153 research outputs found

    Advances in parallel programming for electronic design automation

    Get PDF
    The continued miniaturization of the technology node increases not only the chip capacity but also the circuit design complexity. How does one efficiently design a chip with millions or billions transistors? This has become a challenging problem in the integrated circuit (IC) design industry, especially for the developers of electronic design automation (EDA) tools. To boost the performance of EDA tools, one promising direction is via parallel computing. In this dissertation, we explore different parallel computing approaches, from CPU to GPU to distributed computing, for EDA applications. Nowadays multi-core processors are prevalent from mobile devices to laptops to desktop, and it is natural for software developers to utilize the available cores to maximize the performance of their applications. Therefore, in this dissertation we first focus on multi-threaded programming. We begin by reviewing a C++ parallel programming library called Cpp-Taskflow. Cpp-Taskflow is designed to facilitate programming parallel applications, and has been successfully applied to an EDA timing analysis tool. We will demonstrate Cpp-Taskflow’s programming model and interface, software architecture and execution flow. Then, we improve Cpp-Taskflow in several aspects. First, we enhance Cpp-Taskflow’s usability through restructuring the software architecture. Second, we introduce task graph composition to support composability and modularity, which makes it easier for users to construct large and complex parallel patterns. Third, we add a new task type in Cpp-Taskflow to let users control the graph execution flow. This feature empowers the graph model with the ability to describe complex control flow. Aside from the above enhancements, we have designed a new scheduler to adaptively manage the threads based on available parallelism. The new scheduler uses a simple and effective strategy which can not only prevent resource from being underutilized, but also mitigate resource over-subscription. We have evaluated the new scheduler on both micro-benchmarks and a very-large-scale integration (VLSI) application, and the results show that the new scheduler can achieve good performance and is very energy-efficient. Next we study the applicability of heterogeneous computing, specifically the graphics processing unit (GPU), to EDA. We demonstrate how to use GPU to accelerate VLSI placement, and we show that GPU can bring substantial performance gain to VLSI placement. Finally, as the design size keeps increasing, a more scalable solution will be distributed computing. We introduce a distributed power grid analysis framework built on top of DtCraft. This framework allows users to flexibly partition the design and automatically deploy the computations across several machines. In addition, we propose a job scheduler that can efficiently utilize cluster resource to improve the framework’s performance

    A TBB-CUDA Implementation for Background Removal in a Video-Based Fire Detection System

    Get PDF
    This paper presents a parallel TBB-CUDA implementation for the acceleration of single-Gaussian distribution model, which is effective for background removal in the video-based fire detection system. In this framework, TBB mainly deals with initializing work of the estimated Gaussian model running on CPU, and CUDA performs background removal and adaption of the model running on GPU. This implementation can exploit the combined computation power of TBB-CUDA, which can be applied to the real-time environment. Over 220 video sequences are utilized in the experiments. The experimental results illustrate that TBB+CUDA can achieve a higher speedup than both TBB and CUDA. The proposed framework can effectively overcome the disadvantages of limited memory bandwidth and few execution units of CPU, and it reduces data transfer latency and memory latency between CPU and GPU

    PiCo: A Domain-Specific Language for Data Analytics Pipelines

    Get PDF
    In the world of Big Data analytics, there is a series of tools aiming at simplifying programming applications to be executed on clusters. Although each tool claims to provide better programming, data and execution models—for which only informal (and often confusing) semantics is generally provided—all share a common under- lying model, namely, the Dataflow model. Using this model as a starting point, it is possible to categorize and analyze almost all aspects about Big Data analytics tools from a high level perspective. This analysis can be considered as a first step toward a formal model to be exploited in the design of a (new) framework for Big Data analytics. By putting clear separations between all levels of abstraction (i.e., from the runtime to the user API), it is easier for a programmer or software designer to avoid mixing low level with high level aspects, as we are often used to see in state-of-the-art Big Data analytics frameworks. From the user-level perspective, we think that a clearer and simple semantics is preferable, together with a strong separation of concerns. For this reason, we use the Dataflow model as a starting point to build a programming environment with a simplified programming model implemented as a Domain-Specific Language, that is on top of a stack of layers that build a prototypical framework for Big Data analytics. The contribution of this thesis is twofold: first, we show that the proposed model is (at least) as general as existing batch and streaming frameworks (e.g., Spark, Flink, Storm, Google Dataflow), thus making it easier to understand high-level data-processing applications written in such frameworks. As result of this analysis, we provide a layered model that can represent tools and applications following the Dataflow paradigm and we show how the analyzed tools fit in each level. Second, we propose a programming environment based on such layered model in the form of a Domain-Specific Language (DSL) for processing data collections, called PiCo (Pipeline Composition). The main entity of this programming model is the Pipeline, basically a DAG-composition of processing elements. This model is intended to give the user an unique interface for both stream and batch processing, hiding completely data management and focusing only on operations, which are represented by Pipeline stages. Our DSL will be built on top of the FastFlow library, exploiting both shared and distributed parallelism, and implemented in C++11/14 with the aim of porting C++ into the Big Data world

    Enhancing Productivity and Performance Portability of General-Purpose Parallel Programming

    Get PDF
    This work focuses on compiler and run-time techniques for improving the productivity and the performance portability of general-purpose parallel programming. More specifically, we focus on shared-memory task-parallel languages, where the programmer explicitly exposes parallelism in the form of short tasks that may outnumber the cores by orders of magnitude. The compiler, the run-time, and the platform (henceforth the system) are responsible for harnessing this unpredictable amount of parallelism, which can vary from none to excessive, towards efficient execution. The challenge arises from the aspiration to support fine-grained irregular computations and nested parallelism. This work is even more ambitious by also aspiring to lay the foundations to efficiently support declarative code, where the programmer exposes all available parallelism, using high-level language constructs such as parallel loops, reducers or futures. The appeal of declarative code is twofold for general-purpose programming: it is often easier for the programmer who does not have to worry about the granularity of the exposed parallelism, and it achieves better performance portability by avoiding overfitting to a small range of platforms and inputs for which the programmer is coarsening. Furthermore, PRAM algorithms, an important class of parallel algorithms, naturally lend themselves to declarative programming, so supporting it is a necessary condition for capitalizing on the wealth of the PRAM theory. Unfortunately, declarative codes often expose such an overwhelming number of fine-grained tasks that existing systems fail to deliver performance. Our contributions can be partitioned into three components. First, we tackle the issue of coarsening, which declarative code leaves to the system. We identify two goals of coarsening and advocate tackling them separately, using static compiler transformations for one and dynamic run-time approaches for the other. Additionally, we present evidence that the current practice of burdening the programmer with coarsening either leads to codes with poor performance-portability, or to a significantly increased programming effort. This is a ``show-stopper'' for general-purpose programming. To compare the performance portability among approaches, we define an experimental framework and two metrics, and we demonstrate that our approaches are preferable. We close the chapter on coarsening by presenting compiler transformations that automatically coarsen some types of very fine-grained codes. Second, we propose Lazy Scheduling, an innovative run-time scheduling technique that infers the platform load at run-time, using information already maintained. Based on the inferred load, Lazy Scheduling adapts the amount of available parallelism it exposes for parallel execution and, thus, saves parallelism overheads that existing approaches pay. We implement Lazy Scheduling and present experimental results on four different platforms. The results show that Lazy Scheduling is vastly superior for declarative codes and competitive, if not better, for coarsened codes. Moreover, Lazy Scheduling is also superior in terms of performance-portability, supporting our thesis that it is possible to achieve reasonable efficiency and performance portability with declarative codes. Finally, we also implement Lazy Scheduling on XMT, an experimental manycore platform developed at the University of Maryland, which was designed to support codes derived from PRAM algorithms. On XMT, we manage to harness the existing hardware support for scheduling flat parallelism to compose it with Lazy Scheduling, which supports nested parallelism. In the resulting hybrid scheduler, the hardware and software work in synergy to overcome each other's weaknesses. We show the performance composability of the hardware and software schedulers, both in an abstract cost model and experimentally, as the hybrid always performs better than the software scheduler alone. Furthermore, the cost model is validated by using it to predict if it is preferable to execute a code sequentially, with outer parallelism, or with nested parallelism, depending on the input, the available hardware parallelism and the calling context of the parallel code

    The fast multipole method at exascale

    Get PDF
    This thesis presents a top to bottom analysis on designing and implementing fast algorithms for current and future systems. We present new analysis, algorithmic techniques, and implementations of the Fast Multipole Method (FMM) for solving N- body problems. We target the FMM because it is broadly applicable to a variety of scientific particle simulations used to study electromagnetic, fluid, and gravitational phenomena, among others. Importantly, the FMM has asymptotically optimal time complexity with guaranteed approximation accuracy. As such, it is among the most attractive solutions for scalable particle simulation on future extreme scale systems. We specifically address two key challenges. The first challenge is how to engineer fast code for today’s platforms. We present the first in-depth study of multicore op- timizations and tuning for FMM, along with a systematic approach for transforming a conventionally-parallelized FMM into a highly-tuned one. We introduce novel opti- mizations that significantly improve the within-node scalability of the FMM, thereby enabling high-performance in the face of multicore and manycore systems. The second challenge is how to understand scalability on future systems. We present a new algorithmic complexity analysis of the FMM that considers both intra- and inter- node communication costs. Using these models, we present results for choosing the optimal algorithmic tuning parameter. This analysis also yields the surprising prediction that although the FMM is largely compute-bound today, and therefore highly scalable on current systems, the trajectory of processor architecture designs, if there are no significant changes could cause it to become communication-bound as early as the year 2015. This prediction suggests the utility of our analysis approach, which directly relates algorithmic and architectural characteristics, for enabling a new kind of highlevel algorithm-architecture co-design. To demonstrate the scientific significance of FMM, we present two applications namely, direct simulation of blood which is a multi-scale multi-physics problem and large-scale biomolecular electrostatics. MoBo (Moving Boundaries) is the infrastruc- ture for the direct numerical simulation of blood. It comprises of two key algorithmic components of which FMM is one. We were able to simulate blood flow using Stoke- sian dynamics on 200,000 cores of Jaguar, a peta-flop system and achieve a sustained performance of 0.7 Petaflop/s. The second application we propose as future work in this thesis is biomolecular electrostatics where we solve for the electrical potential using the boundary-integral formulation discretized with boundary element methods (BEM). The computational kernel in solving the large linear system is dense matrix vector multiply which we propose can be calculated using our scalable FMM. We propose to begin with the two dielectric problem where the electrostatic field is cal- culated using two continuum dielectric medium, the solvent and the molecule. This is only a first step to solving biologically challenging problems which have more than two dielectric medium, ion-exclusion layers, and solvent filled cavities. Finally, given the difficulty in producing high-performance scalable code, productivity is a key concern. Recently, numerical algorithms are being redesigned to take advantage of the architectural features of emerging multicore processors. These new classes of algorithms express fine-grained asynchronous parallelism and hence reduce the cost of synchronization. We performed the first extensive performance study of a recently proposed parallel programming model, called Concurrent Collections (CnC). In CnC, the programmer expresses her computation in terms of application-specific operations, partially-ordered by semantic scheduling constraints. The CnC model is well-suited to expressing asynchronous-parallel algorithms, so we evaluate CnC using two dense linear algebra algorithms in this style for execution on state-of-the-art mul- ticore systems. Our implementations in CnC was able to match and in some cases even exceed competing vendor-tuned and domain specific library codes. We combine these two distinct research efforts by expressing FMM in CnC, our approach tries to marry performance with productivity that will be critical on future systems. Looking forward, we would like to extend this to distributed memory machines, specifically implement FMM in the new distributed CnC, distCnC to express fine-grained paral- lelism which would require significant effort in alternative models.Ph.D

    Runtime-assisted cache coherence deactivation in task parallel programs

    Get PDF
    With increasing core counts, the scalability of directory-based cache coherence has become a challenging problem. To reduce the area and power needs of the directory, recent proposals reduce its size by classifying data as private or shared, and disable coherence for private data. However, existing classification methods suffer from inaccuracies and require complex hardware support with limited scalability. This paper proposes a hardware/software co-designed approach: the runtime system identifies data that is guaranteed by the programming model semantics to not require coherence and notifies the microarchitecture. The microarchitecture deactivates coherence for this private data and powers off unused directory capacity. Our proposal reduces directory accesses to just 26% of the baseline system, and supports a 64x smaller directory with only 2.8% performance degradation. By dynamically calibrating the directory size our proposal saves 86% of dynamic energy consumption in the directory without harming performance.This work has been supported by the RoMoL ERC Advanced Grant (GA 321253), by the European HiPEAC Network of Excellence, by the Spanish Ministry of Economy and Competitiveness (contract TIN2015-65316-P), by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272) and by the European Unions Horizon 2020 research and innovation programme (grant agreements 671697 and 779877). M. Moreto has been partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under Ramon y Cajal fellowship number RYC-2016-21104.Peer ReviewedPostprint (author's final draft

    スケジューリング遅延に基づいたタスク並列ランタイムシステムの性能差の解析

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 豊田 正史, 東京大学教授 田浦 健次朗, 東京大学准教授 入江 英嗣, 東京大学教授 中島 研吾, 理化学研究所チームリーダ 佐藤 三久, 東京工業大学准教授 横田 理央University of Tokyo(東京大学

    Parallelization Strategies for Modern Computing Platforms: Application to Illustrative Image Processing and Computer Vision Applications

    Get PDF
    RÉSUMÉ L’évolution spectaculaire des technologies dans le domaine du matériel et du logiciel a permis l’émergence des nouvelles plateformes parallèles très performantes. Ces plateformes ont marqué le début d’une nouvelle ère de la computation et il est préconisé qu’elles vont rester dans le domaine pour une bonne période de temps. Elles sont présentes déjà dans le domaine du calcul de haute performance (en anglais HPC, High Performance Computer) ainsi que dans le domaine des systèmes embarqués. Récemment, dans ces domaines le concept de calcul hétérogène a été adopté pour atteindre des performances élevées. Ainsi, plusieurs types de processeurs sont utilisés, dont les plus populaires sont les unités centrales de traitement ou CPU (de l’anglais Central Processing Unit) et les processeurs graphiques ou GPU (de l’anglais Graphics Processing Units). La programmation efficace pour ces nouvelles plateformes parallèles amène actuellement non seulement des opportunités mais aussi des défis importants pour les concepteurs. Par conséquent, l’industrie a besoin de l’appui de la communauté de recherche pour assurer le succès de ce nouveau changement de paradigme vers le calcul parallèle. Trois défis principaux présents pour les processeurs GPU massivement parallèles (ou “many-cores”) ainsi que pour les processeurs CPU multi-coeurs sont: (1) la sélection de la meilleure plateforme parallèle pour une application donnée, (2) la sélection de la meilleure stratégie de parallèlisation et (3) le réglage minutieux des performances (ou en anglais performance tuning) pour mieux exploiter les plateformes existantes. Dans ce contexte, l’objectif global de notre projet de recherche est de définir de nouvelles solutions pour aider à la programmation efficace des applications complexes sur les plateformes parallèles modernes. Les principales contributions à la recherche sont: 1. L’évaluation de l’efficacité d’accélération pour plusieurs plateformes parallèles, dans le cas des applications de calcul intensif. 2. Une analyse quantitative des stratégies de parallèlisation et implantation sur les plateformes à base de processeurs CPU multi-cœur ainsi que pour les plateformes à base de processeurs GPU massivement parallèles. 3. La définition et la mise en place d’une approche de réglage de performances (en Anglais performance tuning) pour les plateformes parallèles. Les contributions proposées ont été validées en utilisant des applications réelles illustratives et un ensemble varié de plateformes parallèles modernes.----------ABSTRACT With the technology improvement for both hardware and software, parallel platforms started a new computing era and they are here to stay. Parallel platforms may be found in High Performance Computers (HPC) or embedded computers. Recently, both HPC and embedded computers are moving toward heterogeneous computing platforms. They are employing both Central Processing Units (CPUs) and Graphics Processing Units (GPUs) to achieve the highest performance. Programming efficiently for parallel platforms brings new opportunities but also several challenges. Therefore, industry needs help from the research community to succeed in its recent dramatic shift to parallel computing. Parallel programing presents several major challenges. These challenges are equally present whether one programs on a many-core GPU or on a multi-core CPU. Three of the main challenges are: (1) Finding the best platform providing the required acceleration (2) Select the best parallelization strategy (3) Performance tuning to efficiently leverage the parallel platforms. In this context, the overall objective of our research is to propose a new solution helping designers to efficiently program complex applications on modern parallel architectures. The contributions of this thesis are: 1. The evaluation of the efficiency of several target parallel platforms to speedup compute-intensive applications. 2. The quantitative analysis for parallelization and implementation strategies on multicore CPUs and many-core GPUs. 3. The definition and implementation of a new performance tuning framework for heterogeneous parallel platforms. The contributions were validated using real computation intensive applications and modern parallel platform based on multi-core CPU and many-core GPU

    Parallel Real-Time Scheduling for Latency-Critical Applications

    Get PDF
    In order to provide safety guarantees or quality of service guarantees, many of today\u27s systems consist of latency-critical applications, e.g. applications with timing constraints. The problem of scheduling multiple latency-critical jobs on a multiprocessor or multicore machine has been extensively studied for sequential (non-parallizable) jobs and different system models and different objectives have been considered. However, the computational requirement of a single job is still limited by the capacity of a single core. To provide increasingly complex functionalities of applications and to complete their higher computational demands within the same or even more stringent timing constraints, we must exploit the internal parallelism of jobs, where individual jobs are parallel programs and can potentially utilize more than one core in parallel. However, there is little work considering scheduling multiple parallel jobs that are latency-critical. This dissertation focuses on developing new scheduling strategies, analysis tools, and practical platform design techniques to enable efficient and scalable parallel real-time scheduling for latency-critical applications on multicore systems. In particular, the research is focused on two types of systems: (1) static real-time systems for tasks with deadlines where the temporal properties of the tasks that need to execute is known a priori and the goal is to guarantee the temporal correctness of the tasks prior to their executions; and (2) online systems for latency-critical jobs where multiple jobs arrive over time and the goal to optimize for a performance objective of jobs during the execution. For static real-time systems for parallel tasks, several scheduling strategies, including global earliest deadline first, global rate monotonic and a novel federated scheduling, are proposed, analyzed and implemented. These scheduling strategies have the best known theoretical performance for parallel real-time tasks under any global strategy, any fixed priority scheduling and any scheduling strategy, respectively. In addition, federated scheduling is generalized to systems with multiple criticality levels and systems with stochastic tasks. Both numerical and empirical experiments show that federated scheduling and its variations have good schedulability performance and are efficient in practice. For online systems with multiple latency-critical jobs, different online scheduling strategies are proposed and analyzed for different objectives, including maximizing the number of jobs meeting a target latency, maximizing the profit of jobs, minimizing the maximum latency and minimizing the average latency. For example, a simple First-In-First-Out scheduler is proven to be scalable for minimizing the maximum latency. Based on this theoretical intuition, a more practical work-stealing scheduler is developed, analyzed and implemented. Empirical evaluations indicate that, on both real world and synthetic workloads, this work-stealing implementation performs almost as well as an optimal scheduler

    Optimizing for a Many-Core Architecture without Compromising Ease-of-Programming

    Get PDF
    Faced with nearly stagnant clock speed advances, chip manufacturers have turned to parallelism as the source for continuing performance improvements. But even though numerous parallel architectures have already been brought to market, a universally accepted methodology for programming them for general purpose applications has yet to emerge. Existing solutions tend to be hardware-specific, rendering them difficult to use for the majority of application programmers and domain experts, and not providing scalability guarantees for future generations of the hardware. This dissertation advances the validation of the following thesis: it is possible to develop efficient general-purpose programs for a many-core platform using a model recognized for its simplicity. To prove this thesis, we refer to the eXplicit Multi-Threading (XMT) architecture designed and built at the University of Maryland. XMT is an attempt at re-inventing parallel computing with a solid theoretical foundation and an aggressive scalable design. Algorithmically, XMT is inspired by the PRAM (Parallel Random Access Machine) model and the architecture design is focused on reducing inter-task communication and synchronization overheads and providing an easy-to-program parallel model. This thesis builds upon the existing XMT infrastructure to improve support for efficient execution with a focus on ease-of-programming. Our contributions aim at reducing the programmer's effort in developing XMT applications and improving the overall performance. More concretely, we: (1) present a work-flow guiding programmers to produce efficient parallel solutions starting from a high-level problem; (2) introduce an analytical performance model for XMT programs and provide a methodology to project running time from an implementation; (3) propose and evaluate RAP -- an improved resource-aware compiler loop prefetching algorithm targeted at fine-grained many-core architectures; we demonstrate performance improvements of up to 34.79% on average over the GCC loop prefetching implementation and up to 24.61% on average over a simple hardware prefetching scheme; and (4) implement a number of parallel benchmarks and evaluate the overall performance of XMT relative to existing serial and parallel solutions, showing speedups of up to 13.89x vs.~ a serial processor and 8.10x vs.~parallel code optimized for an existing many-core (GPU). We also discuss the implementation and optimization of the Max-Flow algorithm on XMT, a problem which is among the more advanced in terms of complexity, benchmarking and research interest in the parallel algorithms community. We demonstrate better speed-ups compared to a best serial solution than previous attempts on other parallel platforms
    corecore