

warwick.ac.uk/lib-publications

Original citation:
Miranda, Douglas M., Branke, Juergen and Conceição, Samuel V. (2018) Algorithms for the
multi-objective vehicle routing problem with hard time windows and stochastic travel time
and service time. Applied Soft Computing, 70 . pp. 66-79. doi:10.1016/j.asoc.2018.05.026

Permanent WRAP URL:
http://wrap.warwick.ac.uk/102771

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
© 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP url’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/157859598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/102771
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk

Algorithms for the Multi-Objective Vehicle Routing Problem with Hard Time

Windows and Stochastic Travel Time and Service Time

Douglas M. Miranda a, Juergen Branke b, Samuel V. Conceição a

a Department of Production Engineering, Federal University of Minas Gerais, 6627, Antônio Carlos Avenue, Belo

Horizonte, Brazil

b Warwick Business School, The University of Warwick, Coventry CV4 7AL, UK

E-mails:
Douglas M. Miranda
douglasmiranda@ufmg.br

Juergen Branke
Juergen.Branke@wbs.ac.uk

Samuel V. Conceição
svieira@dep.ufmg.br

Corresponding Author:

Douglas Moura Miranda, PhD.

Federal University of Minas Gerais

6627, Antônio Carlos Avenue, Belo Horizonte, Brazil

Tel: (+55) 31 - 992059811
Email: douglasmiranda@ufmg.br

mailto:douglasmiranda@ufmg.br
mailto:Juergen.Branke@wbs.ac.uk
mailto:svieira@dep.ufmg.br
mailto:douglasmiranda@ufmg.br

Algorithms for the Multi-Objective Vehicle Routing Problem with Hard Time

Windows and Stochastic Travel Time and Service Time

ABSTRACT

This paper introduces a multi-objective vehicle routing problem with hard time windows and

stochastic travel and service times. This problem has two practical objectives: minimizing the operational

costs, and maximizing the service level. These objectives are usually conflicting. Thus, we follow a multi-

objective approach, aiming to compute a set of Pareto-optimal alternatives with different trade-offs for a

decision maker to choose from. We propose two algorithms (a Multi-Objective Memetic Algorithm and a

Multi-Objective Iterated Local Search) and compare them to an evolutionary multi-objective optimizer from

the literature. We also propose a modified statistical method for the service level calculation. Experiments

based on an adapted version of the 56 Solomon instances demonstrate the effectiveness of the proposed

algorithms.

Keywords: vehicle routing with time windows; stochastic travel times; evolutionary and memetic

algorithms; iterated local search; multiobjective optimization.

1. Introduction

The classic vehicle routing problem with time windows (VRPTW) assumes the travel times between

customers and the service times at the customers are known and deterministic. However, in real life

applications, these two parameters are often stochastic, and models that takes into consideration this

uncertainty can provide more accurate answers for the decision maker. Over the years, the customer

expectations in the logistics sector have continuously increased and more customer-oriented business models

have been demanded, for instance, ensuring a particular level of service at individual customers.

In business terms, the minimization of the operational costs of delivering the goods to the customers

is a common objective. Defining service level as the probability of a vehicle visiting a customer before the

end of the time window, it is plausible to say that the higher the customer service level, the higher is the

customer satisfaction, motivating the inclusion of the service level as one objective function of the model.

Because operational costs and service level have very different dimensions, combining them into one

single objective is not straightforward. Additionally, there seem to be a conflict between these objectives,

motivating the modeling of the problem as multiobjective (MO-VRPTW). A MO-VRPTW can provide the

decision maker with more comprehensive information about the problem, and once they acquire a knowledge

from a set of non-dominated solutions, it is easier to define criteria to pick a single solution, by intuition or

through the use of multi-criteria decision-making techniques (MCDM), e.g. Shi et al. (2009).

In this context, this paper tackles a problem considering realistic features presented in real

applications such as stochastic travel time and service time, a constraint with a lower bound for the customer

service level, and the consideration of two objectives (maximizing service level and minimizing operational

costs).

The main contributions of this paper are:

1. The introduction of the multiobjective vehicle routing problem with hard time windows and

stochastic travel and service times.

2. The design and implementation of two new algorithms (a Memetic Algorithm and Iterated

Local Search) discussing specific components such as the design and utilization of the local

searches, specific strategies for selection, cross-over, exit criteria and speed-up techniques.

3. An improved version of the method to calculate service levels from Miranda and Conceição

(2016) that better reflects the lower bound constraint on the distribution of travel and service

times.

The problem approached in this study has hard time windows which means the vehicle has to wait in

case it arrives before the start of the time window. There is a single depot, the vehicles have the same capacity

and they always visit and deliver the service at the customers. The service time and the travel time are both

random variables with a nonnegative normal probability distribution. Common distributions used for the travel

time are normal, lognormal and Gamma distributions (Tas et al. 2013). Many studies consider the travel time

normally distributed including Kenion & Morton (2003), Jie et al. (2010), Hofleitner et al. (2012), and Chen

et al. (2014).

The paper is structured as follows. We give a literature review in Section 2, followed by a

mathematical formulation of the problem in Section 3. Next, in Section 4, we present the developed method

to calculate the service level of the customers. Section 5 explains the metaheuristics developed to solve the

Multiobjective VRP with hard time windows and stochastic travel time and service time. Section 6 has

experiments testing the performance of the proposed statistical method and heuristics. Finally, the main

findings and conclusions are highlighted in Section 7.

2. Literature Review

Literature reviews of the Stochastic Vehicle Routing Problem (SVRP) have been provided for

example by Gendreau et al. (1996, 2014) and Zeimpekis et al. (2007). Berhan et al. (2014) present a

comprehensive survey on the SVRP and a classification of the papers. Most SVRP literature focuses on

stochastic demand (Laporte et al., 2002 and Dror, 2016), customers’ presence (see, e.g. Gendreau et al., 1995)

and both demand and presence (Balaprakash, 2015).

In the context of the VRPTW and stochastic travel times and/or service times it is important to

separate the formulations without waiting time from the formulations with waiting time for the vehicles.

Models without waiting time benefit from the use of convolution properties while summing the random

variables. The probability distribution of the sum of two or more independent random variables is the

convolution of their individual distributions and many well-known distributions have simple convolutions

when there is no waiting time.

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Independent_(probability)
https://en.wikipedia.org/wiki/Random_variable

For the VRPTW with stochastic travel/service time and no propagation of the waiting time, some

relevant studies were conducted by Russell & Urban (2008), Tas et al. (2013), Tas et al. (2014) and Vareias

et al. (2017). In the context of VRPTW with stochastic travel/service time and with waiting time (in which

the present paper is situated), studies were conducted by Jula et al. (2006), Chang et al. (2009), Li et al. (2010),

Miranda (2011), Errico et al. (2013 and 2016), Zhang et al. (2013), Ehmke et al. (2015), Binart et al. (2016),

Miranda and Conceição (2016) and Gutierrez et al. (2016). These studies are discussed below in more detail.

Jula et al. (2006) suggest methods of estimating the mean and variance of a vehicle’s arrival time at

customers using first-order approximation of Taylor series. Chang et al. (2009) studied the relationship

between arrival time and time window, and developed an approach to calculate the mean and variance of the

arrival time with the assumption of normality. Li et al. (2010) use Monte Carlo simulation to calculate the

service level. Errico (2013) and Errico et al. (2016) propose a formulation considering a symmetric triangular

distribution with an exact solution. Zhang et al. (2013) adapt the method α-discrete from Miller-Hooks &

Mahmassani (1998) to estimate the arrival time distribution at a customer. The method is applied to a normal

distribution and log normal distribution for the travel time, and normal distribution for the service time.

Ehmke et al. (2015) propose a method based on the application of extreme value theory that allows

the computation of the distribution of the maximum of two normal variables. Even though the arrival time

distribution is not normal, they assume so, and evaluate the error of this assumption in an experiment. Binart

et al. (2016) solve a variant of the VRP where it’s assumed that service as well as travel times are stochastic,

both with discrete triangular distributions. Miranda and Conceição (2016) introduce a method to compute the

probability of the vehicle arriving before the end of a time window for the case where service time and travel

time follow a Gaussian distribution. A single objective VRPTW is solved through Iterated Local Search.

Finally, Gutierrez et al. (2016) develop a memetic algorithm to solve a single objective version of the VRPTW

with stochastic travel and service times. The method used to compute the service level comes from Ehmke et

al. (2015) and the only modification is that both travel time and service time are stochastic.

Still regarding the variant with propagation of waiting times, papers mentioned previously use

triangular distributions such as Binart et al. (2016), Errico (2013) and Errico et al. (2016), which is a poor

representation for real applications. Li et al. (2010) use Monte Carlo simulation (too expensive to be used in

an NP-hard problem). Jula et al. (2006) use first-order approximation of Taylor series which deliver poor

results. Ehmke et al. (2015) use extreme value theory but also assuming the arrival time distribution is normal.

Zhang et al. (2013) does not assume the arrival time is normal even with normal travel time and service time,

and its method is used as a benchmark for the statistical method of our paper.

All papers mentioned previously consider the service level as a constraint in the model and they use

operational cost as single objective. Several papers propose additional objectives for the VRPTW, such as:

the number of used vehicles, total traveled distance, traveling time of the longest route (makespan), total

waiting time, and total delay time (Castro et al., 2011). To the best of our knowledge, no publication so far

used service level.

Our paper differs from and extends the existing work in the following ways: It is the first attempt to

approach a bi-objective variant of the VRPTW with stochastic travel times and service times, where the

service level is one of the objectives. It proposes a new approach to embed a local search into a multi-objective

problem. In addition to that, our statistical method to calculate the service level (already validated in Miranda

and Conceição, 2016) has been changed to consider a more realistic representation of real problems (discussed

in Section 4).

3. Background

3.1 – Multi-objective Optimization (MOO)

MOO is the process of simultaneously optimizing two or more conflicting objectives. In mathematical

terms, a multiobjective optimization problem (MOP) cab be written, without loss of generality, as

𝑚𝑖𝑛 𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥) , … , 𝑓𝑝(𝑥)) subject to 𝑥 ∈ 𝑋 ⊆ ℜ𝑛 where 𝑋 is a constraint set in the multi-

dimensional space of the problem specified by 𝑋 = {𝑥 ∈ ℜ𝑛: 𝑔𝑖
(𝑥)

≤ 0, 𝑖 = 1, … , 𝑚; ℎ𝑗
(𝑥)

= 0, 𝑗 = 1, … , 𝑙}.

Given two feasible solutions 𝑥 and 𝑦, we say that 𝑥 dominates 𝑦, if ∀𝑖: 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑦) and ∃𝑗: 𝑓𝑗(𝑥) < 𝑓𝑗(𝑦).

Moreover, 𝑥 is said to be Pareto optimal if and only if it is not dominated by any other feasible solution. The

aim is to find the set of Pareto optimal solutions usually called Pareto set. This set maps to a number of non-

dominated points in the objective space, the so-called Pareto Front.

Pareto ranking is often used to rank solutions: All non-dominated solutions are assigned rank 1, and

inductively, all solutions non-dominated once ranks 1…i have been removed are assigned rank 𝑖 + 1.

3.2 – Problem statement

Let 𝐺 = (𝑉0, 𝐴) be a complete digraph, where 𝑉0 = {0, … , 𝑛} is a set of vertices and 𝐴 =

{(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉0, 𝑖 ≠ 𝑗} is a set of arcs. Vertex 0 represents the depot where 𝑚0 vehicles with capacity 𝑄 are

available. The set of customers is 𝑉 = 𝑉0\{0} = {1, … , 𝑛}. Each customer 𝑖 ∈ 𝑉 has a non-negative

demand 𝑞𝑖, service time 𝑆𝑇𝑖, and a time window [𝑒𝑖, 𝑙𝑖], where 𝑒𝑖 is the start of the time window (earliest time)

and 𝑙𝑖 is the end of the time window (latest time). If the vehicle arrives at customer 𝑖 before 𝑒𝑖, it is necessary

to wait until 𝑒𝑖. A travel time 𝑇𝑇𝑖𝑗 is assigned to each arc (𝑖, 𝑗) ∈ 𝐴. Both 𝑇𝑇𝑖𝑗 and 𝑆𝑇𝑖 are random variables

with known and independent probability density. 𝑆𝐿𝑖 = 𝑃(𝐴𝑇𝑖 ≤ 𝑙𝑖) is the service level at customer 𝑖. The

vector 𝑆𝐿 = (𝑆𝐿1, … , 𝑆𝐿𝑛) summarizes the service level of each customer. Other delimitations are: 𝑄 ≥

𝑞𝑖, 𝑖 ∈ 𝑉 (i.e., each vehicle has enough capacity to serve at least one customer) and 𝑚0 ∗ 𝑄 ≥ ∑ 𝑞𝑖
𝑛
𝑖=1 (i.e. the

fleet is big enough to serve all the customers). There is no time window for the depot, i.e. [𝑒0, 𝑙0] = [0, ∞].

Further notation includes:

𝑓 Fixed cost for one vehicle

𝑚 Number of vehicles in a feasible solution, 𝑚 ≤ 𝑚0

𝑐 Fixed cost for each unit of the travel time 𝑇𝑇𝑖𝑗

𝐾 Set of required vehicles in a feasible solution 𝐾 = {1, … , 𝑚}.

𝑥𝑖𝑗𝑘 Boolean variable with value 1 if vehicle 𝑘 serves arc (𝑖, 𝑗)

𝐴𝑇𝑖 Arrival time at customer 𝑖

𝑆𝑆𝑖 Service start time at customer 𝑖

𝛼𝑖 Required service level by customer 𝑖 where 𝛼𝑖 ∈ [0,1]

The decision variables of the problem are 𝑥𝑖𝑗𝑘 and 𝑚. The model for the problem can be described

as follows:

𝑀𝑖𝑛 𝑓 ∗ 𝑚 + ∑ ∑ 𝐸(𝑇𝑇𝑖𝑗) ∗ 𝑐 ∗ 𝑥𝑖𝑗𝑘

𝑘∈𝐾(𝑖,𝑗)∈𝐴

 (1)

𝑀𝑖𝑛 − 𝐸[𝑆𝐿] (2)

Subject to:

∑ ∑ 𝑥𝑖𝑗𝑘

𝑘∈𝐾𝑗∈𝑉0

= 1, ∀𝑖 ∈ 𝑉 (3)

∑ 𝑥0𝑗𝑘 = 1, ∀𝑘 ∈ 𝐾

𝑗∈𝑉

 (4)

∑ 𝑥𝑖0𝑘 = 1, ∀𝑘 ∈ 𝐾

𝑖∈𝑉

 (5)

∑ 𝑥𝑖𝑗𝑘

𝑖∈𝑉0

− ∑ 𝑥𝑗𝑖𝑘 = 0,

𝑖∈𝑉0

 ∀𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (6)

∑ 𝑞𝑖 ∑ 𝑥𝑖𝑗𝑘 ≤ 𝑄, ∀𝑘 ∈ 𝐾

𝑗∈𝑉0𝑖∈𝑉

 (7)

𝑃(𝐴𝑇𝑖 ≤ 𝑙𝑖) ≥ 𝛼𝑖, ∀𝑖 ∈ 𝑉 (8)

𝑒𝑖 ≤ 𝑆𝑆𝑖, ∀𝑖 ∈ 𝑉 (9)

The two objectives are given by Equations (1) and (2). Equation (1) is formed by two parts: the vehicle

fixed cost (number of vehicles 𝑚 multiplied by the fixed cost 𝑓) and the variable cost (the sum of the mean of

each activated arc multiplied by the cost 𝑐 per unit of travel time). Therefore, both terms are expressed by a

financial unit. The second objective is given by Equation (2) and maximizes the service level of the solution,

defined here as the mean of the service levels of all customers.

Equation (3) ensures each customer is visited only once. Equations (4) and (5) ensure each vehicle

starts the route in the depot and also returns to it. Equation (6) ensures that each vehicle departs from a

customer location after it visits the customer. Equation (7) is the capacity constraint. Equation (8) is the service

level required by each customer. It reflects that the probability of a vehicle arriving at the customer before the

end of the time window should be greater than a given threshold, for any customer. Equation (9) ensures the

hard time windows, where the service will only start after the start of the time window, therefore, if the vehicle

arrives before 𝑒𝑖, it must wait until 𝑒𝑖. The service start time is given by Equation 10:

𝑆𝑆𝑖 = 𝑚𝑎𝑥{𝐴𝑇𝑖, 𝑒𝑖}, (10)

where 𝐴𝑇𝑖 = 𝑆𝑆𝑖−1 + 𝑆𝑇𝑖−1 + 𝑇𝑇𝑖−1,𝑖.

Note that the departure time from the depot is defined as zero and a departure time greater than zero

does not improve any of the objectives.

Regarding the service level objective, we use the mean service level rather than median or percentage

of customers within service level because we assume there is also a value in over-achieving the desired service

level 𝛼𝑖.

4 – Computation of the service level

This section presents the statistical method to calculate the probability of a vehicle arriving at a

customer before the end of its time window (service level). It is based on the method introduced by Miranda

and Conceição (2016) but uses a lower bound for the service and travel time that is more representative of

real applications.

4.1 – Statistical method to compute the service level

For the sake of simplicity, we adopt a specific notation for the statistical problem where a random

variable 𝑋𝑖 is the arrival time at the 𝑖-th customer, and after its truncation at the start of the time window, it

becomes the truncated variable 𝑋𝑖
𝑡with function 𝑓𝑥 left-truncated at point 𝑡𝑖, where 𝑋𝑖

𝑡 = max(𝑥𝑖, 𝑡𝑖), not

removing the early arrival. The variable 𝑌𝑖 is the sum of the service time (ST) and travel time (TT), assuming

they are both normally distributed: 𝑆𝑇𝑖 + 𝑇𝑇𝑖,𝑖+1 = 𝑁(𝜇𝑆𝑇𝑖, 𝜎𝑆𝑇𝑖
2) + 𝑁(𝜇𝑇𝑇𝑖,𝑖+1, 𝜎𝑇𝑇𝑖,𝑖+1

2) = 𝑁(𝜇𝑆𝑇𝑖 +

𝜇𝑇𝑇𝑖,𝑖+1, 𝜎𝑆𝑇𝑖
2 + 𝜎𝑇𝑇𝑖,𝑖+1

2) = 𝑌𝑖. By doing this, the problem becomes solving 𝑋𝑖+1 = 𝑋𝑖
𝑡 + 𝑌𝑖 recursively

from 𝑖 = 1 to 𝑖 = 𝑛, where 𝑛 is the number of customers of a given route. The service level for customer 𝑖 +

1 is 𝑃{𝑋𝑖+1 ≤ 𝑐} where 𝑐 is equivalent to the end of the time window 𝑙𝑖+1. Figure 1 illustrates the case and

also highlights the fact that 𝑋𝑖
𝑡 = 𝑡 𝑖𝑓 𝑥 ≤ 𝑡 with a peak at the beginning of the service window.

Figure. 1: Sum of random variables

The cumulative distribution function of 𝑋𝑖+1 = 𝑋𝑖
𝑡 + 𝑌𝑖 is obtained as follows:

𝐹𝑋𝑖
𝑡+𝑌𝑖

(𝑐) = ∫ 𝐹𝑋𝑖
𝑡(𝑐 − 𝑦)

∞

−∞

 𝑓𝑌𝑖
(𝑦) 𝑑𝑦 (11)

Equation (11) is known as the convolution of the marginal distributions. This equation is

approximated by Equation (12), a discrete function with 𝐼 intervals, where 𝑦𝑓 and 𝑦0 are the upper and lower

bounds of the integration, respectively:

∫ 𝐹𝑋𝑖
𝑡(𝑐 − 𝑦)

∞

−∞

 𝑓𝑌𝑖
(𝑦) 𝑑𝑦 ≅

𝑦𝑓 − 𝑦0

𝐼
∗ ∑ (

𝑔(𝑦𝑘−1) + 𝑔(𝑦𝑘)

2
)

𝐼

𝑘=1

(12)

where 𝑔(𝑦𝑘) = 𝐹𝑋𝑖
𝑡(𝑐 − 𝑦𝑘) 𝑓𝑌𝑖

(𝑦𝑘), ∀𝑘 ∈ {1, … 𝐼 }.

The lower bound is computed as: 𝑦0=max(𝜇𝑌𝑖
− S ∗ 𝜎𝑌𝑖

, 0) where 𝑆 is a parameter specifying the

number of standard deviations used. Note that negative values are not allowed because both service time and

travel time cannot have negative values. The upper bound is 𝑦𝑓=min (𝜇𝑌𝑖
+ S ∗ 𝜎𝑌𝑖

, 𝑐 − 𝑡𝑖). It is desired

𝑃(𝑌𝑖 ≤ 𝜇𝑌𝑖
− S ∗ 𝜎𝑌𝑖

) ≅ 0 and 𝑃(𝑌𝑖 ≤ 𝜇𝑌𝑖
+ S ∗ 𝜎𝑌𝑖

) ≅ 1. Due to the truncation point 𝑡𝑖, we have 𝑐 − 𝑦𝑘 ≥

 𝑡𝑖, therefore 𝑦 ≤ 𝑐 − 𝑡𝑖.

To compute 𝑔(𝑦𝑘) we need to calculate 𝐹𝑋𝑖
𝑡(𝑐 − 𝑦𝑘) and 𝑓𝑌𝑖

(𝑦𝑘). Because 𝑌𝑖 is assumed to be

a Gaussian distribution, we have 𝑓𝑌𝑖
(𝑦) =

1

𝜎𝑌𝑖√2𝜋
 𝑒𝑥𝑝 (−0.5

(𝑦−𝜇𝑌𝑖
)2

𝜎𝑌𝑖
2

). The cumulative function 𝐹𝑋𝑖
𝑡(𝑐 −

𝑦𝑘) is assumed to have been calculated in the previous iteration of the recursion and its discrete function is

stored in a matrix 𝑚𝑝𝑟𝑜𝑏𝑖 comprised of 𝑛𝑖𝑛𝑡 points, as follows:

𝑚𝑝𝑟𝑜𝑏𝑖 = [
𝑐1

𝑖 … 𝑐𝑞
𝑖

𝐹𝑋𝑖
𝑡(𝑐1

𝑖) … 𝐹𝑋𝑖
𝑡(𝑐𝑞

𝑖)

… 𝑐𝑛𝑖𝑛𝑡
𝑖

… 𝐹𝑋𝑖
𝑡(𝑐𝑛𝑖𝑛𝑡

𝑖)
]

where 𝑞 ∈ {1, . . , 𝑛𝑖𝑛𝑡}, 𝐹𝑋𝑖
𝑡(𝑐1

𝑖) ≅ 0 and 𝐹𝑋𝑖
𝑡(𝑐𝑛𝑖𝑛𝑡

𝑖) ≅ 1.

Because 𝑚𝑝𝑟𝑜𝑏𝑖 stores discretized values of the cumulative function, any value of the continuous

function 𝐹𝑋𝑖
𝑡 is calculated by a linear interpolation of the adjacent points. Therefore, 𝐹𝑋𝑖

𝑡(𝑐 − 𝑦𝑘) is

computed through a linear interpolation of 𝐹𝑋𝑖
𝑡(𝑐𝑞

𝑖) and 𝐹𝑋𝑖
𝑡(𝑐𝑞+1

𝑖) where 𝑐𝑞
𝑖 ≤ 𝑐 − 𝑦𝑘 ≤ 𝑐𝑞+1

𝑖 . As

mentioned before, if 𝑐 is equivalent to the end of the time window 𝑙𝑖, then calculating 𝑃{𝑋𝑖+1 ≤ 𝑐} is the

same of calculating the service level at customer 𝑖 + 1.

In order to allow the computation of the next iteration, it is necessary to generate the matrix

𝑚𝑝𝑟𝑜𝑏𝑖+1 by calculating the discrete cumulative function 𝐹𝑋𝑖
𝑡(𝑐𝑞

𝑖+1) for each 𝑞 = {1, … 𝑛𝑖𝑛𝑡 }. The bounds

are computed as: 𝑐1
𝑖+1 = max (𝐹

𝑋𝑖
𝑡

−1(≅ 0), 𝑡𝑖) + max(𝜇𝑌𝑖
− S ∗ 𝜎𝑌𝑖

, 0) and 𝑐𝑛𝑖𝑛𝑡
𝑖+1 = max (𝐹

𝑋𝑖
𝑡

−1(≅ 1), 𝑡𝑖) +

(𝜇𝑌𝑖
+ S ∗ 𝜎𝑌𝑖

). Note that 𝐹
𝑋𝑖

𝑡
−1(≅ 0) and 𝐹

𝑋𝑖
𝑡

−1(≅ 1) were computed in the previous iteration.

So far, this allows to calculate 𝑃{𝑋𝑡 + 𝑌 ≤ 𝑐} where Y is assumed to be a Gaussian distribution. Next,

we describe some considerations for the service time and travel time that differentiates this approach from

Miranda and Conceição (2016).

Let 𝑋 be a normal random variable that can represent 𝑆𝑇 or 𝑇𝑇 with probability density function 𝑓(𝑥).

Because the travel time and service time are normal distributions where negative values cannot be censored,

the resulting distributions are left-truncated normal distributions (random variables represented by 𝑆𝑇𝑡 and

𝑇𝑇𝑡) with probability density function given by Equation 13:

𝑓𝑡(𝑥) = {

0, 𝑥 < 0

𝑓
𝑥
(𝑥)

∫ 𝑓
𝑥
(𝑥)𝑑𝑥

∞

0

, 𝑥 ≥ 0 (13)

Function 𝑔(𝑦𝑘) has 𝑓𝑌𝑖
(𝑦) =

1

𝜎𝑌𝑖√2𝜋
 𝑒𝑥𝑝 (−0.5

(𝑦−𝜇𝑌𝑖
)2

𝜎𝑌𝑖
2

) where 𝜇𝑌𝑖
= 𝐸[𝑆𝑇𝑡] + 𝐸[𝑇𝑇𝑡] and 𝜎𝑌𝑖

2 =

𝑉𝑎𝑟[𝑆𝑇𝑡] + 𝑉𝑎𝑟[𝑇𝑇𝑡]. The components 𝐸[𝑆𝑇𝑡], 𝐸[𝑇𝑇𝑡], 𝑉𝑎𝑟[𝑆𝑇𝑡] and 𝑉𝑎𝑟[𝑆𝑇𝑡] are calculated by

Equations 14 and 15, where 𝑋 represents a truncated normal variable with mean 𝜇, standard deviation 𝜎, left

truncation point 𝑡, 𝛼 = (𝑡 − 𝜇) 𝜎⁄ , probability density function 𝜙(∗) and cumulative distribution function.

Φ(∗).

𝐸[𝑋|𝑋 > 𝑡] = 𝜇 + 𝜎
𝜙(𝛼)

1 − Φ(𝛼)
 (14)

𝑉𝑎𝑟[𝑋|𝑋 > 𝑡] = 𝜎2 [(1 +
𝛼𝜙(𝛼)

1 − Φ(𝛼)
) − (

𝜙(𝛼)

1 − Φ(𝛼)
)

2

] (15)

To calculate 𝑃{𝑋𝑖
𝑡 + 𝑌𝑖 ≤ 𝑐}, we have 𝑌𝑖 = 𝑆𝑇𝑖

𝑡 + 𝑇𝑇𝑖
𝑡. The utilization of Equations 14 and 15gives

the correct values for the mean and variance of 𝑌𝑖 but using a Gaussian equation for 𝑓𝑌𝑖
(𝑦) is an

approximation. Because probabilities 𝑃(𝑆𝑇𝑖
𝑡 < 0) and 𝑃(𝑇𝑇𝑖

𝑡 < 0) are very small, the impact of truncation

in the distribution of 𝑌𝑖 is small. The accuracy of the method is discussed in Section 6.2.

4.2 – Handling non-negative values of the service time

This paper handles the non-negative values of service time and travel time differently from Miranda

and Conceição (2016), where the distribution function for travel time and service time with non-negative

values are given by Equation 16 and not 13. This change is made because we believe Equation 13 is more

representative of real world scenarios than Equation 16, as illustrated by Figures 2 and 3. Observe these two

representations solve different problems therefore a direct comparison is not sensible.

𝑓𝑡(𝑥) = {
0, 𝑥 < 0

𝑓
𝑥
(𝑥), 𝑥 ≥ 0 (16)

Figure 2: function for equation 13 Figure 3: function for equation 16

Figures 2 and 3 show exemplary probability distributions based on Equations 13 and 16, respectively.

As Figure 3 shows, because the negative values are simply accumulated at zero, there is a concentration of

probability at zero which does not seem to be very realistic. This is different from Figure 2 where the subject

is the truncation at the start of the time window.

This change in the formulation of the problem induced a change while computing 𝑓𝑌𝑖
(𝑦). For

Miranda and Conceição (2016), 𝜇𝑦 = 𝐸[𝑆𝑇] + 𝐸[𝑇𝑇] and 𝜎𝑦
2 = 𝑉𝑎𝑟[𝑆𝑇] + 𝑉𝑎𝑟[𝑇𝑇], not using Equations

14 and 15, while for the present paper, we have 𝜇𝑦 = 𝐸[𝑆𝑇𝑡] + 𝐸[𝑇𝑇𝑡] and 𝜎𝑦
2 = 𝑉𝑎𝑟[𝑆𝑇𝑡] + 𝑉𝑎𝑟[𝑇𝑇𝑡].

5 –Algorithms to solve the Multiobjective Stochastic VRPTW

In this paper, we devise two metaheuristics successfully applied in variants of VRP in the literature:

a Multiobjective Memetic Algorithm (MMA) and a Multiobjective Iterated Local Search (MILS). In order to

better evaluate the results, we also implement two versions of the Multiobjective Evolutionary Algorithm

(MOEA) proposed by Garcia-Najera and Bullinaria (2011), totaling four algorithms. This section presents the

algorithms in which the statistical method of the previous section is embedded. Any heuristic can be adapted

to use the proposed method for service level calculation.

5.1 – Multiobjective Memetic Algorithm (MMA)

A Memetic Algorithm (see concepts in Moscato, 1999) is an approach combining an evolutionary

algorithm with a local improvement procedure. The pseudo-code of the main loop can be found in Algorithm

1, where 𝐻𝑉 stands for hypervolume, classic metric for multi-objective problems detailed in Emmerich et al.

(2005).

Algorithm 1 : Main loop of the Multiobjective Memetic Algorithm

1 Initialize parameters for the VRPTW instance
2 While HV improvement in the last 3 generations > minHV

3 if (𝑔𝑒𝑛 = 1) then
4 Generate nIniSol initial solutions and return Offspring

5 else
6 Apply selection by SUS in Pop
7 for 𝑖 = 1: 𝑛𝐶ℎ𝑖
8 Apply crossover and add child to Offspring
9 end

10 end
11 Offspring ←Pre_Intensification_VND(Offspring)
12 Rank Offspring and return Offspring Rank1
13 Offspring' ← Intensification_VND(Offspring Rank1)
14 Compute rank and HV contribution in Pop
15 Cut-off of the population Pop
16 Add Offspring' to Pop
17 Compute HV contribution in Pop, update BestPop and HV improvement

18 end
19 BestPop ← Post_Intensification_LocalSearch(BestPop)

Line 1 initializes the parameters of the VRPTW instance to be solved. Loop 2-18 are executed while

there is a significant improvement (> minHV) of the hypervolume of the Pareto front BestPop. Line 4 is

executed only in the first iteration, and creates 𝑛𝐼𝑛𝑖𝑆𝑜𝑙 initial solutions to form a population called Offspring

that is used to initialize the main population Pop. Otherwise there is already a population Pop and then 𝑛𝐶ℎ𝑖

solutions are selected in line 6 using Stochastic Universal Sampling (SUS) and 𝑛𝐶ℎ𝑖 new solutions are

generated by the crossover operator in line 8. These new solutions form the population Offspring . Line 11

improves the Offspring through the application of a specific set of local searches identified as “Pre-

Intensification”. Line 12 computes the rank of the solutions in Offspring and only those solutions with rank 1

(non-dominated solutions) form the population Offspring Rank 1 that is processed by another set of local

searches called “Intensification” and returns Offspring'. In line 14, the rank is updated and the individual

contribution of each solution in Pop is calculated. Line 15 checks whether the current population Pop exceeds

a specified maximum number of solutions. If yes, the solutions with smaller rank and hypervolume

contribution are eliminated. In line 16, all solutions of the population Offspring' are added to the main

population Pop. Finally, line 17 updates the rank and hypervolume contribution for each solution from Pop

(to be further used in line 6 during selection), updates BestPop (Pareto front with the best set of non-dominated

solutions obtained by the algorithm up until the current iteration) and calculates the hypervolume of BestPop

to update the accumulated hypervolume improvement in the last 3 generations (exit criterion in line 2). After

the main loop, in line 19, the current BestPop is processed by a set of local searches called “Post-

Intensification” aiming at an additional increase of the hypervolume.

The individual hypervolume contribution used in line 14 and the hypervolume calculation used in line

17 were implemented according to Fleischer (2003) and Emmerich et al. (2005), respectively. The initial

solution (line 4) is based on the well-known 𝐼1 heuristic from Solomon (1987), a sequential insertion heuristic

that considers the insertion cost of an unrouted customer 𝑢 between two adjacent customers 𝑖𝑝−1 and 𝑖𝑝 in a

partially finished route (𝑖0, 𝑖1, … , 𝑖0) in which 𝑖0 represents the depot. The insertion cost is a weighting of the

travel time to the adjacent customers and the new service start time for 𝑖𝑝. When it is not possible to insert a

new customer in the route, a new route is started with a customer that comes from a list of unrouted customers

(seed list) sorted by a score given by a weighting between the distance to the depot and the end of the time

window. Different weighting parameters for the insertion cost and seed list are used to generate a number of

solutions. In order to avoid additional computation of the service level in this initial solution phase, the time

windows feasibility is tested firstly according to the classic deterministic approach, assuming mean values all

travel and service times. If feasible by this test, the stochastic test is performed, computing the service levels

of all customers of the route and checking if they are higher than a specified threshold 𝛼. It is possible to

generate initial solutions that violate the required service level, and in this case, a penalty proportional to the

violation is added to both objectives.

5.2– Multiobjective Iterated Local Search (MILS)

The metaheuristic “Iterated Local Search” (ILS) has been used successfully for a variety of single-

objective combinatorial problems and it has been also applied for multiobjective routing problems such as

Assis et al. (2012), Aquino et al., (2014), and de Souza Lima (2017). The main loop of the MILS proposed

here is described in Algorithm 2. We have a working set of solutions (𝑆𝑊), a local set of non-dominated

solutions (𝑆𝐿) and the non-dominated set of solutions (𝑆∗) that is the best Pareto-front obtained by the

algorithm.

In the first iteration (𝑖𝑡), a set of initial solutions are created in line 4 initializing 𝑆𝑊. In line 5, 𝑆∗ is

initialized with 𝑆𝑊. For other iterations, 2 solutions (𝑠1 and 𝑠2) are selected from 𝑆𝑊 using SUS (line 7). A

new solution 𝑠 is generated via crossover (line 8). Note that from the context of Iterated Local Search, we are

using the crossover operator as a perturbation operator. After that, in line 10, a set of local searches based on

Variable Neighborhood Descent (VND) is applied to 𝑠 returning the local set of non-dominated solutions 𝑆𝐿.

The VND works as described in Algorithm 4. Lines 11 and 12 update the hyper volume contribution for each

solution in 𝑆𝑊 and perform the cut-off to adjust the size of the working population 𝑆𝑊. This is done before

adding 𝑆𝐿 to 𝑆𝑊 (line 13) so the solutions from 𝑆𝐿 still have some chance to be selected by SUS at the

beginning of the next iteration. Note that even if a solution from 𝑆𝐿 is dominated, because they come from a

local set of non-dominated solutions, they still have a chance to contribute. In line 11, 𝑆𝑊 and 𝑆∗ are updated.

If there is improvement in the 𝑆∗ hypervolume then the counter for the number of perturbations (𝑛𝑃𝑒𝑟𝑡) resets

to zero, otherwise it is incremented. The process continues while the maximum number of perturbations

(𝑚𝑎𝑥𝑃𝑒𝑟𝑡) or iterations (𝑚𝑎𝑥𝐼𝑡) is not exceeded.

Algorithm 2: MILS

1 Initialize parameters for the VRPTW instance
2 While (nPert ≤ maxPert) And (it < maxIt)
3 if (it = 1) then
4 Generate nIniSol initial solutions and return SW
5 Add SWto S*, update HV.

6 else
7 Select 2 solutions (s1 and s2) from SW using SUS
8 s ← Crossover (s1,s2).
9 end

10 SL ← VND(s).
11 Compute rank and HV contribution in SW

12 Cut-off SW
13 Add SL to SW
14 Compute HV contribution in SW, update S* and HV improvement
15 if (HV improvement = true) then

16 nPert = 0;

17 else

18 nPert = nPert + 1;

19 end

20 it = it + 1;

21 end

5.3– Operators

In this section, we discuss operators such a local searches and crossover used in the metaheuristics.

Usually, for single objective and even multi-objective problems, local searches receive one solution as input

and return one solution as output. Differently, all the local searches implemented in this work receive one

solution and return a set of non-dominated solutions.

Algorithm 3 shows the general structure of the local searches. A local population 𝑝𝑜𝑝𝐿𝑜𝑐𝑎𝑙 is

initialized with the solution 𝑠. The loop 3-17 keeps exploring new moves while a new non-dominated solution

is found. Loop 5-16 performs the moves. In line 5, because the service level computation impacts the running

time, not all moves have the objective function evaluated, avoiding service level calculations. The considered

moves are said “eligible” and explained in more detail in Algorithm 5 (lines 6, 8 and 9). Line 9 replaces 𝑠 by

𝑠’ if function 𝐵𝑒𝑡𝑡𝑒𝑟 returns true, i.e., 𝑠’ dominates 𝑠 or if the percentage improvement in one objective is

higher than the percentage deterioration in the other objective compared with the objective evaluations of 𝑠.

Lines 11-15 add the new solution s’ to the local population in case it is not dominated by any solution, delete

the dominated solutions, and update the boolean variable. In line 18, the local population popLocal and the

index of the current solution 𝑠 in the local population are returned by the function. Note that line 9 is only a

strategy to guide the local search by exploring a good solution. Even if the new solution 𝑠′ does not replace

𝑠, if 𝑠’ is not dominated it will still be added to the population.

Algorithm 3: Basic structure of the local search

1 𝑝𝑜𝑝𝐿𝑜𝑐𝑎𝑙(1) ← 𝑠
2 improve ← true
3 while improve = true do
4 improve ←false
5 for each eligible and feasible move of the solution s

6 Evaluate objectives of the new solution 𝑠′
7 Check if s' is better than 𝑠
8 if 𝐵𝑒𝑡𝑡𝑒𝑟(𝑠′, 𝑠)
9 𝑠 ← 𝑠′

10 end
11 if 𝑠′ is not dominated by any solution of 𝑝𝑜𝑝𝐿𝑜𝑐𝑎𝑙
12 Add 𝑠′ to 𝑝𝑜𝑝𝐿𝑜𝑐𝑎𝑙
13

 Delete any solution in popLocal dominated by 𝑠′
14 improve ← true
15 end
16 end
17 end
18 Return 𝑝𝑜𝑝𝐿𝑜𝑐𝑎𝑙 and index of 𝑠

For the MMA algorithm, there are three different sets of local searches: “Pre-Intensification”,

“Intensification” and “Post-Intensification”, and for the MILS algorithm there is only one named “VND-

MILS”. These searches are based on the Variable Neighborhood Descent (VND), see Hansen & Mladenovic

(2003). Many frequently applied neighborhood operators in VRP were implemented and those successfully

tested were kept in the algorithms. Six local searches are used by these three VND functions: 2-opt (Lin,

1965), Reallocation (Osman, 1993), Interchange (Osman, 1993), 2opt* (Potvin & Rousseau, 1995) , “Intra

Exchange” and “Reallocation Chain”. The local search “Intra Exchange” is analog to “Reallocation” but all

movements are performed in the same route. The operator Cross-exchange (Taillard et al. 1997) was also

tested but identified as not helpful and it is not included.

The local search “Reallocation Chain” was specifically designed to focus on route elimination. Given

a solution, starting with the route 𝑟1 with the least customers, the local search “Reallocation” is applied to

move the customers from route 𝑟1 to the other routes. When this is not possible anymore and there are still

remaining customers in 𝑟1, the local search “Interchange” replaces one customer from 𝑟1 by another from the

other routes and after that, the “Reallocation” is applied again.

The ‘Pre-Intensification VND’ used in line 11 of Algorithm 1 is described in Algorithm 4, and for the

sake of brevity, also used to explain the other types of VND. The function receives a population “pop” that in

the case of the ‘Pre-Intensification VND’ is the Offspring (from lines 4 and 8, Algorthm 1). Lines 1 and 2

initialize an auxiliary population 𝑝𝑜𝑝’ and a local population 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝. Loop 3-17 is applied to each solution

𝑠 in 𝑝𝑜𝑝 in which the local population is initialized with solution 𝑠. Loop 7-14 applies 𝐾 local searches while

a non-dominated solution is found. In line 8, the first local search (𝑘 = 1) initially performs the moves in the

original solution 𝑠 = 𝑝𝑜𝑝(i). The local search accepts the move according to the function 𝐵𝑒𝑡𝑡𝑒𝑟 (line 8,

Algorithm 3), where 𝑠 receives the new solution 𝑠’. The local population 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝 is updated according to

the loop lines 11-15, Algorithm 3. It means that the local search 𝑘 updates 𝑠 and 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝 passed as input to

the next local search 𝑘 + 1. In line 15, the solutions from 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝 are included in 𝑝𝑜𝑝’ (only non-repeated

solutions), and in the next line the local population is reset. By doing so, each solution 𝑝𝑜𝑝(i) generates its

own set of non-dominated solutions that are all included in 𝑝𝑜𝑝’. This is done to have more diversity on the

search, still working with high quality solutions (a non-dominated set of solutions).

Algorithm 4: Pre-IntensificationVND(pop)

1 𝑝𝑜𝑝′ ← ∅;
2 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝 ← ∅;

3 for i = 1 to 𝑛𝑝𝑜𝑝
4 s ← 𝑝𝑜𝑝(i);
5 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝(1) ← 𝑠;

6 k ← 1;
7 while k ≤ K do
8 Local_Search (s, 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝, k);

9 if non-dominated solution found then

10 k ← 1;
11 else
12 k ← k + 1;
13 end
14 end
15 Add 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝 to 𝑝𝑜𝑝’
16 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝 ← ∅;
17 end

18 Return 𝑝𝑜𝑝′;

The ‘Intensification VND’ used in line 13 of Algorithm 1 works similarly to Algorithm 4, with the

following differences: 𝑝𝑜𝑝 passed as input is Offspring Rank1 (from line 12, Algorthm 1); there are no lines

1 and 5; in line 2 we have 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝 ← 𝑝𝑜𝑝; we do not have lines 15 and 16, meaning there is no reset of the

local population, aiming to increase the intensification; and the function returns 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝. The ‘Post-

Intensification VND’ used in line 19 of Algorithm 1 is the same of ‘Intensification VND’ with differences

described in Table 1. The VND-MILS used in line 10, Algorithm 2, works according to Algorithm 4 but with

𝑛𝑝𝑜𝑝 = 1, because it receives a single solution and still returns a local set of non-dominated solutions. Other

differences among the four VND strategies are summarized in Table 1, showing the input of the VND and its

sequence of local searches.

Table 1: VND functions

VND Type Input Local Searches

Pre-Intensification Offspring population (Offspring)
2-opt, Reallocation Chain, Interchange,

Reallocation

Intensification
Non-dominated solutions of the

Offspring (Offspring Rank 1)

2-opt, Intra Exchange, Interchange,

Reallocation, 2-opt*

Post-Intensification Pareto-front (Best Pop) 2-opt, Reallocation, 2-opt*

VND-MILS Single solution
2-opt, Reallocation Chain, Intra Exchange,

Interchange, Reallocation, 2-opt*

Algorithm 5 presents the pseudo-code for the main structure of the local search “Interchange” in the

context of the multiobjective and stochastic VRPTW. The general idea is to interchange customers from two

different routes in order to find new non-dominated solutions. In this algorithm, “𝑆𝐿” stands for the service

level of the customers.

Algorithm 5: Main structure of the local search "Interchange"

1 for each route r1
2 for each route r2 (r2 different from r1)
3 if r1 and r2 are not tabu
4 for each customer in r1
5 for each customer in r2
6 if within circular zone
7 if capacity constraint holds
8 if move is not tabu
9 if deterministic time windows holds

10 Compute SL for the customers in the modified r1

11 if penalty for the SL has not increased
12 Compute SL for the customers in the modified r2

13 if penalty for the SL has not increased
14 Evaluate Objectives
15 if Better = true
16 bestSol←newSol
17 end
18 Update local population
19 end
20 … end(s)
21 end

The loops starting in lines 1- 2 and 4 - 5 explore different customers and different routes to perform

the moves. In line 3, only pairs of routes classified as “not tabu” are explored. In this context, the word “tabu”

means “forbidden”, and that pair of routes is not considered eligible. The first time in the whole algorithm a

pair of routes is explored by the local search, if it does not lead to non-dominated solutions, the pair of routes

is classified as “tabu”. In line 6, only moves involving customers within a given circular zone are eligible.

Line 8, the idea of “tabu moves” is analog to the idea of “tabu routes”, in which if an interchange move is

tested and it does not lead to a non-dominated solution, this move is declared “tabu”. Line 9 performs the time

windows feasibility test using a deterministic approach. Lines 10 and 12 compute the service level of the

customers in the new routes. Lines 14-18 work according to Algorithm 3. The conditional clauses in lines 3,

6,7,8,9 and 11 aim to prevent additional computation of the service level of the customers for the new routes.

Note that while in principle it may be possible that the deterministic time windows feasibility test performed

in line 9 could reject a feasible solution, preliminary experiments showed this happens rarely and only for

small values of the required service level (≤ 50%) which is not the case for the experiments described in the

next sections. This is supported by the fact that the mean of the service start time is greater than the

deterministic start time because in the stochastic formulation, the truncation point at the start of the time

windows shifts the mean to right, which doesn’t happen in the deterministic formulation

In order to quickly check whether a route is tabu or not, we created an indexation mechanism to give

a unique number to pairs of routes (in the case of local searches in which the moves involves two routes)

according to equation (17). Let 𝑏𝑖 be an array with the deterministic service start time of the customer 𝑖 for

𝑖 = 1, … , 𝑁 customers. Let 𝑟1 be an array with a sequence of 𝑛𝑐1 customers visited by the vehicle where 𝑘 =

1, … , 𝑛𝑐1; and another array for the route 𝑟2 with 𝑛𝑐2 customers with 𝑘 = 1, … , 𝑛𝑐2. 𝑆𝐿 is an array of length

𝑁 with the service level of the customers. The indexation is used in a boolean array 𝑇𝑅 𝑖𝑑𝑥𝑅. If 𝑇𝑅 𝑖𝑑𝑥𝑅 =

𝑡𝑟𝑢𝑒, the pair of routes is considered tabu.

𝑖𝑑𝑥𝑅 = ‖(∑ 𝑏𝑟1𝑘

𝑛𝑐1

𝑘=1

+ ∑ 𝑏𝑟2𝑘

𝑛𝑐2

𝑘=1

) ∗ 1000‖ + ‖∑ 𝑆𝐿𝑟2𝑘

𝑛𝑐2

𝑘=1

‖ + 𝑟11 (17)

In a similar way, in order to index also the moves, we used Equation (18) where Δ1 is the variation of

the total travel time for the route 𝑟1 when the customer 𝑢2 from route 𝑟1 is inserted in 𝑟2 replacing

customer 𝑢1. Δ2 is analog for route 𝑟2.

𝑖𝑑𝑥𝑀𝑜𝑣 = 𝑖𝑑𝑥𝑅 + ‖(Δ1 + Δ2) ∗ 100‖ + ‖(b𝑢1 + b𝑢2) ∗ 100‖ (18)

This index is used in a boolean array 𝑇𝑀 𝑖𝑑𝑥𝑀𝑜𝑣 . If 𝑇𝑀 𝑖𝑑𝑥𝑀𝑜𝑣 = 𝑡𝑟𝑢𝑒, the move is tabu. This

indexation equations were created through preliminary experiments in order to minimize the probability of

declaring tabu a pair of routes/moves that was never explored previously. The effectiveness of such strategy

is shown in the experiments of the next section.

The circular zone used in line 6 of Algorithm 5 defines a maximum mean travel time (𝑇𝑇𝑚𝑎𝑥) to

evaluate moves. The insertion of customer 𝑖 between customers 𝑖 − 1 and 𝑖 + 1 is only considered eligible if

𝑇𝑇𝑖−1,𝑖 ≤ 𝑇𝑇𝑚𝑎𝑥 and 𝑇𝑇𝑖,𝑖+1 ≤ 𝑇𝑇𝑚𝑎𝑥. The utilization of the circular zone, tabu route/moves and the

deterministic time windows test aims to reduce computational time and the effectiveness of these strategies is

discussed in the next subsection.

The selection strategy used in the algorithms 1 and 2 is the Stochastic Universal Sampling (SUS),

introduced by Baker (1987). It exhibits no bias and minimal spread, and it as an alternative for the well-known

roulette wheel selection. The crossover operator developed in this work (used in both MMA and MILS)

receives an array with the index of the solutions in the population selected by SUS. The function picks two

solutions (𝑠1 and 𝑠2) and combines them to generate a new solution (𝑠’). It is common in the literature having

crossover operators that copy routes from both parents, but our operator has a step to reduce the number of

conflicts (common customers) while selecting the routes from both parents.

 Parent 1 (𝑠1) Child (𝑠’) Parent 2 (𝑠2)
Route 1 1 14 9 4 10 11 12 13 10 11 12 13
Route 2 5 6 7 8 5 6 7 8 14 15 7 8
Route 3 10 11 12 13 1 2 9 3 4 5 6
Route 4 3 2 15 3 1 2 9

Figure 4: Crossover Operator

The following steps describe the crossover and are applied to the example in Figure 4.

1) For each route in 𝑠1, calculate the number of routes in 𝑠2 with any customer in common and generate

a matrix (𝐿1) sorted in ascending order, storing in one row the number of common customers and in

another row the index of the route. Repeat the same for 𝑠2 in comparison with 𝑠1 generating 𝐿2. In

the example of Figure 4:

L1

1 2 3 3

route 𝑟3 𝑟2 𝑟1 𝑟4

L2

1 2 3 3

route 𝑟1 𝑟4 𝑟2 𝑟3

2) Initialize 𝑠’ with the first route in 𝐿2, In the example, it is 𝑟1.

3) In 𝐿1, select the first route from 𝑠1 in which its first customer is not in 𝑠’. Copy the route to 𝑠’, from

index 1 to index 𝑝, where 𝑝 + 1 is the index with the first customer already routed in 𝑠’. In the

example, the preference is for 𝑟3 but its first customer is already in 𝑠’, then it is 𝑟2, the whole route

in this case.

4) In 𝐿2, select the first route from 𝑠2 in which its first customer is not in 𝑠’. Copy the route to 𝑠’, from

index 1 to index 𝑝, where 𝑝 + 1 is the index with the first customer already routed in 𝑠’. In the

example, it is 𝑟4, the whole route.

5) Repeat steps 3 to 4 until one of them is depleted. In the example, repeating step 3 returns 𝑟4 until

index 𝑝 = 1, because 𝑝 + 1 is a customer already inserted in 𝑠’. Then, 𝐿1 is depleted and step 5 is

finished.

6) If there are customers still not inserted in 𝑠’, apply a constructive heuristic to complete 𝑠’. We choose

a modified version of the algorithm used to generate the initial solutions. In the example, the new

solution 𝑠’ inherited 12 out of 15 customers, with information of sequence and direction.

5.4– Notes on the features of the local search schemes

In this section, we emphasize the main features that make the proposed algorithms unique when

compared with others from the literature. One point is related to the way the local searches are guided.

Evolutionary algorithms such as Castro et al. (2011) and Chiang and Hsu (2014) have neighborhood structures

that are used as mutation operators not considering the objective function, usually moving to the first feasible

solution found, receiving one solution and returning one modified solution. Assis et al. (2013) suggest the

adoption of many distinct specialized neighborhoods for each addressed single objective, and the local

searches accept the first solution that improves the single objective of the respective local search. In Baños et

al. (2013), if the new solution is not dominated by the parents, it is accepted, otherwise the solution is accepted

or not according to the criterion of Metropolis in a simulated annealing context.

Qi et al. (2015) force single-objective sub-problems, so the local search is guided as in any typical

single-objective approach. Sivaramkumar et al. (2015) normalize the objectives and work with the averages

to have single-objective problems, therefore there are no additional challenges while guiding the local search.

In Lima et al. (2017), the incumbent frontier set is passed as an input to the local search phase so that the

dominance checking can be done along the search inside the neighborhood structure and the local search is

performed separately for each objective one at a time.

Differently from those studies, in the current paper, the developed local searches receive one solution

and return a local set of non-dominated solutions. In addition to that, the local search accepts the move if the

new solution dominates the original solution or if the percentage improvement in one objective is higher than

the percentage deterioration in the other objective. Note that this criterion works with the objectives

simultaneously, prevents an undesirable zigzag phenomenon and ensures a certain level of quality for the

current solution guiding the local search.

Another point is related to the way the local searches are embedded in the framework of the meta-

heuristic. Assis et al. (2013) and Lima et al. (2017) count on one VND in their algorithms, but differently, in

our proposed MMA we have two sets, working in two phases: pre-intensification and intensification

(Algorithm 4). In the first, each solution in ‘Offspring’ is explored by local searches in a way that each solution

generates its own local set of non-dominated solutions, that are then merged to form a new ‘Offspring’

comprised of a diverse set of high quality solutions. After that, in preparation for the second VND, these

solutions are ranked and the non-dominated solutions form the ‘Offspring rank 1’ that is passed as input for

the second VND. Each solution in ‘Offspring rank 1’ is explored by a set of local searches, but differently

from the first VND, the local population is initialized with ‘Offspring rank 1’ and it is not reinitialized while

interacting over each solution of ‘Offspring rank 1’. This strategy favors diversification in the first VND and

intensification in the second VND.

5.5– Multiobjective Evolutionary Algorithm (MOEA)

For comparison purposes, we also implement the Multiobjective Evolutionary Algorithm (MOEA)

proposed by Garcia-Najera and Bullinaria (2011) to solve a multi-objective VRPTW. The algorithm

comprises a typical evolutionary framework enhanced by a diversification mechanism based on a similarity

measure that has outperformed the popular NSGAII. The main loop is presented in Algorithm 6.

Algorithm 6: MOEA

1 Initialize parameters for the VRPTW instance
2 While 𝑔𝑒𝑛 ≤ 𝑛𝑢𝑚𝐺𝑒𝑛

3 if (𝑔𝑒𝑛 = 1) then
4 Generate popSize initial solutions and return Offspring

5 else
6 Apply selection using modified tournament
7 for 𝑖 = 1: 𝑛𝐶ℎ𝑖
8 Apply crossover and add child to Offspring
9 end

10 end
11 Offspring' ← Mutation(Offspring)
12 Combine Offspring and Pop
13 Cut-off of the population Pop
14 Compute rank and similarity

15 𝑔𝑒𝑛 ← 𝑔𝑒𝑛 + 1
16 end

In Algorithm 6, line 4, the MOEA starts with a set of popSize solutions, each being a randomly

generated feasible route. The parent selection (line 6) consists in a modified 2-tournament method, where the

first of two parents is chosen on the basis of rank, and the second on the basis of a similarity measure based

on Jaccard’s similarity coefficient, aiming to maintain population diversity. Regarding the crossover operator

(line 8), a random number of routes are chosen from the first parent and copied into the offspring, then all

those routes from the second parent which are not in conflict with customers already copied from the first, are

copied into the offspring. There are three mutation operators: ‘Reallocation’ which takes a number of

customers from a given route and allocates them to another, ‘Exchange’ which swaps sequences of customers

between two routes, and ‘Reposition’ which selects one customer from a specific route to reinsert it into the

same route. In line 12 both populations are combined, and in line 13, when the population size is exceeded in

the last selected front, similarity is computed for the solutions in that front, and the least similar are chosen.

Finally, line 13 updates the rank and similarity, and line 14 increments the generation counter.

We implement two versions, both using the same operators from Garcia-Najera and Bullinaria (2011)

adapted to our problem formulation. The first version (MOEA) works exactly as described in Algorithm 6

(original form), and in the second version (MOEA-VND) we add a VND loop between lines 11 and 12, using

the configuration “Pre-Intensification” in Table 1, Section 5.3. The purpose of the second version is to evaluate

whether the inclusion of local searches is able to boost the algorithm’s performance, which we believe is a

relevant discussion in terms of algorithm design.

6 – Experiments and Results

This section is divided into four sub-sections with different experiments. Section 6.1 shows the

influence of different parameters of the statistical method used to compute the service level. Section 6.2 aims

to validate the statistical method by comparing it with a benchmark (method proposed by Zhang et al., 2013).

Section 6.3 presents results for some specific features of the optimization algorithms (MMA and MILS), and

finally, in section 6.4 we have the application of the algorithms to all Solomon instances.

Regarding the instances for Sections 6.1 and 6.2, all 56 well known Solomon’s benchmark problems

with 100 customers were adapted to generate instances with different probabilities of waiting time (from 0 to

100%). Approximately 160 routes were generated for each instance, using the construction heuristic I1 from

Solomon (1987), resulting in a database formed by 9037 routes with 3 to 55 customers. For each of the total

number of 101701 customers, we calculated 𝑃(𝐴𝑇𝑖 ≤ 𝑙𝑖) and 𝑃(𝐴𝑇𝑖 ≤ 𝑒𝑖), i.e., the service level and the

waiting time probability, respectively. We then compute the error of the 203402 calculations as the absolute

difference between the computed value and the true value approximated by simulation (Li et al., 2010), using

100000 iterations.

All instances used in the experiments (from Section 6.1 to 6.4) have the same features of the original

instances of Solomon, such as vehicle capacity, customer location, time windows and service time. Only a

standard deviation for the travel time and service time is added, as explained next.

Let 𝑑𝑖𝑠(𝑖, 𝑗) be the distance between two customers in the original instance, the travel time is a normal

distribution left truncated at zero with average 𝐸[𝑇𝑇𝑖,𝑗] = 𝑑𝑖𝑠(𝑖, 𝑗) and standard deviation 𝑑𝑒𝑣[𝑇𝑇𝑖,𝑗]

generated by 𝑈[0.1; 0.6] ∗ 𝑑𝑖𝑠(𝑖, 𝑗) where 𝑈 is a uniform distribution. The service time is also a normal

distribution left truncated at zero with average 𝐸[𝑆𝑇𝑖] = 𝑠𝑖 where 𝑠𝑖 is the deterministic service time of the

original instance, and standard deviation 𝑑𝑒𝑣[𝑆𝑇𝑖] = 𝑈[0.1; 0.6] ∗ 𝐸[𝑆𝑇𝑖]. As a reference, the

range 𝑈[0.1; 0.6] is larger than used by Zhang et al. (2013) which was 𝑈[0.2; 0.6]. A second reference is Li

et al. (2010) with a proportion that varies from 0.07 to 0.2 the value of the mean. In Ehmke et al. (2015), the

variation of the travel time is randomly generated uniformly between 0.1 and 0.3. For practical applications,

in case service and travel times are Gaussian, we believe it is very unlikely to find a variation outside the

range used in this paper.

All algorithms were coded in Matlab R2015a, and tested in a computer dual core Intel i7 2.6 GHz

with 16GB RAM, running Windows 10 Pro.

Sections 6.3 and 6.4 report the hypervolume indicator used in Emmerich et al. (2005). Preliminary

tests executed Algorithm 1 a number of times in order to have reference points for the max and min values

for each objective and for each instance. A normalization is performed on non-dominated solutions for each

instance by using 𝑣𝑎𝑙𝑚
𝑛𝑒𝑤 = (𝑣𝑎𝑙𝑚 − 𝑚𝑖𝑛𝑚

𝑖) ∗ 100 (𝑚𝑎𝑥𝑚
𝑖 − 𝑚𝑖𝑛𝑚

𝑖)⁄ where 𝑚 is the index for the objective

and 𝑖 is the index for the instance. The reference point is set as (2000, 2000) and the hypervolume is divided

by 400 just for better readability.

6.1 – Parameters discussion for the method to compute the service level

The method has three main parameters: 𝑛𝑖𝑛𝑡 (number of intervals in the discretized cumulative

function), 𝐼 (number of intervals to solve the convolution) and 𝑆 (number of standard deviations), all

mentioned in Section 4, where 𝐼 is used in equation 12, 𝑛𝑖𝑛𝑡 in the matrix 𝑚𝑝𝑟𝑜𝑏𝑖 and 𝑆 to calculate bounds

over which we integrate in Equation 12. For this experiment, values (10,15,20,25,30,40,50) were used for

𝑛𝑖𝑛𝑡 and 𝐼, and values (2.0,2.5,3.0,3.5,4.0,4.5,5.0) for 𝑆, totaling 7 ∗ 7 ∗ 7 = 343 scenarios.

Figure 5: Running time and error for the 49 scenarios

Figure 5 shows the relation between the error (95% percentile of the mean absolute error in percentage

points) and the running time, with the ID of the tested scenarios on the x-axis. It helps to choose a convenient

value for the parameters. Naturally, the choice depends on the context of the application and in this case, it

was selected the scenario 203 with error of 0.93% and running time of 28 seconds, parameters 𝑛𝑖𝑛𝑡 = 20,

𝐼 = 20 and 𝑆 = 3.5 that presented a good trade-off. Note that the service level computation in a given

customer is used when evaluating a move in the local searches. Therefore, the faster the service level

calculation, the faster the local search and consequently the metaheuristic.

6.2– Validation of the method to compute the service level

For this experiment, we set 𝑛𝑖𝑛𝑡 = 20, 𝐼 = 20, and 𝑆 = 3.5 based on the previous section. Table 2

displays the results. The first three metrics give descriptive information for the error (absolute error in

percentage points) in 203402 calculations performed: the mean of the error, the standard deviation of the error

and the 95th percentile for the error. Metric 4 gives the computational time in seconds (average of 5 runs). The

running time is the elapsed time to compute the probabilities for all customers in all routes. The third column

0.0

0.5

1.0

1.5

2.0

2.5

0

10

20

30

40

50

60

70

8
9

3
2

1
1

0
8

2
9

5
2

0
4

4
9

1
5

7
2

6
6

1
5

2
1

3
8

2
8

4
1

6
2

5
1

2
5

3
2

0
3

2 1
2

8
1

2
8

2
1

7
3

1
1

2
2

4
9

7
3

1
4

4
6

1
2

0

9
5

%
 p

er
ce

n
ti

le
 (

er
ro

r)

se
co

n
d

s

Average of Seconds Average of 95th

of the table has the results for the proposed method, the last two columns refer to the benchmark using two

configurations for the discrete parameter 𝐿 (the main parameter of the benchmark method).

Table 2: Results for the experiment with benchmark

 N Metric Proposed L=10 L=20

1 Mean Error (p.p.) 0.198 0.571 0.245

2 Std. Dev. Error (p.p.) 0.337 0.998 0.427

3 95th Percentile (p.p.) 0.930 2.804 1.168

4 Time (seconds) 27.14 109.43 231.75

Table 2 shows that the proposed method obtained better results in all four metrics when compared

with the benchmark using 𝐿 = 10. The computational time of the proposed method was 4 times faster. When

compared with 𝐿 = 20, the proposed method had slightly better results for the error (metrics 1 to 3) and it

was almost 9 times faster. In order to better illustrate the behavior of the error, the error distribution is

presented in figures 6 and 7.

 Figure 6: Relative frequencyof the error

:

 Figure 7: Cumulative distribution of the error

Figure 6 shows that the frequency distribution has a positive skew with a long tail on the right. Errors

close to zero have high relative frequency evidencing the quality of the results. Figure 7 gives the percentiles.

6.3 –Strategies effectiveness of the algorithms

In order to save computational time, strategies using circular zones and routes/moves tabu are adopted

(used in local searches, for instance Algorithm 5, lines 3, 6 and 8). The effectiveness of these strategies is

tested in this section.

The circular zones used in the local searches (for example line 6 of Algorithm 5) define a maximum

value 𝑇𝑇𝑚𝑎𝑥 for the travel time of the customers participating of a move in a local search. Considering the

travel times among all customers in the travel time matrix 𝑁𝑥𝑁 (where 𝑁 is the number of customers and

each element is 𝐸[𝑇𝑇𝑖,𝑗]), we study the influence of different limit values using percentiles of 20, 30, 40, 50

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.2 0.6 1.0 1.4 1.8 2.2 2.6

R
el

a
ti

v
e

F
re

q
u

en
cy

Error

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.4 0.8 1.2 1.6 2.0 2.4

C
u

m
u

la
ti

ve
 F

re
q

u
e

n
cy

Error

and 60%, e.g. 𝑇𝑇𝑚𝑎𝑥 for 60th percentile means 60% of the arcs of the travel time matrix are smaller than

𝑇𝑇𝑚𝑎𝑥.

Figure 8 shows the influence of different percentiles used to obtain 𝑇𝑇𝑚𝑎𝑥 in the computational time

and hypervolume of the Pareto front returned by the algorithm. The result from 60th percentile is used as a

reference for the other values, dividing the hypervolume obtained with a certain percentile by the hypervolume

obtained with 60th percentile. Analog for the running time. The results are expressed as the mean of the running

time and hypervolume for five runs of six Solomon instances, the first of each one of the six classes: C101,

C201, R101, R201, RC101 and RC201.

Figure 8: Influence of the circular zone

Figure 8 demonstrates that the lower the percentile, the lower the computational time and the lower

the hypervolume. For instance, the computational time for the 20th percentile is 0.407 times (40.7%) the

running time of 60th percentile, while the hypervolume for the 20th percentile is 0.993 (99.3%) the

hypervolume of 60th percentile. It is relevant to observe that the reduction of the running time is much bigger

than the reduction of the hypervolume. Therefore, depending on the context of the application, if a small

deterioration of the hypervolume is admissible, then it is possible to reduce substantially the computational

time with the utilization of the circular zone.

The strategy involving the routes/moves tabu (for example lines 3 and 8 of Algorithm 5) is also tested.

Regarding its influence in the hypervolume, hypothesis tests showed no statistical differences for the variance

(Levene’s test) and for the mean (ANOVA), with 95% confidence level. Analog tests also showed no

statistical difference for the average number of vehicles in the solutions. Figure 9 shows the influence of the

routes/moves tabu in the computational time for the same six instances. There are two cases: one using the

tabu strategy only for the routes (1𝑇) and another using the strategy for routes and also for moves (2𝑇). The

result with no utilization of any tabu strategy is used as reference: 𝑡𝑖𝑚𝑒% =

𝑡𝑖𝑚𝑒(𝑡𝑎𝑏𝑢 𝑐𝑎𝑠𝑒) 𝑡𝑖𝑚𝑒(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡𝑎𝑏𝑢)⁄ . We also present the average number of vehicles in the solutions.

100.0%
93.7%

72.7%

57.8%
40.7%

99.9% 99.6% 99.5% 99.3%

90.0%

92.0%

94.0%

96.0%

98.0%

100.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

60.0 50.0 40.0 30.0 20.0

h
yp

er
vo

lu
m

e
%

ti
m

e
%

Percentile

time

hypervolume

Figure 9 : Influence of the tabu strategy

Figure 9 shows a significant reduction of the computational time for all instances. It can also be seen

that the utilization of 2𝑇 outperforms 1𝑇. For example, in the instance C101, there is a reduction of

approximately 30% of the time by using 1𝑇, and with the utilization of 2𝑇, this reduction improved to 40%.

The savings strongly depend on the problem instance. The lower the number of vehicles, the lower the savings

with the tabu strategy. For instance, with few vehicles, the routes have more customers and consequently

much more possible moves in the local search, therefore, the higher the odds of finding a move that will lead

to a non-dominated solution and consequently it won’t be declared tabu, reducing the savings.

6.4 – Results for the multi-objective algorithms

Because there is no benchmark in the literature approaching the same problem studied here, we

decided to implement the MOEA from Garcia-Najera and Bullinaria (2011) using their operators but adapted

to our problem formulation described in section 3.2. In addition to that, we decided to run an extended

experiment with very long runtime (that could be considered prohibitive in real applications) to have a better

idea of results that could potentially be found. By doing this, we run experiments to evaluate the performance

of the three developed algorithms: MMA, MILS and MOEA-VND.

For this test, we used the 56 instances of Solomon (1987). As mentioned in the introduction of Section

6, for the instances used in this experiment, the standard deviation (𝑑𝑒𝑣[𝑇𝑇𝑖,𝑗]) to travel from customer 𝑖 to 𝑗

was generated by 𝑈[0.1; 0.6] ∗ 𝑑𝑖𝑠(𝑖, 𝑗) where 𝑈 is a uniform distribution and 𝑑𝑖𝑠(𝑖, 𝑗) is the original distance,

here used as the mean of the travel time. Analog for the service time. The instances can be downloaded from

the journal website or requested from the corresponding author.

A number of preliminary experiments were performed to find a suitable configuration for all

algorithms, involving different configurations for the VND (for example using a random or deterministic

sequence of neighborhoods), exit criteria, dynamic adjustments of parameters and others. In these

experiments, the best configuration for the parameters was selected such that execution time is approximately

the same.

Parameters used for the MMA algorithm: As exit criterion, the main loop of Algorithm 1 is executed

while the sum of the hypervolume improvement percentage of the last three generations is greater than 0.5%;

0

5

10

15

20

25

30

30%

40%

50%

60%

70%

80%

90%

100%

R101 RC101 C101 RC201 R201 C201

N
u

m
b

er
 o

f
V

eh
ic

le
s

(N
V

)

R
u

n
n

in
g

Ti
m

e
%

Time 1T Time 2T NV

the percentile used for the circular zone is 30%; the number of initial solutions is 15; the number of solutions

generated in the crossover is 10; both tabu strategies are used (for routes and moves); the cut-off of the

population is made for each generation and solutions with rank 3 or above are eliminated;

Parameters used for MILS (algorithm 2): 𝑚𝑎𝑥𝑃𝑒𝑟𝑡 = 10, 𝑚𝑎𝑥𝐼𝑡 = 200. The percentile for the

circular zone is dynamically adjusted. After two consecutive perturbations with no improvement, the

percentile used is increased in 10%, with maximum value of 60%. When there is an improvement, it is

reinitialized with 30%. This dynamic adjustment allows the algorithm to test more possibilities when it is

stuck in the current best solution. MILS use one type of VND (Table 1) and not three like MMA. The other

parameters are the same as used for MMA. For each one of the 56 instances, we perform 10 runs.

Parameters used for MOEA (Algorithm 6): 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 = 50 and 𝑛𝑢𝑚𝐺𝑒𝑛 = 500. For the MOEA-

VND: 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 = 40 and 𝑛𝑢𝑚𝐺𝑒𝑛 = 400. For all algorithms, the fixed the cost of the vehicle in the

objective function of equation (1) to 𝑓 = 1000; the variable cost for the travel time in the objective function

of equation (1) is 𝑐 = 1 and the minimum required service level for each customer is 70%.

In the extended experiments, we used a more aggressive configuration aiming for quality (higher

hypervolumes) and not running time. For the MMA: Circular zone with 60th percentile and the main loop of

algorithm 1 executed while the sum of the hypervolume improvement percentage of the last five generations

is greater than 0% (exit criterion). For MILS: 𝑚𝑎𝑥𝑃𝑒𝑟𝑡 = 30, 𝑚𝑎𝑥𝐼𝑡 = 1000. For MOEA: 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 = 50

and 𝑛𝑢𝑚𝐺𝑒𝑛 = 2000. For the MOEA-VND: 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 = 40 and 𝑛𝑢𝑚𝐺𝑒𝑛 = 1600. As a benchmark we

considered the best result among 10 runs of the extended experiment of all algorithms (column “benchmark”,

Table 3).

Table 3 summarizes the results presenting the overall hypervolume gap among the 10 runs of the 56

instances, where 𝑔𝑎𝑝(%) = (𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 − 𝑀𝑒𝑎𝑛) 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘⁄) ∗ 100 and the mean of the

computational time in seconds. Figure 10 presents the gaps for each one of the six classes of Solomon

instances. We see in Table 3 that MMA presents the best gap among the four algorithms, followed MOEA-

VND, while MILS and MOEA have very similar gaps. When we split the results per class, in Figure 10, we

see the same behavior from Table 3, with MOEA and MILS presenting very similar gaps.

Table 3: summary of results

Alg. MMA MILS MOEA MOEA-VND

gap 0.396% 1.253% 1.249% 0.915%

seconds 319.54 316.71 321.69 335.41

Figure 10: Gaps for Solomon classes

We complement this analysis checking whether there is statistical difference for the mean of the

hypervolume among the four heuristics. Because normality tests rejected the hypothesis of normal distribution

for the difference of some pairs of heuristics, we apply Wilcoxon signed rank test for a pairwise comparison,

testing for no difference in the null hypothesis, with 95% confidence level (𝛼 = 0.05). The results for this

analysis are shown in Table 4 and Figure 11.

Table 4: Statistical Analysis- Wilcoxon pairwise comparison

Mean

difference (%)

Median

difference (%)

p-

value

MMA vs MILS 0.83% 0.86% 0.000

MMA vs MOEA 0.84% 0.75% 0.000

MMA vs MOEA-VND 0.50% 0.51% 0.000

MILS vs MOEA 0.01% -0.11% 0.688

MILS vs MOEA-VND -0.33% -0.35% 0.000

MOEA vs MOEA-VND -0.34% -0.24% 0.000

Figure 11: 95% Confidence Interval for the mean difference

We see in Table 4 that there is enough evidence to reject the null hypothesis in all scenarios but MILS

vs MOEA, a fact reinforced by Figure 11 with zero within the confidence interval. We also see that there is

evidence supporting that MMA outperforms the other three algorithms, which indicates that the proposed

strategy to guide the local searches worked properly. While there is no difference between MILS and MOEA,

0.0%

0.5%

1.0%

1.5%

2.0%

C1 C2 R1 R2 RC1 RC2

G
ap

 (
%

)
MMA MILS MOEA MOEA-VND

they both are outperformed by MOEA-VND, therefore we can argue that the inclusion of the VND in the

main loop of MOEA was successful, working as an intensification mechanism. We also see that MILS is

outperformed by MMA. Considering the main difference between these two algorithms is the VND

configuration, where MILS has one type and MMA has two types working together (pre-intensification and

intensification), we believe it helps to find more diverse solutions and improve the hypervolume.

For a multi comparison study (Derrac et al.,2011) we apply Friedman test. Table 5 shows the

Friedman ranks and Table 6 the unadjusted and adjusted p-values. This study reinforces the results of the

pairwise study. We see that MMA presented the best median for the hypervolume (the higher the hypervolume

the better) and also the best rank (the lower the rank the better). In Table 6, MMA is the control algorithm,

confirming that the proposed algorithm indeed outperforms the other 3 algorithms. We used Bonferroni-Dunn

as a post-hoc method to adjust the p-value and although this method has less power than others, it was enough

to detect difference among the algorithms.

Table 5: Friedman test - Ranks

Algorithm

Median

(Hypervolume) Average Rank

MILS 10079 3.05

MMA 10166 1.66

MOEA 10075 2.91

MOEA2 10102 2.38

Table 6: P-values for the Friedman test (MMA is

the control algorithm)

Algorithm
Unadjusted

p-value

Adjusted p-value

(Bonferroni-Dunn)

MILS 0.0000 0.0000

MOEA 0.0000 0.0000

MOEA2 0.0034 0.0102

Figure 12 shows the mean of the computational time for the six classes of instances for MMA. It is

seen that the classes R2, C2 and RC2 take much longer than the others. These classes have bigger capacity of

the vehicles and a larger range for the time windows, consequently a higher number of eligible and feasible

moves and a higher number of service level computations.

One reason for generating a Pareto front is to give to the decision maker different solutions with a

significant range of values for the objectives. Figure 13 shows the average range for each class, for each of

the two objectives (service level and operational cost), using MMA. The class C1 obtained the largest range

for both objectives, offering to the decision maker solutions with a range up to 5 percentage points for the

service level and approximately 4000 units for the cost. The classes RC2 and R2 obtained tighter ranges for

the service level and costs.

 Figure 12: Computational time

Figure 13: Objectives range

:

Figure 14 presents the Pareto front for 9 instances: C101 (a), C201 (b), C205 (c), R103 (d), R202 (e),

R206 (f), RC105 (g), RC205 (h) and RC208 (i). We selected Pareto fronts from instances with different

features to give the reader an idea of the types of fronts obtained, in this case from the run with the closest

hypervolume to the mean of the respective instance, using MMA. The horizontal axes is the operational cost

(divided by 1000) and the vertical axes is the service level (multiplied by -1 so both objectives are minimized).

Figure 14: Pareto front for 9 instances

In Figure 14, the Pareto fronts have a discontinuity in the operational cost caused mainly by the

number of vehicles. Solutions with the same number of vehicles have a smaller difference in the costs due to

the travel time. Generally speaking, it can be observed that the algorithm returns numerous and diverse non-

dominated solutions for the decision maker. Some Pareto fronts such as C101 (Figure 14a) have a bigger

range for both objectives, offering solutions with significant differences for the operational cost and service

651

503
474

150

79 61

0

100

200

300

400

500

600

700

R2 RC2 C2 C1 R1 RC1

se
co

n
d

s

1.6% 1.7%

5.1%

3.9%

0.5% 0.5%

5542

4470

3879

1603
1235

1031

0

1000

2000

3000

4000

5000

6000

0%

1%

2%

3%

4%

5%

6%

R1 RC1 C1 C2 RC2 R2

o
p

er
at

io
n

al
 c

o
st

se
rv

ic
e

le
ve

l

SL Range Cost Range

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

level. Other Pareto fronts such as R206 (Figure 14f) present a small range for both objectives. It happened

mostly in the class of instances type 2 (C2, R2 and RC2) characterized by a larger range of the time windows

when compared with other instances. For instances with large time windows, the service level does not

represent a big challenge.

7 – Concluding Remarks and Further Research

We introduced a new practical variant of the VRP, the multiobjective vehicle routing problem with

hard time windows and stochastic travel and service times, in which the objectives are the minimization of

the transportation cost and the maximization of the service level at customers.

We have interesting findings from the experiments. First, modelling the problem with multi-objective

optimization provided indeed a significant range of solutions helping the decision maker to analyze trade-offs

between costs and service levels. We also have found that the Pareto-fronts present a broader range of values

for both objectives in classes of problems in which the presence of time windows is more significant,

especially cases with a tight range for the time windows. Problems with a large range for the time windows

tend to present higher service levels, therefore the range of options in the Pareto-front is reduced.

In this paper, the travel time and the service time are modelled as truncated non-negative normal

distributions. The results show that the method developed to calculate the service levels obtained small errors,

dealing properly with the challenge of having waiting times propagating along the route, affecting the arrival

time distribution. Because service level computation is performed in the objective function evaluation, it it

has a big impact on computational time. We studied suitable parameters for the statistical method in order to

balance time and error. We also incorporated strategies such as circular zones and route/moves tabu to speed

up optimization. We found these approaches useful, improving significantly the computation time with a tiny

deterioration of the hypervolume.

Finally, through a statistical analysis, we found that the proposed memetic algorithm (MMA)

presented better results than the other algorithms. That is an evidence that the innovative features of our

memetic algorithm design, such as different VND configurations and local searches returning a set of non-

dominated solutions are useful. Future research might focus on the utilization of other probability distributions

for the travel time, resolution of time-dependent variants, and larger instances.

8 – References

Aquino, F., Arroyo,R., Claudio J. (2014). A hybrid multi-objective iterated local search heuristic for vehicle

routing problem with time windows.14th International Conference on Hybrid Intelligent Systems,

pp.117-122

Assis, L. P., Maravilha, A. L., Vivas, A., Campelo, F., & Ramírez, J. A. (2013). Multiobjective vehicle routing

problem with fixed delivery and optional collections. Optimization letters, 7(7), 1419-1431

Baker, J. E. (1987). Reducing bias and inefficiency in the selection algorithm. In Proceedings of International

Conference on Genetic Algorithms, pp. 14-21

Balaprakash, P., Birattari,M., Stützle,T. and Dorigo, M. (2015) Estimation-based metaheuristics for the single

vehicle routing problem with stochastic demands and customers. Computational Optimization and

Applications, 61(2), pp 463–487

Baños, R., Ortega, J., Gil, C., FernáNdez, A., & De Toro, F. (2013). A simulated annealing-based parallel

multi-objective approach to vehicle routing problems with time windows. Expert Systems with

Applications, 40(5), 1696-1707.

Berhan, E., Beshah, B. and Kitaw, D. (2014). Stochastic Vehicle Routing Problem: A Literature Survey.

Journal of Information & Knowledge Management, 13(03), 1450022.

Binart, S.;Dejax,P.; Gendreau,M. and Semeta F. (2016). A 2-stage method for a field service routing problem

with stochastic travel and service times. Computers & Operations Research, 65, pp. 64–75

Blickle, T. & Thiele, L. (1996). A comparison of selection schemes used in evolutionary algorithms. Journal

Evolutionary Computation, 4(4), 361-394.

Castro-Gutierrez, J., Landa-Silva, D., & Pérez, J. M. (2011). Nature of real-world multi-objective vehicle

routing with evolutionary algorithms. In IEEE International Conference on Systems, Man, and

Cybernetics (SMC), IEEE, pp. 257-264

Chang. T., Wan Y. & Tsang W. (2009). A stochastic dynamic traveling salesman problem with hard time

Windows. European Journal of Operational Research, 198(3), 748-759.

Chen, Lu, et al. (2014). Optimizing road network daily maintenance operations with stochastic service and

travel times." Transportation Research Part E: Logistics and Transportation Review 64, pp. 88-102.

Chiang, T. C., & Hsu, W. H. (2014). A knowledge-based evolutionary algorithm for the multiobjective vehicle

routing problem with time windows. Computers & Operations Research, 45, pp.25-37.

Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric

statistical tests as a methodology for comparing evolutionary and swarm intelligence

algorithms. Swarm and Evolutionary Computation, 1(1), 3-18.

Dror, M. (2016). Vehicle routing with stochastic demands: Models & computational methods. In International

Series in Operations Research and Management Science, Springer, Vol. 46, pp. 425-449

Ehmke, Jan Fabian, Ann Melissa Campbell, and Timothy L. Urban. (2015). Ensuring service levels in routing

problems with time windows and stochastic travel times. European Journal of Operational

Research 240(2), pp. 539-550.

Emmerich, M.; Beume, N.; Naujoks, B. (2005). An EMO Algorithm Using the Hypervolume Measure as

Selection Criterion. Chapter in: Evolutionary Multi-Criterion Optimization. Lecture Notes in

Computer Science. Volume 3410. pp 62-76.

Errico, F., Desaulniers, G., Gendreau, M., Rei, W., & Rousseau, L. M. (2013). The vehicle routing problem

with hard time windows and stochastic service times. EURO Journal on Transportation and

Logistics, 1-29.

Fleischer, M. (2003). The Measure of Pareto Optima Applications to Multi-objective Metaheuristics. Chapter

in: Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science. Volume 2632,

pp. 519-533.

Garcia-Najera, A., & Bullinaria, J. A. (2011). An improved multi-objective evolutionary algorithm for the

vehicle routing problem with time windows. Computers & Operations Research, 38(1), pp. 287-300.

Gendreau, M., Laporte, G., & Séguin, R. (1995). An exact algorithm for the vehicle routing problem with

stochastic demands and customers. Transportation Science, 29(2), pp. 143–155.

Gendreau M.; Laporte G.& Seguin R. (1996). Stochastic vehicle routing. European Journal of Operational

Research, 88(1), 3-12.

Gendreau M., Jabali O., Rei W. , (2014). Stochastic Vehicle Routing Problems. In: Toth, P., Vigo, D. (Eds.),

Vehicle Routing: Problems, Methods, and Applications, Second Edition. SIAM.

Hansen, P., & Mladenovic, N. (2003). A tutorial on variable neighborhood search. Groupe d'études et de

recherche en analyse des décisions, HEC Montréal.

Hofleitner, A., Herring, R., Abbeel, P. and Bayen, A. (2012). Learning the dynamics of arterial traffic from

probe data using a dynamic Bayesian network. IEEE Transactions on Intelligent Transportation

Systems, 13(4), 1679-1693.

Laporte, G., Louveaux, F. V., & Hamme, L. (2002). An integer L-shaped algorithm for the capacitated vehicle

routing problem with stochastic demands. Operations Research, 50(3), 415–423.

Jie G. (2010). Model and Algorithm of Vehicle Routing Problem with Time Windows in Stochastic Traffic

Network. Logistics Systems and Intelligent Management, vol. 3, pp. 848-851.

Jula H. Dessouky M. & Iannou P. (2006). Truck route planning in nonstationary stochastic networks with

time windows at customer locations. IEEE Transactions on Intelligent Transportation Systems, 7(1),

51-62.

Kenyon A. S.; Morton D. P. (2003). Stochastic Vehicle Routing with Random Travel Times. Transportation

Science, 37(1), 69-82.

Li X.; Tian P. & Leung S. C. H. (2010). Vehicle routing problems with time windows and stochastic travel

and service times: models and algorithms. International Journal on Production Economics, vol. 125,
137-145.

Lima, F. M., Pereira, D. S., da Conceição, S. V., & de Camargo, R. S. (2017). A multi-objective capacitated

rural school bus routing problem with heterogeneous fleet and mixed loads. 4OR, 1-28.

Lin, S. (1965). Computer solutions of the traveling salesman problem. The Bell system technical

journal, 44(10), 2245-2269.

Miller-Hooks E, Mahmassani HS (1998). Optimal routing of hazardous materials in stochastic, time-varying

transportation networks. Transportation Research Record., 1645, pp.143–151

Miranda, D. M. (2011). Metaheuristicas para as variantes do problema de roteameto de veiculos: capacitado,

com janela de tempo e com tempo de viagem estocástico. Dissertation: Master’s Degree. Federal

University of Minas Gerais (UFMG)

Miranda, D. M. and Conceição, S. V. (2016). The vehicle routing problem with hard time windows and

stochastic travel and service time. Expert Systems With Applications, 64, pp. 104–116.

Moscato, P., 1999. Memetic algorithms: a short introduction. In: Corne, D., Dorigo, M., Glover, F. (Eds.),

New Ideas in Optimization. McGraw Hill, pp. 219–234

Osman I.H. (1993). Metastrategy simulated annealing and tabu search algorithms for the vehicle routing

problem. Annals of Operations Research, 41(4), 421-451.

Potvin, J.-Y., J.-M. Rousseau. (1995). An exchange heuristic for routing problems with time windows.

Journal of the Operational Research Society, 46(12), 1433-1446.

Qi, Y., Hou, Z., Li, H., Huang, J., & Li, X. (2015). A decomposition based memetic algorithm for multi-

objective vehicle routing problem with time windows. Computers & Operations Research, 62, pp.

61-77.

Russell. R. A. and T. L. Urban (2008). Vehicle routing with soft time windows and Erlang travel times.

Journal of Operational Research Society, 59, pp. 1220-1228.

Shi, Y., Wang, S., Kou, G., Wallenius, J. (2009). New State of MCDM in the 21st Century. Lecture Notes in

Economics and Mathematical Systems. Springer.

Sivaramkumar, V., Thansekhar, M. R., Saravanan, R., & Miruna Joe Amali, S. (2015). Multi-objective vehicle

routing problem with time windows: Improving customer satisfaction by considering gap

time. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering

Manufacture, 0954405415586608.

Solomon. M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window

constraints. Operations Research, 35(2), 254-265.

Tas Duygun. Nico Dellaert. Tomvan Woensel. Tonde Kok (2013). Vehicle routing problem with stochastic

travel times including soft time windows and service costs. Computers & Operations Research, vol.

40, pp. 214–224

Taş, D., Dellaert, N., van Woensel, T., & de Kok, T. (2014). The time-dependent vehicle routing problem

with soft time windows and stochastic travel times. Transportation Research Part C: Emerging

Technologies, 48, 66-83.

Taillard, É., Badeau, P., Gendreau, M., Guertin, F., & Potvin, J. Y. (1997). A tabu search heuristic for the

vehicle routing problem with soft time windows. Transportation science, 31(2), pp. 170-186.

Zeimpekis, V. S., Tarantilis, C. D., Giaglis, G. M., & Minis, I. E. (Eds.). (2007). Dynamic fleet management:

Concepts, Systems, Algorithms & Case Studies (Vol. 38). Springer Science & Business Media.

Zhang J. & William H. K. Lam & Bi Yu Chen (2013). A Stochastic Vehicle Routing Problem with Travel

Time Uncertainty: Trade-Off between Cost and Customer Service. Networks and Spatial Economics,

13, pp. 471- 496

