
Int J Parallel Prog (2015) 43:812–839
DOI 10.1007/s10766-014-0343-4

Co-operation in the Parallel Memetic Algorithm

Jakub Nalepa · Miroslaw Blocho

Received: 9 September 2014 / Accepted: 23 October 2014 / Published online: 13 November 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Evolutionary algorithms (EAs) have been attracting research attention for
last decades. They were shown to be very efficient in solving various complex opti-
mization problems in most fields of science and engineering. In EAs, the population of
solutions evolves in time to explore the search space. Parallel EAs became an important
stream of development due to a wide availability of parallel computer architectures.
Thus, designing parallel algorithms utilizing hundreds of CPU cores efficiently is
critical nowadays. In this paper, we investigate the impact of selecting a co-operation
scheme for the parallel memetic algorithm (PMA-VRPTW) to solve the NP-hard vehi-
cle routing problem with time windows. In the island-model PMA-VRPTW, which
is a hybrid of a genetic algorithm applied to explore the search space, and some
refinement methods to exploit solutions already found, a number of populations are
evolved in parallel. Processes then co-operate and exchange solutions according to
the co-operation scheme (migration policy, interval, and topology). Extensive experi-
mental study (which comprised more than 1,584,000 CPU hours on an SMP cluster)
performed on 1000-customer Gehring and Homberger’s (GH) benchmark tests gave
a detailed insight into the PMA-VRPTW performance and search capabilities. We
report 19 (32% of all 1000-customer GH tests) new world’s best solutions obtained
using the best co-operation schemes. Finally, we give clear and consistent guidelines
on how to select a proper co-operation scheme in PMA-VRPTW based on the test
characteristics.

J. Nalepa (B)
Institute of Informatics, Silesian University of Technology, Akademicka 16,
44-100 Gliwice, Poland
e-mail: jakub.nalepa@polsl.pl

M. Blocho
ABB ISDC, Zeganska 1, 04-713 Warsaw, Poland
e-mail: miroslaw.blocho@pl.abb.com

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81899069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-014-0343-4&domain=pdf

Int J Parallel Prog (2015) 43:812–839 813

Keywords Parallel memetic algorithm · Island model · Co-operation ·
Migration topology · Vehicle routing problem with time windows

1 Introduction

Route scheduling is one of the most important real-life problems and plays a pivotal
role in transportation, supply chain management and logistics. Its practical applica-
tions encompass the bus route planning, post, food and beverage delivery, cash delivery
to banks and ATM terminals, industrial waste collection, maintenance operations, and
many more. While constructing the routing schedule for a given distribution prob-
lem, it is necessary to consider a large number of practical issues, e.g., the available
fleet size, truck capacities, travel costs between geographically dispersed customers,
possible time intervals in which customers should be visited, and numerous other
circumstances.

Minimizing the number of trucks and their total distance traveled during the ser-
vice contributes to reducing the fleet exploitation costs and fuel consumption. Also, it
lessens the price of delivered goods, since transportation expenses constitute a signif-
icant percentage of their value [26]. Moreover, it can help reduce the environmental
pollution and traffic congestion, which is an important concern nowadays [29]. Numer-
ous variants of vehicle routing problems (VRPs) emerged in order to reflect real-life
scheduling scenarios [20]. In the multiple traveling salesperson problem (mTSP),
which is an extension of a standard traveling salesperson problem, more than one
salesperson is allowed to be exploited in the solution [7]. Here, each customer has
assigned a non-negative demand, which should be satisfied by the visiting salesper-
son. The fleet size (corresponding to the number of salesmen in mTSP) becomes
an important criterion of optimization, apart from the total travel costs. Taking into
account the limited capacities of the vehicles led to formulating the capacitated vehicle
routing problem (CVRP). In CVRP, the fleet is composed of a number of vehicles with
well-defined, possibly different load capacities, which cannot be exceeded in a fea-
sible solution. In real-life transportation problems, it is common that customers want
to get their orders within a specified time interval. The vehicle routing problem with
time windows (VRPTW) addresses this issue by incorporating additional constraints
concerning delivery time [33].

State-of-the-art techniques to solve the VRPTW are divided into exact and approx-
imate methods. Since the VRPTW is NP-hard, the former approaches can be applied
only for relatively small problem instances. Hence, various heuristic algorithms (both
sequential and parallel), that do not guarantee obtaining the optimal solution, have been
introduced over the years for solving the VRPTW in a reasonable time. They include,
among others, simulated annealing [69], tabu search algorithms [28], ant colony sys-
tems [26], swarm optimization algorithms [30], evolutionary approaches [57], and
many more. Recently, a number of efficient genetic and memetic algorithms—both
sequential and parallel—have been proposed for the VRPTW [25,46,50,66].

Memetic algorithms (MAs), which are built upon a population-based approach,
and balance exploration with exploitation of the search space, have attracted research
attention, and have been applied for solving the VRPTW recently [46,50,66]. They

123

814 Int J Parallel Prog (2015) 43:812–839

were shown to be very efficient in solving large-scale VRPTW instances. In order
to speed up the computations, and to explore larger regions of the search space, we
had proposed and recently improved an island-model parallel memetic algorithm for
the VRPTW [8,12,47–49]. Although we demonstrated its efficacy, its main drawback
lies in selecting a proper co-operation scheme of parallel processes (i.e., migration
topology, interval, the immigration/emigration policy, and the number of emigrants).
In this paper, we carefully investigate the proposed co-operation schemes to deter-
mine their impact on the parallel MA performance. Our intensive experimental study
conducted on the standard benchmark Gehring and Homberger’s (GH) set (with 1000
customers) gave detailed insights into the schemes’ performance and behavior. We
report 19 new world’s best solutions to the GH tests obtained with the use of best
co-operation schemes in our parallel MA.

1.1 Contribution

Although parallel EAs (PEAs) proved to be very efficient in solving a variety of
optimization problems in many fields, establishing a proper co-operation scheme of
parallel processes which ensure good convergence of the algorithm is not a triv-
ial task. Improperly determined migration topology and interval can easily jeop-
ardize the algorithm performance and computation time. In this paper, we pro-
pose to apply co-operation schemes which can help improve both exploration
and exploitation capabilities of our parallel memetic algorithm (PMA-VRPTW) to
solve the largest-scale VRPTW benchmark problem tests (with 1000 customers
to serve). We expand our previous research [47], in which we determined three
most promising migration topologies for PMA-VRPTW (based on results obtained
for 400-customer tests). Here, we apply these schemes in PMA-VRPTW, and per-
form the in-depth analysis to find out how they influence the algorithm behav-
ior. Also, we incorporate various migration intervals, and investigate their impact
on the PMA-VRPTW convergence. We report new world’s best solutions for
19 (out of 60) 1000-customer Gehring and Homberger’s tests obtained in our
extensive experimental study. Finally, we give clear guidelines on how to select
the best co-operation scheme in PMA-VRPTW based on the test characteris-
tics.

1.2 Paper Outline

The outline of this paper is as follows. The problem is formally defined in Sect. 2.
Section 3 reviews the state-of-the-art algorithms for the VRPTW, and shows current
advances in PEAs. Section 4 discusses in detail PMA-VRPTW, along with the co-
operation schemes. The results of an extensive experimental study performed on the
standardGehring andHomberger’s benchmark set are reported and analyzed in Sect. 5.
Finally, Sect. 6 concludes the paper, summarizes the findings, and highlights directions
of our future work.

123

Int J Parallel Prog (2015) 43:812–839 815

2 Problem Formulation

TheVRPTW is a problem of servingM customers by K vehicles of a constant capacity
Q. There is a single depot (v0), which is the start and the finish point of each route.
The customers vi , i ∈ {1, 2, . . . , M}, have assigned their own service times si , i ∈
{1, 2, . . . , M}. Serving the depot does not take any time (s0 = 0),whereas the customer
service times are non-negative. A non-negative demand di , i ∈ {1, 2, . . . , M}, is
given for each customer. A geographic dispersion of customers is known, and the
travel costs between each pair of travel points are given as c(i, j), where i �= j , and
i, j ∈ {0, 1, . . . , M}. Additionally, each customer and the depot specifies its earliest
and latest time of starting the service (i.e., time window), ei and li respectively (i ∈
{0, 1, . . . , M}).

Formally, the VRPTW is defined on a directed graph G = (V, E) with a set
V of M + 1 vertices representing the customers and the depot, along with edges
E = {〈vi , v(i+1)〉|vi , v(i+1) ∈ V, vi �= v(i+1)}, representing the travel connections.
The i th route is defined as an ordered list of mi customers served by a single vehicle:
ri = 〈v0, v(ri (1)), . . . , v(mi+1)〉, where v0 = v(mi+1) is the depot, and v(ri (j)) is the j th
customer visited within ri .

2.1 Objectives and Constraints

The primary objective is to minimize K (K ≥ �D/Q�, where D = ∑M
i=1 di). Sec-

ondly, the traveled distance T is to be minimized, where T is given as

T =
M∑

i=0

M∑

j=0

K∑

k=1

x(i, j,k)c(i, j). (1)

If the kth vehicle travels from vi to v j , then x(i, j,k) = 1 (0 otherwise).
Every customer is visited exactly once, and each route starts and finishes at v0. The

capacity and the time window constraints must hold for each route. The total amount
of goods delivered to customers cannot therefore exceed Q, and the service of each
customer must start before its time window closes. If a vehicle visits v(i+1) within its
time window (e(i+1) ≤ a(i+1) ≤ l(i+1), where a(i+1) is the arrival time at v(i+1)), then
the service is immediate. The vehicle may arrive at v(i+1) before e(i+1), but the service
cannot initiate before the time window opens (there is the waiting time w(i+1)). If a
vehicle visits v(i+1) after closing its time window (a(i+1) > l(i+1)), then the service is
not feasible.

Let σA and σB be two VRPTW solutions. Then, σA is of a higher quality than σB ,
if (K (σA) < K (σB)), or (K (σA) = K (σB) and T (σA) < T (σB)).

2.2 Example

An exemplary solution σ of the VRPTW instance containing 25 customers is
presented in Fig. 1. This solution consists of three routes (r1, r2, and r3):

123

816 Int J Parallel Prog (2015) 43:812–839

Fig. 1 An exemplary solution
to the VRPTW instance with 25
clients served in three routes

v
0

1

2

3

4

5

6

7

9

10

11

12

13

14

15

16

17

18

19

20

21 22

23

24

25

v
8 v v v

v

v

v
v

v

v

vv
v

v

v

v

vv

v
vv

v

v

v v

r1 = 〈v0, v8, v10, v12, v21, v22, v23, v24, v25, v17, v14, v0〉 (10 customers are vis-
ited), r2 = 〈v0, v11, v15, v19, v20, v18, v16, v13, v9, v7, v0〉 (9 customers), and r3 =
〈v0, v6, v2, v1, v4, v3, v5, v0〉 (6 customers). It is easy to see that each customer vi ,
i ∈ {1, . . . , 25}, is served exactly once. Assuming that the vehicle loads do not exceed
the maximum capacity in any route, and the time window constraints are not violated,
this routing schedule σ is feasible.

3 Related Literature

3.1 Vehicle Routing Problem with Time Windows

Due to its wide practical applicability, the VRPTW attracted research attention over
the years. Although the optimal solutions can be obtained using exact algorithms,
their computation time is not acceptable for large-scale problem instances. Thus, a
plethora of heuristic algorithms have been proposed, which find high-quality (but not
necessarily optimal) solutions in a reasonable time.

Exact algorithms for the VRPTW inherit from works devoted to solving the
TSP [33]. In a majority of them, minimizing the travel distance is considered as
the single objective. Desrochers et al. proposed to formulate the VRPTW as a set
partitioning problem [21], where all feasible routes are considered implicitly. Since
the number of possible routes rapidly grows for an increasing number of customers,
only a subset of all routes is included in the model. Then, a relaxed shortest path
problem is solved to verify if there are feasible routes which decrease the total travel
distance. A branch-and-cut procedure for minimizing the number of vehicles was pre-
sented in [6]. Irnich and Villeneuve adopted the elementary shortest path problemwith
resource constraints for the VRPTW [31]. Various VRPTW formulations, including
the path, arc, arc-node, and spanning tree formulations, have been studied by several
authors [3,15,23,36,37,58]. Exact methods were summarized in a bunch of thorough
surveys and reviews [4,19,22,33].

Although exact algorithms for solving the VRPTW are still being developed, they
are not applicable for large-scale problem instances. Also, they are strongly depen-
dent on the time window characteristics of a specific test case [66]. In contrary to
exact methods, in heuristic techniques two VRPTW objectives are usually consid-
ered independently. Two-stage techniques (both sequential and parallel), in which K

123

Int J Parallel Prog (2015) 43:812–839 817

is minimized at first, and then T is optimized, are of a high research interest. They
enable designing effective algorithms for both optimization stages independently.

Heuristic methods can be grouped into construction and improvement techniques.
In the former case, unserved customers are iteratively inserted into a partial solu-
tion [53–55,62,64]. Alternatively, improvement heuristics modify an initial solution
to explore new regions of the solution space, e.g., by applying some local search pro-
cedures [13,45]. Meta-heuristic algorithms, which often embed methods for explor-
ing the search space coupled with local search improvement techniques used for its
exploitation, allow for existing infeasible solutions and deteriorating their quality tem-
porarily. These approaches include simulated annealing [16], tabu searches [28], ant
colony optimization [18], swarm optimization algorithms [30], and many other tech-
niques [5,13].

EAs have been extensively explored for the VRPTW [57]. In genetic algorithms
(GAs), solutions (chromosomes) are successively optimized in the biologically-
inspired manner. Chromosomes are selected, crossed-over, and mutated. Memetic
algorithms (MAs)—also known as hybrid genetic algorithms—are built upon a similar
approach. They combine EAs for the search space exploration, along with refinement
procedures applied to exploit solutions already found [46,50]. Vidal et al. recently pro-
posed an efficient hybrid genetic algorithm which evolves both feasible and infeasible
solutions [66]. It is worth mentioning that MAs have been applied to a wide spectrum
of other optimization and pattern recognition problems [27,32,38,39,41,51].

3.2 Parallel Evolutionary Algorithms

Parallel evolutionary algorithms (PEAs) became a vital research topic thanks to their
applicability and availability of various parallel architectures and services, ranging
from multicore personal computers, massively parallel graphics processing units, to
clusters and computation clouds. The early days of parallel EAs have been summarized
in thorough surveys and reviews [2,14]. The implementation issues of PEAs along
with their computation models were discussed in an excellent survey by Alba and
Tomassini [1].

There exist a number of parallel computation models defining how distributed
algorithm components co-operate during the PEA execution [63]. In the simplest
PEAs, parallel algorithm components run independently without any communication.
Finally, the results obtained during the execution are collected to determine the highest-
quality solution. This model can be considered as a batch model, in which sequential
executions of an EA are batched and executed on a parallel machine to speed up the
computation. In master-slave models, a single machine in the system is promoted to
act as the master, which distributes the workload to other working machines.

Communication of parallel processes is crucial to guide the search during the PEA
execution. Since some processes may have already reached the promising regions of
the search space, it is beneficial to distribute this knowledge among other processes
which could have stuck in local minima. In the most popular parallel models—island
models (also referred to as distributed EAs)—each process (an island) optimizes its
population independently from other islands. If the islands run the same EA, then the

123

818 Int J Parallel Prog (2015) 43:812–839

system is homogeneous (it is heterogeneous otherwise). The solutions already found
in the system are periodically exchanged between the islands. This co-operation is
defined by the migration topology and interval (what is the communication path and
when the co-operation is performed), immigration/emigration policy (what happens
with the obtained/sent solutions), and the number of solutions (migrants) sent between
each two islands. The choice of each design setting from the above-mentioned ones
is not trivial and significantly affects the PEA performance and behavior. There exist
variants of an island model, in which every island contains a single individual in the
population, and the mating of an individual is limited to its neighbors. These models,
exposing a fine-grain parallelism, are referred to as cellular EAs. In co-operative co-
evolutionary GAs, optimization problems are divided into subproblems which are
independently solved by different parallel populations evolved in (possibly different)
EAs. The parallel components communicate later to build a complete solution from
concurrently obtained solutions of the subproblems. An excellent review of parallel
models and their advantages and disadvantages has been published recently [63].

Similarly to their sequential counterparts, PEAs have been continuously being
employed to a plethora of (single- and multi-objective) optimization problems. These
applications include, but are not limited to, various scheduling [42,67], routing [68],
and assignment problems [40,61], tomography reconstruction [17], classification
problems [60], and many others [52,59,65]. Recently, we had proposed and then
improved the parallel memetic algorithm for solving the VRPTW [9–12,47–50]

4 Parallel Memetic Algorithm

4.1 Algorithm Outline

In PMA-VRPTW (Algorithm 1), each individual pi , i ∈ {1, 2, . . . , N }, corresponds
to a solution σi with K routes (K (pi) = K (σi) = K , and T (pi) = T (σi))1 in a
population of size N (on an island). The initial population is generated using a parallel
guided ejection search (P-GES). Its sequential counterpart was proposed in [45], and
later improved and parallelized in our recent works [49]. P-GES minimizes K at
first, and then is used to create initial populations (lines 1–2). They are evolved in
PMA-VRPTW to optimize T (lines 3–28).

Following the taxonomy discussed in Sect. 3.2, PMA-VRPTW is classified as a
homogeneous island-model parallel memetic algorithm, since each island (a parallel
process) runs the same MA to minimize T , and the islands communicate to exchange
the knowledge acquired up to date.

4.2 Initial Population

In P-GES (an island-model heuristics), each customer is served within a separate
route at first (K = M). P-GES repeatedly attempts to decrease K by one at a time.

1 We will use pi and σi interchangeably in this paper.

123

Int J Parallel Prog (2015) 43:812–839 819

Algorithm 1 Parallel memetic algorithm (PMA-VRPTW).
1: Minimize the fleet size K using P-GES;
2: Generate N solutions with K routes for each Pi , i = 1, . . . , n (using P-GES);
3: parfor Pi ← P1 to Pn do
4: f inished ← false;
5: z ← 0; � Initialize the co-operation counter
6: while not f inished do
7: Determine N pairs (pa , pb);
8: for all (pa , pb) do
9: pBc ← pa ;
10: for i ← 1 to Nc do
11: pc ← GenerateChild(pa , pb); � Fig. 2
12: if T (pc) < T (pBc) then
13: pBc ← pc;
14: end if
15: end for
16: end for
17: Form the next population of size N ;
18: if z mod δ = 0 then
19: Determine emigrant(s) to be sent;
20: Send selected emigrant(s) to the neighboring island;

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Co-operation
21: Receive immigrant(s) from the neighboring island;
22: Handle immigrant(s) according to the immigration policy;
23: end if
24: z ← z + 1; � Increase the co-operation counter
25: Verify termination condition and update f inished;
26: end while
27: end parfor
28: return best solution among all islands;

The customers from a random route r are inserted into the ejection pool (EP) (a
set of unserved customers). The attempts of re-inserting them into the solution are
undertaken. If there are no feasible insertions for a customer popped from the EP, then
the other ones are removed from σ and put into the EP. The n islands co-operate to
exchange their best solutions.

P-GES executes until K = �D/Q� (see Sect. 2), or its computation time exceeds
the limit τK . Then, it is executed until N solutionswith K routes are found for each (out
of n) island, or its execution time surpasses τN . Finally, the maximum computation
time of minimizing K and generating the initial population is τI = τK + τN . It is easy
to note that PMA-VRPTW is not dependent on P-GES, and it can be thus conveniently
replaced by another, perhaps more efficient heuristics (either sequential or parallel) to
minimize K .

4.3 Selection

Once the initial population is created, it evolves with time to minimize the total travel
distance. First, N pairs (pa, pb) of individuals from the i th generationGi are selected to
create the (i+1)th generationG(i+1), according to the selection scheme (Algorithm 1,
line 7, see also Fig. 2). In this paper, we utilize the AB-selection (AB), which proved to
have high exploration capabilities [34,50]. Here, each individual pi , i ∈ {1, 2, . . . , N },

123

820 Int J Parallel Prog (2015) 43:812–839

pa

N individuals
pb

pc

Selection Crossover

Repair Education

pc pc pc

Mutation

Fig. 2 Creation of a child in each island in PMA-VRPTW

is selected as pa at first. Then, the individual p′
i is chosen as pb, such that pi �= p′

i .
Each individual can be selected once as pa , and once as pb. This selection takes O(N)

time.

4.4 Crossover

For each pair (pa, pb), Nc children pc are generated using the edge assembly crossover
operator (EAX) (Algorithm 1, lines 10–15), firstly introduced for the TSP [43], and
later adapted to both the CVRP [44], and the VRPTW [46]. It takes T EAX(M) =
O(M2) time, where M is a number of customers [8].

The EAX combines two feasible VRPTW solutions σa and σb (individuals pa and
pb) consisting of K routes. Let the graphsGa andGb correspond to σa and σb (Fig. 3a,
b). Then, the EAX operation comprises the following steps:

1. A new set ((Ea ∪ Eb) \ (Ea ∩ Eb)), where Ea and Eb are the sets of edges in Ga

and Gb (Fig. 3a, b), is found and forms the graph Gab (Fig. 3c).
2. All Gab edges are divided into AB-cycles (Fig. 3d–f), which consist of the Gab

edges traced alternately—the Ea edges are traced in the forward direction, whereas
the others are traced reversely.

3. The E-set (ES)—a randomAB-cycle (single mode, with the probabilityPs = 0.5),
or a combination of AB-cycles sharing at least one node (block mode, Pb =
1 − Ps)—is found. We took the 2nd AB-cycle (Fig. 3d) as ES .

4. The intermediate solution is constructed from pa by removing Ea ∩ ES , and
adding Eb ∩ES . Then, there are K routes, and possibly some infeasible subroutes,
i.e., routes without the depot (Fig. 3g).

5. If the subroutes exist, then a random one to delete is chosen, and its customers
are merged with other routes using 2-opt* moves (see Sect. 4.5). This process
continues until all subroutes are removed (Fig. 3h).

4.5 Repair, Education, and Mutation

The repair, education, and mutation procedures are the hill-climbing methods based
on traditional neighborhoods for VRPTW [35,46,56], summarized in Table 1. Here,
v(i−1) denotes the predecessor of vi , and v(i+1) is its successor in the route rα . Similarly,
v(j−1), v j , and v(j+1) are defined for rβ .

123

Int J Parallel Prog (2015) 43:812–839 821

(a) (b) (c) (d)
1

2
3

(e) (f) (g) (h)

4

5

6

Fig. 3 Illustration of the EAX operator applied to pa and pb: a the graph Ga corresponding to σa (light
red), b Gb corresponding to σb (dark blue), c the edges from Ea ∩ Eb are removed from Ea ∪ Eb to form
Gab ((Ea∪Eb)\(Ea∩Eb)), d–f six AB-cycles, g the intermediate solution ((Ea \(Ea∩ES))∪(Eb∩ES)),
h Gc corresponding to pc (Color figure online)

Table 1 Local search moves applied in PMA-VRPTW

Move Removed edges Added edges

2-opt* 〈vi , v(i+1)〉, 〈v j , v(j+1)〉 〈vi , v(j+1)〉, 〈v j , v(i+1)〉
Out-exchange 〈v(i−1), vi 〉, 〈vi , v(i+1)〉, 〈v(i−1), v j 〉, 〈v j , v(i+1)〉,

〈v(j−1), v j 〉, 〈v j , v(j+1)〉 〈v(j−1), vi 〉, 〈vi , v(j+1)〉
Out-relocate 〈v(i−1), vi 〉, 〈vi , v(i+1)〉, 〈v(j−1), vi 〉, 〈vi , v j 〉,

〈v(j−1), v j 〉 〈v(i−1), v(i+1)〉
In-exchange 〈v(i−2), v(i−1)〉, 〈v(i−1), vi 〉, 〈v(i−2), v(i+1)〉, 〈v(i+1), vi 〉,

〈vi , v(i+1)〉, 〈v(i+1), v(i+2)〉 〈vi , v(i−1)〉, 〈v(i−1), v(i+2)〉
In-relocate 〈v(i−1), vi 〉, 〈vi , v(i+1)〉, 〈v(i−1), v(i+1)〉, 〈v(i+1), vi 〉,

〈v(i+1), v(i+2)〉 〈vi , v(i+2)〉
GENIUS-exchange 〈v(i−1), vi 〉, 〈vi , v(i+1)〉, 〈v(i−1), v(i+1)〉, 〈v(j−2), vi 〉,

〈v(j−2), v(j−1)〉, 〈v j , v(j+1)〉, 〈vi , v(j+1)〉, 〈v(j+1), v(j−1)〉,
〈v(j+1), v(j+2)〉 〈v j , v(j+2)〉

Let N (σ) be the neighborhood of σ obtained by applying the mentioned moves.
Since it encompasses a huge number of solutions, we limit its size by considering Nvi

nearest customers for vi in each move. Calculating the load change after a move is
obvious (O(1) time),whereas to evaluate the timewindowpenaltywe use the approach
proposed in [46] (O(1) for 2-opt*, out-exchange, and out-relocate, O(m) for other
moves, where m is the route size).

123

822 Int J Parallel Prog (2015) 43:812–839

If σc is infeasible, then it needs to be repaired (double-lined box in Fig. 2), by
performing local search moves to decrease the penalty ξ(σ) = β1Pc(σ) + β2Ptw(σ),
where Pc(σ) and Ptw(σ) represent the capacity and time window violations, mul-
tiplied by some coefficients β1 and β2. We set β1 = β2 = 1.0, and Nvi = 50 as
suggested in [46]. An infeasible route r is selected randomly from σc at first. Then, the
set

⋃
v∈r N (σc, v) of subneighborhoods created for each customer that violates the

constraints within r , is determined. Finally, a new solution σ ′
c, σ

′
c ∈ ⋃

v∈r N (σc, v),
which minimizes ξ(σ), replaces σc. This process executes until σc is feasible, or there
are no further repair moves.

If pc is feasible, then it is educated by feasible moves decreasing T (pc). If there
are no more improvement moves, the process stops. pc is then mutated by at most IM
feasible moves (in this work we set IM = 300). The best feasible child pBc for this
pair of parents is updated if it is necessary (Algorithm 1, line 13). Finally, pBc replaces
pa in the next generation if T (pBc) < T (pa) (line 17).

The crossover, repair and education procedures—being the most time-consuming
parts of the MA run by each island in PMA-VRPTW—require O(M2) time. Perform-
ing these operations for N pairs of parents to generate Nc children takes TG = coNM2

for a constant co. Themaximumnumber of generations is bounded by another constant
cg , co < cg , due to the execution time limit. Hence, the time complexity of the MA
run by each island is O(M2).

It is worth to mention that we do not incorporate any diversity management proce-
dures into theMA run by each island (e.g., regenerating the population if it encounters
the diversity crisis). We avoid introducing new genetic material during the PMA-
VRPTW execution in order to better verify how it copes with the local minima faced
during the optimization (especially while applying various co-operation schemes dis-
cussed in Sect. 4.6).

4.6 Co-operation

The n islands in PMA-VRPTW co-operate periodically (according to the migration
interval δ, Algorithm 1, line 18) to guide the search towards solutions of a better qual-
ity. This process is highlighted by a curly brace in Algorithm 1 (lines 19–22). First,
the emigrants (i.e., solutions to be sent from the island) are determined (line 19). The
emigrants are then transferred to the neighboring island (according to the migration
topology) (line 20). This operation may be done either synchronously or asynchro-
nously. In the former case, the sending island waits until the send operation is finished.
In this paper, we send the emigrants asynchronously, i.e., the algorithm execution at
the sending island proceeds while the communication progresses. Additionally, the
selected emigrants are transferred only if they have been updated since the previous
co-operation (to avoid unnecessary data transfer).

After acquiring (one or more) immigrants, they are handled by the receiving island
according to the policy defined by the co-operation scheme (line 22). They may (i) be
appended to the population, (ii) replace some individuals at the receiving island, or
(iii) be crossed-over with other individuals.

123

Int J Parallel Prog (2015) 43:812–839 823

(c)(b)(a) X

X

X

XX

XX

X

Fig. 4 Migration topologies: a Ring, b R-EAX (X denotes the EAX operation), c KS. The master process
(island) is rendered in light green (Color figure online)

In our earlier work [47], we investigated different co-operation schemes:

1. Independent runs. Each island runs the MA independently without any co-
operation. Finally, solutions are compared and the best one is chosen.

2. Pool. Each island sends to the nominatedmaster island the best pB in its population,
and it is inserted into the pool. The master determines ηN , 0 < η < 1, best
solutions, which replace ηN random ones in each island.

3. Pool with EAX (P-EAX). The regular pool is enhanced by the EAX operator
employed while handling ηN immigrants by each island. The solution pa—that is
being replaced—is crossed-over with the immigrant pI , if pa �= pI , to generate
pIc . If p

I
c is feasible, then it replaces pa .

4. Ring. The migration topology constitutes a ring.
5. Randomized EAX (R-EAX). The regular ring is enhanced by the EAX operator.

Also, the migration topology (order of islands in the ring) is randomized, and
determined by the master before each co-operation.

6. Knowledge synchronization (KS). The nominated master island synchronizes
the knowledge acquired by all islands during the search (i.e., distributes the best
solutions among the islands).

An initial experimental study performed on 400-customer GH tests clearly indicated
that the three last schemes (i.e., Ring, R-EAX, and KS) significantly outperformed the
other ones in terms of the convergence time, and balancing exploration and exploita-
tion capabilities of PMA-VRPTW [47]. The corresponding migration topologies of
these schemes are given in Fig. 4, along with the other characteristics highlighted in
Table 2.

Although the initial experiments gave a rough overview of the co-operation
schemes’ performance, we did not consider the impact of the migration interval on
the final results. Also, most demanding tests (with 1000 customers) were not inves-
tigated. Therefore, in this paper we aim at performing an in-depth analysis of the
PMA-VRPTW behavior for each co-operation scheme. Additionally, we define two
migration intervals (δ = 2 and δ = 20, given in the number of consecutive generations)
to verify their impact on final solutions, and exploration and exploitation capabilities
of the parallel MA.

It is easy to see that the time complexity of PMA-VRPTW includes the time
complexity of the applied co-operation scheme (see TC in Table 2), and is given

123

824 Int J Parallel Prog (2015) 43:812–839

Table 2 Summary of the investigated co-operation schemes

Characteristic ↓ Ring R-EAX KS

Migration topology Figure 4a Figure 4b Figure 4c

Number of emigrants 1 (pB) 1 (pB) 1 (pB)

Number of immigrants 1 1 Nb , N > Nb ≥ 1

Immigration policy Replace pB , if
T (pB) > T (pI)

Replace pB , if
T (pB) > T (pI),
otherwise pIc ←
X (pB , pI), and
pIc replaces pB , if
T (pB) > T (pIc)

Replace Nb worst
individuals

Emigration policy Keep emigrants in the sending island’s population

Migration interval (δ) δ = 2 or δ = 20 (the number of consecutive generations)

Time complexity (TC)a nM nM2 2nM + n log n

a Time complexity of a single co-operation phase

as TPMA(n, M) = cp(coNM2 + ccTC), where cp and cc are some constants. Since
we impose the time limit on PMA-VRPTW (τP), cp is bounded by another con-
stant (see the analysis in Sect. 4.5). Thus—in the worst case—the time complexity of
PMA-VRPTW is O(M2 + nM2) (for a constant population size N), if the R-EAX
co-operation scheme is applied (see Table 2).

5 Experimental Results

5.1 Setup

The PMAwas implemented in C++ using theMessage Passing Interface (MPI) library.
The source code was compiled using Intel 10.1 compiler and MVAPICH1 v0.9.9
MPI library. The performance experiments were conducted on Galera supercomputer
(http://task.gda.pl/hpc-en/), whose total theoretical peak performance has been esti-
mated to 50 TFLOPS. It is equipped with 1344 Intel Xeon Quad Core 2.33 GHz
processors (5376 cores), each with 12 MB level 3 cache. The nodes were connected
by the Mellanox InfiniBand DDR fat-free interconnect (throughput 20 Gbps, delay 5
μs). This supercomputer was executing Linux operating system.

PMA-VRPTWwas executed on 96 processors2 (n = 96), and its maximum execu-
tion time limits were as follows: τK = 10 min., τN = 60 min. (thus, τI = τK + τN =
70 min.), and τP = 660 min. (see Sect. 4 for more details). The population size and
the number of children generated for each pair of parents in the MA (run by each
island) were not changed (i.e., controlled) during the PMA-VRPTW execution, and
were experimentally tuned to the following values: N = 100, and Nc = 20. For each
GH instance, the algorithm was run 5 times for each co-operation scheme (and each

2 Either a uniprocessor or a core of a multicore processor.

123

http://task.gda.pl/hpc-en/

Int J Parallel Prog (2015) 43:812–839 825

Table 3 Overview of Gehring and Homberger’s test characteristics

Characteristic ↓ C1 C2 R1 R2 RC1 RC2

Structure Clustered Clustered Random Random Mixed Mixed

Time windows Tight Wide Tight Wide Tight Wide

Vehicle capacities Small Large Small Large Small Large

migration interval). It gives at least3 (96 processors) × (660 min.) × (5 runs) × (50
GH tests) × (3 co-operation schemes) × (2 migration intervals) = 1,584,000 CPU
hours of the entire experimental study.

5.2 Dataset

PMA-VRPTW was tested on a classical benchmark set proposed by Gehring and
Homberger [24], which reflects various real-life scheduling circumstances. All large-
scale tests are split into subclasses, containing customers grouped into clusters (C
subclass), dispersed randomly on the map (R subclass), and those with a mix of
clustered and randomized customers (RC subclass). There are problemswith relatively
small vehicle capacities and short time windows (C1, R1, and RC1), and those with
larger vehicle capacities and a longer scheduling horizon (C2, R2, and RC2) (see
Table 3). These characteristics strongly influence the structure of final solutions, e.g., a
larger fleet is necessary to serve customers in the case of small truck capacities and
tight time windows.

There are problems with various M’s, M ∈ {200, 400, 600, 800, 1000}. Each
Gehring and Homberger’s (GH) subclass contains 10 problems (60 instances in total
for each M). Tests are distinguished by their unique names: α_β_γ , where α denotes
the subclass,β relates toM (2 for 200, 4 for 400, and so forth), and γ is the test identifier
(γ ∈ {1, 2, . . . , 10}). In this study, we focus on the most demanding 1000-customer
GH tests. The world’s best (currently known) results for GH tests are summarized at
the SINTEF website.4 Note that the world’s best results is a set of solutions obtained
using various algorithms (both sequential and parallel)—see the SINTEF website for
details.

5.3 Analysis and Discussion

The first stage of PMA-VRPTW consists in minimizing the number of vehicles (K).
We utilized the parallel guided ejection search (P-GES) to optimize K at first (within
the time τK), and then to generate an initial population of N solutions for each island
(within τN . For details see Sect. 4). If τN appears not enough to generate N solutions

3 We exclude the P-GES execution time here. Also, we consider only 50 (out of 60) GH tests for which
PMA-VRPTW was run to optimize T (see Sect. 5.3).
4 http://www.sintef.no/Projectweb/TOP/VRPTW/; reference date: August 28, 2014.

123

http://www.sintef.no/Projectweb/TOP/VRPTW/

826 Int J Parallel Prog (2015) 43:812–839

for an island, then the remaining solutions are obtained by mutating the already-found
individuals (i.e., by applying 200 local search moves) (see Sect. 4.5).

It is worth noting, that solutions with lower K are usually characterized by a larger
travel distance T (if Kα < Kβ then Tα > Tβ in most cases). Since we focus on
the travel distance minimization in PMA-VRPTW, we omit 10 GH instances5 in the
analysis, for which P-GES did not manage to find solutions with K = KWB, where
KWB is the world’s minimum number of routes, in order to provide a fair comparison.
For each of the mentioned tests P-GES ended up with solutions containing K =
KWB+1 routes (for other tests K = KWB). Despite its significant time complexity [8],
P-GES runs very fast in practice—the average times of generating a single individual
in a population were (given in seconds): τ A

K = 28.73 (C1 class), τ A
K = 91.74 (C2),

τ A
K = 6.69 (R1), τ A

K = 17.53 (R2), τ A
K = 6.40 (RC1), and τ A

K = 181.80 (RC2). These
times are neglectable compared to the execution time of PMA-VRPTW. As already
mentioned, PMA-VRPTW is independent from P-GES, and it can be easily replaced
by a more efficient route minimization algorithm.

The best results (out of 5 independent runs) obtained using PMA-VRPTW for each
GH instance, along with the best results averaged across the subclasses (for each
problem instance) are given in Tables 4 and 5, for δ = 2 and δ = 20, respectively. The
best T ’s among co-operation schemes are rendered in boldface. Also, we present the
results that are better than the current world’s best ones (they are indicated by the

symbol). It is easy to see that the Ring and KS schemes significantly outperformed R-
EAX for both migration intervals. This clearly indicates that the additional crossover
of solutions (the immigrant and the best individual in an island’s population) does not
result in a significant improvement of final solutions. However, for clustered customers
with tight time windows (C1 class), the EAX structural changes appeared beneficial
and R-EAX slightly outranked the other schemes (Ring was outdone by 0.24% for
δ = 2, and 0.05% for δ = 20, and KS by 0.13% for δ = 2, and 0.15% for δ =
20). This, in turn, shows that the local changes (resulting from the education and
mutation) of best individuals were not able to improve locally-optimal solutions of
tests with geographically grouped customers (and that the best solutions are close to
the “feasibility border”). In contrary, both Ring and KS gave much better results than
R-EAX for other GH subclasses. It is worthmentioning that PMA-VRPTWconverged
to the solutions better than already published for the entire R2 subclass, and for the
majority of RC2 tests (see Ring and KS in Tables 4 and 5).

The average results (out of 5 runs for each configuration) are given in Tables 6 and 7
(similarly, the best results6 are rendered in boldface, and those better than the world’s
best ones are annotated with
). The results show that Ring and KS provide the most
stable results, and are able to guide PMA-VRPTW to asymptotically similar solutions
(R-EAX reached very high-quality C1 solutions only). For frequent co-operation (δ =
2), KS turned out to be the best scheme on average, and managed to compensate

5 C1_10_6, C1_10_7, C1_10_8, C2_10_3, C2_10_6, C2_10_7, C2_10_8, RC2_10_1, RC2_10_2, and
RC2_10_5.
6 Not necessarily statistically significant. In order to perform significance tests, PMA-VRPTWwould have
to be executed much more number of times (e.g., 100 for each GH instance). Given a very large τP , it would
take an enormous amount of time, which is far beyond the scope of this work.

123

Int J Parallel Prog (2015) 43:812–839 827

Table 4 The best results (out of 5 runs) obtained using PMA-VRPTW with various co-operation schemes
(δ = 2)

Id ↓ C1 C2 R1 R2 RC1 RC2

Ring

1 42,478.95 16,879.24 53,687.82 42,188.86* 46,725.88 –

2 42,387.85 17,126.39 49,630.74 33,634.05 44,494.17 –

3 40,446.33 – 45,793.13 24,965.63* 42,772.49 20,050.71*

4 39,659.12 15,742.92 43,320.69 17,926.45* 41,835.34 15,869.82

5 42,469.18 16,561.57 52,186.14 36,243.51* 45,981.43 –

6 – – 48,411.62 30,123.53* 45,892.32 26,910.35*

7 – – 45,050.20 23,257.36* 45,245.68 25,116.15*

8 – – 43,017.17 17,585.79* 44,565.66 23,845.66

9 41,031.46 16,421.32* 51,042.39 33,064.26 44,841.57 23,112.13*

10 42,478.95 15,982.98 48,986.21 30,257.93* 44,214.03 22,048.98

Avg. 41,251.06 16,452.40 48,112.61 28,924.74 44,656.86 22,421.97

R–EAX

1 42,478.95 16,879.24 53,772.62 42,261.34 46,612.69 –

2 42,278.45* 17,126.39 49,832.97 33,570.65 44,781.82 –

3 40,338.02 – 46,237.88 25,029.43* 42,830.96 20,132.61

4 39,589.01 15,805.27 43,659.12 19,180.23 42,043.04 15,992.44

5 42,469.18 16,563.10 52,713.43 36,289.00* 45,850.40 –

6 – – 48,664.85 30,270.10 45,889.93 27,097.58

7 – – 45,393.80 23,730.70 45,382.16 25,380.63

8 – – 43,632.43 18,018.54 44,780.84 24,013.56

9 40,733.69 16,421.14* 51,364.94 33,146.76 44,757.77 23,292.42

10 40,167.29 16,022.40 49,411.66 30,428.55* 44,273.97 22,225.09

Avg. 41,150.66 16,469.59 48,468.37 29,192.53 44,720.36 22,590.62

KS

1 42,478.95 16,879.24 53,676.62 42,196.47* 46,694.35 –

2 42,339.90 17,126.39 49,877.76 33,550.62* 44,371.97 –

3 40,343.51 – 45749.74 24,989.17* 42,774.24 20,068.74

4 39,548.04 15,829.51 43,226.05 18,262.09 41,873.12 15,790.47

5 42,469.18 16,561.57 52,328.30 36,250.95* 45,962.10 –

6 – – 48,386.76 30,102.91* 45,622.36 26,883.75*

7 – – 45,001.07 23,270.90* 45,358.51 25,162.18*

8 – – 43,101.84 17,526.72* 44,684.21 23,822.03

9 40,898.81 16,372.32* 50,882.21 33,025.59* 44,532.34 23,089.01*

10 40,357.13 15,988.14 49,004.42 30,270.36* 44,287.86 22,004.78*

Avg. 41,205.07 16,459.53 48,123.48 28,944.58 44,616.11 22,402.99

The best result for each instance (among co-operation schemes) is rendered in boldface; T ∗ < TWB (TWB
is the world’s best currently known T)

123

828 Int J Parallel Prog (2015) 43:812–839

Table 5 The best results (out of 5 runs) obtained using PMA-VRPTW with various co-operation schemes
(δ = 20)

Id ↓ C1 C2 R1 R2 RC1 RC2

Ring

1 42,478.95 16,879.24 53,560.85* 42,188.86* 46,281.52 –

2 42,291.63* 17,126.39 49,350.91 33,554.71* 44,441.19 –

3 40,325.00 – 45,822.97 24,954.81* 42,782.41 20,084.70

4 39,638.56 15,755.22 43,152.26 17,997.69* 41,951.81 15,770.18

5 42,469.18 16,561.57 52,230.01 36,251.43* 45,801.99 –

6 – – 48,187.98 30,099.45* 45,674.32 26,864.81*

7 – – 45,099.17 23,344.99* 45,164.73 25,112.77*

8 – – 43,059.13 17,495.51* 44,679.94 23,709.29*

9 40,709.26 16,370.44* 50,653.74 33,019.95* 44,498.21 23,063.76*

10 40,296.60 15,981.89 48,779.67 30,242.35* 44,227.46 21,965.94*

Avg. 41,172.74 16,445.79 47,989.67 28,914.98 44,550.36 22,367.35

R–EAX

1 42,478.95 16,879.24 53,846.08 42,259.70 46,833.99 –

2 42,289.09* 17,126.39 50,190.39 33,912.29 44,772.67 –

3 40,340.90 – 46,280.64 25,106.05 42,877.25 20,229.46

4 39,555.09 15,908.75 44,507.48 19,421.25 42,400.06 17,124.27

5 42,469.18 16,563.10 52,659.74 36,352.12 45,927.56 –

6 – – 48,919.69 30,309.43 45,827.36 27,086.98

7 – – 45,808.16 23,636.36 45,418.16 25,471.85

8 – – 43,528.46 17,859.14 44,879.47 24,063.00

9 40,694.49 16,481.81 51,494.07 33,116.32* 44,878.70 23,297.83

10 40,231.23 16,116.81 49,742.52 30,499.52* 44,247.53 22,347.35

Avg. 41,151.28 16,512.68 48,697.72 29,247.22 44,806.28 22,802.96

KS

1 42,478.95 16,879.24 53,615.67* 42,188.86* 46,496.78 –

2 42,338.01 17,126.39 49,671.22 33,512.83* 44,365.22 –

3 40,310.85 – 45,719.52 24,940.32* 42,790.99 20,076.27

4 39,710.03 15,746.46 43,291.04 17,959.91* 41,780.75 15,754.41

5 42,469.18 16,561.57 52,218.87 36,232.18* 45,910.92 –

6 – – 48,335.40 30,091.93* 45,722.35 26,797.76*

7 – – 45,080.30 23,355.92* 45,096.25 25,128.19*

8 – – 43,156.24 17,524.42* 44,665.94 23,796.20

9 40,910.39 16,372.32 50,768.29 33,002.36* 44,643.41 23,061.90*

10 40,283.92 15,993.24 48,946.49 30,215.24* 44,235.87 21,999.00*

Avg. 41,214.48 16,446.54 48,080.30 28,902.40 44,570.85 22,373.39

The best result for each instance (among co-operation schemes) is rendered in boldface; T ∗ < TWB (TWB
is the world’s best currently known T)

123

Int J Parallel Prog (2015) 43:812–839 829

Table 6 The average results (out of 5 runs) obtained using PMA-VRPTW with various co-operation
schemes (δ = 2)

Id ↓ C1 C2 R1 R2 RC1 RC2

Ring

1 42,478.95 16,879.24 53,735.17 42,212.86* 46,954.02 –

2 42,387.85 17,126.39 49,726.08 33,670.45 44,744.58 –

3 40,528.58 – 45,941.36 25,079.85 42,928.15 20,160.25

4 39,759.69 16,089.40 43,367.80 18,014.51* 41,931.37 15,930.61

5 42,469.18 16,562.49 52,346.05 36,272.59* 46,029.71 –

6 – – 48,669.45 30,222.22* 46,076.97 26,912.34*

7 – – 45,204.57 23,424.77 45,460.11 25,116.15*

8 – – 43,107.99 17,628.96* 44,894.12 23,881.79

9 41,266.71 16,450.34 51,280.59 33,093.84* 44,897.74 23,146.48*

10 40,438.51 16,023.14 49,125.08 30,296.18* 44,449.37 22,120.70

Avg. 41,332.78 16,521.83 48,250.41 28,991.62 44,836.61 22,466.90

R–EAX

1 42,478.95 16,879.24 53,807.59 42,291.11 46,961.67 –

2 42,406.28 17,142.98 50,178.31 33,640.11 44,902.27 –

3 40,392.98 – 46,363.70 25,191.62 42,955.13 20,224.91

4 39,654.39 15,868.05 43,809.30 19,433.22 42,097.47 16,106.00

5 42,469.18 16,566.20 52,952.11 36,347.26 46,062.40 –

6 – – 48,883.58 30,352.69 46,080.32 27,146.39

7 – – 45,554.95 23,803.27 45,512.01 25,494.36

8 – – 43,791.72 18,182.23 44,870.17 24,164.79

9 40,912.96 16,498.40 51,876.63 33,202.82 44,873.52 23,438.13

10 40,325.16 16,059.15 49,726.29 30,563.48* 44,382.68 22,427.01

Avg. 41,234.27 16,502.34 48,694.42 29,300.78 44,869.76 22,714.51

KS

1 42,478.95 16,879.24 53,691.52 42,214.16* 46,795.24 –

2 42,668.32 17,126.39 49,960.81 33,615.75 44,546.19 –

3 40,402.24 – 45,851.78 25,038.87* 42,968.44 20,169.93

4 39,736.93 15,873.11 43,339.93 18,365.29 41,985.52 15,852.43

5 42,469.18 16,561.57 52,602.36 36,261.01* 46,008.60 –

6 – – 48,625.45 30,171.57* 45,897.57 26,908.14*

7 – – 45,176.82 23,412.49 45,505.78 25,252.48*

8 – – 43,199.05 17,582.20* 44,809.70 23,883.43

9 40,970.05 16,400.61* 51,024.38 33,060.30* 44,779.06 23,161.29

10 40,477.13 15,999.76 49,197.66 30,313.90* 44,413.41 22,065.36*

Avg. 41,314.69 16,473.45 48,266.98 29,003.55 44,770.95 22,470.44

The best result for each instance (among co-operation schemes) is rendered in boldface; T ∗ < TWB (TWB
is the world’s best currently known T)

123

830 Int J Parallel Prog (2015) 43:812–839

Table 7 The average results (out of 5 runs) obtained using PMA-VRPTW with various co-operation
schemes (δ = 20)

Id ↓ C1 C2 R1 R2 RC1 RC2

Ring

1 42,478.95 16,879.24 53,626.82* 42,209.68* 46,562.32 –

2 42,359.36 17,126.39 49,729.14 33,647.83 44,615.58 –

3 40,431.26 – 45,921.21 24,999.15* 42,834.01 20,125.28

4 39,744.58 15,832.46 43,330.69 18,056.59 42,014.82 15,798.70

5 42,469.18 16,562.49 52,359.55 36,255.76* 46,022.34 –

6 – – 48,387.30 30,178.59* 45,760.65 26,879.59*

7 – – 45,251.39 23,387.73 45,292.69 25,138.07*

8 – – 43,146.94 17,546.31* 44,732.74 23,803.10

9 40,984.30 16,379.48* 50,901.63 33,047.26* 44,722.24 23,100.65

10 40,369.25 16,010.32 48,980.19 30,284.52* 44,406.02 21,995.50*

Avg. 41,262.41 16,465.06 48,163.49 28,961.34 44,696.34 22,405.84

R–EAX

1 42,478.95 16,879.24 53,935.61 42,270.62 47,182.99 –

2 42,367.15 17,126.39 50,459.87 33,951.40 44,820.79 –

3 40,386.08 – 46,426.27 25,170.14 43,049.98 20,363.40

4 39,648.46 15,958.67 44,732.58 19,492.46 42,475.18 17,180.56

5 42,469.18 16,569.10 52,950.27 36,391.82 46,365.72 –

6 – – 49,096.64 30,413.00 46,144.14 27,131.66

7 – – 45,931.75 23,789.55 45,591.49 25,471.85

8 – – 43,731.51 17,908.58 45,014.27 24,199.93

9 40,876.66 16,524.75 51,782.76 33,252.21 44,995.33 23,496.33

10 40,379.99 16,137.12 49,969.36 30,659.73 44,456.08 22,441.98

Avg. 41,229.50 16,532.55 48,901.66 29,329.95 45,009.60 22,897.96

KS

1 42,478.95 16,879.24 53,649.09* 42,201.83* 46,779.46 –

2 42,422.66 17,126.39 50,092.45 33,654.05 44,611.65 –

3 40,421.20 – 45,856.74 24,980.55* 42,938.35 20,128.92

4 39,819.31 15,826.95 43,616.72 18,292.28 42,021.67 15,992.54

5 42,469.18 16,561.57 52,412.51 36,247.61* 46,085.55 –

6 – – 48,477.39 30,163.96* 45,920.41 26,839.08*

7 – – 45,244.39 23,427.09 45,336.30 25,166.34*

8 – – 43,226.30 17,558.80* 44,781.20 23,837.32

9 40,980.37 16,383.74* 51,044.55 33,043.74* 44,746.04 23,076.81*

10 40,436.61 15,998.07 49,097.84 30,245.51* 44,321.03 22,047.55*

Avg. 41,289.75 16,462.66 48,271.80 28,981.54 44,754.17 22,441.22

The best result for each instance (among co-operation schemes) is rendered in boldface; T ∗ < TWB (TWB
is the world’s best currently known T)

123

Int J Parallel Prog (2015) 43:812–839 831

Table 8 Summary of the results obtained using PMA-VRPTWwith various co-operation schemes: #TB—
number of the best T ’s obtained with the corresponding co-operation scheme, %TB—percentage of the best
T ’s, #T
—number of T ’s such that T < TWB (the meaning of the results with A superscript—averaged
T ’s, see Tables 6 and 7—are analogous)

Scheme → Ring R-EAX KS

δ → 2 20 2 20 2 20

#TB (out of 50) 24 26 11 8 24 26

%TB (in %) 48 52 22 16 48 52

#T
 14 18 5 3 14 15

#T A
B (out of 50) 19 32 9 7 30 19

%T A
B (in %) 38 64 18 14 60 38

#T A
 10 12 1 0 11 13

the co-operation overhead by synchronizing the already-gained knowledge across the
islands (this scheme is very exploitative). On the other hand, Ring is shown to be
an explorative scheme, which is able to converge to the best results with relatively
large migration interval (i.e., rare co-operation) by exploring a large part of the search
space (δ = 20). A noteworthy observation is that PMA-VRPTW is able to improve
the world’s best results of wide-time-window tests (R2 and RC2) with a very large
probability (70% of R2, and 43% of RC2 average results have T < TWB, in the case
of both Ring and KS).

The results—both average and best—obtained using various co-operation schemes
are summarized in Table 8 (we consider only tests for which K = KWB). In boldface
are indicated the best results across co-operation schemes (separately for δ = 2 and
δ = 20). The results confirm that KS is the most appropriate scheme for frequent co-
operation,whereasRing for a rarer one.KS is very stable and converged to high-quality
results (see #T A
). In Table 9, we present the best asymptotic results for selected GH
instances (i.e., those for which PMA-VRPTW obtained results with T < TWB)—the
new world’s best results are shown in boldface.7 Although Ring appeared to be very
competitive (see #TB , %TB , and #T
 in Table 8), it is KS (with δ = 20) which gave
the asymptotically best solutions (Table 9). Thus, the exploration of the search space
is well-balanced with exchanging the best solutions and their further exploitation. Too
frequent migration (δ = 2) results in saturating islands with similar solutions which
are not further improved during the search.

In Fig. 5, we present the average convergence time (i.e., after which the best indi-
vidual among all islands has not been improved) of PMA-VRPTW. It is easy to see
that C1 and C2 tests can be solved much faster compared with the other GH instances.
Here, applying R-EAX scheme is beneficial in terms of the solutions quality (it gave
best asymptotic results), but it also increases the convergence time of PMA-VRPTW.
Since R-EAX requires crossing-over individuals (which may result in infeasible chil-
dren), and restoring their feasibility if necessary (in a time-consuming repair process),

7 See details of these solutions at http://sun.aei.polsl.pl/~jnalepa/VRPTW.

123

http://sun.aei.polsl.pl/~jnalepa/VRPTW

832 Int J Parallel Prog (2015) 43:812–839

Table 9 The best results (out of 5 runs) obtained using PMA-VRPTW with various co-operation schemes
for selected GH benchmark tests (for which PMA-VRPTW ended up with a solution such that T < TWB)

Scheme → Ring R-EAX KS WB

Test ↓ δ → 2 20 2 20 2 20

C1_10_2 42,387.85 42,291.63 42,278.45 42,289.09 42,339.90 42,338.01 42,300.76

C2_10_9 16,421.32 16,370.44 16,421.14 16,481.81 16,372.32 16,372.32 16,432.53

R1_10_1 53,687.82 53,560.85 53,772.62 53,846.08 53,676.62 53,615.67 53,657.99

R2_10_1 42,188.86 42,188.86 42,261.34 42,259.70 42,196.47 42,188.86 42,219.21

R2_10_2 33,634.05 33,554.71 33,570.65 33,912.29 33,550.62 33,512.83 33,567.91

R2_10_3 24,965.63 24,954.81 25,029.43 25,106.05 24,989.17 24,940.32 25,053.80

R2_10_4 17,926.45 17,997.69 19,180.23 19,421.25 18,262.09 17,959.91 18,039.77

R2_10_5 36,243.51 36,251.43 36,289.00 36,352.12 36,250.95 36,232.18 36,335.72

R2_10_6 30,123.53 30,099.45 30,270.10 30,309.43 30,102.91 30,091.93 30,223.14

R2_10_7 23,257.36 23,344.99 23,730.70 23,636.36 23,270.90 23,355.92 23,381.36

R2_10_8 17,585.79 17,495.51 18,018.54 17,859.14 17,526.72 17,524.42 17,598.63

R2_10_9 33,064.26 33,019.95 33,146.76 33,116.32 33,025.59 33,002.36 33,131.99

R2_10_10 30,257.93 30,242.35 30,428.55 30,499.52 30,270.36 30,215.24 30,598.69

RC2_10_3 20,050.71 20,084.70 20,132.61 20,229.46 20,068.74 20,076.27 20,053.78

RC2_10_6 26,910.35 26,864.81 27,097.58 27,086.98 26,883.75 26,797.76 26,965.51

RC2_10_7 25,116.15 25,112.77 25,380.63 25,471.85 25,162.18 25,128.19 25,295.67

RC2_10_8 23,845.66 23,709.29 24,013.56 24,063.00 23,822.03 23,796.20 23,787.26

RC2_10_9 23,112.13 23,063.76 23,292.42 23,297.83 23,089.01 23,061.90 23,116.15

RC2_10_10 22,048.98 21,965.94 22,225.09 22,347.35 22,004.78 21,999.00 22,076.90

The best result is rendered in boldface; WB indicates the world’s best T beaten by PMA-VRPTW

(a) (b)

Fig. 5 The convergence times (in seconds) of PMA-VRPTW with various co-operation schemes applied,
averaged for each GH subclass: a δ = 2, b δ = 20 (Color figure online)

this scheme significantly affects the algorithm convergence capabilities. In contrary,
KS scheme distributes the best individuals between islands relatively fast, and guides
the search efficiently towards the most-promising parts of the search space.

Since the execution time of the algorithm (and more importantly—time of converg-
ing to acceptable solutions) is an important criterion in case of real-life applications,

123

Int J Parallel Prog (2015) 43:812–839 833

(a) (b)

(c) (d)

(f)(e)

Fig. 6 The front (the average T vs. the average PMA-VRPTW convergence time in seconds) for each GH
subclass (the closer to the point (0, 0), the better): a C1, b C2, c R1, d R2, e RC1, and f RC2 (δ is given in
brackets)

determining a proper co-operation scheme becomes a critical issue for emerging PEAs.
In Fig. 6, we visualize a trade-off between minimizing the convergence time of PMA-
VRPTW, and obtaining solutions with the highest possible quality. Clearly, R-EAX is
the most time-consuming scheme (and introduces the largest co-operation overhead)
among the considered ones, and choosing this scheme is advantageous only for C1
tests. Is is easy to see that applying KS (for both δ = 2 and δ = 20) results in the fastest
convergence of PMA-VRPTW in most GH subclasses. There are however subclasses
for which Ring (with δ = 20) gave higher-quality asymptotic solutions on average
(R1, RC1, RC2), but the convergence time is significantly larger here compared with
the KS scheme (see Fig. 6c–f).

123

834 Int J Parallel Prog (2015) 43:812–839

(a)

(c)

(e) (f)

(d)

(b)

Fig. 7 The travel distance averaged for each GH subclass obtained using PMA-VRPTW (with the best
co-operation schemes applied) within the initial 180 min. of execution: a C1, b C2, c R1, d R2, e RC1, and
f RC2 (δ is given in brackets)

In Fig. 7, we present the average travel distance (for best co-operation schemes)
for each subclass during the initial 180 min. of the PMA-VRPTW execution. This
complements the results shown in Fig. 6, and gives a better insight into the PMA-
VRPTW convergence capabilities. The small migration intervals are very beneficial
at the beginning of the optimization process (see Fig. 7). If islands co-operate fre-
quently, then the gained knowledge is distributed very fast. It can be later utilized to
exploit known (already optimized) solutions. A noteworthy feature of the co-operation
schemes with a larger migration interval applied (KS and Ring with δ = 20) is their

123

Int J Parallel Prog (2015) 43:812–839 835

Table 10 The guidelines for
choosing the co-operation
scheme in PMA-VRPTW

GH subclass ↓ Minimize τP ?

Yes No

Scheme δ Scheme δ

C1 R-EAX 2 R-EAX 20

C2 KS 2 KS 20

R1 KS 2 Ring 20

R2 KS 20 Ring 20

RC1 KS 20 Ring 20

RC2 KS 2 Ring 20

ability to balance exploration and exploitation of the search space. Thus, they are able
to outperform the other schemes asymptotically, and to give the best solutions in a
longer optimization horizon.

6 Conclusions and Future Work

In this paper, we investigated the impact of the applied co-operation scheme (migration
topology, interval, handling of immigrants, and emigrants) on the search capabilities
of our parallelMA to solve theVRPTW. The extensive experimental studywhich com-
prised more than 1,584,000 CPU hours on an SMP cluster gave a detailed insight into
the schemes’ characteristics and capabilities. Since real-life logistic and distribution
problems are diverse at their heart (they differ by the customer locations, character-
istics of time windows, vehicle capacities, and many more), we solved and analyzed
the most-demanding 1000-customer benchmark tests reflecting various scheduling
circumstances.

Concluding from our experiments, we provide the guidelines for choosing a proper
migration topology and interval (see Table 10). If the execution (convergence) time of
PMA-VRPTW is to be as minimum as possible, then the frequent co-operation should
be favored to guide the search efficiently (KS). If there is no strict upper bound for the
running time of PMA-VRPTW, then applying the rarer co-operation intervals benefits
from a broader exploration of the search space (Ring), and gives the best asymptotic
results.

Our ongoing works are focused on combining two most successful co-operation
schemes—KS and Ring—into an adaptive scheme. This scheme will dynamically
control itself (its migration topology and interval) according to the current state of
exploring the search space. Also, we work on the adaptive MA, in which the para-
meters (including the population size, selection scheme, and more) are controlled
(and appropriately changed) on the fly. This approach will mitigate the necessity of
performing a time-consuming tuning process of PMA-VRPTW parameters. Finally,
we plan to apply PMA-VRPTW for other VRPs—especially the pickup and delivery
problem with time windows.

Acknowledgments This research was performed using the infrastructure supported by POIG.02.03.01-
24-099/13 Grant: “GeCONiI–Upper Silesian Center for Computational Science and Engineering”. Also,

123

836 Int J Parallel Prog (2015) 43:812–839

we thank the following computing centers where the computations of our Project were carried out: Acad-
emic Computer Centre in Gdańsk TASK, Academic Computer Centre CYFRONET AGH, Kraków, Inter-
disciplinary Centre for Mathematical and Computational Modeling, Warsaw University, Wrocław Centre
for Networking and Supercomputing. This research was supported by the National Science Centre under
research Grant No. DEC-2013/09/N/ ST6/03461.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. Trans. Evol. Comp. 6(5), 443–462
(2002)

2. Alba, E., Troya, J.M.: A survey of parallel distributed genetic algorithms. Complexity 4(4), 31–52
(1999)

3. Baldacci, R., Mingozzi, A., Roberti, R.: New route relaxation and pricing strategies for the vehicle
routing problem. Oper. Res. 59(5), 1269–1283 (2011)

4. Baldacci, R.,Mingozzi,A., Roberti, R.: Recent exact algorithms for solving the vehicle routing problem
under capacity and time window constraints. Eur. J. Oper. Res. 218(1), 1–6 (2012)

5. Banos, R., Ortega, J., Gil, C., Márquez, A.L., de Toro, F.: A hybrid meta-heuristic for multi-objective
vehicle routing problems with time windows. Comput. Ind. Eng. 65(2), 286–296 (2013)

6. Bard, J.F., Kontoravdis, G., Yu, G.: A branch-and-cut procedure for the vehicle routing problem with
time windows. Transp. Sci. 36(2), 250–269 (2002)

7. Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution proce-
dures. Omega 34(3), 209–219 (2006)

8. Blocho, M.: A Parallel Memetic Algorithm for Solving the Vehicle Routing Problem with Time Win-
dows. Ph.D. thesis, Silesian University of Technology, Gliwice, Poland (2013)

9. Blocho, M., Czech, Z.: A parallel algorithm for minimizing the number of routes in the vehicle routing
problem with time windows. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waniewski, J. (eds.)
Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science, vol. 7203, pp.
255–265. Springer, Berlin (2012)

10. Blocho, M., Czech, Z.: A parallel EAX-based algorithm for minimizing the number of routes in the
vehicle routing problem with time windows. In: 2012 IEEE 14th International Conference on High
Performance Computing and Communication 2012 IEEE 9th International Conference on Embedded
Software and Systems (HPCC-ICESS), pp. 1239–1246 (2012)

11. Blocho, M., Czech, Z.J.: An improved route minimization algorithm for the vehicle routing problem
with time windows. Studia Informatica 32(99), 5–19 (2010)

12. Blocho, M., Czech, Z.J.: A parallel memetic algorithm for the vehicle routing problem with time
windows. In: Proceedings of the 2013 Eighth International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing (3PGCIC ’13), pp. 144–151 (2013)

13. Bräysy, O., Gendreau, M.: Vehicle routing problemwith time windows, part II: metaheuristics. Transp.
Sci. 39(1), 119–139 (2005)

14. Cantu-Paz, E.: A survey of parallel genetic algorithms. Calcul. Paralleles 10, 141–171 (1998)
15. Chabrier, A.: Vehicle routing problemwith elementary shortest path based column generation. Comput.

Oper. Res. 33(10), 2972–2990 (2006). Part Special Issue: Constraint Programming
16. Chiang, W.C., Russell, R.: Simulated annealing metaheuristics for the vehicle routing problem with

time windows. Ann. Oper. Res. 63(1), 3–27 (1996)
17. Cipolla, M., Bosco, G.L., Millonzi, F., Valenti, C.: An island strategy for memetic discrete tomography

reconstruction. Inf. Sci. 257, 357–368 (2014)
18. Coltorti, D., Rizzoli, A.E.: Ant colony optimization for real-world vehicle routing problems. SIGEVO-

lution 2(2), 2–9 (2007)
19. Cordeau, J.F., Desaulniers, G., Desrosiers, J., Solomon,M.M., Soumis, F.: The vehicle routing problem.

In: Chap. VRP with Time Windows, pp. 157–193. Society for Industrial and Applied Mathematics
(2001)

20. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1), 80–91 (1959)

123

Int J Parallel Prog (2015) 43:812–839 837

21. Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the vehicle routing
problem with time windows. Oper. Res. 40(2), 342–354 (1992)

22. El-Sherbeny, N.A.: Vehicle routingwith timewindows: an overview of exact, heuristic andmetaheuris-
tic methods. J. King Saud Univ. Sci. 22(3), 123–131 (2010)

23. Feillet, D., Dejax, P., Gendreau, M., Gueguen, C.: An exact algorithm for the elementary shortest path
problem with resource constraints: application to some vehicle routing problems. Networks 44(3),
216–229 (2004)

24. Gehring, H., Homberger, J.: A parallel hybrid evolutionary metaheuristic for the vehicle routing prob-
lem with time windows. In: Proceedings of EUROGEN99-Short Course on Evolutionary Algorithms
in Engineering and Computer Science, pp. 57–64 (1999)

25. Ghoseiri, K., Ghannadpour, S.F.: Multi-objective vehicle routing problem with time windows using
goal programming and genetic algorithm. Appl. Soft Comput. 10(4), 1096–1107 (2010)

26. Gomez, C., Cruz-Reyes, L., González, J.J., Fraire, H.J., Pazos, R.A., Martinez, J.J.: Ant colony system
with characterization-based heuristics for a bottled-products distribution logistics system. J. Comput.
Appl. Math. 259(Part B(0)), 965–977 (2014)

27. Guan, X., Zhang, X., Han, D., Zhu, Y., Lv, J., Su, J.: A strategic flight conflict avoidance approach
based on a memetic algorithm. Chin. J. Aeronaut. 27(1), 93–101 (2014)

28. Ho, S., Haugland, D.: A tabu search heuristic for the vehicle routing problem with time windows and
split deliveries. Comput. Oper. Res. 31(12), 1947–1964 (2004)

29. Hosny, M.I., Mumford, C.L.: The single vehicle pickup and delivery problem with time windows:
intelligent operators for heuristic and metaheuristic algorithms. J. Heuristics 16(3), 417–439 (2010)

30. Hu, W., Liang, H., Peng, C., Du, B., Hu, Q.: A hybrid chaos-particle swarm optimization algorithm
for the vehicle routing problem with time window. Entropy 15(4), 1247–1270 (2013)

31. Irnich, S., Villeneuve, D.: The shortest-path problem with resource constraints and k-cycle elimination
for k ≤ 3. INFORMS J. Comput. 18(3), 391–406 (2006)

32. Jin, Y., Hao, J.K., Hamiez, J.P.: Amemetic algorithm for the minimum sum coloring problem. Comput.
Oper. Res. 43, 318–327 (2014)

33. Kallehauge, B.: Formulations and exact algorithms for the vehicle routing problemwith time windows.
Comput. Oper. Res. 35(7), 2307–2330 (2008)

34. Kawulok,M., Nalepa, J.: Support vector machines training data selection using a genetic algorithm. In:
Gimelfarb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K.
(eds.) Structural, Syntactic, and Statistical Pattern Recognition. Lecture Notes in Computer Science,
vol. 7626, pp. 557–565. Springer, Berlin (2012)

35. Kindervater, G., Savelsbergh, M.: Vehicle routing: handling edge exchanges. In: Aarts, E., Lenstra, J.
(eds.) Local Search in Combinatorial Optimization, pp. 337–360. Wiley, New York (1997)

36. Kolen, A.W.J., Kan, A.H.G.R., Trienekens, H.W.J.M.: Vehicle routing with time windows. Oper. Res.
35(2), 266–273 (1987)

37. Larsen, J.: Refinements of the column generation process for the vehicle routing problem with time
windows. J. Syst. Sci. Syst. Eng. 13(3), 326–341 (2004)

38. Li, Y., Jiao, L., Li, P., Wu, B.: A hybrid memetic algorithm for global optimization. Neurocomputing
134, 132–139 (2014)

39. Li, Y., Li, P., Wu, B., Jiao, L., Shang, R.: Kernel clustering using a hybrid memetic algorithm. Nat.
Comput. 12(4), 605–615 (2013)

40. Liu, Y.Y., Wang, S.: A scalable parallel genetic algorithm for the generalized assignment problem.
Parallel Comput. (in press) (2014). doi:10.1016/j.parco.2014.04.008

41. Marinaki,M.,Marinakis,Y.:An islandmemetic differential evolution algorithm for the feature selection
problem. In: Proceedings of the NICSO, SCI, vol. 512, pp. 29–42. Springer, Berlin (2014)

42. Mirsoleimani, S.A., Karami, A., Khunjush, F.: A parallel memetic algorithm on GPU to solve the task
scheduling problem in heterogeneous environments. In: Proceedings of the 15th Annual Conference
on Genetic and Evolutionary Computation (GECCO ’13), pp. 1181–1188. ACM (2013)

43. Nagata, Y.: New EAX crossover for large TSP instances. In: Runarsson, T., Beyer, H.G., Burke, E.,
Merelo-Guervs, J., Whitley, L., Yao, X. (eds.) Parallel Problem Solving from Nature—PPSN IX.
Lecture Notes in Computer Science, vol. 4193, pp. 372–381. Springer, Berlin (2006)

44. Nagata, Y.: Edge assembly crossover for the capacitated vehicle routing problem. In: Cotta, C., Hemert,
J. (eds.) Evolutionary Computation in Combinatorial Optimization. Lecture Notes in Computer Sci-
ence, vol. 4446, pp. 142–153. Springer, Berlin (2007)

123

http://dx.doi.org/10.1016/j.parco.2014.04.008

838 Int J Parallel Prog (2015) 43:812–839

45. Nagata, Y., Bräysy, O.: A powerful route minimization heuristic for the vehicle routing problem with
time windows. Oper. Res. Lett. 37(5), 333–338 (2009)

46. Nagata, Y., Bräysy, O., Dullaert, W.: A penalty-based edge assembly memetic algorithm for the vehicle
routing problem with time windows. Comput. Oper. Res. 37(4), 724–737 (2010)

47. Nalepa, J., Blocho, M., Czech, Z.: Co-operation schemes for the parallel memetic algorithm. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Waniewski, J. (eds.) Parallel Processing and Applied
Mathematics. Lecture Notes in Computer Science, pp. 191–201. Springer, Berlin (2014)

48. Nalepa, J., Czech, Z.J.: Adaptive threads co-operation schemes in a parallel heuristic algorithm for the
vehicle routing problem with time windows. Theor. Appl. Inform. 24(3), 191–203 (2012)

49. Nalepa, J., Czech, Z.J.: A parallel heuristic algorithm to solve the vehicle routing problem with time
windows. Studia Informatica 33(1), 91–106 (2012)

50. Nalepa, J., Czech, Z.J.: New selection schemes in a memetic algorithm for the vehicle routing problem
with timewindows. In: Tomassini,M.,Antonioni,A.,Daolio, F., Buesser, P. (eds.)Adaptive andNatural
Computing Algorithms. Lecture Notes in Computer Science, vol. 7824, pp. 396–405. Springer, Berlin
(2013)

51. Nalepa, J., Kawulok, M.: A memetic algorithm to select training data for support vector machines.Iin:
Proceedings of the 2014 Conference on Genetic and Evolutionary Computation (GECCO ’14), pp.
573–580. ACM, New York, NY, USA (2014)

52. Oh, S.K., Kim, W.D., Pedrycz, W., Seo, K.: Fuzzy radial basis function neural networks with informa-
tion granulation and its parallel genetic optimization. Fuzzy Sets Syst. 237, 96–117 (2014)

53. Pang, K.W.: An adaptive parallel route construction heuristic for the vehicle routing problemwith time
windows constraints. Expert Syst. Appl. 38(9), 11,939–11,946 (2011)

54. Petch, R., Salhi, S.: A multi-phase constructive heuristic for the vehicle routing problem with multiple
trips. Discret. Appl. Math. 133(13), 69–92 (2003)

55. Potvin, J.Y., Rousseau, J.M.: A parallel route building algorithm for the vehicle routing and scheduling
problem with time windows. Eur. J. Oper. Res. 66(3), 331–340 (1993)

56. Potvin, J.Y., Rousseau, J.M.: An exchange heuristic for routeing problems with time windows. J. Oper.
Res. Soc. 46(12), 1433–1446 (1995)

57. Repoussis, P., Tarantilis, C., Ioannou, G.: Arc-guided evolutionary algorithm for the vehicle routing
problem with time windows. IEEE Trans. Evol. Comput. 13(3), 624–647 (2009)

58. Righini, G., Salani, M.: Symmetry helps: bounded bi-directional dynamic programming for the ele-
mentary shortest path problemwith resource constraints. Discret. Optim. 3(3), 255–273 (2006). Graphs
and Combinatorial Optimization The Cologne/Twente Workshop on Graphs and Combinatorial Opti-
mization

59. Roberge, V., Tarbouchi, M., Okou, F.: Strategies to accelerate harmonic minimization in multilevel
inverters using a parallel genetic algorithm on graphical processing unit. IEEE Trans. Power Electron.
29(10), 5087–5090 (2014)

60. Sarkar, B.K., Sana, S.S., Chaudhuri, K.: Selecting informative rules with parallel genetic algorithm in
classification problem. Appl. Math. Comput. 218(7), 3247–3264 (2011)

61. Segredo, E., Segura, C., Leon, C.: Amultiobjectivisedmemetic algorithm for the frequency assignment
problem. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 1132–1139 (2011)

62. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window con-
straints. Oper. Res. 35(2), 254–265 (1987)

63. Sudholt, D.: Parallel evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W. (Eds.) Handbook of Com-
putational Intelligence. Springer, Netherlands (2014) (in press)

64. Tavares, L., Lopes, H., Lima, C.: Construction and improvement heuristics applied to the capacitated
vehicle routing problem. In:WorldCongress onNatureBiologically InspiredComputing, 2009 (NaBIC
2009), pp. 690–695 (2009)

65. Tripathy, P., Dash, R., Tripathy, C.: A genetic algorithm based approach for topological optimization
of interconnection networks. Procedia Technol. 6, 196–205 (2012)

66. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A hybrid genetic algorithm with adaptive diversity
management for a large class of vehicle routing problems with time-windows. Comput. Oper. Res.
40(1), 475–489 (2013)

67. Xhafa, F., Duran, B.: Parallel memetic algorithms for independent job scheduling in computational
grids. In: Cotta, C., van Hemert, J. (eds.) Recent Advances in Evolutionary Computation for Combi-
natorial Optimization, Studies in Computational Intelligence, vol. 153, pp. 219–239. Springer, Berlin
(2008)

123

Int J Parallel Prog (2015) 43:812–839 839

68. Yu, B., Yang, Z., Sun, X., Yao, B., Zeng, Q., Jeppesen, E.: Parallel genetic algorithm in bus route
headway optimization. Appl. Soft Comput. 11(8), 5081–5091 (2011)

69. Zhong, Y., Pan, X.: A hybrid optimization solution to VRPTW based on simulated annealing. In: 2007
IEEE International Conference on Automation and Logistics, pp. 3113–3117 (2007)

123

	Co-operation in the Parallel Memetic Algorithm
	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Paper Outline

	2 Problem Formulation
	2.1 Objectives and Constraints
	2.2 Example

	3 Related Literature
	3.1 Vehicle Routing Problem with Time Windows
	3.2 Parallel Evolutionary Algorithms

	4 Parallel Memetic Algorithm
	4.1 Algorithm Outline
	4.2 Initial Population
	4.3 Selection
	4.4 Crossover
	4.5 Repair, Education, and Mutation
	4.6 Co-operation

	5 Experimental Results
	5.1 Setup
	5.2 Dataset
	5.3 Analysis and Discussion

	6 Conclusions and Future Work
	Acknowledgments
	References

