444 research outputs found

    Vehicle Routing Problem with Time Windows: An Evolutionary Algorithmic Approach

    Get PDF
    The Vehicle Routing Problem with Time Windows (VRPTW) is an important problem in logistics, which is an extension of well known Vehicle Routing Problem (VRP), with a central depot. The Objective is to design an optimal set of routes for serving a number of customers without violating the customer’s time window constraints and vehicle capacity constraint. It has received considerable attention in recent years. This paper reviews the research on Evolutionary Algorithms for VRPTW. The main types of evolutionary algorithms for the VRPTW are Genetic Algorithms and Evolutionary Strategies which may also be described as Evolutionary metaheuristics to distinguish them from other metaheuristics. Along with these evolutionary metaheuristics, this paper reviews heuristic search methods that hybridize ideas of evolutionary algorithms with some other search technique, such as tabu search, guided local search, route construction heuristics, ejection chain approach, adaptive large neighborhood search, variable neighborhood search and hierarchal tournament selection. In addition to the basic features of each method, experimental results for the 56 benchmark problem with 100 customers of Solomon (1987) and Gehring and Homberger (1999) are presented and analyzed

    A Computational Study of Genetic Crossover Operators for Multi-Objective Vehicle Routing Problem with Soft Time Windows

    Full text link
    The article describes an investigation of the effectiveness of genetic algorithms for multi-objective combinatorial optimization (MOCO) by presenting an application for the vehicle routing problem with soft time windows. The work is motivated by the question, if and how the problem structure influences the effectiveness of different configurations of the genetic algorithm. Computational results are presented for different classes of vehicle routing problems, varying in their coverage with time windows, time window size, distribution and number of customers. The results are compared with a simple, but effective local search approach for multi-objective combinatorial optimization problems

    Hybrid Genetic Algorithms and Simulated Annealing for Multi-trip Vehicle Routing Problem with Time Windows

    Get PDF
    Vehicle routing problem with time windows (VRPTW) is one of NP-hard problem. Multi-trip is approach to solve the VRPTW that looking trip scheduling for gets best result. Even though there are various algorithms for the problem, there is opportunity to improve the existing algorithms in order gaining a better result. In this research, genetic algoritm is hybridized with simulated annealing algoritm to solve the problem. Genetic algoritm is employed to explore global search area and simulated annealing is employed to exploit local search area. Four combination types of genetic algorithm and simulated annealing (GA-SA) are tested to get the best solution. The computational experiment shows that GA-SA1 and GA-SA4 can produced the most optimal fitness average values with each value was 1.0888 and 1.0887. However GA-SA4 can found the best fitness chromosome faster than GA-SA1

    Algorithms for the multi-objective vehicle routing problem with hard time windows and stochastic travel time and service time

    Get PDF
    This paper introduces a multi-objective vehicle routing problem with hard time windows and stochastic travel and service times. This problem has two practical objectives: minimizing the operational costs, and maximizing the service level. These objectives are usually conflicting. Thus, we follow a multi-objective approach, aiming to compute a set of Pareto-optimal alternatives with different trade-offs for a decision maker to choose from. We propose two algorithms (a Multi-Objective Memetic Algorithm and a Multi-Objective Iterated Local Search) and compare them to an evolutionary multi-objective optimizer from the literature. We also propose a modified statistical method for the service level calculation. Experiments based on an adapted version of the 56 Solomon instances demonstrate the effectiveness of the proposed algorithms

    A flexible metaheuristic framework for solving rich vehicle routing problems

    Get PDF
    Route planning is one of the most studied research topics in the operations research area. While the standard vehicle routing problem (VRP) is the classical problem formulation, additional requirements arising from practical scenarios such as time windows or vehicle compartments are covered in a wide range of so-called rich VRPs. Many solution algorithms for various VRP variants have been developed over time as well, especially within the class of so-called metaheuristics. In practice, routing software must be tailored to the business rules and planning problems of a specific company to provide valuable decision support. This also concerns the embedded solution methods of such decision support systems. Yet, publications dealing with flexibility and customization of VRP heuristics are rare. To fill this gap this thesis describes the design of a flexible framework to facilitate and accelerate the development of custom metaheuristics for the solution of a broad range of rich VRPs. The first part of the thesis provides background information to the reader on the field of vehicle routing problems and on metaheuristic solution methods - the most common and widely-used solution methods to solve VRPs. Specifically, emphasis is put on methods based on local search (for intensification of the search) and large neighborhood search (for diversification of the search), which are combined to hybrid methods and which are the foundation of the proposed framework. Then, the main part elaborates on the concepts and the design of the metaheuristic VRP framework. The framework fulfills requirements of flexibility, simplicity, accuracy, and speed, enforcing the structuring and standardization of the development process and enabling the reuse of code. Essentially, it provides a library of well-known and accepted heuristics for the standard VRP together with a set of mechanisms to adapt these heuristics to specific VRPs. Heuristics and adaptation mechanisms such as templates for user-definable checking functions are explained on a pseudocode level first, and the most relevant classes of a reference implementation using the Microsoft .NET framework are presented afterwards. Finally, the third part of the thesis demonstrates the use of the framework for developing problem-specific solution methods by exemplifying specific customizations for five rich VRPs with diverse characteristics, namely the VRP with time windows, the VRP with compartments, the split delivery VRP, the periodic VRP, and the truck and trailer routing problem. These adaptations refer to data structures and neighborhood search methods and can serve as a source of inspiration to the reader when designing algorithms for new, so far unstudied VRPs. Computational results are presented to show the effectiveness and efficiency of the proposed framework and methods, which are competitive with current state-of-the-art solvers of the literature. Special attention is given to the overall robustness of heuristics, which is an important aspect for practical application

    Evolutionary computing for routing and scheduling applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Co-operation in the Parallel Memetic Algorithm

    Get PDF
    corecore