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Abstract

Abstract 

Indoor positioning system (IPS) have received significant interest from the research

community over the past decade. However, this has not eventuated into widespread adoption 

of IPS and few commercial solutions exist.  Integration into Smart Homes could allow for 

secondary services including location-based services, targeted user experiences and intrusion 

detection, to be enabled using the existing underlying infrastructure. Since New Zealand has 

an aging population, we must ensure that the elderly are well looked after.  An IPS solution 

could detect whether a person has been immobile for an extended period and alert  medical 

personnel. A major shortcoming of existing IPS is their reliance on end-users to undertake a 

significant infrastructure investment to facilitate the localization tasks. An IPS that does 

not require extensive installation and calibration procedures, could potentially see 

significant uptake from end users.  In order to expedite the widespread adoption of IPS 

technology, this thesis focuses on four major areas of improvement, namely: infrastructure 

reuse, reduced node density, algorithm improvement and reduced end user calibration 

requirements.  The work presented demonstrates the feasibility of utilizing existing wireless 

and lighting infrastructure for positioning and implements novel spring-relaxation and 

potential fields-based localization approaches that allow for robust target tracking, with 

minimal calibration requirements.  The developed novel localization algorithms are 

benchmarked against the existing state of the art and show superior performance.  
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Introduction 

Indoor positioning system (IPS) have received significant interest from the research community 

over the past decade because established outdoor approaches like the global positioning system 

(GPS) cannot be used for reliable indoor localization.  GPS has obtained ubiquitous use 

globally, which we believe is largely due to its low implementation cost.  End users are not 

required to deploy any infrastructure to utilize GPS localization services, the service is free for 

end users, and the radio modules required to use the service are affordable. Unfortunately, due 

to signal degradation, GPS cannot provide reliable sub-meter level localization accuracy, 

within indoor environments. 

Even though IPS are an established research field, these substantial research activities have not 

eventuated into widespread adoption of IPS within Smart Homes, and few commercial 

solutions exist.  We believe that this is because they have high implementation costs and require 

end users to perform extensive calibration procedures, unlike GPS.  If an affordable IPS was 

developed that did not require extensive installation and calibration procedures, we believe 

there would be a significant uptake from the end users.  We believe that this can be 

accomplished by creating a system that is designed to utilize the existing infrastructure, which 

will vastly reduce implementation costs.  Furthermore, novel algorithms could be developed to 

increase the overall indoor localization accuracy, while also reducing the calibration burden.  

As an aging population, with more people deciding to spend retirement within their own home, 

we must ensure the elderly are well looked after.  An IPS solution could detect whether a person 

has been immobile for an extended period and alert family members or medical personnel.  

Integration into Smart Homes could also allow for secondary services including; location-based 

services, targeted user experiences and intrusion detection, to be enabled using the existing 

underlying infrastructure as shown in Fig. 1.
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 Localization Approaches 

IPS can be divided into two broad categories.  Active approaches use a network of stationary 

nodes to localize a roaming transceiver.  An example would be tracking cell phones, as a way 

of offering personalized services within an airport or shopping mall environment.  The second 

form of Indoor positioning is known as device-free localization (DFL) or passive localization.  

DFL systems do not required the tracked entity to carry a transceiver and infer a target’s 

Figure. 1 – A Typical Smart Home with multiple wireless enabled smart sensors* 

* Some of the assets used in Fig. 1 were designed by macrovector / Freepik.
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location by analysing their effect on the propagation of signal (e.g. wireless signal from a Wi-

Fi network).   

Traditional Indoor localization approaches have been implemented using a wide variety of 

technologies, e.g. wireless approaches (i.e. Wi-Fi, RFID, ZigBee, Cellular, and ultra-wideband 

(UWB)), light detection and ranging (LIDAR), Ultrasonic ranging, inertial measurement units 

(IMU), infrared sensors, optical approaches, or computer/machine vision.  One of the main 

shortcomings of existing IPS literature is that is places an onus on the end-user to deploy 

custom infrastructure to enable localization.  For IPS to be readily adopted within Smart Homes 

and residential settings, it would be highly desirable to see the implementation costs reduced.  

This could be facilitated by reusing the existing Smart Home infrastructure for the localization 

effort.     

Within a modern Smart Home, several technologies are readily available that could potentially 

be used to construct an IPS.  These include passive infrared alarm systems, camera enabled 

interfaces, the existing wireless network, or the lighting infrastructure.   

A major shortcoming of the existing literature is that it focuses on attaining accurate 

positioning, but often does not prioritize usability and commercial viability for regular end 

users.  Most existing solutions in literature either use bespoke hardware, or require a substantial 

offline training effort to get the system working, neither of which are tenable to a typical end 

user.  This gap in literature is also reflected within the currently available commercial IPS 

offerings.  Though DFL solutions have recently become available for Smart Homes, there has 

not been a significant adoption of the technology.  We believe that this is because existing 

solutions require a significant additional infrastructure investment, which limits viability for 

normal consumers. Research involving Active localization is more mature than DFL efforts. 

However, a similar drawback exists for the readily available Active tracking solutions that also 
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require a significant infrastructure investment.  This has led to most IPS based businesses 

targeting large custom deployments within commercial warehouses, airports and supermarkets. 

However, few affordable active IPS exist for Smart Home deployments. 

In contrast, GPS has attained widespread use when it comes to outdoor localization solutions. 

This is partly because the infrastructure is free to use, and it does not require the end user to 

transmit any data, which keeps the entry cost low.  Following this premise, we believe that for 

IPS to attain widespread adoption in Smart Homes, the implementation needs to be achieved 

through infrastructure reuse, which would allow an end user to add localization services to 

Smart Home as a secondary service, using already existing technology within the built 

environment.  In modern Smart Home environments, viable implementation candidates for an 

IPS include utilizing either the existing wireless network, or the lighting infrastructure.  Other 

options like passive infrared alarm sensors only offer coarse room level localization, and 

always-on camera-based approaches create a privacy concern within indoor environments. 

Most current Smart Home devices communicate over a Wi-Fi, ZigBee or bluetooth low energy 

(BLE) network. This means that Smart Homes already contain an extensive wireless network 

with sufficient node density for localization purposes.  In recent years, light-emitting diode 

(LED)-based lighting has become popular because they are more energy and cost efficient than 

traditional Incandescent/compact fluorescent lamp (CFL) luminaires over their lifespan.  They 

also do not release mercury when the bulbs break, removing a known health concern of CFL 

luminaires.  As such, it is likely that LED luminaires will become the common lighting solution 

for residential living within the near future.  In 2011, standard IEEE 802.15.7 was released 

which defines the PHY and MAC layers for visible light communication (VLC).  This helped 

standardize the development of a new generation of communication devices (e.g. Li-Fi) which 

use the visible light spectrum for transmission.  Since Li-Fi devices are expected to become 

ubiquitous within Smart Homes in the near future, they present another possible technology 
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that can be leveraged to provide localization services, in the form of visible light positioning 

(VLP).  Therefore, both VLC and VLP have become popular research topics in recent years.  

Thesis Overview 

Since the current state of literature shows a significant gap in knowledge relating to the 

practical challenges of Smart Home based IPS, this thesis aims to solve some of these issues 

through the concept of infrastructure reuse.  It explores the extent to which we can leverage 

existing wireless technologies, while also providing potential secondary use cases for visible 

light (VL)-based technologies. In this work, we developed and deployed multiple full-scale 

experimental testbeds and show that a functional IPS can be deployed using either wireless or 

lighting infrastructure. Our research contains some of the first reported implementations that 

consider real world environment, which is a significant gap in literature. We deployed the first 

reported full-scale active IPS that fused both VL received signal strength (RSS) and wireless 

(ZigBee) received signal strength indicator (RSSI). We also developed the first passive VL-

based IPS that used wall mounted sensors and removed the requirement for labelled offline 

training data.  We also improve on existing state-of-the-art wireless-based IPS approaches, by 

proposing several new algorithms that require fewer static nodes and lower calibration effort.  

This thesis aims to show that it is feasible to implement a cost effective IPS within residential 

environment, with a focus on 

• infrastructure reuse,

• realistic node densities,

• reasonable end user calibration requirements.

Chapter 1 demonstrates how visible light and wireless technologies can be used together to 

develop an innovative indoor active IPS that is more robust.  We explore the existing wireless 
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state-of-the-art DFL through extensive experiments in Chapter 2. Chapter 3 introduces a novel 

wireless-based DFL system that provides increased localization accuracy, while also 

decreasing the end user calibration requirements.  Chapter 4 shows how further improvements 

can be made to our and other state-of-the-art wireless DFL approaches. Chapter 5 exhibits the 

potential of VL-based DFL through the development of a novel technique. The suitability of 

the wireless infrastructure for an IPS is shown in Appendix 1.  Appendix 2 reports the initial 

investigation of fusing wireless and visible light techniques for indoor localization.  Each 

chapter and appendix are peer reviewed research publication and has self-contained literature 

review that establishes the state-of-the-art and identifies gaps in the literature. Therefore, there 

is no traditional literature review chapter in this thesis.  

The localization performance of all the algorithms are experimentally tested with the help of 

custom-made real-world testbeds. The wireless testbed consisted of twenty portable ZigBee 

CC2530 nodes which were deployed in various environments as required.   The visible light 

test bed consisted of up to 14 custom designed light sensors to measure the RSS of ambient 

light, and a wireless module to report all data back to a processing computer. When the VLP 

system was used for Active tracking, it also utilized modified luminaire driver boards to allow 

for a commercial-off-the-shelf (COTS) luminaire to transmit modulated signals. The details of 

these systems can be found in the relevant chapters within the thesis. 

Metric Validation 

The RSSI metric was chosen for the wireless solutions as it can easily be utilized by any 

existing ZigBee, Bluetooth or Wi-Fi hardware.  Competing metrics like angle of arrival (AOA) 

require the network receivers to contain multiple antennas and time of flight (TOF) requires 

receivers to contain accurate, synchronized clocks.  Both aspects increase the device cost and 

are not available in many existing Smart Home devices.  Since RSSI capable devices are 
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ubiquitous, a solution using this metric is well suited for IPS.  In recent years, highly accurate 

approaches using software defined radio or Wi-Fi channel state information (CSI) have been 

proposed as an improvement over RSSI.  The drawback of software defined radio solutions is 

that they cannot be implemented using COTS equipment, and typically require very large 

bandwidth.  Wi-Fi CSI solutions offer a higher resolution than RSSI, as they can estimate the 

magnitude and phase across multiple subcarriers, reducing the detrimental effects of multipath 

propagation.  The shortcoming of CSI-based approaches is that they are only available using 

modified drivers for legacy Wi-Fi equipment.  Intel, the manufacturer of the chipsets used in 

this equipment, has also publicly stated that they do not plan to expose this metric to end users 

on modern Wi-Fi equipment.  Since CSI has never been available for ZigBee or Bluetooth, and 

is not available on current Wi-Fi hardware, it is not suitable for use in a system that is expected 

to utilize existing infrastructure. 

Visible Light RSS was used as the metric of choice for our VLP approach.  We chose to use 

RSS for our active testbed as it does not require the receiver to contain multiple photodiodes 

(required for AOA) or for synchronization between the luminaires and receiver boards 

(required for TOF).  RSS was also used for our passive testbed as it allows the system to utilize 

ambient light for localization purposes. 

This research first validated the RSSI metric for localization use, before developing and testing 

solutions that could be feasibly applied to existing smart homes. We investigated whether a 

collocated Wi-Fi network or Microwave oven, two most common source of interference in a 

residential setting, would detrimentally interfere with the RSSI values of a ZigBee network.  

Our experimental results showed that a Microwave Oven has minimal effects on a ZigBee 

network.  Our results also showed that while a collocated Wi-Fi network will affect the 

throughput of a ZigBee network, it would not affect the RSSI values of correctly received 

packets.  This is important as it means that although interference may cause latency in a RSSI-

Introduction

7



based IPS, it will not have a detrimental effect on the accuracy.  This work was published as a 

peer reviewed conference articled and constitutes appendix 1.  

Chapter Overview 

Chapter 1 of this thesis reports the development of an Active IPS solution termed Falcon (Fused 

Application of Light-based positioning Coupled with Onboard Network localization) that fused 

ZigBee RSSI values with visible light RSS. Falcon was highly innovative as this is first IPS 

reported in literature to combine wireless and visible light RSS technologies and make the 

localization more fault tolerant and robust.  It offers superior accuracy over existing wireless 

approaches, while also working in realistic environments that feature occluded luminaires.  Our 

Falcon approach also offered the best accuracy of any single photodiode-based IPS solution, 

deployed in a realistic full-scale environment, at the time of the publication.  Preliminary tests 

were performed on a prototype analog VLP system coupled with a ZigBee radio.  The initial 

results were published as a peer reviewed conference article and are included in appendix 2. 

Following on from the successful initial trials, the VLP receiver was redeveloped using a digital 

design instead of the initial analog prototype, which eventually became the basis of our Falcon 

implementation. The work was published in IEEE Access. 

After implementing an active tracking solution using both visible light and ZigBee RSSI, we 

worked on developing DFL approaches that improved upon the state-of-art of localizing 

untagged targets.   

The work undertaken in Chapter 2 compares three common and highly cited RSSI-based DFL 

solution and demonstrates how a target’s walking trajectory can have a significant effect on the 

localization accuracy.  This work provided the first reported apple-to-apple comparison of DFL 

solutions across the three major localization approaches within multiple common environments 

while considering realistic human movement behaviour. We also demonstrated the limitations 
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of the existing RSSI-based DFL techniques in handling both varying target trajectories, and 

low node density deployments.    We also highlight the lack of standardized metrics for 

comparing DFL solutions and propose using cumulative distribution function (CDF) plots 

instead of using the recommendations from the Active Localization standard (ISO/IEC 18305), 

as CDF plots provide a fair comparison across all error quartiles. This work was published in 

IEEE Sensors Journal. 

In Chapter 3, we report the development of a novel RSSI-based DFL approach termed 

SpringLoc. Existing wireless RSSI approaches cannot provide robust localization services in 

sparse node deployments without requiring extensive offline wireless fingerprinting. 

SpringLoc addresses these deficiencies. It does not require fingerprinting, maintains its 

performance under multiple walking trajectories, and surpass the accuracy of existing 

approaches in low node deployments.  This significantly reduces both the calibration effort and 

online computational requirements, as compared to existing state-of-the-art.  SpringLoc treats 

DFL as an energy minimization problem and is the first reported work to model DFL as a 

network of connected artificial springs, to solve the localization problem. The work was 

published in IEEE Access. 

In Chapter 4, we investigated whether DFL solutions that use RSSI histogram as a feature could 

be improved through a judicial selection of the histogram distance metrics. It was discovered 

that the Kernel-distance metric used in the state-of-the-art approaches is not optimal for RSSI 

histogram-based DFL. We demonstrate through experimental results that Bhattacharya 

distance and several other distance metrics are better suited for RSSI histogram-based DFL 

approaches.  This is the first reported work in the literature where an extensive range of 

histogram distance metrics were benchmarked for DFL purposes.  The work also demonstrated 

how one of the state-of-the-art DFL approaches could be further improved by removing noisy 
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outlier values when estimating the position of a target. The work was published in IEEE 

Sensors Journal. 

In Chapter 5, we demonstrated the feasibility of a DFL solution based on visible light. Existing 

approaches require extensive infrastructure modifications, or significant offline training.  The 

developed solution, termed FieldLight, removes these limitations, while still providing good 

localization accuracy. FieldLight localizes and track targets using a set of artificial potential 

fields attached to triggered photodiodes embedded within walls. This is the first reported work 

that applies the artificial potential fields approach to VL-based DFL. The localization accuracy 

of FieldLight is evaluated by implementing it in multiple full-scale environments. Its accuracy 

is also experimentally compared with an existing wireless-based DFL algorithm in the same 

environment. This is the first reported performance comparison between wireless-based and 

VL-based DFL techniques. The work was published in IEEE Sensors Journal. 
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Indoor localization based on visible light and Visible Light Communication (VLC) has become a viable 

alternative to radio frequency wireless based techniques. Modern Visible Light Position (VLP) systems have 

been able to attain sub-decimeter level accuracy within standard room environments.  However a major 

limitation is their reliance on Line-Of-Sight (LOS) visibility between the tracked object and the lighting 

infrastructure.  This paper introduces Falcon (Fused Application of Light based positioning Coupled with 

Onboard Network localization), a VLP system which incorporates Convolutional Neural Network (CNN) 

based wireless localization to remove this limitation.  This system has been tested in real life scenarios that cause 

traditional VLP systems to lose accuracy. In a hallway with luminaires along one axis, Falcon managed 

to attain position estimates with a mean error of 0.09m.  In a large room where only a few luminaires were visible 

or the receiver was completely occluded, the mean error was 0.12m.  With the luminaires switched off, Falcon 

managed to correctly classify the target 99.59% of the time to within a 0.9m2 cell and with 100% accuracy within 

a1.6m2 cell in the room and hallway respectively.    

INDEX TERMS Indoor Positioning Systems (IPS), Indoor Localization, Visible Light Communication 
(VLC), Visible Light Positioning (VLP), Zigbee Localization, Convolutional Neural Network (CNN).

I. INTRODUCTION

Indoor localization techniques could be classified into two

categories: Device-Free Passive (DFP) and Active Tracking 

[1].  In DFP systems, the tracked target does not actively 

contribute to the localization effort.  This allows these systems 

to provide generic services like intruder detection or 

automated lighting schemes based on human presence.  Active 

Tracking systems are ones that require the tracked entity 

contributes to the localization effort.  These systems benefit 

from knowing the identity of each tracked entity, enabling 

them to provide targeted services like individualized 

advertising, patient monitoring and asset tracking.  

Most indoor localization implementations require sensors to 

be embedded within the target environment at regular intervals 

to ensure the localization error is minimized across the whole 

area of interest.  For this reason, initial implementation costs 

for existing buildings can be high.  In this paper a system that 

utilizes the existing infrastructure to provide indoor 

localization as a secondary service is proposed. It is based on 

an Active Tracking approach and incorporates fusion between 

visible light positioning (VLP) and radio frequency (RF) 

wireless localization. 

In a preexisting built environment, the position of light 

sources or luminaires is dictated by the need for adequate 

illumination as per indoor lighting standards, e.g. AS/NZS-

1680 [2]. The position of the luminaires may not be optimum 

from the perspective of localization.  For smart lights, there is 

often a Wi-Fi/Zigbee radio incorporated as part of the light to 

allow for the light to be controlled through a network. We 

overcome the inaccuracies resulting from non-ideal placement 

of smart lights by combining location information from both 

luminaire and wireless sources.  Visible Light Positioning 

(VLP) systems rely on the target to maintain Line-Of-Sight 

(LOS) with the luminaires mounted within the environment. 

12

Chapter 1



This means that VLP approaches suffer from blind spots when 

the target does not maintain LOS with an adequate number of 

luminaires, e.g. when the target passes under a table.  Another 

problem arises in hallways which are typically illuminated by 

a single row of lighting sources.  This causes issues with 

traditional VLP trilateration techniques as the system only has 

access to position information along a single axis.  Since 

wireless signal experiences complex multipath propagation, 

wireless transceivers can contribute to horizontal awareness 

even when arranged in a single row.  VLP systems also require 

the luminaires to be switched on which limits their use in many 

situations.  This can be rectified by wireless augmentation. 

The fusion of two techniques for localization also makes the 

system robust, provides redundancy and fault tolerance.   

The proposed solution uses slightly modified commercial 

luminaires and a collocated ZigBee radio to represent 

commercial smart lights, a photo diode coupled with a ZigBee 

radio as a target entity and a computer to collect all 

information and infer a targets location. 

We propose a VLP implementation using carrier frequency 

allocation by inserting small amplitude sinewaves [3] biased 

close to the nominal voltage of the luminaire driver to provide 

unique ID for each luminaire. The implementation is similar 

to Intensity Modulation / Direct Detection (IM/DD) [4] with 

the difference being there is no data on the carrier.  Since the 

lights are primarily utilized for illumination, On Off Keying 

(OOK) with 100% modulation depth [5] is not suitable for a 

VLP system using an existing lighting infrastructure since it 

causes a significant reduction in transmitted power resulting 

in lower brightness. Another major concern is that OOK 

creates harmonics which require more complicated 

multiplexing and reduce its scalability.   

II. RELATED WORKS

In recent years indoor localization has been a popular

research topic, partially due to the accuracy limitation of

GPS signals within indoor environments. If accurate indoor

localization schemes could be developed there would be

many potential uses including smart robotics, elderly

healthcare, targeted marketing, search and rescue etc.

Wireless methods include RFID [6], ZigBee [7-9], Wi-Fi

[10, 11] and Bluetooth [12, 13].  A common problem with

traditional wireless approaches is that they suffer from

multipath degradation [14, 15], interference [16] and

struggle to attain a sub meter resolution.  Some recent

approaches have used visible light communication (VLC) for

visible light positioning (VLP).  Current methods either use

a camera to take decodable images of the luminaires [17], or
utilize a photodiode ranging methodology [18].

A. RF LOCALIZATION

Range-based localization methods attempt to create a 

functional model that accurately describes the relationship 

between received signal strength and distance, i.e. the path-

loss regression model. After this model has been established, 

there are several methods for locating a remote Radio 

Frequency (RF) entity. 

Lateration approaches require the tracked RF entity to be in 

contact with at least 3 known anchor nodes.  Once this 

requirement is met, they use a least squares method to derive 

the entity’s location [19]. These types of method can work 

well in open spaces, but often struggle to attain acceptable 

accuracy in indoor environments as they do not properly 

account for multipath propagation.  Attempts have been made 

to enhance the accuracy of RF based lateration approaches by 

dynamically changing the propagation model in real time [20], 

but the systems are still unable to attain sub meter level 

accuracy. 

The Maximum Likelihood Estimation (MLE) approach to 

localization works by treating the distance between known 

nodes and unknown nodes as an unknown random variable 

with Gaussian distribution [21].  The algorithm then finds the 

location of maximum probability, by minimizing the variance 

of estimated error.  This approach is more accurate than 

traditional ranged approaches, but its performance is 

determined by the number of static nodes, and the assumption 

that the channel model for each TX-RX pair is independent. 

RSSI Map approaches, also known as RSSI fingerprinting, 

[10, 22, 23] are implemented in a two-stage approach, offline 

training and online estimation.  During the offline training 

stage, RSSI signatures are collected with the tracked entity 

present in multiple known locations within the deployment 

region.  These signatures are then stored in a database for later 

use.  In the online estimation stage, the system tries to match 

current RSSI readings with a known location in the stored 

database.  The closest match to the live values is used to infer 

the entity’s current location. 

In an Active tracking approach, where the target caries a 

radio [10, 22, 23], the RSSI signature is made up of a vector 

of RSSI values measured between known nodes and an RF 

emitter the tracked entity carries.  Liu, Darabi et al classify 

RSSI Map based algorithms into five further categories: k-

nearest neighbour (KNN) [9, 24], probabilistic methods [25], 

neural networks [26, 27], support vector machines (SVM) 

[28]and smallest M-vertex polygon (SMP) [29].

This paper implements a neural network approach for the

RF section as it requires minimal pre-knowledge of the 

expected distribution and characteristics of the measured RSSI 

data. 

One of the major applications of the developed system could 

be asset tracking within built environment (e.g. tracking beds 

and medical equipment in a hospital). Therefore it is very 

important that the roaming target nodes are low cost, have long 

battery life, and do not interfere with existing infrastructure. 

Zigbee was chosen as the wireless resource as it is more 

energy efficient than Wi-Fi [30].  Zigbee networks also have 

been shown to have little impact on the throughput of 

neighboring Wi-Fi networks [31, 32], which means our 

implementation would not  adversely affect existing wireless 

infrastructure.  Finally, though Wi-Fi networks can impact the 

throughput of Zigbee networks, they do not affect the RSSI 
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values of correctly received packets which are required for 

localization [16]. 

Channel State Information (CSI) has been shown to be a 

better metric for implementing indoor localization systems 

than RSSI as it can mitigate the effects of multipath 

propagation [33, 34] resulting in higher accuracy. However, 

the CSI metric is not commonly accessible in Off-The-Shelf 

wireless equipment, and current localization implementations 

are based around custom drivers for a very limited set of Intel 

[35] or Atheros [36] hardware. CSI has not been utilized in

Falcon for this reason. However, it is advised that future

implementations should use CSI over RSSI if the metric
receives widespread commercial adoption.

Even though RSSI localization is limited due to multipath-

channel effects and RF interference, it can still provide coarse 

indoor localization estimates [7, 12, 37].  The role of RF 

localization in Falcons sensor fusion is to help mitigate the 

limitations of the more accurate VLP implementation.     

B. VISIBLE LIGHT POSITIONING

Visible Light Positioning systems benefit from very dominant 

line-of-sight (LOS) components which help mitigate the effect 

of multipath which allows implementations to attain a higher 

accuracy than traditional RF based systems [38, 39].  Recent 

research into VLP largely falls into two approaches; 

photodiode-based localization or image-sensor based 

localization.  Photodiode approaches typically aim to 

triangulate/trilaterate a receiver node with reference to 

multiple stationary luminaires. This is accomplished by 

transforming chosen metric readings into an angle/distance 

from a specific luminaire.  Some common metrics available to 

photodiode based VLP systems include received signal 

strength (RSS) [5, 40], time of arrival (TOA) [41], time 

difference of arrival (TDOA) [42, 43] or angle of arrival 

(AOA) [44, 45].  When multiple luminaires are concurrently 

visible, a multiplexing scheme [3, 46] needs to be employed 

to ensure the receiver can decode and isolate the metric for 

each luminaire.  For VLP approaches using phosphor-coated 

white LEDs, the accuracy is limited by the signal bandwidth 

since the response speed of the phosphor coating is slow. 

However, the bounds on position estimation accuracy are 

typically within the order of centimeters which is suitable for 

most indoor localization systems [41, 47].   

Image-sensor based VLP uses a camera to capture 

an image of the visible luminaires.  This approach benefits 

from less multi-luminaire interference than photodiode 

approaches as the image contains physically separated 

luminaires.  A downside of this approach is that the off-

the-shelf camera sensors may be required to exploit the 

rolling shutter effect to attain decodable images [38].  Since 

physical characteristics vary between camera sensors, 

image-sensor based VLP results may not translate 

between camera platforms.  Another limitation is that 

the separation between the transmitter and receiver must 

be small to ensure each luminaire contains enough pixels 

within the image to localize [17]. Simulations involving 

typical indoor scenes, where the Cramer-Rao Lower Bound 

(CRLB) was derived show that the positioning 

accuracy of an Image-sensor approach is in the order of 

centimeters, with an azimuth angle error of less than 1 degree 

[47]. 

Recent VLP implementations include a novel Gaussian 

Process approach tracking a Tablet [48], with an average 

accuracy of 0.56m. However this work does not consider 

occlusion, as the receiver always maintain LOS with the 

luminaires.  A hybrid solution was presented in [44] using 

simulated Wi-Fi and VLP with a reported accuracy of 

0.1395m.  However they did not implement a working system, 

and simulation also assumes ideal luminaires with no furniture 

within the room. Many implementations rely on a trilateration 

based approach [49] and recent implementations have been 

able to attain sub decimetre level accuracy within standard 

indoor environments [5], which is significantly better than the 

performance of most RF based RSSI implementations.   

One of the major limitations of the reported physical 

implementations of VLP is that they do not properly account 

for the intermittent light occlusion that VLP receivers suffer 

from in common indoor, furniture rich environments.     Our 

proposed system seeks to rectify the problem with occlusion 

by implementing a practical implementation featuring a fusion 

of a VLP receiver and zigbee radio. The fusion will also allow 

for localization in areas like hallways with row aligned VLP 

sensors that cannot normally converge and will allow for a 

coarse position estimate even when the luminaires are turned 

off. This will also provide localization results from multiple 

physical environments which is lacking in existing literature. 

C. SENSOR FUSION

Multiple sensor approaches have been proposed for indoor 

localization in existing literature. Mobile phones are 

commonly used as localization targets which has allowed for 

the fusion of Inertial Measurement Unit (IMU), Wi-Fi and 

Bluetooth metrics for localization efforts [50-52]. 

Simultaneous Localization And Mapping (SLAM) was 

developed to help robots define their current location whilst 

also creating a map of the environment.  SLAM 

implementations fuse information from multiple sensors to 

improve the accuracy of localization/mapping.  Traditionally 

these systems have had a high implementation cost. However, 

recent research has looked into solving SLAM using low-cost 

sensors which typically fuse a camera with odometers and 

ultrasonic rangefinder sensors[53-55].   A comparison of the 

proposed Falcon and existing Sensor Fusion approaches is 

given in Table 1. As we can observe, the Falcon is very low 

cost, flexible  and robust compared to the other existing 

systems. 

D. CONTRIBUTION

As far as the authors are aware, this is the first reported work 

to physically implement a hybrid VLP/RF solution. The work 

also contains the following novel components: 

1) The hybrid Falcon system (incorporating both VLP

and RF) solves the problem of visible light occlusion

within existing VLP approaches. This allows Falcon

to work in realistic environments when the lights are
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not always turned on. Falcon also offers superior 

accuracy over existing wireless approaches, when a 

lighting resource is available. 
2) The proposed Falcon system presents a new hybrid

Potential Fields and Neural Net based approach that

has not previously been implemented for VLP or RF

Indoor Localization.

3) Falcon is designed to work in hallways that feature

row aligned luminaires, a scenario in which

traditional VLP approaches are unable to converge.

III. SYSTEM OVERVIEW

The Falcon system tracks a target node based on its relative

position to known ceiling mounted anchor nodes.  The target

node features a tag equipped with both a zigbee radio and a

photodiode, whilst each anchor features a collocated VLP

transmitter and zigbee module.  VLP is the primary

localization system in Falcon as it provides a higher accuracy

than the wireless based localization.  Wireless localization

using zigbee is incorporated to overcome several key issues

with the VLP localization approach.  Firstly, it enables the

system to remain operational when the lights are off.

Secondly, it allows for localization even if the luminaires are

mounted in a straight line or some of the luminaires are

occluded. Finally, it prevents the VLP approach to converge

to incorrect local minima.

The Falcon system works in two stages, as outlined in Fig. 

1. During the Offline phase, the system collects both optical

and RF samples.  The RF samples are used to train a

convolution neural net [56] that infers which region of interest

(cell) a target is likely residing within.  The optical samples are

used to create two models.  The first model maps the

relationship between the received lights power intensity and

the distance between the receiver and anchor nodes.  The

second model applies weights to the distance model based on

how reliable the model is at varying distances from an anchor

node.

The Online phase can be broken down into a further two 

stages.  In the first stage, the RF neural net classifies a region  

FIGURE 1. Falcon Algorithm Overview  

of interest based on the trained model and the current RF 

samples.  The system also uses the current optical samples to 

calculate a weighted distance between the tag and each anchor 

node. More details can be found in the Algorithm 1 pseudo-

code.  In the second stage, the iterative Force based Visible 

Light Positioning (FVLP) converges on a position estimate by 

using the RF region of interest as a starting point, and the VLP 

distances to refine a final estimate.

TABLE I 

SENSOR FUSION IMPLEMENTATIONS 

Name Technology 
Average 

Accuracy 

Tag Cost Works 

in the 

dark 

Resistant to 

Transient 

Interference 

Works with Row 

Aligned Luminaires 

Falcon Photodiode RSS, Zigbee RSSI 0.12m Low Yes Yes Yes 

KAILOS [57] Wi-Fi RSSI, magnetometer, accelerometer, gyroscope, 

compass, barometer 

1m High Yes Unknown N/A 

LiFS [58] Wi-Fi RSSI, accelerometer 5m High Yes No N/A 

KILA [59] Wi-Fi RSSI, RFID >1m Low Yes Yes N/A 

SVD-SF [60] Image Sensor, accelerometer, gyroscope 0.05m High No No Unknown 

LIPS [61] Multiple Photodiode RSS, magnetometers, 

accelerometers 

<1m Medium No No Unknown 

Yasir et al [62] Photodiode RSS, accelerometer 0.14m Low No No No 

Yang et al [63] Multiple Photodiode RSS, Multiple Photodiode AOA 0.06m Low No No Unknown 
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FIGURE 2. Anchor Nodes Installed in Hall 

A. Falcon HARDWARE

The Falcon hardware was designed to use a remote tag node 

to receive optical and RF signals from ceiling mounted anchor 

nodes. The roaming target node periodically broadcasts a 

communications request.  Each ceiling node in range of this 

broadcast replies to the roaming node.  The target records the 

RF RSSI value, ID and VLP power of each reply it receives 

and passes these to the processing computer for training during 

the offline period, or classification during the online phase. 

The Visible Light Positioning system consists of a photo diode 

acting as a receiver to measure the intensity of the received 

light at different frequencies.  This approach was chosen over 

an image-sensor based approach as it allows for lower cost 

receivers (photodiode tags).  One of the objectives of the 

developed VLP is to employ it for asset tracking by leveraging 

existing lighting infrastructure. Therefore a photodiode 

approach has deliberately been chosen as it makes the 

deployment of a large number of tags economically feasible. 

We also recognize the fact that phosphor-coated white LED 

luminaires are limited by their response time. However, off the 

shelf luminaires have been chosen to represent the realistic 

lighting infrastructure of a built environment. The developed 

VLP is not a VLC based data communication system. Rather 

than transmitting data, each luminaire is transmitting an 

unmodulated sinewave of a unique frequency so that the signal 

strength from each visible luminaire can be estimated. 

Therefore, the bandwidth constraint of the LEDs is not a major 

concern for our VLP approach. The bandwidth is large enough 

to accommodate a sufficient number of unique sinewave 

frequencies to be chosen to provide ID for each luminaire.

Figure 3.   Side View of VLP System

The photodiode intensity information is passed through an 

inverse Lambertian propagation model [64] to determine the 

distance between the receiver and each transmitter.  A custom 

potential fields approach, FVLP, is then used to localize the 

target receiver.   

Since this paper is focusing on systems that are affordable 

and could be implemented into preexisting built environments, 

a driver board was developed that can be retrofitted into 

existing LED luminaires by sitting between their driver and 

the luminaire itself.  

The modulation/demodulation circuitry is based on IM/DD. 

The modulator was designed to work on frequencies between 

2kHz and 4kHz. This allows the use of cheaper components 

as lower frequencies could be more easily generated and 

literature shows that any flicker generated above 1.25kHz can 

be considered low risk for humans [65].  The five frequencies 

chosen for modulation were 2.6kHz, 2.8kHz, 3kHz, 3.2kHz 

and 3.4kHz. A proportional integral system fine-tunes the 

oscillators.  This results in a generated frequency error of less 

than 5Hz even with cheap capacitors and potentiometers. 

The custom modulation boards were installed as part of the 

Anchor Nodes in two environments, a small Laboratory (1.8m 

x 2.7m) and an adjacent hallway shown in Fig. 2.  A summary 

of the hardware used can be seen in Table 2. 

TABLE II 

FALCON HARDWARE 

Module Name Features 

RF/VLP Anchor Nodes 9 Ceiling Mounted CC2530 with 

ESP8266 and IM/DD modulator 

RF/VLP Tag Node 1 Mobile tag featuring a CC2530, 

ESP8266 equipped with a photo-diode  

RF/VLP PC Win10 I7 Laptop with NVIDIA 960M 

Graphics Card and connected CC2530 

VLP Laboratory 

Luminaires 

9 Ceiling Mounted REX13CDL 
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IV. Algorithm

As discussed before, Falcon requires an offline phase followed

by an online one. During the Offline phase, Falcon is given a

list of cell locations. Each cell represents an area of ground

defined by user in advance.  Further information about the cell

layout used is given in Section V.  Falcon takes the raw RSSI

fingerprint values collected during the offline phase and

allocates them to their appropriate known cell.  These raw

RSSI values, and their associated cell form the input data for

training the CNN.  During the Online phase, the trained CNN

will then output (classify) a cell of interest, for any given raw

RSSI input vector.

Falcon also creates a distance model between the tag and

each of the anchor nodes using the VLP resources.

It should be noted that a CNN was chosen as it offers a 

simple implementation for classification based on raw RSSI 

values that have not been pre-processed, and where the 

absolute position of the anchor nodes may be unknown.  Other 

approaches such as SVM, Particles Filters or Euclidean 

distance are also viable for providing a coarse RF based 

position estimate [66].  

At the beginning of the Online phase, Falcon collects live 

RF and VLP samples.  The RF section uses the live samples 

to infer a region of interest (cell) from the pre-trained CNN. 

The VLP section calculates the distances and weights from the 

live samples, based on the pre-calibrated models. The 

Potential Fields based VLP algorithm (FVLP) then uses the 

RF CNN cell of interest, VLP distances and VLP weights to 

iteratively converge on a final position estimate.  

A. OFFLINE PHASE

During an initial calibration stage the target node collected

optical samples in 13 locations in the Laboratory and Hallway 

respectively. RF samples were taken at 26 locations in the 

Laboratory and 18 locations in the Hallway. A raw RSSI 

sample is 1 byte long and represents a estimation of the 

received signal strength of a zigbee packet. The raw sample is 

converted to dBm by subtracting a vendor specific offset. A 

raw VLP sample is an estimation of the received power from 

the receiving photodiode. The output of the photodiode at 

location (x ,y) is given by: 

���� � 	∑ �	
 sin�2��	� � �	��	�� (1) 

where � is the number of visible luminaires at location (x,y),	 is the amplitude of the sinewave, �	 is the frequency of the 
sinewave ID of the ith luminaire, �	 is the phase of the 
sinewave ID of the ith luminaire  at location (x,y) and 		
depends on the response of the photodiode at the frequency fi 

and the optical channel between the ith luminaire and location 

(x,y). This is essentially a function of the distance, �	 between 
the photodiode at location (x,y) and the ith luminaire. 

By assuming that the receiver and transmitter planes are in 

parallel, we can simplify the well-known Lambertian 

propagation model [64] for the received power to:  

��,	 � �����
!"�#$ %	&'(!�∅�*&'(�+� (2)

where �	 is distance between the transmitter / receiver, , is

the Lambertian order, ∅ is the irradiation angle,  * is the area

of the VLP detector, + is the incidence angle, �- is the power

of the sinewave carrier and is given by �
 √2⁄ �#. This value

is constant for all luminaires, at all receiver locations. ��,	 is
the received power of the ith

 luminaires carrier. 
Since the VLP transmitter and receiver planes are in parallel, 

we have  &'(�∅� � &'(�+� � 0/�. This allows for (2) to be

further simplified to: 

��,	 � 2�����34�45� (3) 

where 6 is a constant gain of *  !"�#$ % 0�!"7�, and 8 is a

constant added to adjust the fall off characteristics, which are 

affected by unique hardware differences in the transceiver 

pair. 

Using the Pythagoras theorem, the radial distance is given 

by	��,	 �	9�	# : 0#.  Combining this with (3) and

rearranging, we have 

��,	 �	;<2���=,�>
��34�45� : 0# (4) 

The relationship between the transmitting luminaire, the 

receiving photo-diode and the radial distance from (4) can be 

seen in Fig. 3. Since the environment contains multiple 

luminaires, we can estimate, ��,	, the power for each luminaire

by using periodogram analysis. 

Assuming that ���� is windowed by a length-N window?�@�, 0 B @ B C : 1,	where E�@� � ���� ∙ ?�@�. The 

discrete-time Fourier transform (DTFT) of E�@� is given by:

X�IJK� � 	∑ E�@�ILJKMNL�M�O (5) 

Figure 4.   Model relating received power (Pr) and radial distance (dr). 
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FIGURE 5.  (a) FVLP Force = 0 . (b) Attractive Force. (c) Repulsive Force. 

This can be used to estimate the power spectrum as: 

PQRR�?� � 	 �SN TΧ�IJK�T# (6) 

where V is a constant normalization factor. We can ignore V
as it will act as a constant scaling factor that would remain 

the same at all locations. We can use (6) and the known 

modulation frequencies to estimate the ��,	 for each

luminaire.  

During the Offline phase, we collect ��,	 estimates for each

luminaire, at multiple locations (18 for the Hallway, 26 for 

the Laboratory) with known radial distances. We can then 

minimize the error between the estimated radial distances 

(��,	) and the actual radial distances (�W,	) to attain the best

values for 6 and 8 in (4). This can be defined as using

minimization to solve : 

	arg,[@2,7 \]^,_ :]`,_\ (7) 

where  ]^,_ is a vector of the estimated radial distances from 
the ith luminaires at the  offline calibration locations (18 for the 

Hallway), and ]`,_	is a vector of the actual corresponding 
radial distances. 

Once optimal values are calculated for 6 and 8, (4) can be 
used as a model to map a radial distance to any given 

luminaires �� in the Online phase.

A typical model showing the relationship between ��,	 and ��,	 is shown in Fig. 4.  The Lambertian model has regions 
with steep gradients, as shown in Fig. 4.  Measurements from 

this region are preferable as ��,	 has a higher resolution when 
predicted using equation (4).  This can be exploited by 

weighting each luminaire with an absolute of the derivative 

of (8). This results in the region indicated in Fig. 4 receiving 

higher weights. The weighting index model  (a�:	) is created

to act as an index lookup table which contains a weight model 

(a	) for each luminaire within the system.  When the system 
receives a new ��,	 estimate, it is passed to the weighting index 
model which returns an individual weight. The process for 

creating each weight model (a	) inside the weighting index 
model  (a�:	 ) is as follows. We rearrange (3) and (4) to
obtain

��,	 �	 2��
��=,��"c��34�45� (8) 

Let 

��,de � f ���=,� ��,	f (9) 

Then it can be normalized by 

g	 �	< �=,he Lijk	��=,he �ilm��=e ,	�Lijk	��=,he �> (10)

so that 0 B g	 B 1. The ith luminaires weighting model is then

obtained by subtracting an LED’s offset to shorten the tails, 

giving us 

a	 � n�g	 :	o	�   (11)

where n is the Heaviside step function, used to set any tail

with a negative weighting to 0,  and o	 is the ith luminaires tail

offset.  

Once the VLP distance model (4) and weight model (11) 

have been calculated, the system begins calibrating the 

wireless model. The wireless system uses the RSSI samples to 

create a convolutional neural network that divides the physical 

environment into predetermined grid sizes. The structure of 

the CNN used in Falcon is kept constant, but a separate CNN 

is trained for each partitioned location present.  This has been 

done as it offers several benefits.  Firstly, by having a smaller 

CNN that only incorporates the RF resources visible on a per 

location basis, CNN training is simplified.  This means that on 

average it takes less than 2 minutes to train a room using the 

processing pc.  RF localization systems based on RSSI are 

highly susceptible to multipath, which means their dynamics 

can significantly change due to environmental changes such 

as moved furniture.  By segmenting the system per location, 

we can retrain the CNN on a per location basis.  This ensures 

that the system is scalable and doesn’t need complete 

retraining when environmental changes occur, but rather 

localized retraining should be sufficient. 

A CNN was chosen as a fully connected architecture was 

deemed to be unnecessary for RSSI based localization as long 

as local features can be identified.  Since RSSI data arrives at 

regular intervals at a higher frequency than expected 

movement, the data should exhibit strong autocorrelation over 

small intervals.  Since convolutional networks assume 

locality, they should perform well with raw time series RSSI 

data. 
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FIGURE 6.  Laboratory and Hallway Cell layouts

When collecting offline samples, 800 samples were taken 

from each ceiling mounted radio within range, at each test 

point. In the hallway 5 radios were detected and measurements 

were taken at 18 test locations which resulted in a [5 x 800 x 

18] output RSSI array.  To turn the RSSI samples into RSSI

‘images’ ready for CNN training, we create square matrices,

grouping RSSI samples based on how many radios were

detected.  For the hallway scenario, this meant splitting each

of the 18 test locations into 160 [5 x 5] matrices where each

column represents RSSI from each radio and each row

represents multiple samples from a single radio.  These images

are then randomly split in a 3 to 1 ratio of training images and

validation images and passed to the CNN.  The structure of the

CNN used is outlined in Table 3.

The training was controlled by an output function which 

would stop the CNN training period if over any 6 consecutive 

validations, there had been no accuracy improvement seen in 

any of the validations. At this stage, the Falcon system 

transitions from the Offline training phase to the Online 

localization phase.  A summary of the Offline phase is 

provided as Algorithm 1. 

TABLE III 

CONVOLUTION NEURAL NETWORK PARAMETERS 

Layer Name Features 

1 Image Input Layer Hallway – 18 training points -

160 [5 x 5] samples 

Laboratory – 26 training points – 

200 [4 x 4] samples  

2 Convolutional Layer 16 3x3 filters, padding of 1 

3 Batch Normalization Layer 

4 Activation Function Layer ReLU  

5 Convolutional Layer 32 3x3 filters, padding of 1 

6 Batch Normalization Layer 

7 Activation Function Layer ReLU 

8 Fully Connected Layer 

9 Softmax Layer 

10 Classification Layer 

B. ONLINE PHASE – STAGE 1

The first stage of the Online phase involves preparing the

inputs for the final iterative FVLP approach, as can be seen in 

Fig. 1.  During each update, the RF section uses the live RSSI 

samples to classify a region of interest (cell) based on the pre-

trained CNN from the offline phase. The VLP system 

estimates the received power from each luminaire and uses 

Equation (4) to map each received power measurement to a 

radial distance between the tag and its respective luminaire. 

Each luminaires distance is then assigned a weight by passing 

the distance through the weighting lookup table created during 

the Offline phase.  Finally, the VLP Distances, VLP Weights 

and the CNN region of interest are passed onto the FVLP 

algorithm for final position estimation. Online Phase – Stage 

1 is given by Algorithm 2. 

C. ONLINE PHASE – STAGE 2

The FVLP system initializes its initial position state reported

from the CNN as the center of the cell of interest.  The FVLP 

localization system is an iterative approach that is based on the 

pathing method using Virtual Potential Fields [67, 68]. FVLP 

is passed a ��,	 for each visible luminaire.  This is equivalent

to creating a circle around each luminaire with radius �� as

shown in Fig. 5. We define the distance between the previous 

position state and the current position state as:  �∆,qrrrrrrs � 	� : �	 (12) 

where �∆,qrrrrrrs is the (x, y) distance vector between the previous

position estimate and the [th Luminaire, � is the (x, y)
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FIGURE 7. (a) FVLP Convergence issues. (b) FVLP forces direction. 

coordinate of the previous position state estimate, and �	 is
the (x, y) coordinate of the [th Luminaire.

If the previous position state lies outside the luminaire’s circle, 

an attractive force is applied from the previous position state 

towards the luminaire’s location.  If the previous position state 

lies within the circle, a repulsive force is applied from the 

luminaires location towards the circles circumference. This is 

detailed in Fig. 9.  The force applied to P, with respect to �	 	can

be defined as: 

tdrrs � 	: < �∆,urrrrrrrs
T�∆,urrrrrrrsT> tj (13) 

where tj is defined as:

tj � 	vwT�∆,qrrrrrrsT :	��,	xa	 (14) 

where v is a force scaling factor used to limit the maximum

movement per iteration, ��,	 is the radial distance of �	, as

defined in (4), and a	 is a weight for �	, as defined in (11).

The total force applied at an iteration can be given by: 

ty � z tdrrs�
	�� (15) 

At the end of each iteration ty is applied to � to attain a new

position state estimate. �M{| � � � ty (16) 

If ty is very small or FVLP reaches its maximum allowable 
iterations, �M{|  is returned as the final position estimate. 
Otherwise �M{|  is used as � in the next iteration . The pseudo 
code for this process can be found in Algorithm 3. 

V. EXPERIMENT AND RESULTS

The testing was undertaken in two locations (Laboratory room

and Hallway) with two states (Smart Lights switched on /

off).

It is assumed that when a Smart Light is switched off, the 

luminaire is switched off but the radio resource remains 

available. 

The laboratory area was split into 6 contiguous cells of 0.9m 

x 0.9m to define the test area. The Hallway was split into 8 

contiguous cells with an average cell size of 0.9m x 2.4m. The 

test layouts can be seen in Fig. 6. 

A summary of the Experimental Results can be found in Table 

4. 

A. EXPERIMENT 1 – LABORATORY – LIGHTS ON

In an ideal environment where the luminaries have good 

spatial separation across 2 axes, VLP localization can provide 

much higher accuracy than RF based active tracking.  The 

Falcon system uses the RF resource to define a region of 

interest.  The region of interest is passed to the FVLP section 

which uses the VLP information to converge towards a refined 

position estimate.   

The target traversed from one side of the room to another, 

passing under a table (where LOS to the luminaires was lost) 

in the process.  The system was 100% accurate at detecting 

whether the target was underneath the table (and thus using RF 

tracking) or within an unobstructed area (using VLP).  This 

translated to a real world error of less than 0.4m (cell level) 
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when the lighting was completely occluded by the table. The 

system attained an average error of 0.12m for the rest of the 

room.  It should be noted that the system was able to achieve 

a similar level of accuracy when partially occluded (only two 

luminaires visible when the tag is partially under the table) and 

when all luminaires were visible.  

B. EXPERIMENT 2 – LABORATORY – LIGHTS OFF

When the lights are off the localization is estimated solely by 

the RF section.  The CNN had a cell level accuracy of 99.92% 

during training.  During the live period, the CNN was asked to 

classify live data based on the trained network.  The target was 

positioned in 26 test locations within the laboratory, with 800 

samples taken per location.  The live samples were turned into 

RSSI ‘images’ in the same way as the training samples.  The 

system could correctly classify which 0.9m2
 cell the target was 

in during the live phase with 99.59% accuracy. 

C. EXPERIMENT 3 –HALLWAY – LIGHTS ON

In the hallway the luminaires are aligned in a single row. 

Traditional VLP will not function as trilateration schemes will 

not resolve due to the system only having information from 

one axis.  It should be noted that VLP fingerprinting methods 

could also resolve this, but would require significant offline 

training to attain decimeter level accuracy.   

To rectify this convergence issue, we first used the RF 

localization to determine a cell of interest.  The center point of 

the chosen cell is then used as the initial position state estimate 

for the FVLP algorithm. As shown by Table 3, we were able 

to attain an average error of 0.09m, and a maximum error of 

0.16m, as the system can correctly converge when initialized 

with a course localization estimate.   

D. EXPERIMENT 4 –HALLWAY – LIGHTS OFF

During the live phase the target was randomly positioned 10 

times with 800 samples taken per position.  It was also ensured 

that at least one position was taken within each of the 8 cells. 

Both the trained CNN and live CNN classification had 100% 

accuracy.  We attribute this localization improvement to the 

fact that the average cell size (2.16m2) was larger than the 

laboratory (0.9m2) and that the hallway was much less 

cluttered than the laboratory, reducing the effects of 

multipath. 

TABLE IV 

EXPERIMENTAL RESULTS 
Experiment Accuracy Max Error 

Experiment 1 0.12 average error 0.4m when completely 

obscured by table 

Experiment 2 99.59%  cell 

classification 

NA 

Experiment 3 0.09 average error 0.16m 

Experiment 4 100% cell 

classification 

NA 

E. CONVERGENCE

Typical trilateration schemes fail when the anchors are row 

aligned as there are multiple solutions.  In Fig. 8a this can be 

represented by the two red circles closest to the cluster centers 

which represent the two possible (mirrored) solutions.  

The FVLP Potential Fields localization method has five 

possible locations of convergence as shown by all five red 

circles in Fig. 7a.  FVLP has more regions of convergence than 

traditional trilateration because the dynamic weighting 

method used allows for the springs to have a net force of zero 

even if the current position estimate is not along the radial 

distances.  The complete Falcon solution solves this by 

passing a cell center reference from the CNN implementation. 

The center of each cell (cluster) is represented by an ‘X’ in 

Fig. 7a.  By passing the correct cluster center as an initial 

starting condition, the FVLP approach will converge towards 

the closest convergence candidate, which will always be the 

correct solution.  This allows for the Falcon approach to 

correctly converge even if only two VLP anchors are visible. 

It also works when only one anchor is visible as the visible 

anchor will pull the coarse RF estimate towards a region of 

interest which will always offer higher accuracy than solely 

using the RF cell of interest.  

Sensor fusion has been extensively studied in the literature 

and several common pitfalls have been identified [69]. In 

particular, the issue of poor performance due to incorrect 

sensor information is a valid concern. In Falcon we can 

identify 3 areas where performance may suffer; line of sight 

obstructions between the VLP receiver and ceiling mounted 

luminaries, multipath obstructions within the RF environment, 

and total loss of VLP information (e.g. the lights are switched 

off). Falcon has been implemented in a way that though these 

situations will cause performance degradation, the chance of 

critical failure is minimized.   

The proposed FVLP approach has several features that 

facilitate its robustness. Namely, it runs in real time 

continuously during the online phase. It can identify sudden 

unexpected changes in VLP signal quality and react 

appropriately. In the case of complete VLP signal loss it can 

fall back to an RF based coarse position estimate. 

If line of sight is lost between the VLP receiver and 

corresponding luminaire, sudden unexpected change in 

received power will result in a reduction of the weight/trust 

assigned to that link distance estimate. If two luminaries 

remain within sight of the receiver, the position estimate 

should not be affected. The trust/weight will be restored to the 

lost link when it reports a reasonable distance correlating with 

the remaining links. This means that performance is only 

reduced when only one luminaire is visible. The system's 

accuracy will still be higher than what can be achieved through 

the sole utilization of the RF section.     

In case of an RF failure due to a miss classification from the 

neural-net, the final position estimate will be largely 

unaffected. This is due to the fact that Falcon is primarily 

reliant on VLP for localization. For example, consider a 
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situation where the location reported by the FVLP system 

indicates that it is heading towards a region of uncertainty 

within the environment (row aligned lights in a hallway). At 

such a time, the system will start to add more weight to the RF 

measurement to ensure it correctly tracks through the region. 

The boundaries of the RF cells can be used as the regions of 

uncertainty. This means that once the system has a lock on 

where the target is, transient interference, even if it causes 

significant misclassification of cell position, does not 

significantly degrade the overall performance of the system.   

In the extreme case where no luminaires are visible or the 

lights are turned off completely, the system can fall back to an 

RF based approach. This has no impact on the accuracy of the 

RF section.  

In the worst case scenario where the lights are turned off and 

there is significant interference affecting wireless propagation, 

Falcon will fail to function.  However, it should be noted that 

in these situations, standalone VLP or RF Localization 

systems would also fail. 

V. CONCLUSION & FUTURE WORKS

Falcon has shown that fusing a RF RSSI localization system

with VLP can increase the robustness and performance in real

life scenarios.  In the hallway, a traditional trilateration based

localization approach was impossible as the lights only

provided information along one axis.  By using the collocated

RF resource to infer a region of interest, a horizontal

displacement offset could be achieved.  The VLP system used

the displacement offset information provided as a secondary

axis to attain sub decimeter level accuracy in that scenario.

The wireless localization capability also keeps the system
functional when the lights are off or there is occlusion.

The CNN for the RF data only focused on a stationary target 

at given locations.  RSSI data for moving targets could be 

recorded and incorporated as a second channel to the CNN 

input image. The Falcon RF Classification stage uses the 

unique cell ID as the output.  Sub cell RF localization could 

potentially be obtained by using the probabilities for each cell 

rather than the final cell id.  By using the probabilities as 

weights, trilateration could be performed between the high 

probability cells to attain sub-cell resolution.  Another option 

would be to explore different wireless localization approaches 

such as using SVM, particle filters or the Bayesian 

methodology.    

A dynamic calibration scheme could be developed to check 

the accuracy of the RF classification vs the VLP, and to 

periodically retrain the CNN to ensure the accuracy remained 

acceptable. 

The Falcon transmitter and receiver were kept in 

parallel. Receiver rotation due to the movement of the 

target would introduce error to the Lambertian model.  

Further development is required to measure the device 

rotation as it is being tracked and calibrate the model 

accordingly. 
The experiments were conducted in the evening to 

avoid people walking through the target area. Therefore, the

receiver did not need to mitigate the effect of ambient light
as it was not strong enough to saturate the receiver.  Further 

work will explore using variable gain amplifiers to allow 

the system to work under all lighting conditions. 
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Device-free Localization Systems Utilizing Wireless
RSSI: A Comparative Practical Investigation

Daniel Konings, Student Member, IEEE, Fakhrul Alam, Member, IEEE, Frazer Noble,
and Edmund M-K Lai, Senior Member, IEEE

Abstract—Device-free localization (DFL) systems that rely on
the wireless received signal strength indicator (RSSI) metric
to localize targets with no device attached to them have been
reported in the literature for almost a decade. Approaches
using RSSI can be split into three main categories. Link-based
approaches utilize weighted summation or probabilistic methods
to infer location. Location-based approaches create a fingerprint
map of an area. Radio Tomographic Imaging treat DFL as an
imaging problem solved with a linear inverse. In this article, we
implement and investigate the performance of all three major
RSSI approaches in two test environments. We demonstrate
how different environments and walking trajectories can have
significant effects on the localization accuracy. The experimental
results lead us to the conclusion that without implementing
and testing within the same environment for the same target
trajectories, the performance of various classes of DFL systems
cannot be reliably evaluated. Relying on the stated accuracy from
the literature for comparison is a flawed premise.

Index Terms—Device-free Localization (DFL), Indoor Position-
ing Systems (IPS).

I. INTRODUCTION

THE widespread adoption of wireless technology and
growing popularity of the Internet of Things (IoT) have

led to increased interest in indoor localization technologies.
Indoor Positioning Systems (IPS) have potential application
in a diverse range of fields, including assisted living [1],
office monitoring [3], multi-subject counting/tracking [5], [6],
hostage negotiation [7], human-robot interaction [8] and smart
homes [9]. Indoor localization implementations can either be
Device-based or Device-free. Device-based systems work by
localizing a tag that is attached to the tracked entity. Device-
free localization (DFL) does not require the tracked entity
to carry any form of tag. Wireless DFL systems work by
measuring the changes a tracked entity causes on wireless
links within an environment, and use those to infer the location
of the target. While DFL systems can be implemented using
Radio Frequency (RF) [1]–[7], [9]–[12], or other approaches,
such as visible light [13], in this paper we only focus on
RF based implementations using the Received Signal Strength
Indicator (RSSI).
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RSSI is the most popular metric for localization as it is im-
plemented in many mainstream wireless technologies (Wi-Fi,
Zigbee, Bluetooth) and is commonly available in commercial-
off-the-shelf (COTS) equipment. This is very important as
implementations within a standard built environment would
likely require multiple devices, which makes cost and the
ability to integrate with and/or utilize existing infrastructure
extremely important. The RSSI metric is also immune to the
effects of interference, though the networks packet reception
ratio (PRR) may be affected [14]. Since the PRR would only
effect system latency and not overall system accuracy, Wi-Fi
interference is not a major concern in this paper. However, a
major limitation of RSSI is its vulnerability to multipath. Since
the RSSI is a non-coherent metric with no phase information,
it is unable to resolve multipath components. This limits its
suitability for indoor ranging approaches as multiple locations
may share the same RSSI value over a LOS link path [15].
Other limitations include large variance between successive
RSSI values and varying receiver sensitivity [16]. Variations
between different chipsets have also been observed [17]. Chan-
nel State Information (CSI) values have a significantly higher
resolution than RSSI values and are more immune to the
adverse effects of multipath [15], [18], [19]. However among
COTS devices, CSI is only available on a few Atheros [20]
and Intel [21] devices using modified drivers. Another problem
with wireless based localization is the issue of secure localiza-
tion. Both RSSI and CSI approaches assume that the senders
MAC address reported by a packet is authentic. This makes it
possible for a malicious entity to cause the system to report
incorrect position estimates. This can also be exploited to
attain location-based information from users. Recent literature
suggests these may be mitigated through utilizing new network
architectures [22], or utilizing cloaking areas [23]. However,
wireless technologies are inherently vulnerable due to the
broadcast nature of propagation and thus localization systems
based on them are vulnerable to privacy exploitation. Recently,
anonymous authentication protocols have been developed to
resolve this problem for RFID systems [24], which may lead
to breakthroughs for COTS equipment.

Device-free wireless positioning systems utilizing RSSI
can be implemented on any platform that uses that (RSSI)
metric. We chose to use Zigbee radios as they are prevalent
within smart home applications and hence justify device-free
localization as a secondary service. Wi-Fi nodes could also be
utilized provided there was sufficient node density. In order to
be commercially attractive, device-free localization should be
a secondary service, where the primary service of the network
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TABLE I
RTI IMPLEMENTATIONS

Features
Through-

wall
Online

Calibration
Stationary

Target
Channel
Diversity

Antenna
Selection

Major Contribution

RTI No No Yes No No Formulated DFL as a regularized linear equation, with the output as
an image [12].

VRTI Yes No No No No Enabled better tracking of moving targets and through wall imaging
[36].

SubVRT Yes No No No No Reduce localization errors occurring due to intrinsic motion which
cannot be removed from the environment [37].

CDRTI Yes No Yes Yes Yes Accuracy of through wall attenuation based DFL improved by switch-
ing the channel of measurement based on either the packet reception
ratio (PRR) or the channels fade level [38].

dRTI Yes Optional Yes No Yes Directional antennas provide better localization accuracy in both atten-
uation based and variance based RTI schemes [39].

ARTI Yes Yes Yes Optional No Presented a spatial model that can retrain itself using live unlabeled
data [40].

KRTI Yes Yes Yes Optional No Can localize moving and stationary targets, works through walls and
requires less nodes than previous RTI efforts [7], [41].

would be to provide data communication, sensing etc. While
other technologies can potentially provide a higher level of
accuracy, they are often prohibitively expensive for consumer
smart homes.

DFL implementations using RSSI can be divided into three
categories: region-based approaches, link-based approaches
and Radio Tomographic Imaging (RTI). In region-based ap-
proaches, RSSI information is collected from multiple links
and associated with a specific location within the target
area. These algorithms are often defined as fingerprinting ap-
proaches as they collect offline data before localization begins,
and attempt to compare it with live data during the localization
process [2], [6], [25], [26]. In link-based approaches, the
system attempts to either model a tracked entity’s effect on
specific links which can be used to infer location [9], or
use a probabilistic method to maximize the expected region
of interest, for a given entity [3], [27]. RTI [12] approaches
assume that the magnitude of change caused by a person near
a link can be modelled by an ellipsoid formed along the line-
of-sight (LOS) link path, and that location can be estimated
by solving the inverse of a linear equation.

A. Contribution

The literature lacks an apple-to-apple comparison of DFL
schemes across the three major techniques. Most works test
their algorithm within their own test environment, benchmark-
ing it against previous works of a similar type. For example, a
reported work on RTI compares the developed system against
an RTI based system. It also holds true for a fingerprint-
based work. As far as the authors are aware of, no work
compares the performances of DFL systems across all three
major approaches based on a common physical implementa-
tion with multiple trajectories. Cassara et al performed a good
comparison in [1]. However, out of the three algorithms tested,
two were from RTI and they did not provide a comparison
between all three major approaches. They also did not consider
varying human trajectories, which we show have a significant
impact on tracking accuracy.

Survey papers have compared the stated accuracy of DFL
techniques [10], [28]–[30]. They try to compare tests by stating
the size of the test area, protocol and number of nodes used.
However, they incorrectly assume that algorithms from dif-
ferent works are environment agnostic, and do not implement
the DFL systems themselves. Thus, they are unable to provide
a true comparison of existing work. We demonstrate that the
environment has significant impact on the performance of the
localization algorithms by providing experimental results from
multiple algorithms in contrasting indoor environments which
show significant inconsistencies in localization and tracking
accuracy.

Another area that has been overlooked is the potential for
real-world implementation. If DFL technology is to become
a standard part of a built environment installation, it must be
incorporated into and operate alongside existing smart devices,
in real-time and with a low node density. Commercial DFL
solutions are not readily available at present. A standard 2
story home with a ground floor area of approximately 140m2
would require more than 30 nodes for reasonable performance
using the commercial solution from [31]. This also assumes
that the home has that many available power sockets with
spatial separation around the home, which is unrealistic for
many smart homes. Fair algorithm comparisons have also been
hindered by the lack of a standardized performance metric.
The EvAAL framework has been proposed to ensure fair
comparison of multiple algorithms within a physical test envi-
ronment [32]. However, the EvAAL framework was primarily
designed for use in active tracking solutions. EvAAL uses
the 75th percentile Euclidean error as their accuracy score.
This does not provide enough information about the difference
between the average errors and maximum errors to choose an
appropriate implementation candidate. The first known formal
attempt to standardize IPS systems is the ISO/IEC 18305:2016
International Standard [33], which defines a framework for
testing and evaluating IPS systems. It proposes several ac-
curacy score metrics based on the Root-Mean-Square-Error
(RMSE), median 2D error (termed as Circular Error Probable),
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TABLE II
FINGERPRINT IMPLEMENTATIONS

Features
Through-

wall
Stationary

Target
Multiple
Targets

Calibration
Required

Cycle
Duration

Major Contribution

Nuzzer Yes Yes Yes High Low Defines the DFL problem in terms of a discrete space estimator
followed by a continuous space estimator [4].

SCPL Yes Yes Yes Medium High Adopts a novel sequential counting strategy followed by classification
(LDA), a conditional random field (CRF) as a geometric filter and
Viterbi tracking for probabilistic pathing [6].

ACE Yes Yes Yes High Low Incorporates a novel fingerprinting approach which is followed by an
energy minimization framework for localization, and a second order
Hidden Markov Model to track multiple targets [5].

GL-FDFL Yes Yes No Medium Unknown Uses a probabilistic localization approach coupled with an improve-
ment strategy which limits the number of cell estimates based on the
significance and location of shadowed links [2]

and the 95th percentile 2D error (termed as Circular Error
95%). There are two fundamental issues with the ISO/IEC
18305 standard when applying it to DFL. Firstly, it provides
no explicit provisions for DFL techniques. Secondly, Circular
Error Probable (CEP) and Circular Error 95% (CE95) are
insufficient in describing the whole behavior of each individual
approach.

The best-known localization comparison testing is provided
by the annual Microsoft Indoor Localization Competition [34],
or the Indoor Positioning and Indoor Navigation (IPIN) com-
petition [32]. However they are not ISO/IEC 18305 compliant
[35], and are primarily focused on active tracking, and there-
fore are not useful for benchmarking DFL efforts, or address-
ing problems that arise in DFL approaches. In commenting on
the deficiencies of ISO/IEC 18305, Potortı̀ et al proposes the
use of the 50th (CEP), 75th, 90th, and 95th (CE95) percentile
errors to allow for easier comparison of two approaches [35].
We believe that this should be extended further and that using
empirical Cumulative Distribution Function (CDF) error plots
should be standardized, as it allows for algorithm comparison
at any percentile level. ISO/IEC 18305 also does not include
any accuracy metrics related to the overall trajectory traveled.
This is flawed as the subject’s trajectory can have a significant
impact on the localization error.

This paper seeks to address these gaps by implementing al-
gorithms from multiple DFL approaches and comparing them
within a common environment. One representative algorithm
from each of the three major approaches were selected based
on their accuracy, and likelihood of implementation into exist-
ing built environments. This enables us to make credible and
fair performance comparisons, appropriately comment on their
strengths and limitations, and demonstrate the deficiencies of
current evaluation regime and findings of the literature. By
testing the implemented DFL’s in two indoor environments,
this paper contributes the following novel aspects:

1) A true comparison of leading Device free localization
schemes from the three major localization approaches.

2) A comparison of multiple walking trajectories within
each indoor environment to compare the accuracies and
limitations of tracking. This also shows the impact of
walking trajectory on the performance of DFL algo-
rithms which has not been considered by others.

3) Propose empirical CDF error plots to be used as an
information rich accuracy score in place single statistic
like median or percentile errors and support this through
experimental findings.

4) A critical analysis on the limitations of current DFL
schemes and their suitability for real world implemen-
tation.

II. DEVICE-FREE LOCALIZATION

A. Fingerprinting

Fingerprinting schemes assume that the influence of an
entity on the RSSI values remains relatively constant and
time invariant. The system localizes the target based on the
best match with the live RSSI values and the ones previously
stored. They have the advantage of not requiring knowledge of
where the nodes are located. However, they require significant
calibration since RSSI values from every possible location of
interest must be obtained in advance. Also, the assumption of
RSSI remaining time invariant is flawed in practical environ-
ments. Any substantial changes to the physical environment,
such as moved furniture, significantly changes the global RSSI
values, and therefore degrades the systems accuracy.

Fingerprinting approaches typically take two sets of mea-
surements during an offline phase, which are then compared to
live values in the online phase for localization purposes. The
first offline measurement set typically consists of RSSI values
from all links when the environment is empty of entities. The
second set typically consists of K batches of N RSSI values
from L links; where K is the number of possible locations
(cells) an entity can be present within; N is the number of
samples per location, and L is the number of recorded TX-
RX link pairs. Fingerprinting approaches have the benefit
of allowing for fewer nodes, at the cost of a significant
calibration effort , as it needs to be recalibrated regularly. As
such, they are not applicable to emergency situations, where a
system cannot be calibrated beforehand and their usefulness in
Smart Homes may be limited as the calibration effort required
exceeds the ability of typical consumers. These systems may
be ideal for factory installations with fixed physical layouts
where the calibration effort can be justified. A summary of
the comparable features of fingerprinting based DFL systems
can be seen in Table II.
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We have chosen to implement SCPL for our fingerprinting 
localization benchmark. SCPL is well documented and easy 
to implement while also attaining a very similar CDF error 
plot when compared to multi-entity ACE [5]. GL-FDFL was 
not implemented as it did not include a tracking approach.

B. Link-based

Link-based schemes work by using models to analyse link
behaviour and trigger the detection of anomalous activity
based on predefined thresholds. To simplify localization and
tracking, particle filters (also termed as Sequential Monte
Carlo) are commonly used as they allow for location estimate
to be defined as the centroid of multiple weighted particles
within a region of multiple triggered links. A summary of the
comparable features of link-based DFL systems can be seen
in Table III.

All three link-based methods presented share similarities.
Guo et al uses an Exponential-Rayleigh model for a link model
[3], in contrast to an exponential model used by Zheng and
Men [27]. All three methods implement particle filters, with
Ichnaea defining a movement vector for state updates while
Zheng and Men model movement as a zero-mean gaussian
white noise. We chose to implement Ichnaea’s method as it
contains a novel way of updating its state orientation motion
vector, by referencing the midpoints of changing dominant
links, and we wish to investigate its tracking consistency in
different environments [9].

C. Radio Tomographic Imaging

Radio Tomographic Imaging (RTI) creates an image of
the attenuation caused by physical objects within wireless
networks. While RTI analyses the behavior an entity causes
on overlapping links, RTI divides up the environment into an
image of fixed pixel locations. By solving the inverse of a
linear equation, location of the entity can be estimated as
the brightest pixel of the output image. RTI has the benefit
of not requiring extensive calibration efforts, however it does
require knowledge of where the nodes have been positioned.
Patwari and Wilson first implemented RTI using the RSSI
attenuation as the contributing feature [12]. This worked in
wide open spaces, but performs significantly worse in typical
indoor environments due to the undue influence of multipath
components. RTI has gained wide acceptance in the literature
and there have been subsequent improvements. A summary of
the features provided by various RTI implementations and the
improvement provided can be seen in Table I.

RTI systems can track moving or stationary targets and
require minimum offline calibration to operate which makes
them ideal for deploying in unknown environments in emer-
gency situations. A major drawback to RTI approaches is that
they typically require a large amount of nodes to operate, for
relatively small deployment areas, which makes them hard
to justify for incorporating into Smart Home equipment. For
this paper we chose to implement Kernel RTI (KRTI). RTI
does not work well in through wall environments and in com-
plex environments with many multipath components; whereas,
KRTI has also been shown to have higher performance than

Fig. 1. Auditorium Test Environment.

Varience RTI (VRTI) and Subspace RTI (SubVRT). Channel
Diversity RTI (CDRTI) requires more bandwidth than normal
RTI as it searches for channels not under deep fade. With
the ubiquitous use of wireless technology, and the density
of network deployment in urban areas, it is unreasonable
to expect that multiple bands can be dedicated to an IPS,
especially within commonly used ISM bands. The use of
direction antennas makes directional RTI (dRTI) unrealistic
for utilization in Smart Homes as it would complicate its
incorporation into existing Smart Home devices, and would
require a dedicated calibration / placement procedure that may
be difficult to follow for an end user. Adaptive RTI (ARTI),
which seems very promising, has not been implemented in this
paper for several reasons. ARTI’s online calibration approach
assumes that most affected links will exhibit an attenuation
effect from a targets presence. This is problematic as even
though most links typically do exhibit an attenuating effect,
this cannot be guaranteed in a complex indoor environment.

III. IMPLEMENTATION

The network used for testing was implemented using Texas
Instruments CC2530 Zigbee radios on channel 26. A token
ring protocol was used where each node would broadcast a
packet while all other nodes recorded the RSSI value from it.
The broadcast packet from each node contained a list of the
last received RSSI value from every other node. This allowed
for a Master node to listen in on all network traffic, and to
send the RSSI values from all links to a processing computer.
The system was set up to run at 5Hz, allowing for 5 RSSI
values from all links to be recorded each second. For both
experiments, Wi-Fi was disabled to avoid interference [14].
Tests were performed in two contrasting indoor environments.
The first environment was an open auditorium where there
were no walls or structural pillars within 5m of the test setup
as seen in Fig. 1. The second environment consisted of a
cluttered university laboratory where there were many objects
(e.g. walls, computer monitors, desks and chairs) that could
contribute to multipath. A Rohde & Schwarz Spectrum Rider

29

Chapter 2



TABLE III
LINK-BASED IMPLEMENTATIONS

Features
Through-

wall
Stationary

Target
Multiple
Targets

Computational
Complexity

Major Contribution

Ichnaea Yes Yes No High Monitors a global link score to detect movement within the environment, updates
the offline silence profile with online links that do not show considerable
variation, then uses a particle filter to track an entity where the motion vector
is defined by the current/previously most affected links [9].

Zheng
and Men

Yes Yes No High Models the link behaviour as a Gaussian mixture, use a particle filter to track
an entity and update the parameters of the Gaussian mixture model online to
ensure the algorithm is robust to environmental changes [27].

Guo et al Yes Yes Yes High Introduces an Exponential-Rayleigh model for classifying the effect entities have
on TX-RX RSSI links to achieve superior accuracy to traditional magnitude or
exponential models. Localization is done through Bayesian inference, with a
particle filter used for tracking purposes [3].

5m

5m

5m

5m
5m
5m

(a) (b) (c)

Fig. 2. Auditorium Walking Trajectories - (a) Clockwise, (b) Anticlockwise; and (c) Zigzag.

FPH spectrum analyser was used in both environments when
the experiments were undertaken to ensure that no measurable
2.4GHz interference was present.The nodes were mounted at
1.2m above the ground on stands in the auditorium, and were
wall mounted at 1.4m above the ground in the laboratory.
The minimum Euclidean distance between deployed nodes
was 0.7m in the auditorium and 1.0m in the laboratory.
The maximum Euclidean distances were 6.4m and 10.1m
respectively. In both environments the subject’s were asked to
walk following a clockwise, anticlockwise or zigzag trajectory
as outlined in Fig. 2 and Fig. 3. Subjects walked in a heel-
toe fashion while using a metronome. This ensured that all
step sizes remained consistent between tests with the same
subject, the walking speed remained constant, and a ground
truth could be captured over the course of the trajectory, at
any given time. Since homes are not likely to have 20 devices
available to cover a small area, for the second sets of tests we
reduced the number of nodes to the lowest number of nodes
(6) that resulted in consistent performance with the algorithms.
The node placement are represented by the small circles in Fig.
2 and Fig. 3. The node placement used for the 6 node tests is
marked with red circles. Each set of experiments was repeated
three times with at least 30 minutes between each test.

IV. ALGORITHMS

In this section, implementations of KRTI, SCPL and Ichnaea
are described [6], [7], [9]. Each algorithms parameters were
fine-tuned empirically. For a more in-depth explanation of the
algorithms used the reader is urged to read the respective
original works.

A. KRTI

A histogram based RTI implementations calculates the
difference between histograms calculated for each link to
determine whether a specific link is currently affected by the
presence of an entity. Assuming RSSI values have the range
1−N , each histogram is constructed with N bins, where the N-
th bin value increases as the frequency of recorded RSSI value
N increases. A scheme based on an exponentially weighted
moving average (EWMA) calculates the histograms as:

hl,t = (1− β)hl,t−1 + βζ(Rl,t) (1)

where hl,t is the histogram of length N for link l at time t
where each value is between 0 − 1; βis the forgetting factor
between 0 − 1, which determines the weight put on recent
measurements; ζ is an indication vector; and Rl,t is the RSSI
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(a) (b) (c)

Fig. 3. Laboratory Walking Trajectories - (a) Clockwise, (b) Anticlockwise; and (c) Zigzag.

of link l at time t. ζ is a vector of length N where the index
given by Rl,t is 1 and every other position is 0.

If we define the long term histogram as L and the short
term histogram as S, where βL < βS , then the kernel distance
between them can be defined by:

D(S,L) = STKS + LTKL− 2STKL (2)

where K in a N by N kernel matrix and T represents a
transpose operation. The Epanechnikov kernel was utilised for
this paper [42]. KRTI assumes that the location of a person
can be given by the maximum value of the image x, where
x can be defined by the vector x = [x0, , xP−1] and P
is the number of pixels. KRTI also assumes that d, the set
histograms differences for each link, can be expressed as a
linear combination of x:

d = Wx+ n (3)

where n is a noise vector; and W is a weighting model, where
Wl,p for pixel P is zero unless it is located within an 2D
ellipse defined with foci at link l’s transmitter and receiver
nodes. Since RTI is by nature an ill-posed inverse problem,
regularization is used. By utilizing a least squares formulation
the image x can be defined by:

x = (WTW + σ2
nC

−1
x )−1WT d (4)

where σ2
n is the noise variance and Cx is the covariance

matrix of x. For tracking, KRTI uses a Kalman filter where
the state transition model includes the persons location and
velocity, and the observation inputs are provided by the
location estimate from x. All the parameter values used for
implementing KRTI in both environments are contained in
Table IV.

TABLE IV
KRTI PARAMETERS

Parameter Value Description
βS 0.9 Forgetting factor S

βL 0.05 Forgetting factor L

σ2
E 30 Epanechnikov kernel

width∗

σ2 0.01 Regularization
parameter∗

δ 1.3 Space parameter∗

∗Following the process outlined in [7], K in (2) is formulated using σ2
E ,

while C−1
x in (4) is formulated using σ2 and δ.

B. SCPL

Since this paper only focusses on single target tracking,
SCPL can be simplified to a classification problem using Lin-
ear Discriminant Analysis (LDA), a conditional random field
(CRF) and Viterbi tracking [6]. SCPL splits the environment
into cells and uses offline RSSI measurement vectors from all
links while a person is standing within a cell as a class. By
assuming the density of each class c is a multivariate Guassian
with mean µc and a shared covariance matrix Σ, given an RSSI
vector R:

fc(R) =
1

(2π)0.5L|Σ|0.5
e(−0.5(R−µc)T Σ−1(R−µc) (5)

By applying Bayes rule, the objective function is defined as:

y = argmax
c

fc(R)πc (6)

The discriminant function in log scale is defined as:

δc(R) = RTΣ−1µc −
1

2
µTc Σ−1µc + log πc (7)
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where T represents a transpose operation; and the final cell 
estimate model is:

Vc(1) = δc(R
t=1)

Vc(t) = argmax
c

Vc(t− 1)δc(R
t)Mc0,c

(8)

where Rt is a RSSI vector of all links at time t, M is a
transition model based on a a 1st order trajectory ring and
Mc0,c defines the probability of a transition from state c0 at
t−1 to state c at time t. For SCPL the auditorium was split into
25 cells (states), and the laboratory into 21 cells as shown in
Fig. 2 and Fig. 3. SCPL was set up to use a 1st order trajectory
ring.

C. Ichnaea

Ichnaea works in two phases. The offline phase creates a
normal profile for each stream, followed by the monitoring
phase where each link is iteratively checked for anomalous
behaviour. Links flagged as anomalous are passed to a particle
filter which tracks the subject and defines the location estimate
as the centroid of the weighted particles.

Ichnaea represents each stream as a density function where:

fj(x) =
1

hj

n∑
i=1

wiV

(
x− xj,i
hj

)
(9)

where j, represents a link, n is a set of sliding windows each
of length l samples, xj,i is the variance of the RSSI values
within a window of length n+ l − 1, hj is the bandwidth, w
is a weight, and V is the kernel function. The motion tracking
module is activated if sufficient global activity is detected over
a threshold, defined by:

Gt = (1− β)Gt−1 + βαt (10)

where β is a smoothing coefficient and αt is a global anomaly
score defined by αt = Σαj,t , where:

αj,t =
xj,t

F−1
j (γ)

(11)

where: F−1
j (γ) is the γth percentile of the CDF, of the

distribution shown in Equation [9]. The final location of the
entity is tracked using a particle filter and can be defined as
the centroid of the particles by:

pt =
N∑
i=1

[
pi,t max

j

(
aj,t

dj
dAPj,i + dMPj,i

)]
(12)

where N is the total number of particles; dj is the length of
stream j; dAPj,i is the length between the particle and the AP,
and dMPj,i the length between the particle and the MP. The
parameter values for the smoothing coefficient and particle
filter implementation were kept the same as in [9].

V. RESULTS

The results were averaged over three iterations of each route
taken.

A. Auditorium

This was an ideal open indoor environment, with mini-
mal objects that could cause multipath within the immediate
vicinity. However, there were still small dead spots within
the test area where all DFL solutions struggled to localize
a person correctly. This was surprising, as this experiment
had a high node density (one node per 1.25m2) and there
was no interference. The experiments were repeated with the
same subjects three times, with a time separation to minimize
the risk of radio links remaining in a deep fade for the
entire duration of the experiment. If the algorithms cannot
correctly track through the dead spots, it takes a while for the
tracking to catch up once the subject can be localized correctly
again. This behaviour results in strong transient errors getting
extended over a longer period than which they occurred within,
leading to further degradation to the overall accuracy. The most
interesting effect this has on the DFL solutions presented, is
that the accuracy of walking clockwise around the environment
is not always the same as walking anticlockwise.

Fig. 4 and Fig. 5 show the CDF error plots from the
clockwise and anticlockwise routes. KRTI significantly out-
performs the other two algorithms when walking clockwise,
while Ichnaea performed better on the anticlockwise route.
KRTI outperformed both Ichnaea and SCPL in the zigzag route
which was the longest and covered the entire test area. Though
some of the maximum errors experienced by KRTI exceeded
those of Ichnaea.

Reducing the nodes from 20 to 6 in the second set of tests
resulted in a significant decrease in performance with the worst
median error of 2.49m, in contrast to a worst median error of
1.7m for 20 nodes. Whilst KRTI still functioned and had the
most consistent performance across all routes with 6 nodes,
the lack of node density resulted in a significant increase in
error with the mean error almost doubling. Ichnaea’s unique
tracking strategy has a significant effect on the results achieved
in the 6 Node tests. Since Ichnaea creates a motion vector
from the midpoint of the last dominant link to the midpoint of
the current one, it performs well in some situations even with
sparse links. If the subject crossed links that were approxi-
mately parallel, Ichnaea’s tracking would perform well. For
the anticlockwise route, these characteristics helped Ichnaea
perform as expected. The contrast was seen in the clockwise
test when the successive dominant triggered links were near
perpendicular in several cases. This resulted in a motion vector
being used that did not accurately follow the motion of the
subject and resulted in large errors.

B. Cluttered Laboratory

In the cluttered laboratory environment with 20 nodes both
KRTI and SCPL had consistent performance across all 3
routes and attained overall median errors of under 1m as
shown in Table V. Both KRTI and SCPL suffered significant
performance degradation when only 6 nodes were used. KRTI
maintained a more consistent performance across multiple
routes while SCPL’s performance was largely route dependant
as the algorithm failed to reliably track through dead spots
when approached from certain directions. Ichnaea performed
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TABLE V
OVERALL LOCALIZATION ERRORS (M) FOR COMBINED TRAJECTORIES IN 

EACH ENVIRONMENT

Auditorium
20 Nodes

Mean Median RMSE 90th

per-
centile

Max

Ichnaea 1.21 1.14 1.34 2.01 2.65
KRTI 1.09 0.97 1.29 1.99 3.48

SCPL 1.33 1.24 1.55 2.23 4.68

Auditorium
6 Nodes
Ichnaea 1.37 1.25 1.52 2.29 3.03
KRTI 2.08 2.06 2.18 3.02 4.02

SCPL 1.82 1.55 2.20 3.81 4.90

Laboratory
20 Nodes
Ichnaea 1.72 1.70 1.88 2.62 4.37

KRTI 0.99 0.75 1.23 2.06 3.79

SCPL 1.05 0.94 1.27 2.13 3.46
Laboratory

6 Nodes
Ichnaea 2.15 2.06 2.35 3.40 4.74
KRTI 2.00 1.85 2.33 3.80 6.70

SCPL 2.45 2.49 2.70 3.65 5.37

considerably worse in the 20 node route tests, though the
results were more consistent with the other approaches when
only 6 nodes were utilized.

C. Overall Comparison

Table V was created by combining the route data, to
give overall errors for each environment and associated node
deployment density. KRTI outperformed Ichnaea and SCPL
in both environments when 20 nodes were present, and in
the cluttered laboratory when only 6 nodes were available.
SCPL performed poorly in comparison to the other approaches
in all trials except for the cluttered laboratory, utilizing 20
nodes. This is understandable as when 6 nodes were used,
the system struggled to clearly classify neighbouring cells.

The effect of this was exacerbated as both the auditorium
and cluttered laboratory were open environments with minimal
movement constraints which can improve SCPL’s accuracy.
Since the cluttered laboratory had better spatial separation
across the whole room, SCPL performed better than in the
auditorium when 20 nodes were present. It should be worth
noting that we attempted to use both zero order trajectory rings
and second order trajectory rings, but they resulted in degraded
performance. A problem with the utilized first order ring was
that occasionally SCPL would report a constant unchanging
location when the subject walked through a blind spot. Even
with correct cell responses after leaving the blind spot, the
trajectory ring would not allow for the tracking system to
catch up, resulting in large errors. This was partially improved
by allowing for diagonal cell transitions in the movement
model in the first order ring, but the problem still occurred
occasionally. Ichnaea performed adequately in the auditorium,
and poorly within the cluttered laboratory. It was discovered
that the accuracy of Ichnaea, both in localization and tracking,
is strongly dependant on node positioning. As previously
mentioned, Ichnaea works well when a subject traversing
an environment passes through links that are approximately
parallel to each other. It also performs better when crossing
shorter links than longer ones as the estimated motion vector
is more likely to be accurate.

The ambiguity resulting from using a single valued statistic,
(CEP and CE95 accuracy scores), can be clearly observed
in Fig. 5 and Fig. 7. Figure 5 (b) and (c) show that while
SCPL has a better median (CEP) error, KRTI has better
CE95 performance. Depending on which of the two metrics
is used, either of these algorithms can be presented as the
more accurate one. The 75th percentile accuracy score used
by EvAAL also suffers from the same issue. Figure 7 (a) and
(b) show similar ambiguity where the CEP and CE95 errors
do not adequately identify the best localization candidate.

Experimental results show that existing RSSI approaches
have an acceptable accuracy, with KRTI attaining sub-meter
median error across both environments. However all have
constraints that limit real world implementation. RTI ap-
proaches require the least calibration effort, but require a high
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Fig. 4. Auditorium 20 Node CDF - (a) Clockwise, (b) Anticlockwise, (c) Zigzag.
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Fig. 5. Auditorium 6 Node CDF - (a) Clockwise, (b) Anticlockwise, (c) Zigzag.
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Fig. 6. Laboratory 20 Node CDF - (a) Clockwise, (b) Anticlockwise, (c) Zigzag.

deployment density. Probabilistic link-based approaches, like
Ichnaea, offer benefits over RTI and Fingerprinting approaches
in that they require less nodes than RTI and do not require a
site survey. However existing probabilistic approaches often
require a floorplan of the environment with nodes placed
in strategic positions to attain an acceptable accuracy. This
is demonstrated in the 6 Node tests where Ichnaea had a
significantly better accuracy in the auditorium than the labora-
tory. Even though SCPL performed poorly, this was partially
due to both environments being open with few movement
restrictions, which increases error in classification approaches.
Since SCPL can track multiple targets with less complexity
than a particle filter, it could be considered when constraints
can be placed on valid movement, such as within small
corridors and cubicle environments. Existing approaches are
also presented in literature with simplistic human mobility
expectations, which do not hold up well with realistic human
movement. Overall for real world viability and widespread
adoption to be achieved, a system needs to be developed
that requires few nodes and minimalistic human involvement
during the initial calibration process. Such a system must
also maintain long term accuracy and not assume excessive
mobility constraints for tracked targets.

VI. CONCLUSION AND FUTURE WORKS

Experimental results suggest that although significant work
has been reported in the literature on indoor localization, the
DFL problem has not yet been solved for realistic environ-
ments. Existing wireless DFL implementations in literature
typically only use a single route for their measurement. We
have shown that despite the infrastructure remaining constant,
wireless DFL solutions cannot guarantee a consistent tracking
accuracy across the whole environment. Experimental inves-
tigation is the only way to fairly compare differing DFL
approaches. Review or survey papers are not able to do a true,
apple-to-apple comparison of the different approaches. Results
obtained using different platforms and hardware and conducted
in different conditions can not be used for benchmarking and
comparisons.

Our experimental results clearly show that walking trajec-
tory has a significant impact on the precision of all algorithms.
Therefore, even at identical test locations, the localization
accuracy of an algorithm can be significantly different de-
pending on the trajectory taken or the path navigated. This
also suggests that localization error is not uniform across a
test environment. Furthermore, since the shapes of the CDF
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Fig. 7. Laboratory 6 Node CDF - (a) Clockwise, (b) Anticlockwise, (c) Zigzag.

curves are different across algorithms, spatial error variations
affect each algorithm differently. As far as the authors are
aware of, the significant impact of trajectories and the spatial
error variation have not been shown in any published literature
and are not appropriately addressed by the ISO/IEC 18305
standard. Further testing strategies need to be developed which
appropriately include multiple trajectories within each test.

Both EvAAL and ISO/IEC 18305’s accuracy score metrics
are inferior to an empirical CDF plot which provides full
percentile comparison. We believe that using graphical CDF
error plots as an accuracy score should be standardized as it
is more information rich than any singular percentile error.

While KRTI showed the best overall performance in both
environments with a sub-meter median error when 20 nodes
were used, it also had the worst overall median error in the
6 node auditorium test. Ichnaea showed the most consistent
performance in the 6 node tests, but experienced severe accu-
racy issues caused by the orientation of sequential triggered
links. This could potentially be fixed by modifying the motion
model and how the direction of motion is determined. Overall
the results show that no singular algorithm could surpass all
others across all tests.

We noticed that several links did not show significant change
even in the presence of movement, and others that trig-
gered when no user was present. To be effective, localization
schemes should aim to identify links that are either currently
experiencing a deep fade, or spurious behaviour and reduce
their weighting, for the duration of the measured abnormal
behaviour. Existing approaches have used channel diversity
to help partially mitigate this effect [38]. However, relying
on multiple frequency channels being available may not be
possible in urban environments. The system that achieved the
best median error with a low node density (Ichnaea) was
largely affected by node placement. Node placement was not
a focus of this paper, but future works should explore how
an installation methodology can be developed to optimize
placement for unknown environments. All algorithms suffered
from several incorrect position estimates, which occasionally
caused KRTI and Ichnaea to head in the wrong direction,
and SCPL to stop moving in any direction. Work needs to

be done to predict human trajectories more accurately and
enable reliable tracking on an entity through blind spots. While
there are some reported works in this area using particle filters,
more work needs to be done to ensure the tracking solution
can function in real time on low cost COTS hardware. Also,
significant work needs to be undertaken to allow for consistent
performance in environments with sparse node deployment.
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ABSTRACT Device-free Localization (DFL) algorithms using the Received Signal Strength Indicator 

(RSSI) metric, have become a popular research focus in recent years as they allow for location-based service 

using Commercial-off-the-shelf (COTS) wireless equipment.  However, most existing DFL approaches have 

limited applicability in realistic smart home environments as they typically require extensive offline 

calibration, large node densities or use technology that is not readily available in commercial smart homes.  

In this paper, we introduce SpringLoc, a DFL algorithm that relies on simple parameter tuning and does not 

require offline measurements.   It localizes and tracks an entity using an adaptive spring relaxation approach. 

The anchor points of the artificial springs are placed in regions containing the links that are affected by the 

entity. The affected links are determined by comparing the kernel-based histogram distance of successive 

RSSI values.   SpringLoc is benchmarked against existing algorithms in two diverse and realistic 

environments, showing significant improvement over the state-of-the-art, especially in situations with low 

node deployment density.   

INDEX TERMS Device-free Localization (DFL), Histogram distance, Indoor Positioning Systems (IPS), 

Smart Homes, Spring-relaxation

I. INTRODUCTION

Device-free Localization (DFL) systems that utilize the

Received Signal Strength Indicator (RSSI) metric can track 

untagged subjects, unlike traditional Device-based/Active 

Tracking approaches.  They can facilitate location-based 

services such as lighting/music control and intruder detection, 

based on human presence alone. However, since the tracked 

entity is untagged, it can be hard to uniquely identify each 

entity when multiple targets are present. Improved localization 

accuracy can potentially lead to more accurate entity 

identification.  The purpose of this paper is to provide an 

improved algorithm for DFL that can be implemented in 

practical scenarios e.g. smart homes without requiring the 

deployment of significant additional infrastructure. 

Existing indoor DFL systems have three main shortcomings 

with respect to practical implementation. The first one is that 

they require many sensors within the target environment.  This 

can lead to high implementation cost due to the large number 

of sensors required, and the requirement of easily accessible 

power across the whole environment [1-4].  The second 

shortcoming is that DFL implementations also require a large 

number of offline measurements to calibrate the system to the 

target environment [5-10]. This restricts their usability, as 

standard end users cannot be expected to install new power 

sockets and undertake excessive calibration procedures to 

facilitate localization within their home.  The third 

shortcoming is that recent attempts at DFL solutions use 

hardware that is inaccessible to standard end users.  For 

example, Channel State Information (CSI) based DFL has 

been shown to be quite accurate. However, CSI is not 

available on the majority of wireless platforms e.g. Zigbee or 

Bluetooth. Moreover, even with Wi-Fi, CSI is only available 

on two outdated modules with bespoke modified drivers [11, 

12]. Other leading approaches makes use of Frequency 

Modulated Carrier Wave (FMCW) signals using a software 

defined radio platform [13, 14].  This limits usability as rather 

than using pre-existing wireless infrastructure or widely 
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available Commercial Off-The-Shelf (COTS) equipment, 

these solutions require the deployment of custom designed 

additional wireless infrastructure for the sole purpose of 

localization.  Camera based pose estimation techniques can 

also be used for multi-target localization [15, 16], however 

they have privacy concerns and would likely not be able to 

access existing infrastructure. To solve these problems, we 

propose SpringLoc, a new DFL algorithm based off RSSI 

histogram difference and Spring-relaxation, as shown in Fig. 

1. It requires fewer sensor nodes while maintaining an

acceptable localization accuracy. Thus, one is able to utilize

existing smart home infrastructure, e.g. existing Wi-Fi, Zigbee

or Bluetooth smart sensors, to provide indoor localization as a

secondary service. SpringLoc also does not require any offline

calibration measurements.

SpringLoc records the RSSI values between all transmitting 

(TX) and receiving (RX) nodes and forms two RSSI 

histograms for each link.  The first histogram is formed by 

taking a weighted average of recent RSSI values.  The second 

histogram is formed using a long-term weighted average of the 

RSSI values. At each timestep, the difference between these 

two histograms is calculated for each link.  Links whose 

histogram difference exceed a predefined threshold are 

deemed to be ‘affected links’. These are the links whose RSSI 

values have been impacted by the presence of the entity, with 

the short-term histogram exhibiting significant variation from 

the long-term one. An artificial spring anchor is defined at the 

intersection point of the affected links after removing outliers. 

Each spring acts as an attractive force on the tracked entity, 

pulling it towards its own anchor, as shown by the springs in 

Fig. 2. The spring-relaxation algorithm then iteratively 

localizes the target by equalizing the forces between the set 

of springs. Each spring has a weight based on the

distance between the contributing affected links.  The force

associated with each spring is defined by this weight and 

the distance from the previous position estimate. If 

the intersection between two links does not fall 

within the localization environment, the closest point 

from each link is taken as the location of the anchor. 

This is how the rest of the paper is organized.  Section II 

covers related DFL techniques, why RSSI has been utilized 

over CSI and an overview of previous Spring Relaxation 

approaches.  Section III describes the proposed SpringLoc 

algorithm. Section IV outlines the experimental setup and 

results. Section V provides a discussion on the experimental 

results and Section VI concludes the manuscript. 

II. RELATED WORKS

DFL has become a popular research topic, as it allows for

untagged entities to be tracked, enabling a wide range of usage 

scenarios. DFL techniques that are based on technologies 

readily available in a smart home, e.g. Bluetooth, ZigBee or 

Wi-Fi, can be categorized into three major approaches: 1) 

Fingerprinting, 2) Link-based or 3) Radio Tomographic 

Imaging.  

A. FINGERPRINTING

Fingerprinting schemes consist of two phases.  In the offline

phase, the environment is divided into a grid.  An initial 

measurement is taken when the environment is empty, and 

successive RSSI measurements are taken with an entity in 

each known grid location.  This measurement set forms the 

fingerprint database. During the online phase, live RSSI 
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FIGURE 1.  SpringLoc Algorithm Overview
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measurements are compared with the fingerprint database, 

with location estimation performed via classification. 

The ‘Sequential Counting, Parallel Localization’ (SCPL) 

algorithm first counts the number of subjects in an 

environment by using successive cancellation to remove the 

influence of the subjects with the strongest influence each 

round.  Once the number of subjects is known, SCPL 

incorporates human movement constraints and environmental 

geometric constraints to track each subject using a conditional 

random field (CRF) [17]. The ‘ACcurate and Efficient’ (ACE) 

localization algorithm incorporates an energy-minimization 

framework followed by a Markov-based CRF and clustering 

to smooth transitions between neighboring locations [18]. The 

‘geometrical localization, fingerprinting device free 

localization’ (GL-FDFL) algorithm improved traditional 

fingerprinting by reducing the search area of possible 

fingerprint locations by geometrically restricting it based on 

the area bounded by shadowed links [19]. The ‘Energy-

Efficient High-Precision Multi-Target-Adaptive’ (E-HIPA) 

algorithm used compressive sensing and an adaptive 

orthogonal matching pursuit algorithm to track multiple 

targets, using a sparse link network [20].  Chiang et al [21] 

integrated fuzzy logic into a support vector machine (SVM) 

based DFL approach to improve the classification accuracy of 

a pure SVM DFL approach by 7.8%. Mager et al [22] sought 

to improve the accuracy of fingerprint-based approaches as the 

database degrades due to environmental changes.  

Experimental results show that Random Forest based 

classification is more robust to environmental changes than 

traditional K-Nearest Neighbour (KNN), Linear 

Discriminant Analysis (LDA) or SVM approaches.  

Wang et al [8] proposed a novel deep learning approach to 

reduce the offline training effort by automatically 

learning features using a sparse autoencoder network.  

A SoftMax regression-based classifier is then used to 

predict a user’s location, activity and gesture. The WiDet 

approach [23] augments the offline training data by 

resampling some windowed sample sub-sets to simulate 

different walking speeds. Localization is performed using a 

Convolutional Neural Network (CNN), which is shown to 

outperform a traditional approach based on RSSI wavelet 

features and Bayes classification.  Huang et al [5] model DFL 

as a spare representation problem which they solve using a 

variant of the iterative shrinkage-thresholding algorithm. 

Zhang et al [24] implemented a parametrized extreme learning 

machine (ELM) approach to DFL which was shown to 

outperform existing WKNN, SVM and RTI techniques. 

Though E-HIPA was able to reduce the number of nodes 

required, and Mager et al reduced the retraining effort, all 

fingerprinting approaches require extensive offline 

calibration, and suffer degradation due to any significant 

environmental changes.  This limits their usability in smart 

homes, where it would be difficult to create a generalized 

calibration approach that could be followed by a regular end-

user.  Another difficulty is that calibration must be redone any 

time the environment changes significantly, which may be 

untenable in diverse, realistic environments.    

B. LINK-BASED

Link-based or model-based schemes work by creating

models to analyze the effect a subject has on a TX-RX link.  A 

FIGURE 2.  SpringLoc with Three Affected Links
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target is considered present along a link when the model 

deviates away from its steady-state by a predefined threshold. 

Particle filters are often used for positioning as they allow for 

a subject to be localized as the centroid of multiple affected 

links [2, 25-27]. 

Guo et al [25] developed an Exponential-Rayleigh model 

for received signal strength (RSS), coupled with a particle 

filter for multi-target localization and tracking. Zheng and 

Men  [26] represent the RSS model as a Gaussian mixture, 

with online re-parameterization to ensure correct detection, 

and a particle filter for localization and tracking. Ichnaea [27] 

estimates a density function for each link based on a sliding 

window of RSSI variance.  The system detects links as 

anomalous if they exceed a predetermined critical bound of 

the density function. The anomalous links are passed to a 

particle filter which performs localization and tracking [27]. 

Link-based schemes’ accuracy is based on the reliability of 

their link model.  If the model is not updated regularly, 

environmental change can degrade the system. Moreover, if 

noisy live measurements are used to update the link models, 

they may diverge over time.  Secondly, most link-based 

models use a particle filter to solve the localization problem. 

Particle filters are very computationally expensive and 

unlikely to be feasibly run on commercial-off-the-shelf 

(COTS) embedded devices.  Furthermore, since parallel 

particle filters would likely be required for multi-target 

tracking to ensure convergence in noisy environments, these 

algorithms do not scale well for realistic environments.   

C. RADIO TOMOGRAPHIC IMAGING

Radio Tomographic Imaging (RTI) solves an ill posed linear

inverse problem to generate an output image.  The brightest 

pixel within the output image defines a subject’s location 

estimate.  RTI approaches are typically coupled with a Kalman 

filter on the output images to provide subject tracking.  The 

original RTI implementation used RSSI attenuation as a 

feature [28]. More recent approaches have improved RTI by 

using variance as a feature and performing subspace 

decomposition [4], using multiple channels [29], using 

directional antenna arrays [30], or using a histogram 

difference feature [3]. Recently, a multi-frequency approach 

using both 433MHz and 868MHz radios managed to attain 

sub-meter accuracy in a complex indoor environment 

of approximately 115m2, using 39 nodes [31]. 

Modern RTI approaches require minimal calibration 

and are less computationally complex (in the online 

phase) than link-based approaches, while still being able 

to track multiple targets. However, they require a 

significant node density to attain their accuracy, making 

them unsuitable for smart home use, where significant 

infrastructure modification cannot be justified.  

D. CHANNEL STATE INFORMATION

The Channel State Information (CSI) metric has become a

popular localization metric over RSSI as it is more immune to 

the adverse effects of multipath propagation [32] and 

outperforms RSSI based methods [33]. Since CSI offers more 

fine-grained information than RSSI, it has been extensively 

utilized in machine learning based DFL approaches including 

shapelet learning [34], SVM [9, 35], Random Forest [36], 

HMM [37], and Deep Learning  [38]. A shortcoming of CSI 

is that it is currently only accessible using modified drivers in 

legacy Intel 5300 [11, 39], Atheros ath9k [12] based devices, 

or by using Software Defined Radio (SDR) platforms like 

USRP [40] or WARP [41].  Even though there has been 

significant research interest in using the modified drivers since 

they were released in 2011 and 2015 respectively [42], no 

vendor has provided access to the CSI metric to end users in 

any subsequent hardware releases.  This means that a CSI 

based DFL solution cannot be recommended for smart homes, 

as the metric is not readily available in COTS hardware. 

Furthermore, smart home networks are commonly 

implemented using Zigbee, Bluetooth Low Energy (BLE) or 

Wi-Fi equipment.  While the RSSI metric supports Zigbee, 

BLE and Wi-Fi equipment, the CSI metric only supports the 

aforementioned legacy Wi-Fi devices. Therefore, it is not 

suitable for integration into existing smart homes. 

E. SPRING-RELAXATION

Spring-relaxation aims to reach equilibrium among a set of

artificial springs.  It has been used for sensor localization in 

Wireless Sensor Networks (WSNs) [43-45].  A similar energy 

minimization technique called ‘potential fields’ has found 

extensive use in obstacle avoidance and navigation of 

autonomous robots [46-49].  As far as the authors are aware, 

the concept of spring-relaxation has not been applied to DFL. 

FIGURE 4.  Church Hall EnvironmentFIGURE 3.  Cluttered Office space Environment

Nodes      
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Spring-relaxation has the benefit of only requiring a few 

anchors per target, as opposed to potentially thousands of 

particles used per target in a traditional particle filter. Spring-

relaxation techniques require spring anchors, which are not 

readily apparent in the concept of DFL. Therefore they must 

first be defined in our calibration-free algorithm, as described 

in Section III. Spring-relaxation also has the benefit of 

allowing for adaptively weighted springs, which, with respect 

to DFL, can ensure high accuracy across a range of different 

target speeds. 

F. CONTRIBUTIONS

As far as the authors are aware, the concept of spring-

relaxation has never been practically implemented with 

respect to wireless DFL. This leads to the following novel 

contributions: 

1) Apply the concept of spring-relaxation to wireless

DFL as a form of localization and tracking

2) Provide a calibration-free way of providing the DFL

spring-relaxation algorithm with artificial anchor

points, during live operations

3) Provide experimental results across two diverse and

realistic environments which show that spring-

relaxation can outperform existing state-of-the-art

RSSI-based DFL approaches, under both high and

low node densities, for varying walking trajectories

III. ALGORITHM

DFL systems that use RSSI values must choose a feature to

determine whether an entity is influencing the propagation of 

any specific link.  A commonly utilized feature has been either 

RSSI difference or absolute difference (also termed as RSSI 

attenuation) where the current RSSI value is subtracted from 

one taken during offline measurements when no one is 

present.  Unfortunately, this metric does not work well in 

through-wall environments and requires offline 

measurements.  RSSI variance is another commonly utilized 

feature that works better in through-wall environments. 

However, it cannot track stationary targets. 

RSSI histogram difference, as featured in  [3] has the benefit 

of incorporating both mean and variance RSSI features, with 

neither of their limitations.  This is beneficial as it allows for a 

feature detector that does not require an offline calibration 

phase. Another benefit of this feature is that it looks for change 

in the RSSI values caused by movement, irrespective of 

whether the change increases or decreases the RSSI values. 

This allows for the metric to work in multipath rich 

environments, where the magnitude RSSI change cannot be 

predicted in advance.  This allows the metric to work with both 

stationary and moving targets, and in both open and through-

wall environments.   

The SpringLoc approach is broken into five modules which 

are described below and shown in Fig. 1.  The first module 

forms the long-term and short-term histograms of each link, 

required for calculating the RSSI histogram difference feature. 

Module two extracts the most prominently affected links. 

Module three handles cases when too few affected links were 

detected.  Module four defines the spring anchor points and 

their weights and module five performs an iterative adaptive 

spring relaxation approach that localizes and tracks a subject.  

A. HISTOGRAM FORMATION

The RSSI difference feature is formulated by arranging

incoming RSSI values into histograms averaged over either a 

short or a long period of time. The histogram difference for 

each link can then be found by computing an empirical 

histogram distance between the long-term histogram (𝐿) and 

short-term histogram (𝑆) for each link.  Using an 

exponentially weighted moving average (EWMA) weighting 

scheme, the histograms can be defined as: 

ℎ𝑙
𝑡 = (1 − 𝛼)ℎ𝑙

𝑡−1 + 𝛼𝑓𝑅(𝑅𝑙
𝑡) (1) 

where ℎ𝑙
𝑡 is the histogram of link 𝑙 at time 𝑡 and 𝑅𝑙

𝑡 is the RSSI

value of link 𝑙 at time 𝑡.  𝛼, the forgetting factor, has a value 

between 0 and 1 and governs how much recent RSSI values 

contribute to the histogram. Hence a large value will help 

formulate the 𝑆 while a low value will formulate the 𝐿.  

Assuming RSSI values are quantized with a step-size of one, 

FIGURE 5.  Affected Link pair with intersection point FIGURE 6.  Affected Link pair with no intersection point
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and have a range between 1 and 𝑁, 𝑓R is a function that given

an RSSI value will return a vector of length 𝑁, with a value of 

1 at the index of the RSSI value, and 0 elsewhere.  

The difference, 𝐾𝐷(𝑆, 𝐿), between the two histograms 𝑆 

and 𝐿, are computed using the Epanechnikov kernel distance 

in accordance with the literature [3], and can be defined as: 

𝐾𝐷(𝑆, 𝐿) = 𝑆𝑇𝐾𝑆 + 𝐿𝑇𝐾𝐿 − 2𝑆𝑇𝐾𝐿 (2) 

where 𝑇 represents a transpose operation and 𝐾 is an 𝑁 𝑥 𝑁 

matrix defined by: 

𝐾(𝑖, 𝑗) = {
3

4
(1 −

|𝑖−𝑗|2

𝜛
) , |𝑖 − 𝑗| ≤ 𝜛 

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3) 

where 𝜛 is a kernel smoothing parameter.  

B. LOCATE AFFECTED LINKS

After computing the histogram difference for each link, the

system must determine which links have been triggered by a 

target’s presence. Since the presence of a target will cause an 

increased difference between the short-term (𝑆) and long-term 

(𝐿) histograms, a link threshold is defined as: 

𝜁𝑡 = 𝑓(𝐾𝐷(𝑆, 𝐿)1:𝑙
𝑡 ) (4) 

𝑓(𝑥) = {
𝑥, 𝑥 > 𝛽

𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝑥 ≤ 𝛽
(5) 

where function 𝑓 iterates through each link 𝑙 in 𝐾𝐷, adding 

them to an array, ζ, if they exceed predefined link threshold 

constant,  β. 

After locating the affected links, SpringLoc defines 

appropriate spring anchors, and their weights. This requires 

the successful detection of at least two affected links.  If less 

than two affected links are detected, the algorithm utilizes the 

approach outlined in Section E. 

C. DEFINE SPRING ANCHORS / WEIGHTS

Once all the affected links have been located, the system

needs to translate this into the target’s location.  Intuitively, 

the subject is more likely to be in a region where there is a 

higher density of affected links.  To help define this region, 

we locate a set of points that reside within the unknown 

region.  For each link 𝑙 in ζ, we define the coordinate of the 

transmitting node as 𝑇𝑋𝑙, the coordinate of the receiving

node as 𝑅𝑋𝑙, and the line segment formed between 𝑇𝑋𝑙 and

𝑅𝑋𝑙 as 𝛾𝑙. Sunday’s geometric method [50] was used to

either: find the intersection point of each pair of line 

segments, or the minimum distance between them within the 

environment.  This can be clearly observed in Fig. 5 and 

Fig. 6.  Fig. 5 shows two intersecting affected links 𝛾1 and

𝛾2. By defining the closest point in line segment one as 𝛾1,𝑐

and the closest point in line segment two as 𝛾2,𝑐, we know

that 𝛾1,𝑐 = 𝛾2,𝑐 as the links intersect. These points are

represented by the blue diamond in Fig. 5.  This also means 

that the minimum distance between the two links, 𝐷(𝛾1, 𝛾2) 
= 0.  In Fig. 6, the affected link pair does not intersect 

within the test environment.  This means that the 𝛾1,𝑐

and 𝛾2,𝑐 points are defined by the node locations as shown in

Fig. 6.  In this case since 𝛾1,𝑐 ≠ 𝛾2,𝑐, 𝐷(𝛾1, 𝛾2) > 0.

Once all intersection points have been calculated, the system 

needs to define each spring anchor, and its associated weight. 

The spring anchor points set (𝑆𝐴), are defined as: 

𝑆𝐴 = 𝑔(𝛾1:𝑒𝑛𝑑) (6) 

𝑔(𝑥𝑖 , 𝑥𝑗) = {
[𝛾𝑖,𝑐 𝛾𝑗,𝑐], 𝐷(𝑥𝑖 , 𝑥𝑗) < 𝜂

𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝐷(𝑥𝑖 , 𝑥𝑗) ≥ 𝜂
(7) 

where 𝑔 is a function that iterates through each pair of 

intersection points, adding them to the array of spring anchor 

points, SA, if the distance between them, 𝐷(𝛾𝑖 , 𝛾𝑗), as shown

in Fig. 6, is less than the distance constant, η.  This is done to 

exclude link pairs that do not share close proximity.   

After selecting the initial anchor points, a filter is applied to 

only keep points surrounding the median coordinate values in 

both x and y directions.  The final set of spring anchor points 

(SAf) is defined as:

𝑆𝐴𝑓 = 𝑚(𝑆𝐴1:𝑒𝑛𝑑) =

{
𝑆𝐴𝑖 ,

(�̃� − 𝜌𝜎𝑥) ≤ 𝑆𝐴𝑖,𝑥 ≤ (�̃� + 𝜌𝜎𝑥)

(�̃� − 𝜌𝜎𝑦) ≤ 𝑆𝐴𝑖,𝑦 ≤ (�̃� + 𝜌𝜎𝑦)

𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

where 𝑚 is a function that iterates through each spring anchor, 

only returning ones that are close to the median x and y value. 

𝑆𝐴𝑖,𝑥 and 𝑆𝐴𝑖,𝑦 represent the 𝑥 and 𝑦 coordinate of spring

anchor 𝑖 respectively,  x̃ is the median 𝑥 coordinate from the 

SA point set, ρ is a SA selection constant,  σx is the standard

deviation of the 𝑥 values from the SA point set,  SAi,x is the 𝑥
coordinate for point i in 𝑆𝐴, ỹ is the median y coordinate value 

in 𝑆𝐴, SAi,y is the y coordinate for point i in 𝑆𝐴, and σy is the

standard deviation of the y values from the s the x coordinate 

for point i in 𝑆𝐴 point set.  

Once the final spring anchor points have been defined at 

timestep 𝑡, 𝑆𝐴𝑓
𝑡 , they need to be weighted.  Each spring in 𝑆𝐴𝑓

𝑡  

receives a weight defined by: 

𝑊𝑘
𝑡 = 𝐾𝐷𝑖

𝑡 ∗ 𝐾𝐷𝑗
𝑡 (9) 

where indexes i and 𝑗 were used by (7) for defining a SA point, 

now stored in  𝑆𝐴𝑓,𝑘
𝑡 . The weights are then normalized 

between 0 and 1 using: 

𝑊𝑡 =
(𝑊𝑡−𝑚𝑖𝑛 (𝑊𝑡))

(𝑚𝑎𝑥 (𝑊𝑡)−𝑚𝑖𝑛 (𝑊𝑡))
(10) 

D. ADAPTIVE SPRING RELAXATION

The iterative spring-relaxation approach takes the final

anchor points set, spring weights, and the previous position 

estimate as arguments. It is defined by parameters including a 

max number of iterations (𝜓), a step size (𝜏), and breakout 

parameter (𝛿) which stops the algorithm early if convergence 

is reached.  In a single iteration, the distance vector between 

the previous location estimate, 𝑝𝑟𝑒𝑣𝑃𝑜𝑠, and each spring 

anchor is calculated as: 
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9 

Algorithm 1: SpringLoc Algorithm 

for 𝒕 =  𝟏: 𝒕_𝒆𝒏𝒅 At time instant t 

for  𝒊 =  𝟏: 𝒍 Iterate through each link 

𝑺𝒊
𝒕 = (𝟏 − 𝜶𝒔)𝑺𝒊

𝒕−𝟏 + 𝜶𝒔𝒇𝑹(𝑹𝒊
𝒕)

Compute the short-term histogram (S) using (1) 

𝑳𝒊
𝒕 = (𝟏 − 𝜶𝑳)𝑳𝒊

𝒕−𝟏 + 𝜶𝑳𝒇𝑹(𝑹𝒊
𝒕)

Compute the long-term histogram (L) using (1) 

𝑲𝑫𝒊
𝒕 = 𝑺𝒊

𝒕𝑻𝑲𝑺𝒊
𝒕 + 𝑳𝒊

𝒕𝑻𝑲𝑳𝒊
𝒕 − 𝟐𝑺𝒊

𝒕𝑻𝑲𝑳𝒊
𝒕

Compute the kernel-distance between S and L using (2) 

if 𝑲𝑫𝒊
𝒕 > 𝜷

Check if link is affected by subject’s presence 

𝛇𝒕  =  [𝛇𝒕 𝑲𝑫𝒊
𝒕]

Add affected links to the end of the link set using (4) 

end 
end 
if  (𝒍𝒆𝒏𝒈𝒕𝒉(𝜻𝒕) == 𝟎)&&(𝒍𝒆𝒏𝒈𝒕𝒉(𝜻𝒕−𝟏) > 𝟎) Check for edge cases 

  𝐩𝐨𝐬𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 = 𝐩𝐫𝐞𝐯𝐏𝐨𝐬 + 𝐩𝐫𝐨𝐣𝐞𝐜𝐭⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   Accounting for an edge case, as in (15) 

elseif (𝒍𝒆𝒏𝒈𝒕𝒉(𝜻𝒕) == 𝟎)&&(𝒍𝒆𝒏𝒈𝒕𝒉(𝜻𝒕−𝟏) == 𝟎) 

𝐩𝐨𝐬𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞 = 𝐩𝐫𝐞𝐯𝐏𝐨𝐬 

else 
if  𝒍𝒆𝒏𝒈𝒕𝒉(𝜻𝒕) == 𝟏 Fix edge case if only one affected link present using 

(17) 

𝑻𝑿𝒊𝒏𝒋𝒆𝒄𝒕𝒆𝒅 = 𝐩𝐫𝐞𝐯𝐏𝐨𝐬

𝑹𝑿𝒊𝒏𝒋𝒆𝒄𝒕𝒆𝒅 = 𝐩𝐫𝐞𝐯𝐏𝐨𝐬 + 𝐩𝐫𝐨𝐣𝐞𝐜𝐭⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝜻𝒕  =  [𝜻𝒕 (𝑻𝑿𝒊𝒏𝒋𝒆𝒄𝒕𝒆𝒅, 𝑹𝑿𝒊𝒏𝒋𝒆𝒄𝒕𝒆𝒅)]

end 
for  𝒋 =  𝟏: 𝒍𝒆𝒏𝒈𝒕𝒉(𝜻𝒕)-1 Iterate through each pair of affected links 

for  𝒌 =  𝟐: 𝒍𝒆𝒏𝒈𝒕𝒉(𝜻𝒕) 

[𝜸𝒋,𝒄, 𝜸𝒌,𝒄]  =  𝑪𝒍𝒔𝑷𝒐𝒊𝒏𝒕𝒔(𝑻𝑿𝒋, 𝑹𝑿𝒋, 𝑻𝑿𝒌, 𝑹𝑿𝒌) Calculate the closest point pairs using Sunday’s 

method [50] 

 𝑫(𝜸𝒋,𝒄, 𝜸𝒌,𝒄) = 𝑫𝒊𝒔𝑩𝒆𝒕𝑺𝒆𝒈(𝑻𝑿𝒋, 𝑹𝑿𝒋, 𝑻𝑿𝒌, 𝑹𝑿𝒌) Calculate the distance between each affected pair 

using Sunday’s method [50]  

if  𝑫(𝜸𝒋,𝒄, 𝜸𝒌,𝒄) < 𝛈 If affected link pairs points are within close proximity, 

add to spring anchor set using (7) 

 𝑺𝑨 =  [𝑺𝑨 𝜸𝒋,𝒄 𝜸𝒌,𝒄 ] 

𝑾𝒕𝒎𝒑 = [𝑾𝒕𝒎𝒑 (𝑲𝑫𝒋
𝒕 ∗ 𝑲𝑫𝒌

𝒕 ) (𝑲𝑫𝒋
𝒕 ∗ 𝑲𝑫𝒌

𝒕 )] Calculate weights with same indexing as SA 

end 
end 

end 
for  𝒊 =  𝟏: 𝒍𝒆𝒏𝒈𝒕𝒉(𝑺𝑨) 

if   ((�̃� − 𝛒𝛔𝐱) ≤ 𝐒𝐀𝐢,𝐱 ≤ (�̃� + 𝛒𝛔𝐱)) &&
((�̃� + 𝛒𝛔𝐲) ≤ 𝐒𝐀𝐢,𝐲 ≤ (�̃� + 𝛒𝛔𝐲))

If both x and y coordinates of SA fall within bounds set 

around the medians, include SA in the final SAf  using 

(8) 

𝑺𝑨𝒇
𝒕 = [𝑺𝑨𝒇

𝒕  𝑺𝑨𝒊] 

𝑾𝒕  =  [𝑾𝒕 𝑾𝒕𝒎𝒑𝒊
] Create final weight set as in (9) 

end 
end 
for  𝒊 =  𝟏: 𝒍𝒆𝒏𝒈𝒕𝒉(𝑾𝒕) Iterate through each final weight 

𝑾𝒊
𝒕  =

𝑾𝒊
𝒕−𝒎𝒊𝒏(𝑾𝒕)

𝒎𝒂𝒙(𝑾𝒕)−𝒎𝒊𝒏(𝑾𝒕)

Normalize final weight set to between 0-1, as in (10) 

end 
 𝒑𝒐𝒔𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 =  𝑨𝑺𝑹(𝑺𝑨𝒇

𝒕 ,𝑾𝒕, 𝒑𝒓𝒆𝒗𝑷𝒐𝒔) Apply adaptive spring-relaxation, for t=1, set the 

previous position estimate as the environments 

entrance coordinate 

end 
 𝒑𝒓𝒐𝒋𝒆𝒄𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  =  𝒑𝒐𝒔𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 − 𝒑𝒓𝒆𝒗𝑷𝒐𝒔 Create projection vector for edge cases, as in (16) 

  𝒑𝒓𝒆𝒗𝑷𝒐𝒔 =  𝒑𝒐𝒔𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 Update previous position estimate 

end 
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FIGURE 7.  Church Hall Test Environment – Node Placement and Walking Trajectories  

disk
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = prevPos − SAf,k (11) 

with the force defined as: 

𝑓𝑘 = 𝑑𝑖𝑠𝑘
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∗ 𝑊𝑘 (12) 

Assuming there are 𝑛 springs, the net force over all springs is 

defined as: 

∑ (𝑛𝑒𝑡𝑓 = 𝑛𝑒𝑡𝑓 − 𝑓𝑘)
𝑛
𝑘=1 (13) 

with the position estimate defined as: 

𝑃𝑜𝑠 = 𝑝𝑟𝑒𝑣𝑃𝑜𝑠 + 𝜏 ∗
𝑛𝑒𝑡𝑓

𝑛
(14) 

Algorithm 2: [𝑝𝑜𝑠𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒]  =  𝐴𝑆𝑅(𝑆𝐴𝑓
𝑡 ,𝑊𝑡, 𝑝𝑟𝑒𝑣𝑃𝑜𝑠) 

for  𝒊 =  𝟏:𝝍 Iterate until hitting the max number of iterations 

for  𝒋 =  𝟏: 𝒏 Iterate through each spring anchor (𝑛 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝐴𝑓
𝑡)) 

𝒅𝒊𝒔⃗⃗ ⃗⃗ ⃗⃗  = 𝒑𝒓𝒆𝒗𝑷𝒐𝒔 − 𝑺𝑨𝒇,𝒋
Create a distance vector between the previous location 

estimate and current spring anchor using (11) 

𝒇 = 𝒅𝒊𝒔⃗⃗ ⃗⃗ ⃗⃗  ∗ 𝑾𝒋
𝒕 Define the force for spring anchor j as in (12) 

𝒏𝒆𝒕𝒇 = 𝒏𝒆𝒕𝒇 −  𝒇 The net force is defined equivalent to (13) 

end 
𝒑𝒐𝒔𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 = 𝒑𝒓𝒆𝒗𝑷𝒐𝒔 + 𝝉 ∗

𝒏𝒆𝒕𝒇

𝒏
Define the current iterations position estimate, as in (14) 

 𝒑𝒓𝒆𝒗𝑷𝒐𝒔 =  𝒑𝒐𝒔𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 Update the previous position estimate 

if  𝒎𝒂𝒈(𝒏𝒆𝒕𝒇)∗𝝉

𝒏
< 𝜹 Return early if position estimate has reached predicted 

location 

break 
end 

end 

FIGURE 8.  Church Hall 20 Node Results – (a) Clockwise trajectory, (b) Anticlockwise trajectory, (c) Zigzag trajectory
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A full pseudocode breakdown of the SpringLoc algorithm is 

included in Algorithm 1 and Algorithm 2 and all parameter 

values used are given in Table 1.   

E. ALGORITHM EDGE CASES

These are the scenarios that may cause the algorithm to

either not converge correctly or perform suboptimally. The 

first case arises when no affected links, ζt, are triggered in 

module two.  This can occur if the target is walking through 

a temporary blind-spot or has stood relatively motionless for 

a considerable duration of time. To resolve this, we 

implement two cases. 

If there are no affected links across multiple timesteps, 

(𝑙𝑒𝑛𝑔𝑡ℎ(𝜁𝑡) = 0) and (𝑙𝑒𝑛𝑔𝑡ℎ(𝜁𝑡−1) = 0), we assume the 

subject is currently stationary and set the current position 

estimate to the previous prediction estimate (𝑝𝑜𝑠𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =
𝑝𝑟𝑒𝑣𝑃𝑜𝑠). This ensures the subject stays located at the last 

known spring convergence target. However, if the previous 

timestep had affected links, 𝑙𝑒𝑛𝑔𝑡ℎ(𝜁𝑡−1) > 0, we assume 

that the subject is moving through a momentary blind-spot. 

Since no location information is available in the current 

timestep, the subject is assumed to be maintaining the same 

velocity and heading as their previous timestep. Their position 

estimate is given as: 

𝑝𝑜𝑠𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑝𝑟𝑒𝑣𝑃𝑜𝑠 + 𝑝𝑟𝑜𝑗𝑒𝑐𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (15) 

where project⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is a vector defined by the previous trajectory: 

𝑝𝑟𝑜𝑗𝑒𝑐𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑡 = 𝑝𝑜𝑠𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑡−1 − 𝑝𝑟𝑒𝑣𝑃𝑜𝑠𝑡−1 (16) 

The other edge case occurs when only one affected link is 

detected, 𝑙𝑒𝑛𝑔𝑡ℎ(𝜁𝑡) = 1.  Since module four requires at least 

two affected links to calculate spring anchors, an artificial link 

is inserted into the affected links array.  The artificial ‘injected’ 

link is defined by: 

𝑻𝑿𝒊𝒏𝒋𝒆𝒄𝒕𝒆𝒅 = 𝑝𝑟𝑒𝑣𝑃𝑜𝑠

𝑹𝑿𝒊𝒏𝒋𝒆𝒄𝒕𝒆𝒅 = 𝑝𝑟𝑒𝑣𝑃𝑜𝑠 + 𝑝𝑟𝑜𝑗𝑒𝑐𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝜻𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑
𝑡 = [𝑻𝑿𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 , 𝑹𝑿𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑] (17) 

IV. EXPERIMENT AND RESULTS

SpringLoc infers a subject’s location by analyzing the

changes in RSSI values across a network of wireless links. 

The network consisted of 20 Texas Instruments CC2530 

Zigbee radios for the first experiment, and six radios for the 

FIGURE 9.  Church Hall 20 Node Results – Combined Trajectories
FIGURE 10.  Church Hall 6 Node Results – Combined Trajectories

     

                    

   

 

   

   

   

   

 

 
 
 
 
  
 
 
 
  
 
 
 
 
 
 

       

    

    

         

     

                    

   

 

   

   

   

   

 

 
 
 
 
  
 
 
 
  
 
 
 
 
 
 

       

    

    

         

     

                    

   

 

   

   

   

   

 

 
 
 
 
  
 
 
 
  
 
 
 
 
 
 

       

    

    

         

             

                    

 

   

   

   

   

 

 
 
 
 
  
 
 
 
  
 
 
 
 
 
 

       

    

    

         

     

                    

 

   

   

   

   

 

 
 
 
 
  
 
 
 
  
 
 
 
 
 
 

       

    

    

         

FIGURE 11.  Church Hall 6 Node Results – (a) Clockwise trajectory, (b) Anticlockwise trajectory, (c) Zigzag trajectory.
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second and third experiments. The radios operated at 

maximum power and were set to channel 26.  The network 

was set up with a token ring protocol, where each node takes 

turns sending a broadcast packet.  The broadcast packet’s are 

received by every other node within range, which would 

record the ID of the transmitting (TX) node and the packets 

RSSI value.  Each transmitted broadcast packet would contain 

its own ID, followed by a list of the last round’s received RSSI 

values. A master node listens to all network traffic and sends 

all link RSSI values back to a PC for live processing.  The 

network was set up to run at 5Hz (i.e. 5 RSSI values for every 

network link, every second).  If the master node detects that a 

node has missed incoming packets  

(as its broadcast RSSI list only contained a few values), it 

would fill in the missing RSSI values with known dummy 

values to keep the data structure sizes consistent. This also 

allows for the PC to know which packets were dropped for 

each node, for each time frame. 

Experiments were conducted in two diverse environments. 

The first environment consisted of a church hall, which had  

TABLE I 

SPRINGLOC PARAMETERS 

Symbol Description Value 

𝛼𝑆 short-term histogram forgetting factor 0.9 

𝛼𝐿 long-term histogram forgetting factor 0.05 

𝜛 kernel smoothing parameter 30 

β20 affected link threshold (20 nodes) 1.4 

β6 affected link threshold (6 nodes) 0.63 

η affected link proximity constant 0.5 

ρ spring anchor selection constant 2 

𝜓 maximum spring iterations per timestep 8 

𝜏 spring step size scaling parameter 0.05 

𝛿 Spring early breakout parameter 0.015 

the chairs removed from the center of the room, giving 

approximately 120m2 of open space.  The sensors were 

mounted on stands 1.2m above the ground and placed in a 

square encompassing 25m2 in the center of the open space. 

The second environment consisted of a cluttered office space 

of approximately 44m2, where computers and laboratory 

equipment were set up around the perimeter of the room.  The 

nodes were wall-mounted around the perimeter of the room at 

1.4m above the ground. In both environments, the Wi-Fi was 

turned off and a Rohde & Schwarz Spectrum Rider FPH 

spectrum analyzer was used to ensure that there was no 

significant 2.4GHz interference present. Multiple walking 

trajectories were used per subject in both environments to 

ensure that we measured the algorithm’s performance across 

the entire test space. For the test involving 20 nodes, the red 

and blue nodes were used, as shown in Fig. 7.  For tests 

involving only 6 nodes, only the blue nodes were used.   

We compared SpringLoc with three well cited DFL 

approaches from literature:  Fingerprinting-based SCPL, link-

based Ichnaea and RTI-based KRTI. For SCPL’s 

fingerprinting, the office space was divided into 21 cells, and 

the church hall was divided into 25 cells. Though SpringLoc 

can run in real time, for these experiments, all RSSI values 

received by the processing pc were stored to a file.  This allows 

for SpringLoc to be fairly compared with existing approaches 

across both environments, using the exact same readings. 

FIGURE 13.  Office Space Results – Combined Trajectories

     

                    

 

   

   

   

   

 

 
 
 
 
  
 
 
 
  
 
 
 
 
 
 

       

    

    

         

     

                    

   

 

   

   

   

   

 

 
 
 
 
  
 
 
 
  
 
 
 
 
 
 

       

    

    

         

     

                    

   

 

   

   

   

   

 

 
 
 
 
  
 
 
 
  
 
 
 
 
 
 

       

    

    

         

     

                    

   

 

   

   

   

   

 

 
 
 
 
  
 
 
 
  
 
 
 
 
 
 

       

    

    

         

FIGURE 12.  Office Space Results – (a) Clockwise trajectory, (b) Anticlockwise trajectory, (c) Zigzag trajectory.

FIGURE 13.  Office Space Results – Combined Trajectories
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During testing, SpringLoc took an average of 8 milliseconds 

to process each timesteps RSSI values.  Since this is 

significantly faster than the network rate of 5Hz, it confirms 

real-time viability. For each test, two sets of data were 

recorded.  The first set of data included three fingerprint 

subsets.  The first subset recorded RSSI readings when no 

subject was present in the test environment.  The second subset 

consisted of labelled RSSI readings when a single roaming 

target was standing stationary at the center of each known cell. 

The third subset included labelled RSSI readings from when a 

single subject was moving randomly within the confines of a 

single known cell. This dataset was used by any algorithm that 

required them for offline calibration.  The second dataset 

consisted of the RSSI values recorded at 5Hz intervals when a 

subject was walking at a known constant speed, through a 

known trajectory. Care was taken to ensure that the walking 

speed remained constant for each subject. For each of the two 

environments, three walking trajectories were explored.  The 

subject would either walk near the perimeter in a clockwise or 

anticlockwise route, or the subject would follow a zig-zag 

trajectory covering the whole test environment.  The 

trajectories traversed are outlined in Fig. 7 and were the same 

in both the church hall and cluttered office space 

environments. This allowed us to compare whether the 

trajectory had any influence on a DFL systems accuracy, and 

whether the effect of walking along different trajectories 

affected DFL algorithms differently. 

For the first experiment, we utilized 20 nodes positioned in 

a square, in the church hall, as shown in Fig. 7. The church 

hall has no walls, support pillars or furniture within the 

immediate vicinity of the test environment.  This minimizes 

the likelihood of dominant multipath propagation 

components, providing an opportunity to compare SpringLoc 

with other approaches under reasonably ideal conditions. 

The second experiment, undertaken in the church hall, and 

third experiment, undertaken in the office, utilized only six 

nodes each.  This was done to benchmark SpringLoc against 

other RSSI based DFL approaches with a node density that 

would be realistically found within a Smart Home 

deployment. We have represented the results with two 

Cumulative Distribution Function (CDF) plots for each 

experiment, (Fig. 8/Fig. 9 for experiment 1, Fig. 10/Fig. 11 for 

experiment 2 and Fig. 12/Fig. 13 for experiment 3).  The first 

plot shows the accuracy of each separate walking trajectory 

(clockwise/anticlockwise/zig-zag) within an experiment.  The 

second CDF plot combines the data from each trajectory into 

one dataset and shows the overall performance for a given 

experiment. 

A. EXPERIMENT 1

Figure 8 clearly shows that a subject’s trajectory can greatly

influence the tracking ability of the traditional approaches. 

This is not an issue with SpringLoc as shown by the consistent 

shape of the empirical CDF error curve.  SpringLoc 

also outperformed all other benchmarked approaches, 

achieving better median and 90th percentile errors

across every trajectory.  When the data across trajectories 

is combined, as seen in Fig. 9, the effect of this becomes 

more pronounced, with SpringLoc outperforming 

existing approaches by a significant margin. This 

suggests that SpringLoc is more robust to spurious large 

errors than other approaches.  This can also be clearly seen 

by the maximum error in Fig. 9, where SpringLoc’s 

maximum error is more than 1m lower than any other 

approach.    

B. EXPERIMENT 2

When the number of deployed nodes was reduced to six, the

performance of all algorithms degraded as expected.

However, unlike the other approaches, SpringLoc managed to

maintain a sub-meter overall median error, as shown in Fig.

10, proving its viability even under a low node density.  It was

also relatively unaffected by the subject’s trajectory as shown

in Fig. 11.  This shows that SpringLoc is resilient to varying

walking trajectories and is also able to maintain a superior

accuracy to existing approaches, even when the number of

deployed nodes is reduced from 20 to 6.

C. EXPERIMENT 3

Experiment 3 utilized 6 nodes in a cluttered office

environment with potential for significant multipath

components, as shown in Fig. 3. SpringLoc outperformed all

other benchmarked algorithms and maintained consistent

performance across all trajectories as shown in Fig. 12.  This

suggests that SpringLoc’s superior accuracy is less susceptible

to environmental variations, as it maintained the best

localization error across multiple indoor test locations.  It was

also the only approach that did not suffer from errors

exceeding 4m, as shown in Fig. 13.

V. DISCUSSION

The CDF plots have been provided for SpringLoc as they

allow for algorithms performance to be compared over the 

whole quartile range, rather than using a singular numerical 

metric.  To provide consistency with existing literature, 

numerical results are also provided in Table II.  Since literature 

does not have an agreed numerical standard for benchmarking 

DFL algorithms, we use metrics standardised by indoor active 

tracking.  The EvAAL framework recommends using the 

‘third quartile of point Euclidiean error’, equivalent to the 75th 

percentile error [51]. The formal standard ISO/IEC 18305 has 

been recently introduced to standardize indoor localization 

scoring, however it does not provide explicit guidelines for 

DFL [52]. ISO/IEC 18305 mentions three scoring metrics that 

can be utilized by a DFL approach.  It recommends using the 

Root-Mean-Square-Error (RMSE), Circular Error Probable 

(CEP), and Circular Error 95% (CE95). CEP is equivalent to 

the 2d 50th percentile Euclidean error, and CE95 is equivalent 

to the 2d 95th percentile Euclidean error.  We have 

incorporated these, alongside the 90th percentile error in Table 

II. As can be observed, SpringLoc significantly outperforms
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the other algorithms in every scenario. As expected, when the 

node density decreased to 6 nodes in experiment 2, from 20 in 

experiment 1, localization performance decreased with every 

algorithm.  With the lower node density, SpringLoc was the 

only algorithm that managed to maintain a sub-meter median 

error.  SpringLoc also outperformed other approaches in 

experiment 3 which featured both a low node density, and 

complex multipath propagation paths caused by the 

environment itself.  It was the only approach that managed to 

maintain an RMSE below 2m, and a 90th percentile error 

below 3m. 

Though SpringLoc outperformed all other approaches, it did 

experience a significant increase in median error from 0.83m 

in the open church hall, to 1.57m in the cluttered office space.  

SpringLoc utilizes EWMA weighted histograms, which 

actively dampen the effect of any spurious outlier values. 

However, it still suffers increased error if the multipath 

propagation introduces significant non-transient fading.  This 

shows that while SpringLoc does not presume the noise will 

follow a zero mean gaussian distribution, it is still 

detrimentally affected if the complex propagation 

environment interferes with the average variance that a person 

introduces to the environment.  If an accurate noise model 

could be attained for complex indoor environments, the 

accuracy of SpringLoc could improve by better understanding 

how the attenuation introduced by a target fluctuates due to 

noise.    

Since SpringLoc can form its long-term histogram during 

live operation, it does not require offline measurements.  

Therefore, its parameters can be optimized in advance and 

deployed at an unknown environment without a significant 

setup cost.  Parameters were tuned empirically within a test 

room, before being deployed in both the Church Hall and 

Office Space shown.  Only the affected link threshold 

parameter (β) optimized for Church Hall and Office Space 

respectively.  With the other parameters being kept unchanged 

from their initial test room tuning, SpringLoc still managed to 

outperform all existing approaches.  This shows that the 

parameters are largely transferable between varying 

environments, while maintaining an acceptable localization 

accuracy.  Since the affected link threshold is largely coupled 

with the number of nodes deployed, this could be further 

generalized based on a given number of nodes and deployment 

area.  An end user only needs to know the number of deployed 

nodes, and approximate localization area to set up a SpringLoc 

based system.  For example, based on our empirical testing, 

the maximum β value can be heuristically estimated as: 

2 × (√Nodes⁄√ Area (m2)). Thus, a 140m2 house utilizing 

8 nodes would have an estimated maximum β value of 0.53. 
When a large number of links are available, a large value can 

be set for β, which causes the system to only react to strongly 

affected links, resulting in increased accuracy.  For low node 

deployments, there may be multiple areas with very sparse 

link density.  Since this reduces the likelihood that moving 

subjects will trigger strong link interactions, the threshold 

is reduced.  This acts to reduce the number of potential

blind spots within an environment.     

VI. CONCLUSIONS AND FUTURE WORKS

SpringLoc has shown that careful ‘affected link’ selection

based on histogram difference, coupled with spring-relaxation 

can increase the performance of an RSSI based DFL approach 

in real life scenarios.  In the initial 20 node benchmark, 

SpringLoc surpassed all other algorithms, achieving median 

and 90th percentile errors of 0.60m and 1.16m respectively. 

SpringLoc achieved a median localization accuracy of 0.83m 

in the church hall and 1.57m in the office space, surpassing 

existing approaches median error by up to 59%, when the node 

density was reduced. 

Though SpringLoc does not require any offline 

measurements, it does need to know the location of the 

transceiver nodes.  Future work could include performing self-

localization [53-55] on the nodes themselves, while following 

a deployment strategy that could be realistically followed by 

end users.  This paper only investigated single entity 

localization; multi-entities is left for future work.  This could 

be accomplished by using a separate set of springs for each 

detected entity, after accurately counting the number of 

TABLE II 

Numerical Results 

Experiment Algorithm RMSE 

50% 

Error 

75% 

Error 

90% 

Error 

95% 

Error 

Experiment 1 

Church Hall 

20 Nodes 

Ichnaea 1.34 1.138 1.66 2.01 2.20 

KRTI 1.29 0.97 1.48 1.99 2.39 

SCPL 1.54 1.23 1.78 2.23 2.42 

SpringLoc 0.75 0.60 0.86 1.16 1.30 

Experiment 2 

Church Hall 

6 Nodes 

Ichnaea 1.51 1.24 1.92 2.29 2.53 

KRTI 2.18 2.06 2.48 3.01 3.27 

SCPL 2.19 1.55 2.60 3.80 4.27 

SpringLoc 1.00 0.83 1.21 1.51 1.72 

Experiment 3 

Office Space 

6 Nodes 

Ichnaea 2.34 2.05 2.71 3.39 3.98 

KRTI 2.32 1.85 2.60 3.80 3.98 

SCPL 2.70 2.48 3.18 3.65 4.58 

SpringLoc 1.85 1.57 2.22 2.82 3.12 
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subject’s present, and the affected links for each.  Furthermore, 

RSSI is a coarse metric when compared to Wi-Fi CSI.  If CSI 

ever became readily accessible in COTS equipment, 

SpringLoc could be implemented using CSI to further 

improve the performance.    
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Abstract— Device-free localization (DFL) systems that that rely 
on the wireless received signal strength indicator (RSSI) metric 
have been reported in literature for almost a decade. Histogram 
Distance based DFL (HD-DFL) techniques that operate by 
constructing RSSI histograms are highly effective as they can 
localize stationary and moving people in both outdoor and 
complex indoor environments. A key step in the histogram 
approaches is the estimation of the difference between the “long-
term” and “short-term” histograms. Existing HD-DFL methods 
use either Kullback-Leibler or the subsequent improvement, 
Kernel distance, to measure this difference. This paper is the first 
known work to compare an extensive range of histogram distance 
metrics within a DFL context and demonstrate how a judicious 
selection of a distance metric can significantly increase the 
performance of an HD-DFL system. Results from practical 
implementation in two different environments show that some 
distance metrics perform considerably better than Kernel distance 
when used for existing DFL techniques like Radio Tomographic 
Imaging (RTI) and SpringLoc, with the overall median tracking 
error reducing by up to 25%. 

Index Terms— Device-free Localization, Radio Tomographic 
Imaging, Indoor Positioning Systems, Spring relaxation, 
Histogram Distance 

I. INTRODUCTION

HE spatial features of wireless signals can be used to

infer the location of an entity which has led to significant 

interest in Indoor Positioning Systems (IPS).  Potential 

applications can include healthcare and assisted living [1, 2], 

search and rescue  [3], multi-subject counting/tracking[4, 5], 

offices [6], human-robot workspaces [7] or smart homes [8].  

 Device-free Localization (DFL) is a form of IPS that does not 

require the tracked entity to carry a device (e.g. a wireless 

transceiver).  This allows all subjects within an environment to 

be tracked using the system and can facilitate location-based 

services.  Recent literature has largely focused on maximizing 

the accuracy of DFL approaches using Wi-Fi Channel State 

Information (CSI)  [1, 6, 9], software defined radio (SDR) [10], 

fingerprint refinement [11], classification improvement [12-

15], or environmental robustness [16]. Since CSI offers finer-
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grained features than the competing Received Signal Strength 

Indicator (RSSI) metric, recent machine learning approaches 

have largely focused on CSI-based DFL using: shapelet 

learning [17], Support-vector machines (SVM) [6, 18], Random 

Forest [19], Hidden Markov Models (HMM) [20], and Deep 

Learning  [21]. Though CSI is routinely used in recent 

literature, it can only currently be implemented using SDR or 

legacy Wi-Fi radios with modified drivers [22-25].  This means 

that CSI methods cannot currently utilize modern commercial-

off-the-shelf (COTS) equipment and are therefore unsuitable 

for a Smart Home deployment. CSI methods also do not support 

Bluetooth or Zigbee hardware which are commonly utilized 

COTS radios alongside Wi-Fi. Another issue is that recent 

software defined radio approaches typically makes use of 

Frequency Modulated Carrier Waves (FMCW) for localization, 

however these techniques require significant bandwidth and 

custom radio frontends. This limits usability as neither CSI or 

FMCW approaches would be able to utilize existing wireless 

infrastructure. 

The RSSI metric is useful for implementing an IPS as it is 

commonly available in COTS equipment, across multiple 

popular wireless platforms including Bluetooth, Wi-Fi and 

Zigbee.  This allows for IPS systems to be designed with the 

intention of integrating them within a standard built 

environment, using existing infrastructure, with a minimal cost 

associated with installation. Since existing mains powered 

Smart Home devices are often required to have their wireless 

modules on at all times to listen for commands, the added 

requirement of regular wireless transmissions will not 

significantly increase the system’s power consumption.  The 

RSSI metric is also stable under interference, as RSSI values of 

correctly received packets, remain unchanged [26].   

Recent literature pertaining to RSSI based approaches 

predominately focus on improving classification approaches by 

using robust channel selection [27], fusing RSSI/CSI features 

[28], or improving classification accuracy through using novel 

machine learning (ML) techniques. Recently employed ML 

techniques include: extreme learning[15], Convolutional 

Neural Networks (CNN) [13], logistic regression [27], sparse 

coding [14].   The problem with ML approaches is that they 
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require extensive offline data collection to train the classifier. 

To enable DFL IPS systems to be easily utilized by general 

consumers, they must be simple to use with minimal setup 

requirements.  Since an offline site survey cannot be easily 

performed by end users, ML classification approaches and 

fingerprint refinement techniques have limited use in practical 

implementations, where offline data collection cannot be 

guaranteed. The Radio Tomographic Imaging (RTI) approaches 

to DFL have an advantage over ML techniques, as they do not 

require a substantial set of labelled offline training data and 

have low run-time complexity. The downside to existing RTI 

approaches is that they require a significant number of nodes 

(transceivers) to provide robust localization estimates. Existing 

literature has shown that the nodes can perform self-localization 

which reduces the human involvement in setup, at the cost of a 

reduction in accuracy [29, 30].    

 RTI was first proposed as an IPS implementation by Wilson 

and Patwari in [31].  They used RSSI attenuation as their feature 

and looked at the effect a person would have on blocking the 

Line-Of-Sight (LOS) link path.  The problem with RSSI 

attenuation is that it does not work well in through-wall 

scenario. In addition, multipath components can often 

significantly contribute to the change of RSSI values, which can 

make modelling the LOS change difficult.  Recently there have 

been many attempts to improve on the original RTI approach 

[32-38] and these have been summarized in Table 1.   

Histogram Distance-based RTI (HD-RTI) was first proposed 

by Zhao and Patwari in [38] and subsequently improved by 

using Kernel Distance as the histogram difference metric in 

[32].   

SpringLoc is another Histogram Distance-based DFL (HD-

DFL) method that has been recently proposed that offers  

Fig. 1.  Overview of HD-RTI and SpringLoc Algorithms 

Sensor Network

RSSI
R

SpringLoc

Calculate D(S,L), 
the difference 
between S and 

L

Define Spring 
Anchors and 

Weights

Run Adaptive 
Spring 

Relaxation 

Locate Affected 
Links

Run Adaptive 
Spring 

Relaxation 

RTI
(Find inverse 

using least 
squares)

Kalman Filter

Fig. 2.  The effect of a Stationary person’s presence on the Short-term 

histogram (STH), compared to the Long-term histogram (LTH). 

Fig. 3.  The effect of a Moving persons presence on both the Short-term 

(STH) and Long-term histograms (LTH). 
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superior accuracy than RTI, especially for low node densities 

[39]. SpringLoc uses histograms of RSSI values as its feature  

like HD-RTI. However rather than solving a linear inverse, it 

treats localization as an energy minimization problem. This is 

implemented in the form of an adaptive spring relaxation-based 

tracking algorithm.   

In both SpringLoc and HD-RTI, RSSI values are collected  

for each pairwise link within a network of nodes, as shown in 

Fig. 1.  When an entity traverses through the environment, they 

inevitably walk close to a LOS link path between a set of nodes.  

This causes fluctuations in the RSSI values seen by the 

receiving node.  Successive RSSI samples can then be used to 

form a long-term and short-term RSSI histogram for each link 

pair, based on a predefined weighting scheme. Histogram based 

DFL assumes that an entity traversing through an environment 

will cause a links short-term histogram (STH) to deviate away 

from the long-term histogram (LTH).  By examining which 

histogram pairs exhibit large differences, the location of an 

entity can be inferred.  The Long-term histogram (LTH) 

represents a measure of the background while the Short-term 

histogram (STH) represents the current state.  The difference 

between the LTH and STH represents both the presence of a 

target, and it’s proximity to the link’s line-of-sight (LOS) path. 

Both the LTH and STH can be formulated during live operation 

(as detailed in Section II) which removes the need for offline 

calibration.  The histogram also inherently combines features 

from both RSSI attenuation and RSSI variance, allowing the 

system to work well in both open spaces and through-wall 

environments, and with both moving and stationary people.  

HD-DFL schemes also do not need recalibration due to 

environmental change as the histogram feature adapts over time 

automatically. 

A. Contribution

This paper makes three main contributions to improve HD-

DFL: 

• Multiple distance metrics for computing the histogram

difference are demonstrated to outperform the current 

state-of-the-art Kernel Distance by up to 25% 

• The concept of Outlier Link Reduction is introduced to

HD-RTI, to reduce the effect of erroneous link values.

Experimental results show that it reduces the 90%

percentile error by up to 8%

• Experimental results in two different environments, a

multipath rich laboratory, and an open auditorium verify

the proposed implementation for improving both HD-

RTI and SpringLoc approaches

The rest of this paper is organized as follows.  Section II 

outlines the software algorithm, Section III discusses the 

importance of exploring different distance metrics, and their 

effect on overall accuracy, Section IV covers the physical 

system implementation, Section V discusses the results and 

Section VI concludes the paper. 

II. ALGORITHMS

For brevity, this paper only provides a concise description of 

the HD-RTI and SpringLoc approaches to HD-DFL and for a 

more in-depth understanding, readers are referred to [32] and 

[39] respectively.  Both algorithms compute the difference

between RSSI histograms for each link to determine whether a

specific link is currently affected by the presence of an entity

(using (1) and (2)).  Assuming RSSI values have the range

[1, 𝑁], each histogram is constructed with  𝑁 bins, where the

𝑁th bin value increases as the frequency of recorded RSSI

value 𝑁 increases.  A scheme based on an exponentially

weighted moving average (EWMA) calculates the histograms

as: 

ℎ𝑙,𝑡 = (1 − β)ℎ𝑙,𝑡−1 + βζ(𝑅𝑙,𝑡) (1) 

where ℎ𝑙,𝑡 is the histogram of link 𝑙, at time 𝑡 , where the value 

in each bin is between 0 −  1.  β is the forgetting factor between 

0 - 1 which determines the weight put on recent measurements, 

ζ is an indication vector and Rl,t is the RSSI of link 𝑙 at time 𝑡. 

TABLE I 

Radio Tomographic Imaging Approach Comparisons 

Approaches 

Localize Stationary 

Targets 

Works 

Through-walls Main Limitation 

RTI [31] Yes No 

Original RTI implementation.  Using RSSI attenuation as a 

feature results in poor performance in through-wall/multipath 

rich environments. 

VRTI [33] No Yes 
Using RSSI variance as the feature prevents the detection of 

stationary targets. 

LSVRT / SubVRT [34] No Yes 
Using RSSI variance as the feature prevents the detection of 

stationary targets. 

cdRTI [35] Yes Yes Requires large available bandwidth. 

dRTI [36] Yes Yes 
Requires a custom antenna frontend not found in common 

COTS radios. 

ARTI [37] Yes Yes 
Requires large available bandwidth. It may incorrectly calibrate 

if links are sparse or there is significant multipath. 

HD-RTI [32, 38] Yes Yes 
Accuracy can be hampered if a non-ideal histogram difference 

metric is used. 
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ζ is a vector of length 𝑁 where the index given by 𝑅𝑙,𝑡 is one 

and every other position is zero. 

 If we define the long term histogram as 𝐿 and the short term 

histogram as 𝑆 where the forgetting factors beta are set to low 

and high values respectively in (1) so that β𝐿 < β𝑆. The kernel

distance between them can then be defined by: 

D(S, L) = STKS + LTKL − 2STKL (2) 

where 𝐾 in a 𝑁 by 𝑁 kernel matrix and 𝑇 represents a transpose.  

 The Epanechnikov kernel was utilized for this paper, following 

the standard practices from the literature [40]. HD-RTI assumes 

that the location of a person can be given by the maximum value 

of the image 𝑥, where 𝑥 can be defined by the vector 𝑥 =
[𝑥0, … , 𝑥𝑃−1] and 𝑃 is the number of pixels.  HD-RTI assumes

that 𝑑, the set histograms differences for each link, can be 

expressed as a linear combination of 𝑥: 

𝑑 =  𝑊𝑥 + 𝑛 (3) 

Where 𝑛 is a noise vector and 𝑊 is a weighting model where 

𝑊𝑙,𝑝 for pixel 𝑃 is zero unless it is located within an 2D ellipse

defined with foci at links ls transmitter and receiver nodes.   

The aim of RTI is to find the least-squares solution that 

minimizes the noise, while taking the inverse of (3) to find 𝑥. 

RTI is by nature an ill-posed inverse problem, as 𝑊 is not full-

rank, which means that small amounts of noise in the 

measurement data can be amplified significantly when (3) is 

inverted [31].  To minimize this, regularization is used.  By 

utilizing a regularized least-squares formulation, the image 𝑥 

can be defined by: 

𝑥 = (𝑊𝑇𝑊 + σ𝑛
2 𝐶𝑥

−1)−1𝑊𝑇𝑑 (4) 

where σ𝑛
2  is the noise variance and 𝐶𝑥 is the covariance matrix

of 𝑥. 

For tracking, HD-RTI uses a Kalman filter where the state 

transition model includes the persons location and velocity, and 

the observation inputs are provided by the coordinates of the 

brightest pixel in 𝑥.  

SpringLoc performs localization by creating an artificial set 

of anchor points connecting a corresponding fictitious set of 

springs to the target. This is done by first locating the most 

affected links.  Affected links are found by iterating through 

each D(S, L), defined by (2), and saving them to an array if they 

exceed a predefined threshold.  The locations of the artificial 

anchors are then defined as the coordinates of the intersection 

points, calculated for each pair of links in the affected links 

array. A weight is then applied to each spring anchor based on 

the D(S, L) from both contributing links.  An adaptive spring-

relaxation approach is then used to localize and track the target 

using the targets previous position, the current spring anchors, 

and the spring anchor weights.  SpringLoc has the benefit of 

peforming well under both low and high node densities, while 

having a lower runtime complexity than competing particle 

filter tracking systems.    

Histograms created from experimental results, on the system 

outlined in Section IV, can be seen in Fig. 2 and Fig. 3.  Both 

stationary and moving people can have a significant impact on 

a histogram formed from the live RSSI values.  When a person 

moves through an area, both the LTH and Short-term histogram 

(STH), defined by (1), are affected. However, the LTH 

maintains a significant portion of the RSSI information from 

before a person was present.  In Fig. 2, both the LTH and STH 

maintain the same value when the environment is empty. When 

a person enters the environment and stands stationary at a fixed 

point, the STH quickly updates to a new value, indicating a 

change has occurred within the environment.  In Fig. 3, the 

effect β has on the LTH and STH can be seen.  Though the LTH 

is slowly changing when a person moves through the 

environment, the dominant bin maintains the same index as 

when no entity was present.  Therefore, the LTH can be used as 

a background baseline value, as long as β𝐿 remains small.  In

contrast with the LTH, the STH’s dominant bin quickly settles 

to a new value.  The difference in both the values and shapes of 

the histograms formed when comparing LTH and STH suggests 

that they contain information that could be used to infer 

TABLE II 

HD-RTI - Histogram Distance Implementation Error (m) 

Auditorium Laboratory 

Distance Metrics Implementation Median 90% Error Median 90% Error 

1 - Dice 𝐷(𝑆, 𝐿) =
∑ (𝑆𝑖 − 𝐿𝑖)2𝑑

𝑖=1

∑ 𝑆𝑖
2𝑑

𝑖=1 + ∑ 𝐿𝑖
2𝑑

𝑖=1

0.57 1.43 1.24 2.82 

Bhattacharyya 𝐷(𝑆, 𝐿) = − ln ∑ √𝑆𝑖𝐿𝑖

𝑑

𝑖=1
0.54 1.32 1.06 2.58 

Squared-chord 𝐷(𝑆, 𝐿) = ∑ (√𝑆𝑖  −  √𝐿𝑖)
2𝑑

𝑖=1
0.53 1.36 1.19 2.72 

Kernel 𝐷(𝑆, 𝐿) = 𝑆𝑇𝐾𝑆 + 𝐿𝑇𝐾𝐿 − 2𝑆𝑇𝐾𝐿 0.71 1.50 1.38 3.07 

Kullback-Leibler 𝐷(𝑆, 𝐿) = ∑ 𝑆𝑖 ln
𝑆𝑖

𝐿𝑖

𝑑

𝑖=1
1.27 2.80 2.06 4.05 

Chi Squared 𝐷(𝑆, 𝐿) =
1

2
∑

(𝑆𝑖 − 𝐿𝑖)2

𝑆𝑖 + 𝐿𝑖

𝑑

𝑖=1
0.54 1.34 1.26 2.86 

Pearson X2 𝐷(𝑆, 𝐿) = ∑
(𝑆𝑖 − 𝐿𝑖)2

𝐿𝑖

𝑑

𝑖=1
0.60 1.41 1.12 2.65 
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location. Since the relationship between the LTH, STH and 

human presence is unknown, metrics are explored in section III 

of this paper, to optimize overall localization accuracy. 

III. DISTANCE METRICS

HD-DFL approaches work by defining regions of interest 

based on global link behavior. RTI systems work by creating an 

intensity image where each pixel (region) is affected by a sum 

of the links that pass through its vicinity.  SpringLoc defines 

each region of interest as an artificial spring anchor point.  

Since multiple links can contribute to each region, it is very 

important to appropriately weight each link according to its 

contribution.  For HD-DFL this is implemented in two steps.  

Firstly, a weighting model is defined which ensures only links 

close to each region of interest are included in the calculation 

of the position estimate.  The second influence comes from the 

chosen distance metric.  Since each distance metric calculates 

the ‘histogram difference’ in a different manner for the same 

pair of histograms, this can be leveraged to choose a metric that 

optimizes the relationship between a person passing through a 

link and standing within a corresponding region.  Recent work 

in visible light positioning (VLP) has shown that varying 

distance metrics can have a significant effect on the overall 

localization accuracy of weighted K-nearest neighbor (WKNN) 

algorithm [41].  While no distance metric can strictly be better 

than any other in terms of generalization ability, some metrics 

have a higher probability of good generalization (improvement) 

as they are better matched to the types of data variation that will 

likely occur  [42].   The problem with indoor radio propagation 

TABLE IV 

HD-RTI (with OLR) - Histogram Distance Implementation Error (m)  

Auditorium Laboratory 

Distance 

Metrics Median 

90% 

Error Median 90% Error 

1 - Dice 0.53 1.30 1.19 2.81 

Bhattacharyya 0.52 1.30 1.04 2.56 

Squared-chord 0.53 1.34 1.15 2.50 

Kernel 0.70 1.51 1.36 3.05 

Kullback-

Leibler 
1.22 2.78 2.19 4.16 

Chi Squared 0.54 1.31 1.20 2.82 

Pearson X2 0.57 1.38 1.04 2.63 

TABLE III 

SpringLoc - Histogram Distance Implementation Error (m) 

Auditorium Laboratory 

Distance 

Metrics Median 

90% 

Error Median 90% Error 

1 - Dice 0.59 1.22 0.97 1.78 

Bhattacharyya 0.57 0.98 0.97 1.59 

Squared-chord 0.56 0.97 0.97 1.58 

Kernel 0.58 1.17 1.07 2.11 

Kullback-

Leibler 
2.77 3.48 1.97 3.24 

Chi Squared 0.58 1.09 0.94 1.64 

Pearson X2 0.68 1.47 0.99 2.05 

Fig. 5.  Auditorium Node Placement 

CC2530 Nodes

Fig. 4.  HD-RTI Position Estimates With/Without Outlier Link Reduction 

Previous Estimate
OLR

Without OLR

Actual Location
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is that the existence of multipath prevents the formation of a 

reliable indoor model [43].  Consequently, the ideal distance 

metric was found through empirical investigation.  Introducing 

different histogram metrics involves replacing (2) with an 

alternative distance metric.  We chose to focus on the distance 

metrics reported in [44] as they present a broad array of 

approaches across multiple mathematical families.  Table 2 

presents the metrics that performed better than the HD-RTI’s 

Kernel and Kullback-Leibler benchmark metrics used in [32]. 

Table 3 presents metrics that surpassed the Kernel benchmark 

used by SpringLoc in [39].  Some of these metrics suffer from 

potential divide-by-0 or log(0) errors.  Potential divide-by-0 

errors were fixed by replacing the denominator (𝑑𝑒𝑛𝑜𝑚) with: 

𝑑𝑒𝑛𝑜𝑚𝑓𝑖𝑥𝑒𝑑 =
𝑚𝑎𝑥(𝛼, 𝑑𝑒𝑛𝑜𝑚)

∑ 𝑚𝑎𝑥(𝛼, 𝑑𝑒𝑛𝑜𝑚)

(5) 

where α is a small constant.  Similarly potential 

log(0) were fixed by replacing 0 with a very small 

constant, ε, if a log(0) scenario was encountered. 

A. Outlier Link Reduction

When a person is traversing the monitored environments,

they generally induce the largest histogram difference when 

they cross the LOS link path.  However, multipath propagation 

and scattering can cause links far away from the traversing 

person to spuriously trigger strongly.  SpringLoc contains 

filtering approaches to address this issue however HD-RTI does 

not.  If the strength of these triggers is stronger than the current 

LOS links, it can cause a significantly erroneous location 

estimate which then pulls the tracking Kalman filter in the 

wrong direction.  To combat the magnitude of this effect in HD-

RTI we add a secondary weighting system termed Outlier Link 

Reduction (OLR), that favors links that are closer to the 

previous tracked state estimate. This is achieved by modifying 

(4) to :

𝑥 = (𝑊𝑇𝑊 + σ𝑛
2 𝐶𝑥

−1)−1𝑊𝑇(𝜑 ∘ 𝑑) (6) 

where  𝜑 is a histogram difference weighting vector, 𝜑  =
[𝜑0, … , 𝜑𝑑−1]  of the same length as 𝑑, and ∘ represents the

Hadamard product. Each element in 𝜑, represents a weight for 

a single link defined as:  

𝜑𝑙  =  𝑒
(−𝛾

𝜔𝑙
‖𝜔𝑙‖

) (7) 

where 𝛾 is a weighting constant and 𝜔𝑙 represents the minimum

distance between the previous state estimate and the line formed 

between the transmitter and receiver of link 𝑙.  We define 𝜔𝑙 as:

𝜔𝑙  =  
(

𝑦𝑅𝑋 − 𝑦𝑇𝑋
𝑥𝑅𝑋 − 𝑥𝑇𝑋

) (𝑥𝑆 − 𝑥𝑇𝑋) + 𝑦𝑇𝑋 − 𝑦𝑆

√(
𝑦𝑅𝑋 − 𝑦𝑇𝑋
𝑥𝑅𝑋 − 𝑥𝑇𝑋

)
2

+ 1
(8) 

where [𝑥𝑆, 𝑦𝑆] is the previous state estimate, [𝑥𝑇𝑋, 𝑦𝑇𝑋] is the

coordinates of the transmitting node for link 𝑙, and [𝑥𝑅𝑋 , 𝑦𝑅𝑋] is

Fig. 6.  Laboratory Floorplan / Node Placement 

9.6m

4.8m

Fig. 7.  Auditorium Overall RTI (OLR) CDF Error plot Fig. 8.  Auditorium Overall SpringLoc CDF Error plot 

60

Chapter 4



the coordinates of the receiving node for link 𝑙.  An example of 

OLR from experimental data, is given in Fig. 4, with the node 

locations marked with red circles.  Triggered links between 

node pairs are shown by the dotted lines, with the green lines 

denoting dominant outlier links.  Without employing OLR, the 

current position estimate is pulled towards the noisy outlier 

links resulting in significant error in the localization estimate.   

While employing OLR, the weight of these links is significantly 

reduced, and the current location estimate is much closer to the 

actual location. 

IV. IMPLEMENTATION

 Experiments were performed using a network of 20 Texas 

Instruments CC2530 Zigbee radios on channel 26, 

communicating using a token ring protocol. In each cycle, the 

network would report a set of 𝑀 RSSI values, where 𝑀 is the 

number of links within the network. The cycle duration was set 

to 200ms and Wi-Fi was disabled during the experiments to 

ensure the throughput of the Zigbee packets were not affected. 

This was done to eliminate Wi-Fi as a factor from the 

experiments. However,  we note that existing research shows 

that Wi-Fi interference would have no impact on the RSSI 

values themselves [26], therefore having minimal impact on the 

overall accuracy. Experiments were conducted in two 

environments, an auditorium with ideal LOS between all nodes, 

as shown in Fig.4/Fig. 5, and a cluttered laboratory as shown in 

Fig. 6, featuring a complex, multipath rich environment.  The 

Zigbee radios are represented by the red circles in Fig. 4 and 

Fig. 6. The auditorium test area was 5m x 5m, and the 

Laboratory test area was 9.6m x 4.8m. The auditorium featured 

high ceilings and had no objects or walls within 5m of the test 

area, in all horizontal directions.  This means that the multipath 

is minimized (excluding ground reflection), and the test area 

can be considered a “best-case” indoor environment.  In 

contrast, as shown in Fig. 6, the laboratory featured desks, 

bookshelves, and monitor stands which have the potential to 

introduce significant multipath components to the propagation 

environment. 

Nodes were mounted on stands at 1.2m above the ground in the 

auditorium, and were wall mounted in the laboratory at 1.4m 

above the ground. This is consistent with the deployment height 

used by both of the original works [32, 39]. However, it should 

be noted that wireless DFL implementations can utilize other 

deployment configurations including ceiling mounted nodes, 

TABLE V 

HD-RTI Parameter Values 

Parameter Value Description 

β𝑆 0.9 Forgetting Factor S 

β𝐿 0.05 Forgetting Factor L 

σ𝐸
2 30 Epanechnikov kernel width 

σ2 0.00064 Regularization parameter [32] 

δ 1.3 Space parameter [32] 

𝛼 10−3 Divide-by-0 constant 

ε 10−100 Log(0) constant 

𝛾 1.5 OLR weighting constant 

Fig. 9.  Laboratory Overall RTI (OLR) CDF Error plot Fig. 10.  Laboratory Overall SpringLoc CDF Error plot 

Fig. 11.  Laboratory OLR vs No OLR RTI Performance 
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with a similar level of accuracy [45].   Subjects were asked to 

walk along a marked clockwise, anticlockwise or zigzag route 

in each environment.  The subjects walked in a heel-to-toe 

fashion to ensure their step size remained constant and used a 

metronome to ensure their speed remained constant.  This 

enabled us to compare the localization result of specific 

samples, with their ground truth counterpart. The data from 

each trajectory was combined to produce the overall accuracy 

plots in Fig. 7-Fig. 10. 

V. RESULTS

Fig. 7 and Fig. 8 show the overall cumulative distribution 

function (CDF) of the localization error in the auditorium, with 

Fig. 9 and Fig. 10 showing the cluttered laboratory, for some of 

the best performing metrics.  Table 2 and Table 3 summarize 

the overall performance of all tested metrics, across both 

environments, for both HD-RTI and SpringLoc. 

  Table 4 shows the improved performance of HD-RTI, when 

utilizing OLR.  Since OLR is designed to minimize the effect 

of spurious erroneous outliers, its contribution is small. 

However, it does increase the overall performance.  The effect 

of OLR is more pronounced in the Laboratory environment, 

where there is significant multipath, and larger global errors.  A 

CDF Error plot is given in Fig. 11 to demonstrate the overall 

effect of OLR on the Pearson X2 and Squared-chord metrics.  

Parameter values used for the HD-RTI experiments can be seen 

in Table 5. The first six parameters were initialized to the values 

used in [32], before all values were empirically tuned to find 

global, optimum values.  Interestingly, though we collected 

RSSI samples at 5Hz rather than the 3Hz used in   [32], our 

optimum β𝑆 was the same as [32], however our δ is

significantly larger.  We believe that this is caused by our target 

walking considerably faster than the person used during the 

experiments conducted in [32].   The parameter values used for 

SpringLoc are the same as implemented in [39]. Overall the 

Bhattacharyya, Squared-chord, Chi Squared and Pearson X2 

metrics outperformed both Kernel and Kullback-Leibler 

metrics across both environments with Squared-chord 

providing a substantial 25% improvement in median error over 

Kernel for the auditorium environment, using HD-RTI.  

SpringLoc also saw significant improvement in the 90th 

percentile and maximum errors when using Bhattacharyya or 

Squared-chord metrics. This shows that care should be taken 

when choosing a distance metric for HD-DFL as they can 

significantly affect the overall tracking accuracy.  

The HD-RTI outlier link reduction technique also provided a  

modest improvement for most metrics, with significant 

accuracy increases of over 8% seen by 1 – Dice Auditorium 

90% Percentile and Pearson X2 Laboratory Median results.  The 

outlier link reduction appeared to not noticeably affect the 

accuracy of the Kernel-distance based results.  The Kullback-

Fig. 12.  Auditorium RTI – Interpolated Errors for Bhattacharyya Distance 

Fig. 13.  Auditorium RTI – Interpolated Errors for Kernel Distance 

Fig. 14.  Auditorium SpringLoc – Interpolated Errors for Bhattacharyya 

Distance 

 

 

   

  

 

 
 

   

 
   

   

 

   

Fig. 15.  Auditorium SpringLoc – Interpolated Errors for Kernel Distance 
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Leibler performance was degraded by the outlier link reduction. 

However since this distance performed significantly worse than 

every other metric in every test, it suggests that this metric is 

not appropriate for HD-RTI localization efforts.   

Interesting behavior was observed in both environments as 

the clockwise and anticlockwise routes in both the auditorium 

and laboratory environments saw many metrics surpassing 

Kernel distance, whereas their performance was relatively 

similar in the zigzag route for HD-RTI.  To explore why this 

occurred, we plotted the interpolated errors across the whole 

test area for each metric.  Figure 12 shows the performance of 

the Bhattacharyya metric in the auditorium, with Fig. 13 

showing the Kernel distance performance. Figures 14 and 15 

show the interpolated errors for SpringLoc in the auditorium, 

with the Bhattacharyya and Kernel metrics respectively. What 

becomes apparent is that the Bhattacharyya distance performs 

significantly better than Kernel distance when the person is near 

the nodes.  This is shown by Bhattacharyya having most 

interpolated edge errors under 1m, while the Kernel distance 

has many errors over 1.4m when using either HD-RTI or 

SpringLoc. Since the clockwise / anticlockwise routes only 

cover the perimeter compared to the zigzag route which covers 

the whole test environment, the Kernel CDF plots are 

considerably worse.  Another interesting observation is that 

there is a region at approximately [3.2, 3.2] where the Kernel 

metric performed poorly with both HD-RTI and SpringLoc.  

Using the Bhattacharyya metric removed this erroneous region 

for SpringLoc, but only partially mitigated it for HD-RTI.  This 

shows that the performance of a HD-DFL implementations 

accuracy is not only route and algorithm dependent, but also 

exhibits significant spatial variation within the distance metrics 

themselves, even across an uncluttered environment like the 

auditorium.  Though the magnitude of the improvement caused 

by metric substitution is dependent on the algorithm that 

follows (RTI or SpringLoc), the metrics implemented offered a 

considerable improvement over both the original Kernel and 

Kullback-Leibler metrics, for both RTI and SpringLoc. 

Furthermore, the metrics were tested in two environments that 

were setup to represent both the “best case” and “worst case” 

propagation environments, using realistic room layouts.  This 

leads us to believe that the distance metrics implemented should 

offer a consistent improvement compared to the existing Kernel 

metric across varying indoor environments, with varying 

multipath characteristics.  HD-RTI’s performance severely 

degrades under low node density, however SpringLoc’s 

performance remains more consistent [39].  In order to show 

how the metrics affect overall localization when fewer nodes 

are available, the laboratory localization estimates were 

recalculated using only six nodes for SpringLoc. As shown in 

Fig. 16, Bhattacharyya, Squared-chord and Chi Squared 

distances still outperform the Kernel distance, even under low 

node density, across all quartiles.  

VI. CONCLUSION AND FUTURE WORKS

Existing HD-DFL implementations in literature have only 

explored two distance metrics for localization.  This work 

experimentally implemented many other metrics in two 

different environments, with multiple walking trajectories.  The 

results show that 5 distance metrics surpass the performance of 

the state-of-the-art Kernel metric, across multiple 

environments, by up to 25%.  We also noticed that different 

metrics exhibit different spatial properties in HD-DFL systems 

with the Kernel metric experiencing error spikes when a person 

traverses near node locations, which was not as pronounced 

among the other metrics.  This explains why the Kernel metrics 

performed considerably worse than other approaches when the 

walking trajectory followed the node perimeter.  We have also 

shown that an HD-RTI algorithm can use outlier link reduction 

in the form of a weighting scheme, which increased overall 

localization accuracy in most tests.   

Future work could be done to either fuse multiple distance 

metrics together, or use a location-based switching scheme, 

where a distance metric is chosen based on the current state 

estimate, and an assumption of the current spatial relationship 

to the nodes.  Work can also be done to expand this 

implementation to cater for multiple people at once.  Finally, 

HD-RTI’s Kalman tracking filter smooths the location 

estimates but performs poorly at tracking through dead-spots 

and at times of significant system noise.  A better approach to 

tracking would be to detect whether the RSSI set had been 

significantly corrupted by noise and to discard the set 

completely, using the previous measurement and a known 

movement model to infer location until the noise fades.  In 

contrast with HD-RTI, SpringLoc already incorporates 

geometric filtering into its tracking approach to help discard 

samples that have been corrupted by noise. However, further 

work needs to be done to define more accurate spring weights, 

based on which histogram distance metric is utilized.  

For the experiments reported in this paper, subjects walked 

at a brisk walking pace, in a heel-to-toe fashion.  This means 

that our β𝑆 value will work for any walking subject within an

indoor environment but may not be suitable for higher mobility 

subjects.  This can be addressed by either increasing the β𝑆 to

allow for higher mobility, or by increasing the network 

sampling rate, at the cost of higher energy consumption [32].     
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Abstract— Device-free or passive localization techniques allow 
positioning of targets, without requiring them to carry any form 
of transceiver or tag. In this paper, a novel device-free visible light 
positioning technique is proposed. It exploits the variation of the 
ambient light levels caused by a moving entity. The target is 
localized by employing a system of artificial potential fields 
associated with a set of photodiodes embedded into an indoor 
environment. The system does not require the existing lighting 
infrastructure to be modified.  It also employs a novel calibration 
procedure that does not require labelled training data, thus 
significantly reducing the calibration cost. The developed 
prototype system is installed in three typical indoor environments 
consisting of a corridor, foyer, and laboratory and was able to 
attain median errors of 0.68m, 1.20m and 0.84m respectively. 
Through experimental results, the proposed VLP technique is 
benchmarked against an existing wireless RSSI-based device-free 
localization approach, and was able to attain a median error 0.63m 
lower than the wireless technique.  

Index Terms— Indoor localization, Visible Light Positioning 
(VLP), Device Free Localization (DFL), Passive VLP, Artificial 
potential fields.  

I. INTRODUCTION

OBUST Location based services (LBS) for Smart Homes 
could enable personalized control of existing infrastructure 

including lighting, heating, air quality, and water 
temperature/flow [1, 2].  This could have a tremendous impact 
on wellbeing and assistive living as it would allow appliances 
to be controlled remotely.  It could also be used to detect 
emergencies or falls, and automatically contact appropriate 
response personnel.  This would thus enable the elderly to 
maintain higher autonomy, while providing the family the 
peace-of-mind of knowing that their elderly family members 
are safe and well.  

While cameras can provide a suitable solution for public 
environments, they may create privacy concerns in residential 
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areas.  It is desirable also that the solution would utilize readily 
available hardware to facilitate ubiquitous deployment.  

In the recent years, numerous wireless technology-based 
solutions have been proposed and reported in the literature. 
They utilized  Radio Tomographic Imaging (RTI) [3-6], energy 
minimization [7, 8], and machine learning approaches 
(including: Support Vector Machines (SVM) [9, 10], Random 
Forest [11], Hidden Markov Models (HMM) [12], and  Deep 
Learning  [13]) to mention a few.  These approaches are 
commonly implemented using either the received signal 
strength indicator (RSSI) metric, or the Wi-Fi channel state 
information (CSI) metric. CSI approaches have been shown to 
offer improved accuracy over RSSI approaches [14], however 
the metric is not readily available in current Wi-Fi equipment 
and relies on legacy drivers [15, 16].   

  A major disadvantage of the wireless approaches is their 
potential vulnerability  to malicious activities, which could lead 
to unlawful   acquirement of location-based information from 
unsuspecting users, thus creating serious privacy concerns [17]. 
Other popular approaches include the use of passive infrared 
sensors [18, 19], load cells [20], capacitive sensing [21], electric 
field sensing [22-24], or microphone arrays [25].  The main 
concern with existing approaches is that they either require a 
significant deployment/calibration effort, or that they are not 
yet available as standard commercial-off-the-shelf (COTS) 
equipment. This makes it significantly more difficult to provide 
ubiquitous deployment of the wireless approaches for end users 
in the foreseeable future. 

In recent years, light-emitting diode (LED) luminaires have 
become very popular light sources in indoor environments. In 
addition, they provide the opportunity to leverage the existing 
lighting infrastructure for a secondary purpose – indoor object 
localization (sensing). Visible light sensing applications can be 
classified into four groups: full-active: modified source and 
tagged target, passive-src: unmodified source and tagged target, 
passive-obj: modified source and untagged target, and full-
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passive: unmodified source and untagged target [26]. 
The focus of this paper is on implementing a full-passive 

localization system that does not require any modification of 
the lighting infrastructure to emit signals, and can localize tag-
free targets.  This offers unique challenges as full-passive 
systems either assume that a roaming entity fully absorbs the 
visible light as it occludes an area, or that the reflectance off the 
target follows a deterministic model.  Since the reflectance is 
affected by the color worn by the target, calibration 
requirements should be kept minimal to allow for multi-entity 
calibration. 

The CeilingSee approach reported in [27] employs a machine 
learning algorithm to infer an occupancy count. It can be 
technically categorized as full-passive since it utilizes 
commodity COTS luminaires having no communication 
functionalities, and can localize untagged targets. However, the 
proposed solution requires the existing luminaire driver boards 
to be modified to allow for the luminaires to act as light sensors. 

Another solution is reported in [28] where the luminaire 
drivers are modified to output an ID number. Each luminaire is 
co-located with a photodiode (PD). During every cycle, the 
proposed system checks whether each PD’s current values 

exceed a predefined threshold. This is used to detect whether a 
person is present at one of several predefined locations, or 
whether a door is open.  

The LocaLight [29] prototype employs 3 ceiling mounted 
COTS luminaires, and 5 PDs located on the floor, to detect the 
shadow of a passing person. However, this solution only 
identifies the presence of people (static or walking in a straight 
line) rather than offering target level localization/tracking.  

The novel device-free localization (DFL) adaptive multi-
target positioning (AMTP) algorithm is proposed in [30]. It 
identifies locations of shadowed PDs on the floor, and then 
clusters them into groups. The clusters are used to identify 
probable targets. The main problem associated with this 
approach is the limited real-world experimental verification. 
Most of the provided results are based solely on simulation. 
However, the simulation is performed using somewhat 
unrealistic assumptions and models; making the approach 
questionable for a real-world smart home deployment.  

The EyeLight solution [31] uses modulated ON-OFF keyed 
luminaires, co-located with PDs to detect targets crossing 
virtual light barriers, while the StarLight approach [32] employs 
custom designed lighting panels containing multiple LEDs with 

TABLE I 
FEATURE COMPARISON OF VISIBLE LIGHT POSITIONING SYSTEMS 

Algorithm Works without 
LED modulation

Does not require labelled 
training data 

Localizes and tracks 
passive targets 

Extra infrastructure 
Investment 

Experimental verification 

FieldLight Yes Yes Yes Low 2D localization + tracking 
Smart Wall Yes No Yes Low 2D localization + tracking 
CeilingSee Yes No No Low Occupancy Count 
Ibrahim et al No Unknown No Low 2D region detection 
LocaLight Yes Yes No Low 1D position estimates 
AMTP No Yes localizes Very High Blocking LOS attenuates PD 

signal 
EyeLight No Activity recognition 

requires labelled data 
Yes Medium 2D localization + tracking + 

activity recognition 
StarLight No PD placement requires 

room layout 
Yes High 2D localization + 3D skeleton 

reconstruction 
LiSense No Yes Skeleton 

reconstruction 
Very High 3D skeleton postures 

Fig. 1.  FieldLight algorithm overview. E represents a stream of illuminance values for each wall mounted node.  An exponentially weighted moving average 
(EWMA) scheme is used to create a long-term histogram (L) and a short-term histogram (S) for each node.  The Bhattacharyya distance is taken between each 
nodes L and S histogram (D) which is used to generate a set of weights (W) for localization.  The weights are used to calculate the net force on the system (Fk), 
which continuously updates a position estimate (Yk) until the system either converges, or reaches its maximum iteration threshold.  The final output position 
estimate for time t is then stored in X. 
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each LED being modulated separately. StarLight detects 
shadowed PDs by calculating the normalized frequency power 
change (for each PD-LED pair), considering them shadowed if 
they exceed a predefined threshold. A similar detection strategy 
is employed by LiSense in [33] that utilizes  several ceiling-
mounted modulated luminaires, and a multitude of floor-
mounted PDs, to perform 3D skeleton reconstruction.  

A simulation of visible light sensing is reported in [34], based 
on a multitude of luminaires collocated with PDs within an 
indoor environment. It proposes the use of either the likelihood-
ratio test, or mean spectral radius, as the system variance 
indicators to enable indoor localization. The approach looks 
promising. However, no results of real-world experiments are 
provided in the paper. Besides, the number of luminaires 
assumed in the simulation is quite high (i.e., exceeding the 
quantity that would normally be deployed in a real-world 
premise).    

In the Smart Wall solution [35], a target is localized by 
measuring the change it creates in the received signal strength 
(RSS) of the ambient light, at an array of PDs embedded in the 
wall. The system shows promising localization capability. 
However, it relies on extensive fingerprinting making it a less 
attractive option for real-world implementations. 

Spring-relaxation is an energy minimization technique that 
aims to reach an equilibrium state within a system of springs 
[36].  It is realized by attaching a set of artificial springs to the 
roaming target, with the other spring ends being attached to 
known static locations. The system then iteratively works to 
find the global minima, where the net force applied by the 
springs to the target is minimized. Traditionally, the approach 
has been utilized to locate a sensor within a wireless sensor 
network (WSN) [37]. More recently, the concept was applied to 
the low-power and low-data-rate close proximity wireless ad 
hoc network-based DFL system described in [7]. It has also 
been applied to localize a PD-based tag for an active VLP 

system [38]. A Similar energy minimization technique 
(originally employed for robot path planning) is Artificial 
Potential Fields [39, 40]. Instead of using a spring notation, it 
models the localization problem as a set of attractive and 
repulsive forces, emitted from known locations.  

Until now, the concept of potential fields have not been 
applied to visible light-based DFL. A particularly attractive 
benefit of DFL based on the potential fields approach is that 
potential fields are more computationally efficient than 
competing techniques such as particle filters [41, 42]. The 
approach also maintains the valuable benefit of a dynamically 
assigned weighting scheme, which allows for high localization 
accuracy across varying target speeds.      

A novel device-free localization approach employing visible 
light (VL-DFL) and artificial potential fields based localization 
is proposed in this paper, called FieldLight. The approach 
provides localization and tracking of targets without the need to 
modify the existing lighting infrastructure, and without the 
utilization of extensive labelled training data. It offers an 
overall superiority over the previous discussed techniques as 
demonstrated by the feature comparison given in Table I.   

The main contributions of this papers work are summarized 
as follows: 

1) A novel VL-DFL algorithm called FieldLight is
developed which can localize and track targets using a
set of potential fields attached to triggered
photodiodes. To the extent of the authors’ knowledge,
this is the first reported work that applies the artificial
potential fields approach to VL-DFL

2) A calibration procedure that does not require any
labelled training data is proposed for the developed
VL-DFL. This makes the system less labor intensive,
and easy to deploy.

3) The performance of FieldLight is evaluated by
implementing it in multiple full-scale environments.

Fig. 2.  FieldLight floorplan – (a) Foyer, (b) Corridor, (c) Laboratory.  The yellow blocks represent the overhead luminaires used for localization.  In each 
environment 14 nodes (red circles) were deployed which measured the changes in ambient light caused by a roaming entity and transmitted the information to a 
server for localization. 
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The impact of various parameters on the localization 
accuracy is investigated. 

4) The localization accuracy of FieldLight is
experimentally compared with an existing wireless
DFL algorithm in the same environment. As far as the
authors are aware, this is the first reported
performance comparison between wireless- and
visible light-based DFL techniques. FieldLight is
demonstrated to be more accurate than a state of the
art wireless DFL technique.

II. SYSTEM OVERVIEW

Assuming an environment where the ambient light level 
remains constant, the change in illuminance can be calculated 
as: 

Δ𝐸𝐸 =  𝐸𝐸𝑇𝑇1 −  𝐸𝐸𝑇𝑇0, (1) 
where 𝐸𝐸𝑇𝑇1  and 𝐸𝐸𝑇𝑇0 represent two consecutive illuminance 
samples in time, measured in lux. Since the PDs are mounted 
on the walls rather than on the floor (as in the existing 
approaches, e.g., [29, 33]), the shadowing influence caused by 
a roaming target does not completely occlude the attenuated 
node, as the node receives dispersed multipath light 
components from a number of luminaires available within the 
environment. It is hypothesized that even though each node 
receives illumination from multiple sources, the impact from 
the closest sources remains dominant when the field of view 
(FOV) remains unobstructed.  This suggests that if the 
shadowing target does not fully occlude the FOV, it would still 
have some proportional attenuation effect on the amount of 
light sensed by nearby PDs. To exploit this effect, FieldLight 
uses an energy minimization concept in the form of artificial 
potential fields, weighted by the attenuation seen at each 
receiving node. All symbols used in this manuscript to outline 
the FieldLight approach are included in Table II.  Since 
FieldLight assumes that background ambient light level 
remains constant, care must be taken to either ensure the 
illumination is predominantly made up of artificial light sources 
with a constant output, or the system must be calibrated to 
account for the changes in sunlight over the course of the day. 
In this paper experiments were conducted during the early 
evening when sunlight was minimal.  Another consideration is 
the reflectance properties of the roaming targets attire. 
FieldLight was trained using a subject wearing dark attire to 
minimize reflectance during the offline training phase.  

Let 𝒩𝒩 light sensing nodes be deployed around the perimeter 
of the monitored area, within an indoor environment (Fig. 1).  

Each node contains a PD, wall mounted at 1.4 m above the 
ground, to ensure that no furniture occludes the line-of-sight 
path between the luminaires and nodes.  The sensing nodes 
measure the illuminance of the visible light and employ their 
onboard wireless modules to relay the information to a 
centralized server. The server collects the illuminance values 
from all PDs, detects which ones have been shadowed, and uses 
this information to localize a roaming target.  

The FieldLight system tracks a roaming target based on its 
relative position to known wall mounted PDs (shown as the red 
circles in Fig. 2). The target does not carry any device (tag). Its 

presence is determined, and the target is located based on the 
visible light attenuation it causes to nearby nodes.  A simplified 
side-view of the FieldLight setup is shown in Fig. 3. 

The system implementing FieldLight operates in two stages. 
During the initial (offline) phase, the system collects two sets 
of readings. The first sample set consists of illuminance 
readings from all PDs when no target is present within the 
environment.  The second sample set involves the target 
walking around the perimeter of the environment (as close as 
practically possible), ensuring that each PD is passed by. The 
system then calculates the maximum attenuation observed by 

TABLE II 
FIELDLIGHT SYMBOLS 

Parameter Description 

𝐸𝐸 Illuminance 

𝛽𝛽 Maximum attenuation constant 

𝔻𝔻  Illuminance dataset 

𝕙𝕙  Illuminance histogram 

𝛼𝛼 Smoothing factor 

ℐ Indication vector 

𝕃𝕃  Illuminance histogram – long-term average 

𝕊𝕊  Illuminance histogram – short-term average 

𝒟𝒟 Histogram distance between 𝕃𝕃 and 𝕊𝕊 
𝒸𝒸 ln(0) constant 

𝒹𝒹 Euclidean distance 

𝒳𝒳 Position estimate from previous timestep 

𝓃𝓃 Wall mounted node containing a photodiode 

𝒲𝒲  Thresholding weight set 

𝛾𝛾 Affected link threshold  
ℰ Geometric travel threshold 

𝕎𝕎   Final weight set 

𝒦𝒦 Maximum iteration constant 

ℱ�⃗ Net force 

𝜏𝜏 Spring stepsize constant 

𝒰𝒰 Spring energy threshold 

 

Fig. 3.  Side-view of a person partially occluding the field of view of a wall 
mounted node.   
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each PD as a difference between the readings of the two sets. 
This results in the maximum reference threshold for each PD. 

During the second (online) phase, the system uses the current 
illuminance sample to check which receiving nodes experience 
an attenuation that exceeds the established, predefined 
threshold.  These nodes are then assigned as virtual field anchor 
points and they receive a weight based on the ratio between 
their current attenuation values, and the maximum attenuation 
calculated during the initial offline phase. The reasoning for this 
is that if a PD shows a similar level of attenuation to the offline 
maximum, it is likely that the target is within close proximity to 
the node.  The iterative potential fields approach then uses each 
anchor with its associated weight, alongside the previous 
position estimate to converge on a new predicted location.  This 
is done by assigning an attractive force to each of the affected 
nodes. An example of this is illustrated in Fig. 2(b), where the 
blue arrows represent the attractive forces. 

III. ALGORITHM

As outlined in Section II, FieldLight requires the offline 
phase to determine the maximum attenuation threshold for each 
PD, followed by the online phase where a static or moving 
target is iteratively localized. 

A. Offline Phase
To find the maximum attenuation value for each receiving

node, the difference between the illuminance of the visible light 
in an ambient non-blocked and blocked (shadowed) conditions 
is calculated as: 

𝛽𝛽𝓃𝓃 =  max
𝓃𝓃

𝔻𝔻0 −min
𝓃𝓃

𝔻𝔻1 , (2) 

where 𝛽𝛽𝓃𝓃 is the scalar attenuation value at the 𝓃𝓃th receiving 
node, 𝔻𝔻0 is the offline illuminance dataset with no target within 
the environment, and 𝔻𝔻1 is the offline illuminance  dataset 
containing a target roaming around the perimeter of the indoor 
site. The 𝔻𝔻1 dataset contains illuminance values recorded at the 
light sensors when a target is walking along the perimeter of the 
environment. Its minima value is associated with the target 
being within close proximity to a given node.  This is achieved 

by taking the minimum value from the set. It is the largest 
attenuation experienced for the route, which is assumed to 
correlate with an entity passing nearby the node. 

B. Online Phase
The FieldLight approach is based on the assumption that a

roaming (or static) target prevents a portion of the ambient light 
from reaching nearby PDs placed on the walls in some fixed 
locations. To be able to calculate a target position from a set of 
raw 𝐸𝐸  values (produced by PDs), an appropriate information 
feature (or metric) needs to be carefully chosen.  It should be 
resilient to both varying environmental conditions, and random 
effects of a roaming entity. FieldLight utilizes histogram 
distances as it’s metric. In the FieldLight approach, a set of 
long-term histograms (𝕃𝕃), that represent the background state 
of 𝐸𝐸  at the PDs; and a set of short-term histograms (𝕊𝕊), which 
represent the current state are defined. The difference between 
the 𝕃𝕃 and 𝕊𝕊 histograms is the feature that is used as a 
representation of the target’s presence. The number of bins used 
by each histogram is equivalent to the resolution of the PD-
based sensing node. Assuming that the output signal of each PD 
is digitized into 1000 states, to represent 𝐸𝐸  between 1-1000 lux, 
the corresponding value range is [1,𝒵𝒵], where 𝒵𝒵 = 1000.   Each 
histogram is therefore constructed with 𝒵𝒵 bins. The value 
contained in each histogram bin is based on the frequency of its 
respective illuminance value occurring within a stream of data. 
For example, a node recording an illuminance value of 319 lux 
will increase the value of the 319th bin, representing an 
increased occurrence rate of the 319 lux value.  These values 
are then normalized to a frequency between 0-1 and weighted 
based on their time-of-arrival. An example of the histogram is 
shown in Fig. 4. When a person (or some other mobile object) 
passes near a PD, the 𝕊𝕊 histogram quickly diverges from its 
steady-state values.  Since the 𝕃𝕃 histogram diverges slower (as 
shown in Fig. 4) the difference between the two can be used as 
a feature to detect an object’s presence. To facilitate the use of 
the histogram distance feature, two histogram sets are created 
using an exponentially weighted moving average (EWMA) 
scheme using: 

𝕙𝕙𝓃𝓃𝑡𝑡 = (1 − 𝛼𝛼)𝕙𝕙𝓃𝓃𝑡𝑡−1 + 𝛼𝛼ℐ̂(𝐸𝐸𝓃𝓃𝑡𝑡 ), (3) 
where: 𝕙𝕙𝓃𝓃𝑡𝑡  is a histogram (with 𝒵𝒵 bins) for node 𝓃𝓃 at the time 
𝑡𝑡, with every value of the histogram being within (∈[0,1]); 𝛼𝛼 is 
a constant smoothing factor (∈[0,1]); ℐ̂ is an indication vector 
of the length 𝒵𝒵 that returns 1 for the index given by illuminance 
value 𝐸𝐸𝓃𝓃𝑡𝑡 , and 0 at every other position. 

Bhattacharyya distance [43] is chosen as FieldLight’s 
histogram distance metric as it can detect when the compared 
histograms have different standard deviations, even if their 
means are similar. This increases the sensitivity when a person 
(or object) is located near the edge of a PD’s FOV thus causing 
very small changes to the node’s received 𝐸𝐸  values.  In existing 
literature, Kernel and Kullback–Leibler distances have been 
used for histogram-based wireless localization [7, 44].  A recent 
study on various histogram distances showed that 
Bhattacharyya and Chi Squared distances perform well when 
used for a spring-relaxation based wireless approach [34]. 
Bhattacharyya distance provided the highest accuracy across all 
environments (e.g. 0.68m median error in the corridor 
environment vs 1.33m for Kernel distance and 2.69m for the 

Fig. 4.  The effect of a moving persons presence on both the Short-term (𝕊𝕊) 
and Long-term histograms (𝕃𝕃).    
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Kullback-Leibler distance).  It was therefore chosen as the 
distance metric.   

    By using (3) to formulate each histogram in 𝕃𝕃  and 𝕊𝕊 sets, 
while ensuring 𝛼𝛼ℒ < 𝛼𝛼𝒮𝒮,  the Bhattacharyya distance between 
𝕃𝕃 and 𝕊𝕊 can be defined as: 

𝒟𝒟𝓃𝓃 =  − ln �𝒸𝒸 + ��𝕃𝕃𝓃𝓃 ∙ 𝕊𝕊𝓃𝓃� , (4) 
where: 𝕃𝕃𝓃𝓃 and 𝕊𝕊𝓃𝓃 represent the long-term and short-term 
histograms for node 𝓃𝓃, created using (3), respectively; ∙ is the 
dot product, the small constant term 𝒸𝒸 is added to ensure that no 
ln(0) error occurs if no bin values overlap between the 𝕃𝕃 and 𝕊𝕊 
histograms. 

After a distance metric has been defined, thus enabling 
FieldLight to detect changes occurring around the nodes due to 
object movement, a selection criterion is established to identify 
and pick only the strongly impacted nodes, and to weigh them 
accordingly. This is achieved by using a thresholding process, 
utilizing: the Bhattacharyya distance for each node (𝒟𝒟1:𝒩𝒩), and 
𝒹𝒹(𝒳𝒳,𝓃𝓃), where 𝒹𝒹(𝒳𝒳,𝓃𝓃) is defined as the Euclidean distance 
between the previous position estimate 𝒳𝒳, and the node 𝓃𝓃. 
When FieldLight is first turned on, 𝒳𝒳 is initialized to the 
coordinate of the center of the entry doorway. Through the 
thresholding, FieldLight collects two weights for each receiving 
node.  

The first weight is defined by: 

𝒲𝒲𝓃𝓃
1 = �𝒟𝒟𝓃𝓃,

𝒟𝒟𝓃𝓃 >  𝛾𝛾
and 𝒹𝒹(𝒳𝒳,𝓃𝓃) < ℰ

0, otherwise
, (5) 

where: 𝛾𝛾 and ℰ are predefined thresholding constants, with 𝛾𝛾 
ensuring that only strongly affected links are selected, while ℰ 
provides a geometric restriction on the maximum level of target 
movement allowed between the chosen time steps.  

 The second weight uses the same thresholding condition. 
However, it stores the current attenuation as a proportion of the 
offline calibration value  𝛽𝛽𝓃𝓃: 

𝒲𝒲𝓃𝓃
2 = �

|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝕃𝕃𝓃𝓃) −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝕊𝕊𝓃𝓃)|
𝛽𝛽𝓃𝓃

,
𝒟𝒟𝓃𝓃 >  𝛾𝛾

and 𝒹𝒹(𝒳𝒳,𝓃𝓃) < ℰ
0, otherwise

, (6) 

where the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚() function returns the modal value (i.e. the bin 
index with the largest value) of a given histogram.  

After the weights are calculated for all receiving nodes, the 
two weight sets are combined into a single set as: 

𝕎𝕎 =  (𝒲𝒲1∘𝒲𝒲2)−min(𝒲𝒲1∘𝒲𝒲2)
max(𝒲𝒲1∘𝒲𝒲2)−min(𝒲𝒲1∘𝒲𝒲2)

 , (7) 

where ∘ is the Hadamard product. This is performed to 
normalize the weight sets since 𝒲𝒲1 and 𝒲𝒲2 have different 
ranges, and maximum values. 

After the histogram distances and weights are calculated for 
each receiving node, FieldLight implements an iterative 
potential fields procedure to both localize and track a moving 
target. The maximum number of iterations per the time step is 
defined in advance by the constant 𝒦𝒦.  

In a single iteration, the FieldLight computes an attractive 
force between the previous target position estimate, and each 
affected node. The net force within the system is calculated by 
summing the forces across the overlapping potential fields 
using: 

ℱ𝓀𝓀�����⃗ =  𝜏𝜏�𝒳𝒳��⃗ 𝓃𝓃𝕎𝕎𝓃𝓃

𝒩𝒩

𝓃𝓃=1

, (8) 

where: 𝓀𝓀 represents a single iteration (𝓀𝓀 iterates from 0:𝒦𝒦); 
𝒳𝒳��⃗ 𝓃𝓃 is a vector between the previous position estimate 𝒴𝒴𝓀𝓀−1 and 
the position of the 𝓃𝓃th receiving node; 𝜏𝜏 is a scaling constant. 
 In each iteration, the current position estimate is given using: 

𝒴𝒴𝓀𝓀 = �
𝒳𝒳, 𝓀𝓀 = 0

𝒴𝒴𝓀𝓀−1 + ℱ𝓀𝓀�����⃗ , 𝓀𝓀 > 0 , (9) 

where 𝒳𝒳 is the position estimate from the previous time step. 
The final position estimate for the current time step can then be 
found as: 

𝒳𝒳 = �𝒴𝒴𝓀𝓀, �ℱ𝓀𝓀�����⃗ � < 𝒰𝒰 and 𝓀𝓀 < 𝒦𝒦
𝒴𝒴𝒦𝒦 , 𝓀𝓀 = 𝒦𝒦

, (10) 

where 𝒰𝒰 is the efficiency threshold that is used to terminate the 
potential fields algorithm early if the field equilibrium has 
already been reached (i.e., the net force on the system is small 
enough).   

IV. PARAMETER TUNING

For FieldLight to perform adequately, its parameter values 
need to be carefully tuned to optimize the localization accuracy. 

TABLE III 
FIELDLIGHT PARAMETERS 

Parameter Description Value 

𝛼𝛼ℒ Smoothing Factor – Long-term 0.03 

𝛼𝛼𝒮𝒮 Smoothing Factor – Short-term 0.7 

𝒸𝒸 ln(0) Factor 0.00001 

𝛾𝛾𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 Affected Link Threshold 0.7

𝛾𝛾𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹 Affected Link Threshold 1.05 

𝛾𝛾𝐿𝐿𝐿𝐿𝐿𝐿𝐹𝐹𝐹𝐹𝐿𝐿𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹 Affected Link Threshold 0.65 

ℰ Geometric Travel Threshold  5 

𝒦𝒦 Maximum Iteration Constant 6 

𝜏𝜏 Stepsize Constant 0.06 

𝒰𝒰 Energy Threshold 0.05 

Fig. 5.  Impact of affected link threshold, 𝛾𝛾, on FieldLight’s performance 
(shown as median localization error). Laboratory environment.    
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In this manuscript all localization errors are calculated by taking 
the Euclidean distance between the ground truth and estimated 
positions.  Fig. 5 and Fig. 6 show how varying parameter values 
affect the overall localization accuracy within the laboratory 
environment (Fig. 2(c)/Fig. 7). The results for the laboratory 
environment comparison is given here since the LED 
luminaires were utilized in it for illumination – the same as in 
most visible light positioning (VLP) approaches presented in 
the literature.  

The parameters shown in Fig. 5 and Fig. 6 were initialized to 
the values used for wireless histogram localization in [7, 44, 
45]. Each parameter was then manually tuned while keeping all 
others at their initial value. A recorded illuminance dataset from 
each environment was used to ascertain which of the parameter 
changes produced the largest positive influence on the overall 
localization error.  The parameter with the largest positive 
change was then re-initialized to the new tuned value. The 
manual tuning was then repeated for all other parameters, fixing 

Fig. 7.  FieldLight Laboratory environment. The fluorescent tubes shown were 
only turned on to produce a clear image. During experiments, only the LED 
luminaires were turned on. 

Nodes

LED Luminaires

Fig. 8.  An example of FieldLights iterative convergence approach, for a target 
that has travelled a significant distance since the previous timestep.  The 
‘Distance Moved’ represents how much the output position estimate is updated 
for each iteration of FieldLight. 
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Fig. 6.  The effect of varying parameter values on FieldLight’s performance (shown as median localization error) for the Laboratory environment. 
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one parameter to its new optimum value each round.  This was 
repeated until all parameters had been tuned.   

  After empirically tuning the parameter values for each 
environment, it was discovered that most parameters were 
environmentally agnostic.  This means that though the Affected 
link threshold (𝛾𝛾) was needed to be tuned for each environment, 
the other parameter values could be kept constant, which would 
minimize the required user input during the calibration process. 
As it could be seen in Fig. 6, there is a wide “optimum” range 
within which the parameters provide adequate performance. 
For example, 𝛼𝛼ℒ has an acceptable range between 0.03-0.05, 𝛼𝛼𝒮𝒮 
- between 0.6-0.75, 𝜏𝜏 - between 0.05-0.09, and 𝒰𝒰 < 0.06.
Fig. 8 shows an example of the distance that the target position
estimate is updated by, with each iteration. For example, if
FieldLight has updated its position estimate 4 times within the
current timestep (iteration index = 4), the distance moved
represents 𝒴𝒴4 −  𝒴𝒴3.  As shown in Fig. 8, the distance moved
decreases with each iteration, as FieldLight converges towards
its final position estimate for the current timestep. The

experiment was based on the extreme case where the previous 
position estimate was far away from the current location. The 
algorithm did not finish converging after 50 iterations. At the 
same time, by using 6 as a value of 𝒦𝒦 (Table III) and 0.07m as 
an average iteration step, while also employing the 10Hz 𝐸𝐸 
sample rate, the system can accommodate a maximum target 
roaming speed of 4.2m/s. Since this is already significantly 
higher than the average adult walking speed (1.4m/s), the full 
convergence is not actually required. Besides, achieving the full 
convergence would introduce an unnecessary computational 
burden. This shows that careful considerations should be 
undertaken when deploying the FieldLight system, as the 
required maximum iteration number is intrinsically linked to 
both the desired performance level, and the overall network 
speed.  

V. EXPERIMENTAL SETUP AND RESULTS

The FieldLight hardware consists of 14 wall mounted custom 
boards that were designed to take ongoing readings of the 
perceived light level at a 10Hz sampling rate, and then 
wirelessly transmit these reading to the dedicated processing 
server, consisting of a laptop with an intel i7 processor, running 
windows 10 [35]. Preliminary tests performed with the nodes 
mounted within a range of heights of 0.75m-1.4m show no 
noticeable impact on the localization accuracy.  The sensors 
were eventually mounted at 1.4m high to ensure that they were 
above the room furniture, to avoid occlusions. 

Since the nodes are detecting changes in ambient light, they 
do not need to be placed relative to the light bulbs. However, 
careful placement is required to ensure coverage.  In our 
experiments, we discovered that the sensors register a measured 
change in RSS level for approximately 3m-4m distance from 
the wall itself.  This means that larger rooms will require either 
ceiling mounted, or floor mounted sensors (or fusion with 
another technology like wireless) to extend the coverage to the 
center of the room.   

The custom boards (receiving nodes) consist of the Renesas 
Electronics ISL29023 Digital Ambient Light Sensor connected 
to an ESP 8266 microcontroller sampling the PD output, and 
sending the data to the processing server over Wi-Fi. The 
ISL29023 offers the onboard 50/60Hz flicker rejection and UV 
rejection. It is also very affordable, thus facilitating the potential 
for ubiquitous system adoption within smart home 
environments (the prototype cost remains below USD 5 per 
sensor node). It is envisioned that the sensors will be embedded 
within the walls, operating on mains power with the power 
cables running behind the wall panels like regular power 
conduits.  Since only the photodiode will be visible on the wall, 
this will not be conspicuous, and will not have an unfavorable 
effect on an environments aesthetics. Once VLC adoption 
becomes widespread, many smart appliances will be equipped 
with VLC receivers (e.g. smart TV/fridge).  Since these 
appliances are commonly positioned against walls and run off 
the mains power, they could potentially be used to provide a 
secondary localization benefit, without requiring the sensors to 
be embedded within the walls at those locations. 

The custom boards, were mounted on the walls in 3 
experimental environments (Fig. 2): a 7m x 8m foyer (Fig. 9) 

Fig. 9.  FieldLight Foyer environment 

Nodes

Fig. 10.  FieldLight Corridor environment 
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with 1.4m node spacing, a 4m x 7m corridor (Fig. 10) with 1m 
node spacing, and a 4.8m x 9.6m laboratory (Fig. 7) with 1.2m 
node spacing. All experiments were undertaken in the evening 
so that the overhead luminaires provided all the illumination 
within each test environment. The corridor and foyer employed 
fluorescent tubes for illumination while the laboratory utilized 
REX10CDLDIM LED luminaires.  The LED luminaires had a 
rated power of 13W, beam angle of 90°, and were driven by a 
constant current of 350mA. The fluorescent lights seen in Fig. 
7 were not turned on during the experiments at the laboratory.   

To calibrate the system during the offline phase, a 1.84m tall 
subject moved around the perimeter of each site (as close as 
possible to the walls, while navigating around the furniture). 
The 𝐸𝐸  values were collected from each receiving node at a 
10Hz rate. The parameters of FieldLight were optimized using 
empirical tuning, and the employed final values are given in 
Table III.   

During the online phase, the target walked along a marked 
path through each of the environments in a heel-toe fashion at 
0.78m/s, with the steps being synchronized to a metronome. 
Illuminance values were recorded of the subject walking 3 
times in each direction along the marked path, which was 
combined to form a single dataset. This ensured that both the 
step size and walking speed remained constant, and the ground 
truth location was known at each time step.  One of the trials 
showing the ground truth path and estimated paths for each 
environment is shown in Fig. 12, Fig. 13 and Fig. 14. In the 
corridor, foyer, and laboratory environments, FieldLight 
achieved median errors of 0.68m, 1.20m, and 0.84m 
respectively. The cumulative distribution function (CDF) of the 
localization error for all the three test locations are shown in 
Fig. 11, and the median/95th percentile errors are shown in 
Table IV.  Interestingly, the performance in the clear corridor 
was similar (within 0.2m error difference) to the cluttered 
laboratory for the first two error quartiles (Fig. 11). This 
suggests that a cluttered environment has stronger negative 
influence in areas where localization performance is already 
poor. Another key observation was that the localization ability 
in the foyer was significantly inferior to that in the other two 
environments. This was mainly caused by the larger dimension 
of the foyer. In both the corridor and laboratory environments, 
the walking subject always remains within 3m of a PD. 

However, in the foyer, the target walking through the middle of 
the room was over 3.5m away from the nearest PD. The impact 
of the traversing person on the RSS was extremely low at this 
distance creating dead spots where the node is not capable to 

Fig. 11.  FieldLight localization performance in all experimental environments 
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Fig. 12.  Ground Truth path and FieldLight position estimates from a single 
trial in the Foyer environment 
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Fig. 13.  Ground Truth path and FieldLight position estimates from a single 
trial in the Corridor 
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Fig. 14.  Ground Truth path and FieldLight position estimates from a single 
trial in the Laboratory environment 
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pick up the motion. This resulted in the erroneous output 
estimates.    

The effect of reducing the number of receiving nodes 
employed for the localization is shown in Fig. 15.  As expected, 
the localization accuracy decreases with fewer nodes.  

To demonstrate how the FieldLight compares to the existing 
wireless-based approaches, that can be implemented using 
modern COTS equipment, it was benchmarked against 
SpringLoc [7]. SpringLoc has been proven to be one of the most 
accurate approaches among the DFL techniques that use the 
wireless RSSI metric. The laboratory environment (Fig. 7) was 
chosen for the comparison. SpringLoc uses a spring relaxation 
based DFL approach. It employs the Zigbee received signal 
strength indicator (RSSI) metric and creates virtual anchors 
within the environment, rather than employing the nodes 
themselves as anchors. The same number of nodes (14 nodes, 
each placed on the walls at a height of 1.4 m) were utilized for 
both the approaches. FieldLight used the PD-based sensors 
whereas SpringLoc utilized Texas Instrument CC2530 Zigbee 
radios.  

The visible light based FieldLight surpassed the localization 
accuracy of the wireless SpringLoc approach as shown in Fig. 
16 and Table V, when compared to the ground truth path. 
However, at the 98th-100th bands, SpringLoc approach 
displayed higher accuracy. This was because the wireless 
signals can operate in non-line of sight scenario, whereas the 
visible light-based nodes rely on the line of sight light paths. 
This means that in some cases FieldLight could suffer from a 
few large localization errors. For example, consider the 
entrance to the work area shown in the top right corner of Fig. 
2(c). The ambient light level in this region is lower as there are 
significant furniture items obstructing the light propagation. 
When traversing this region, a roaming entity had a negligible 
impact on the nearby PDs, which contributed to several large 
localization errors in small areas, creating dead spots. The 
impact of this is shown in the top right corner of Fig. 14, as the 
target was temporarily lost as it passed in front of the occluding 
office furniture. 

VI. CONCLUSION AND FUTURE WORKS

Existing VLP approaches require either a tagged subject, 
extensive infrastructure modifications, or significant offline 
training effort.  FieldLight removes these limitations, while still 
providing at least a 1.2m median localization accuracy within 
multiple indoor environments.  The research confirms that 
practical device-free VLP systems are plausible. However, 
further work is to be done to expand FieldLight to enable 
multiple targets tracking. FieldLights potential fields approach 
is not computationally complex, and the current factor limiting 
the maximum target speed is the 10Hz sample rate.  If the 
system is required to track faster targets, either the sampling 
rate can be increased, at the cost of energy efficiency, or the 
stepsize constant can be increased, at the cost of low speed 
accuracy.  Furthermore, FieldLight assumes there is a linear 
relationship between the portion of a nodes FOV that is affected 
by a target, and the total level of attenuation perceived.  If more 
precise models are developed to accurately model this 
relationship, the overall localization accuracy could be 
improved.  FieldLight was calibrated while the target wore a 
black t-shirt. While the system remains functional for multiple 
apparel colors, the performance would degrade. This could be 
addressed by utilizing multiple training models, for multiple 
colored apparels. Finally, FieldLight’s performance degrades 
because of the dead spots caused by the subject traversing 
outside the sensing region of nearby nodes. Earlier work has 
reported that roof mounted nodes can measure the change in 

TABLE IV 
FIELDLIGHT LOCALIZATION PERFORMANCE 

Environment Standard 
Deviation 

(m) 

Minimum 
Error (m) 

Median 
Error (m)

95th  
Percentile 
Error (m) 

Maximum 
Error (m) 

Foyer 1.40 0.04 1.20 1.65 8.83 
Corridor 0.43 0.02 0.68 1.77 2.38 

Laboratory 0.91 0.01 0.84 2.25 5.41 

Fig. 15.  Impact of number of light sensors on FieldLight’s performance 
(shown as median localization error) in Laboratory environment.    
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Fig. 16.  FieldLight vs SpringLoc in the Laboratory environment 
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TABLE V 
FIELDLIGHT VS SPRINGLOC PERFORMANCE 

Algorithm Standard 
Deviation 

(m) 

Minimum 
Error (m) 

Median 
Error 
(m) 

95th  
Percentile 
Error (m) 

Maximum 
Error (m) 

 FieldLight 0.91 0.01 0.84 2.25 5.41 
SpringLoc 1.09 0.04 1.47 3.57 4.86 
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ground reflection to detect targets [27].  This suggests that 
careful node placement along both the roof and walls can 
potentially be used to ensure adequate coverage and optimize 
overall localization accuracy. Another option could involve 
fusing the FieldLight with a wireless DFL system to help 
remove the dead spots, as supported by the 98th-100th bands of 
SpringLoc, though more comparative tests are required to 
quantify the benefit a fused system could bring.  Furthermore, 
the RSSI metric used by SpringLoc is a coarse metric when 
compared to Wi-Fi CSI.  If CSI ever became readily accessible 
in COTS equipment, a fused system with CSI and visible light 
may bring further benefits.  Finally, FieldLight uses potential 
fields as it is a computationally efficient method of providing 
localization, when compared to competing particle filters. 
However, potential fields approaches could potentially 
converge at incorrect local minimum, if the deployment area 
was large.  It would be interesting to try detect these cases, and 
employ a backup algorithm (such as a particle filter) to ensure 
correct convergence.  
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Conclusion 

This work has resulted in 2 peer reviewed conference papers and 5 Journal Articles (4 of which 

have already been published in Q1 journals). Though each individual chapter contained within 

this thesis clearly outlines the novelty of the work done and the original contributions, a 

summary of the novel research contributions is provided below: 

• Investigated the impact of Wi-Fi and microwave interference on the RSSI values of a

co-located ZigBee network

• Experimental results from multiple full-scale visible light/ZigBee Active/DFL IPS

solutions in real-world settings.

• A novel active localization and tracking algorithm which fused ZigBee RSSI and

Visible light RSS. This is the first reported experimental work that utilizes a fusion of

wireless and visible light for indoor localization.

• The first reported experimental implementation of all 3 major RSSI-Based wireless

DFL techniques, in multiple realistic environments, utilizing varying walking

trajectories, and providing an apple-to-apple comparison of the techniques.

• A novel RSSI-based wireless DFL solution using histogram distance and adaptive

spring relaxation which:

o is robust to varying walking trajectories,

o maintains its performance under low node densities,

o requires minimal calibration and

o has low computational overhead.
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This is the first reported work that used the concept of spring relaxation in the context 

of wireless DFL. 

• The first reported work that investigates the impact of the histogram distance metrics

on the localization performance on wireless-based DFL systems and finds a better

suited replacement of the commonly used distance metric.

• A novel visible light-based DFL solution that does not require luminaire modifications

or extensive offline measurements. This is the first reported work that utilizes the

concept of potential fields-based energy minimization for visible light-based DFL

solution.

Over the course of this project, we have collected numerous datasets of both fine-grained 

fingerprint data, and live data. We intend to upload both RF RSSI and Visible Light RSS 

datasets to the UCI Machine Learning Repository.  This will allow researchers to test new 

localization algorithms in real-world environments, and enable them to make fair comparisons 

between different IPS approaches. This will also assist in future machine learning efforts.  
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Future Direction 

In both our wireless and visible light implementations, the multiple target problem is left for 

future work.  Recent literature has shown that, if the total number of individuals present is 

known, RSSI-based approaches can use background subtraction techniques to localize multiple 

targets.  Since both SpringLoc and FieldLight have low runtime complexity, a separate spring 

network could be defined for each moving target.  To enable this, further work needs to be 

done to provide both an accurate target count, and a way of using successive cancelation 

techniques to separate the influence of each entity from the raw values. 

 Future work also needs to be done to quantify how the influence of each target affects the 

whole network, when multiple targets converge on a common location.  The developed 

algorithms also assume that the coordinates of the luminaires/static nodes are known.  Future 

work could involve improving the calibration procedure to allow for the sensors to perform 

self-localization, before localizing the roaming targets. 

 Furthermore, the algorithms do not utilize the target’s assumed gait.  Their localization 

accuracy could potentially be improved if trajectory and gait information was used to update 

the previous state estimate, before calculating the current estimate.  To assist with this, work 

should be done to infer a targets height, since this has a direct correlation with a target’s stride 

length. This could potentially be achieved through using multiple sensor networks at various 

heights, which has successfully been used for IPS-based fall detection in existing literature.  

The proposed algorithms also assume that the subjects maintain a speed consistent with average 

human walking pace.  Future work could involve expanding the algorithms to allow for higher 

mobility, which could allow the system to work for autonomous indoor vehicles.   
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Work could also be done to develop open source Wi-Fi drivers that expose the CSI metric, 

reintroducing the metric to modern COTS equipment, and providing an avenue for Smart Home 

vendor support.   

Further works can also utilize classification and pattern recognition.  If data could be 

collected from multiple Smart Home wireless DFL deployments, with known target ground

truths, new RSS features and behaviours could be identified, beyond the assumed shadowing 

effect. This could help to identify behaviours such as targets opening doors or sitting on 

chairs, which could potentially be generalised as a known feature.  

Further work also needs to be done on interference mitigation and metric integrity, when Wi-

Fi RSSI is used over ZigBee RSSI. 

 FieldLight proved that VLP based DFL is plausible with minimal changes made to the existing 

infrastructure.  Since it is costly to replace all existing lighting infrastructure with VLC enabled 

luminaires, future work would could include deploying FieldLight within regions containing 

traditional lighting, alongside another VLP approach deployed within VLC capable regions.  

This would help extend the overall VLP coverage and reduce blindspots.  Another option is to 

fuse FieldLight with wireless DFL, in a similar fashion to Falcon’s implementation.  This 

would help remove FieldLight’s blind spots, caused by it traversing too far from the nearest 

VLP node.  

FieldLight currently models all known affected photodiodes as attractive potential fields.  The 

approach could potentially be improved by using all known unaffected photodiodes as 

repulsive potential fields, which would provide another data stream for localization purposes.  

FieldLight also assumes that there is a simple linear relationship between the shadowing that 

the target causes to a photodiodes RSS, and the separation distance between them.  More work 

should be done to create an accurate model of a target’s influence on a photodiode’s RSS, given 
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known separation distances, and stationary illumination sources.  Future work could also 

investigate how different fabrics and colours influences the accuracy of localization, and then 

develop mitigation strategies to calibrate accordingly.   

As VLC technology becomes prevalent in Smart Homes, VLC receivers will likely either be 

embedded into future end user devices e.g. laptops, or within the environment, with a secondary 

wireless uplink.  Work should be done to ascertain how various embedded photodiode 

orientations affect the accuracy of a visible light based DFL implementation.  

Furthermore, as machine learning approaches become readily available on low power 

embedded platforms such as the NVidia Jetson, work can be undertaken to provide pre-trained 

abstracted neural networks that are transferable to standard end users.  This will help minimize 

any required end user calibration procedure, while still allowing them to customise the 

deployment for their specific Smart Home.   

The developed algorithm approaches were largely based on either spring-relaxation, or 

adaptive potential fields.  These algorithms are known to have low complexity; however, they 

have the potential to converge on incorrect local minima.  Further work needs to be done within 

large open plan indoor spaces to ensure, the algorithms still correctly converge when there is a 

significant distance between the target and the nearest node.  Following on from this, work 

needs to be done to assess the stability of these algorithms, and to measure the overall energy 

consumption that these techniques use.   

Future work could also look into standardizing DFL testing, as current standards only explicitly 

mention active tracking solutions.   
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A common metric used to implement IPS using wireless 
sensors is the Received Signal Strength Indicator (RSSI) due to 
its ready availability in off the shelf 802.15.4 [10] and Wi-Fi [11] 
equipment.  This paper focusses on ZigBee which is more 
suitable for long term, battery operated, robotic solutions as it 
offers mesh networking and better power consumption than Wi-
Fi [12].  For 802.15.4 ZigBee radios, RSSI is implemented as an 
8-bit register. The register value is often scaled/offset to give a
measured value in dBm. There are two types of RSSI
measurement.  The first type of measurement is used to estimate
the ambient power within the channel itself (also known as an
ED Scan).  The second type of measurement is used to estimate
the Received Signal Strength (RSS) of a received packet [10].
When this paper refers to RSSI, we are referring to the second
type of measurement as this is most commonly used for
localization purposes.

This paper presents experimental results on the effects of 
Wi-Fi and microwave oven interference on the magnitude of 
RSSI values, packet loss and corrupted packets within an 
802.15.4 TX-RX link. Since packet RSSI has become a popular 
metric to use for localization, especially IPS, it is important to 
know whether it remains accurate and therefore usable in the 
presence of common interference sources.  The impact of 
interference on ZigBee packet loss and throughput is well 
understood and has been extensively investigated in literature 
[13-17]. However the impact on the accuracy of packet RSSI 
values has not been investigated very thoroughly. Most studies 
focus on the impact of interference on ED scan RSSI values. The 
handful of studies that investigates the impact on packet RSSI 
are limited to low Wi-Fi data rates [18] that is impractical  in 
today’s wireless networks or TX-RX separation that is more in 
line with body area networks (BAN) [14] and not robotics and 
other typical application.  

II. BACKGROUND

An IPS using RSSI can be implemented through either 
Device-free Passive (DFP) [19] or Active localization [20, 21]. 
DFP works by creating a dense network of “linked pairs” as 

2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)

Abstract— Indoor positioning systems (IPS) have gained a lot 
of traction within the research community in recent years. 
Received Signal Strength Indicator (RSSI) of wireless networks 
are the most commonly used metric for indoor localization. The 
objective of this paper is to see how Wi-Fi interferers of different 
data rates affect the packet RSSI values of TX-RX links in a 
ZigBee based indoor localization system. The factors we examine 
also include the rate of corrupted packets and the overall packet 
loss. We also explore whether a Microwave Oven, a common 
source of interference for the ISM Band in a dwelling, perturb 
RSSI values in a localization system. 

Keywords— RSSI; mobile robot; wi-fi interference; 802.15.4; 
ZigBee; indoor localization; packet loss; packet corruption; 
Microwave interference 

I. INTRODUCTION

In recent years, research into localization has become very 
popular as the proliferation of Wireless Sensor Networks 
(WSNs) grows.  This has seen an increase in the number of 
proposed applications within sensor and robotics fields.  Low 
power off the shelf radios have been employed for localization 
based implementations for detecting animal presence [1], 
outdoor mobile robot localization [2], biobot localization [3] or 
indoor mobile robot localization [4-7].  When these localization 
solutions are implemented indoors, they are termed as Indoor 
Positioning Systems (IPS) [8].  Simultaneous Localization and 
Mapping (SLAM) algorithms are commonly used to solve the 
localization problem for a mobile robot. The problem with these 
approaches is that they usually require expensive sensors, and 
even low cost approaches require the robot to carry multiple 
sensors [9]. Wireless network based localization is attractive as 
by using a single off the shelf robot mounted radio, with an 
associated sensor network, the implementation cost is reduced 
as the number of robots increases. Wireless solutions also have 
the benefit of not requiring visible light, which makes them more 
appropriate than camera based SLAM for emergency situations 
where a robot may have to traverse through rubble or a pipe. 
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each radio surrounding the area of interest can transmit and 
receive wireless signals. DFP systems analyze which links are 
currently experiencing change due to the robot passing through 
them, and thus a moving robots location can be detected as the 
intersection of multiple affected links [22]. Active tracking 
utilizes the same information (RSSI), but instead uses it as a 
form of wireless ranging where the tracked robot is in contact 
with several other nodes at any given time to contribute to the 
localization. 
RSSI based localization will often use either a variation of one 
of the following methods, or a combination of multiple 
techniques.   

A. Range-free Algorithims
Range-free algorithms use the concept of relative signal

strength loss to locate a target node. They are often based on the 
assumption that RSSI decreases with distance, but do not use 
absolute point-to-point distances or angles to estimate a 
location [23]. 

B. Path-Loss Algorithms
Path-Loss based localization (also known as Range-based

localization) create and employ a statistical model to estimate 
the distance (range) between a beacon and robot based on the 
TX-RX link power between them. This approach is then used 
by multiple known beacon nodes to infer location coordinates, 
often via a lateration approach [24].    

The problem is that all these systems rely on either the RSSI 
values themselves, or the fluctuations between RSSI values to 
be accurate. Research into the effect of Wi-Fi on 802.15.4 
networks has shown that strong Wi-Fi interference will cause 
significant packet losses and will increase the received signal 
strength of the 802.15.4 channels noise floor [25].  Further 
research into BAN has shown that a Wi-Fi interferer will cause 
significant packet losses in a ZigBee network but have minimal 
effect on the ZigBee packet based RSSI values [14].  From a 
localization perspective, it is common place to have ZigBee 
TX-RX links with up to 10m separation.  Therefore further 
work needs to be done to ascertain the usability of packet RSSI 
values in networks with greater TX-RX separation than the 
1.5m of a BAN.    

Common existing solutions to the interference problem of a 
ZigBee network are as follows: Use 802.15.4 channel 25 or 26 
[16], introduce a channel hopping protocol that changes channel 
based on the presence of interference [25] or introduce a MAC 

layer transmission protocol to mitigate interference [14].  Using 
the upper 802.15.4 channels is not viable as they are not 
globally free of Wi-Fi interference due to the use of Wi-Fi 
channels 13-14 in Europe and Asia.  Introducing a channel 
hopping protocol only works if there are 802.15.4 channels 
available that are not affected by Wi-Fi.  As the demand for 
higher data rates become more common due to advancing 
technology and services such as 4k content streaming becoming 
commonplace, Wi-Fi saturation could become more frequent. 
The problem with MAC layer protocol variants is that they are 
proprietary and therefore will not likely be compatible with 
global standards such as ZigBee 3.0.  This means that any 
current solution using them either is incompatible with 
communicating to other ZigBee devices, or would require a 
very bespoke implementation.  Therefore we assume the worst-
case situation, a localization system operating in the presence 
of a strong Wi-Fi interferer and investigate whether the integrity 
of the system is affected by heavy Wi-Fi interference, i.e. do the 
RSSI values of correctly received packets change? This is 
important as interference induced packet RSSI fluctuations 
could seriously impair the accuracy of a RSSI based 
localization system. 

We also investigate the effect of Microwave interference on 
ZigBee TX-RX links. We chose these interference sources as 
both Wi-Fi and Microwaves are common in indoor 
environments.   

III. EXPERIMENTAL SETUP

We chose to use the TI CC2530 [26] which supports a fully 
compliant ZigBee stack and provides a good analog of a chip 
that may be used within Home Automation / Lighting Systems / 
Industrial Control or Health Care applications.  The chip 
provides an affordable off-the-shelf system-on-chip that 
incorporates both a CC2530F256 RF transceiver and an 
enhanced 8051 MCU. We used a Rohde & Schwarz Spectrum 
Rider FPH [27] to analyze the spectrum of the test environment 
when either Wi-Fi or Microwave interference are present.      

Fig. 1.  Wi-Fi Interference Test Setup 

Fig. 2.  ZigBee and Wi-Fi spectrum usage 

Fig. 3.  Microwave interference Test Setup 
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Two experiments have been conducted to analyze the effect 
of Wi-Fi interference on 802.15.4.  For the first experiment, we 
maintained a fixed CC2530 TX-RX separation of 5m while 
varying the Wi-Fi transmission rate from 0-20Mbps. For the 
second experiment, The RSSI was measured at 1m intervals as 
the CC2530 RX-TX separation increased from 1m - 10m, in the 
presence of a constant 10Mbps/20Mbps Wi-Fi interferer. In both 
experiments the duration of each result was defined by the 
802.15.4 receiver having received 5000 packets (correct or 
corrupted).  Both experiments were set up as per    Fig. 1 with 
the laptops, acting as the Wi-Fi interference source, 
perpendicular to the CC2530 TX-RX pair.  All Devices were 
sitting on tables 0.71m above the ground. The Laptops and 
CC2530 RX remained completely stationary between both 
experiments.  When the CC2530 TX node was moved, antenna 
orientation was kept constant to ensure it would not affect the 
results. The experiments were performed with no humans or 
moving objects present to minimize any potential impact from 
varying multipath propagation. Wi-Fi (802.11n) interference 
was generated by sending constant traffic from Laptop 1 to 
Laptop 2 using the program iPerf3 [28].  Both experiments were 
performed inside an empty classroom in the evening at Massey 
University.  Wi-Fi channel 6 was selected for the experiments as 
it was completely empty of other nearby Wi-Fi channel 6 access 
points during the time of testing.  ZigBee (802.15.4) channel 18 
was chosen as it is completely encompassed by Wi-Fi channel 
6, as can be seen in Fig. 2, and therefore helps represent a worst 
case interference example.  

We also did an experiment using a 1200w microwave as the 
interference source. The microwave was placed 1m away from 
the CC2530 RX node, perpendicular to the CC2530 TX-RX 
LOS path as seen in Fig. 3. The CC2530 TX-RX pair was 
operated on channels 11, 18 and 26 to observe whether RSSI 
was affected differently in different parts of the spectrum.  In 
each trial a bowl of cold water was put into the microwave and 
it was set on High.  This was done to verify whether a commonly 
present interferer within the 2.4 GHz band, but with a different 
profile to Wi-Fi would have the same effect on RSSI values as a 
Wi-Fi interferer. 

IV. RESULTS

A. Experiment 1
There are several interesting findings from experiment 1

that can be observed in Table 1 and Fig. 4. Firstly, as can be 
seen in Table 1, the RSSI of correctly received packets is 
unaffected by Wi-Fi interference, regardless of the Wi-Fi’s data 
rate.  Fig. 4 shows that packet loss increases significantly in the 
presence of a Wi-Fi interferer. 

TABLE I.  

The Effect of Wi-Fi Interference on ZigBee RSSI values  
Wi-Fi Data Rate (bps) 

RSSI (dBm) No Interference 100k 500k 1m 5m 10m 20m 
Correct Packets -60 -58 -60 -60 -60 -59 -60

B. Experiment 2
Table 2 shows that RSSI values do not change due to the

presence of a Wi-Fi interferer, even as the ZigBee TX-RX 
separation increases. 

TABLE II. 

The Effect of Wi-Fi Interference on ZigBee RSSI values  
ZigBee TX-RX Separation (m) 

RSSI (dBm) 1 2 3 4 5 6 7 8 9 10 
No Interference -33 -38 -47 -50 -60 -63 -74 -65 -64 -67
Wi-Fi  20Mbps -34 -37 -47 -48 -60 -62 -74 -63 -64 -68

Fig. 5 shows that the packet loss associated with an 
interference source increases significantly for any TX-RX link 
that is longer than 2m. 

The results also show that a Wi-Fi interferer has a more 
significant impact on lost packets than CC2530 TX-RX link 
separation for distances up to 10m. Experiments 1 and 2 show 
that the percentage of corrupt packets remains relatively stable 
and does not show a strong correlation to either Wi-Fi separation 
or CC2530 TX-RX separation for the distances tested.  

Fig. 5.  The effect of a 10Mbps Wi-Fi Interferer on ZigBee packet loss and
corruption 

Fig. 4.  The effect of Wi-Fi interference on a ZigBee 5m TX-RX links packet
loss and corruption 
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TABLE III. 

The Effect of Microwave Oven Interference on ZigBee RSSI values  
ZigBee Channel

RSSI (dBm) 11 18 26
No Interference -55 -62 -63
Microwave Oven 
Interference 

-55 -61 -63

C. Experiment 3
Experiment 3 with a Microwave Oven also showed that

there was no influence of interference on the RSSI values of 
correctly received packets as seen in Table 3.  

We also noticed that there was no increase in the number of 
corrupt packets or the number of lost packets.  This is 
interesting as both the Wi-Fi source (Fig. 6(b)) and the 
Microwave source (Fig. 6(c)) had noticeable effects on the 
channel, when compared to the static environment (Fig. 6(a)), 
as measured from the ZigBee RX node. This is also contrary to 
results reported by [17] that suggest placing radios at least 2m 
away from microwaves to ensure reliable communication.  We 
believe that this is caused by different microwaves having 
different radiation patterns, which in turn affect co-channel 
signals differently. 

There is a significant relationship present between the Wi-
Fi data rate and the number of lost packets as seen in Fig. 4, 
with an increase in Wi-Fi data rate resulting in an increase in 
lost packets.  As the Wi-Fi data rate increases, so does the 
probability of a collision as there is more data travelling through 
the shared 2.4 GHz ISM band.  When collisions do occur, the 
ZigBee receiver is often unable to decode the appropriate 
packet, thus turning a Wi-Fi – ZigBee collision into a ZigBee 
packet loss.  

V. DISCUSSION

The experiments undertaken have clearly shown the effect 
a Wi-Fi interferer has on ZigBee communication.  The findings 
can be concluded as follows: 

1) Interference (both from Wi-Fi and Microwave Ovens)
has no measurable impact on the RSSI values of correctly 
received packets within a ZigBee TX-RX link. 

2) Wi-Fi interference causes a significant increase in lost
ZigBee packets as its datarate increases. 

3) An increasing Wi-Fi datarate has a stronger effect on
ZigBee packet loss than increased ZigBee TX-RX link 
separation in an indoor network. 

Since interference has no effect on the RSSI of correctly 
received packets, this suggests that the data integrity of a 
ZigBee RSSI based localization system would not be affected. 
This is important as it means the localization accuracy should 
not be affected due to the presence of a strong interferer. 
However if an algorithm that employs some form of time 
averaging [29], is implemented using ZigBee devices, latency 
could be made worse in the presence of interference due to the 
increased packet loss.  This could occur for both Active 
Tracking solutions (such as tracking an autonomous/mobile 
robot) and DFP solutions.  This means that and IPS containing 
mobile robots with low mobility should be largely unaffected 
but an IPS that requires high mobility and accuracy will need to 
take interference into account. 

The results showed that a Wi-Fi interferer has a stronger 
effect on the systems packet loss than ZigBee node separation. 
With relation to a localization system this means that while the 
location of beacon nodes within the localization region is 
important, their separation distance will have less of an effect 
on tracking performance than an external interference source 
will. 

VI. CONCLUSION

Through testing we have shown that interference from 
common sources like Wi-Fi and Microwave Ovens will not 
influence the RSSI values of correctly received links in a 
coexisting ZigBee network.  We have also shown that a Wi-Fi 
interferer will greatly increase the rate of packet loss with a 
ZigBee network.  Future work includes analyzing what level of 
Wi-Fi interference will noticeable affect the latency of common 
RSSI localization systems. Following this, we wish to 
investigate whether the RSSI of corrupt packets can be a 
secondary source of RSSI values when strong interferers are 
present. 

(a) (b) (c) 

Fig. 6. Spectrum Images of Wi-Fi Channel 6. (a) No introduced interference. (b) Introduced Wi-Fi interference. (c) Introduced Microwave Oven interference 
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Indoor Positioning Systems (IPS) for mobile robots 
commonly rely on odometry or map-based techniques, due to 
unavailability of the absolute localization methods like GPS. 
There have been numerous research efforts to develop an 
absolute IPS by utilizing projected patterns on ceiling or walls, 
landmarks [2], radios [3], or lasers [4]. However, these methods 
suffer from various shortcomings. For example projected 
patterns only work on flat surfaces. Landmarks are not effective 
in crowded or dynamic environments.  VLP looks to address this 
by having a low implementation cost, while also having high 
sensor density due to the utilization of luminaires within an 
existing built environment.  This allows for the system to work 
within various indoor environments, including stairwells and 
crowded dwellings, which previously posed as issue for IPS 
implementations. 

II. BACKGROUND

 A number of approaches have been taken for VLP. Tanaka 
et al proposed a method for localizing an image sensor by 
detecting ceiling mounted coloured LEDs, followed by utilizing 
an accelerometer to determine system orientation [5]. The 
proposed method achieved an accuracy of 5cm which was 
sufficient to control a robot. However the coloured LEDs 
require intrusive environment modification and the requirement 
of a camera increases costs and limits the system’s suitability 
for many applications. 

Bai et al used TDOA with VLP to determine the position of 
vehicles approaching a traffic light intersection by using 
separate VLP sensors mounted in each of the vehicles 
headlights. Numerically they proved the feasibility of such an 
approach, however no physical testing was carried out and the 
simulation lacked a model for environmental noise [6]. 
Another popular approach is to use intensity modulated direct 
detection (IM/DD) with a single photo-diode. Lights are ceiling 
mounted in known locations and their intensity is modulated in 
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Abstract— In recent years energy efficient LEDs have become 
a commonplace lighting solution.  It is possible to create an indoor 
positioning system (IPS) from existing lighting infrastructure by 
making minor modifications to the luminaire drivers. In this paper 
we develop and implement an IPS by augmenting the luminaires 
with collocated Zigbee radios. The Hybrid Visible Light 
Positioning (HVLP) system utilizes a two-stage process where it 
first localizes which room a mobile robot resides in, followed by 
estimating the robot's position within the room itself. 
Experimental results conducted in two adjacent rooms with 
dimensions 4.8 x 5.7 x 2.5, 4.8 x 3.3 x 2.5 show that the HVLP 
system attains a median error of 5.8 cm, which is a significant 
improvement on existing approaches. 

Keywords— Visible Light Positioning; RSSI; mobile robot; 
802.15.4; Zigbee; indoor localization 

I. INTRODUCTION

Localization techniques that utilize existing lighting 
infrastructure have become a hot topic of current research as 
they offer reduced cost and implementation complexity. Visible 
Light Communication (VLC) [1] is an emerging technology that 
intends to utilize LED luminaires for simultaneous illumination 
and communication.  This can be extended further by developing 
Visible Light Positioning (VLP) that offer localization services. 
Existing VLP techniques typically make use of ceiling mounted 
consumer-grade LED luminaires, and an active device that uses 
photo-diodes to infer its position relative to the luminaires.   

 The smart automation industry manufactures network 
enabled lighting for both commercial and residential 
applications.  This means that smart lights provide the 
opportunity to localize an entity by estimating the power of the 
incoming wireless and optical signals. In common wireless 
technologies like Zigbee and Wi-Fi, this estimate is readily 
available as the Received Signal Strength Indicator (RSSI). 
Wireless localization, while not as accurate as VLP, has the 
advantage of working in non line of sight (NLOS) scenario. 
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a way that individual LEDs can be directly detected by the 
receiver’s photo-diode [7].   

Existing VLP room-scale approaches either do not meet the 
required accuracy [8-10], have a roof height that is unrealistic 
for existing built environments [11], or suffer a significant 
decrease in accuracy when moving outside the small (<1m2) 
target area [12]. For robotics applications it is important to 
maintain a low localization error to allow for various tasks like 
docking maneuvers. 

Localization services can also be provided for indoor 
positioning systems by the RSSI.  RSSI is commonly utilized 
in localization systems due to its off-the-shelf availability in 
802.15.4 [13] and Wi-Fi [14] equipment.  This paper focusses 
on Zigbee as it offers mesh networking, does not introduce 
interference to existing Wi-Fi infrastructure and is 
commonplace within standard home automation lighting such 
as the Philips Hue bulbs [15].   

III. LOCALIZATION APPROACH

The proposed localization follows a two stage process. 
Stage 1 utilizes the Zigbee radios to locate which room the robot 
currently resides within.  Stage 2 receives the room estimate 
from Stage 1 and utilizes the VLP system to provide an estimate 
of the robots position within the room.  

A. Stage 1
During stage 1, the robot receives the Zigbee RSSI streams

and estimates the median over a 3 second period for each 
stream.  The median values are then added together for each 
room to attain a ‘room score’. The room with the highest ‘room 
score’ is the room within which the robot is currently located. 
This is an extremely simplistic localization approach but 
benefits from requiring no calibration.  Four streams per room 
may seem excessive to identify a room. However as discussed 
previously, Zigbee enabled smart lights are becoming readily 
available in a smart home.  The benefit of utilizing 4 streams 
per room was that multipath induced RSSI variations (within a 
single stream) would not significantly affect the overall ‘room 
score’. Our experience suggests that this approach requires at 

least 3 ceiling mounted Zigbee radios to function correctly, if 
no multipath mitigation is performed. 

B. Stage 2
Once the room has been identified, the VLP takes over and

estimates the position within that room. The distance between 
the line-of-sight (LOS) optical path is calculated using the RSS. 
Fig. 1 shows that LED transmitters in a VLP system can be 
described as a first order Lambertian emitter [16]. 

Equation 1 represents the power at the VLP receiver, which 
is equivalent to [10, eq. (5)]. 

(1) 

 Where: 
•  is the transmitted power
•  is distance between the transmitter / receiver
•  is the Lambertian order
• ∅ is the irradiation angle
•  is the area of the VLP detector
•  is the incidence angle

By assuming the LEDs are a lambertian light source, the 
angle of divergence, i.e ∅ / = 60°. This means that (1) can be 
simplified to: 

(2) 

Since we are tracking an indoor autonomous robot with the 
VLP sensor mounted on the top plate, we have made the 
following assumptions: 

Fig. 1.  Lambertian Radiance 

Fig. 2.  Side view of VLP system

= + 12 	 (∅) ( )

= + 12 (∅) ( ) 
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1) The distance between the robots VLP sensor and the
roof (ℎ) remains constant

2) The VLP receiver sensor remains parallel to the

ceiling VLP transmitters , thus: (∅) = ( ) =
These assumptions allow (2) to be simplified to: 

(3) 

Where G is a constant gain of  .  

We have followed the process of [17] and attain: 

(4) 

By using Pythagoras theorem, we can determine the radial 
distance is: 

(5) 

(6) 

Utilizing triangulation with the radial distances from at least 
3 VLP transmitters allows for the localization of the mobile 
robot as shown in Fig. 3. 

IV. EXPERIMENTAL SETUP

 We aimed to establish a lighting solution that is comparable 
to existing commercial offerings such as the Phillips Hue bulbs 
[15]. We coupled a standard ceiling mounted LED luminaire 
(Allume 3000K – PLU 73278) with a Zigbee radio, shown in 
Fig. 4, as an analog of a network enabled smart bulb.   

The core of the Zigbee radio nodes is a TI CC2530 [18], 
with an RFX2401 PA/LNA front end as shown in Fig. 5. These 
chips are running a custom application built on TI’s Z-Stack 
Home Automation 1.2.2a network stack. This firmware is 
therefore fully compliant with Zigbee Alliance standards [19], 
and ensures that this experiment is representative of 
commercial products running on similar network stacks. The 
RF network in this experimental setup consisted of 10 such 
Zigbee nodes, connected in a mesh network topology.  The 
physical setup consists of a network coordinator connected to a 
PC via a COM port, an active router onboard the mobile robot, 
and 8 static routers collocated with the luminaires. Nodes 
transmit at +19 dBm, and operate at channel 0x26, which is free 
from in-band 802.11 interference.  

Fig. 5.  Close-up of custom Texas Instruments CC2530 breakout board 

= ℎ

= ℎ

= 	 − ℎ  

= 	 ℎ − ℎ

Fig. 3.  VLP Triangulation 

Fig. 4.  Allume luminaire and Texas Instruments CC2530 board 
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The network performs the following sequence to retrieve 
RSSI data from the network. First, the coordinator sends a 
multi-hop unicast to the active node. On receiving this packet, 
the active node sends a single-hop broadcast to all static routers 
within range. The packet’s RSSI is recorded, and returned to the 
coordinator in the payload of a final multi-hop packet. The 
coordinator then sends this data, including the packet’s source 
address, to the PC for processing, where the address is 
compared against a look up table. Algorithms to determine the 
coarse room-level location of the active node are then run in 
real time. All static routers transmit simultaneously, and rely on 
Clear Channel Assessment (CCA) and Carrier Sense Multiple 
Access\Collision Avoidance (CSMA/CA) to reliably transmit 
data. 

 The proposed VLP system requires multiple clusters of 
VLP transmitters with each cluster serving a particular region 
of a building. The implemented VLP system consists of two 
separate clusters of VLP transmitters. Each cluster serves a 
room and consists of 4 VLP transmitters operating on separate 
frequencies (400Hz, 800Hz, 1600Hz, and 3200Hz), and 
utilizing an on/off keying (OOK) modulation scheme [12].  The 
frequency assignment is based on the fact that square waves 
produce odd harmonics of the fundamental frequency.  OOK 
was chosen for its simplicity which enables low cost modulator 
circuitry as well as a simplified VLP receiver, as shown in Fig. 

6. Fig. 7 shows the custom driver board we fabricated for the
VLP transmitters.

The test environment consists of two adjacent rooms as 
shown in Fig. 8 and Fig. 9, with both rooms having a ceiling 
height of 2.5m.  Each room contains 4 ceiling mounted 
luminaires coupled with collocated CC2530 radios.  The HVLP 
receiver mounted on top of the mobile robot contains a CC2530 
Zigbee radio and a custom VLP receiver board consisting of a 
photo-diode and associated bandpass filters for demultiplexing. 
The ceiling mounted CC2530 antennas were kept in parallel 
with the mobile robots CC2530 antenna to minimize RSSI 
variations caused by orientation changes.   

V. EXPERIMENTAL RESULTS

We randomly selected 30 test locations in Room 1, and 10 
test locations in the smaller Room 2.  It should be noted that we 
did not pick any test locations that were under desks as shown 
in Fig. 9.  Fig. 10 shows the localization results for test locations 
within Room 1.  Stage 1 of the localization process correctly 
estimated the robots current room with 100% accuracy.   

The system performed accurately with lower than 6 cm 
median error in localization estimation, as reported in Table 1 
below. 

TABLE I. 

Rooms HVLP Error (m) 
Mean Median RMSE Max

Room 1 0.059 0.058 0.065 0.108
Room 2 0.069 0.058 0.083 0.151

It is interesting to note that the accuracy of the VLP system 
decreases as the tracked robot comes directly under one of the 
luminaires.  This occurs because the received power at a 

Fig. 7.  VLP Driver Board 

Fig. 8.  Room 1 with HVLP autonomous robot 

Fig. 6.  Custom VLP receiver board  
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particular radial distance can be approximated by a cosine 
falloff.  This means that when the radial distance is very small, 
the change in received power between distances is also very 
small.  This results in a reduction in the Signal to Noise Ratio 
(SNR), leading to decreased accuracy. 

VI. CONCLUSION

In this paper we presented the design and implementation of 
HVLP, an augmented wireless/visible light IPS system. 
Through testing we have shown that our HVLP system can 
accurately localize a robot within a typical office environment 
with a median error of 5.8cm.  To the best of our knowledge 
this is the first reported work to attain sub 10cm accuracy in a 
room-scale IPS based on Visible Light without utilizing 
expensive sensors or actively reducing ambient light levels. 
Our work confirms the potential of visible light for high 
accuracy indoor localization, and demonstrates how some of its 
limitations can be overcome by augmenting it with Zigbee. 

The developed method does not leverage wireless 
localization to eliminate potential blind spots of the VLP 
system. Future work should investigate how a fusion of wireless 
and visible light information using an extended Kalman filter 
can increase the accuracy and coverage. The OOK modulation 

based multiplexing scheme is not very efficient as it reduces the 
light from each luminaire by half. It also generates a lot of 
harmonics which puts a constraint on the number of lights that 
can be used in a cluster whilst still demultiplexing each signal. 
Future research should look into developing more efficient and 
scalable multiplexing schemes. Future work can also include 
whether applying a Fast Fourier Transform (FFT), rather than 
band-pass filters for demultiplexing can make the system more 
scalable and flexible.  Further work needs to be done on 
increasing the accuracy of the system when the detector is 
directly under lights. 
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