
 
EVOLUTIONARY COMPUTING 

FOR 

ROUTING AND SCHEDULING APPLICATIONS 
 

 

 

 

 

 

 

CHEW YOONG HAN 

(B. ENG. (COMPUTER ENGINEERING)) 

 

 

 

 

 

 

 

 

A THESIS SUBMITTED  

 

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

 

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 

 

NATIONAL UNIVERSITY OF SINGAPORE 

2006 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48629604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 ii



 iii

 

Acknowledgements 

 

Mostly, I would like to thank my supervisor Dr. Tan Kay Chen for his boundless 

and instructive help, criticism and patience. Without his supervision and expert 

knowledge in evolutionary algorithms especially in multiobjective optimization, this 

thesis would not have been possible. I would like to thank Dr. Lee Loo Hay for his 

guidance in problem modeling and also for his invaluable help, comments and 

insights in related scheduling applications. I would also thank the professors in the 

Department of Electrical and Computer Engineering for their constant academic 

guidance in many aspects. 

 

My gratitude also extends to the officers in the Control and Simulation labs 

for providing a good environment for conducting research and development. Thanks 

also to Mr. Heng Chun Meng and Mr. Khor Eik Fun for numerous discussions along 

the progress of the research. I would like to thank many colleagues and friends who 

have provided advice and companionship during my study at the Department of 

Electrical and Computer Engineering. They have offered assistance in many forms 

help me to overcome various problems in my studies. 

 

Finally, I would like to thank my family for their encouragement and 

company. Their strong support has given me confidence and courage to move 

forward. 

 



 iv

 

Table of Contents 

 

Acknowledgements.................................................................................................... iii 

Table of Contents....................................................................................................... iv 

Summary .................................................................................................................. viii 

List of Tables ............................................................................................................. xi 

List of Figures ........................................................................................................... xii 

List of Abbreviations ............................................................................................... xiv 

Chapter 1 Introduction ................................................................................................ 1 

1.1 Optimization explained ..................................................................................... 1 

1.2 Multiobjective optimization .............................................................................. 2 

1.3 Evolutionary algorithms.................................................................................... 4 

1.4 Scheduling and routing problems...................................................................... 7 

1.5 Vehicle routing and applications....................................................................... 9 

Chapter 2 Recent Developments of Evolutionary Algorithms in Related Problems 12 

2.1 Evolutionary algorithm in scheduling solutions.............................................. 12 

2.2 Scheduling and the challenges ........................................................................ 13 

2.3 Scheduling problems in different categories................................................... 17 

2.3.1 Job shop scheduling.................................................................................. 20 

2.3.2 Flow shop scheduling ............................................................................... 22 

2.3.3 FMS and other shop floor scheduling problems....................................... 25 

2.3.4 Production scheduling problem................................................................ 27 

2.3.5 Crew scheduling ....................................................................................... 30 

2.3.6 Nurse scheduling ...................................................................................... 30 

2.3.7 Power maintenance problem (hydrothermal scheduling)......................... 32 

2.3.8 Other scheduling problems....................................................................... 34 

2.4 Development of real world applications ......................................................... 35 

2.5 Representation in evolutionary algorithms ..................................................... 38 

2.5.1 Direct representation................................................................................. 41 

2.5.2 Indirect representation .............................................................................. 45 



 v

2.5.3 Learning rules ........................................................................................... 49 

2.6 Crossover operator .......................................................................................... 51 

2.6.1 Order crossover......................................................................................... 52 

2.6.2 Cycle crossover......................................................................................... 53 

2.6.3 PMX crossover ......................................................................................... 54 

2.6.4 Edge crossover.......................................................................................... 55 

2.6.5 One point crossover .................................................................................. 55 

2.7 Mutation operator............................................................................................ 56 

2.7.1 Swap mutation .......................................................................................... 57 

2.7.2 Swift (RAR) mutation .............................................................................. 57 

2.7.3 Insertion mutation..................................................................................... 58 

2.7.4 Order based mutation................................................................................ 58 

2.8 Multiobjective research ................................................................................... 59 

2.8.1 Multiobjective evolutionary algorithm..................................................... 60 

2.8.2 Multiobjective solution in scheduling ...................................................... 63 

Chapter 3 Vehicle Capacity Planning System .......................................................... 70 

3.1 Introduction ..................................................................................................... 70 

3.2 Problems and objectives.................................................................................. 71 

3.3 Major operations ............................................................................................. 72 

3.3.1 Importation ............................................................................................... 72 

3.3.2 Exportation ............................................................................................... 73 

3.3.3 Empty Container Movement .................................................................... 74 

3.4 Problem model ................................................................................................ 75 

3.4.1 Job details ................................................................................................. 75 

3.4.2 Transportation model................................................................................ 77 

3.5 VCPS heuristic ................................................................................................ 79 

3.5.1 Initial solution and λ-Interchange Local Search Method ......................... 79 

3.5.2 Tabu search and heuristic ......................................................................... 80 

3.6 Result and comparison .................................................................................... 81 

3.7 Remark to research motivation ....................................................................... 83 

Chapter 4 Hybrid Multiobjective Evolutionary Algorithm for Vehicle Routing 

Problem..................................................................................................................... 84 



 vi

4.1 Introduction ..................................................................................................... 85 

4.2 The Problem Formulation ............................................................................... 89 

4.2.1 Problem Modeling of the VRPTW........................................................... 90 

4.2.2 The Solomon’s 56 Benchmark Problems for VRPTW ............................ 96 

4.3 A Hybrid Multiobjective Evolutionary Algorithm.......................................... 99 

4.3.1 Multiobjective Evolutionary Optimization and Applications .................. 99 

4.3.2 Program Flowchart of HMOEA ............................................................. 102 

4.3.3 Variable-Length Chromosome Representation ...................................... 106 

4.3.4 Specialized Genetic Operators................................................................ 107 

4.3.5 Pareto Fitness Ranking ........................................................................... 111 

4.3.6 Local Search Exploitation ...................................................................... 113 

4.4 Simulation Results and Comparisons............................................................ 115 

4.4.1 System Specification and Experiment Setup.......................................... 115 

4.4.2 Multiobjective Optimization Performance ............................................. 116 

4.4.3 Specialized operators and Hybrid Local Search Performance ............... 122 

4.4.4 Performance Comparisons...................................................................... 126 

4.5 Conclusions ................................................................................................... 136 

Chapter 5 Truck and Trailer Vehicle Scheduling Problem..................................... 138 

5.1 The Trucks and Trailers Vehicle Scheduling Problem ................................. 139 

5.1.1 Variants of Vehicle Routing Problems................................................... 141 

5.1.2 Meta-heuristic Solutions to Vehicle Routing Problems ......................... 143 

5.2 The Problem scenario.................................................................................... 145 

5.2.1 Modeling the Problem Scenarios............................................................ 148 

5.2.2 Mathematical Model............................................................................... 150 

5.2.3 Test Cases Generation ............................................................................ 155 

5.3 A Hybrid Multiobjective Evolutionary Algorithm........................................ 159 

5.3.1 Variable-Length Chromosome Representation ...................................... 159 

5.3.2 Multimode Mutation............................................................................... 161 

5.3.3 Fitness Sharing ....................................................................................... 162 

5.4 Computational Results .................................................................................. 163 

5.4.1 Multiobjective Optimization Performance ............................................. 164 

5.4.2 Computational Results for TEPC and LTTC ......................................... 172 



 vii

5.4.3 Comparison Results................................................................................ 176 

5.5 Conclusion..................................................................................................... 181 

Chapter 6 Conclusions ............................................................................................ 183 

Chapter 7 Future Research...................................................................................... 187 

7.1 Extensions and improvements....................................................................... 187 

7.2 Future work ................................................................................................... 189 

Bibliography ........................................................................................................... 192 

Appendix 1.............................................................................................................. 230 

Appendix 2.............................................................................................................. 233 

Author’s Publications.............................................................................................. 238 
 



 viii

  

Summary 

This thesis investigates the use of evolutionary computing technique for solving a 

range of multiobjective scheduling and routing problems. The optimization for 

routing problems can be tricky enough even when only elementary constraints are 

applied, not to mention if other scheduling and time windows information are 

included in the problems. The magnitude of difficulty for such problems also grows 

exponentially when the scales increase. The focus of the proposed evolutionary 

algorithm in the thesis is to handle concurrently multiobjective optimization for 

routing and scheduling applications. The outline of the contents is listed in the 

following paragraphs. 

 

The introduction establishes fundamental ideas for the definition of 

multiobjective optimization and its key importance in decision making process. The 

definition of evolutionary algorithm and its comparisons to conventional methods 

such as integer programming and gradient analysis are included. Definitions and 

examples of scheduling and routing problems are explained. In-depth elaboration on 

each concept could be found in other subsequent chapters. 

 

Development of recent techniques applied in evolutionary algorithms and 

problem solving are presented in the Chapter 2. The discussion starts with the 

reasons for the popularity of evolutionary algorithms in solving scheduling 

problems, followed by the challenges that are facing by the practitioners. Many 

examples of scheduling and routing problems are analyzed and then categorized to 



 ix

illustrate the current landscape of the research domain. The state-of-art of various 

facets in evolutionary algorithms such as the representation of problem (encoding), 

the evolutionary operators and the multiobjective optimization features are 

presented. 

 

In chapter 3, a transportation model for container movements has been built 

to solve the outsourcing problem faced by a transportation company. The vehicle 

routing problem (VRP) models a local logistic company provides transportation 

service for moving empty and laden containers. A Vehicle Capacity Planning 

System (VCPS) is implemented by modeling the scenario into a Vehicle Routing 

Problem with Time Windows constraints (VRPTW). It demonstrates solving real 

world application by using problem modeling techniques which had then triggered 

the inspiration for the further research exploration in this thesis. 

 

In chapter 4, the design of an evolutionary algorithm to solve multiobjective 

vehicle routing problem with time windows (VRPTW) is investigated. The proposed 

algorithm, Hybrid multiobjective evolutionary algorithm (HMOEA) is elaborated. 

The results of the benchmark problems are then compared extensively with several 

others implementations. The focus of solutions is on the importance of providing 

multiobjective solutions in optimization as compared to single objective approaches. 

The assessment of results was done by using a set of famous benchmark problems. 

 

Furthermore, the optimization of a real-life vehicle routing system with truck 

and trailer constraints is analyzed in Chapter 5. A new problem model is proposed 



 x

and optimized. The results from the optimization provide useful information to 

logistics management. The HMOEA that caters for this specific problem is 

presented together with the analysis of the results. The comparisons of the choices of 

the evolutionary operators are also conducted. 

  

A short conclusion provides the final touch on each topic that has been 

discussed. It also summarizes and comments on the key points to consider when 

using evolutionary algorithms in real world applications. Finally, several exciting 

potential enhancements related to current research topic are briefed in Chapter 7. 
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Chapter 1 Introduction 

 

The thesis revolves around several keywords which happen to be some lexicon that 

are common in daily conversations. To ensure the semantics are conveyed precisely 

in this context, definitions of these words such as optimization, multiobjective, 

routing and scheduling problems are presented in this chapter. Nonetheless, 

elaborate discussion of these concepts will be presented in the following chapters 

respectively. 

 

1.1 Optimization explained 

Optimization refers to finding one or more feasible solutions, which correspond to 

extreme values of one or more objectives. The need for finding such optimal 

solutions in a problem comes mostly from the extreme purpose of either designing a 

solution with minimum implementation cost, maximum reliability of system, or any 

other measurable targets. Optimization methods are of great importance in practice, 

particularly in engineering problems, scientific experiments and business decision-

making. An optimization that involves only one objective function, the task of 

finding its optimal solution is called single-objective optimization. However, most 

real world applications involve more than one objective. The presence of multiple 

conflicting objectives (such as minimizing cost and maximizing reliability) is 

inevitable in many problems (Deb, 2003). The optimization problems become more 

interesting when complicated constraints are considered. 
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1.2 Multiobjective optimization 

Multiobjective optimizations tackle more than one objective function at an instant. 

In most practical decision-making problems, multiple objectives or multiple criteria 

are evident. Classical approaches solve multiobjective problems by transforming 

multiple objectives into a single objective and the problems are solved with common 

single-objective optimization algorithm subsequently. However, there are indeed a 

number of fundamental differences between the working principles of the single 

objective optimization versus the multiobjective optimization. In a single objective 

optimization problem, the task is to find a solution that optimizes the sole objective 

function. Yet, it is wrong to assume that the purpose of multiobjective optimization 

is about finding optimal solutions that correspond to each objective function 

individually.  

 

The principles of multiobjective optimization are closely related to concept 

of non-dominated solution. A general multiobjective problem (MOP) includes a set 

of n parameters (decision variables), a set of k objective functions, and a set of m 

constraints. Objective functions and constraints are functions of the decision 

variables. The optimization goal is to 

Maximize/ Minimize 1 2 3( ) ( ( ), ( ), ( ),..., ( ))ky f x f x f x f x f x= =
r r r r r  

Subject to 1 2 3( ) ( ( ), ( ), ( ),..., ( )) 0me x e x e x e x e x= ≤
r r r r r r  

Where  1 2 3, , )( ,..., nx Xx x x x ∈=
r  
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1 2 3, , )( ,..., ky y Yy y y ∈=
ur

 

Here, xr  is the decision vector, y
ur

 is the objective vector, X is denoted as the decision 

space, and Y is called the objective space. The constraints ( ) 0e x ≤
r r  determine the set 

of feasible solutions (Deb, 2000). 

 

Without the need of linearly combining multiple attributes into a composite 

scalar objective function, multiobjective optimization algorithm that incorporates the 

concept of Pareto's optimality should generate a family of solutions at multiple 

points along the trade-off surface. The numbers of objectives as well as their 

interdependence determine the curve shape of trade-off surface.  

 

To illustrate, Fig. 1 shows a general Pareto dominance diagram of a 

minimization problem with two objectives. Let A, B and C are three feasible solution 

points while f1 and f2 are the objectives in this optimization problem.  A feasible 

solution is Pareto-optimal if, in shifting from point A to point B in the set, any 

improvement in one of the objective functions from its current value causes at least 

one of the other objective functions to deteriorate from its current value (Deb, 1999). 

Based on this definition, point C in Fig. 1 is not Pareto-optimal. Mathematically, an 

objective vector ( , ,..., )1 2u u u uk=
v

 is said to dominate 1 2( , , ..., )kv v v v=
v

  (denoted by 

u vp
v v

) if and only if u
v

 is partially less than v
v

, i.e., {1,..., }i k∀ ∈ , 

  {1,..., } :u v i k u vi i i i≤ ∧ ∃ ∈ <
v v v v

. Let Ω  is set of all feasible solutions. A solution x∈Ω
v

 

is said to be Pareto-optimal if and only if there is no 'x ∈Ω
v

 for which 

1( ') ( ( '),..., ( '))kv F x f x f x= =
v v

 dominates 1( ) ( ( ),..., ( ))ku F x f x f x= =
v v

. The Pareto-optimal set 



 

4 

often consists of a family of non-dominated solutions, from which the designer can 

choose the desired answer depending on his/her preference. 

 

 

 

 

 

 

 

 

 

 

Figure 1 Pareto Dominance Diagram 

  

 

1.3 Evolutionary algorithms 

Evolutionary algorithms (EA) apply the principles of evolution found in nature to 

the problem of finding an optimal solution. Evolutionary algorithms are global 

search optimization techniques based upon the mechanics of natural selection and 

reproduction. They are effective in solving some complex multiobjective 

optimization problems where conventional optimization tools fail to work well. In 

“evolutionary algorithms”, the decision variables and the evaluation of problem 

functions are usually direct mappings as contrary to “genetic algorithms” which 

refer to binary string representation specifically in many literatures. The EA possess 

an ability to produce robust solutions, because the results of EA are a collection of 

good traits, which has survived many generations. Evolutionary algorithms for 

f1 

f2 

Feasible range 
B 

C 

A 
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optimization are different from "classical" optimization methods in several ways. A 

few key concepts that can be found in many variants of evolutionary algorithms are:  

• Randomness vs. Deterministic 

• Population of candidate solutions vs. Single best solution 

• Creating new solution through mutation 

• Combining solutions through crossover 

• Selecting solutions via “Survival of the fittest” 

 

First, evolutionary algorithms rely in part on random sampling. A 

nondeterministic method will yield somewhat different solutions on different runs, 

even if the model has not been changed. In contrast, the linear, nonlinear and integer 

programming optimization are deterministic methods, they always yield the same 

solution if simulation start with the same values in the decision variable. This is the 

characteristic of randomness found in evolutionary algorithm. 

 

Second, where most classical optimization methods maintain a single best 

solution found so far, an evolutionary algorithms maintain a population of candidate 

solutions. Only one (or a few, with equivalent objectives) of these are the “best”, but 

the other individuals of the population are “sample points” in other regions of the 

search space, where a better solution may later be found. The use of a population of 

solutions helps the evolutionary algorithms to avoid being "trapped" at a local 

optimum, when a better optimum may be found outside the vicinity of the current 

solution. 
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Third, inspired by the role of mutation of an organism's DNA in natural 

evolution, evolutionary algorithms periodically make random changes or mutations 

in one or more members of the current population, yielding a new candidate solution 

(which may be better or worse than the existing population members). Mutation can 

happen in many ways. The design of mutation strategy stands an important portion 

in EA implementation. The result of a mutation operation may be an infeasible 

solution, and the attempt to repair such a solution to make it feasible is sometime not 

trivia. Some designers prefer to accept infeasible solutions in the process of 

simulation and only perform filtering during the final generation. 

 

Another inspiration from the role of sexual reproduction in the evolution of 

living things, an evolutionary algorithm attempts to combine elements of existing 

solutions in order to create a new solution, with some of the features of each parent. 

The elements (e.g. decision variable values) of existing solutions are combined in a 

crossover operation, as compare to the crossover of DNA strands that occurs in 

reproduction of biological organisms. There are many possible ways to perform a 

crossover operation; again this depends on the problem requirement and the 

representation of problem decision variables in chromosome.  

 

Fifth, inspired by the role of natural selection in evolution, evolutionary 

algorithms perform a selection process in which the “most fit” members of the 

population survive, and the "least fit" members are purged. In constrained 

optimization problems, the notion of "fitness" depends partly on whether a solution 

is feasible (i.e. whether it can satisfy all of the constraints), and partly on its 
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objective function value. The selection process is the step that guides the 

evolutionary algorithm towards ever-better solutions. 

 

A drawback of any evolutionary algorithm is that a solution is "better" only 

in comparison to other, presently known solutions; such an algorithm actually has no 

concept of an optimal solution, or any way to test whether a solution is optimal. (For 

this reason, evolutionary algorithms are best employed on problems where it is 

difficult or impossible to test for optimality.) This also means that an evolutionary 

algorithm never knows for certain when to stop, aside from the length of time, or the 

number of iterations or candidate solutions, that the user wishes to allow it to 

explore. Hence, a list of suitable conditions to terminate evolutionary optimizations 

has also become an exciting research topic itself. 

 

 

1.4 Scheduling and routing problems 

Scheduling aims to determine the sequence of operations. A schedule specifies the 

operations executing in each step or state. The definition of a schedule is better 

defined as “A plan of work to be executed in a specified order and by specified 

times.” It can be seen as a plan for performing work and achieving an objective, by 

specifying the order and allotted time for each part. Baker (1974) defined that a 

scheduling problem is one which involves “the allocation of resources over time to 

perform a collection of tasks.” The order or the sequence can be the answer to a 

scheduling problem despite the fact that there are usually related to time unit. To 

make a schedule is to select jobs or tasks that are to be dispatched. 
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In forming a complete schedule (such as instructions on a multiprocessor 

system), two steps occur: sequencing of the jobs and scheduling those prioritized 

jobs. The distinction between sequencing and scheduling is often not mentioned 

since the operations are very closely related. They are usually solved concurrently. 

Hence, general scheduling problems deal with the permutations of a set of jobs, 

followed by optimizing the placement of these jobs into time slots. Conflicts in 

resource usage are common observations that prevent a perfect schedule to be 

arranged. Examples of scheduling problems are evident in all engineering fields, 

scientific research, and operations research such as: jobs scheduling, resource-

constraint project management, nurse scheduling in hospital, crews scheduling for 

flights, timetable for school and instructions scheduling in parallel computer 

systems. In summary, all the scheduling problems share a common attribute that 

deal with time as one of the resources or may be as a variable. 

 

Routing problems are closely related to scheduling and sequencing problem 

as mentioned above. A the first glance, both the problems belong to combinatorial 

optimization problems. The solutions with good quality for these problems are 

usually not easy to obtain. In addition, timing is always an issue in many real world 

applications for the routing problems. In fact, many routing constraints are imposed 

due to the time windows constraints. Some of the supplementary scheduling 

problems such as drivers’ scheduling problem and maintenance scheduling problem 

will also incur additional constraints to the modeling of the routing problems. 
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1.5 Vehicle routing and applications 

In today's business world, transportation cost constitutes a large portion of the total 

logistics costs. This share has experienced a steady increase, since smaller, faster, 

more frequent and more reliable transportation are required as a result of trends such 

as  

• Increased variability in consumer's demands  

• Quest for quality service management  

• Near-zero inventory production and distribution systems  

• Sharp global-size competition  

 

The benefit that may be achieved by reducing the transportation costs is of 

interest to the business at the micro level, and to the country at the macro level. It 

should come as no surprise that many people in business and researchers in 

management science and operations research have shown great interest to 

transportation in the logistics activities. Vehicle routing is the problem of 

determining the best routes and/or schedules for pickup/delivery of passengers or 

goods in a distribution system. The objective is to minimize time/monetary/distance 

measure, given some relevant parameters such as: size of the fleet used by firm, 

number of drivers, number of routes run daily, inter-city or intra-city operation, total 

annual cost, crew and vehicle costs. A simple example is to minimize the total 

distance traveled during delivery of a week’s orders to customers dispersed in a 

certain geographical region using only one vehicle starts from a central depot. In this 
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example, the distances from the depot to the destination points (customers) and the 

distances between destination points are the parameters involved. 

 

Some other frequent examples of vehicle routing are:  

• Routing of containers among depots, port hubs, warehouses for import 

and export business activity 

• Routing of passenger cars to transport elderly or disabled passengers in a 

metropolitan.  

• Routing of cargo ships to transport loads between seaports  

• Routing and dispatching of multi-load vehicles to transport work within 

processes between workstations in a factory 

 

Routing and scheduling often based on the relative importance of the spatial 

and temporal aspects of a problem. Classification can be made based on problem 

models, constraints applied or solution techniques to be used. Typical constraints in 

vehicle routing might include: vehicle capacity, total time that a vehicle can spend 

on route and assignment of drivers and other necessary resources such containers 

and trailers. Several classifications of Vehicle Routing Problems (VRP) are: 

• Single Origin-Destination Routing (pure pickup or pure delivery) 

• Multiple Origin-Destination Routing (Lim and Fan, W., 2005) 

• Single Vehicle Origin Round trip Routing (backhaul)  

• Single Vehicle pickup and delivery (Kammarti et al., 2005) 

• Other Vehicle Routing and Scheduling  
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Single origin-destination routing is also known as shortest path problem, and 

is optimally solvable by Dijkstra's Algorithm (Dijkstra E. W., 1959) if all the 

transportation costs are nonnegative. Problems up to around 100,000 nodes are 

solvable in reasonable times using this algorithm. Multiple origin-destination routing 

is modeled as a network flow problem that can be solved using network simplex 

algorithm in a reasonable amount of time. Single vehicle-origin round-trip routing is 

traveling salesman problem, and solved to optimality using specialized branch and 

bound algorithm. Problems with over 2000 nodes are computationally very time-

consuming but are solved reasonably well using heuristic algorithms. The vehicle 

routing and scheduling category encompasses all other vehicle routing problems that 

do not belong to the previous four classes. This category constitutes of many 

practical transportation models that are closer to industry applications. Example of 

application for vehicle routing can be found in Handa et al. (2005), in which a 

salting route optimization during winter was investigated.  
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Chapter 2 Recent Developments of Evolutionary 

Algorithms in Related Problems 

 

In this chapter, a detailed literature review is analyzed and presented. Section 2.1 

introduces the application of evolutionary algorithms in scheduling solutions, 

followed by a very brief history of genetic algorithms since early 70s’. Section 2.2 

examines the challenges when finding superior scheduling solutions. In section 2.3, 

various examples of scheduling problems are categorized based on their 

applications. The reviews of these scheduling problems are essential due to the fact 

that the research works that focus solely on multiobjective vehicle routing and 

scheduling are relatively limited. Naturally, these evolutionary scheduling problems 

become excellent references to the research topic. In section 2.4, the state-of-art of 

the real world applications is reviewed. A variety of useful evolutionary operators 

and the attractive multiobjective feature are presented comprehensively in the 

section 2.5.  

 

 

2.1 Evolutionary algorithm in scheduling solutions 

Evolutionary algorithms have been reported extensively in many applications. The 

effort plunged into such research has also increased tremendously in both academic 

and industry organization. Evolutionary scheduling since then has increased 

popularity among many other approaches. This observation mainly has to do with 
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the increased difficulty of targeted problems as well as the nature of evolutionary 

algorithm is suitable to optimize timetabling or scheduling problems. 

 

A Genetic Algorithm (GA) typically embodies a search process that 

simulates evolutionary process in nature.  The technique was first suggested by 

(Holland, 1973; 1975). The algorithm uses a population of individuals in the 

evolutionary process. Each solution refers to an individual in the population. The 

population evolves over generations which are analogous to iteration in program 

implementation (Glibovets and Medvid, 2003). In each generation, the population 

will undergo different transformations. The terminologies used for these 

transformations are mutation and crossover operators. Any individual in the 

population can be chosen and experiences mutation operation. Alternatively, a new 

individual can also be created by combining two chromosomes (parents). Such an 

operator is literally referred as cross over (Chung et al., 1997). The least fit 

individuals of one generation are likely to die off in the next generation. The fittest 

individuals have the higher chance to be reproduced. The individual is sometime 

called the chromosome. In the context of scheduling or timetabling optimization the 

chromosome is usually much complex than a binary string. After a series of 

improvement in every generation, good solutions can be obtained among the 

individuals of the final population.  

 

2.2 Scheduling and the challenges 

Scheduling is concerned with allocating limited resources to tasks to optimize 

certain objective functions. On-time delivery of jobs has become one of the crucial 
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factors for customer satisfaction. Scheduling problem is a decision making process. 

It can have a goal or many objectives (Ponnambalam et al., 2001a). Attempts to 

optimize scheduling problems have been done using many existing methods. In Fu 

(2002), an outline of approaches that have been applied to solve several scheduling 

problems can be seen. They include methods such as: gradient search, random 

search, simulated annealing, genetic algorithm, Tabu search, neural network and 

mathematical programming. Many scheduling problems are so complex that they 

cannot be formulated easily as mathematical programs, (e. g. Integer programming). 

The fact that they are difficult to formulate makes them tricky to be solved when 

applying classical techniques such as branch and bound or dynamic programming. 

(Chung et al., 1997). Scheduling is known to be a hard problem (Wen and Eberhart, 

2002) for several reasons as elaborated below. 

 

First, it is a computationally complex problem, which means that search 

techniques that search the space of solutions deterministically and exhaustively will 

probably fail to find any solution (if time is limited). In other words, to promise an 

optimal search using conventional methods can be very expensive.  Sometimes, it is 

like looking a needle in a haystack problem. Second, scheduling problem are often 

made complicated by the detail of a particular scheduling scenario. Evolutionary 

algorithms give a considerable flexibility in adapting the techniques to particular 

application because in most cases, domain knowledge can be managed separately. 

Third, a solution to a scheduling problem can be deceptively local optima instead of 

a global best solution. In many cases, exhaustive search is infeasible for NP-

complete problems due to the immense search space, it is also difficult to determine 
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whether a solution is local optimal or global optimal. Forth, it is highly constrained 

in nature; the problem could have no feasible solution not to mention an optimal 

solution.  For example, an examination scheduling problem can be very hard to 

solve when the examination period is very limited. Numerous modules have to be 

arranged into different time slots while students usually take more than one modules 

in one semester. Finally, a scheduling problem becomes huge or can grow to a large 

problem from a very simple basic model. When this happens, the computation time 

for solving this problem does not only grow linearly, but exponentially in most case. 

All the above characteristics explain briefly why scheduling is a difficult problem to 

solve. 

 

Likewise, sequencing problems are difficult combinatorial problems because 

of the extremely large search space for possible solutions plus many deceitful local 

optima can exist. The search space for the sequencing problem can hardly be 

predictable. Search landscape of a realistic single-machine scheduling task (Darwen, 

2002) shows that the near optimal solutions (the best and the second best) have only 

56% in common. This indicates that local optimal is very common because when a 

searching procedure is not able to find any better solution around the neighborhood, 

it tends to presume that it has made to the global optima.  

 

For instance, creating manufacturing schedules is a critical function in any 

manufacturing processes nowadays. It is not only about decision making process 

that deals with resource allocation; it has to ensure the correct timing issues 

simultaneously (Gürsel et al., 2003). The problems are usually highly constrained as 
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resources in real life are always limited. Manufacturers face many challenges when 

attempting to make decisions faster in large scale scheduling. Besides, the process of 

scheduling is interweaving with many activities in an organization. In a hierarchical 

approach, scheduling is usually performed after planning is endorsed at higher level. 

Manufacturing schedules can then be broken down to the details of every activity; 

therefore a scheduling horizon is usually shorter than a planning horizon. Such 

limitation contributes to the difficulty of solving scheduling problems. 

  

Is scheduling a solved problem? Summarizing the current state of the art, 

many research opportunities are available to improve the scalability and flexibility 

of scheduling algorithm. Current scheduling techniques are capable of solving large 

problems (i.e. tens of thousands of activities, hundreds of resources) in reasonable 

time frames. They are capable of creating schedules under broad and diverse sets of 

constraints that include time and resource capacity. Research in applying various 

global, local and meta-heuristic based search frameworks to scheduling problems 

has produced a number of general approaches to scheduling optimization. 

Furthermore, increasing integration of AI-based search techniques such as 

evolutionary algorithm yields more powerful optimization capability.  

 

There have been a number of developments of evolutionary scheduling 

solutions in literatures. Davis L (1985) is said to be the first to suggest and 

demonstrate the use of Genetic algorithm (GA) on a simple job shop scheduling 

problem. Subsequently, many publications investigating on relevant problems are 

found in journals and conferences. Improvement and successful research reports 
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have been published by researchers all over the world. Some early attempts of 

solving shop scheduling problem using evolutionary algorithm was mentioned in 

Varela et al. (2003). Dorndorf and Pesch, (1995) studied evolutionary based learning 

in a job shop scheduling environment. Fang et al. (1993) proposed a promising 

genetic algorithm approach to solve job shop scheduling and open-shop scheduling 

problems. Syswerda (1991) employed a genetic algorithm to optimize a scheduling 

problem. Biewirth (1995) proposed a generalized permutation approach to solve 

scheduling problem and had chosen a job shop scheduling as the example. Yamada 

et al. (1996) published a research that applied a genetic algorithm with hybrid local 

search and a multi-step crossover. The research presented a job shop scheduling 

problem as the benchmark for the optimization performance.  

 

Important reviews in the research area are presented in Bruns (1999), 

Dimopoulos and Zalzala (2000) as well as Burke and Petrovic (2002). Despite the 

long history of various attempts since 1980-an,  most of the job shop scheduling 

problem reported mainly focused on static scheduling where disturbance does not 

happen. All operations and machines set were fixed before operation (Chryssolouris 

and Subramaniam, 2001). A table that summarized several algorithms and their 

applications on various shop scheduling problem was also presented.  

 

 

2.3 Scheduling problems in different categories 

The machine scheduling can be categorized into single machine problem, parallel 

machine problem, flow shop scheduling, job shop scheduling, flexible 
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manufacturing system (FMS) scheduling, identical machines scheduling, cellular 

machines scheduling and so on. The information of the arriving jobs can be 

deterministic or stochastic. Jobs that only start at time zero are static and jobs that 

can start anytime are dynamic. Two famous manufacturing shop problems (flow 

shop and job shop) and floor shop problems specifically FMS problem are reviewed 

in this section. Research works regarding production planning, and resource 

constrained planning system are explored. Production scheduling problems together 

with nurse scheduling problems and other crew scheduling problems are also 

observed in this section. 

 

In today's complex manufacturing environment, a production site can have 

several lines running simultaneously, where each requiring different steps and 

machines for completion. A decision maker for a manufacturing plant needs to find 

out successful ways to manage various resources so that production can be 

completed using the most efficient method. The decision maker also needs to create 

a good production schedule that promotes on-time delivery especially, and 

minimizes objectives such as the makespan of a product and sometimes the 

production cost explicitly. Out of these concerns grew an area of studies known as 

the manufacturing scheduling problems or commonly referred as shop scheduling 

problems.  

 

Different modes of machine settings are translated into optimization 

problems. To name a few: single machine model, parallel machine model, flow shop 

scheduling and also job shop scheduling. Single Machine model is when only one 
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machine is available to process all jobs. Each job has a single task (operation). Every 

job is performed on the same machine. Parallel machines model consists of multiple 

machines that are available to process jobs. The machines can be identical, of 

different speeds, or specialized to only processing specific jobs. Each job has a 

single operation. The two models are relatively simple compared to those reported in 

recent literature.  

 

In a flow shop model, there are a series of machines numbered 1, 2, 3…m. 

Each job has exactly m operations. The first operation of every job is done on 

machine 1, second operation on machine 2 and so on. Every job goes through all m 

machines in a unidirectional order. However, the processing time each task spends 

on a machine varies depending on the job that the operation belongs to. In cases 

where not every job has m operations, the processing times of the task that do not 

exist is zero. The precedence constraint in this model requires that for each job, 

operation (i-1) on machine (i-1) must be completed before the ith operation can begin 

on machine i.  

 

On the other hand, a job shop model has a set of machines indexed by k. Jobs 

are indexed by i, and operations are indexed by j. Each operation on a machine is 

indicated by a set of three indices, i, the job that the operation belongs to; j, the 

number of the task itself, and k, the machine that this particular operation needs to 

use. The flow of the operations in a job does not have to be unidirectional. Each job 

may also use a machine more than once. For example, the following table describes 

a job shop with two jobs. The entries denote the machine that operation j of job i 
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needs. For example: Job 1 has only two operations, requiring machine 5 and 6 

respectively. Job 2 has three operations, requiring machine 2, 7, and then machine 2 

again. 

 

Table 1 Operations in job shop model 

JOBS Op 1 OP 2 OP 3 

Job 1 5 6 - 

Job 2 2 7 2 

* OP stands for operation 

 

2.3.1 Job shop scheduling 

Job shop is an NP-hard combinatorial problem (Garey et al., 1976; Bruker, 1995). It 

is therefore unlikely to solve in polynomial time with existing algorithms. Searching 

the optima answer with branch and bound algorithm approach is possible only for 

small problems.  

 

Job shop scheduling creates a schedule that defines the time intervals in 

which the operations are processed, but it is feasible only if it complies with the 

following constraints: one process at a time for a machine, operation sequence must 

be respected. No preemption is allowed during the execution. Note that the problem 

however does not enforce all the jobs to have similar sequence of operations like 

flow shop problem. Kacem et al. (2002a) introduced an evolutionary algorithm 

hybrid with fuzzy logic that is applied to solve a flexible job shop scheduling 

problem. In this problem, the schedule needs to organize the execution of jobs on a 
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number of machines. The operations are constrained by precedence and thus non-

preemptive. The execution of every job requires a machine.  

 

Carlos A. Brizuela, and Nobuo Sannomiya (2001) investigated a perturbed 

version of job shop. A framework was incorporated to measure the robustness, 

diversity of genetic algorithm in solving combinatorial problem. It tried to answer if 

the tuning of parameter is required if the problem model is slightly changed. 

Another research by Ponnambalam et al. (2002) also contributes to the research 

about tuning the parameters such as number of generations, probability of crossover 

and probability of mutation, relating to the problem sizes. Using different control 

parameters can lead to different optimization results.  

 

Many optimization problems in the industrial engineering world and 

particularly manufacturing system are difficult to solve by using conventional 

methods. A modified genetic algorithm for job shop scheduling was developed by 

Wang and Zheng (2002). The research tried to improve the operators - crossover 

operator and mutation operator and their research result showed that effectiveness of 

the algorithm was superior as compared to simple Genetic Algorithm. In addition to 

that, an effective genetic algorithm for job shop scheduling was developed by Wang 

and Brunn (2000). Al-Hakim (2001) proposed an analogue genetic algorithm for 

solving job shop scheduling problem. The algorithm included a new representation 

and also a way to evaluate the chromosome using the idea from solving analogue 

circuits. 
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In Pérez et al. (2003), the research focused on finding multiple solutions in 

job shop scheduling by niching genetic algorithms. Job shop scheduling problem is 

viewed as a multimodal problem and hence the optimization completes with single 

solution was not good enough. The research used niching method to in GA to find 

multiple solutions. Varela et al. (2003) used a knowledge-based evolutionary 

strategy to solve a job shop scheduling problems with bottlenecks scenario. Cheung 

and Zhou (2001) looked into a unique job shop problem in their research work 

where setup time before executing the operations is sequence-dependent.  

 

2.3.2 Flow shop scheduling 

Flow shop scheduling is one of the best known production shop scheduling problem 

besides job shop scheduling problem. The problem is a combinatorial optimization 

problem proven to be NP-complete (Garey and Johnson, 1979). The flow shop 

problem has n jobs and m machines. As studied by many researchers, it is commonly 

defined as follows: N jobs is to be processed sequentially on machine 1,…, m. The 

processing time for every operation of every job on a particular machine is unique 

and is pre-specified. At any time, each machine can only process at most one job and 

each job can only be processed on at most one machine. A unique feature in flow 

shop scheduling is the sequence in which operations are processed is the same for all 

jobs. The flow pattern (of operations) in every job is fixed. The objective is 

generally to find out the best permutation so that its makespan (Cmax = maximum 

completion time) can be minimized. Although all job must have the same operation 

sequence, some job can just have 0 processing time to indicate that an operation is 
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not required. So, a job can skip particular machine/operation, but the operation 

sequence must not be violated.  

 

A flow shop problem can have more than one machine. If all the machines 

have the same job order then it is a "permutation flow shop problem". The problem 

hence deals with the sequence of processing for a number of jobs order. The 

operations in a job are going to be processed in the same order using machines or 

stages, which means precedence is a constraint. In other words, one can observe that 

the job sequence is similar on every machine. That is, every job has exactly the same 

operations only then the processing times are different. In summary, the flow shop 

problem can be defined precisely with 6 criteria: (Ponnambalam et al., 2001a) 

 

• Each job has to be processed on all the machines in the order of 1,2,3.. M 

machine. (means the operations must be done sequentially) 

• A job consists of multiple operations. There are J number of jobs. 

• Every machine processes only one job one time 

• One job can be processed at one machine one time 

• M different machines are available continuously starting from time=0 

• Every operation must be finished and can not be preempted.  

 

Cavalieri and Gaiardelli (1997) employed two hybrid genetic algorithms for 

a multiple-objective flow shop scheduling problem where the hybrid genetic 

algorithms were compared. The first hybrid GA solved an allocation problem 

followed by sequencing problem of the production lots in a flow shop environment.  
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In another proposal, GA was hybrid with a dispatching rule. The assignment was 

done by GA followed by the job sequencing carried out by traditional dispatching 

rule EDD (earliest deadline). It was a non-linear model and was treated as a 

multiobjective problem.   

 

An effective hybrid heuristic for flow shop scheduling was also proposed by 

Wang and Zheng (2003). This publication proposed a hybrid heuristics genetic 

algorithm to solve a flow shop scheduling problem. The design of the algorithm was 

the results from a careful investigation on separate components such as the 

initialization, crossover and mutation operator. Ponnambalam et al. (2001a) 

incorporated a hybrid evolutionary algorithm and conducted a research that was 

intended to compare existing constructive heuristics and tried to seek improvement 

from that.  

 

Ishibuchi et al. (2003) practiced a much prudent approach when using hybrid 

algorithm in optimizing flow shop scheduling problem. They investigated the 

balance between genetic search and local search in memetic algorithms for a 

permutation flow shop scheduling. A lot-streaming flow shop scheduling was 

investigated by Yoon and Ventura (2002). In this flow shop problem, a job (lot) was 

split into a number of smaller sublots such that the job has smaller granularity when 

it would be processed by machines. Tang and Liu (2002) proposed a modified 

genetic algorithm for the flow shop sequencing problem to minimize mean flow 

time, instead of using the popular maximum completion time as an objective 

function. The flow shop scheduling problem was also attempted and reported by 
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many other researchers. (Burdett and Kozan, 2000; Basseur et al., 2002; Zhang et 

al., 2002; Chan and Hu, 2000) 

 

2.3.3 FMS and other shop floor scheduling problems 

An FMS (flexible manufacturing system) refers to advanced manufacturing cells 

that work in group and interconnected to storage system. The system may be 

controlled by an automated distributed system. The cells are able to identify 

distinguish different parts processed by the system. They are suitable for quick 

change to operation instruction and quick change of physical setup. 

 

 Hsu et al. (2002) applied genetic algorithm to an FMS cyclic scheduling. 

The research solved a cyclic scheduling problem with respect to many hard 

constraints, and trying to minimize the Work in Process (WIP). The process flow is 

similar to flow shop model, but it started and ended at the same operation and hence 

a cycle was created. Zhao and Wu (2001) made another attempt with FMS problem 

with multi-route options. This means all the parts types can be processed through 

alternative routes. There can be several machines for each machine type. The 

compute time required in finding a solution of a medium size scheduling problem 

was acceptable.  

 

Approach by localization and multiobjective evolutionary optimization for 

flexible job-shop scheduling problems proposed by Kacem et al. (2002b) was 

different from conventional problem. In which the assignment and scheduling would 

be combined as a new problem with greater complexity. In another example, an 
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Intelligent scheduling controller for shop floor control systems was developed by Su 

Shiue (2003). The control system could be functionally decomposed into two 

sections, i.e. the planning scheduling and execution of task. Good dispatching rules 

are required to achieve efficient task scheduling. A hybrid genetic algorithm and 

decision tree learning approach were integrated and applied in this application. The 

system identified a set of relevant attributes so that a knowledgebase could be 

constructed. 

 

Prins (2000) studied an open shop scheduling problem and attempted to 

solve it with competitive genetic algorithms. Comparing to those job shop and flow 

shop problem, open shop problem has free job service sequence which leads to a 

larger solution space. An open shop problem with two machines (or more) and no 

preemption become a NP-hard problem if one tries to optimize its makespan. Using 

the open shop problem as the test case, Goh et al. (2003) also reported an interesting 

comparison of several selection operators that could be possibly employed in 

evolutionary algorithms.  

 

Turkcan and Akturk (2003) proposed a new problem space genetic algorithm 

(PSGA) to solve a flexible manufacturing scheduling problem. The approach was 

utilized to generate efficient solutions approximately by minimizing the cost and the 

total weighted tardiness in the production problem. PSGA is a genetic algorithm 

coupled with problem specific fast heuristics. The encoding was done at problem 

space, rather than solution space, so a decoding function needs to be defined. A 

problem space refers to attributes found in the problem data. For example, in order 
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to solve a task scheduling problem, instead of a job id, it encodes a job’s priority 

(attribute). A decoding heuristic could be devised to build the solution for the 

schedule. Apart from the works mentioned above, some recent research that tried to 

solve manufacturing scheduling problems can be found in Hsu et al. (2002), Costa et 

al. (2001), Celano (2000), Zhang and Kwon (2001) as well as Dimopoulos and 

Zalzala (2001). 

 

2.3.4 Production scheduling problem 

Scheduling in production is usually more complicated that shop floor problems 

discussed in previous sections. The problems come in different forms due to 

diversified categories of products. In this section, a few examples of production 

scheduling problem are outlined: production planning problems, resource 

constrained problem (RCPS) and task partitioning problems. The modeling of such 

scheduling problems usually takes into account many practical considerations in real 

world. A model is specific to certain scenario. Various models may be required to 

handle the production scheduling problems. Evolutionary algorithm provides one 

good feature in this situation as it can be easily tailored or even applied without 

much modification to optimize the different models. Contrastingly, conventional 

enumerative mathematical approaches may require more adaptation when solving 

problems with unique modeling.  

 

Luo and Guignard-Spielberg (2001) solved a problem known as product 

planning and scheduling in batches (PPS) using evolutionary algorithm. The 

problem tried to minimize the sum of production, reservation, setup, inventory and 
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shortage costs. The problem was modeled as an MIP problem and then solved by 

using a hybrid method combining genetic algorithm, linear programming, and 

ordinal optimization concept. Another research problem (Li et al., 2000) was related 

to planning and scheduling framework in an industrial manufacturing system. This 

problem is an Earliness/tardiness production planning and scheduling problem 

ETPSP which combined “Just-in-time” concept to existing MRP (manufacturing 

resource planning). The integration had of course increased the complexity of the 

problem. An algorithm was also proposed to consider lot-size optimization in their 

research.  

 

Baek and Yoon (2002) conducted research in optimizing a dispatching policy 

in an interconnected, multi-machine system. The problem is a challenging task since 

it is combinatorial and the jobs were stochastic. A "fuel-sender manufacturing" 

system was studied, where the facility produces fuel senders systems for passenger 

cars and light trucks. The assembly manufactures had a total of 41 different products 

over its 3 manufacturing lines. The proposed algorithm had to cope with the high 

variability of various products.  

 

Hindi et al. (2002) investigated a resource constrained problem (RCPS) 

which was the optimization of a single mode, single project, resource constrained 

project scheduling. A project consists of one set of tasks that requires specific time 

and resources to complete. The objective of the RCPS problem was associated to 

cost effectiveness. Common constraints were precedence of tasks and as well as the 

capacity of resources. No preemption was allowed in such problem because 



 

29 

interruption could result in higher cost. Meanwhile, Hartmann (2001) addressed a 

resource constrained project scheduling problem with multiple execution modes for 

each of the activity. The objective in this problem was still to reduce the makespan 

in total. This was quite similar to the flexible manufacturing system as compare to 

conventional manufacturing job floor problem. In the multi-mode RCPS, the 

activities in project could be performed in multiple ways, especially with the 

renewable resource such as man power and machine processing. The comparison 

with other metaheuristics, such as a local search and a truncated branch and bound 

(B&B) showed that the proposed GA led to optimality of 98.1%. Besides in some 

cases, when the B&B was not able to find a good solution within 125 seconds (when 

it was truncated), GA generally always found good enough feasible solutions. 

Kohlmorgen et al. (1999) gave another example of solving RCPS problem using 

evolutionary algorithm.  

 

Task partitioning (task matching) and task scheduling are required in many 

applications such as examples in industrial manufacturing co-design systems, 

parallel processor systems and programmable systems. Sub-tasks (determined from 

design specification) should be placed in the right place (which means using the 

right resource) and starts running at the right time (scheduling).  Task matching and 

scheduling are investigated in the following literatures (Dhodhi et al., 2002; Zhong 

et al., 2000; Wiangtong et al., 2002). Some other relevant researches in production 

planning and scheduling application using evolutionary algorithms can be found in 

Liu and Wu (2003), Feldmann and Biskup (2003), Middendorf, et al. (2002), Morad 

and Zalzala (1999) and Borgulya (2002). 
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2.3.5 Crew scheduling 

The driver scheduling problem solved by conventional greedy heuristics can be slow 

and accuracy was sacrificed for to reduce the runtime required. Li and Kwan (2001) 

proposed a simulated evolution algorithm (mimics to GA but with only one solution 

will go to next generation), to solve the problem. The evaluation was done with the 

help of fuzzy sets theory. The bus and train driver scheduling problem can be 

viewed as a set covering problem. A hybrid genetic algorithm for scheduling bus 

and train drivers was developed in Kwan et al. (2000). The research introduced the 

scheduling of drivers for bus and train by using a system based on evolutionary 

algorithm named TRACS II. The problem had to be modeled into set covering 

problem before solving using GA. The solution was assisted with column generation 

process. In addition, a multiobjective metaheuristic for bus driver scheduling 

problem was studied in Lourenço et al. (2001). The three problems mentioned above 

related to crew scheduling applications are very distinctive from each others. The 

variables and the constraints of the problems have very little in common. This is 

apprehensible as the scenarios in such transportation problems were unique to the 

local geographical conditions of the cities.  

 

2.3.6 Nurse scheduling  

Nurse scheduling problem (NSP) is sometimes known as nurse rostering problem. 

The nurses are to be assigned to different shifts (day, night, mid-night and others) 

across the planning horizon which is usually one week. There can be as much as 6 

shifts in some instances. The head nurse is the person responsible for the task 
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generally. The solution space is highly constrained with the rigid rules in place by 

the medication boards.  Kawanaka et al. (2001) pointed that the schedule which was 

generated using penalty function could end up with an infeasible schedule and 

violated labor union act sometimes. The work developed an encoding scheme and 

proposed the design operators that are suitable for solving NSP problem. 

  

Nurse scheduling is a combinatorial problem that its optimal solution is 

difficult to locate. In addition to that, this problem itself tends to be large. This 

problem was famous for its complexity and for the number of constraints it 

associated with. For example: If there are 3 shifts each day (day time, night time and 

midnight shift). The nurse who has been working for night shift can not be allocated 

for midnight shift. Besides, a nurse can not be assigned to midnight shift 

continuously for more than four days. Miwa et al. (2002) agreed that the problem 

was complicated, and the search space was huge where enormous computations 

were required. The conventional way of doing it manually was not efficient as users 

must set all the rules before using the system and the result may not as good when 

local search algorithm was used. Burke et al. (2001a) too showed that construction 

of nurse scheduling problem can be immensely difficult since rostering in health 

care was usually highly constrained. The research concentrated on experiments to 

solve the problems using Tabu search, memetic algorithm with steepest descend and 

finally memetic algorithm with hybrid Tabu search. Burke et al (2001b) explained in 

great details on nurse scheduling problem and provided many suggestions about the 

modeling of NSP in order to achieve a faster way to evaluate a roster (schedule). 

This is important in an evolutionary algorithm, because a large portion of 
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computation time for evolutionary optimizations goes to fitness evaluation. Jan et al. 

(2000) and Inoue et al. (2003) are two other research works that saw the growing 

demand for developing practical nurse scheduling solutions.  

 

2.3.7 Power maintenance problem (hydrothermal scheduling) 

A thermal generator maintenance scheduling problem is a complex combinatorial 

problem. The schedule defined the power output for every generator including the 

time that it must cease to maintenance. Xi was the current maintenance staring period 

for unit i. Ci was the maximum power capacity that it can produce. There was a 

constraint for minimum total power generated by the station. In spite of that, all the 

units need to be scheduled for maintenance according to their usage pattern. Burke 

and Smith (2000) showed that the problem could be solved using many optimization 

methods such as linear programming model, dynamic programming, simulated 

annealing, and genetic algorithms.  

 

El-Sharkh and El-Keib (2003b) studied the maintenance scheduling of 

generation and transmission systems by using fuzzy evolutionary programming. The 

schedule can tell the start time of maintenance for each transmission unit, as well as 

the generating unit. An evolutionary programming was proposed with a fuzzy model 

to compare the performance of individuals. A hybrid hill climbing method was 

incorporated to perform feasibility checking. The problem reported has 33 

generating units and 179 transmission lines. The challenge to find an optimum could 

be complicated since the unknown parameters were too many such as the load of the 

system, prices of fuels, maintenance cost, resources and staff availability. In (El-
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Sharkh and El-Keib, 2003a), another evolutionary programming-based solution 

methodology was proposed for the similar problem. The problem was a mixed type 

minimization problem, because the decision variables consists of continuous 

(generator output) and discrete integer (maintenance scheduling starting date and 

duration). In El-Sharkh et al. (2003c) a security-constrained generation maintenance 

scheduling was investigated. 

 

Upon examination of the variety approaches to power maintenance 

scheduling, Basu (2004) introduced an interactive fuzzy satisfying method based on 

evolutionary programming technique to solve a short term hydrothermal scheduling 

problem. It was a daily planning problem, in power system operation. Basically, the 

schedule was required to allocate power generation to multiple units from hydro 

plants and thermal plants with different fuel cost and emission. The major constraint 

of the problem was the water flow thorough the hydrothermal station, which must 

follow a rigid water balance control regulation. And there was a limit for the 

maximum power capacity in each generation unit. The schedule must specify the 

power output of each thermal unit at every time slot.  

 

Nidul Sinha et al (2003) developed a fast evolutionary programming 

technique in order to solve a short-term hydrothermal scheduling problem.  By using 

the technique, the solution was nearer to global solution within shorter 

computational time. Hence, the performance was faster than simple GA, SA and 

gradient search. The result from the algorithm was also least affected by random 

initialization according to the experiments that were carried out. In Kim and Ahn 
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(2001), the research presented a new evolutionary algorithm based on sheep flocks 

heredity model. The generator maintenance problem could utilize up to 23 

generators. Further relevant research works in this field are Lee and Jeong (2001), 

Manzanedo et al. (2001) and Dahal et al. (2000). 

 

2.3.8 Other scheduling problems 

Deb and Chakroborty (1998) formulated a transit system scheduling problem into a 

mixed-integer nonlinear programming problem. The problem involves a number of 

resource and service related constraints such as fleet size, minimum and maximum 

stopping time and others. Evolutionary algorithm was chosen because it is able to 

handle complex search space with the nonlinear constraints and also a large number 

of decision variables. Wen and Eberhart (2002) applied genetic algorithm for a 

logistics scheduling problem. The research considered a cargo items delivery system 

which may use helicopters, boats and trucks to move the items from one points (base 

point) to several different points. (Supply point). Each cargo must be delivered 

within time windows so that no penalty caused. A simple comparison for different 

operators was performed for such scheduling problem. 

 

In Roman Nossal (1998), an evolutionary approach to multiprocessor 

scheduling of dependent tasks was discussed. Multiprocessor systems require 

efficient scheduling solution to work at an optimized condition so that the expensive 

price paid for the multiprocessor hardware could be worth it. Fortunately, in this 

scenario only pre-runtime (not real time) periodic tasks were involved. In Fogel and 

Fogel (1996), evolutionary programming was incorporated to schedule operations on 
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a suite of heterogeneous computers. The research discussed a process scheduling 

problem for a Virtual heterogeneous machine (VHM) which can be viewed as a 

collection of parallel machines. In order to achieve high throughput, load balancing 

was required. Elrad and Lin (1998) discussed the use of evolution scheduling to 

solve concurrent scheduling problem where many forms of queues (such as ready 

queue, blocked queue, normal PC queue and concurrent scheduling queue) existed. 

In fact, a client-server model technique was developed to tackle the problem. 

 

 

2.4 Development of real world applications 

In Kelly (2002), it was pointed that there was a disconnection between the academic 

worlds to the practical simulation optimization in commercial. The academic 

problems tend to model with small number of continuous variables with minimal 

constraints. It could hardly mean anything to the interest of the practitioner because 

of relatively small problem size. Most of all, the algorithm in commercial should be 

flexible and reusable so that it can handle events happened in real life better. Last 

but not least, it was argued that the commercials perceptive of optimization was 

more towards improvement for solutions, rather than the optimal answer that was 

almost nonexistent. A number of attempts to solve real world application explicitly 

were reported. The application are such as production scheduling at petroleum 

refinery, bust and train scheduling, table-tennis tournament scheduling, nurse 

scheduling in hospital and chicken catching scheduling. Generally, such problems 

portrayed a more vivid picture of the situation in real life.  
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De Almeida et al. (2001) studied a multiobjective fitness evaluation 

technique and its application to the production scheduling in a existing petroleum 

refinery. Käschel et al (2002) investigated the real time property of an enhanced job 

shop problem. The optimization delivered promising results such that the algorithm 

was integrated in to two German business software companies and an engineering 

company. Another case of real world application with evolutionary scheduling in 

manufacturing problem can be found in Shackelford and Corne (2001). 

 

Kwan and Mistry (2003) developed a co-evolutionary algorithm for train 

timetabling. While the train services are operated by a number of franchised 

independent train operating companies, the tracks and stations are shared and 

centrally run by a network. The suggested approach had the feature of co-operative 

co-evolutionary to generate the train timetables automatically. Another similar 

approach was found in Kwan et al. (2000) who developed a hybrid genetic 

algorithm for scheduling bus and train drivers. The research introduced the 

scheduling of drivers for bus and train by using a system based on evolutionary 

algorithm named TRACS II. It had been tested on several train companies and bus 

operators. One of the UK bus operators which had a size of 10,000 buses adopted 

the system too. Lourenço et al. (2001) also reported a bus drive scheduling problem 

which was an actual real world model.   

 

Schonberger et al. (2000) developed an automated timetable generation for 

rounds of a table-tennis league. The research studied the scheduling of a non-

professional table tennis league. The algorithm had been used for almost 2 years in 
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solving real problem. The flexibility of the algorithm that allows users to input the 

suspended dates was a very useful feature. Hence the method was generally well 

accepted by the users. Meanwhile, Burke et al. (2001a) took the challenge to attempt 

a nurse scheduling problem in real hospitals. The construction of nurse scheduling 

problem can be difficult since the problem in health care rostering was highly 

constrained. The model was derived from Belgian hospitals. Four real world 

rostering problems were discussed. The problems had different characteristics and 

yet the algorithm proposed was able to perform well in all of them. The results 

hence proved the efficiency of the memetic algorithm empirically.  

 

A very interesting and unusual real world problem was published in Hart et 

al. (1999).  It was about a schedule of chicken catching of a chicken processing 

company. It was another investigation into the success of a genetic algorithm on a 

real-world scheduling problem. The objective of this problem was to minimize the 

makespan and the resources required. The daily task including scheduling the squads 

which did the catching and also need the lorries which delivered birds to the factory. 

A factory should not be idle at any time and hence the lorries must supply the 

chicken in a rather constant rate. Interestingly formulated as a constrained 

scheduling problem and solved using genetic algorithm. This scheduling problem in 

local chicken factory is a real-life application that produced sensible and dynamic 

adaptable schedules within a short period of time. The results showed that the GA 

can successfully produce daily schedules in minutes, and its performance was 

compatible to those produced manually by expert using a few days time.   
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Wang et al. (2000) developed an online-scheduling of a multiproduct 

polymer batch plant. The application was a model of MINLP (mixed integer 

nonlinear programming problem). The quality of solution was comparable to those 

using mathematical programming. Lee and Jeong (2001) created a daily optimal 

operational schedule for cogeneration systems in a paper mill. The profitability of 

the system depended on the efficiency of the schedule, which at the same time need 

to satisfy thermal and electrical loads. Deb et al. (2003) solved a casting sequence 

scheduling problem in which the orders can have different casting weights. The due 

dates are an important optimization factor in this problem as it is often one of the 

issues encountered in foundries. Dahal et al. (2001) studied a case study of 

scheduling storage tanks using a hybrid genetic algorithm. The activities included 

unloading tanks, filling tanks and emptying tanks in a water treatment facility. 

Whenever a ship approached the port or jetty must discharge ballast water due to 

some physical facility constraint. A comparison was made with random search and 

heuristic method (by current practitioner), proved that GA could find a better 

schedule. Pendharkar and Rodger (2000) applied genetic search to solve a 

production and transportation problem at coal mines. It was modeled into NLP 

nonlinear programming. The system could be used to estimate the operational cost 

of coal mines in a few states of USA.  

 

 

2.5 Representation in evolutionary algorithms 

The representation of chromosomes plays one of the most important roles in every 

evolutionary application. The choice of representation fundamentally influences 
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other components in evolutionary operators. A good representation chosen help to 

ensure the entire search area can be explored as much as possible. Interpretation of a 

chromosome is a process to generate the actual solution for optimization problems. 

In this section, we look at three general approaches that had been used in recent 

research works. Direct representation encodes the solution in a straight forward way 

(mostly a schedule or a timetable), while indirect representation requires addition 

steps to generate final solution by interpreting the chromosomes. Learning based 

genetic search does not store scheduling-related values in chromosomes; instead 

scheduling problems are solved through evolution of learning process. Fig. 2 shows 

the categories of techniques for chromosome representations explored in this 

section. 

 

 

Figure 2 Techniques of chromosome representation 

 

The comparison among different representations was discussed in Xu et al., 

(2005) and Ponnambalam et al. (2001b). Ponnambalam et al. (2001b) conducted a 

comparative research using job shop scheduling problem by comparing a number of 
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representation appeared in previous publications. The review showed that finding 

the best representation were important as the results could be varied significantly 

even when other factors such as operators, parameter setting and experimental setup 

were similar. Apart from the quality of solutions, the computational time was 

another concern. The research repeated several experiments using four different 

representations, namely the operation based representation, job based representation, 

preference list representation and priority based representation. The four 

representations had been widely adopted in many other literatures.  

 

• Operation based representation- encodes a schedule as a sequence of 

operations. One gene is equal to one operation. In order to preserve 

feasibility some representations just encode the job numbers and the 

sequence of operations within the job is arranged according to the 

precedence constraints.  

• Job based representation - allocates resource to first job and then 

followed by other jobs. Gantt chart can show the schedule clearly. All the 

operations in the first job are scheduled prior to other operations in other 

jobs. 

• Preference list based - the representation contains sub-chromosome, each 

for one machine. It does not describe the operation sequence. Instead, it 

stores the preferred job list of each machine. The decoding procedure is 

always feasible because it is basically a preference list only.  

• Priority rule based - the chromosome encodes dispatching rules for job 

assignment and the schedule is constructed with the help of heuristics. 
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GA is used to generate a better sequence of dispatching rule in this 

representation. The rules can be based on shortest/longest operation time 

first, shortest/longest processing time, remaining operation, remaining 

processing times.  

 

2.5.1 Direct representation 

Many timetabling systems fall into this category (direct representation) because of 

assignment to time slots in a timetable can be easily encoded as a matrix with binary 

values. Permutation of operations with simple repair function is also categorized as 

direct representation. An issue that always arises in direct representation is the 

feasibility of chromosomes. The number of rigid constraints is preferably small, 

since any violation means no feasible solution can be constructed, i.e., when none of 

possible solutions satisfies all the conditions. If impossibility is referred to hard 

constraints, the soft constraints would probably be suggesting undesirability. 

Michalewicz et al. (1996) specified that there are seven ways to deal with feasibility 

of representation: rejection, penalty, repair, replacement with repaired version, use 

of decoders - such that a chromosome can always be feasible.  

 

2.5.1.1 Permutation based representation 

Wang and Zheng (2003) had chosen to use a job permutation to represent a solution 

when solving flow shop scheduling. An effective genetic algorithm for job shop 

scheduling was developed by Wang and Brunn (2000). The representation was 

rather straight forward with a chromosome specified which operation (of which job) 

was executed at every machine at every moment. Some operations that spanned 
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more than one time slots would be scheduled closely after one another. The 

validation of chromosome (where it was feasible or not) was examined using a 

heuristic.  

 

Open shop problems had free job sequences which could lead to a large 

solution space. In Prins (2000), the representation was nothing new but an ordered 

permutation of list of operations. However, the chromosome was recovered to active 

schedules by using three different builders in this case. The research showed that a 

good builder has significant influence to the optimization results. Middendorf et al. 

(2000) had also chosen to encode a chromosome as a permutation of task number 

when using evolutionary approach to tackle a dynamic task scheduling problem. 

While in Tsujimura and Gen (1999), the chromosome was a string of integers (parts’ 

number) that represented a sequence of part loading directly.  

 

2.5.1.2 Table/ Matrix representation 

In the attempt to solve a multiobjective evolutionary optimization for flexible job-

shop scheduling problems, Kacem et al. (2002b) proposed an OMC representation. 

The problem was different from conventional problem where the assignment and 

scheduling would be combined as a new problem with greater complexity. The 

representation of chromosomes was a table with values for each machine (job, 

operation, start time, end time). 
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Table 2 The OMC coding 

JOB OPERATION, 

JOB 

M1 M2 M3 M4 

O1,1 0 0 0 0, 1 

O2,1 0 0 0 1, 2 

J1 

O3,1 3, 6 0 0 0 

O1,2 0 0,3 0 0 

O2,2 1,3 0 0 0 

J2 

O3,2 0 3, 4 0 0 

O1,3 0 0 0, 3 0 J3 

O2,3 0 0 0 3, 4 

 

 

Hsu et al. (2002) focused in solving a cyclic scheduling problem to minimize 

Work in Process (WIP) with concerns to some hard constraints. The algorithm 

employed a direct coding using discrete time representation. Each chromosome 

defined the schedule of operation over a period which was restricted by cyclic time. 

The chromosome was viewed as a matrix where the elements in the matrix were the 

operations scheduled to run on each particular machine. The operation was 

associated with a pair number that tells that which process the operation belonged to, 

and what time it started on machine. Hence, feasibility was not a problem and no 

resource conflict could possibly happen. The encoding also required minimum effort 

in performing interpretation.  

 

A multiobjective metaheuristic for bus driver scheduling problem was 

presented by Lourenço et al. (2001). The chromosome was a binary vector of 

dimension n, indication if the driver duty (column) is assigned in the solution. 

Sometimes, a greedy heuristic was applied to restore feasibility. Wen and Eberhart 
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(2002) considered a cargo items delivery system which may use either helicopters, 

boats and trucks to move the items from one point (base point)  to several different 

points. The cargo item was assigned an ID and the chromosome was an integer 

string that showed the sequence of the delivery for these cargo items.  

 

While in a nurse scheduling system, Miwa et al. (2002) had chosen a 

chromosome structure that essentially showed the assignment using bit value for 

each nurse under each possible shift time. For example if there were 20 nurses, 31 

days and 4 shifts per day. The chromosome size would be as big as 20 * 31 * 4. 

(Although the bits can be encoded into fewer bits, this would increase the time 

required to evaluate the fitness of a chromosome). The representation was as neat as 

a timetable structure. In a similar nurse scheduling problem, Kawanaka et al. (2001) 

used a representation which was a full schedule for the entire roster, however the 

schedule had to go through four steps of procedures to ensure the final schedule was 

free from any violation to hard constraints. There were 6 hard constraints in this 

case, and basically each of them was taken into consideration sequentially.  

 

In sport events timetabling, different representations were observed. Yang et 

al. (2002) devised a cost effective baseball scheduling by evolutionary algorithms. 

The base ball sport league schedule arranged the playing team for each time slots 

(sequentially). The chromosome structure was a sequence of paired number, which 

one of them was a home team number, another one as a guest team number. 

Schonberger et al. (2000) developed an automated timetable generation for rounds 

of a table-tennis league. A chromosome was a matrix with row indicated the home 
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team and column was assigned to guest teams. The value insides the matrix were 

dates (integer) of the games. Repair procedure was outlined to create a complete 

solution. Despite the repair function, violation of soft constraints would decrease the 

fitness value via penalty function. 

 

2.5.2 Indirect representation  

Indirect representation as mentioned earlier at the beginning of this section does not 

encode a complete schedule or timetable. Instead, many creative approaches have 

been adopted in chromosome representation. Sometimes, additional steps are 

required to interpret a chromosome into a working schedule. Upon examination of 

the variety of existing approaches, this category is divided into two sub categories 

based on their representation structures. Domain independent representation has 

excellent reusability because the scheme was very friendly and easy to adapt. 

Problem-specific indirect representation does have limited reusability because the 

chromosomes may not be portable across different applications in scheduling or 

timetabling. 

 

2.5.2.1 Domain independent (high reusability) 

The categories are mainly the priority based representation and some interesting 

representation that can be applied in other scheduling solutions without much 

modification. The first two applications in this section have unique representations 

of chromosomes. The rest are generally using a permutation of priority based 

representation.  
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Hindi et al. (2002) employed an evolutionary algorithm for resource-

constrained project scheduling. Using a permutation number to encode the tasks, a 

"serial scheduler" was written to schedule each task as early as possible. The serial 

schedule remained the most important component to achieve high performance in 

schedule generation. Cowling et al. (2002) in the optimization of a trainer 

scheduling problem had chosen to use a hyperGA approach.  By using the hyper GA 

method, its chromosome had to encode the sequence of performing 12 different low 

level heuristics to improve the scheduling solution. As a result, the representation 

became a string of integers stating the sequence for each heuristic method.  

 

Shaw and Fleming (2000), when solving a production scheduling problem, 

had chosen a chromosome which was a string that encoded the priority of jobs. A 

schedule builder was required to generate the schedule and evaluation was done 

based on the schedule produced. The flexibility of such representation was that only 

minimum alteration on the builder was needed when optimization model had 

changed. For example, when the production line constraints changed, builder could 

be adapted according to cater the new requirements. A modified genetic algorithm 

for job shop scheduling was developed by Wang and Zheng (2002). The 

representation chosen was a job priority list for every particular time slot, which 

meant a decoding function would be used to check the feasibility and to build a 

Gantt chart (schedule). Meanwhile, an analogue genetic algorithm was proposed in 

Al-Hakim (2001) for solving job shop scheduling problem. Each gene contained the 

priority for executing the jobs for a particular time segment. Number of genes was 

equal to number of time segment. Unfinished job operation would have to be 
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extended to next time segment until it was completed. The gene described the 

priority of job in the time slot. In addition to a specific algorithm that was required 

to interpret the schedule, a compaction to schedule would be performed before the 

interpretation.  

 

Rossi and Dini (2000) intended to reduce the production cost by optimizing 

the performance of a flexible manufacturing system (FMS). A gene encoded the job 

priority for each machine. The number of genes was equal to the number of 

machine. In this case, a simple algorithm would interpret the chromosome into a full 

schedule so that the makespan (objective) can be measured. Esquivel et al. (2002) 

implemented enhanced evolutionary algorithms for single and multiobjective 

optimization in the job shop scheduling problem. The research had investigated two 

different indirect representations. The first one was decoder based where the 

permutation in a chromosome required a builder to generate a schedule. While the 

priority rule based, a chromosome encoded the dispatching rules so the schedule can 

be generated using the heuristics. Hartmann (2001) addressed a resource constrained 

project scheduling problem with multiple execution modes. A chromosome encoded 

a list of precedence for feasible activities with the mode of operations. (Essentially 

become paired number- as a gene). Another example was the solution for a pre-cast 

production scheduling where the chromosome was a string of random values (from 0 

to 1) that represented the priority order of building the final schedule (Chan and Hu, 

2000). 
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2.5.2.2 Problem specific scheme 

In this section, the chromosomes are usually complicated and do not resemble 

general data structures. Such encoding schemes are only suitable to use with certain 

problem domains. When solving a Lecture's scheduling problem, Glibovets and 

Medvid (2003) had proposed a unique chromosome structure. A gene consisted of 3 

pieces of information, (group, room, time) to describe a schedule. The entire 

chromosome contained static data such as the training course, the lessons plus some 

dynamic data about the list of students in each group and the teacher of the group. In 

implementation, a dynamic array was used to encode the whole schedule, which is a 

set of genes.  

 

Hart et al. (1999) also used a special representation when attempted to solve 

the chicken catching scheduling problem. The chromosome in the application 

represented the two factories and several strategies for arranging the work orders. In 

order to decode a chromosome, 4 steps were required: incorporating domain 

knowledge, sequencing the orders, and splitting and assigning the order. Heuristics 

were required to help the last two steps. Kacem et al. (2002a) introduced an 

evolutionary algorithm hybrid with fuzzy logic that was applied to solve a flexible 

job shop scheduling. The representation was a table of assignment to machine plus 

the starting time and completion time of every job. Another genetic algorithm was 

applied to solve a production planning and scheduling problem manufacturing 

system in Li et al. (2000). The chromosome was a vector of real values that 

indicated the planning production quantity for particular products and time slots.  
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Goh et al. (2003) reported a comparison made among several selection 

methods and the comparison to one proposed method. The comparison was made by 

using an open shop problem. A permutation of operations was chosen to represent 

an open job shop solution. Parallel machine tools scheduling problem was studied in 

Norman and Bean (2000). The problem was solved using a representation known as 

random keys encoding proposed in Bean (1994). It contained several values from 

low to high to determine the sequence/ priority when the schedule was being built. A 

modified genetic algorithm for distributed scheduling problems was reported in Jia 

et al. (2003). The algorithm had to encode the assignment of jobs to different 

working sites followed by the sequence of operations. As a result, the chromosome 

grew to a highly complicated structure. Deb et al. (2004) proposed a representation 

using single dimension array to solve a placement problem of electronic 

components. With this representation formatted, simple cross over and mutation 

operator can be devised in the evolutionary algorithm. 

 

2.5.3 Learning rules 

This section introduces several evolutionary approaches where learning process is 

the selected tool to solve scheduling problems. Scheduling problems were solved 

indirectly in such researches by incorporating evolutionary programming or genetics 

programming. For an instance, dynamic scheduling requires prompt 

feedback/decision to form schedules for certain jobs/processes. In order to solve a 

dynamic scheduling problem, a system can learn some reaction rules using 

evolutionary programming or genetics programming, as these two algorithms are 
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suitable to “generate” programming (knowledge rules) from a pool of literals and 

operators. 

 

Jahangirian and Conroy (2000) built an Intelligent dynamic scheduling 

system to generate a robust knowledge about the best dispatching rules for a system 

where adaptation to dynamic change is a crucial issue. The learning machine was 

able to generate good solution from initial random one, and the learning could be 

done incrementally. The solution for a single machine problem with a number of 

dynamic events source revealed that the system was able to learn and adapt itself in 

the dynamic environment. Another similar approach was reported in Su and Shiue 

(2003). An Intelligent scheduling controller was developed for shop floor control 

systems. The control system can be functionally decomposed into two sections, i.e. 

the planning scheduling and execution of task. Good dispatching rules were required 

to achieve efficient task scheduling. GA identified a set of relevant system attributes 

so that the knowledge base can be constructed. The learning approach combined a 

decision tree (DT) with genetic algorithm as a hybrid algorithm. Generally a DT 

algorithm was recruited to build DTs so that evaluation of fitness can be performed. 

 

An intelligent system was created based on an evolutionary knowledge 

approach (Runarsson and Jonsson, 1999). The ruled based production system was 

then tested on 10 machines job shops problem. Domain specific knowledge was 

incorporated into the system without modification to the algorithm itself. Some 

further research works that employed learning capability of evolutionary algorithm 
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can be found in Aytug et al. (1998), Fayech et al. (2002), and Podgorelec and Kokol 

(1997).  

 

A single machine manufacturing problem was presented in Dimopoulos and 

Zalzala (2001). The research investigated the use of genetic programming for a 

classic one-machine scheduling problem. Genetic programming was devised to find 

the set of dispatching rules. The reason of choosing such special representation was 

to avoid infeasible chromosome which could happen if using conventional 

permutation encoding. A total of nine dispatching rules would be selected and 

combined into a set of efficient rules to solve the scheduling problem. 

 

 

2.6 Crossover operator 

Crossover operator is also known as recombination operator. The idea of crossover 

operation is similar to mating behavior in nature. Generally, two parents are selected 

from a pool of individuals and new individual can be created by taking information 

from both of the parents. The interaction can be perceived as an information 

exchange session among different individuals in a society. Crossover operator has 

evolved from the traditional one-cut crossover into a variety of interesting 

procedures today. As evolutionary algorithms are expanding to different areas in 

engineering optimization, new encoding schemes and crossover operations are being 

introduced constantly. Choosing a suitable crossover operator is one of the key 

factors that will determine the quality of the results during optimization (Deb et al., 

2002; Deb and Beyer, 2001). In this section, five crossover operators are discussed 
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briefly: the order crossover, the cycle crossover, the PMX crossover, the edge 

crossover and the one-point crossover. 

 

2.6.1 Order crossover 

Wang and Zheng (2003) devised a linear order crossover operator. During the 

operation, two cutting points were chosen, the genes in the cross section were 

swapped, and the rest of the gene (which did not appear in the cross section) was 

filled according to the original order of the parent from the beginning. As a result, 

there would be no redundancy or missing gene. The operation is shown in table 3. 

 

Table 3 Operation of order cross over 

STEPS INDIVIDUAL 1 INDIVIDUAL 2 

1. The cut points are shown 26 – 473 - 5891 45 - 218 - 7693 

2. Swap the cross section  ?? - 218 - ???? ?? - 473 - ???? 

3. Fill the first individual for 

those does not appear in cross 

section 

64 -218 – 7359 

(using the order in parent:  

26 - 473- 5891) 

?? - 473 - ???? 

4. Fill the 2nd individual for 

those does not appear in cross 

section 

64 -218 – 7359 

 

52 - 473 – 1869 

(using the order in 

parent: 45 -218 - 7693) 

 

 

Another research work that employed linear order crossover was dealing 

with multiobjective evolutionary optimization for maintenance and production 

scheduling in job shop problems (Youssef et al., 2003). The operation started with 

exchanging the chunks in between cut points. The outer section was copied from the 

parent according the method mentioned above. Starting from the beginning of the 
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chromosome, and skipping those which had already appeared in the crossing section. 

The position of genes mostly would change after the operation, but the orders among 

the genes were conserved in most occasions. While solving a flow shop scheduling 

in Ponnambalam et al (2001a) used the similar operator with the name as 

generalized position crossover (GPX) instead. The operator was also found in 

another scheduling optimization where its representation was a permutation of 

integers (Shaw and Fleming, 2000). Some other research had selected order based 

crossover in solving various scheduling and timetabling problems. (Cavalieri and 

Gaiardelli, 1997; Hussain et al., 2002; and Madureira et al., 2002)  

        

2.6.2 Cycle crossover 

The cycle crossover operator was not as popular as order crossover in scheduling 

and timetabling optimization although it was widely applied in other applications 

such as traveling salesman problems by Oliver et al. (1987). The cycle crossover is a 

general crossover operator that preserves the order of sequence in the parent 

partially. The cycle crossover generates an offspring in which every gene is in the 

same location as in one parent or the other. This crossover operator tries to avoid 

cell conflicts by finding non-overlapping sets of genes to pass from the two parents. 

Its operation is based on the concept of cycle which is a minimal subset of elements 

such that the set of positions in which they appear are the same in both parents. The 

details of the operation can be found in Michalewicz (1994). This crossover can be 

found in Miller et al. (1999) where a single machine problem was optimized. The 

cycle crossover was said to be less positional bias than a normal linear order 
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crossover. A few research works of machine scheduling problem had referred to the 

cycle crossover. (Hussain et al, 2002; Darwen,  2002; Keung et al., 2001)  

 

2.6.3 PMX crossover 

Partial mapping crossover (PMX), proposed in Goldberg and Lingle (1985), is well 

accepted among scheduling and timetabling applications. Wang and Zheng (2003) 

picked this crossover operator in their research of solving flow shop problem. The 

operators chose two cutting points randomly. This was followed by swapping the 

chunks between the two parents. The rest of the genes were filled by partial 

mapping. Repeated genes will be deleted while missing gene was filled as its 

original order in the parent. In this case, only those in the chunks and repeated genes 

would have change to new position. The rest just remained as they were: 

 

Table 4 Steps of PMX operator 

STEPS INDIVIDUAL 1 INDIVIDUAL 2 

1. The cut points are shown 26 – 473 - 5891 45 - 218 - 7693 

2. Swap the cross section  26 - 218 - 5891 45 - 473 - 7693 

3. Delete the repeated genes ?6 – 218 – 5?9? ?5 - 473 - ?69? 

3. Fill the first individual for 

missing genes. (according to the 

sequence in the parent) 

46 -218 – 5793 

(missing genes are 4, 7 and 

3) 

?5 - 473 - ?69? 

4. Fill the 2nd individual for 

missing genes. (according to the 

sequence in the parent) 

46 -218 – 5793 

 

25- 473 - 1698 

(missing genes are 2, 1 

and 8) 
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Goh et al. (2003) had resorted to this operator in their attempt to optimize an 

open shop scheduling problem. The research made comparison made among several 

selection methods. To solve an open job shop problem, the chromosome was 

represented as a permutation of operations. PMX was used to rearrange the 

permutations as recombination operator. The operator could also be found in a wide 

range of other applications too. (Hart et al., 1999; Hussain et al., 2002; Zhang et al., 

2002)  

 

2.6.4 Edge crossover 

Ponnambalam et al. (2002) and Whitley et al. (1989) were among the researches that 

used edge crossover. It was simple and the length of chromosome was short enough 

to be manipulated using edge crossover. This operator split the parent chromosome 

into two parts with a random cut point from 1 to (m-1). Then, interchange the genes 

from that crossover position. In Hussain et al. (2002), the recombination operator 

used an edge map to construct the offspring. 

 

2.6.5 One point crossover 

An approach to solve the train time table problem as a part of a public transportation 

problem was presented in Shrivastava and Dhingra (2002). The chromosome was 

manipulated using one-point crossover which was simple and easy to use since 

structure of the chromosome was complex enough. In Hsu et al. (2002), a 

chromosome had its structure as a matrix. The one-point crossover actually cut 

through a horizontal line across the matrix. The operator can also be found in a 

multiobjective scheduling problem studied by Cavalieri and Gaiardelli (1997). In 
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addition to that, Al-Hakim (2001) used the inspiration from the solutions of 

analogue circuits to optimize a job shop scheduling problem. The representation 

could be viewed as a sequence of numbers (job id) structurally. The research also 

suggested a multi-parent crossover, modified diagonal crossover that would require 

more than two parents in completing the operation. Despite all the complicated issue 

in choosing the mating parents, the operation between these pairs of parents was 

actually a simple one-point cut crossover. Cowling et al. (2002) employed a 

hyperheuristic genetic algorithm to tackle a trainer scheduling problem. A 

chromosome was a string of integers and one point crossover was perfectly suitable 

for their application. Another research work that made use of the simplicity of one 

point crossover was Gürsel et al. (2003).  

 

 

2.7 Mutation operator  

Mutation operations take place after crossover is performed in many evolutionary 

algorithms. The mutation operators permit us to introduce random variations in the 

solutions and play an important role in the capacity of the GA to diversify the 

search. The initial aspiration of using mutation is to prevent the falling of all 

solutions in the population into a local optimum of the solved problem. Yet, 

mutation rate is usually set to a relatively small number as high mutation 

probabilities would destroy the convergence behavior of the optimization process. 

Some popular mutation techniques are introduced here: swap mutation, swift 

mutation, insertion mutation and ordered based mutation. 
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2.7.1 Swap mutation 

The operator is similar to ordered based mutation. It moves two elements to each 

other’s position. Hence, it is sometime known as an exchange operator. This 

operator was implemented in Shaw and Fleming (2000) in the attempt of solving a 

scheduling problem. The representation of chromosome was a permutation of 

integers. Hence, applying the swap mutation operation only changed the positions of 

two integers. Sometimes, the operator was known neighbor-swap operator because 

the small change that it applied was similar to a neighborhood search (Wang and 

Brunn, 2000). Another instance of such operator was known as exchange operator in 

a multi-objective evolutionary algorithm that solved a flow shop problem (Basseur 

et al., 2002). Even in a huge scaled problem such as train time table problem 

(Shrivastava and Dhingra, 2002), swap mutation was chosen as a component in the 

algorithm. The operation was quite adaptable to different structures of chromosome. 

The swap mutation was proven a popular choice among the applications of 

evolutionary scheduling. Mainly because the operation only triggered minimum 

change to chromosome, which was what the designers are looking for.  It also 

appeared in many literatures such as: Wang and Zheng (2003), Hussain et al. (2002), 

and Zhang et al. (2002).  

 

2.7.2 Swift (RAR) mutation 

The operation of this mutation is simple. Basically, one element will be removed and 

reinserted to some random position. In an application of flow shop sequencing, an 

integer string was chosen to represent the possible solutions. Swift mutation was 

then applied to mutate the sequence. (Burdett and Kozan, 2000; Puljic and Manger, 
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2005). The operation was sometimes known as insertion mutation as in Wang and 

Zheng (2003). The exact procedure of its operation was the same where two 

elements were chosen randomly. The second element (later as its position is later in 

the string) was inserted to the position before the first element.  

 

2.7.3 Insertion mutation 

Insertion mutation (Basseur et al., 2002) can happen in any place. It inserts elements 

to some random position chosen. This may be similar to RAR mutation only that the 

insertion mutation may cause shifting position of more than one element in one 

operation. Hsu et al. (2002) incorporated a similar operator when solving F.M.S. 

cyclic scheduling. Repair or adjustment was required most of the time after the 

operation. A research about memetic algorithm conducted by Ishibuchi et al. (2003) 

also devised an insertion mutation as one of its evolutionary operators. Youssef et al. 

(2003) solved a production scheduling problem which the lower bound was known. 

In their implementation, insertion mutation operator was applied and a gene was 

moved to a new position of other genes, while the remaining genes would be shifted 

left.  

 

2.7.4 Order based mutation 

The operation of order based mutation was similar to swap mutation. The only 

difference might be the designer perceived that the order of genes in a chromosome 

was important especially in scheduling problem. The two mutation operations do not 

demonstrate any significant difference in their implementation. According to Hart et 

al. (1999), the order based mutation swapped two integers in the chromosome. 
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Ponnambalam et al. (2001a) perceived that what the operator did was swapping two 

gene values, in their application both of the genes were integers. Many other 

researches had implemented order based mutation in their solutions. (Cavalieri and 

Gaiardelli, 1997; Ponnambalam et al., 2001b; Varela et al., 2003) 

 

 

2.8 Multiobjective research  

Examining recent reports, many multiobjective optimization researches are still 

challenging benchmark problems which optimal solutions are already known. Some 

problems dealt with simple neighborhood structure at problem space. However, 

increasing number of research results reporting on multiobjective approach have 

been observed. (Murata et al., 1996) MOEA can deliver good solutions that are as 

good as single objective optimization when it provides multiple solutions to choose 

from. Li et al. (2000) discussed a planning and scheduling framework in an 

industrial manufacturing system ETPSP (earliness/tardiness production scheduling 

and planning). The three objectives are number of unbalancing processes, cost of 

early production penalties, and the cost of tardy production penalties. The result for 

the multiobjective genetic algorithm (MOGA) showed that it had better ability to 

handle multiobjective functions over a simple GA.  

 

Almost all the scheduling and routing problems are multiobjective in nature. 

The most popular approach in multiobjective solution is using weighted function to 

aggregate the objective functions because the method was simple and easy to 

implement. Such algorithm can be adapted from a single objective version too, little 
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change is needed. Apart from that, transformation into single objective optimization 

problem is easier to develop. The evaluation of performance can be very simple 

since only one value is observed. All the computational effort can be channeled to 

the optimization single objective value. However, many other promising methods 

can also be employed for multiobjective optimization. Pareto ranking method was 

one of the proven effective alternatives. The section 2.8.1 gives a quick introduction 

to several research contributions which have significant impact in the multiobjective 

research area. Section 2.8.2 briefed some multiobjective effort in various problem 

domains using a vast variety of methods. 

 

2.8.1 Multiobjective evolutionary algorithm 

Evolutionary techniques for MO optimization obtain significant attentions from 

various fields as researchers discover the advantages of their adaptive search 

capability to optimize for a set of trade-off solutions. As consequences, there have 

been many survey studies on evolutionary techniques for MO optimization (Fonseca 

and Fleming, 1993; Coello Coello, 1998; Zitzler, 1999; Van Veldhuizen and 

Lamont, 2000). Among these, Coello Coello (1998) is one of the most 

comprehensive surveys that summarized and organized the information on different 

techniques. The techniques were classified into three main groups based on different 

implementation strategies in cost assignments and selection methods. These methods 

include naïve approaches, non-aggregation approaches and Pareto-based approaches. 

In each group, a fairly detailed implementation of the methods with useful feedback 

was given.  
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In the early stage of MO optimisation, multiple objectives are linearly 

combined into a scalar objective via a predetermined aggregating function to reflect 

the search for a particular optimum point on the trade-off surface (Jakob et al., 1992; 

Wilson and Macleod, 1993). The trade off curve is only obtained after numerous 

trials of the weighting components. The drawback of this approach is that the 

weights are difficult to determine precisely, especially when there is insufficient 

information or knowledge concerning the optimisation problem. Besides, there are 

other objective reduction approaches that transform multiobjective problem into 

simpler problem such as: using penalty functions (Adeli and Cheng, 1994) and 

constraints method (transform objectives into constraints). 

 

Schaffer (1985) proposed a vector evaluated genetic algorithm (VEGA) that 

treats the multiple objectives separately in the evolution in order to generate a set of 

non-dominated solutions in a single run. Although this method is simple to 

implement, it only manages to find certain extreme solutions along the Pareto trade-

offs. Also, the shuffling and merging of all subpopulations in fact attribute to fitness 

averaging for each of the objective components (Richardson et al., 1989). Goldberg 

(1989) suggested the Pareto-based fitness assignment scheme as a mean of assigning 

equal probability of reproduction to all non-dominated individuals in a population. 

The approach has several variants such as the multiobjective genetic algorithm 

(MOGA) (Fonseca and Fleming, 1993), non-dominated sorting genetic algorithm 

(NSGA) (Srinivas and Deb, 1994), niched Pareto genetic algorithm (NPGA) (Horn 

et al., 1994), strength Pareto evolutionary algorithm (SPEA) (Zitzler and Thiele, 

1999), and others. Murata (1996) applies adapted genetic algorithm (MOGA) to 
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solve flow shop scheduling problem. An enhanced NSGA that incorporates elitism 

(the preservation of good EA solutions to the next generation) is introduced and 

been applied to several machine scheduling problems (Tapan P., 1999). 

 

The NSGA-II proposed by Deb et al. (2002b) is among the latest successful 

multiobjective genetic algorithm that has numerous applications ranging from 

mathematical optimization test problems to real world optimization problems. The 

algorithm is well known for its efficiency in solving various optimization problems 

(Deb and Tiwari, 2005) and has also become a benchmark to many researches 

especially in real-parameters optimization. The algorithm, similar to other Pareto-

based evolutionary algorithm, does not require user to decide on the weights for the 

objectives (Deb, 2001b). 

 

Nevertheless, the application of evolutionary algorithm in routing and 

scheduling algorithm is not as straightforward as it may seem. Many of the MOEA 

cannot operate directly on combinatorial problems. Mostly, the research 

accomplished in many studies concentrates on test problems where the solutions are 

in the form of real numbers. Moreover, the comparison of efficiency and 

performance is easier when real value objectives are chosen. These problems may 

also come with well-structured solution spaces that have friendly neighbourhood 

relative to combinatorial problems. Various existing evolutionary operators are 

designed explicitly to perform optimization under specific condition and usually 

they are not suitable for combinatorial problems such as routing and scheduling 

optimization. Indeed, careful investigation has to be performed on these researches 
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of MOEA in order to determine useful information that is applicable in routing and 

scheduling optimization problems. 

  

2.8.2  Multiobjective solution in scheduling  

As discussed earlier, many existing methods are available for performing 

multiobjective optimization. In this section, seven approaches of multiobjective 

optimization are summarized: weighted function technique, Pareto ranking 

technique, optimization with alternate generation, fuzzy inference technique, 

coevolution technique, normalization technique and combination of Pareto and 

weighted function technique. Each method is also supported with the examples of 

the relevant applications.  

 

2.8.2.1 Solving using weighted function 

Kacem et al. (2002a) introduced an evolutionary algorithm hybrid with fuzzy logic 

to solve a flexible job shop scheduling problem. The algorithm devised a fuzzy 

multiobjective evaluation stage to evaluate and compare the solutions according to 

the different objective functions. It computed the weights for each objective and 

measured the quality of each solution dynamically. The aim was to investigate any 

possible improvement of the solutions by controlling the direction of searching and 

hence construct the final solutions closed to the Pareto front. The objective function 

in the evaluation for selection process was an aggregate of three objectives 

formulated originally - makespan, workload of the most loaded machine, total 

workload for machines.  
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An interesting problem was studied in Hart et al. (1999) using weighted 

function to solve a constraints problem. The fitness of individuals was assigned as 1 

/ (1+ penalty) in the proposed algorithm. Cavalieri and Gaiardelli (1997) presented a 

Hybrid genetic algorithm for solving a multiple-objective scheduling problem. The 

two objectives were the minimum makespan and the minimum tardiness. The 

weights of the objectives were obtained from domain knowledge. Another similar 

approach multiobjective research on shop scheduling problem can be found in 

Ishibuchi et al (2003). 

 

In a nurse scheduling problem, nurses are assigned to different work shifts 

across the planning horizon which was usually one week (Kawanaka et al., 2001). 

The major objectives in NSP were the quality of shifts for each nurse, allocation of 

holiday to requested day, violation of night shifts assignments and so on. All 

together 6 objectives function had been identified with assigned weights ranges from 

0.1 to 1.0. In this example, the quality of shifts for each nurse was given the highest 

priority. Consequently, the factor deserved a 1.0 weight so that its impact would be 

greater than other objective functions. Meanwhile, a process planning and 

scheduling problem was solved simultaneously in Morad and Zalzala (1999) as both 

the components (planning and scheduling) were found closely entwined.  However, 

the choices of evaluation became a tricky part as in what criteria should be evaluated 

for fitness calculation. The objectives had become total number of rejects and total 

processing cost of the integrated solution. A reject referred to rejection of inferior 

product. Obviously, additional objective was included to reflect the performance of 

planning process in the problem. Zhao and Wu (2001) presented another 
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manufacturing related problem, Flexible Manufacturing Systems incorporated 

simple weighted evaluation function when computing individuals’ fitness. 

 

2.8.2.2 Solving using Pareto Multiobjective 

A multiobjective optimization with the implementation of user preferences was 

presented in Shaw and Fleming (2000). The Pareto method gave them more 

flexibility when solving the problem. Three objectives in the process scheduling 

problem were the number of job rejected in the schedule, the number of late job, and 

the variance between finishing times for different production lines. There were a few 

ways to incorporate user preference in optimization problem.  

1) Priori - this method specifies the certainty by fixing the targeted outcome 

before the optimization starts. It leaves the decision maker with limited 

choice after the optimization.  

2) Interactive - User needs to react to changing situation during the 

optimization process by constant updating the preference information. 

3) Posteriori - The decision maker have the most burden in solving the 

problem, as the optimization does not incorporate any multiobjective 

preferences when solving this problem. At the same way, it gives the largest 

freedom to decision maker.  

Comparing to other methods in solving multiobjective optimization problem, 

multiobjective evolutionary algorithm (MOEA) tends to save computational time as 

compare to posteriori method, yet allows users the flexibility to determine their 

preferences than a priori method.  
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In transportation application, Lourenço et al. (2001) studied a multiobjective 

metaheuristic for bus driver scheduling problem. The bus driver schedule used to be 

solved using linear programming (LP) with set covering problem model. By using 

Pareto ranking approach, the algorithm provided multiple good solutions to the 

decision maker. Apart from these examples, Pareto ranking had been implemented 

quite often in manufacturing based multiobjective scheduling problem. Some 

optimization problems were developed to optimize as many as four objectives 

concurrently. (Basseur et al., 2002; Hsu et al., 2002; Shaw et al., 2000)  

 

2.8.2.3 Solving using alternate generation 

A flexible job-shop scheduling problem and an job assignment problem were 

combined and became a new problem with greater complexity. After the 

combination, optimization model was introduced to one additional objective. The 

objectives were then consisted of makespan and total workload of the machines. 

Since the operations could be assigned to different machines and may take different 

processing time to finish (Kacem et al., 2002b). The two objectives optimization 

was achieved by using one objective at a time (alternately every generation). 

Subsequently in practice, the performance measure was the sum of machines’ 

workload when generation number was even and otherwise it was the makespan 

when generation number was odd. The result of multiobjective optimization in this 

case, had found two solutions, which one of them was as good as the solution 

provided by single objective optimization using makespan as the objective. The 

other solution found in the research had a shorter makespan but higher machine 

load. 
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2.8.2.4  Solving using fuzzy inference 

An evolutionary programming technique with fixed coding scheme was presented 

for a multiobjective short-term hydrothermal scheduling problem in Basu (2004). 

The work introduced an interactive fuzzy satisfying method based on evolutionary 

programming technique. The schedule must specify the power output for each 

thermal unit at every time slot. The main objectives were the cost of operation and 

the emission level from thermal unit. As the weights would not be determined easily 

and the two objectives were using different scales (units), it was not suitable to 

evaluate them using Pareto concept. As a result, the research chose to use a fuzzy 

satisfying method. The decision maker (DM) can choose the membership function to 

be used during evaluation process. If the DM was not satisfied with the result, the 

membership functions could be modified interactively. This had made the algorithm 

more flexible and friendly to DM. 

 

2.8.2.5 Solve it using coevolution 

This is one of the very creative ways to solve a multiobjective problem. In a real-

time dynamic shop floor scheduling (Käschel et al., 2002) had implemented an 

evolutionary algorithm that cater two objectives concurrently. The objectives in the 

problem were the mean lateness and the mean flow time. In the solution, two 

populations were created and each of the population only showed its interest to one 

objective value. Esquivel et al. (2002) proposed a coevolutionary approach to tackle 

a multiobjective job shop scheduling problem. The objectives were three different 

functions: makespan as in overall schedule completion, earliness as well as 
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completion time for every job. Hence, three populations were utilized to evolve the 

solutions based on three different criteria until termination condition was met. By 

then, the three populations would be merged and good solutions would be selected 

from the pool. This technique may require additional number of populations if the 

number of objectives is increasing. This might be a concern if computation time is 

limited. 

 

2.8.2.6 Normalized fitness 

Chryssolouris and Subramaniam (2001) tried to design a fair evolution algorithm for 

multiobjective dynamic scheduling problem. The objectives in this research were 

average job tardiness and total job cost. The reproduction should be done in a fair 

way by using normalized fitness. After normalization, all objectives played an equal 

factor of importance in problem optimization. Unfair weights scaling problem can 

be eliminated. Yet, consistent reproductive pressure was applied.  

 

2.8.2.7 Combination of Pareto and weights 

Turkcan and Akturk (2003) had created a unique multiobjective evaluation 

approach. The approach was used to find efficient solutions minimizing the cost and 

the total weighted tardiness in a production problem. The multiobjective problem 

combined Pareto ranking and the weighted function to generate final fitness. The 

Pareto ranking was determined using the two objectives mentioned above, and it was 

then adjusted again using aggregation. In overall, this can give a better reproduction 

probability to individual who was non-dominated (Pareto ranking), or near to Pareto 

optimality (weighted function contributed to this). The sharing also ensured that 
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preference would be given to those with less number of neighbors around them. 

Comparison to other linear weighted function and normalized method showed that, 

the proposed evaluation method worked better. 

 

The reviews of the components in MOEA showed that the research works 

invested in evolutionary scheduling are vast and immense. The comprehensive 

discussion on various usages has provided more perceptive on the challenges and 

hurdles confronted in evolutionary scheduling problems. Valuable information can 

be extracted and incorporated directly or indirectly in solving multiobjective routing 

and scheduling problems. 
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Chapter 3 Vehicle Capacity Planning System 

 

In this chapter, a VRP problem models a local logistic company provides 

transportation service for moving empty and laden containers within Singapore. The 

chapter provides a very concise example for the type of optimization problems that 

researchers are interested. It also demonstrates an example for solving real world 

application by using problem modeling techniques. The objectives of the problems 

are elaborated in the following sections. A simple remark at the end of the chapter 

explains the motivation inspired by this problem which had triggered further 

investigation to the research reported in this thesis. 

 

3.1 Introduction 

The VRP problem models a local logistic company that provides transportation 

service for moving empty and laden containers within Singapore. Due to the limited 

capacity of its own fleet of vehicles, the company cannot handle all the job orders, 

and have to outsource some orders to other smaller local transportation companies. 

The current operation of assigning jobs for outsourcing goes through two steps. In 

the first step, a certain percentage of jobs will be pre-selected for outsourcing 

according to some simple rules. Then at the second step, the rest of the jobs will be 

put into an in-house computer system which assigns jobs to its internal fleet of 

vehicles according to some greedy rules, and the remaining jobs that cannot be 

served by the internal fleet of vehicles will be outsourced. A Vehicle Capacity 
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Planning System (VCPS), which models the problem as Vehicle Routing Problem 

with Time Windows constraints (VRPTW) and Tabu Search (TS) is applied to find a 

solution for the problem. 

 

 

3.2 Problems and objectives 

Everyday the company receives job orders of container movement for the next day, 

ranging from importation, exportation to empty container movement.  The internal 

fleet of vehicles is used for handling these orders.  However, due to the large number 

of job orders, most of the time, some of the job orders have to be outsourced to other 

companies for reasons such as exceeding fleet capacity, low revenue or urgency.  

The outsourcing decision is made through the following two steps: 

 

• Step 1. Jobs for outsourcing are selected by engineers according to their 

experience together with some simple rules. 

• Step 2. The remaining jobs are put into an in-house computer-aided 

scheduling system for capacity planning.  A very simple rule is used in 

the system to assign jobs for vehicles, i.e., Earliest-Deadline First.  The 

system will pick up those jobs with earlier deadlines for their internal 

vehicles, until the fleet reaches its capacity limit, and then the remaining 

jobs will be assigned for outsourcing.   

 

Usually the capacity planning for step 2 is performed only at the end of the 

day when most orders have come in. Since most of the transportation companies 
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have certain working hours, it is often unlikely for the company to hold on the 

planning until all the orders to arrive. In other words, decision must be made before 

the companies that handle outsourcing job close down at the end of day. Therefore it 

is important for the management to have rules which guide them on how many jobs 

they should outsource and how to select those jobs for outsourcing. 

 

The objectives of this study include building a transportation model for the 

company and find a good solution for the problem.  Based on the solution obtained 

from the model, extract new rules on how to assign jobs for outsourcing. Finally, 

performance of the new rules with the current rules is compared. The VRP model 

studied in this section is further improved in the subsequent chapters. 

 

 

3.3 Major operations 

There are three major types of container movement: Importation, Exportation, and 

Empty Container Movement. 

 

3.3.1 Importation 

For importation of laden containers, vehicles pick up containers at the port, and send 

them to customer warehouses. After discharging in the warehouses, the empty 

containers are sent to depots.  In this model, the whole importation trip is considered 

as two job orders, i.e., one loaded trip from the port to a warehouse and one empty 

trip from the warehouse to a depot.  Fig. 3 shows the importation process of laden 

containers. 
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Figure 3 Importation of laden container 

 

Depending on the types of cargoes, each container has different free-storage periods 

at the port, for example, normal cargo has 72 hours but class 2 cargo (dangerous 

cargo) only has 24 hours of free-storage time. During this period, vehicles can go 

into the port at anytime to pick up the loaded containers. Meanwhile, some of the 

customer warehouses and depots only operate during the usual office hours (i.e., 

from 8am to 6pm), this time window should also be considered in the model. 

 

3.3.2 Exportation 

Similarly, for exportation, the vehicles need to pick up empty containers from 

depots, and then send them to customer warehouses for loading. After the containers 

have been loaded, the company needs to book time slots at the port in order to use 

the crane there to move the containers when they arrive. The time slot given by the 

port is only 15 minutes and penalty costs are incurred when vehicles do not arrive 

within the time window. The whole exportation trip will also be considered as two 

job orders in our model, i.e., one empty trip from a depot to a warehouse and one 

loaded trip from the warehouse to the port. 
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Figure 4 Exportation of laden container 

 

3.3.3 Empty Container Movement 

Singapore is the empty container hub for South East Asia, and many shipping liners 

store their empty containers in the inland container depots in Singapore. Since there 

is a trade imbalance between different countries, from time to time, the shipping 

liners need to replenish their containers from one country to another.  The empty 

container movement involves both importation and exportation. For importation 

activity, empty containers will be picked from the port and sent directly to depots, 

and for exportation activity, empty containers will be sent directly to the port from 

depots.  Usually, as opposed to other job orders, this type of job orders comes in 

large quantity.  This process is shown in Fig. 5. 

 

Figure 5 Empty container movement 
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For importation, the empty containers are taken as normal cargo and enjoy 

72 hours free-storage time.  For exportation, the port releases a much longer crane-

booking time slot to the company, i.e., 4 hours per booking instead of only 15 

minutes, and hence the company can move many empty containers into the port at 

one time.  This particular crane booking service is known as Block Booking (BB).  

 

 

3.4 Problem model 

The VCPS problem model is described from the perspective of job details, 

transportation model and mathematical model. 

 

3.4.1 Job details 

In general, when a company receives a job order, it includes the following 

information: 

• Job type (importation, exportation or empty container movement) 

• Laden/Empty Trip 

• Normal Cargo/Class 2 Cargo 

• Trailer type (20 or 40 feet) 

• Source/Destination Location 

• Handling time in Source/Destination location 

• Time windows for Source/Destination location 
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Time window information of each job is important as it determines the 

feasibility of the job scheduling.  To determine the time windows, we need to know 

the details of the vessel information, such as Estimated Arrival Time (ETA), 

Estimated Departure Time (ETD), Complete of Discharge (COD), Ready time, 

Latest time and Crane booking slot.  The time windows vary significantly from type 

to type, for example, normal cargo importation jobs enjoy time windows of 72 hours 

at the port, but exportation jobs only have 15 minutes crane booking time slot at the 

port.   

 

In this study, we divide all the job orders into 7 types, ranging from the 

importation, exportation to empty container movement 

T1) Importation of Normal Cargo from port to warehouse.    

T2) Importation of Class 2 Cargo port to warehouse.  

T3) Exportation of Normal Cargo from warehouse to port.    

T4) Exportation of Class 2 Cargo from warehouse to port.   

T5) Importation of Empty Containers from port to depot.    

T6) Exportation of Empty Containers from depot to port.  

T7) Empty Container Movement from warehouse to depot or depot to 

warehouse. 
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3.4.2 Transportation model 

The generalized model of a job order can be described in Fig. 6. 

Figure 6 Time sequence of a job model 

 

To process a job order, we first need to travel to the source location of the 

order with a trailer. Since there is time window constraint in the source location, we 

might need to wait until the time window is reached, and then the agent at the source 

location (which can be the port, warehouses or depots) will handle the container and 

load it to the trailer. Once the container is picked up, it will be sent to the destination 

location, and the respective agent at the destination location will receive and process 

the container. 

 

There are two types of containers with two different lengths: 20 feet and 40 

feet.  Before the trucks go to pick up a container in the source location, it needs to 

travel to the nearest trailer exchange point to collect the correct type of trailer. 

Assumption is made that the right type of trailers is always available at every trailer 

exchange point. In other words, the number of job orders will never exceed the 

trailer capacity, and hence the trailer type feasibility constraints are not considered in 

the model. With the knowledge of the location for trailer exchange point, we can 

always factor in the traveling time to and from the trailer exchange location into the 
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computation of the traveling time from the job starting point to the source location. 

Although the trailer type does not affect the feasibility of designing a specific route, 

it contributes to the overall routing performance because the costs of handling 

different types of containers are different. Under this job model, the vehicle routing 

and outsourcing assignment problem to be tackled is transformed into a Vehicle 

Routing Problem with Time Windows (VRPTW) with slight modifications. 

 

As shown in Fig. 7, the VRPTW problem consists of a set of identical 

vehicles, a set of customer job orders represented by nodes and a network 

connecting the vehicles and job orders.  It is assumed that there are N job orders and 

K vehicles.  Each arc in the network represents a connection between two jobs and 

indicates the job handling sequence.  Each route starts from a truck set-off point, 

followed by the job orders handled by this truck.  The number of routes in the 

network is equal to the number of vehicles used, and one vehicle is dedicated to one 

route. Notice that this network does not represent the real geographical connection 

between job locations. Each job order in the network can be visited only once by one 

of the vehicles. The time window constraints imposed by each job must be satisfied.  

Vehicles are also required to complete their individual route within a preset maximal 

route time, as the drivers have fixed working hours. 
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Figure 7 Vehicle routing problem model 

 

 

3.5 VCPS heuristic 

In recent years, a great amount of work has been done on the development of 

heuristics for the VRPTW problem.  Among these methods, Tabu Search (TS) has 

been shown to achieve significant improvement in optimizing the solutions. TS 

based on λ-Interchanges is adopted as the method for solving the VRPTW problem. 

Tabu Search is powerful in searching for solution neighborhood (Chiang and Russel, 

1997; Taillard et al., 1997) as compared to other heuristics which may get stuck in 

local minima. 

 

3.5.1 Initial solution and λ-Interchange Local Search Method 

We assume that there are a total of K trucks (or K routes) and a job pool with all 

available job orders.  To generate the initial solution, we randomly select job orders 

and insert them sequentially into each route by using the standard Push-Forward 
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insertion method. The Push-Forward insertion method will only allow a job order to 

be inserted at the place where the feasibility of the route can be maintained. If the 

job cannot be inserted into the current route, it will be put into a new route. The 

procedure will continue until no job order can be inserted in any of the K route. All 

the unassigned job orders are then assigned to truck 0 (or route 0), which represents 

the subcontractors. There are no time window constraints for this “truck 0”.  After 

getting the initial solution, λ-Interchange Local Search Method is used to generate 

the neighborhood structure.  The local search procedure is conducted by 

interchanging jobs between routes.  For a chosen pair of routes, the searching order 

for the jobs to be interchanged needs to be defined, either systematically or 

randomly. 

 

3.5.2 Tabu search and heuristic 

Tabu Search (TS) uses memory structures to support and encourage a non-

monotonic search.  Tabu stores the most recent moves or visited solutions in a tabu 

list.  Attempts that reverse the moves or reproduce the solutions in the tabu list will 

be marked as “Tabu” and be denied.  However, an aspiration criterion can release 

this restriction if a move leads to a new global best solution.  The lifetime of a tabu 

status in the tabu list is controlled by the tabu list size, where First-in-First-out rule 

is often used for refreshing the tabu list. Structure records the whole route 

information.  For example: 

  Route 1: 2 →   12 →   6 →   11 →   7 

If any of the jobs in this route is removed, the whole route will be recorded as 

“Tabu”.  The elements of this structure are strings of job numbers representing 
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recently visited routes. Any future move will be prohibited if it attempts to produce 

the same route that has been encountered before. 

 

After defining the tabu structure and the local search method, a heuristic is 

proposed to solve the problem. At the start of the heuristic, an initial solution is 

generated and then the λ-Interchange Local Search Method is applied to explore the 

neighborhood of this initial solution. During the search, route 0 will be paired with 

each route from route 1 to route K, and the λ-Interchange operators will examine all 

the possible moves between each pair of routes that can result in feasible new 

solutions.  The total cost of these newly generated solutions is calculated and put 

into a candidate list in ascending order. 

 

The move that is ranked first in the candidate list will be checked for 

validity, i.e., whether it is a “Tabu” or not.  If it is not Tabu, this move will be 

adopted and the solution it produces will be set as the new current solution.  After 

refreshing the tabu list, this iteration is completed.  If the first ranked move is Tabu, 

then the second ranked candidate will be checked until a legal move is found.   

 

 

3.6 Result and comparison 

Altogether 14 test cases have been generated based on statistics provided by logistic 

company. Seven of the test cases are reserved for rules extraction and another seven 

for evaluation purpose. After the optimization to selected test cases, the best result 

obtained at different iteration is shown in Fig. 8. Notice that the costs of the 
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solutions have been normalized with the cost of the final solution obtained. As can 

be seen, the algorithm is quite effective in improving the solution during the initial 

phase of the optimization. However, for latter phase of optimization, it has to spend 

more time to explore the neighborhood in order to escape from local optima. 

 

With the proposed approach, new rules are extracted from the results after 

the optimization. The new rules are then applied on 7 remaining test cases to 

evaluate the performance. As a result, the average cost saving (within the capacity 

limit range of 60-66%) could save up to 8.14%, as compared to the old existing 

conventional approach used by the logistic company. 

 

Figure 8 Result of the VCPS 
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3.7 Remark to research motivation 

A transportation model for container movement has been built to solve the 

outsourcing problem faced by a transportation company.  Because of the large 

amount of job orders, the company must select some jobs to outsource, and the 

proposed Vehicle Capacity Planning System (VCPS) has helped to select jobs and to 

minimize the total cost. The transportation model has been built with mathematical 

definitions, and the advanced artificial intelligence method of Tabu search heuristic 

has been chosen to solve the problem. This research effort provides strong 

motivation on further exploring the possibilities of enhancement of the solutions of 

vehicle routing problems. The optimization in multiobjective perspective for such 

problem is very useful to logistic operators who strive to reduce their total cost of 

operations. Consequently, a multiobjective evolutionary algorithm for solving 

vehicle routing problem is proposed and elaborated. The performance of the 

proposed algorithm is also examined in the next chapter. 
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Chapter 4 Hybrid Multiobjective Evolutionary Algorithm 

for Vehicle Routing Problem 

 

Vehicle routing problem with time windows (VRPTW) involves the routing of a set 

of vehicles with limited capacity from a central depot to a set of geographically 

dispersed customers with known demands and predefined time windows. The 

problem is solved by optimizing routes for the vehicles so as to meet all given 

constraints as well as to minimize the objectives of traveling distance and vehicles 

numbers. This section proposes a hybrid multiobjective evolutionary algorithm 

(HMOEA) that incorporates various heuristics for local exploitation in the 

evolutionary search and the concept of Pareto's optimality for solving multiobjective 

optimization in VRPTW. The proposed HMOEA is featured with specialized genetic 

operators and variable-length chromosome representation to accommodate the 

sequence-oriented optimization in VRPTW. Unlike existing VRPTW approaches 

that often aggregate multiple criteria and constraints into a compromise function, the 

proposed HMOEA optimizes all routing constraints and objectives simultaneously, 

which improves the routing solutions in many aspects, such as lower routing cost, 

wider scattering area and better convergence trace. The HMOEA is applied to solve 

the benchmark Solomon’s 56 VRPTW 100-customer instances, which yields 20 

routing solutions better than or equivalent to the best solutions published in 

literature. 
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4.1 Introduction 

In particular, Vehicle routing problem with time window (VRPTW) is an example of 

the popular extension from VRP. In VRPTW, a set of vehicles with limited capacity 

is to be routed from a central depot to a set of geographically dispersed customers 

with known demands and predefined time window. The time window can be 

specified in terms of single-sided or double-sided window. In single-sided time 

window, the pickup points usually specify the deadlines by which they must be 

serviced. In double-sided time window, however, both the earliest and the latest 

service times are imposed by the nodes. A vehicle arriving earlier than the earliest 

service time of a node will incur waiting time. This penalizes the transport 

management either in the direct waiting cost or the increased number of vehicles, 

since a vehicle can only service fewer nodes when the waiting time is longer. Due to 

its inherent complexities and usefulness in real life, the VRPTW continues to draw 

attentions from researchers and has become a well-known problem in network 

optimization. Surveys about VRPTW can be found in Desrochers et al., (1992), 

Desrosier et al., (1995), Golden and Assad (1988), Solomon (1987), Laporte et al., 

(2000),  Kilby et al., (2000), Toth and Vigo (2002), Bräysy and Gendreau (2001a, 

2001b) etc. 

 

A number of heuristic approaches, exact methods, and local searches have 

been applied to solve the VRPTW which is a NP-hard problem (Beasley and 

Christofides, 1997; Bräysy, 2003; Breedam, 2001; Chiang and Russel, 1996; 1997; 

Christofides et al., 1981; Desrosier et al., 1995; Golden and Assad, 1988; Laporte, 

1992; Lee et al., 2003; Potvin et al., 1993; 1996; Savelsbergh, 1985; Yellow, 1970; 
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Caseau and Laburthe, 1999; Dullaert et al., 2002; Rego, 2001; Bard et al., 2002; 

Gezdur and Türkay, 2002; Ioannou et al., 2001; Shaw, 1998; Kilby et al., 1999; Li 

and Lim, 2002; Chavalitwongse et al., 2003). While optimal solutions for VRPTW 

may be obtained using the exact methods, the computation time required to obtain 

such solutions is often prohibitive and infeasible when the problem size becomes 

large (Desrochers et al., 1992). Conventional local searches and heuristic algorithms 

are commonly devised to find the optimal or near-optimal solutions for VRPTW 

within a reasonable computation time (Cordeau et al., 2002). However, these 

methods often produce poor robustness since they could be sensitive to the datasets 

given. Some heuristic methods even require a set of training data during the learning 

process, i.e., the accuracy of training data and the coverage of data distribution can 

significantly affect the performance of the algorithms (Bertsimas and Simchi-Levi, 

1993). Such a drawback also becomes apparent when the search space is very large 

or is unevenly structured for complex VRPTW. 

 

Categorized by Fisher (1995) as the third generation approach for solving 

vehicle routing problems, evolutionary algorithms (EAs) that emulate the 

Darwinian-Wallace principle of “survival-of-the-fittest” in natural selection and 

genetics have been applied to solve the VRPTW with optimal or near-optimal 

solutions (Gehring and Homberger, 2001; 2002; Grefenstette et al., 1985; 

Homberger and Gehring, 1999; Louis et al., 1999; Tan et al., 2001a; 2001b; 

Thangiah et al., 1994; Jung and Moon, 2002). Thangiah (1995) proposed a genetic 

algorithm based approach named GIDEON, which follows the cluster-first route-

second method where adaptive clustering and geometric shapes are applied to solve 
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the VRPTW. This approach devised a special genetic representation called genetic 

sectoring heuristic that keeps the polar angle offset in the genes, and solves the 100-

customer Solomon problems to the near-optimal.  

 

Prinetto et al., (1993) proposed a hybrid genetic algorithm incorporating 2-

opt and Or-opt operations for solving the traveling salesman problem. Blanton and 

Wainwright (1993) presented two new crossover operators, Merge Cross#1 and 

Merge Cross#2, and showed that the new operators are superior to traditional 

crossover operators. Tan et al., (2001a) and Thangiah et al., (1994) applied hybrid 

genetic algorithms with Tabu search and simulated annealing for solving the 

VRPTW and reported some improved routing solutions. Homberger and Gehring 

(1999) proposed the approach of sub-dividing the optimization problem into phases 

based on the optimization objectives in VRPTW. In their approach, the optimization 

was performed in two separate and independent evolution phases, i.e., to minimize 

the number of vehicles and total traveling distance in the first and second phase, 

respectively. The parallelization of the metaheuristic was based on the concept of 

cooperative autonomy, for which several autonomous two-phase metaheuristics 

cooperate through the exchange of solutions. 

 

The problem of VRPTW involves the optimization of routing multiple 

vehicles to meet all given constraints. It is required to minimize multiple conflicting 

cost functions concurrently, such as traveling distance and number of vehicles, 

which is best solved by means of multiobjective optimization. Many existing 

VRPTW techniques, however, are single objective-based heuristic methods that 
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incorporate penalty functions or combine the different criteria via a weighting 

function (Berger et al., 2001; Desrosier et al., 1995; Golden and Assad, 1988; Toth 

and Vigo, 2002). Although multiobjective evolutionary algorithms have been 

applied to solve related combinatorial optimization problems, such as 

flowshop/jobshop scheduling, nurse scheduling, and timetabling (Ben et al., 1998; 

Burke and Newall, 1999; Chen et al., 1996; Murata et al., 1996; Jaszkiewicz, 2001), 

these algorithms are designed with specific representation or genetic operators that 

could only be used in particular application domains, and cannot be directly applied 

to solve the VRPTW addressed efficiently. 

 

This research proposes a hybrid multiobjective evolutionary algorithm 

(HMOEA) that incorporates various heuristics for local exploitation in the 

evolutionary search and the concept of Pareto's optimality for solving the 

multiobjective VRPTW optimization. Unlike conventional MOEAs that are 

designed for parameterized problems (Dias and Vasconcelos, 2002; Cvetkovic and 

Parmee, 2002; Knowles and Corne, 2000; Tan et al., 2001c), the proposed HMOEA 

is featured with specialized genetic operators and variable-length chromosome 

representation to accommodate the sequence-oriented optimization in VRPTW. The 

design of the proposed algorithm is focused on the need of VRPTW by integrating 

the vehicle routing sequence with the consideration of timings, costs, and vehicle 

numbers. Without aggregating multiple criteria into a compromise function, the 

HMOEA optimizes all routing constraints and objectives concurrently, which 

improves the routing solutions in many aspects, such as lower routing cost, wider 

scattering area and better convergence trace. 
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This chapter is organized as follows: Section 4.2 gives the problem 

formulation of VRPTW, which includes the mathematical modeling and description 

of Solomon’s 56 benchmark problems for VRPTW. Section 4.3 gives a brief 

description of multiobjectve evolutionary optimization and its applications in a 

number of domain-specific combinatorial optimization problems. The program 

flowchart of HMOEA and each of its features including variable-length 

chromosome representation, specialized genetic operators, Pareto fitness ranking, 

and local search heuristics are also described in Section 4.3. Section 4.4 presents the 

extensive simulation and comparison results of the proposed HMOEA based upon 

the famous Solomon’s 56 data sets, which yield 20 routing solutions better than or 

equivalent to the best-known solutions in VRPTW according to the authors’ best 

knowledge. The advantages of the HMOEA for multiobjective optimization in 

VRPTW are also discussed in Section 4.4. Conclusions are drawn in Section 4.5. 

 

 

4.2 The Problem Formulation 

This section presents the formulation of the vehicle routing problem with time 

windows, which involves the routing of a set of vehicles with limited capacity from 

a central depot to a set of geographically dispersed customers with known demands 

and predefined time windows. Section 4.2.1 provides the mathematical model of the 

VRPTW and Section 4.2.2 describes the famous Solomon’s 56 benchmark problems 

for the VRPTW. 
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4.2.1 Problem Modeling of the VRPTW 

This section presents the mathematical model of the VRPTW, including the 

frequently used notations such as route, depot, customer and vehicles. Fig. 9 shows 

the graphical model of a simple VRPTW and its solution. This example has two 

routes, R1 and R2, and every customer is given a number as its identity. The arrows 

connecting the customers show the sequences of visits by the vehicles, where every 

route must start and end at the depot. 
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Figure 9 Graphical representation of a simple vehicle routing problem 

 

The definition of the terms and constraints for the VRPTW is given as follows: 

 

• Depot:  The depot is denoted by v0, which is a node where every vehicle 

must start and end its route. It does not have load but it has specified time 

window to be followed. 
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• Customers:  There are N customers and the set {0, 1…, N} represents the 

sites of these N customers. The number 0 represents the depot. Every 

customer i has a demand, ki ≥ 0 and a service time, si ≥ 0. Formally, 

},...,2,1,0{ N=Ω is the customer set and )(rΩ represents the set of 

customers served by a route r. 

 

• Vertex:  A vertex is denoted by )(rvi , which represents the customer that is 

served at the ith sequence in a particular route r. It must be an element in the 

customer set defined as Ω∈)(rvi . 

 

• Vehicles: There are m identical vehicles and each vehicle has a capacity limit 

of K. The number of customers that a vehicle can serve is unlimited given 

that the total load does not exceed the capacity limit K. The vehicles may 

arrive before the earliest service time and thus may need to wait before 

servicing customers. 

 

• Traveling cost: The traveling cost between customers i and j is denoted by 

cij, which satisfies the triangular inequality where ikjkij ccc ≥+ . The cost is 

calculated with the following equation, 

 ( ) ( )22
yyxxij jijic −+−=  (1) 

where ix is the coordinate x for customer i and iy is the coordinate y for 

customer i. Clearly, the routing cost is calculated as Euclidian distance 

between the two customers. An important assumption is made here: one unit 



 

92 

distance corresponds to one unit traveling time, i.e., every unit distance may 

take exactly a unit of time to travel. Therefore cij not only defines the 

traveling cost (distance) from customer i to customer j, but also specifies the 

traveling time from customer i to customer j. 

 

• Routes: A vehicle’s route starts at the depot, visits a number of customers, 

and returns to the depot. A route is commonly represented as 

0210 ),(),...,(),(, vrvrvrvvr r= . Since all vehicles must depart and return to 

the depot v0, the depot can be omitted in the representation, i.e., 

)(),...,(),( 21 rvrvrvr r= . However, the costs from the depot to the first 

customer node and from the last customer node to the depot must be included 

in the computation of the total traveling cost. 

 

• Customers in a route: The customers in a route are denoted by 

{ })(),...,()( 1 rvrvr n=Ω . The size of a route, n, is the number of customers 

served by the route. Since every route must start and end at the depot 

implicitly, there is no need to include the depot in the notation of )(rΩ . 

 

• Capacity: The total demands served by a route, k(r), is the sum of the 

demands of the customers in the route r, i.e., ∑
Ω∈

=
)(

)(
ri

ikrk . A route satisfies 

its capacity constraint if ( ) Krk ≤ .  
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• Traveling cost: The traveling cost of a route r = nvv ,...,1 , denoted by t(r), is 

the cost of visiting all customers in the route, i.e., 

( ) ( ) ( )( ) ( ) 0101 ),(,

1

1
, vrvrvv

n

i
rvrv nii

cccrt ++=∑
−

=
+

 

 

• Routing plan: The routing plan, G, consists of a set of routes {r1,…,rm}. The 

number of routes should not exceed the maximum number of vehicles M 

allowed, i.e., m ≤ M. The following condition that all customers must be 

routed and no customers can be routed more than once must be satisfied, 

 
( )

( ) ( ) jirr

r

ji

m

i
i

≠∅=Ω∩Ω

Ω=Ω
=

,
1
U  (2) 

 

• Time windows: The customers and depot have time windows. The time 

window of a site, i, is specified by an interval ( ), ( )[ ]
i iv r v re l , where ( )iv re  and 

( )iv rl  represents the earliest and the latest arrival time, respectively. All 

vehicles must arrive at a site before the end of the time window ( )iv rl . The 

vehicles may arrive earlier but must wait until the earliest time of ( )iv re  

before serving any customers. The notation of 
0ve  represents the time that all 

vehicles in the routing plan leave the depot, while 0vl  corresponds to the time 

that all vehicles must return to the depot. In fact, the interval [
0ve , 0vl ] is the 

largest time window for which all customers’ time windows must be within 

the range. 
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The earliest service time of vertex ( )iv r is generally represented as ( )iv ra  and the 

departure time from the vertex ( )iv r  is denoted by ( )iv rd . The definitions of the 

earliest service time and the departure time are given as follows, 

 

0
0vd =  

1 1( ) ( ) ( ), ( ) , ( )max( )
i i i i iv r v r v r v r v ra d c e

− −
= +  for  and 1r i n∀ ≤ ≤  

( ) ( ) ( )i i iv r v r v rd a s= +    for  and 1r i n∀ ≤ ≤  

1 0( ) ( ) ( ),n n nv r v r v r vd d c
+

= +    for r∀  

1( )nv rd
+

 is the completion time of a route or the time that a vehicle completes all 

its jobs. 

 

where vi-1 refers to information of the previous customer in a route. The time 

window constraints in the VRPTW model are given as, 

 

1 0( )nv r vd l
+

≤   for r G∀ ∈  

( ) ( )

( ) ( )

i i

i i

v r v r

v r v r

a e

a l

≥

≤   for and 1r G i n∀ ∈ ≤ ≤  

 

A solution to the VRPTW is a routing plan G = {r1,…,rm} satisfying both the 

capacity and time window constraints, i.e., for all routes, 

 Krk j ≤)(  (3) 
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where 1 ≤ j ≤ m. The VRPTW consists of finding a solution G that minimizes the 

number of vehicles and the total traveling cost as given below, 

 ∑
∈

=

==

Gr

rtGf

mGGf

)()(

)(

2

1
 (4) 

Both the capacity and time windows are specified as hard constraints in the 

VRPTW. As illustrated in Fig. 10, there are two possible scenarios based on the time 

window constraints in the model. As shown in Fig. 10(a), when a vehicle leaves the 

current customer and travels to the next customer, it may arrive before the earliest 

arrival time, ( )iv re , and therefore has to wait until the ( )iv re  starts. The vehicle will 

thus complete its service for this customer at the time of ( ) ( )i iv r v re s+ . Fig. 10(b) 

shows the situation where a vehicle arrives at a customer node after the time window 

starts. In this case, the arrival time is 1 1( ) ( ), ( )i i iv r v r v rd c
− −

+  and the vehicle will 

complete its service for customer i at the time of 1 1( ) ( ), ( ) ( )i i i iv r v r v r v rd c s
− −

+ + . 

 

 

(a) Vehicle arrives before the earliest service time 

 

 

 

 

(b) Vehicle arrives after the earliest service time 

Figure 10 Examples of the time windows in VRPTW 

 

 Travel time Waiting time Service time

1( )iv rd
−

  
1 1( ) ( ), ( )i i iv r v r v rd c
− −

+ ( )iv re        ( ) ( )i iv r v re s+  

 Travel time Service time 

  
1( )iv rd
−

  ( )iv re
         1 1( ) ( ), ( )i i iv r v r v rd c

− −
+         

1 1( ) ( ), ( ) ( )i i i iv r v r v r v rd c s
− −

+ +  
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4.2.2 The Solomon’s 56 Benchmark Problems for VRPTW 

The six benchmark problems (Solomon, 1987) designed specifically for the vehicle 

routing problem with time window constraints (VRPTW) are adopted in this 

research to illustrate the performance of the HMOEA. The Solomon’s problems 

consist of 56 data sets, which have been extensively used for benchmarking different 

heuristics in literature over the years. The problems vary in fleet size, vehicle 

capacity, traveling time of vehicles, spatial and temporal distribution of customers. 

In addition to that, the time windows allocated for every customer and the 

percentage of customers with tight time-windows constraint also vary for different 

test cases. The customers’ details are given in the sequence of customer index, 

location in x and y coordinates, the demand for load, the ready time, due date and the 

service time required. All the test problems consist of 100 customers, which are 

generally adopted as the problem size for performance comparisons in VRPTW. The 

traveling time between customers is equal to the corresponding Euclidean distance. 

The 56 problems are divided into 6 categories based on the pattern of customers’ 

locations and time windows. These 6 categories are named as C1, C2, R1, R2, RC1 

and RC2. 

 

The problem category R has all customers located remotely and the problem 

category C refers to clustered type of customers. The RC is a category of problems 

having the mixed of remote and clustered customers. The geographical distribution 

determines the traveling distances between customers (Desrochers et al., 1992). In 

the cluster type of distribution, customers’ locations are closer to each other and thus 

the traveling distances are shorter. In the remote type of distribution, customers’ 
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locations are remotely placed. Therefore the traveling distance is relatively longer in 

the R category as compared to the C category problems. Generally, the C category 

problems are easier to be solved because their solutions are less sensitive to the 

usually small distances among customers. In contrast, the R category problems 

require more efforts to obtain a correct sequence of customers in each route, and 

different sequences may result in large differences in term of the routing cost. 

 

The data sets are further categorized according to the time windows 

constraints. The problems in category 1, e.g., C1, R1, RC1, generally come with a 

smaller time window, and the problems in category 2, e.g., C2, R2 and RC2 are often 

allocated with a longer time window. In the problem sets of R1 and RC1, the time 

windows are generated randomly. In the problem set of C1, however, the variations 

of time windows are small. A shorter time window indicates that many candidate 

solutions can become infeasible easily after reproduction due to the tight constraint. 

In contrast, a larger time window means that more feasible solutions are possible 

and subsequently encourage the existence of longer routes, i.e., each vehicle can 

serve a larger number of customers. In Fig. 11, the x-y coordinate depicts the 

distribution of customers’ locations for the six different categories, C1, C2, R1, R2, 

RC1 and RC2. Figs. 11(a), 11(c) and 11(e) are labeled with “cluster” or/and “remote” 

to show the distribution of customers corresponding to its problem category. For 

example, in Fig. 11(e), there exist two types of customer distribution patterns, i.e., 

cluster and remote, since the RC category consists of both the R and C type 

problems. 
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(a) Category C1    (b) Category C2 

 

(c) Category R1    (d) Category R2 

 

(e) Category RC1    (f) Category RC2 

Figure 11 Customers’ distribution for the problem categories of C1, C2, R1, R2, 

RC1 and RC2 
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4.3 A Hybrid Multiobjective Evolutionary Algorithm 

The VRPTW can be best solved by means of multiobjective optimization, i.e., it 

involves optimizing routes for multiple vehicles to meet all constraints and to 

minimize multiple conflicting cost functions concurrently, such as the traveling 

distance and the number of vehicles. This section presents a hybrid multiobjective 

evolutionary algorithm specifically designed for the VRPTW. Section 4.3.1 gives a 

brief description of multiobjective evolutionary optimization and its applications in a 

number of domain-specific combinatorial optimization problems. The program 

flowchart of the HMOEA is illustrated in Section 4.3.2 to provide an overview of 

the algorithm. Sections 4.3.3-4.3.6 present the various features of HMOEA designed 

and incorporated to solve the multiobjective VRPTW optimization problem, 

including the variable-length chromosome representation in Section 4.3.3, 

specialized genetic operators in Section 4.3.4, and Pareto fitness ranking in Section 

4.3.5. Following the concept of hybridizing local optimizers with multiobjective 

evolutionary algorithms as proposed by Tan et al., (2001c), Section 4.3.6 describes 

the various heuristics that are incorporated in HMOEA to improve its local search 

exploitation capability for VRPTW. 

 

4.3.1 Multiobjective Evolutionary Optimization and Applications 

Evolutionary algorithms (Bäck, 1996; Michalewicz et al., 1999) are global search 

optimization techniques based upon the mechanics of natural selection and 

reproduction, which have been found to be very effective in solving complex 

multiobjective optimization problems where conventional optimization tools fail to 
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work well (Bagchi, 1999; Deb, 2001a; Fonseca and Fleming, 1993). Without the 

need of linearly combining multiple attributes into a composite scalar objective 

function, evolutionary algorithms incorporate the concept of Pareto's optimality to 

evolve a family of solutions at multiple points along the trade-off surface. Fig. 12 

again shows a general Pareto dominance diagram with two solution points. Let f1 

and f2 be two objectives in the VRPTW, a routing solution is Pareto-optimal if, in 

shifting from point A to another point B in the set, any improvement in one of the 

objective functions from its current value causes at least one of the other objective 

functions to deteriorate from its current value. Several surveys are available for more 

information of multiobjective evolutionary algorithms, e.g., Coello Coello (1999), 

Coello Coello et al., (2002), Fonseca (1995), Van Veldhuizen and Lamont (2000), 

and Zitzler and Thiele (1999). 

 

 

 

 

 

 

 

 

 

 

Figure 12  A Pareto dominance diagram with three solution points 

 

Although multiobjective evolutionary algorithms have been applied to solve a 

number of domain-specific combinatorial optimization problems, such as 

flowshop/jobshop scheduling, nurse scheduling and timetabling, these algorithms 
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are designed with specific representation or genetic operators that could only be 

used in particular application domains, and cannot be directly applied to solve the 

VRPTW addressed in this research. For example, Murata et al. (1996) presented two 

hybrid genetic algorithms (GAs) to solve a flowshop scheduling problem that is 

characterized by unidirectional flow of work with a variety of jobs being process 

sequentially in a one-pass manner. Jaszkiewicz (2001) proposed the algorithm of 

Pareto simulated annealing (PSA) to solve a multiobjective nurse scheduling 

problem. Chen et al. (1996) provided a GA-based approach to tackle continuous 

flowshop problem in which the intermediate storage is required for partially finished 

jobs. Dorndorf and Pesch (1995) proposed two different implementations of GA 

using priority-rule-based-representation and machine-based representation to solve a 

jobshop scheduling problem (JSP). The JSP concerns the processing on several 

machines with mutable sequence of operations, i.e., the flow of work may not be 

unidirectional as encountered in the flowshop problem. Ben et al. (1998) later 

devised a specific representation with two partitions in a chromosome to deal with 

the priority of events (in permutation) and to encode the list of possible time slots for 

events respectively. Jozefowiez et al. (2002) solved a multiobjective capacitated 

vehicle routing problem using a parallel genetic algorithm with hybrid Tabu search 

to increase the performance of the algorithm. Paquete and Fonseca, (2001) proposed 

an algorithm with modified mutation operator (and without recombination) to solve 

a multiobjective examination timetabling problem. It should be noted that although 

the methods described above shared a common objective of finding the optimal 

sequences in combinatorial problems, they are unique with different mathematical 

models, representations, genetic operators, and performance evaluation functions in 
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their respective problem domains, which are different from that of the VRPTW 

problem.  

 

4.3.2 Program Flowchart of HMOEA 

Unlike many conventional optimization problems, the VRPTW does not have a clear 

neighborhood structure, i.e., it is difficult to trace or predict good solutions for 

VRPTW since feasible solutions may not be located at the neighborhood of any 

candidate solutions in the search space. The same observation can be found in many 

combinatorial optimization problems. To design an evolutionary algorithm that is 

capable of solving such a combinatorial and ordered-based multiobjective 

optimization problem, a few features such as variable-length chromosome 

representation, specialized genetic operators, Pareto fitness ranking, and efficient 

local search heuristics are incorporated in the HMOEA. The program flowchart of 

HMOEA is shown in Fig. 13. The simulation begins by reading in customers’ data 

and constructing a list of customers’ information. The pre-processing process builds 

a database for customers’ information, including all relevant coordinates (position), 

customers’ load, time windows, service times required and etc. An initial population 

is then built such that each individual must at least be a feasible candidate solution, 

i.e., every individual and route in the initial population must be feasible. The 

initialization process is random and starts by inserting customers one by one into an 

empty route in a random order. Any customer that violates any constraint is deleted 

from current route. The route is then accepted as part of the solution. A new empty 

route is added to serve the deleted customer and the other remaining customers. This 
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process continues until all customers are routed and a feasible initial population is 

built as depicted in Fig. 14. 
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Figure 13 The program flowchart of HMOEA 

 

 

Figure 14 The procedure of building an initial population of HMOEA 
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After the initial population is formed, all individuals will be evaluated based 

on the objective functions as given in equation (4) and ranked according to their 

respective Pareto’s dominance in the population. After the ranking process, 

tournament selection scheme (Tan et al., 2001c) with a tournament size of 2 is 

performed, where all individuals in the population are randomly grouped into pairs 

and those individuals with a lower rank will be selected for reproduction. The 

procedure is performed twice to preserve the original population size. A simple 

elitism mechanism (Tan et al., 2001c) is employed in the HMOEA for faster 

convergence and better routing solutions. The elitism strategy keeps a small number 

of good individuals (0.5% of the population size) and replaces the worst individuals 

in the next generation, without going through the usual genetic operations. The 

specialized genetic operators in HMOEA consist of route-exchange crossover and 

multimode mutation. To further improve the internal routings of individuals, 

heuristic searches are incorporated in the HMOEA at every 50 generations (after 

considering the trade-off between optimization performance and simulation time) for 

better local exploitation in the evolutionary search. It should be noted that the 

feasibility of all new individuals reproduced after the process of specialized genetic 

operations and local search heuristics is retained, which avoids the need of any 

repairing mechanisms. The evolution process repeats until the stopping criterion is 

met or no significant performance improvement is observed over the last 10 

generations. 
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4.3.3 Variable-Length Chromosome Representation 

The chromosomes in evolutionary algorithms, such as genetic algorithms, are often 

represented as a fixed-structure bit string, for which the bit positions are assumed to 

be independent and context insensitive. Such a representation is not suitable for 

VRPTW, which is an order-oriented NP-hard optimization problem where 

sequences among customers are essential. In HMOEA, a variable-length 

chromosome representation is applied such that each chromosome encodes a 

complete solution including the number of routes/vehicles and the customers served 

by these vehicles. Depending on how the customers are routed and distributed, every 

chromosome can have different number of routes for the same data set. As shown in 

Fig. 15, a chromosome may consist of several routes and each route or gene is not a 

constant but a sequence of customers to be served. Such a variable-length 

representation is efficient and allows the number of vehicles to be manipulated and 

minimized directly for multiobjective optimization in VRPTW. It should be noted 

that most existing routing approaches only consider a single objective/cost of 

traveling distance, since the number of vehicles is often incontrollable in these 

representations. 
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Figure 15 The data structure of the chromosome representation in HMOEA 

 

4.3.4 Specialized Genetic Operators 

Since standard genetic operators may generate individuals with infeasible routing 

solutions for VRPTW, the specialized genetic operators of route-exchange crossover 

and multimode mutation are incorporated in the HMOEA, which are described in the 

following sub-sections. 

 

4.3.4.1 Route-exchange Crossover 

Classical one-point crossover may produce infeasible route sequence because of the 

duplication and omission of vertices after reproduction. Goldberg and Lingle (1985) 

proposed a PMX crossover operator suitable for sequencing optimization problem. 

The operator cuts out a section of the chromosome and puts it in the offspring. It 

maps the remaining sites to the same absolute position or the corresponding bit in 
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the mate’s absolute position to avoid any redundancy. Whitley et al. (1989) 

proposed a genetic edge recombination operator to solve a TSP problem. For each 

node, an edge-list containing all nodes is created. The crossover parents shared the 

edge-lists where several manipulations on edge-list are repeated until all edge-lists 

are processed. Ishibashi et al. (2000) proposed a two-point ordered crossover that 

randomly selects two crossing points from parents and decides which segment 

should be inherited to the offspring. 

 

This research proposes a simple crossover operator for HMOEA that allows 

the good sequence of routes or genes in a chromosome to be shared with other 

individuals in the population. The operation is designed such that infeasibility after 

the change can be eradicated easily. The good routes in VRPTW are those with 

customers/nodes arranged in sequence where the cost of routing (distance) is small 

and the time window fits perfectly one after another. In a crossover operation, the 

chromosomes would share their best route to each other as shown in Fig. 16. The 

best route is chosen according to the criteria of averaged cost over nodes, which can 

be computed easily based on the variable-length chromosome representation in 

HMOEA. To ensure the feasibility of chromosomes after the crossover, each 

customer can only appear once in a chromosome, i.e., any customer in a 

chromosome will be deleted during the insertion of new routes if the customer is 

also found in the newly inserted route. The crossover operation will not cause any 

violation in time windows or capacity constraints. Deleting a customer from a route 

will only incur some waiting time before the next customer is serviced, and thus will 

not cause any conflicts for the time windows. Meanwhile, the total load in a route 
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will only be decreased when a customer is deleted from the route, and thus will not 

violate any capacity constraints. Therefore all chromosomes will remain feasible 

routing solutions after the crossover in HMOEA. 

 

 

 

R1 
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Figure 16 The route-exchange crossover in HMOEA 

 

4.3.4.2 Multimode Mutation 

Gendreau et al. (1999) proposed a RAR (remove and reinsert) mutation operator, 

which extracts a node and inserts it into a random point of the routing sequence in 

order to retain the feasibility of solutions. Ishibashi et al. (2000) extends the 

approach to a shift mutation operator that extracts a segment or a number of nodes 

(instead of a node) and inserts it into a new random point for generating the 

offspring. During the crossover by HMOEA, routes’ sequence is exchanged in a 

whole chunk and no direct manipulation is made to the internal ordering of the 

nodes for the VRPTW. The sequence in a route is modified only when any 

redundant nodes in the chromosome are deleted. In this research, a multimode 

mutation operator is proposed in the HMOEA, which serves to complement the 

crossover by optimizing the local route information of a chromosome. As shown in 

Fig. 17, there are three parameters related to the multimode mutation, i.e., mutation 
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rate (PM), elastic rate (PE) and squeeze rate (PS). In HMOEA, random numbers will 

be generated and compared to these parameter values in order to determine if the 

mutation operations (for each mutation type) should be performed. 

 

The mutation rate is considerably small since it could be destructive to the 

chromosome structure and information of routes. In order to trigger more moves 

with better routing solutions, a few operations including Partial_Swap (Bagchi, 

1999), Split_Route and Merge_Routes (Pinaki and Elizabeth, 1999) are 

implemented. In this case, only one operation is chosen if mutation happens. The 

elastic rate determines the operation of Partial_Swap, which picks two routes in a 

chromosome and swaps the two routes at a random point that has a value smaller or 

equal to the shortest size of the two chosen routes. The swapping must be feasible or 

else the original routes will be restored. The squeeze rate determines the operation of 

splitting or merging a route. The Split_Route operation breaks a route at a random 

point and generates two new feasible routes. The operation has an always-true 

condition, unless the number of vehicles exceeds the maximum vehicles allowed. A 

number of constraints should be satisfied in the operation of Merge_Routes, e.g., it 

should avoid any violation against the hard constraints, such as time windows and 

vehicle capacity. During the Merge_Routes operation, the two routes with the 

smallest number of customers are chosen, and these routes must have the capacity to 

accommodate additional customers. Let the two selected routes be route A and route 

B, the operation first inserts all customers, one by one, from route B into route A. If 

there is any violation against the capacity or time window constraints in route A, the 
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remaining nodes will be kept at the route B. If all the customers in route B are 

shifted to route A, then the route B will be deleted. 

 

PM - Mutation rate

PE - Elastic  rate

PS - Squeeze rate

Merge_Routes

Partial_swap

No mutation

Split_Route

 

Figure 17 The multimode mutation in HMOEA 

 

4.3.5 Pareto Fitness Ranking 

The VRPTW is a multiobjective optimization problem where a number of objectives 

such as the number of vehicles (NV) and the cost of routing (CR) as given in eqn. 4 

need to be minimized concurrently, subject to some constraints like time window 

and vehicle capacity. Fig. 18 illustrates the concept of multiobjective optimization in 

VRPTW, for which the small boxes represent the solutions resulted from an 

optimization. Point ‘d’ is the minimum solution for both the objectives of NV and 

CR, which is sometimes infeasible or cannot be obtained. Point ‘b’ is a 

compromised solution between the cost of routing (CR) and the number of vehicles 

(NV). If a single-objective routing method is employed, its effort to push the solution 

towards point ‘b’ may lead to the solution of point ‘a’ (if only the criterion of CR is 
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considered) or the solution of point ‘c’ (if only the criterion of NV is considered). 

Instead of giving only a particular solution, the HMOEA for multiobjective 

optimization in VRPTW aims to discover the set of non-dominated solutions 

concurrently, i.e., points ‘a’, ‘b’ and ‘c’ together, for which the designer could select 

an optimal solution depending on the current situation, as desired. 

 

 

Figure 18 Trade-off graph for the cost of routing and the number of vehicles 

 

The Pareto fitness ranking scheme (Fonseca, 1995; Tan et al., 2001c; 

Fonseca and Fleming, 1998) for evolutionary multiobjective optimization is adopted 

here to assign the relative strength of individuals in the population. The ranking 

approach assigns the same smallest rank for all non-dominated individuals, while the 

dominated individuals are inversely ranked according to how many individuals in 

the population dominating them based on the criteria below: 

 

• A smaller number of vehicles but an equal cost of routing 

ab c d 
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• A smaller routing cost but an equal number of vehicles 

• A smaller routing cost and a smaller number of vehicles 

 

Therefore the rank of an individual p in a population is given by (1+q), 

where q is the number of individuals that dominate the individual p based on the 

above criteria. 

 

4.3.6 Local Search Exploitation 

As stated by Tan et al., (2001c), the role of local search is vital in multiobjective 

evolutionary optimization in order to encourage better convergence and to discover 

any missing trade-off regions. The local search approach can contribute to the 

intensification of the optimization results, which is usually regarded as a 

complement to evolutionary operators that mainly focus on global exploration. 

Jaszkiewicz (1998) proposed a multiobjective metaheuristic based on the approach 

of local search to generate a set of solutions approximate to the whole non-

dominated set of a traveling salesman problem. For the problem of VRPTW as 

addressed in this research, the local search exploitation is particularly useful for 

solving the problem of R category, where the customers are far away from each 

other and the swapping of 2 nodes in a route implemented by the local optimizers 

could improve the cost of routing significantly. Three famous local heuristics are 

incorporated in the HMOEA to search for better routing solutions in the VRPTW, 

which include the Intra_Route, Lambda_Interchange (Osman and Christofides, 

1989), and Shortest_pf (Lin, 1965). Descriptions of these heuristics are given in 

Table 5. There is no preference made among the local heuristics, and one of them 
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will be randomly executed at the end of every 50 generations for all individuals in a 

population to search for better local routing solutions. 

 

Table 5 The three local heuristics incorporated in HMOEA 

Local heuristic Description 

Intra_Route 

This heuristic picks two routes randomly and swaps two 

nodes from each route. The nodes are chosen based on 

the numbers generated randomly. After the swapping is 

done, feasibility is checked for the newly generated 

routes. If the two new routes are acceptable, they will be 

updated as part of the solutions; otherwise the original 

routes will be restored. 

Lambda_Interchange 

This heuristic is cost-oriented where a number of nodes 

will be moved from one route into another route. Assume 

two routes A and B are chosen; the heuristic starts by 

scanning through nodes in route A and moves the feasible 

node into route B. The procedure repeats until a pre-

defined number of nodes are shifted or the scanning ends 

at the last node of route A. 

Shortest_pf 

This heuristic is modified from the ‘shortest path first’ 

method. It attempts to rearrange the order of nodes in a 

particular route such that the node with the shortest 

distance is given priority. For example, given a route A 

that contains 5 customers, the first node is chosen based 

on its distance from the depot and the second node is 

chosen based on its distance from the first customer 

node. The process repeats until all nodes in the original 

route are re-routed. The original route will be restored if 

the new route obtained is infeasible. 
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4.4 Simulation Results and Comparisons 

Section 4.4.1 presents the system specification of the HMOEA and the detail setup 

of the experiments. The advantages of HMOEA for multiobjective optimization in 

VRPTW, such as lower routing cost, wider scattering area and better convergence 

trace as compared with conventional single-objective approaches are described in 

Section 4.4.2. Section 4.4.3 includes some performance comparisons for the features 

incorporated in HMOEA such as the proposed genetic operators and the local search 

heuristics. Section 4.4.4 presents the extensive simulation results of HMOEA based 

upon the famous Solomon’s 56 data sets where statistical significance of the results 

was studied as well. The performance of the HMOEA is compared with the best-

known VRPTW results published in literature. 

 

4.4.1 System Specification and Experiment Setup 

The HMOEA was programmed in C++ based on a Pentium III 933 MHz processor 

with 256 MB RAM under the Microsoft Windows 2000 operating system. The 

vehicle, customer, route sequence and set of solutions are modeled as classes of 

objects. The class of node is the fundamental information unit concerning a 

customer. The class of route is a vector of nodes, which describes a continuous 

sequence of customers by a particular vehicle. The class of chromosome consists of 

a number of routes that carries the solution of the routing problem. Constraints and 

objectives are modeled as behaviors in the classes, e.g., a predefined number limits 

the maximum capacity of a vehicle which is included as one of the behaviors in the 
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route. In all simulations, the following parameter settings were chosen after some 

preliminary observations: 

 

Crossover rate  = 0.7 

Mutation rate  = 0.1 

Elastic rate = 0.5 

Squeeze rate = 0.7 

Elitism rate  = 0.5% of the population size 

Population size = 1000 

Generation size = 1500 or no improvement over the last 10 generations 

 

4.4.2 Multiobjective Optimization Performance 

This section presents the routing performances of HMOEA, particularly on its 

multiobjective optimization that offer the advantages of improved routing solutions, 

wider scattering area and better convergence trace over conventional single-

objective routing approaches. 

 

In vehicle routing problems, the logistic manager is often not only interested 

in getting the minimum routing cost, but also the smallest number of vehicles 

required to service the plan. Ironically, in many literatures especially the classical 

models are often formulated and solved with respect to a particular cost or by 

linearly combining the multiple objectives into a scalar objective via a 

predetermined aggregating function to reflect the search for a particular solution. 

The drawback of such an objective reduction approach is that the weights are 
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difficult to determine precisely, particularly when there is often insufficient 

information or knowledge concerning the large real-world vehicle routing problem. 

Clearly, these issues could be easily addressed via the proposed HMOEA that 

optimizes both objectives concurrently and effectively without the need of any 

calibration of weighting coefficients. 

 

In the VRPTW model as formulated in Section 4.2, there are two objectives 

including the number of vehicles and the total traveling cost need to be optimized 

concurrently. Although both the objectives are quantitatively measurable, the 

relationship between these two values in a routing problem is unknown until the 

problem has been solved. These two objectives may be positively correlated with 

each other, or they may be conflicting to each other. For example, fewer vehicles 

employed in service do not necessarily increase the routing cost. On the other hand, 

higher routing cost may be incurred if more vehicles are involved. From the 

computational results of the Solomon’s 56 data sets, an analysis is carried out to 

count the number of problem instances with conflicting objectives as well as the 

number of instances having positively correlating objectives. As shown in Fig. 19, 

although all instances in the categories of C1 and C2 are having positively correlating 

objectives (the routing cost of a solution is increased as the number of vehicles is 

increased), there are many instances in R1, R2, RC1 and RC2 categories that are 

having conflicting objectives (the routing cost of a solution is reduced as the number 

of vehicles is increased). Obviously, such a relationship (conflicting or positively 

correlating) between the two objectives in a routing problem could be easily 
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discovered using the proposed HMOEA, but is hard to be found if conventional 

single-objective vehicle routing approaches are used. 
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Figure 19 Number of instances with conflicting and positively correlating 

objectives 

 

To illustrate the performance of HMOEA, three types of simulations with 

similar settings but different set of optimization criteria (for evolutionary selection 

operation) in VRPTW have been performed, i.e., each type of simulation concerns 

the optimization criterion of routing cost (CR), vehicle numbers (NV), and multiple 

objectives (MO) including CR and NV, respectively. Fig. 20 shows the comparison 

results for the evolutionary optimization based upon the criterion of CR, NV, and 

MO, respectively. The comparison was performed using the multiplicative 

aggregation method (Van Veldhuizen, 1998) of average cost and average number of 

routes for the different categories of data sets. The results of C1 category is omitted 

in the figure since no significant performance difference is observed for this data set. 
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As can be seen, the MO produces the best performance with the smallest value of 

CR×NV for all the categories. 
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Figure 20 Performance comparisons for different optimization criteria of CR, 

NV and MO 

 

In general, multiobjective optimization tends to evolve a family of points that 

are widely distributed or scattering in the objective domain such that a broader 

coverage of solutions is possible. Fig. 21 illustrates the distribution of individuals in 

the objective domain (CR vs. NV) for one randomly selected instance in each of the 

five categories of data sets. In the figure, each individual in a population is plotted as 

a small box based on its performance of CR and NV. A portion appears darker than 

others when its solution points are congested in the graph. In contrast, a portion 

looks lighter if its solution points are fairly distributed in the objective domain. As 

can be seen, all graphs in Fig. 21 using the optimization criteria of MO appear to be 

fairly distributed over a large area in the objective domain. This can also be 
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illustrated from the measure of scattering points by dividing the entire interested 

region in the objective domain into grids. If any individual exists in a grid, one 

scattering point is counted regardless of the number of individuals in that particular 

grid. Table 6 shows the percentage of area covered by scattering points. As shown in 

the table, MO outperforms the CR and NV by scoring the highest percentage for all 

the 5 categories of data sets. For example, in category RC1-07, MO scored 40.00% 

area while CR and NV scored only 24.00% and 22.67%, respectively. 
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Figure 21 Comparison of population distribution for CR, NV and MO 
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Table 6 Comparison of scattering points for CR, NV and MO 

Objective space covered by scattering points (%) 
Category 

CR NV MO 

C2-04 17.00 16.00 23.00 

R1-07 19.05 15.71 25.71 

R2-07 11.11 8.89 12.22 

RC1-07 24.00 22.67 40.00 

RC2-07 14.76 20.00 23.33 

 

4.4.3 Specialized operators and Hybrid Local Search Performance 

In this section, the performance in HMOEA is compared with two variants of 

evolutionary algorithms, i.e., MOEA with standard genetic operators as well as 

MOEA without hybridization of local search. The comparison allows the 

effectiveness of the various features in HMOEA, such as the specialized genetic 

operators and local search heuristic, to be examined. 

 

A. Specialized genetic operators  

In this experiment, two genetic operators commonly found in the literatures are 

devised to solve the VRPTW. The multiobjective evolutionary algorithm with 

standard generic operators (STD_MOEA) devised the commonly-known cycle 

crossover and RAR mutation. The cycle crossover is a general crossover operator 

that preserves the order of sequence in the parent partially and was applied to solve 

the traveling salesman problems by Oliver et al. (1987). The remove and reinsert 

(RAR) mutation operator removes a task from the sequence and reinsert it to a 

random position (Gendreau et al., 1999). The experiment setups and parameters for 
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STD_MOEA are similar to the settings for HMOEA (except that Elastic rate and 

Squeeze rate are not required in the RAR mutation operator). The specialized 

operators in HMOEA work efficiently for the purpose of multiobjective 

optimization especially for this vehicle routing problem as the representation is 

unique.  

 

Fig. 22 shows the average values for the two objectives in VRPTW for all 

the 56 results. As shown in the figure, the STD_MOEA (the lines with larger 

markers) tend to incur higher cost and higher number of vehicles. The specialized 

operators in HMOEA have performed better in overall with lower objective values. 

The HMOEA’s operators exploit some important information from the problem 

domain. The preservation of feasible routes to next generation is easier when using 

the specialized operators as to compare the common genetic operators that do not 

exploit the knowledge from problem representation. Since the search space of the 

multiobjective VRPTW optimization is complex, it is expected that the problem-

specific HMOEA should provide an efficient and high-performance routing solution 

for such a problem, as illustrated by the simulation results.  
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Figure 22 Comparison of performance for different genetic operators 

 

B. Hybrid Local Search Performance 

The HMOEA incorporates the local search heuristics in order to exploit local routing 

solutions in parallel with global evolutionary optimization. To demonstrate the 

effectiveness of local exploitation in HMOEA, the convergence trace of the best and 

average routing costs in a population for six randomly selected instances (one from 

each category) with and without the local search are plotted in Fig. 23. In the figure, 

the NV indicates the number of vehicles needed for the convergence with the best 

routing cost in the instances. As shown in Fig. 23, the HMOEA hybrid with local 

search performs better by having lower routing costs (CR) and smaller number of 

vehicles (NV) for almost all instances than the one without any local exploitation. It 

has also been observed that other instances in the Solomon’s 56 data sets exhibit 

similar convergence performances as those shown in Fig. 23, which confirm the 

importance of incorporating local search exploitation in HMOEA. 
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(a) C1-09     (b) C2-01 

 
(c) R1-07     (d) R2-07 

 
(e) RC1-07     (f) RC2-07 

 

Figure 23 Comparison of simulations with and without local search exploitation 

in HMOEA 
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4.4.4 Performance Comparisons 

In this section, the results obtained from HMOEA are compared with the best-

known routing solutions obtained from different heuristics published in the literature 

according to the authors’ best knowledge. Table 7 shows the comparison results 

between HMOEA and the best-known results in literature, for which instances with 

significant results or improvements are bolded. The solutions were selected from the 

results of optimization using HMOEA based upon the routing cost (CR). If the CR is 

similar, then the number of routes is considered. This is because the routing cost has 

been the benchmark used to compare the performances in traditional single objective 

optimization approaches. However, it is important to reiterate that no preference has 

been defined between the two objectives when solving the problem from 

multiobjective optimization approach. It can be seen that HMOEA produces 

excellent routing results with 20 data sets (out of the Solomon’s 56 data sets) 

achieving a lower routing cost as compared to the best-known solutions obtained 

from various heuristics over the years. Besides, HMOEA also gives competitive 

routing solutions for 18 instances with similar or smaller number of vehicles and 

slightly higher routing cost (1%-2% in average) as compared to the best-known 

VRPTW solutions in literature. 

 

Table 7 Comparison results between HMOEA and the best-known routing 

solutions 

Best-Known 

Result 

HMOEA Data Set 

NV CR 

Source* 

NV CR 

C1-01 10 827.3 Desrochers et al., (1992) 10 828.93 

C1-02 10 827.3 Desrochers et al., (1992) 10 828.19 
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C1-03 10 826.3 Taveres et al., (2003) 10 828.06 

C1-04 10 822.9 Taveres et al., (2003) 10 825.54 

C1-05 10 827.3 Taveres et al.,(2003) 10 828.90 

C1-06 10 827.3 Desrochers et al., (1992) 10 828.17 

C1-07 10 827.3 Taveres et al., (2003) 10 829.34 

C1-08 10 827.3 Taveres et al., (2003) 10 832.28 

C1-09 10 827.3 Taveres et al., (2003) 10 829.22 

C2-01 3 589.1 Cook and Rich, (1999)   3 591.58 

C2-02 3 589.1 Cook and Rich, (1999) 3 591.56 

C2-03 3 591.17 Li and Lim, (2002) 3 593.25 

C2-04 3 590.6 Potvin and Bengio, (1996) 3 595.55 

C2-05 3 588.88 De Backer et al., (2002) 3 588.16 

C2-06 3 588.49 Lau et al., (2001) 3 588.49 

C2-07 3 588.29 Rochat and Tailard, (1995) 3 588.88 

C2-08 3 588.32 Rochat and Tailard, (1995) 3 588.03 

R1-01 18 1607.7 Desrochers et al., (1992) 18 1613.59 

R1-02 17 1434 Desrochers et al., (1992) 18 1454.68 

R1-03 13 1175.67 Lau et al., (2001) 14 1235.68 

R1-04 10 982.01 Rochat and Tailard, (1995) 10 974.24 

R1-05 15 1346.12 Kallehauge et al., (2001) 15 1375.23 

R1-06 13 1234.6 Cook and Rich, (1999) 13 1260.20 

R1-07 11 1051.84 Kallehauge et al., (2001) 11 1085.75 

R1-08 9 960.88 Berger et al., (2001) 10 954.03 

R1-09 12 1013.2 Chiang and Russel, (1997) 12 1157.74 

R1-10 12 1068 Cook and Rich, (1999) 12 1104.56 

R1-11 12 1048.7 Cook and Rich, (1999) 12 1057.80 

R1-12 10 953.63 Rochat and Tailard, (1995) 10 974.73 

R2-01 4 1252.37 Homberger and Gehring, (1999) 5 1206.42 

R2-02 3 1158.98 Lau et al., (2003) 4 1091.21 

R2-03 3 939.50 Lim and Zhang, (2005) 4 935.04 

R2-04 2 825.52 Bent and Van, (2001) 3 789.72 

R2-05 3 994.42 Rousseau et al., (2002) 3 1094.65 

R2-06 3 833 Thangiah et al., (1994) 3 940.12 

R2-07 3 814.78 Rochat and Tailard, (1995) 3 852.62 

R2-08 2 731.23 Homberger and Gehring, (1999) 2 790.60 

R2-09 3 855 Thangiah et al., (1994) 3 974.88 

R2-10 3 954.12 Berger et al., (2001) 5 982.31 
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R2-11 2 892.71 Bent and Van, (2001) 4 811.59 

RC1-01 15 1619.8 Kohl et al., (1999) 16 1641.65 

RC1-02 13 1530.86 Cordone and Wolfler, (2001) 13 1470.26 

RC1-03 11 1261.67 Shaw, (1998) 11 1267.86 

RC1-04 10 1135.48 Cordeau et al., (2001) 10 1145.49 

RC1-05 13 1629.44 Lim and Zhang, (2005) 14 1589.91 

RC1-06 12 1395.4 Chiang and Russel, (1997) 13 1371.69 

RC1-07 11 1230.5 Taillard et al., (1997) 11 1222.16 

RC1-08 10 1139.8 Taillard et al., (1997) 11 1133.90 

RC2-01 4 1249 Thangiah et al., (1994) 6 1134.91 

RC2-02 4 1164.3 Taillard et al., (1997) 5 1130.53 

RC2-03 3 1049.62 Czech and Czarnas, (2002) 4 1026.61 

RC2-04 3 798.12 Alexandre and Teodor, (2005) 3 879.82 

RC2-05 4 1300.25 Zbigniew and Piotr, (2001) 5 1295.46 

RC2-06 3 1152.03 Zbigniew and Piotr, (2001) 4 1139.55 

RC2-07 3 1061.14 Zbigniew and Piotr, (2001) 4 1040.67 

RC2-08 3 829.69 Rousseau et al., (2002) 3 898.49 

* Refer to the references for complete corresponding source entries 

 

Table 8 compares the routing performance between nine popular heuristics 

and HMOEA based on the average number of vehicles and average cost of routing 

in each category. In each grid, there are two numbers representing the average 

vehicle numbers (upper) and average cost of routing (lower), respectively. For 

example, in category C1, the number pair (10.00, 838.00) means that over the 9 

instances in C1, the average vehicle numbers deployed is 10 and the average 

traveling distance is 838.00. The last row gives the total accumulated sum indicating 

the total number of vehicles and the total traveling distance for all the 56 instances. 

As can be seen, HMOEA leads to new best average results with the smallest CR and 

NV for category C1. It also produces the smallest average routing cost for the 

categories of R1, RC1 and RC2. The average number of vehicles for category R1, is 
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2.7% higher as compared to the heuristics giving the second best average routing 

costs. Although the average routing cost of HMOEA is not the smallest for 

categories C2 and R2, the HMOEA only requires an average of 3.51 vehicles to serve 

all customers in the category of R2, which is much smaller than the 5 vehicles that 

are required by the heuristic giving the best average routing cost in R2. The results 

show that HMOEA performs equally well for both the objectives of CR and NV, 

which are optimized concurrently in the evolution. As shown in the last row of Table 

8, HMOEA also provides the best total accumulated routing cost for the Solomon’s 

56 data sets. 

 

Table 8 Performance comparison between different heuristics and HMOEA 

Problem 

Class 

Potvin 

and 

Bengio, 

(1996) 

Taillard 

et al., 

(1997) 

Chiang 

and 

Russell, 

(1997) 

Schulze 

and 

Fahle, 

(1999) 

Bräysy 

and 

Gendreu, 

(2001b) 

Ho et al.,  

(2001) 

Tan  

et al., 

2001d 

Tan  

et al., 

2001e 

Lau  

et al., 

2003 

HMOEA 

C1 
10.00 

838.00 

10.00 

828.45 

10.00 

828.38 

10.00 

828.94 

10.00 

828.38 

10.00 

833.32 

10.00 

851.96 

10.00 

841.96 

10.00 

832.13 

10.00 

827.00 

C2 
3.00 

589.90 

3.00 

590.30 

3.00 

591.42 

3.00 

589.93 

3.00 

589.86 

3.00 

593.00 

3.20 

620.12 

3.00 

611.2 

3.00 

589.86 

3.00 

590.00 

R1 
12.60 

1296.83 

12.25 

1216.70 

12.17 

1204.19 

12.50 

1268.42 

11.92 

1222.12 

12.58 

1203.32 

13.20 

1220.0 

12.91 

1205.0 

12.16 

1211.55 

12.92 

1187.0 

R2 
3.00 

1117.70 

3.00 

995.38 

2.73 

986.32 

3.09 

1055.90 

2.73 

975.12 

3.18 

951.17 

4.40 

985.69 

5.00 

929.6 

3.00 

1001.12 

3.51 

951.0 

RC1 
12.10 

1446.20 

11.88 

1367.51 

11.88 

1397.44 

12.25 

1396.07 

11.5 

1389.58 

12.75 

1382.06 

13.30 

1366.62 

12.60 

1392.3 

12.25 

1418.77 

12.74 

1355.0 

RC2 
3.40 

1360.60 

3.38 

1165.62 

3.25 

1229.54 

3.38 

1308.31 

3.25 

1128.38 

3.75 

1132.79 

5.20 

1108.50 

5.80 

1080.10 

3.37 

1170.93 

4.25 

1067.00 

All 
422 

62572 

416 

57993 

411 

58502 

423 

60651 

405 

57710 

432 

57265 

470 

57903 

471 

56931 

418 

58476 

441 

56262 

 

 

Fig. 24 shows the average simulation time (in seconds) for each category of 

data sets. The difference in computation time among the categories can be attributed 

to the flexibility of routing problem scenarios. From the statistics in Fig. 24, it is 
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observed that all instances with longer time windows (i.e., category C2, R2 and RC2) 

require a larger computation time. The reason is that these instances allow a more 

flexible arrangement in the routing plan since their time windows constraints are 

larger than other categories. Besides, a vehicle with longer route also takes up more 

computational time during the cost and feasibility evaluations process. Although 

HMOEA is capable of producing good routing solutions, it may require more 

computational time as compared with conventional approaches in order to perform 

the search in parallel as well as to obtain the globally optimized routing solutions 

(Tan et al., 2002). Similar to most existing vehicle routing heuristics, the 

computational time should not be viewed as a major obstacle in solving the 

VRPTW, since HMOEA is developed for off-line simulation where the training time 

(computation time) is less important than the routing solutions. To reduce the 

computational time significantly, HMOEA is currently being integrated into the 

‘Paladin-DEC’ distributed evolutionary computing framework (Tan et al., 2002), 

where multiple inter-communicating subpopulations are implemented to share and 

distribute the routing workload among multiple computers over the Internet. 
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Figure 24 The average simulation time for each category of data sets 

 

To study the consistency and reliability of the results obtained by HMOEA, 

10 different but repeated simulations with randomly generated initial populations 

have been performed for the Solomon’s 56 data sets. The simulation results are 

represented in box plot format (Chambers et al., 1983) to visualize the distribution 

of simulation data efficiently. It should be noted that all the routing costs have been 

normalized to their mean values for easy comparisons among different test cases. 

Each box plot represents the distribution of a sample population where a thick 

horizontal line within the box encodes the median, while the upper and lower ends 

of the box are the upper and lower quartiles. The dashed appendages illustrate the 

spread and shape of distribution, while the dots represent the outside values. As 

shown in Fig. 25, the results obtained from HMOEA for the 10 different but 

repeated simulation runs are rather consistent and all variances are found to be 

within 5%-20% from the mean values. It is observed that the category of type 1 (C1, 

R1, RC1) gives a smaller variance as compared to the category of type 2 (C2, R2, 
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RC2), since the number of customers per route (length of route) is shorter for the 

category of type 1, e.g., the possibility of variation in simulations is often larger for 

longer routes. Among all the categories, R2 gives the largest variance, since the 

customers’ locations are remotely located in this data set, i.e., a small difference in 

the routing sequence may result in significant changes to the solution. 
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(a) C1     (b) C2 
 

 

(c) R1     (d) R2 
 

 

(e) RC1     (f) RC2 

 

Figure 25 The variance in box plots for the Solomon’s 56 data sets 
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In addition, Table 9 lists the means and standard deviations for the various 

simulation results as a supplement to the box plots above. From the table, similar 

observation can be found where results for category of type 1 (C1, R1, RC1) have 

smaller standard deviation values as compared to others test cases. As all the test 

cases have various mean values, the last column was added to show the ratio (in 

percentage) between the standard deviation and the mean value so that difference 

between the test cases can be observed.  

 

Table 9 Reliability performance for the algorithm 

 

Test Case Mean Standard 

Deviation 

Coefficient of 

Variation (%) 

C1-01 834.356 10.362 1.242 

C1-02 840.366 17.039 2.028 

C1-03 832.309 9.114 1.095 

C1-04 834.700 6.684 0.801 

C1-05 844.140 18.553 2.198 

C1-06 832.130 3.883 0.467 

C1-07 840.911 12.645 1.504 

C1-08 843.773 22.262 2.638 

C1-09 832.210 9.547 1.147 

C2-01 633.007 33.174 5.241 

C2-02 624.699 24.894 3.985 

C2-03 648.178 37.830 5.836 

C2-04 647.011 39.922 6.170 

C2-05 626.582 40.127 6.404 

C2-06 629.355 60.486 9.611 

C2-07 615.566 32.900 5.345 
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C2-08 634.958 54.004 8.505 

R1-01 1674.750 52.578 3.139 

R1-02 1527.111 64.847 4.246 

R1-03 1239.951 61.951 4.996 

R1-04 1019.370 27.052 2.654 

R1-05 1414.421 42.145 2.980 

R1-06 1351.559 81.544 6.033 

R1-07 1100.593 16.203 1.472 

R1-08 1032.050 77.273 7.487 

R1-09 1218.848 49.281 4.043 

R1-10 1146.465 30.233 2.637 

R1-11 1139.025 80.838 7.097 

R1-12 1019.543 33.844 3.319 

R2-01 1268.992 56.082 4.419 

R2-02 1293.369 126.537 9.784 

R2-03 1102.993 119.548 10.838 

R2-04 878.510 78.007 8.880 

R2-05 1212.888 115.013 9.483 

R2-06 1013.004 79.507 7.849 

R2-07 942.896 93.956 9.965 

R2-08 986.284 99.927 10.132 

R2-09 1088.186 91.182 8.379 

R2-10 1087.685 85.863 7.894 

R2-11 879.473 46.375 5.273 

RC1-01 1667.535 16.778 1.006 

RC1-02 1496.692 28.038 1.873 

RC1-03 1336.273 30.617 2.291 

RC1-04 1177.408 19.424 1.650 

RC1-05 1590.388 18.74591 1.178 

RC1-06 1403.891 24.556 1.749 

RC1-07 1226.745 21.950 1.789 
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RC1-08 1150.906 15.166 1.318 

RC2-01 1337.207 83.479 6.243 

RC2-02 1169.479 44.876 3.837 

RC2-03 1085.006 50.537 4.658 

RC2-04 916.533 60.125 6.560 

RC2-05 1362.118 107.403 7.885 

RC2-06 1236.963 85.496 6.912 

RC2-07 1153.294 82.895 7.188 

RC2-08 978.440 98.500 10.067 

 

 

4.5 Conclusions 

Vehicle routing problem with time windows (VRPTW) is inherently a 

multiobjective optimization problem that involves the optimization of routes for 

multiple vehicles in order to satisfy a set of constraints and to minimize multiple 

objectives, such as traveling distance and number of vehicles. A hybrid 

multiobjective evolutionary algorithm (HMOEA) has been proposed in this research, 

which incorporates various heuristics for local exploitation in the evolutionary 

search and the concept of Pareto's optimality for solving multiobjective optimization 

in VRPTW. The proposed HMOEA has been featured with specialized genetic 

operators and variable-length chromosome representation to accommodate the 

sequence-oriented optimization in VRPTW. 

 

Unlike most conventional routing heuristics, this research is among the first 

to incorporate multiobjective optimization paradigm in solving the VRPTW. 

Without the need of aggregating multiple criteria and constraints of VRPTW into a 
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compromise function, the HMOEA optimizes all routing constraints and objectives 

concurrently, which improves the routing solutions in many aspects, such as lower 

routing cost, wider scattering area, and better convergence trace. Extensive 

simulations have been performed on the benchmark Solomon’s 56 VRPTW 100-

customer instances, which yielded 20 routing solutions better than or equivalent to 

the best solutions published in literature.  
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Chapter 5 Truck and Trailer Vehicle Scheduling Problem 

 

 

This research considers a transportation problem for moving empty or laden 

containers for a logistic company. Owing to the limited resource of its vehicles 

(trucks and trailers), the company often needs to subcontract certain job orders to 

outsourced companies. A model for this truck and trailer vehicle scheduling problem 

(TTVSP) is first constructed in the research. The solution to the TTVSP consists of 

finding a complete routing schedule for serving the jobs with minimum routing 

distance and number of trucks, subject to a number of constraints such as time 

windows and availability of trailers. To solve such a multiobjective and multi-modal 

combinatorial optimization problem, a hybrid multiobjective evolutionary algorithm 

(HMOEA) featured with specialized genetic operators, variable-length 

representation and local search heuristic is applied to find the Pareto optimal 

scheduling solutions for the TTVSP. Detailed analysis is performed to extract useful 

decision-making information from the multiobjective optimization results as well as 

to examine the correlations among different variables, such as the number of trucks 

and trailers, the trailer exchange points, and the utilization of trucks in the routing 

solutions. It has been shown that the HMOEA is effective in solving multiobjective 

combinatorial optimization problems, such as finding useful trade-off solutions for 

the TTVSP routing problem. 
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5.1 The Trucks and Trailers Vehicle Scheduling Problem 

Singapore ranks among the top international maritime centers of the world. Its 

sheltered and deep-water harbor lies strategically at the crossroads of major sea 

routes in South-east Asia. It is the focal point for some 400 shipping lines with links 

to more than 740 ports worldwide. The Republic's standing as an international 

maritime centre rests on its port, which is one of the busiest in the world in terms of 

container throughput. In 2002, the port handled a total of 16.94 million twenty-foot 

equivalent units (TEUs) (Maritime, 2002). In order to support the port activities in 

lieu with the extremely high throughput at the port, container related logistic 

services are very prosperous in Singapore. A general model for vehicle capacity 

planning system (VCPS) consisting of a number of job orders to be served by trucks 

and trailers daily was constructed for a logistic company that provides transportation 

services for container movements within the country (Lee et al., 2003). Due to the 

limited capacity of vehicles owned by the company, engineers in the company have 

to decide whether to assign the job orders of container movements to its internal 

fleet of vehicles or to outsource the jobs to other companies daily. The Tabu search 

meta-heuristic was applied to find a solution for the VCPS problem, where some 

new rules on how to assign jobs for outsourcing were derived and shown to be about 

8% better than existing rules adopted by the company (Lee et al., 2003). 

 

By analyzing different kinds of job orders received from the company, this 

research presents a transportation solution for trucks and trailers vehicle scheduling 

problem (TTVSP) containing multiple objectives and constraints, which is extended 

from the VCPS model with detail maneuver of trailers in a routing plan. In TTVSP, 
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the trailers are resources with certain limitations similar to real world scenarios and 

the allocation of trailers in different locations could affect the routing plans. The 

TTVSP is a difficult problem which involves many intricate factors such as time 

window constraints and availability of trailers. The number of trucks in a fleet 

regulates the maximum number of jobs that can be handled internally within a 

certain period of time and all jobs must be serviced within a given time window. 

Instead of handling jobs by the internal fleet of trucks, the jobs can also be 

considered for outsourcing, if necessary. The routing plans in TTVSP also needs to 

determine the number of trailer exchange points (TEPs) that are distributed in the 

region where different type of trailers can be found. Besides, there are a wide variety 

of job orders that may have diverse requirements for the types of the trailers, time 

window constraints as well as locations of the source and destination. 

 

The transportation solution to TTVSP contains useful decision-making 

information, such as the best fleet size to accommodate a variety of job orders and 

the trend for different number of trailers available at TEPs, which could be utilized 

by the management to visualize the complex correlations among different variables 

in the routing problem. Dynamic resource management is an essential component in 

a logistic company. Long term planning in resource management (such as the 

number of vehicles) is rather tedious especially when the business is in a dynamic 

environment. In order to maintain efficiency, minimizing the cost and investment 

and maximizing quality of service, long term resource planning and day-to-day 

operations are two crucial factors to ensure an organization’s success.  In this 

research, various test cases for the TTVSP model are generated with random 
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variables simulating the long-term operation of business activities. The management 

can thus formulate the planning for certain variables, such as the number of trucks 

(long term capital cost) so that the day-to-day operational cost could be kept at the 

minimum. 

 

5.1.1 Variants of Vehicle Routing Problems 

Vehicle routing problem (VRP) is a generic name referred to a class of 

combinatorial problem in which customers are to be served by a number of vehicles. 

Some famous models in literature for vehicle routing problems include Gendreau et 

al., (1999a), Laporte et al., (2002), Belenguer et al., (2000), Yang et al., (2000), 

Kenyon and Morton, (2003), Ichoua et al., (2003), Ghiani and Improta (2000), 

Swihart and Papastavrou (1999), Salhi and Sari (1997), Min et al., (1998) and Wu et 

al., (2002). Among these models, there are three types of vehicle routing problems 

closely related to the TTVSP model presented in this research, i.e., vehicle routing 

problem with time windows (VRPTW), vehicle scheduling problem (VSP), and 

truck and trailer routing problem (TTRP).  

 

The vehicle routing problem with time windows (VRPTW) diverts from the 

famous vehicle routing problem (VRP). In this problem, a set of vehicles with 

limited capacity is to be routed from a central depot to a set of geographically 

dispersed customers with known demands and predefined time window. The time 

window can be specified in terms of single-sided or double-sided window. In single-

sided time window, the pickup points usually specify the deadlines by which they 

must be serviced. In double-sided time window, however, both the earliest and the 
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latest service times are imposed by the nodes. A vehicle arriving earlier than the 

earliest service time of a node will incur waiting time. This penalizes the transport 

management in either the direct waiting cost or the increased number of vehicles, 

since a vehicle can only service fewer nodes if the waiting time is longer. Some 

recent publications of VRPTW can be found in Bräysy (2003), Breedam (2001), 

Caseau and Laburthe (1999), Dullaert (2000), Gezdur and Türkay (2002), Ioannou et 

al. (2001), Shaw (1998), Li and Lim (2002), Chavalitwongse et al. (2003), Bent and 

Van (2001) and Berger et al. (2001). Surveys about VRPTW can be found in 

Desrosier et al., (1995), Desrochers et al., (1992), Golden and Assad (1988), 

Solomon (1987), Kilby et al., (2000), Toth and Vigo (2002), Bräysy and Gendreau 

(2001a, 2001b) etc. In contrast to the TTVSP, the VRPTW neither have any 

limitation on resources of trailers nor the outsourcing of jobs to external companies. 

 

The vehicle scheduling problem (VSP) (Baita et al., 2000; Brandão and 

Mercer, 1997; Pretolani, 2000; Boland et al., 2000; Dror, 2000; Hertz and Mittaz, 

2001) assumed that the routing to different sites can be completed with multiple 

trips. Each trip consists of a pair of specified source and destination, each one 

defined by the starting and ending times. The objective is to minimize the number of 

vehicles and the cost function based upon deadheading trips (gas, driver etc) and 

idling time for the vehicle. The constraints for this model include the traveling 

distance and time for normal service and refueling as well as the restriction that 

certain tasks can only be handled by specified type of vehicles. In contrast to vehicle 

routing problem, one customer may be visited more than once or not at all, which is 

solely depending on the trips data. Although trips in VSP may be analogous to the 
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concept of a job in TTVSP, the VSP does not include the complexity of trailer type 

constraints. 

 

Chao (2002) presented the problem of TTRP (a variant of VRP), which 

considers the fleet size of trucks and trailers in the model. In order to provide service 

to different categories of customers, there are three types of routes in a solution: (1) 

route that a truck travels alone (2) route that a truck and trailer are required (3) route 

that trailer is only required at certain sub-tour. The objective is to minimize the total 

traveling distance and the cost incurred by the fleet. Unlike TTRP, the TTVSP 

requires the trucks to visit trailer exchange points for picking up the correct trailer 

types depending on the jobs to be serviced. Besides, jobs that are not routed by self-

fleets in TTVSP can be outsourced to external companies. 

 

5.1.2 Meta-heuristic Solutions to Vehicle Routing Problems 

Most vehicle routing problems are NP-hard and associated with real world 

transportation problems (Glaab, 2002; Baptista et al., 2002; Mourão and Almeida, 

2000; Dillmann et al., 1996; Fölsz et al., 1995; Karkazis and Boffey, 1995; 

Muyldermans et al., 2002; Doerner et al., 2002; Baita et al., 2000). Due to the 

inherent variations in real world environment, the solution to each vehicle routing 

problem is often unique and satisfies an exclusive set of constraints and objectives 

according to the problem scenario. Generally, vehicle routing problems have been 

attempted by different approaches ranging from exact algorithms (Applegate et al., 

2002; Bard et al., 2002; Mingozzi et al., 1999) to heuristics (Gerdeseen, 1996; Kohl 

et al., 1999; Beullens et al., 2003; Renaud and Boctor, 2002; Breedam, 2002; Toth 
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and Vigo, 1999; Liu and Shen, 1999; Beasley and Christofides, 1997). Categorized 

by Fisher (1995) as the third generation approach, a number of meta-heuristics such 

as Tabu search (Taillard et al., 1997; Kelly and Xu, 1999; Rego, 1998; Gendreau et 

al., 1999c; Tuzun and Burke, 1999; Amberg et al., 2000; Rego and Roucairol, 1995; 

Potvin et al., 1996; Cordeau et al., 2001; Cordone and Wolfler, 2001; Lee et al., 

2003), ant colony optimization (Gambardella et al., 1999; Reimann and Doerner, 

2002), simulated annealing (Breedam, 1995; Chiang and Russel, 1996) and genetic 

algorithms (Gehring and Homberger, 2001; Grefenstette et al., 1985; Homberger 

and Gehring, 1999; Malmborg, 1996; Poon and Carter, 1995; Tan et al., 2001a; 

2001b; Thangiah et al., 1994; Thangniah, 1995) have been applied to find good 

solutions for large-scale vehicle routing problems. A recent survey on various meta-

heuristic algorithms was presented by Ribeiro and Hansen (2002). 

 

The TTVSP problem addressed in this research is NP-hard, which involves 

the optimization of routes for multiple trucks in order to meet all given constraints 

and to minimize multiple objectives of routing distance and number of trucks 

concurrently. Some of the existing routing approaches that strive to minimize a 

single criterion of routing cost or number of trucks is not suitable for solving such a 

multi-modal and mutltiobjective combinatorial problem. The TTVSP should be best 

tackled by multiobjective optimization methods, which offer a family of Pareto-

optimal scheduling solutions containing both the minimized routing cost and number 

of trucks. In this research, a hybrid multiobjective evolutionary algorithm (HMOEA) 

that incorporates the heuristic search for local exploitation and the concept of 

Pareto’s optimality for finding the trade-off is applied to solve the problem of 
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TTVSP. The HMOEA optimizes all routing constraints and objectives concurrently, 

without the need of aggregating multiple criteria into a compromise function. Unlike 

conventional multiobjective evolutionary algorithms (MOEAs) that are designed 

with simple coding or genetic operators for parameterized optimization problems 

(Cvetkovic and Parmee, 2002; Knowles and Corne, 2000; Tan et al., 2001c), the 

HMOEA is featured with specialized genetic operators and variable-length 

chromosome representation to accommodate the sequence-oriented optimization 

problem in TTVSP. 

 

The research is organized as follows: Section 5.2 describes the scenario and 

modeling of the TTVSP with mathematical formulation. Section 5.3 gives a brief 

description of multiobjectve evolutionary optimization and its applications in a 

number of domain-specific combinatorial problems. The program flowchart of 

HMOEA and its various features including variable-length chromosome 

representation, specialized genetic operators, Pareto fitness ranking and local search 

heuristics are also described in Section 5.3. Section 5.4 presents the extensive 

simulation results and discussions for the TTVSP problem. Conclusions are drawn 

in Section 5.5. 

 

 

5.2 The Problem scenario 

The TTVSP model with detail maneuver of the trailers in a routing plan is extended 

from a real world VCPS system proposed by Lee et al., (2003). Both of the 

problems are variants of vehicle routing problem with time windows constraints 



 

146 

(VRPTW). The additional constraints and conditions apply in TTVSP indicate that 

the problem is fundamentally more difficult than a simple VRPTW, and thus it is 

essentially another NP hard problem. In solving the TTVSP, the movement of 

containers among customers, depots and the port are major transportation job orders 

considered. A container load is handled like a normal truckload but these loads use 

containers with a possible chassis instead of trailers only. From the equipment 

assignment point of view, a correct trailer type is essential for the routing. For an 

inbound job, a loaded container is taken from a vessel to a customer and returned 

empty to the depot. For an outbound job, however, an empty container is picked up 

from the depot and taken to the customer before returning loaded to the vessel. 

Every job order contains the location of source and destination as well as other 

customers’ information. Other specification such as load requirement and time 

windows are specified as hard constraints in the model. There are a total of 6 types 

of job orders which are varied according to the source and destination (port, 

warehouse, depot or trailer exchange), time windows (tight or loose), loaded trip (or 

empty) and type of trailers (20 or 40) as follows: 

 

• Import with trailer type 20 

• Import with trailer type 40 

• Export with trailer type 20 

• Export with trailer type 40 

• Empty container movement with trailer type 20 

• Empty container movement with trailer type 40 
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The logistic company owns a maximum of 40 trucks and a number of trailers 

that are larger than the number of trucks. A truck must be accompanied with a trailer 

when servicing a customer, i.e., the routing needs to consider both the locations of 

truck and trailer. An “export” job order works as follows: a truck first picks up a 

correct trailer at a trailer exchange point and a container at the depot. It then 

proceeds to the warehouse and leaves the trailer and container there for about 2 days 

where the container is filled. A truck (which may not be the same truck as earlier) 

will later be allocated to move the loaded container using the earlier assigned trailer 

and leaves the container at the port before departing with the trailer. In contrast, an 

“import” job order works as follows: a truck picks up a correct trailer at a TEP 

before it proceeds to the port. The trailer is used to carry loaded container at the port. 

The truck then moves the container to the warehouse and leaves it there for about 2 

days. A truck (which may not be the same truck as earlier) will later move this 

empty container from the warehouse to the depot (using a trailer) and leaves the 

depot with its trailer unloaded. Intuitively, there are times when a truck has a correct 

trailer type and thus can serve a job without going to a trailer exchange point. 

Otherwise, a truck is required to pick up a trailer (from the nearest TEP where the 

trailer is available to be picked up or exchanged) when it has mismatch trailer type 

or does not carry a trailer. The number of trailers available at an exchange point 

depends on how many trailers were picked up and returned to the TEP. The 

constraint imposed on the model is the time windows at the source and destination 

of job orders. An assumption is made such that all trailer exchange points have 

similar operating hours as the truck drivers’ working hours, i.e., from 8:00 am to 

8:00 pm. 



 

148 

 

5.2.1 Modeling the Problem Scenarios 

Based on the scenarios described, some refinements have been made to the model 

proposed by Lee et al., (2003). The problem is modeled here on a daily basis where 

the planning horizon spans only one day. All import and export jobs consist of two 

sub-trips and a two-day interval at the customer warehouses. Therefore the two-day 

interval at customer warehouses divides a job nicely into two separate planning 

horizons (one day each). The import and export jobs can be broken into two 

independent tasks, where each of them falls into a different planning horizon. In this 

way, job orders are broken into sub-job type precisely (Hereinafter this is referred as 

sub-job or a task). Generally a task involves traveling from a point (source) to 

another point (destination) as listed in Table 10. 

 

Table 10  The task type and its description 

Task type Task description Source Destination Trailer 

type 

1 Sub-trip of import job Port Warehouse 20 

2 Sub-trip of import job Port Warehouse 40 

3 Sub-trip of import job Warehouse Depot 20 

4 Sub-trip of import job Warehouse Depot 40 

5 Sub-trip of export job Depot Warehouse 20 

6 Sub-trip of export job Depot Warehouse 40 

7 Sub-trip of export job Warehouse Port 20 

8 Sub-trip of export job Warehouse Port 40 

9 Empty container movement Port Depot 20 

10 Empty container movement Depot Port/Depot 20 

11 Empty container movement Port Depot 40 

12 Empty container movement Depot Port/Depot 40 

 



 

149 

The number of trailers at TEPs depends on the trailers that are left over from 

the previous planning horizon. All the pickup, return and exchange activities can 

also change the number of trailers available. Besides, a number of trailers could also 

be parked at the customer warehouses instead of the TEPs. All these undetermined 

factors suggest that the resource of trailers available at each TEP at the initial of 

planning horizon is random. Therefore the daily number of trailers at each trailer 

exchange point is randomly generated in our model. A truck has to pick up a correct 

trailer from the nearest TEP if it serves task type 1, 2, 5, 6, 9, 10, 11 or 12 and does 

not have a trailer or has an incorrect trailer type. For task type 3, 4, 7 or 8, the truck 

does not need to visit a TEP before servicing the task since the correct trailer has 

been brought to the place in advanced. In contrast, trucks that serve sub-job type 3, 

4, 7 or 8 must not have any trailers. In this case, if a trailer is attached to the truck, it 

must be returned to a trailer exchange point before servicing the task. For example, a 

truck that serves sub-job type 7 leaves the destination (port) of a previous task with a 

trailer. If the same truck is to serve another task type 3, 4, 7 or 8, it must travel to a 

TEP to drop the trailer obtained previously. In brief, a truck is required to visit a 

trailer exchange point under the following conditions: 

 

• It needs a trailer for task type 1, 2, 5, 6, 9, 10, 11 or 12 and it does not 

have a trailer. 

• It needs a trailer for task type 1, 2, 5, 6, 9, 10, 11 or 12 and it has an 

incorrect trailer type. 

• It has a trailer but it has to service sub-job type 3, 4, 7 or 8, e.g., the truck 

needs to travel to a TEP for dropping the trailer before servicing the task. 
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Obviously the availability of trailers at TEPs should be updated frequently 

since the number of trailers changes with the pick-up and return activities, e.g., a 

trailer that is returned earlier in a day will be available for pick-up later in the same 

day. To model these activities, the approach of time segmentation for trailer 

resources is used as follows: 

 

• Working hours per day: 12 hours × 60 mins = 720 mins 

• Time per segment: 10 mins 

• Number of time slots available: 720
10  slots = 72 slots 

 

Hence the number of trailers available for pick-up in a particular time slot is 

equal to the number of trailers in previous time slot, added by the trailers returned in 

previous time slot and deducted the trailers picked up in previous time slot. In this 

approach, different trailer types are managed and updated in separate lists. For 

example, a TEP has 3 trailers (with type 20) and the following events occur in the 

current time slot: one trailer (type 20) is returned and two trailers (type 20) are 

picked up. In this case, the trailer exchange point should have two trailers (type 20) 

available for pick up in the next time slot. 

 

5.2.2 Mathematical Model 

Decision Variables: 

{0,1}
mikX ∈ , where {1,..., }i I= , {1,..., }k K= , {1,..., }m M= . If task i is assigned to 

truck k as the mth task, 1,  otherwise 0
m mik ikX X= = ; 
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0 {0,1}, {1,.., }iX i I∈ ∈ . If task i is subcontracted to companies, 

0 01,  otherwise 0i iX X= = . 

 

Parameters: 

I = Number of tasks; 

K = Maximum number of trucks; 

M = Maximum number of jobs that can be handled by one truck in a planning 

horizon; 

J = Number of trailer exchange points; 

y = Task type, i.e., {1,...,12}y∈ ; 

I(y) = The set of task with type y; 

( )  All tasks = {1,... }
y

I y I=U ; 

TW = time segment for trailer resources = 10; 

MTW = maximum number of time slots = 72. 

 

Symbol 

x⎡ ⎤⎢ ⎥ : The smallest integer larger or equal to x; 

x⎢ ⎥⎣ ⎦ : The largest integer smaller or equal to x. 

 

Distance of tasks’ location 

hjiD : Distance from destination of previous task h to trailer point j followed by 

source of task i; 

hiD : Distance from destination of previous task h to source of task i; 

iD : Distance from source of task i to destination of task i. 

 

Task handling time 

1iH : Handling time at source of task i; 

2iH : Handling time at destination of task i. 
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Task time window 

0iR : Start-time at the source of task i; 

1iR : End-time at the source of task i; 

2iR :  Start-time at the destination of task i; 

3iR : End-time at the destination of task i; 

0kA : Start available time for truck k; 

kfA : End available time for truck k. 

 

Cost 

iP : Routing cost of task i for internal fleet operation; 

iS : Routing cost of task i for outsourced; 

 

Number of trailers at trailer exchange point 

40 jTP : Initial number of trailer type 40 at point j; 

20 jTP : Initial number of trailer type 20 at point j. 

 

Minimization Objectives: 

The scheduling solutions should minimize both the criteria of routing cost and the 

number of trucks concurrently as follows: 

 

       Routing cost ∑∑∑∑
== = =

+=
I

i
ii

I

i

K

k

M

m
iikm SXPX

1
0

1 1 1

; 

 

1 1

1
Number of trucks

m

I M

ikK
i m

k

X

I
= =

=

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎢ ⎥

∑∑
∑ . 

 

subject to the following requirements and constraints: 
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Task and trailer types requirements 

1 ))((20
12,11,8,6,5,4,2,1 10,9,5,1' )( )'(

, 1
>= ∑ ∑ ∑ ∑

= = ∈ ∈
−

mforXXpickup
y y yIj yIi

jkikmk mm
; 

1 20
10,9,5,1 )(

, == ∑ ∑
= ∈

mforXpickup
y yIi

ikmk m
; 

1 ))((40
10,9,7,6,5,3,2,1 12,11,6,2' )( )'(

, 1
>= ∑ ∑ ∑ ∑

= = ∈ ∈
−

mforXXpickup
y y yIj yIi

jkikmk mm
; 

1 20
12,11,6,2 )(

, == ∑ ∑
= ∈

mforXpickup
y yIi

ikmk m
; 

1 ))((20
10,9,7,3 12,11,8,7,6,4,3,2' )( )'(

, 1
>= ∑ ∑ ∑ ∑

= = ∈ ∈
−

mforXXreturn
y y yIj yIi

jkikmk mm
; 

 

1 ))((40
12,11,8,4 10,9,8,7,5,4,3,1' )( )'(

, 1
>= ∑ ∑ ∑ ∑

= = ∈ ∈
−

mforXXreturn
y y yIj yIi

jkikmk mm
; 

}1,0{, ∈mkvisit ; 

mkmkmkmkmk visitreturnreturnpickpick ,,,,, 220204020 ≤+++ ; 

 

 

Single assignment 

A task is only assigned to one truck k (as the mth task) or outsourced to other 

companies, 

10
1 1

=+∑∑
= =

i

K

k

M

m
ik XX

m
 for i ∈ {1,…,I} 

 

 

Jobs must be assigned sequentially 

For {1,..., }k K∈ , {1,..., 1}m M∈ − , 
( 1) ( )

1 1
m m

I I

ik ik
i i

X X
+

= =

≤∑ ∑  

 

Time sequence for each task 
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For {1,..., }k K∈ , {1,..., 1}m M∈ − , 
( 1) ( )(0) (2)m mk kT T

+
= ; 

For {1,... }k K∈ , {1,... }m M∈ , 

]})1([{
1 1

,,1)1()1( 1 hi

I

i

I

h
mkhjimkhkiikkk DvisitDvisitXHXTT

mmmm ∑ ∑
= =

−+++≥
−

; 

(2) (1) 2
1

( )
m m m

I

k k ik i i
i

T T X D H
=

≥ + +∑ . 

 

Time window constraints 

For {1,..., }k K∈ , {1,..., 1}m M∈ − , 0 (0) (2) (0)( )
m m mk k kf k kA T A T T≤ ≤ − − ; 

For every particular {1,..., }i I∈ , 
0 1 0 0 1

1 1

2 (2) 2 0 2 3
1 1

( )

( )

m m

m m

K M

i ik k i i i i
k m
K M

i ik k i i i i
k m

R X T H X R R

R X T H X R R

= =

= =

≤ − + ≤

≤ − + ≤

∑∑

∑∑
. 

 

Trailer constraints 

( ) {0,1}
mikX t ∈ , where ( )

mikX t  = 1 when the event falls into time window t, 

(1)( )
( ) 1  

m

m

k

ik

T
t

TW
X t

MTW

⎡ ⎤⎢ ⎥
−⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥= − ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥

 

The number of trailer type 20 at time slot t = 0, i.e., 20 (0)jB  = 20 jTP ; 

For every t = 0 to 71, and every j, the number of trailer type 20 available for next 

time slot, t +1, is, 

20 ( 1)jB t +  = 20 ( )jB t  + ∑∑∑
= = =

I

i

K

k

M

m
mkik returntX

m

1 1 1
,20)( - 

∑∑∑
= = =

I

i

K

k

M

m
mkik pickuptX

m

1 1 1
,20)( , 

where 20 ( ) 0jB t ≥ . 

 

The number of trailer type 40 at time slot t = 0, i.e., 40 (0)jB  = 40 jTP ; 
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For every t = 0 to 71, and every j, the number of trailer type 40 available for next 

time slot, t +1, is, 

40 ( 1)jB t + = 40 ( )jB t + ∑∑∑
= = =

I

i

K

k

M

m
mkik returntX

m

1 1 1
,40)( - 

∑∑∑
= = =

I

i

K

k

M

m
mkik pickuptX

m

1 1 1
,40)( ,  

where 40 ( ) 0jB t ≥ . 

 

5.2.3 Test Cases Generation 

The TTVSP models various factors affecting the routing performance, particularly 

on the importance of trailer resources such as the trailers allocation in multiple 

trailer exchange sites and the location of trailer exchange points. In order to examine 

these factors thoroughly, a number of test cases with different combination of 

variables are generated according to the following criteria: 

 

• Number of tasks 

• Total number of trailers 

• Number of trailers and allocation 

• Number of trailer exchange points (with trailer resources assigned 

initially) 

 

The test cases are generated based on the scenario of one-day activity for a 

logistic company. The jobs schedule starts from 8:00 am to 8:00 pm (12 hours a 

day). All the tasks must be finished within a day and the details of every task are 

generated. The service map for the problem contains one port, three depots and five 
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trailer exchange points. The five TEPs are named as TEP1, TEP2. TEP3, TEP4 and 

TEP5, which are located at disperse places and may have different initial number of 

trailers. The problem also defines the location of 80 customer sites spreading across 

the area randomly. The service map for the problem is a 120×120 grid and the 

locations of customers are given as a pair of (x, y) coordinates. The distance 

(traveling time) among any two points is calculated as 0.5×(triangular distance), 

where the value of 0.5 is merely a scaling factor such that a truck can serve around 3 

tasks per day in average. The timing constraint is also specified in the test cases, 

e.g., the handling time at the source and destination (i.e., port, depot, and customer 

warehouses) requires 10 minutes, which must be included in calculating the time 

needed for a complete job handling. The time windows for the source and 

destination of each job are generated according to the type of jobs. The availability 

of trailer resources is quantified into 10-minute slots. The return of a trailer is only 

visible to others after the current time slot, where the retrieval of a trailer gives 

immediate effect to the current count of trailers. The cost for each task type is based 

on the way tasks are accomplished, i.e., by self-fleet service or outsourced to 

external companies. There is no hard rule to specify whether the cost for internal 

fleet is cheaper than outsource fleet and vice versa, i.e., the cost merely depends on 

the type of jobs to be served. 

 

There are a total of 28 test cases generated in this study, which differs in 

terms of the number of task orders, the number of trailers, allocation of trailers, and 

the number of trailer exchange points. However, information about customer 

warehouses and other important locations like port and depots remains unchanged. 
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Table 11 lists the test cases for NORM (Normal) category, where the trailers are 

allocated “equally” to TEPs. As shown in Table 11, the test cases in this category are 

divided into 4 groups with different number of tasks in the range of 100 to 132, and 

all TEPs can contribute to the supply of any demands for trailers. As shown in Table 

12, the 8 test cases for TEPC (Trailer Exchange Point Case) category contain a 

constant of 132 tasks, but are assigned with extreme trailer allocation strategies. In 

some cases, only one TEP is allocated with trailers, while the available number of 

trailers remains constant at 30 for all test cases in this category. As shown in Table 

13, the LTTC (Less Trailer Test Case) category comprises of 8 test cases with an 

equal number of trailers. In this category, the available number of trailers is set as 

10, e.g., the trailer resources for both TEPC and LTTC test cases share the same 

distribution ratio but are assigned with different quantity of trailers. 

 

Table 11  Test cases for the category of NORM 

Group Test case* Job 

number 

Trailers 

at 

Each 

TEP 

Teps allocated 

with trailers 

Distribution

test_100_1_2 100 1 or 2 5 uniform 

test_100_2_3 100 2 or 3 5 uniform 

100 

test_100_3_4 100 3 or 4 5 uniform 

test_112_1_2 112 1 or 2 5 uniform 

test_112_2_3 112 2 or 3 5 uniform 

112 

test_112_3_4 112 3 or 4 5 uniform 

test_120_1_2 120 1 or 2 5 uniform 

test_120_2_3 120 2 or 3 5 uniform 

120 

test_120_3_4 120 3 or 4 5 uniform 
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test_132_1_2 132 1 or 2 5 uniform 

test_132_2_3 132 2 or 3 5 uniform 

132 

test_132_3_4 132 3 or 4 5 uniform 

*The last digit denotes the number of trailers allocated for each TEP 

 

Table 12  Test cases for the category of TEPC 

Test case 
Job 

number 

Number of 

trailers at 

TEPs 

TEPs 

allocated 

with trailers 

Distribution* 

test_132_tep5 132 30 5 uniform 

test_132_tep1a 132 30 1 TEP1 

test_132_tep1b 132 30 1 TEP2 

test_132_tep1c 132 30 1 TEP3 

test_132_tep1d 132 30 1 TEP4 

test_132_tep1e 132 30 1 TEP5 

test_132_tep3a 132 30 3 

Distributed among 

TEP1, TEP3 and 

TEP5 

test_132_tep3b 132 30 3 

Distributed among 

TEP1, TEP2 and 

TEP4 

*Fixed number of trailers and different distribution of TEPs 

 

Table 13  Test cases for the category of LTTC 

Test case 
Job 

number 

Number of 

trailers at 

TEPs 

TEPs 

allocated 

with trailers 

Distribution* 

test_132_ltt5 132 10 5 uniform 

test_132_ltt1a 132 10 1 TEP1 

test_132_ltt1b 132 10 1 TEP2 

test_132_ltt1c 132 10 1 TEP3 



 

159 

test_132_ltt1d 132 10 1 TEP4 

test_132_ltt1e 132 10 1 TEP5 

test_132_ltt3a 132 10 3 

Distributed among 

TEP1, TEP3 and 

TEP5 

test_132_ltt3b 132 10 3 

Distributed among 

TEP1, TEP2 and 

TEP4 

*Less trailers and different distribution of TEPs 

 

 

5.3 A Hybrid Multiobjective Evolutionary Algorithm 

As described in the Introduction, the TTVSP should be best solved via 

multiobjective optimization, e.g., it involves optimizing routes for multiple trucks to 

meet all constraints and to minimize the conflicting costs of routing distance and 

number of trucks concurrently. The HMOEA applied in for solving TTVSP problem 

is similar to the HMOEA in chapter 4 with some minor modification to adapt the 

TTVSP problem. In general the main program flow is similar to the proposed 

HMOEA. Both the problem can use the same initialization flow. The explanation 

below highlights some of the difference of the proposed algorithm in solving this 

particular problem. 

 

5.3.1 Variable-Length Chromosome Representation 

The chromosome in an evolutionary algorithm is often represented as a fixed-

structure bit string and the bits position in a chromosome are usually assumed to be 

independent and context insensitive. However, such a representation is not suitable 
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for the order-oriented combinatorial TTVSP problem, for which the sequence among 

customers is essential. In HMOEA, a variable-length chromosome representation is 

adopted, where each chromosome encodes a complete routing plan including the 

number of routes and tasks served by the trucks, e.g., a route is a sequence of tasks 

to be served by a truck. In every route there must be at least one task assignment, 

and any task that is not assigned to a route is considered for outsourcing (all the 

outsourced tasks are contained in a list). The number of trailers must be up-to-date 

and a routing plan must include supplementary information of trailers availability in 

every trailer exchange points. As shown in Fig. 26, a chromosome may consist of 

several routes and each route or gene is not a constant but a sequence of tasks to be 

served. Such a variable-length representation is efficient and allows the number of 

trucks to be manipulated and minimized directly for the multiobjective optimization 

in TTVSP. 
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Chromosome encodes a
complete routing plan

Sequence of tasks
served by a truck

List of outsourced tasks

 

Figure 26 The data structure of chromosome representation in HMOEA 
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5.3.2 Multimode Mutation 

Gendreau et al., (1999b) proposed a RAR mutation operator, which extracts a node 

and inserts it at a random point of the routing sequence in order to retain the 

feasibility of solutions. Ishibashi et al. (2000) extends the approach to a shift 

mutation operator, which extracts a segment or a number of nodes (instead of a 

node) and inserts it at a new random point to generate the offspring. During the 

crossover operation by HMOEA, routes’ sequence is exchanged in a whole chunk 

and no direct manipulation is made to the internal ordering of the nodes for TTVSP. 

The sequence in a route is modified only when any redundant nodes in the 

chromosome are deleted. A multimode mutation is adopted in HMOEA, which 

serves to complement the crossover by optimizing the local route information of a 

chromosome. The mutation is expected to trigger changes of tasks sequence within a 

chromosome and the mutation rate is considerably small since it could be destructive 

to the chromosome structure and information of routes. A random number is 

generated to choose between two possible operations in the mutation. The first 

operation picks two routes in a chromosome randomly and concatenates the first 

route to the second route before deleting the first route from the chromosome. In the 

second operation, the sequence containing all the outsourced tasks is evaluated as a 

new route. The approach also checks feasibility on the route in order to delete any 

tasks that cause violation to any of the constraints, and those deleted tasks will be 

considered as outsourced tasks. 
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5.3.3 Fitness Sharing 

A simple fitness sharing (Fonseca and Fleming, 1998) is incorporated in HMOEA to 

prevent genetic drift, which is a phenomenon where a finite population tends to 

settle on a single optimum even if many other local optima exist. The fitness sharing 

models the competitions among individual for finite resource available in a niche. 

When the number of individuals in its neighborhood increases, the fitness of an 

individual is degraded as a result of the competition. The sharing approach measures 

the niching distance in the objective domain to achieve diversity of solutions on the 

tradeoff curve. The niche radius, σ , is a parameter that defines the size of 

neighborhood where all individuals within this distance would contribute towards 

the sharing function. The distance between individuals is normalized to the 

maximum range of objective space, which is dynamically computed at each 

generation. Let ( , )dist x y  be the normalized distance between individual x and 

individual y, the sharing function sh can be defined as follows, 

 ( ) ( )21 ( , ) /     if ( , )<( , )
0                        otherwise

dist x y dist x ysh dist x y σ σ⎧⎪ −= ⎨
⎪⎩

 (1) 

The sharing value of an individual will be increased by other individuals that are 

found located within the niche radius and the sharing value is higher when the 

distance between the individuals is shorter. With the help of sharing function, the 

niche count nc is defined as, 

 ( )( ) ( , )
y individuals

nc x sh dist x y
∈

= ∑  (2) 

During the tournament selection, individuals with a lower rank in partial order will 

be selected for reproduction, where the partial order ranking between two 
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individuals depends on both their Pareto rank and niche counts. Rigorously, the 

partial order p≥  for two individuals i and j  is defined as, 

pi j≥ , if [ ]( ) ( )rank i rank j>  or [ ]( ) ( ) and ( ) ( )rank i rank j nc i nc j= >  

 

 

5.4 Computational Results 

The HMOEA was programmed in C++ based on a Pentium III 933 MHz processor 

with 256 MB RAM under the Microsoft Windows 2000 operating system. From the 

empirical results of preliminary experiments, we found that HMOEA performed 

equally well with small changes of parameter values. As the general rules of thumb, 

the crossover rate is relatively larger than mutation rate. The choice is reasonable as 

high mutation rate tends to destroy the good chromosomes and preventing the 

preservation of good parents.  Table 14 shows the parameter settings chosen after 

some preliminary experiments. These settings should not be regarded as an optimal 

set of parameter values, but rather a generalized one for which the HMOEA 

performs fairly well over the test problems. 

 

Table 14  Parameter settings for the simulations 

PARAMETER VALUE 

Crossover rate 0.8 

Mutation rate 0.3 

Population size 800 

Generation size 1000 or no improvement over the last 5 generations 

Niche radius 0.04 
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This section contains the computational results and analysis of optimization 

performances for all problem instances. Section 5.4.1 studies the performance of 

convergence trace and Pareto-optimality for multiobjective optimization using the 

12 test cases in normal category. In the same section, several other performance 

metrics such as the utilization rate, the progress ratio and a simple scenario of using 

the results of the routing plan are included. Section 5.4.2 analyzes the optimization 

problem when different trailer allocation scenarios happen based on the test cases of 

TEPC and LTTC (each of the TEPC and LTTC categories contains 8 test cases). In 

Section 5.4.3, the optimization performance of HMOEA is compared with two other 

multiobjective evolutionary algorithms based upon various performance measures. 

 

5.4.1 Multiobjective Optimization Performance 

5.4.1.1 Convergence Trace 

Convergence trace is an important performance indicator to show the effectiveness 

of an optimization algorithm. The two objectives in TTVSP are the number of trucks 

and the routing cost as defined in Section 5.2. Fig. 27 shows the normalized average 

and best routing costs at each generation for the 12 test cases in normal category, 

where each line represents the convergence trace for each of the test cases. As can 

be seen, the routing costs decline nicely as the evolution proceeds. The same 

observation can be found in Fig. 28, where the normalized average number of trucks 

at each generation is plotted. The rapid reduction of the number of trucks in Fig. 28 

is expected as the initial population in HMOEA was generated randomly. 
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5.4.1.2 Pareto Front 

In solving a vehicle scheduling problem, the logistic manager is often interested in 

not only getting the minimum routing cost, but also the smallest number of trucks 

required to service the plan. In order to reduce the routing cost, more number of 

trucks is often required and vice versa, i.e., the two criteria are noncommensurable 

and often competing with each other. Fig. 30 shows the evolution progress of Pareto 

front for all the 12 test cases in normal category. Fig. 29 is a zoom-in version of the 

one of the test case; all others enlarged figures are attached in Appendix 2. In the 

simulation, the largest available vehicle number is limited to 35, which is more than 

sufficient to cater the number of tasks in each test case. The various Pareto fronts 

obtained at the initial generation (First), two intermediate generations (Int 1 and Int 

2) and the final generation (Final) are plotted in Fig. 30 with different markers. As 

can be seen, there is only a small number of non-dominated solutions appeared at the 

initial generations, which are also congested at a small portion of the solution space. 

However, as the evolution proceeds, the diversity of the population increases 

significantly and the non-dominated solutions gradually evolve towards the final 

trade-off curve. A dashed line connecting all the final non-dominated solutions is 

drawn for each test case in Fig. 30, which clearly shows the final trade-off or routing 

plan obtained by the HMOEA. It should be noted that the Pareto front includes the 

plan with zero truck number that subcontracts all tasks to external company, 

although such a policy is apparently not practical to adopt because it is against the 

will of the logistic management. 
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Figure 29 Zoom in for evolution progress of Pareto front 
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Figure 30 The evolution progress of Pareto front for the 12 test cases in normal 

category 

 

5.4.1.3 Routing Plan 

The average best routing cost for each truck number of the 12 test cases in normal 

category is plotted in Fig. 31, which shows an obvious trade-off between the two 

objectives of routing cost and truck number in TTVSP. This trade-off curve is useful 

for the decision-maker to derive an appropriate routing schedule according to the 
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current situation. The information about the number of tasks to be serviced and the 

number of trailers available at each trailer exchange point is often available. Based 

on the information, if the number of trucks available in a company is fixed, the 

logistic manager can estimate the required routing cost from the trade-off curve in 

Fig. 31. In contrast, if the manager is given a specified budget or routing cost, he or 

she can then determine the minimum number of internal trucks to be allocated so 

that the spending can be kept below the budget. For example, if the routing cost is to 

be kept below 5100, then the company must allocate at least 10 trucks for serving 

the task orders. However, if only 15 trucks are allocated by the company, then the 

incurred routing cost would be around 4900 to 5000, including the cost payment for 

outsourced companies. 

 

Fig. 32 shows the average progress ratio at each generation for the 12 test 

cases in normal category, which is a useful convergence measures for the Pareto 

front in multiobjective optimization. The progress ratio at any generation is defined 

as the domination of one population to another (Tan et al., 2001c), 
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As shown in Fig. 32, the average pr starts from a value close to one 

indicating the high probability of improvement to the solutions at the initial stage. 

As the evolution continues, the pr decreases to a small value which means that the 

evolution is nearly converged since the possibility of finding new improved non-

dominating solution is low. 
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results of TEPC and LTTC while Section 5.4.2.2 investigates the effects of the 

number and location of trailer exchange points in TTVSP. 

 

5.4.2.1 Scenario of Extreme Trailer Allocation 

The resource of trailers is one of the key elements in TTVSP. For the normal test 

category, since the variation of trailer number at TEPs is small and the tasks that 

require trailers are only a proportion of the total tasks, the effect of trailer number to 

routing cost is insignificant as discussed in Section 5.4.1. In this sub-section, the 

scenario of excessive and limited trailer resources is compared based on the test 

cases in TEPC (with 30 trailers) and LTTC (with 10 trailers) categories. Fig. 35 

shows the box plot of routing costs for the final non-dominated solutions in different 

test cases of TEPC and LTTC categories. Each box plot represents the distribution 

of a sample set where a vertical line within the box encodes the median, while the 

right and left ends of the box are the upper and lower quartiles. Dashed appendages 

illustrate the spread and shape of distribution, and dots represent the outside values. 

In the figure, 132_tep1 and 132_ltt1 represents the combined result for the test cases 

with only one TEP for TEPC and LTTC, respectively. As can be seen, the mean 

routing costs for test cases in TEPC are consistently lower than the cases in LTTC. 

When the number of trailers is abundant as in TEPC, a feasible solution can be 

found more easily as compared to LTTC where resource of trailers is limited and the 

search for better solutions is restricted by the lack of trailers. The results show that 

the trailers and their distribution greatly affect the final scheduling performance. It is 

thus important to have enough trailers allocation at the initial of planning horizon, 
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and a good routing policy should favor the choice that brings more trailers back to 

TEPs at the end of each planning horizon. 
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Figure 35 The performance comparison of abundant TEPC with limited 

trailers in LTTC 

 

5.4.2.2 The Number and Location of TEPs 

This sub-section compares the routing performance among the different test cases 

within each category of TEPC and LTTC. Fig. 36 and Fig. 37 show the box plots of 

routing costs for the final non-dominated solutions in different test cases of TEPC 

and LTTC, respectively. In Fig. 36, the mean value of test_132_tep5 is extended 

vertically and chosen as a reference since this test case has its trailer resources 

distributed uniformly to all the TEPs. It can be seen that the range of routing costs 

for the various test cases is rather closed to test_132_tep5. In addition, there is only 

minor difference in terms of the mean routing cost, except for the case of 
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test_132_tep1e where the trailers are allocated to only one TEP. Hence the location 

of TEP is not strategic for TTVSP. Similarly, the mean routing cost of 

test_132_ltt_1e is also inferior as compared to other test cases in the LTTC category 

as shown in Fig. 37. The results suggest that the final destinations of trailers should 

be properly planned and allocated at suitable TEPs that support the routing for the 

next planning horizon. 
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Figure 36 The performance comparison of different test cases in TEPC 

category 
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Figure 37 The performance comparison of different test cases in LTTC 

category 

 

5.4.3 Comparison Results 

In this section, the performance of HMOEA is compared with two variants of 

evolutionary algorithms, i.e., MOEA with standard genetic operators as well as 

MOEA without hybridization of local search. The comparison allows the 

effectiveness of the various features in HMOEA, such as specialized genetic 

operators and local search heuristics, to be examined. The multiobjective 

evolutionary algorithm with standard generic operators (STD_MOEA) includes the 

commonly known cycle crossover and RAR mutation. The cycle crossover is a 

general crossover operator that preserves the order of sequence in the parent 

partially and was applied to solve the traveling salesman problems by Oliver et al. 

(1987). The remove and reinsert (RAR) mutation operator removes a task from the 

sequence and reinsert it at a random position (Gendreau et al., 1999b). The 

multiobjective evolutionary algorithm without hybridization of local search 
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(NH_MOEA) employs the specialized genetic operators in HMOEA but excludes 

the local search heuristic. The experimental setups and parameter settings of 

STD_MOEA and NH_MOEA are similar to the settings of HMOEA in Table 14. 

 

5.4.3.1 Average Routing Cost 

To compare the quality of solutions produced by the algorithms, the average routing 

cost (ARC) of the non-dominated solutions in the final population is calculated for 

various test cases with different number of tasks as shown in Fig. 38. In the figure, 

the average value of ARC is plotted for each group of the test cases with equal 

number of tasks in the normal category. As can be seen, the STD_MOEA that 

employs standard genetic operators incurs the highest ARC since its operators are 

not tailored made for the TTVSP problem. According to the no free lunch theorem 

(Wolpert and Macready, 1996), any optimization methods should be tailored to the 

problem domain for best performance. The results in Fig. 38 also illustrate that the 

HMOEA outperforms NH_MOEA and STD_MOEA consistently, which produces 

the lowest routing cost for all test cases. The average routing cost of the non-

dominated solutions in the final population for test cases in the category of TEPC 

and LTTC is shown in Fig. 39 and Fig. 40, respectively, where a similar outstanding 

optimization performance for HMOEA is observed. 
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NH_MOEA. Besides, the HMOEA also has the best average RNI of 1.89 as 

compared to the value of 1.71 and 0.44 for NH_MOEA and STD_MOEA, 

respectively. 
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Figure 41 The RNI of various algorithms for test case 132_3_4 

 

5.4.3.3 Simulation Time 

Besides the multiobjective optimization performance, the computational time for 

different algorithms is studied in this sub-section. The three algorithms adopt the 

same stopping criteria in the simulation, i.e., the evolution stops after 1000 

generations or when no improvement is found for the last 5 generations. Fig. 42 

shows the normalized simulation time for the three algorithms based on three 

randomly selected test cases from each category, e.g., test_132_3_4, test_132_tep5 

and test_132_ltt5. As can be seen, the STD_MOEA requires the shortest time to 

converge or halt the evolution, although the optimization results obtained by the 
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vehicle scheduling problem (TTVSP) has been constructed in this research. The 

objective of the scheduling problem is to minimize the routing distance and the 

number of trucks required, subject to a number of constraints such as time windows 

and availability of trailers. To solve such a multiobjective and multi-modal 

combinatorial optimization problem, a hybrid multiobjective evolutionary algorithm 

(HMOEA) featured with specialized genetic operators, variable-length 

representation and local search heuristic has been applied to find the Pareto optimal 

scheduling solutions for the TTVSP. Detailed studies have been performed to extract 

important decision-making information from the multiobjective optimization results. 

Besides, the relationships among different variables, such as the number of trucks 

and trailers, the trailer exchange points, and the utilization of trucks in the routing 

solutions, have been examined and analyzed. The computational results have shown 

that HMOEA is effective in solving multiobjective combinatorial optimization 

problems, such as finding useful trade-off solutions for the TTVSP routing problem. 

Comparisons to two other general evolutionary algorithms also show that the 

proposed approach is better in terms of the average routing cost and the Ratio of 

Non-dominated Individuals. 
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Chapter 6 Conclusions 

 

Unlike many parametric optimization problems, the solution space of the vehicle 

routing problems is never a clear neighborhood structure, i.e., it is difficult to trace 

or predict good solutions since feasible solutions may not be located at the 

neighborhood of current candidate solutions. In addition to that, the real world 

applications are seldom single objective in nature. Therefore, to provide useful 

solutions to the decision makers, new approach is required to enhance the existing 

solutions for multiobjective optimization. The exhaustive review in Chapter 2 

examines some of alternatives available. Instances from various applications are 

categorized to analyze the current landscape of the research domain. 

 

The Vehicle capacity planning system (VCPS) serves as an example of 

actual real world application that needs optimization for cost reduction purpose. The 

routing model for container movements is derived from a model in industry 

problem. In this routing model, outsource is allowed to cover jobs that are not 

economical if performed internally. Of course, the selection of jobs is not a 

straightforward process, since many constraints are applicable in getting to the final 

solution. The results from optimization using new method are proven better than old 

existing method applied in company. The exposure to such problem has become the 

motivation to explore better solutions for vehicle routing problem with 

multiobjective perspective which also subsequently tackled with the proposed 

HMOEA. 
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Vehicle routing problem with time windows constraint involves the 

optimization of routes for multiple vehicles so as to meet all given constraints and to 

minimize the objectives of travel distance and number of vehicles. A hybrid 

multiobjective evolutionary algorithm (HMOEA) has been proposed, which 

incorporates innovative chromosome representation and adapted evolutionary 

operators to accommodate the sequence-oriented optimization in VRPTW. The 

HMOEA optimizes very well on VRPTW problems, which improves the routing 

solutions in many aspects, such as lower routing cost, better population distribution 

and good convergence trace. Besides, simulations have been performed extensively 

on the 56 benchmark problems, which yield 20 routing solutions better than or 

equivalent to the best solutions published in literature. 

 

Following this, TTVSP proposes a new variant of VRP which is similar to 

VCPS where movement of containers has to be optimized. The model is presented in 

mathematical modeling together with detail description on the tasks, constraints and 

objectives. All relevant constraints must be satisfied in every feasible solution. 

Trailer resource is a critical factor in this problem. The HMOEA is implemented to 

solve this problem with various test instances. Results from simulation are analyzed 

and useful information has been extracted from the solutions. The study on trailer 

resource allocation also provides valuable information to the understanding of the 

TTVSP problem.  
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Analyses based on results from benchmark problems show that the 

performance of HMOEA is consistent. This confirms the reliability of the proposed 

algorithm, which has shown the robustness to solve problems of varying sizes and 

difficulties. Through an analysis on how the population had improved over the 

generations, it demonstrates that the proposed method can drive the population 

towards Pareto optimality.  

 

The process of optimization can definitely benefit from relevant knowledge 

and information regarding the problem domain. For example, eliminate any 

undesired solution space or confine the exploration to smaller search space when 

certain solution is known to be less desired by the decision maker. The design of 

evolutionary operators has to be application-aware to improve efficiency in solving 

different problems. Priori is essential in order to develop effective operators. 

Without vital information about the problem space, it is not easy to solve a problem 

optimally. Crossover, mutation and selection operators are the three core substances 

in the entire optimization algorithm. Therefore, the choice of the operators deserves 

careful investigation, evaluation and consideration. Through the results, the 

specialized operators are proven to perform well in solving the vehicle routing and 

scheduling problems. Nevertheless, the operators should not be over-constrained by 

priori such that the diversity of a population is not maintained. In general, careful 

consideration has to be taken when applying priori in any evolutionary optimization 

algorithm. 
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In a nutshell, the simplicity of the proposed approach and the elaborated 

optimization results seem to render it as a promising method for potential future 

improvements and extensions. 
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Chapter 7 Future Research 

A number of ideas and suggestion were collected as the possibility to 

enhance and improve the research topic. The results in this thesis lay the 

groundwork for using HMOEA in solving routing and scheduling applications 

specifically. Hence, some natural extensions to this work would help to expand and 

strengthen the results and usages of HMOEA in multiobjective optimization. 

 

 

7.1 Extensions and improvements 

From the standpoint of the algorithm, the evaluation of chromosomes in 

evolutionary algorithm is an attractive research area to work on for further 

investigation. The calculation of objectives for a single routing solution is not 

essentially trivia in the midst of all the timing constraints and costs attached to 

different routes. The evaluation of chromosomes is taking a substantial amount of 

computation time. If the evaluation process can be simplified or improved, the run 

time for simulation can be shortened too. Although the run time is not shown as the 

most vital factor in current application, a lean and fast algorithm will definitely 

make it easier to be adopted in some other real world applications.  

 

In fact, the solution can leverage from existing methods in computer science 

studies, such as an expert system that is able to keep track and store the results of 

evaluations and avoid the repetition of calculations. Moreover, an innovative 
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classification program, for instance a neural network classifier, can be employed to 

evaluate the chromosomes. Using specific hardware emulation setup could be 

another method to speed up the process of evaluation. 

 

Similarly, the advancement in network computing can contribute in 

improving the capability of MOEA. The computational cost incurred for solving an 

optimization problem (both time and hardware factors) increases as the size and 

complexity of the problem escalate. One of the reasons can attribute to the large 

number of function evaluations in parallel along with the evolution process. 

Moreover, MOEA in routing and scheduling application usually requires a larger 

population and generation size in order to simulate the evolutionary model with a 

better approximation and resolution. The computation load is sometime prohibitive 

to normal PC users or cannot be performed without the help of high performance 

computing.  

 

One promising approach to overcome these limitations is to exploit the 

inherent parallel nature of MOEA by formulating the problem into a distributed 

computing structure suitable for parallel processing, i.e., to divide a task into 

subtasks and to solve the subtasks simultaneously using multiple processors. The 

availability of powerful-networked computers presents a wealth of computing 

resources that can provide the processing power required to solve those problems. 

Large problems can be divided into many smaller jobs mapped into the individual 

computers available in the system. This potential computational power can be much 

stronger than a supercomputer. Nevertheless, the heterogeneous hardware and 
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software on the Internet has limited the transparency of implementation for 

distributed systems. Hence, the research to develop an HMOEA that can be used to 

solve routing and scheduling problem on distributed platform can be a challenging 

work to tackle all the system transparency issue. 

 

On the other hand, a friendly graphic user interface is required to enhance the 

user experience with the HMOEA applications. Users are attracted to the solutions 

that come with an easy and comprehensible interface. The user should be able to 

relate the problems domain in simple programming language and the HMOEA 

computation engine that is embedded internally can compute and subsequently 

propose feasible optimized solutions. Indeed, it is also valuable to display the results 

of application to user so that user can be convinced that the solutions found are not 

only optimized but realistic too. To enable the users to visualize the results, a simple 

but convenient user interface would be one key element.  

 

 

7.2 Future work 

Probing deeper, the results in this thesis also provide a foundation for future 

work related to vehicle routing and scheduling problems. Diversifying the objectives 

of optimizations could bring the suggested model one step closer to actual scenario. 

The combinations of objectives in real world application can be infinite, especially 

considering the vast variety transportation systems existing in the world. In some 

developing countries, human labor cost is relatively cheaper and might not impact 

the routing cost directly. On contrary, some metropolitans may have extremely 
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expensive labor cost that must be measured for every decision-making. Another 

example could be the logistics of moving chemical products where safety and timely 

delivery are vital. The biotech companies have many rigid rules and regulations to 

follow in order to ensure the safety is well taken care of. The objectives also 

translate to the truth that a new problem model might be required. The fact that 

HMOEA is extensible to more objectives concurrently, make it a feasible approach 

to apply even when the decision makers are still evaluating different combinations 

of cost functions and the associations among these factors. 

 

Nowadays, businesses move fast in order to keep in pace with consumers’ 

need. The business landscape is changing everyday. In many occasions, the 

stochastic behavior of the consumers’ demand is a very common observation. In 

fact, businesses rely on the capability to react dynamically to any change to survive 

through tough competition. Such demand hike and slope translate into perturbation 

to transportation model and is becoming a very challenging problem to the logistic 

operators. In order to handle stochastic demand in such environment, new model 

could be devised. Additional constraints might be appended to reflect the dynamism.   

 

The transportation problem model could also be extended to a larger scale. 

The geographical scope might span to more than one country. Additional locations 

in the problem can increase the optimization space tremendously. Additionally, the 

amount of jobs can be increased or the number of trips to depot can be changed 

accordingly to different customer needs. Research can be performed on how such 

modification in the problem model would affect the optimizations.  
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In short, enhancement to the related research can result to an optimization 

solution with good searching ability (population diversity) that is able to provide 

near-optimal results and works faster in term of computation time. The domain of 

vehicle routing and scheduling problem could be extended to the higher scale of 

complexity with more real world attributes factored into solutions. 
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Appendix 1 

Some of the routing solutions obtained by HMOEA in solving Solomon benchmark 

problems are given below.  

 

C1-01: 
[90  87  86  83  82  84  85  88  89  91] 

[13  17  18  19  15  16  14  12] 

[81  78  76  71  70  73  77  79  80] 

[67  65  63  62  74  72  61  64  68  66  69] 

[5  3  7  8  10  11  9  6  4  2 1  75] 

[20  24  25  27  29  30  28  26  23  22  21] 

[32  33  31  35  37  38  39  36  34] 

[43  42  41  40  44  46  45  48  51  50  52  49  47] 

[57  55  54  53  56  58  60  59] 

[98  96  95  94  92  93  97 100 99] 

 

C2-01: 
[93  5  75  2  1  99 100 97  92  94  95  98  7  3  4  89  91  88  84  86  83  82  85  76  71  70  73  80  79  

81  78  77  96  87  90] 

[20  22  24  27  30  29  6  32  33  31  35  37  38  39  36  34  28  26  23  18  19  16  14  12  15  17  13  

25  9  11  10  8  21] 

[67  63  62  74  72  61  64  66  69  68  65  49  55  54  53  56  58  60  59  57  40  44  46  45  51  50  52  

47  43  42  41  48] 

 

R1-04:  
[72  75  56  23  67  39  55  4  25  54] 

[53  58] 

[88  62  11  63  64  49  19  7  52] 

[89  60  83  17  45  8  46  36  47  48  82  18] 

[27  69  76  3  79  29  24  68  80  12  26] 

[50  81  78  34  35  71  65  66  30  70  1] 

[95  92  37  98  93  59  99  84  5  96  94  13] 

[97  42  14  44  38  86  16  61  85  91  100  6] 

[2  57  15  43  87  41  22  74  73  21  40] 
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[31  10  90  32  20  9  51  33  77  28] 

 

R2-04: 
[40  41  22  75  23  67  39  56  72  73  21  74  4  55  25  54  80  68  77  28] 

[27  69  31  88  62  11  63  90  32  10  1  50  76  3  79  33  9  81  51  70  30  20  66  65  71  35  34  78  

29  24  12  26] 

[2  57  15  43  14  44  38  86  16  61  17  84  45  8  46  36  49  64  19  47  48  82  7  52  18  83  60  5  

91  100  13  58] 

[89  6  94  95  97  92  59  96  99  93  85  98  37  42  87  53] 

 

RC1-02: 
[42  61  81  90] 

[95  85  63  76  51  84  56  66] 

[69  88  53  55  100  70] 

[94  31  29  27  26  89  91  80] 

[39  36  44  40  38  41  43  35  37  72] 

[82  11  15  16  9  10  13  17  12] 

[65  99  52  57  74  77  83] 

[64  86  87  59  97  75  58] 

[2  45  8  7  6  46  4  5  3  1] 

[48  21  23  18  19  22  49  20  24  25] 

[50  33  28  30  32  34  93  96] 

[14  47  73  79  78  60  98] 

[92  62  67  71  54  68] 

 

RC1-07: 
[65  83  58  75  77  25  23  24] 

[90  61  81  54  96] 

[82  99  52  57  86  59  87  97  74] 

[42  44  39  38  36  35  37  40  43  41] 

[95  84  85  63  51  76  89  56  91] 

[72  71  93  94  67  50  92  80] 

[88  2  6  7  8  5  3  1  45  60  55] 

[12  14  47  17  16  15  11  13  9  10] 

[62  31  29  27  26  28  30  34  32  33] 

[69  98  53  78  73  79  46  4  100  70  68] 

[64  22  19  18  21  48  49  20  66] 
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RC2-07: 
[92  95  67  62  33  30  28  29  31  71  72  42  44  40  38  39  41  61  81  90  94  96  93  50  34  27  26  

32  89  56  91  80] 

[82  11  15  16  47  14  12  73  79  7  6  2  8  5  45  46  4  3  1  43  36  35  37  54] 

[69  98  88  53  99  52  86  75  59  87  74  57  22  20  49  48  24  66] 

[65  83  64  51  84  85  63  76  21  18  19  23  25  77  58  97  13  9  10  17  78  60  55  100  70  68] 

 

 

 
 

Solution for RC2-07: Black dots indicate 100 customer sites; the depot is 

represented by a black rectangle near the centre of map and routes are identified 

with different line styles. 
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Appendix 2 

 

Enlarged views for the evolution progress of Pareto front for the 12 test cases in 

normal category. The initial generation (First), two intermediate generations (Int 1 

and Int 2) and the final generation (Final) are plotted with different markers. As the 

evolution proceeds, the diversity of the population increases significantly and the 

non-dominated solutions gradually evolve towards the final trade-off curve. A 

dashed line connecting all the final non-dominated solutions is drawn for each test 

case, which clearly shows the final trade-off or routing plan obtained by the 

HMOEA. 
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