9 research outputs found

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Entwicklung und Untersuchung eines Konzepts zur Nutzung von Indoor-Positioning-Technologie in Systemen für adaptive, mobile Informationsbereitstellung

    Get PDF
    Die dynamische Entwicklung mobiler Systeme macht es erforderlich, adaptive Informationen auf der Grundlage der Position von Objekten bereitzustellen. Im Anwendungsgebiet der Indoor Positioning, bei dem die Signale des globalen Navigationssatellitensystems nicht erreichbar sind, existiert bisher keine Standardlösung für die optimale Umsetzung. Im Rahmen dieser Arbeit wird die Umsetzung anhand von realen und abstrakten Systemen für die adaptive und mobile Bereitstellung von Informationen analysiert und in Bezug auf den medizinischen Bereich vertieft. Dementsprechend wird die Integration mehrerer Positionierungsverfahren in ein System zur Nutzung von Smart Glasses implementiert. Der Entwurf- und Implementierungsprozess basiert auf einer Analyse aktueller Lösungen und Methoden. Abschließend ist das Konzept mit Hilfe einer Anforderungsanalyse, einer Evaluationsstrategie und einer Simulationsumgebung untersucht worden.:1. Einleitung 1 2. Adaptive, mobile Informationsbereitstellung 5 3. Indoor Positioning 10 4. Analyse 18 5. Design und Realisierung 25 6. Evaluation 33 7. Diskussion und Fazit 3

    Device-free indoor localisation with non-wireless sensing techniques : a thesis by publications presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Electronics and Computer Engineering, Massey University, Albany, New Zealand

    Get PDF
    Global Navigation Satellite Systems provide accurate and reliable outdoor positioning to support a large number of applications across many sectors. Unfortunately, such systems do not operate reliably inside buildings due to the signal degradation caused by the absence of a clear line of sight with the satellites. The past two decades have therefore seen intensive research into the development of Indoor Positioning System (IPS). While considerable progress has been made in the indoor localisation discipline, there is still no widely adopted solution. The proliferation of Internet of Things (IoT) devices within the modern built environment provides an opportunity to localise human subjects by utilising such ubiquitous networked devices. This thesis presents the development, implementation and evaluation of several passive indoor positioning systems using ambient Visible Light Positioning (VLP), capacitive-flooring, and thermopile sensors (low-resolution thermal cameras). These systems position the human subject in a device-free manner (i.e., the subject is not required to be instrumented). The developed systems improve upon the state-of-the-art solutions by offering superior position accuracy whilst also using more robust and generalised test setups. The developed passive VLP system is one of the first reported solutions making use of ambient light to position a moving human subject. The capacitive-floor based system improves upon the accuracy of existing flooring solutions as well as demonstrates the potential for automated fall detection. The system also requires very little calibration, i.e., variations of the environment or subject have very little impact upon it. The thermopile positioning system is also shown to be robust to changes in the environment and subjects. Improvements are made over the current literature by testing across multiple environments and subjects whilst using a robust ground truth system. Finally, advanced machine learning methods were implemented and benchmarked against a thermopile dataset which has been made available for other researchers to use

    Comparing the performance of indoor localization systems through the EvAAL framework

    No full text
    In recent years, indoor localization systems have been the object of significant research activity and of growing interest for their great expected social impact and their impressive business potential. Application areas include tracking and navigation, activity monitoring, personalized advertising, Active and Assisted Living (AAL), traceability, Internet of Things (IoT) networks, and Home-land Security. In spite of the numerous research advances and the great industrial interest, no canned solutions have yet been defined. The diversity and heterogeneity of applications, scenarios, sensor and user requirements, make it difficult to create uniform solutions. From that diverse reality, a main problem is derived that consists in the lack of a consensus both in terms of the metrics and the procedures used to measure the performance of the different indoor localization and navigation proposals. This paper introduces the general lines of the EvAAL benchmarking framework, which is aimed at a fair comparison of indoor positioning systems through a challenging competition under complex, realistic conditions. To evaluate the framework capabilities, we show how it was used in the 2016 Indoor Positioning and Indoor Navigation (IPIN) Competition. The 2016 IPIN competition considered three different scenario dimensions, with a variety of use cases: (1) pedestrian versus robotic navigation, (2) smartphones versus custom hardware usage and (3) real-time positioning versus off-line post-processing. A total of four competition tracks were evaluated under the same EvAAL benchmark framework in order to validate its potential to become a standard for evaluating indoor localization solutions. The experience gained during the competition and feedback from track organizers and competitors showed that the EvAAL framework is flexible enough to successfully fit the very different tracks and appears adequate to compare indoor positioning systems.This work was supported by the ICT R&D program of MSIP/IITP, South Korea (2017-0-00543,Development of Precise Positioning Technology for the Enhancement of Pedestrian’s Position/Spatial Cognition and Sports Competition Analysis). Parts of this work were funded by the Spanish Government through the projects TIN2013-47630-C2-1-R, TIN2015-70202-P, TIN2016-75982-C2-1-R, TEC2015-64835-C3-2-R, DPI2013-47347-C2-1-R and TARSIUS TIN2015-71564-C4-2-R, the network REPNIN TEC2015-71426-REDT, and the José Castillejo mobility programme CAS16/00072. The organizers of the EvAAL competition and all track chairs gratefully thank the invaluable support from the IPIN conference chairs, Jesus Ureña, Juan Jesús García and Álvaro Hernández, and funding support from the competition sponsors, The Electronics and Telecommunications Research Institute (ETRI), The Korean Institute of Communications and Information Sciences (KICS), Tecnalia Corporación Tecnológica and ASTI.Peer Reviewe

    Wearable-Based pedestrian localization through fusjon of inertial sensor measurements

    Get PDF
    Hoy en día existe una gran demanda de sistemas de navegación personales integrados en servicios como gestión de desastres para personal de rescate. También se demandan sistemas de navegación personales como guía en grandes superficies, por ejemplo, hospitales, aeropuertos o centros comerciales. En esta tesis doctoral los escenarios estudiados son interiores y urbanos. La navegación se realiza por medio de sensores inerciales y magnéticos, idóneos por su amplia difusión, tamaño y peso reducido y porque no necesitan infraestructura. Se llevarán a cabo investigaciones para mejorar los algoritmos de navegación ya existentes y cubrir determinados aspectos aún no resueltos. En primer lugar se ha llevado a cabo un extenso análisis sobre los beneficios de usar medidas magnéticas para compensar los errores sistemáticos de los sensores inerciales, así como su efecto en la estimación de la orientación. Para ello se han usado medidas de referencia con valores de error conocidos combinando diferentes distribuciones de campos magnéticos. Los resultados obtenidos quedan respaldados con medidas realizadas con sensores reales de medio coste. Se ha concluido que el uso de medidas magnéticas es beneficioso porque acota errores en la orientación. Sin embargo, los escenarios bajo estudio suelen presentar campos magnéticos perturbados, lo que provoca que el proceso de estimación de errores sea prohibitivamente largo. En esta tesis doctoral se proponen algoritmos alternativos para el cálculo del desplazamiento horizontal del usuario, que han sido comparados con respecto a los ya existentes, ofreciendo los propuestos un mejor rendimiento. Además se incluye un innovador algoritmo para calcular el desplazamiento vertical del usuario, haciendo por primera vez posible obtener trayectorias en 3D usando solamente sensores inerciales no colocados en el zapato. Por último se propone un novedoso algoritmo capaz de prevenir errores de posición provocados por errores de rumbo. El algoritmo está basado en puntos de referencia automáticamente detectados por medio de medidas inerciales. Los puntos de referencia elegidos para los escenarios cubiertos son escaleras y esquinas, que al revisitarse permiten calcular el error acumulado en la trayectoria. Este error es compensado consiguiendo así acotar el error de rumbo. Este algoritmo ha sido extensamente probado con medidas de referencia y medidas realizadas con sensores reales de medio coste. La compensación de este error se adapta a las características del sistema de navegación personal

    Comparing the Performance of Indoor Localization Systems through the EvAAL Framework

    Get PDF
    In recent years, indoor localization systems have been the object of significant research activity and of growing interest for their great expected social impact and their impressive business potential. Application areas include tracking and navigation, activity monitoring, personalized advertising, Active and Assisted Living (AAL), traceability, Internet of Things (IoT) networks, and Home-land Security. In spite of the numerous research advances and the great industrial interest, no canned solutions have yet been defined. The diversity and heterogeneity of applications, scenarios, sensor and user requirements, make it difficult to create uniform solutions. From that diverse reality, a main problem is derived that consists in the lack of a consensus both in terms of the metrics and the procedures used to measure the performance of the different indoor localization and navigation proposals. This paper introduces the general lines of the EvAAL benchmarking framework, which is aimed at a fair comparison of indoor positioning systems through a challenging competition under complex, realistic conditions. To evaluate the framework capabilities, we show how it was used in the 2016 Indoor Positioning and Indoor Navigation (IPIN) Competition. The 2016 IPIN competition considered three different scenario dimensions, with a variety of use cases: (1) pedestrian versus robotic navigation, (2) smartphones versus custom hardware usage and (3) real-time positioning versus off-line post-processing. A total of four competition tracks were evaluated under the same EvAAL benchmark framework in order to validate its potential to become a standard for evaluating indoor localization solutions. The experience gained during the competition and feedback from track organizers and competitors showed that the EvAAL framework is flexible enough to successfully fit the very different tracks and appears adequate to compare indoor positioning systems

    Indoor localization utilizing existing infrastructure in smart homes : a thesis by publications presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer and Electronics Engineering, Massey University, Albany, New Zealand

    Get PDF
    Listed in 2019 Dean's List of Exceptional ThesesIndoor positioning system (IPS) have received significant interest from the research community over the past decade. However, this has not eventuated into widespread adoption of IPS and few commercial solutions exist. Integration into Smart Homes could allow for secondary services including location-based services, targeted user experiences and intrusion detection, to be enabled using the existing underlying infrastructure. Since New Zealand has an aging population, we must ensure that the elderly are well looked after. An IPS solution could detect whether a person has been immobile for an extended period and alert medical personnel. A major shortcoming of existing IPS is their reliance on end-users to undertake a significant infrastructure investment to facilitate the localization tasks. An IPS that does not require extensive installation and calibration procedures, could potentially see significant uptake from end users. In order to expedite the widespread adoption of IPS technology, this thesis focuses on four major areas of improvement, namely: infrastructure reuse, reduced node density, algorithm improvement and reduced end user calibration requirements. The work presented demonstrates the feasibility of utilizing existing wireless and lighting infrastructure for positioning and implements novel spring-relaxation and potential fields-based localization approaches that allow for robust target tracking, with minimal calibration requirements. The developed novel localization algorithms are benchmarked against the existing state of the art and show superior performance
    corecore