly transparent as in liquor. Furthermore, the model is inaccurate
near the light source, where the photon propagation is not yet diffuse due to the small number
of scattering events, and at places where the optical properties jump which might be the case
at the boundary of organs, for example (Gibson et al. (2005)).

In its frequency domain form, the diffusion approximation is a partial differential equation
(PDE) which reads

−∇ · (κ(�x)∇ϕ(�x)) +

(
µa(�x) +

iω

ν

)
ϕ(�x) = qint(�x), in Ω, (3)

̺ϕ(�x) + κ(�x)n̂ · ∇ϕ(�x) =

{
̺ qbc(�x),
0,

on Γbc,
on Γ \ Γbc,

(4)

where ϕ is the fluence, κ = (3 (µ′
s + µa))

−1
the diffusion coefficient of the tissue, µ′

s the
reduced scattering coefficient and µa the absorption coefficient. ω is the modulation frequency
of the excitation light source with the special case of ω = 0 s−1 for CW excitation with a
constant intensity. The injected light can be modeled by an internal source qint ,which is
frequently used for collimated beams, or a boundary source qbc, which is suitable for spatially
extended sources on a part Γbc of the boundary Γ. ̺ is a reflection coefficient to incorporate the
reflections at the boundary Γ of the domain Ω due to the differences in the indices of reflection.

4.4 Diffusion approximation for fDOT

For fDOT, the diffusion approximation has to be extended as now two different photon
distributions with different wavelengths have to be simulated: (i) excitation light due to the
illumination of the sample and (ii) emission light which has been generated by a fluorophore
inside the sample by conversion from the excitation wavelength. As the optical parameters
of tissue vary with the chosen wavelength, we distinguish them by sub-scripts x and m for
excitation and emission, respectively. Furthermore, these coefficients have to depend on the
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Fig. 3. Simulation of the fluences ϕx(�x) (top row) and ϕm(�x) (bottom row) due to three
different boundary sources positioned at angles of 11.25° (left), 56.25° (middle) and 146.25°
(right). The color encodes the logarithm of the amplitude of the photon densities.

fluorophore concentration c(�x) which one seeks to reconstruct from measurements in a known
manner. If the concentration is fairly small, it can be seen as an additional absorber and the
effective absorption coefficients can be written in the form

µx(�x) := µa,0,x(�x) + ǫx c(�x) +
iω

ν
and (5)

µm(�x) := µa,0,m(�x) + ǫm c(�x) +
iω

ν
, (6)

where µa,0,i, i ∈ {x, m}, is the background absorption of the tissue in the absence of
fluorescent agent and ǫx, ǫm are the molar extinction coefficients which relate the fluorophore’s
concentration to its absorption coefficients. With these definitions the diffusion approximation
for fDOT can be written as a two-state model (Sevick-Muraca et al. (2003)):

−∇ · (κx(�x)∇ϕx(�x)) + µx(�x)ϕx(�x) = qint(�x), in Ω, (7)

−∇ · (κm(�x)∇ϕm(�x)) + µm(�x)ϕm(�x) =
η

1 + iωτ
ǫx c(�x)ϕx(�x), in Ω, (8)

with the boundary conditions

̺x ϕx(�x) + κx(�x)n̂ · ∇ϕx(�x) =

{
̺xqbc(�x),
0,

on Γbc,
on Γ \ Γbc,

(9)

̺m ϕm(�x) + κm(�x)n̂ · ∇ϕm(�x) = 0, on Γ. (10)

The conversion efficiency of the fluorophore is denoted by the constant η and its fluorescent
lifetime by τ. A typical simulation result is depicted in Figure 3.

The measurement data is gathered by illuminating the sample with differently positioned
light sources and recording the photons leaving the boundary. The simplest type of
measurement is to record the photons leaving the boundary at a certain location, i.e. to
integrate the photon flux over a detector area χ:

−
∫

Γ

κm(�x)n̂ · ∇ϕm(�x)χ(�x) d�x
(10)
= ̺m

∫

Γ

ϕm(�x)χ(�x) d�x. (11)
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The detector function χ can also incorporate linear transfer characteristics of the system
such as a weighting due to an oblique viewing angle when using a camera. Other types of
measurements based on the logarithm of the intensity, for example, have been reported in
e.g. Arridge (1995); Arridge & Schweiger (1993); Sevick & Chance (1991).

As for a tomographic measurement Ns light sources and Nd detectors are used, the data can
be written in a matrix M of size Nd × Ns. The emission field ϕm depends on the fluorophore
concentration c, which makes the measurement matrix dependent on c and we write M(c) to
emphasize this fact.

5. Image reconstruction

The aim of fluorescence tomography is to reconstruct the fluorophore concentration and/or
the fluorophore’s lifetime inside a 3D object from intensity measurements performed on
the object’s boundary. In the previous section, methods have been described to simulate
the photon propagation inside an object, where the tissue and fluorophore properties
are known exactly. This is called the direct or forward problem. The estimation of
the fluorophore distribution from measurement data is known as the inverse problem of
fluorescence tomography. An overview about the whole reconstruction process is displayed
in Figure 4. In the following, more details will be provided for solving this problem. For the
sake of simplicity, the focus is put on FDFT-systems, whose mathematics is easier to grasp.
Furthermore, one can Fourier-transform time domain data and apply FDFT-algorithms.
Last but not least, CW-reconstructions are a special case of FDFT-reconstructions with a
modulation frequency of ω = 0 s−1.

Mathematically the problem can be formulated as follows: Let Mδ denote a light
measurement taken at the object’s surface, which is usually perturbed by noise bounded
by δ coming from different origins, e.g. detector noise, discretisation errors and modeling
errors. Then, one seeks to find a fluorophore concentration c such that the data mismatch∥∥∥M(c)−Mδ

∥∥∥
2

is minimized.

5.1 Ill-posedness of the inverse problem

Fiber-coupled fDOT systems usually result in a limited amount of data. Configurations
with approximately 16 sources and 16 detectors are common which gives a set of 256
measurements. The inverse problem is under-determined in this case: there is much less
measurement data than the number of voxels (typically in the order of ten-thousands) in
which we would like to compute the fluorophore concentration.

The situation is different for the free-space arrangement. The camera can take images of the
whole surface (which depends quadratically on the object’s dimension d). If also the excitation
beam can be positioned everywhere at the surface, one would get measurement combinations
in the order of d2 × d2 = d4 but needs to reconstruct only d3 voxels. In this case more
measurement data is available than there are unknown parameters and the problem is said
to be over-determined.

However, we cannot expect to reconstruct high-resolution images similar to CT from
fluorescence tomography data. In CT the X-ray beams pass the object under investigation in
nearly straight lines as illustrated in Figure 5(a). If the X-ray hits an absorbing object (the small
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Fig. 4. Typical image reconstruction process: With the help of appropriately discretized
mathematical models the simulated measurement data M(c) is computed. The simulated
measurements have to be close to the true data Mδ gathered from experiments. A
regularization term R(c) has to be created from a-priori knowledge, which is needed to
stabilize the algorithm. Finally, the image is reconstructed by minimizing the sum of the data
mismatch and the penalty term.

ball), it is partly absorbed which casts a “shadow” in the recorded intensity projection I. In
fDOT the photons are massively scattered and spread throughout the whole object. Figure 5(b)
shows the distribution of the light emitted by a fluorescent ball when a small part of the
surface at the top is illuminated with light. A camera looking at the object’s bottom records a
much more diffuse light intensity pattern compared to the CT detector. The interface between
the fluorescent object and the background cannot be determined from these measurements
directly.

An important quantity for the solution of the inverse problem is the so-called sensitivity. It
measures the influence of a change in an image voxel onto a detector datum. This concept
is illustrated for CT and fDOT in Figure 6: The sensitive area of an X-ray beam which is
generated by a source S and detected by D consists of all voxels along the line which the
X-ray passes. Analogously, an fDOT measurement is sensitive in that region which photons
generated by the source S and recorded by the detector D traverse. Due to the massive
scattering, the resulting fDOT sensitivity profile is much broader than the one from CT. In
other words, a single fDOT measurement incorporates information from nearly the whole
sample volume, while a CT datum only measures along a line.
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Fig. 5. Comparison between CT (a) and fDOT (b). In a CT system the X-ray beams pass the
sample in nearly straight lines. The intensity I decreases if an absorbing object is
encountered resulting in a “shadow” projection. In fDOT the emission light (shown in color)
spreads throughout the sample although the surface is excited at a very small patch only. The
intensity profile which a camera would record from the bottom is much more diffuse than
the CT projection.

 !"  #"

$

%

%

$

Fig. 6. Sensitivity profile for a single CT- and fDOT-measurement. (a) The voxels to which a
CT measurement is sensitive lie along the line which the X-ray beam passes. (b) The photons
in fDOT have a much larger coverage than an X-ray beam which leads to a broadening of the
sensitivity profile.
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An elegant way to compute the sensitivity mathematically is through the use of adjoint fields.
These fields are generated by formally treating the detectors as sources which generate an
adjoint photon distribution. The adjoint field is a spatially resolved measure for the detection
efficiency of a sensor. The sensitivity at a certain position in the sample is then the product of
the forward field (the photon distribution due to the light source) times the adjoint field (the
distribution of the photon collection efficiency). It is highest at locations which are reached by
many photons from the source and from which many photons are collected by the detector at
the same time.

The adjoint system to the forward system (7)–(10) is another system of PDEs which reads

−∇ · (κm(�x)∇ψm(�x)) + μm(�x)ψm(�x) = 0 in Ω (12)

−∇ · (κx(�x)∇ψx(�x)) + μx(�x)ψx =
η

1 − iωτ
ǫx c(�x)ψm(�x) in Ω (13)

̺mψm(�x) + κm(�x)n̂ · ∇ψm(�x) = ̺mχ(�x) on Γ (14)

̺xψx(�x) + κx(�x)n̂ · ∇ψx(�x) = 0 on Γ. (15)

The sensitivity of the ij-th measurement around c into direction h is given by

M′
ij(c)h := lim

h→0

Mij(c + h)−Mij(c)

‖h‖

=−
∫

Ω

κ′xh∇ϕx(qj) · ∇ψx(χi) d�x −
∫

Ω

μ′
xh ϕx(qj)ψx(χi) d�x

−
∫

Ω

κ′mh∇ϕm(qj) · ∇ψm(χi) d�x −
∫

Ω

μ′
mh ϕm(qj)ψm(χi) d�x

+
η

1 + iωτ
ǫx

∫

Ω

h ϕx(qj)ψm(χi) d�x. (16)

In this equation, we used the notation ϕ(qj) and ϕ(χi) to emphasize the dependencies of the
forward field on the excitation source qj and the adjoint field on the detector χi, respectively.

When solving the inverse problem, one seeks to reconstruct the parameters in the sensitive
area from the measurement data. Looking at Figure 6, it is intuitively clear that this task is
much easier for CT, where one can simply distribute a measurement datum back along the
line which the X-ray beam passed, than for fDOT, where every recording has to be distributed
in the whole sample. This lack of information is valid for both fiber-based and free-space
arrangements. The reconstruction problem is said to be ill-posed.

5.2 The role of prior information

To deal with the ill-posedness of the inverse problem, additional knowledge has to be
incorporated into the reconstruction algorithm which is known as regularization. This
means that unphysical or undesired images are penalized while images featuring certain
characteristics are favored. Using regularization terms of Tikhonov-type, one can state the
image reconstruction as an optimization problem, where one seeks to minimize the functional

Lα(c) := 1
2

∥∥∥M(c)−Mδ
∥∥∥

2
+ αR(c). (17)
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In this equation, R(c) is a penalty for unwanted fluorophore distributions. With the parameter
α it is possible to adjust between sticking to the data (α = 0, which means no regularization
at all) and reconstructing a concentration according to the prior information (α → ∞, which
means that the simulated and the measured data can diverge arbitrarily). As the problem (17)
is non-linear, one can choose e.g. Newton methods to solve it. If the Hessian (i.e. the second
derivatives of the forward operator M(c)) is neglected, one can write the iterations in the
form

Re
{
M′∗(ck)M

′(ck) + αkR̃
′′(ck)

}
∆ck = Re

{
M′∗(ck)

(
Mδ −M(ck)

)
− αkR

′(ck)
}

, (18)

where the parameter α can vary in every iteration. This is known as the iteratively regularized
Gauß-Newton algorithm and is treated in detail elsewhere (Bakushinskiı̆ (1992); Blaschke et al.
(1997); Engl et al. (1996)). In this context, M′∗ means the adjoint of the sensitivity operator

M′ and its exact meaning depends on the chosen discretisation. R′(ck) and R̃′′(ck) are the
first and approximated second derivatives of the regularization term evaluated for the current
concentration ck. Besides the Gauß-Newton method, other algorithms are available such
as the Levenberg-Marquardt method (Marquardt (1963)), the Newton-Landweber method
(Kaltenbacher (1997)) and the truncated Newton-CG method (Hanke (1997)). Applications
to the field of optical tomography are e.g. Egger & Schlottbom (2011); Jiang (1998); Joshi
et al. (2004); Roy & Sevick-Muraca (1999); Schweiger et al. (2005). A good overview of
reconstruction methods applied to fluorescence tomography is given by Sevick-Muraca et al.
(2003).

Unfortunately, there is no one-size-fits-all-type regularization method. Instead, R(c) has to
be chosen with respect to the application and the expected outcome. In the following, typical
regularization methods are discussed.

5.2.1 Quadratic regularization terms

The probably most often used regularization term is the L2-norm of the concentration,
which is a penalty for large concentrations such as outliers. Thus, smaller values for
the concentration in the whole domain are preferred. The dominance of this particular
regularization term in many engineering applications is most likely not not due to its physical
meaning but rather due to its simplicity and speed, both in implementation and evaluation.
If we denote the identity operator with I, the regularization term and its derivatives can be
written as

R(c) = 1
2‖c‖2, R′(c) = c, R′′(c) = I. (19)

If one can provide an a-priori guess c0 for the fluorophore distribution, it is advantageous to
penalize the difference between the prior guess and the current concentration, i.e. to use a
regularization term of the form

R(c) = 1
2‖c − c0‖

2. (20)

Another quadratic regularization term is based on the H1-semi-norm instead of the L2-norm.
This semi-norm does not penalize higher concentration values but it penalizes variations
in the reconstructed fluorophore distribution and thus enforces the resultant images to be
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smooth. From a physical point of view, this is most often more meaningful than to suppress
outliers. The regularization functional is defined as

R(c) = 1
2‖∇c‖2, R′(c)h = 〈∇c,∇h〉 ,

〈
R′′(c)h1, h2

〉
= 〈∇h1,∇h2〉 . (21)

5.2.2 Total-variation regularization

Although the H1-semi-norm is physically meaningful, it faces the problem that large gradients
of the fluorophore concentration are still penalized which prevents steep transitions (jumps)
from an object to the background. However, if one knows a-priori that the fluorophore is
well localized (e.g. inside a localized tumor) and piecewise constant, the total-variation (TV)
regularization might be an option. Although this method also measures the gradient of the
reconstructed image, it uses an L1-norm rather than the L2-norm for penalization:

TV(c) :=
∫

Ω

|∇c(�x)| d�x. (22)

Using the L1-norm, the penalty grows linearly with the gradient (instead of quadratically), i.e.
larger gradients are allowed to some extent.

Unfortunately, the TV functional is not differentiable at points where ∇c(�x) = 0. A possible
mitigation is to use a relaxation as suggested by Acar & Vogel (1994) which reads

R(c) =
∫

Ω

√
β + |∇c(�x)|2d�x, R′(c)h =

∫

Ω

∇c(�x) · ∇h(�x)√
β + |∇c(�x)|2

d�x,

〈
R̃′′(c)h1, h2

〉
=

∫

Ω

∇h1(�x) · ∇h2(�x)√
β + |∇c(�x)|2

d�x (23)

where a scalar β > 0 has been introduced to smooth the square-root around the origin.

Note also that R̃′′ is just an approximation of the true Hessian, because the derivative of
the denominator has been neglected.

5.2.3 Level-set method

Another possibility of regularization is through the use of level-set methods, which have
been used for diffuse optical tomography (Alvarez et al. (2009); Schweiger et al. (2008)). The
principle is that if the background fluorescence and the fluorescence inside and object are
constant, the reconstruction problem reduces to finding the interface which separates the
inclusions from the background. This interface can be described using level-set methods:
The level-set function φ(�x),�x ∈ Ω is negative inside the inclusion and positive outside. Thus,
the separating interface consists of all points where the level-set function is zero, i.e. it is the
zero-level set {�x : φ(�x) = 0}. Applying the Heaviside function

H(z) :=

{
1, z ≥ 0,

0, else,
(24)

one can express the concentration distribution as the sum

c(�x) = cin + H(φ(�x))(cout − cin), (25)
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Fig. 7. Comparison of reconstructions of (a) four fluorescent objects with a concentration of
10 μM each. The reconstructions are based on (b) the L2-norm, (c) the H1-norm (d) the
total-variation. Also the results from a method of level-set type with cout = 10 μM are
presented with two different levels for the concentration inside the object: (e) cin = 10 μM

and (f) cin = 50 μM.

where cout and cin are the two scalar fluorophore concentrations in the background and inside
the inclusion.

Unfortunately, the numerical effort for the computation of the evolution of the level-set
function is comparatively high. The reason is again the non-differentiability of the Heaviside
function. A mitigation has been studied as a method of level-set type in Frühauf et al. (2005)
and Egger & Leittão (2009). The idea is to parametrize the concentration c by a nonlinear,
smooth, monotonically increasing function Hβ(φ) and to reconstruct the level-set function φ
which is done by minimizing the objective function

L
φ
α = 1

2‖F(Hβ(φ))‖
2 + αR(φ). (26)

One possible parametrization is by using the error function such that the approximated
Heaviside reads

Hβ(z) :=
cin + cout

2
+

cin − cout

2
erf

(
z

β

)
. (27)

This parametrization restricts the concentration by the lower and upper bounds cout and cin,
respectively, but still allows values in between. Furthermore, it has a smooth derivative which
is useful for the Gauß-Newton algorithm.

Example reconstructions using the different kinds of regularization methods, which have been
presented in this chapter, are shown in Figure 7.
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5.2.4 Multi-modality regularization

When combining fDOT with a high-resolution modality such as CT or MRI, it is advantageous
to use information from the highly resolved anatomical images to improve the quality of
fDOT-reconstructions. In the following, some attempts for incorporating this information are
listed.

In the work by Davis et al. (2007), the anatomical images were segmented and the
regularization term R(c) was constructed such that it allows larger variations between voxels
from different segments but keeps variations between voxels from the same segment small.

Although only applied to DOT, Douiri et al. (2007) used a-priori edge information (which
could be obtained from CT, for example) together with an anisotropic diffusion model which
preserves sharp edges in the reconstructed optical properties. This method could also be
extended to fDOT to constrain the leakage of fluorescent agent in the reconstruction across
anatomical boundaries.

Another approach, which uses segmented images from a high-resolution modality like MRI
or CT, was presented by Hyde et al. (2010). Their algorithm first uses only one fluorescence
concentration for each segment (thus reducing the dimension of the reconstruction problem)
and creates a spatially-varying regularization matrix from the low-dimensional reconstruction
in a second step.

5.3 Regularisation parameter and stopping criterion

The choice of the regularization parameter α in equation (17) has attracted quite some
interest. The basic problem is that this parameter balances the goodness of fit, i.e. how well
the mathematical model approximates the measured data, and the stability of the inversion.
For the iteratively regularized Gauß-Newton algorithm, typically exponentially decaying
sequences are suggested (Blaschke et al. (1997); Engl et al. (1996)).

Another problem is the stopping criterion for the iterative reconstruction. Most often these
criteria are implemented using heuristics. For example, one can set a lower limit for the
regularization parameter or stop if stagnation occurs and the residual no longer changes as
done by Dehghani et al. (2008). Note that for the latter approach a good choice for the step
length is mandatory. Otherwise, the residual will decrease very slowly which triggers the
stopping criterion even when no (local) minimum of the objective functional has been reached.

An objective stopping criterion is given by Morozov’s discrepancy principle (Morozov (1966)).
It states that the residual shall not be smaller than the error in the measurement. Thus, if the
true measurement without any noise is denoted as M, α should be chosen such that

‖M(cα)−Mδ‖ ≈ ‖M−Mδ‖, (28)

where cα denotes the reconstructed fluorophore distribution with regularization parameter α.
In other words, the difference between the simulated measurement and the noisy data should
be approximately the same as the difference between the (inaccessible) measurement values
and the noisy data. Unfortunately, the expression on the right-hand side cannot be evaluated
in practice as the true measurements M are not known. Thus, one has to deduce this quantity
by other means based on the distribution of the noise, for example.
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6. Recent developments for pre-clinical and clinical applications

2D fluorescence imaging in pre-clinical sciences is a well-established technology. In this
section, we would like to give an overview about applications of truly three-dimensional
fluorescence imaging. There are many publications showing the potential of fDOT in
phantoms or ex-vivo while the number of in-vivo studies is still very limited. However, as
in-vivo molecular imaging is probably the most attractive future field of application, this
subchapter summarizes some important in-vivo results.

From the technological point of view, we can observe two major groups of applications, the
first of which serves for the non-quantitative visualization of molecular or cellular processes,
mostly evaluating quantum yield data. The second group tackles the more challenging
field of quantitative imaging, frequently exploiting both quantum yield and fluorescence
lifetime imaging (FLIM). The reconstruction of the fluorescence lifetime is of particular interest
because it yields more reliable information about the chemical interaction of the probe with
its environment than the fluorophore’s quantum efficiency (Lakowicz (2006)).

In the first group we find e.g. the use of a cathepsin-activatable fluorescence probe by Niedre
et al. (2008) to monitor a mouse lung tumor and by Haller et al. (2008) for the visualization
of pulmonary inflammation. Another example is the visualization of macrophage infiltration
of infarcted mycardium in a mouse model by Sosnovik et al. (2007), who compared MRI,
planar fluorescence imaging and fluorescence tomography. Kozloff et al. (2007) investigated
the feasibility of localizing bone mineralization/demineralization processes with a specific
fluorescent probe in mice. So-called far-red fluorescent pamidronate (FRFP) was proven to
specifically bind to bone mineral sites and fDOT images made with a commercial system
enabled the visualization of deep mineralizing structures including the growth plates in the
femoral heads. Biswal et al. (2011) developed a 2-nitroimidazole-ICG probe for monitoring
tumor hypoxia and present images of tumors of sizes of a few millimeter, however, without
assessing the accuracy of the tumor location and size in the reconstructions. Tan et al. (n.d.)
used fluorescence tomography to monitor stem cells in Drosophila Pupae by the expression
of a DsRed reporter.

In the second group (FLIM) we find a paper by Nothdurft et al. (2009) who were the
first to show in-vivo life-time tomography on mice, where they imaged agarose gel
implants as well as a cypate-labeled tumor. Gaind et al. (2010) showed the feasibility
of reconstructing fluorescence resonance energy transfer (FRET) parameters, including the
nanometer donor-acceptor distance, also from deep tissue regions in a mouse. 3D-studies
of inter- and intra-molecular FRET could be of high importance for the investigation of
diseases like Alzheimer’s and some cancers related to protein misfolding. McGinty et al.
(2011) presented FLIM in combination with Förster resonance energy transfer (FRET). In their
experiment, a mouse genetically expressed a eGFP-mCherry-FRET probe.

So far there are only very few attempts to apply fluorescence tomography in human
applications. The main reasons are certainly (i) the limited penetration depth of light in tissue
which precludes the application of fDOT in extended parts of the body and (ii) the lack of
approval for human use of most fluorescent labels known in molecular imaging. Corlu et al.
(2007) presented a proof-of-concept study utilizing fluorescence tomography for detecting
breast cancer in women using ICG as fluorescent agent. An interesting recent application
for breast cancer imaging was reported by Mastanduno et al. (2011). The authors combined
breast DCE-MRI, diffuse optical tomography and fDOT for imaging nine healthy volunteers
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and one patient with breast cancer. fDOT was used for the reconstruction of autofluorescence
from protoporphyrine IX, thus no extrinsic labeling agents were applied. The results, though
lacking statistical power, suggest that combined application of all three modalities may
provide improved information on malignancy when compared with DCE-MRI alone.

7. Trends and outlook

In this chapter, we addressed hardware-issues and reconstruction principles for fluorescence
tomography and presented promising applications especially for pre-clinical sciences.

In the near future, we expect that more compact fluorescence tomography hardware will be
developed e.g. through the replacement of photomultiplier tubes by silicon APDs. Another
development will focus on hybrid devices such as fDOT/CT and fDOT/MRI combinations to
use all the information from different modalities.

The reconstruction algorithms will on the one hand follow the hardware development,
i.e. reliable strategies for the incorporation of a-priori information from CT and MRI into
fDOT-images will be needed. On the other hand, the recent developments in commodity
parallel computing architectures, such as modern graphics hardware with NVIDIA’s CUDA
toolkit or the OpenCL framework, will certainly aid the implementation of advanced
algorithms including e.g. non-linear image regularization.

fDOT so far appears difficult to be used for human imaging. However, if autofluorescence
could be used for producing diagnostically relevant contrasts, some niche-applications may
arise. A recent example is the work by Mastanduno et al. (2011) which may open a new
application window in breast imaging. Another important decisive issue is whether new
fluorescent contrast agents will be approved for the use in humans.

In the field of pre-clinical imaging fDOT has been demonstrated to be feasible and the
availability of commercial devices will certainly increase its use and importance. Current
challenges are quantification and 3D lifetime imaging. As FLIM paves the way for 3D sensing
of chemical analytes, this could be a new attractive field of research. Some pioneering work
was already done by Shives et al. (2002) who showed the feasibility of FLIM-based oxygen
sensing in-vitro and there is certainly potential for future developments towards in-vivo
applications.
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