View metadata, citation and similar papers at core.ac.uk brought to you by .t CORE

provided by lllinois Digital Environment for Access to Learning and Scholarship Repository

(© 2020 Chun-Xun Lin

https://core.ac.uk/display/334979786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ADVANCES IN PARALLEL PROGRAMMING FOR ELECTRONIC DESIGN
AUTOMATION

BY

CHUN-XUN LIN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Professor Martin D. F. Wong, Chair

Professor Wen-Mei Hwu

Professor Deming Chen

Dr. Jinjun Xiong, IBM T. J. Watson Research Center

ABSTRACT

The continued miniaturization of the technology node increases not only the
chip capacity but also the circuit design complexity. How does one efficiently
design a chip with millions or billions transistors? This has become a chal-
lenging problem in the integrated circuit (IC) design industry, especially for
the developers of electronic design automation (EDA) tools. To boost the
performance of EDA tools, one promising direction is via parallel computing.
In this dissertation, we explore different parallel computing approaches, from
CPU to GPU to distributed computing, for EDA applications.

Nowadays multi-core processors are prevalent from mobile devices to lap-
tops to desktop, and it is natural for software developers to utilize the avail-
able cores to maximize the performance of their applications. Therefore, in
this dissertation we first focus on multi-threaded programming. We begin by
reviewing a C++ parallel programming library called Cpp-Taskflow. Cpp-
Taskflow is designed to facilitate programming parallel applications, and has
been successfully applied to an EDA timing analysis tool. We will demon-
strate Cpp-Taskflow’s programming model and interface, software architec-
ture and execution flow. Then, we improve Cpp-Taskflow in several aspects.
First, we enhance Cpp-Taskflow’s usability through restructuring the soft-
ware architecture. Second, we introduce task graph composition to support
composability and modularity, which makes it easier for users to construct
large and complex parallel patterns. Third, we add a new task type in Cpp-
Taskflow to let users control the graph execution flow. This feature empow-
ers the graph model with the ability to describe complex control flow. Aside
from the above enhancements, we have designed a new scheduler to adap-
tively manage the threads based on available parallelism. The new scheduler
uses a simple and effective strategy which can not only prevent resource from
being underutilized, but also mitigate resource over-subscription. We have

evaluated the new scheduler on both micro-benchmarks and a very-large-scale

i

integration (VLSI) application, and the results show that the new scheduler
can achieve good performance and is very energy-efficient.

Next we study the applicability of heterogeneous computing, specifically
the graphics processing unit (GPU), to EDA. We demonstrate how to use
GPU to accelerate VLSI placement, and we show that GPU can bring sub-
stantial performance gain to VLSI placement. Finally, as the design size
keeps increasing, a more scalable solution will be distributed computing.
We introduce a distributed power grid analysis framework built on top of
DtCraft. This framework allows users to flexibly partition the design and
automatically deploy the computations across several machines. In addition,
we propose a job scheduler that can efficiently utilize cluster resource to

improve the framework’s performance.

iii

To my parents, for their love and support.

v

ACKNOWLEDGMENTS

First I would like to express sincere gratitude to my advisor, Prof. Martin D.
F. Wong, who has patiently guided me through my doctoral study. I want to
thank him for giving invaluable advice on research direction and helping me
develop research skills. Specifically, I am grateful to him for all our meetings
where I can always gain new insights from the discussion. I am also grateful
to my doctoral committee, Prof. Wen-Mei Hwu, Prof. Deming Chen and
Dr. Jinjun Xiong. I want to thank them for listening to my presentation,
and providing many useful comments and suggestions to this dissertation.

I want to thank Dr. Chih-Hung Liu for encouraging me to study abroad
and helping me greatly with my PhD application. Many thanks to Dr.
Tsung-Wei Huang for teaching me many research techniques and much pro-
gramming knowledge, and I am fortunate to participate in those interest-
ing projects with him. I want to thank my lab-mates Zigang Xiao, Leslie
Hwang, Daifeng Guo, Haitong Tian, Tin-Yin Lai, Guannan Guo and Chih-
Shin Wang for their assistance in my research, and for helping me clarify
my thoughts via numerous stimulating discussions. I am also grateful to my
friends Jhih-Chian Wu, Iou-Jen Liu, Hsiao-Lun Wang, Hsi-Ping Chu, Pao-
Yi Tang, Chen-Hsuan Lin and Sitao Huang for sharing their life stories and
work experience with me and bringing so much joy and fun to my life. I
want to thank two visiting scholars: Prof. Fan Zhang for showing me around
the office when I joined the lab, and Prof. Hung-Ming Chen from NCTU for
sharing his study and career experience with me.

Last but not least, I want to express my deepest gratitude to my parents,
sister and brother. With their endless love and support, I am able to get

over all the difficulties and pursue my goal wholeheartedly.

TABLE OF CONTENTS

CHAPTER 1 DISSERTATION OVERVIEW 1
CHAPTER 2 CPP-TASKFLOW PROGRAMMING SYSTEM 4
2.1 Task Dependency Graph 4
2.2 Software Architecture and Execution Flow 6
CHAPTER 3 ADAPTIVE WORK-STEALING SCHEDULER 11
3.1 Introduction 11
3.2 Adaptive Work-Stealing Scheduler 13
3.3 Ewvaluation 23
3.4 Conclusion 36
CHAPTER 4 TASK GRAPH COMPOSITION AND CONDITION-
ALS . . 37
4.1 Introduction 37
4.2 New Task Dependency Graph 40
4.3 Composable Tasking 42
4.4 Conditional Tasking 47
4.5 Conclusion 56
CHAPTER 5 ANALYTICAL PLACEMENT WITH GPU 57
5.1 Introduction 57
5.2 Wirelength Computation 58
5.3 Density Computation 64
5.4 Experimental Results 69
5.5 Conclusion 70
CHAPTER 6 A DISTRIBUTED POWER GRID ANALYSIS FRAME-
WORK 73
6.1 Introduction 73
6.2 Distributed Power Grid Analysis. 75
6.3 Distributed Power Grid Analysis based on Stream Graph . . . 78
6.4 Application-specific Resource Control Plug-in 83
6.5 Experimental Results 85
6.6 Conclusion 90

vi

REFERENCES

vil

CHAPTER 1

DISSERTATION OVERVIEW

The dissertation can be divided into three parts: Chapters 2, 3 and 4 are
dedicated to multi-threaded programming, and especially we will focus on a
parallel programming library called Cpp-Taskflow. In Chapter 5 we demon-
strate how the performance of VLSI placement can benefit from GPU. Chap-
ter 6 presents a distributed computing framework for power grid analysis. We
give a brief overview of subsequent chapters below.

Chapter 2 reviews Cpp-Taskflow which is a C++ parallel programming
library developed by our group [1]. Cpp-Taskflow arises from the need of an
efficient approach to parallelize an EDA application with complex parallel
patterns. The goal of Cpp-Taskflow is to enable programmers to quickly
parallelize their applications with task-based programming model. For this
purpose, Cpp-Taskflow adopts task dependency graph as the programming
model, and provides intuitive tasking interface for ease of programming. Cpp-
Taskflow is open-source [2] and has been used in several applications. In
this chapter we will go over Cpp-Taskflow’s programming interface, software
architecture and internal execution flow, then we introduce the new elements
that we add to Cpp-Taskflow in Chapters 3 and 4, respectively.

In Chapter 3, we present an efficient work-stealing scheduler to execute the
task dependency graph of Cpp-Taskflow. Maintaining a scheduler to man-
age a pool of threads is a frequently used method in parallel programming
libraries, as this method can prevent the overhead of repeatedly spawning
threads. The scheduler has a great impact on the overall library’s perfor-
mance as it controls the thread activities and coordinates task execution.
It employs a simple and efficient strategy to adapt the number of active
threads to available parallelism. This strategy not only can prevent resource
underutilization but can also minimize resource waste to achieve substantial
energy saving. In addition, the scheduler can maintain decent throughput

in a shared environment where multiple parallel processes are running con-

currently. We provide an analysis on the scheduler’s thread management to
prove the effectiveness of our scheduler. The experimental results show that
our scheduler can deliver good performance, energy efficiency and throughput
on a VLSI timing analysis tool.

In Chapter 4!, we propose several enhancements to Cpp-Taskflow’s pro-
gramming model. The first and foremost enhancement is to separate the
task graph and executor. This allows users to create multiple task graphs
and graphs can be executed multiple times and in arbitrary order. The sec-
ond enhancement is the graph composition which allows users to compose
small and simple graphs into a large and complex graph. Last but not least,
we add a new tasking type: conditional tasking to enable users to control
the graph execution flow at runtime. The conditional tasking is a revolu-
tionary breakthrough as it removes the restrictions that a task graph must
be acyclic, and each task must be executed exactly once. Users can use con-
ditional tasking to iterate parts of a graph multiple times, or conditionally
bypass the execution of some tasks. These new capabilities make it very easy
to build task graphs for applications with complex control flow.

In Chapter 52, we develop GPU techniques to accelerate VLSI placement.
VLSI placement decides the positions of cells on the chip, and the place-
ment result will have a significant impact on subsequent steps in the physical
design flow. To derive a good placement, state-of-the-art VLSI placement
methods adopt an analytic approach which typically involves a huge amount
of computation and is therefore very time-consuming. In this chapter, we
propose to use GPU to accelerate the wirelength and density computations
in VLSI placement. We utilize the sparse graph property to speed up the
wirelength computation via sparse matrix multiplication, For density com-
putation, we come up with a computation flattening technique to mitigate
the load balancing issue, and we take advantage of the CUDA stream to
overlap the data transfer with computation to further reduce the overhead.
The experiment results show GPU can bring considerable performance gain
to VLSI placement.

'Part of the content in this chapter was published in IEEE High Performance Extreme
Computing Conference, 2019 [3], and is used here with permission.

2The content of this chapter was previously published in Design, Automation and Test
in Europe Conference, 2018 [4], and is used here with permission.

Finally, in Chapter 6%, we demonstrate a distributed power grid analy-
sis framework using DtCraft [6]. DtCraft is a distributed execution engine
that takes a stream graph and automatically deploys the computations on
the machines in a cluster. In the stream graph model, users encapsulate
the computations in nodes which will be invoked when data arrive, and the
directed edges specify the data flow between nodes. With the stream graph
abstraction, the proposed framework can perform flexible domain decom-
position regardless the available hardware resources. We have conducted
experiments to show the framework’s flexibility. In addition, we also propose
a new scheduler that can better utilize the cluster resource to improve the

performance.

3The content of this chapter was previously published in Great Lakes Symposium on
VLSI, 2018 [5], and is used here with permission.

CHAPTER 2

CPP-TASKFLOW PROGRAMMING
SYSTEM

In this chapter, we review a C++ parallel programming library: Cpp-Taskflow
proposed by Huang et al. [1]. Cpp-Taskflow is motivated by an EDA applica-
tion: OpenTimer [7], which is a circuit timing analysis tool. Timing analysis
is a crucial part of the physical design flow and is very time-consuming.
To speed up OpenTimer, the authors need an efficient way to program the
parallel patterns which are highly irregular. As a result, they develop Cpp-
Taskflow to serve for this purpose. Compared to existing parallel program-
ming libraries such as OpenMP [8] and Intel Threading Building Blocks
(TBB) [9], writing parallel code with Cpp-Taskflow is relatively easy, es-
pecially for complex parallel patterns. The evaluation of OpenTimer has
shown that Cpp-Taskflow can achieve comparable performance to OpenMP
with taking much less coding effort [1]. We will go over Cpp-Taskflow’s pro-
gramming model, user interface, software architecture and execution flow in

the following sections.

2.1 Task Dependency Graph

The programming model of Cpp-Taskflow is task dependency graph which is
a directed acyclic graph. In task dependency graph, a node is a task which
encapsulates a computation to be executed on a thread, and the directed
edges describe the dependency between nodes. To use Cpp-Taskflow, users
have to first decompose the application into dependent tasks, and then specify
the task dependency by adding directed edges between tasks. Listing 2.1 is
an example of using Cpp-Taskflow to construct a task dependency graph. In
this example, we first create an object of type tf::Taskflow, and then use
the emplace method to add four lambda objects to create four tasks. The

emplace method returns a tf::Task object, and we can use the precede

method to specify the dependency between those task objects. The lambda
objects will be stored in the tasks and invoked during runtime. For the tasks
which do not take any input argument, we call them static tasking. Static
tasking means those tasks will not make any change to the task dependency
graph at runtime.

In contrast to static tasking, dynamic tasking allows a task to spawn
new task dependency graph during graph execution. Both static and dy-
namic taskings are constructed by the emplace method, and the major dif-
ference is that dynamic tasking has to take an input argument of type
tf::SubflowBuilder. Listing 2.2 shows an example of dynamic tasking. The
subflow object can be used to create a task dependency graph via the afore-
mentioned graph construction methods. The task graph in the subflow ob-
ject will be scheduled to execution after the parent task ends. There are
two modes that users can select to schedule the subflow graph: joined and
detached modes. The joined mode guarantees the subflow graph will fin-
ish before scheduling the successor tasks of its parent task, while in detached
mode there is no restriction on the execution order between the subflow graph
and the parent graph. Dynamic tasking allows users to flexibly create task
dependency graphs during runtime to generate more parallelism. Another
benefit of dynamic tasking is to enable users to implement common comput-
ing patterns such as recursion, where the number of tasks in those patterns
cannot be known before execution

When the task dependency graph is constructed, the graph can be dis-
patched to execution via either the taskflow object’s wait_for_all, dispatch
or silent_dispatch method. The wait_for_all method will block the caller
until the task graph finishes execution. In contrast, the dispatch method
returns a std::shared_future object to let the caller query the execution
status asynchronously, while the silent_dispatch method does not return
anything. Once a task dependency graph is dispatched to execution, the task
graph will be destroyed at the end of execution.

tf:: Taskflow flow;

int a,b,c,d;

// Create tasks

/

auto A = flow.emplace([&](){ a = 1; });

auto B = flow.emplace([&](){ b=a + 1; });
auto C = flow.emplace([&](){ ¢ =a + 1; });
auto D = flow.emplace([&](){ d =b + ¢; });

// Specify dependency
A.precede (B, C);
B.precede (D) ;
C.precede (D) ;

Listing 2.1: Create a task dependency graph using Cpp-Taskflow.

tf:: Taskflow flow;

// Dynamic tasking

auto S = flow.emplace ([](auto &subflow){

// Use subflow to construct a task dependency graph
auto S1 = subflow.emplace ([](){ printf(”S1\n"); });

auto S2 = subflow.emplace ([](){ printf(”S2\n"); });
auto S3 = subflow.emplace ([](){ printf(”S3\n"); });
auto S4 = subflow.emplace ([](){ printf(7S4\n"); });

S1.precede (S2, S3, S4);
1)

Listing 2.2: Dynamic tasking in Cpp-Taskflow.

2.2 Software Architecture and Execution Flow

In this section, we will go over Cpp-Taskflow’s main data structures and
describe the task graph execution flow. A taskflow object internally stores a
task graph (tf::Graph) and an executor(tf: :Executor). A task graph is a
list of nodes (tf: :Node) where each node stores a callable object [10], and
other graph related data such as pointers to successors and a dependency
counter (number of predecessors). Whenever the emplace method is called,

the taskflow object creates a node and forwards the given task to the node’s

callable object. The callable object will invoke the task and schedule its
successor tasks at runtime. Algorithm 1 is the content of the callable object.
In the invoke_task function, the captured task is invoked first based on its
tasking type (line 1-17). For static tasking, we simply invoke the task without
giving any input argument (line 1-4). If the task is dynamic tasking, we
invoke the task with a subflow object (line 6-9). Next, if the dynamic tasking
is in joined mode, we let the sink tasks of the subflow object precede parent
task (line 10-12) and schedule the source tasks (line 13), and then terminate
the invoke_task function (line 15). The direct termination is to ensure
correct execution order in joined mode, where the new spawned task graph
needs to finish before scheduling the parent task’s successors. Otherwise, if
the mode is detached we directly schedule the source tasks in the subflow
object (line 13) and proceed to schedule the successor tasks. After the task
has been invoked, we decrement the dependency of its successor tasks (line
19-27). The successor tasks whose dependency is met will be immediately
dispatched to execution (line 21-25).

An executor is a thread pool that maintains a set of threads to carry
out dispatched tasks, and Cpp-Taskflow adopts a work-stealing method to
balance the workload between threads [11]. The executor spawns a set of
threads (denoted as workers) on initialization. Each worker has a local queue
and a cache to store the tasks ready for execution. The local queue is a
double-ended queue which allows the owner to add and pop tasks from the
bottom, while others can only steal tasks from the top [12]. The cache is
a task holder that enables a worker to reserve a ready task for continuous
execution. In addition to the local queues, the executor maintains a master
queue for non-worker threads to add tasks. A worker will first carry out all
tasks in local queue and cache. Then, the worker tries to randomly steal
tasks from other workers and the master queue. Once the steal succeeds, the
worker will execute the task and repeat the whole procedure. If the worker
fails to obtain any task after a fixed number of steals, the executor suspends
the worker by adding the worker into a idler list. To improve both load
balancing and performance, a worker will attempt to wake up a suspended
worker based on a probability.

Here we use Figure 2.1 as an example to illustrate task dependency graph
execution with two workers: W1 and W2. For simplicity, we assume workers

will not be suspended before the graph finishes execution, and workers can

Algorithm 1: The invoke_task function.
Input: node
Input: task: the given task stored in node
Input: executor
Input: w: the worker

1 if t == static tasking then

2 /* Static tasking x/

3 invoke(t);

4 else

5 /* Dynamic tasking */

6 subflow «— node.subgraph();

7 if ¢ has never been invoked then

8 | invoke(t, subflow);

9 end

10 if subflow.joined() then

11 | subflow.sink_tasks().precede(node);

12 end

13 schedule(subflow.sources());

14 if subflow.joined() then

15 return ;

16 end

17 end

18 /* Update the dependency of successor tasks x/

19 for s € node.successors() do

20 if AtomDec(s.dependencies) == 0 then

21 /* If the dependency is met, dispatch the successor
task to execution */

22 if w.cache # NIL then

23 | executor.schedule(w.cache);

24 end

25 w.cache < s;

26 end

27 end

immediately steal the task if there exists one. Figure 2.1 is a task dependency
graph with eight tasks (not including the graph spawn by dynamic tasking).
Whenever a graph is dispatched to execution, Cpp-Taskflow first creates an
object of type tf::Topology to record the runtime data of the graph. The
topology object collects the tasks without predecessors (denoted as source
tasks, e.g. task A and B) in the task graph, and lets the tasks without

successors (denoted as sink tasks, e.g. task G and H) precede a node which

Figure 2.1: An example to illustrate executing a task dependency graph.
The numbers in red are the required execution time of tasks. The red edge
is added deliberately by executor to respect the execution order.

will set up the future object at the end of execution. After the topology
object has built up, the source tasks are added into the executor’s master
queue to initiate the execution. In this example we assume W1 gets task A
and W2 gets task B in the beginning. Next we illustrate the task execution

along the timeline below:

1. T=1, task B finishes and W2 decrements the dependency of task C. Since

W2 has no remaining tasks, W2 will start stealing tasks randomly.

2. T=2, task A finishes and W1 decrements the dependency of task C. Since

task C’s dependency is met, W1 will continue executing task C.

3. T=5, task C finishes and a new task graph is spawned. W1 lets task C3
precede its parent task C. Then, W1 will cache task C1 and add C2 to
W1’s local queue. W2 subsequently steals task C2 from W1.

4. T=6, task C2 finishes and W2 decrements the dependency of C3.
5. T=7, task Cl1 finishes and W1 continues execution on task C3.

6. T=9, task C3 finishes. W1 will revisit task C and decrement the depen-
dency of task D, E and F. Task D will be cached by W1 and tasks E and
F will be added to W1’s local queue. Then, W2 steals task E from W1’s

queue.

7. T=10, task E finishes and W2 decrements the dependency of task G and
H. W2 steals task F from W1’s queue.

9

10.

11.

. T=11, task F finishes and W2 decrements the dependency of task H. W2

continues executing task H.

. T=12, task H finishes. W2 has no tasks in local queue and thus starts

random stealing.

T=13, task D finishes and W1 decrements the dependency of task G. W1

continues executing task G.

T=15, task G finishes. Now all sink nodes are executed and W1 will set
up the future object and mark the task graph as finished.

10

CHAPTER 3

ADAPTIVE WORK-STEALING
SCHEDULER

3.1 Introduction

Work stealing has been proved to be an efficient approach for parallel task
scheduling on multi-core systems and has received wide research interest over
the past two decades [11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. Several
task-based parallel programming libraries and language have adopted work-
stealing scheduler as the runtime for thread management and task dispatch
such as Intel Threading Building Blocks (TBB) [9, 24}, Cilk [13, 25], X10 [19,
26], Nabbit [27], Microsoft Task Parallel Library (TPL) [28], and Golang [29].
The efficiency of the work-stealing scheduler can be attributed to the way
it manages the threads: The scheduler spawns multiple threads (denoted as
workers) on initialization. Each worker has a double-ended queue storing
the tasks ready for execution, and a worker can only add newly spawned
tasks into its queue. A worker first carries out all tasks in its queue, and
then becomes a thief to randomly steal tasks from others. When a thief
has successfully stolen a task, it restores to a normal worker and commences
executing the task. The key is to have thieves actively steal tasks. By
doing this the scheduler is able to balance the workload and maximize the
performance.

However, implementing an efficient work-stealing scheduler is not an easy
job, especially when dealing with a task dependency graph where the par-
allelism could be very irregular and unstructured. Due to the decentralized
architecture, developers have to sort out many implementation details to ef-
ficiently manage workers such as deciding the number of steals attempted
by a thief and how to mitigate the resource contention between workers.
The problem is even more challenging when considering throughput and en-

ergy efficiency, which have emerged as critical issues in modern scheduler

11

designs [15] [30]. The worker management can have a huge impact on these
issues if it is not designed properly. For example, a straightforward method
is to keep workers busy in waiting for tasks. Apparently, this method con-
sumes too much resource and can result in a number of problems, such as
decreasing the throughput of co-running multithreaded applications and low
energy efficiency [15] [30]. Several methods have been proposed to remedy
this deficiency, e.g., making thieves relinquish their cores before stealing [16]
or backing off a certain time [17] [24], or modifying OS kernel to directly
control CPU cores [15]. Nevertheless, these approaches still have drawbacks,
especially from the standpoints of solution generality and performance scal-
ability.

In this chapter, we propose a work-stealing scheduler with provably good
worker management for executing task dependency graphs. Our scheduler
employs a simple yet effective strategy that adaptively adjusts the number
of thieves by tracking the number of workers that are executing tasks. This
strategy has three advantages: First, it ensures one thief will keep looking for
tasks when any worker is executing tasks, which can prevent resource from
being underutilized. Second, our strategy only uses a reasonable number of
workers to meet the parallelism at any time, which can minimize the resource
waste without compromising performance. Lastly, this strategy has very little
overhead. Workers can quickly carry out their tasks without being slowed
down by the extra management work. With this strategy, our scheduler can
make efficient use of workers to achieve good performance under different
parallelism. Meanwhile, this strategy effectively mitigates the resource waste
by reducing unnecessary steals, and therefore our scheduler is energy-efficient
and can maintain good throughput when co-running multithreaded processes.

We summarize the contributions of our scheduler below:

e An adaptive scheduling strategy: We develop an adaptive scheduling
strategy for executing task dependency graph. The strategy is simple; no
sophisticated data structures or complex algorithms are required and thus
the overhead is small. The experimental results show our scheduler can

efficiently utilize CPU resource to achieve good performance.

e Provably good worker management: We proved our scheduler can
prevent the under-subscription problem and effectively mitigate the over-

subscription problem. Our scheduling algorithm is efficient in balancing

12

working threads on top of available task parallelism.

e Energy efficiency: Our scheduler is very energy-efficient in that it re-
serves thieves to steal only when there exists a worker executing tasks.
We also show that our scheduler will put most thieves put into sleep when

tasks are scarce, which effectively reduces resource waste and saves energy.

We evaluated the proposed scheduler on two benchmark sets: a set of micro-
benchmarks and a very-large-scale integration (VLSI) timing analyzer. We
use the Linux utility perf to measure the CPU utilization, runtime and
energy usage of ours and the scheduling approach proposed by Aurora et
al. [16] (denoted as ABP) and a modified approach from Ding et al. [15]. The
micro-benchmarks show our scheduler can utilize the computing resources ef-
fectively to accommodate different degrees of parallelism. Specifically, in an
extreme case with linear task graph, the CPU utilization of our scheduler
is 1.2 while ABP is 31.9, which highlights the effectiveness of our sched-
uler’s worker management. The second experiment is a real workload: VLSI
static timing analysis. This experiment demonstrates that the scheduler
not only achieves scalable performance but is also energy-efficient. On the
largest circuit, our scheduler achieves 15% less runtime and 36% less energy
consumption than ABP. Finally, we show the scheduler can maintain good

throughput when co-running multithreaded applications.

3.2 Adaptive Work-Stealing Scheduler

In this section we present the details of the proposed work-stealing scheduler.
We first outline our scheduler’s architecture and associated data structures.
Next we describe the proposed worker management approach and its imple-
mentation with pseudo code. Lastly, we provide an analysis on our worker

management to show its efficiency.

3.2.1 Scheduler Overview

Figure 3.1 shows a task dependency graph (left) and the architecture of the
proposed scheduler (right). Our scheduler consists of a set of workers, a

master queue, a lock and a notifier. On initialization our scheduler spawns

13

—> Dependency ’ Task g Worker Cache
Queue

(5 T

w (@ |

g g %

Master [)

queue Notifier /

Task dependency graph Scheduler

Figure 3.1: A task dependency graph and the architecture of our scheduler.

workers waiting for tasks. FEach worker is equipped with a queue and a
cache to store tasks ready for execution. After users create a task graph,
they add the source nodes to the master queue and notify workers via the
notifier to start execution. Algorithm 2 is the pseudo code of task insertion
from users. In Algorithm 2, users first acquire the lock (Algorithm 2 line
1) which prevents concurrent insertion to the master queue. Then users add
tasks into the master queue (Algorithm 2 line 2:4) and notify waiting workers
(Algorithm 2 line 6). A worker will continue pulling tasks from its queue or
others (including the master queue) for execution. When a worker finishes
a task, it automatically adds successive tasks ready for execution to its own
queue or cache. A worker’s queue allows only the owner to add tasks, while
only non-worker threads (such as the main thread controlled by users) can
add tasks into the master queue. A cache is simply a task holder and only
the owner can access its cache. The cache enables the worker to prefetch a
task when the worker adds tasks. For example, in Figure 3.1 a worker can
add the task B into its cache and C to its queue after it finishes the task A.

With the cache, we can facilitate task retrieval by reducing the queue access.

14

Algorithm 2: Task insertion from users
Input: tasks: a set of ready tasks

1 lock();

2 for t in tasks do

3 ‘ master_queue.push(t);

4 end

5

6

unlock();
notifier.notify_one();

3.2.2 Data Structures

The queue and the notifier are two important data structures in our scheduler.
We implement the queues (both the worker’s queue and master queue) based
on the Chase-Lev algorithm [12] [31]. Access to the queue is non-blocking
and the queue capacity can grow if more space is needed. The queue provides

three operations:

1. Push: Add a task into the bottom of the queue. Only the queue’s owner

can use this operation.

2. Pop: Retrieve a task from the bottom of the queue. Only the queue’s

owner can use this operation.

3. Steal: Retrieve a task from the top of the queue. Any worker can use this

operation.

The notifier is a synchronization component that is capable of (1) putting
workers that are waiting for tasks into sleep and (2) notifying one or all wait-
ing workers when new tasks are present or the scheduler terminates. In our
scheduler, we use the EventCount struct from the Eigen library [32] as the
notifier. The usage of EventCount is similar to a condition variable. The
notifying thread sets a condition to true and then signals waiting workers
via EventCount. On the other side, a worker first checks the condition and
returns to work if the condition is true. Otherwise, the worker updates the
EventCount to indicate it is waiting and checks the condition again. If the

condition is still false, the worker is put into sleep via the EventCount.

15

3.2.3 Worker Management

Recall that our scheduler spawns workers on initialization and Algorithm 3
contains the pseudo code for spawning workers and a worker’s control flow.
In the spawn function, the scheduler spawns N workers where N is specified
by users. The scheduler makes workers execute the worker_loop function
after they are spawned. The worker_loop function consists of two steps. In
the first step exploit_task, a worker executes a ready task and the tasks in
its queue (Algorithm 3: line 10) until its queue becomes empty. Next, the
worker leaves the exploit_task and calls the wait_for_task (Algorithm 3:
line 11) to start stealing tasks. If the worker successfully steals a task, it
returns from the wait_for_task and repeats the first step. Otherwise, the
worker is put into sleep via the notifier to wait for task notification. When
the scheduler terminates, the wait_for_task returns false and the worker

exits the while-loop.

Algorithm 3: spawn

Input: N: number of workers
1 Function spawn(N):

2 for i < 0 to N do

3 | workers.emplace_back(worker_loop(i));
4 end

5 ;

6 Function worker_loop(id):

7 w «— workers[id];

8 t < NIL;

9 while true do

10 exploit_task(t, w);

11 if wait_for_task(t, w) == false then
12 ‘ break;

13 end

14 end

15 return

One major contribution of this work is the adaptive scheduling algorithm,
which is implemented in the exploit_task and wait_for_task functions.
The main idea of this algorithm is to maintain at least one thief (except
when all workers are executing tasks) when a worker is executing tasks. This
is different from prior research where they unconditionally keep one or more

thieves busy in waiting tasks [15][16], whereas we keep thieves only when

16

there exists potential parallelism. We achieve this by using two counters:
num_actives and num_thieves to adaptively adjust the number of thieves.

Algorithm 4 is the pseudo code of exploit_task function. In this function,
the worker first increments the num_actives (Algorithm 4: line 2) and checks
the num thieves (Algorithm 4: line 2). If num thieves is zero and this
is the first increment on num_actives, then the worker notifies a waiting
worker (Algorithm 4: line 3) and proceeds to execute the task. The worker
continues fetching and executing tasks from its cache (Algorithm 4: line 8)
and queue (Algorithm 4: line 10) until both become empty. Then the worker
decrements the num_actives (Algorithm 4: line 13) and returns. Obviously,
the num_actives records the number of workers that are executing tasks,
and a non-zero num_actives implies there could be tasks in a queue.

After a worker returns from exploit_task, the worker starts stealing tasks
by invoking the wait_for_task function. Algorithm 5 is the pseudo code of
the wait_for_task function. In the wait_for_task, the thief first increments
the num thieves (Algorithm 5: line 2) and conducts random stealing by
invoking the explore_task function (Algorithm 5: line 4). Algorithm 6 is
the pseudo code of the explore_task function. In the explore_task, the
thief first randomly selects a victim (Algorithm 6: line 4) which could be
other workers or the master queue. Then it tries to steal a task from the
victim (Algorithm 6: line 5:9). If the steal fails, the thief will attempt to steal
for a certain number of times. When the number of failed steals is greater
than a pre-defined threshold, steal_bound (Algorithm 6: line 14), the thief
invokes a yield system call every time after each failed steal. A thief stops
stealing if it still cannot obtain any task after yielding yield bound times
(Algorithm 6: line 17). The thief returns from explore_task in either one

of the three conditions:

e The thief successfully steals a task (Algorithm 6: line 11).
e The scheduler terminates (Algorithm 6: line 3),

e The thief fails to obtain any task after a fixed number of attempts (Algo-
rithm 6: line 18).

In the first case, the thief decrements num thieves (Algorithm 5: line 5)
and notifies a waiting worker if it is the last thief (Algorithm 5: line 6). For
the other two cases, the thief first updates the notifier (Algorithm 5: line

17

10) to indicate it is waiting. Next the thief checks the master queue and
tries to steal a task if the queue is non-empty (Algorithm 5: line 11:22).
The thief returns (Algorithm 5: line 18) if it successfully steals a task from
the master queue or goes back to steal tasks if it failed (Algorithm 5: line
20). Otherwise, the thief proceeds to check the scheduler’s status. If the
scheduler shuts downs (Algorithm 5: line 23), the thief notifies all waiting
workers (Algorithm 5: line 25) and then decrements the num thieves and
returns. If all preceding conditions do not hold, the thief decrements the
num_thieves and then either continues to steal if num_actives is non-zero
(Algorithm 5: line 31) and it is the last thief, or goes into sleep (Algorithm 5:
line 33).

Algorithm 4: exploit_task
Input: ¢: a task holder, w: the worker’s data structure

1 if t # NIL then

2 if AtomInc(num_actives) == 1 and num_thieves == 0 then
3 | notifier notify_one();

4 end

5 do

6 execute(t);

7 if w.cache # NIL then
8 ‘ t < w.cache;

9 else

10 ‘ t < pop(w.queue);
11 end

12 while t # NIL;

13 AtomDec(num_actives);

14 end

3.2.4 Analysis

We show the scheduler’s worker management is very efficient in two fronts:
(1) At least one thief exists when there is a worker executing tasks. (2) It
mitigates the thieves over-subscription problem by putting most thieves into

sleep after they failed to steal. We first define the states of a worker:

Definition A worker is active if it is exploiting tasks (Algorithm 4: line

2:13), otherwise, the worker is inactive.

18

Algorithm 5: wait_for_task

© 0w N o ok W N =

W W W W W ON N NN NN NN NN R R R e e e e e e e
RO N R O © ® N 6 A W KN = O © ® N O Gk WK = O

Input: ¢: a task, w: the worker’s data structure
Output: A Boolean value to indicate continuation of worker-loop
wait_for_task:
AtomlInc(num_thieves);
explore_task:
if explore_task(t,w) and t # NIL then

if AtomDec(num_thieves) == 0 then

| notifier.notify_one();

end

return true;
end
notifier.prepare_wait(w);
if master_queue is not empty then
notifier.cancel_wait(w);
t < steal(master_queue);
if t # NIL then

if AtomDec(num_thieves) == 0 then

| notifier.notify_one();

end

return true;
else

‘ go to explore_task;

end
end
f scheduler stops then
notifier.cancel_wait(w);
notifier.notify_all();
AtomDec(num_thieves);
return false;
end
if AtomDec(num_thieves) == 0 and num_actives > () then
notifier.cancel_wait(w);
go to wait_for_task;
end
notifier.commit_wait(w);
return true;

[

Definition An inactive worker is sleeping if it has been suspended by the
notifier (Algorithm 5: line 33).

Definition An inactive worker is a thief if it is not exploiting tasks (Algo-

19

Algorithm 6: explore_task
Input: ¢: a task holder, w: the worker’s data structure
Output: ¢

1 num_failed_steals < 0;

2 num_yields < 0;

3 while scheduler not stops do

4 victim <— random();

5 if victim == w then

6 |t « steal(master_queue);

7 else

8 |t <+ steal_task_from(victim);

9 end

10 if t # NIL then

11 ‘ break;

12 else

13 num_failed_steals < num_failed_steals + 1;
14 if num_failed_steals > steal_bound then
15 yield();

16 num_yields < num_yields + 1;

17 if num_yields == yield_bound then
18 ‘ break;

19 end

20 end

21 end

22 end

rithm 4: line 2:13) nor sleeping.

Lemma 1. When a worker is active and at least one worker is inactive, one

thief always exists.

Proof. Assume there exists one active worker and one inactive worker. The
inactive worker is either awake (Algorithm 5: line 1:28) or sleeping (Algo-
rithm 5: line 33). If the inactive worker is awake, then it is a thief and
the lemma holds. Otherwise the inactive worker is sleeping and it must
have decremented the num_thieves without seeing any active worker (Algo-
rithm 5: line 29). This happens only when the active worker just enters the
exploit_task function and is about to increment num_actives (Algorithm 4:
line 2). Subsequently the active worker shall wake up a thief (Algorithm 4:

line 3) and the lemma holds.
U

20

Lemma 1 is important to our scheduler as it prevents the under-subscription

problem.

Definition An under-subscription problem means:
T=0 and 0<Q < W
where

(@ : number of non-empty queues
(excluding the master queue)
T : number of thieves

W : number of total workers

In the following discussion we exclude two special conditions where all
workers are active and all workers are inactive. An under-subscription prob-
lem occurs when all thieves go into sleep (i.e. 7' = 0) while at least one
queue is non-empty. The under-subscription problem degrades the sched-
uler’s performance since the scheduler does not fully exploit the available
parallelism. With Lemma 1, we show that our scheduler does not have the

under-subscription problem:

Lemma 2. Our work-stealing scheduler always has

0<T if 0<@<W

Proof. In our scheduler a worker is active if its queue is non-empty (Algo-
rithm 4):
Q<A

where A is the number of active workers, and by Lemma 1:
T'>1 it 0<A<W
Combining these two inequalities, we have:

0<T if 0<Q<A<W

21

Lemma 2 guarantees at least one thief exists when there is a non-empty
queue, which prevents the under-subscription problem. Lemma 2 also enables
us to offload the task notification from active workers to thieves. In our
scheduler workers do not need to notify waiting workers when spawning new
tasks. Instead, a thief will notify a waiting worker when the steal succeeds
and it is the last thief that decrements the num_thieves (Algorithm 5: line
5:6). This allows active workers to quickly add new tasks without being
stalled by the notification.

Our scheduling method not only prevents the under-subscription problem
but can also mitigate the over-subscription problem. The over-subscription
problem means the number of thieves is greater than the number of available
tasks. Mitigating the over-subscription problem is very important for two
reasons: First, excessive thieves will cause substantial resource wasted on
failed steals if they persist for a long time. Second, excessive thieves and
active workers might contend for resource, which can result in inefficient
resource utilization. We now show the scheduler will put most thieves into

sleep within a time bound if they fail to steal any task.

Definition Assume there exists more than one thief. We call these thieves
a group and a thief leaves the group if it goes into sleep (Algorithm 5: line
33) or successfully steals a task (Algorithm 6: line 10).

Given a group, we prove that only one thief exists in the group after a
certain time. This implies most thieves will go into sleep when there are
no sufficient tasks. In the following proof, we assume the master queue is
empty since thieves will check the master queue before going to sleep. For
better description, we denote the constants steal bound and yield bound

in Algorithm 6 as o and (3, respectively.

Lemma 3. Given a group of thieves, only one thief in the group exists after
O((a+ B) %S+ C) time, where S is the time to perform a steal and C' is a

constant.

Proof. Given a group of thieves, we call the thief that lastly decrements
the num_thieves (Algorithm 5: line 5 and 29) in this group as the last thief.
Thieves in a group except the last thief must either (1) become active workers
if they successfully steal tasks (Algorithm 5: line 4) or (2) go into sleep
(Algorithm 5: line 33) after they decrement the num_thieves. Therefore,

22

eventually only one thief stays in the group when the last thief performs the
decrement. Next we analyze the runtime taken by the last thief to do the
decrement. There are two cases: the last thief either successfully steals a
task (Algorithm 5: line 4) or fails to steal any task (Algorithm 5: line 29).
For the first case, the runtime is bounded by O((a+) x S) where S is the
time of conducting one steal and (a + /) is the maximum number of steals
that can be attempted. For the second case, the last thief will go through

following steps:
1. Perform (a + B) steals (Algorithm 5: line 4).
2. Prepare for sleep (Algorithm 5: line 10).

3. Check the master queue (Algorithm 5: line 11) and the scheduler status
(Algorithm 5: line 23).

Because steps 2 and 3 are simple routines, we use a constant C' to denote
the maximal total runtime took by these two steps. Then the runtime of the
second case is bounded by O((a+) * S+ C). Therefore, the runtime for the
last thief to perform the decrement will be bounded by O((a+3)+xS+C). O

To sum up, we proved our scheduler can prevent the under-subscription
problem (Lemma 2) and effectively mitigate the over-subscription problem
(Lemma 3). Our scheduling algorithm is simple and efficient in balancing
working threads on top of available task parallelism. We will demonstrate

the practical performance in the experiment results.

3.3 Evaluation

We evaluated our scheduler using a set of micro-benchmarks and a timing
analyzer for VLSI systems. We compare our scheduler with two approaches:
the ABP method [16], and the MBWS which is modified from the BWS of
Ding et al. [15]. For fair comparison, we implement all scheduling methods
in Cpp-Taskflow. We briefly summarize our implementation of ABP and
MBWS: ABP lets thieves repeatedly steal until they succeed, and thieves
will invoke yield system call every time before attempting a steal. BWS [15]
introduces two methods to enhance ABP’s resource utilization: (1) BWS

modifies the OS kernel so that workers can query the running status of others

23

and yield their cores directly to others. (2) BWS uses two counters, a wake-
up and a steal counter, to make thieves wake up two sleeping workers for
busy workers and limit the number of steals a thief can attempt. We modify
BWS as follows: First, we do not modify the OS kernel as we aim for a
portable solution that does not introduce system-specific hard code. To
compensate for this, we associate each worker with a status flag which is
set by the owner to inform its current status, and thieves do not yield their
cores. Second, we implement the modified counter-based approach in the
explore_task function. As multiple thieves can concurrently modify the
wake-up counter, we use atomic compare-and-swap operation to decrement
the wake-up counter. A deficiency of BWS is that all thieves could be sleeping
while the parallelism changes. To resolve this problem, BWS has to keep one
watchdog worker which never goes into sleep to prevent missing parallelism.
We also implemented this mechanism in MBWS by having a thief continue
to steal if it is the last one that decrements the num_thieves. Notice that
the modified BWS may not be reflective of the true implementation but it
provides a good reference to implement the wake-up-two heuristic.

We conducted all experiments on a machine with two Intel Xeon Gold
6138 processors (2 NUMA nodes) and 256 GB memory. Each processor has
20 cores with 2 threads per core. The OS is Ubuntu 19.04 and the compiler
is GCC 8.3.0. We compile all source code with the optimization flag 02
and C++ 17 standard flag (-std=c++17). To reduce the impact of thread
migration, we use the system command taskset to bond the threads to a
set of cores, and we split the threads evenly on the two processors. The
steal bound is set to 2 % (number of workers + 1) and the yield bound is
100. For MBWS we adopt 64 as the SleepThreshold, which is the same
as the experiment setting in [15]. We report the results measured by Linux

profiling utility perf.

3.3.1 Micro-benchmarks

We select four micro-benchmarks with different kinds of parallelism. This
experiment is to provide insight into the schedulers” CPU utilization under

various task dependency graphs.

e Linear chain: The task graph is a singly connected list, i.e. each task has

24

one successor and one predecessor except the first and last tasks. Each

task increments a counter by 1. The size of the graph is 8388608.

e Binary tree: The task graph is a binary tree, i.e. each task has one prede-
cessor and two successors except the root and leaf tasks. The task has no
computation. The size of the graph is 8388607.

e Graph traversal: We generate a task graph where the dependency is ran-
domly determined, and the number of successors of a node is bounded by
a given value. Fach task sets a Boolean variable to true to indicate the
associated node is visited. The size of the graph is 4000000.

e Matrix multiplication: Given three matrices (2-D array with size 2048x2048),
we create a task graph to perform the matrix multiplication. The task
graph has two levels: (1) In the first level each task initializes the elements
in a row of a matrix. (2) In the second level each task computes a row in
the resulting matrix. Tasks in the same level are independent of each other
and we create an empty task to synchronize the first level before starting

the second level.

In this experiment, we vary the number of cores among 1, 4, 8, 12, 16,
20, 24, 28, 32, 36 and 40. We first compare the schedulers’ performance
and CPU utilization in all four cases. Then we vary the task granularity
of two benchmarks with irregular and regular dependency to observe their
performance, CPU utilization and energy consumptions. For each scheduler
we report the average value of ten runs on each benchmark (the command is
perf stat -r).

Figures 3.2 and 3.3 show the runtime and CPU utilization of each bench-
mark, respectively. For the linear chain, the runtime does not decrease when
adding more cores. This is expected as the linear chain has no parallelism
at all and one core should suffice for the execution. The CPU utilization of
ABP increases along with the number of cores while both MBWS and ours
remain nearly uninfluenced. In fact, the CPU utilizations of MBWS and ours

stay around 2.0 and 1.2 from 4 to 40 cores respectively.

25

Runtime (s)

Runtime (s)

o

-

o

ot

I

w

o
IS

S

=
o

W

Linear Chain

T T T T

S —— Ours |
—=MBWS

5 —— ABP |
X +

L /\ i

L ~/ i

L o TN |

L L L L L L]
0 10 20 30 40

Number of cores

Graph Traversal

—— Ours
—=MBWS ||
—— ABP

0

I
10

20

30

Number of cores

Runtime (s)

Runtime (s)

Binary Tree

—— Ours
—=MBWS
—— ABP

o

WW

3. \ \ \

NG

.
0 10 20 30 40
Number of cores

Matrix Multiplication

: :
—e— Ours
40 1 = MBWS
—— ABP
30
20
10
0 C L L L L

0

I
10

20

30

40

Number of cores

Figure 3.2: Runtime comparisons between ours, MBWS, and ABP on
micro-benchmarks.

CPU utilization

CPU utilization

30

20

10

15+

10

Linear Chain

—— Ours

-=—MBWS /)
—— ABP //

I I | | |

0 10 20 30 40

Number of cores

Graph Traversal

T T T T
—— Ours
-=—MBWS
—— ABP

.
0 10 20
Number of cores

CPU utilization

CPU utilization

Binary Tree

T T T T
—— Ours
—=MBWS
—— ABP

30

20

10 -

.
0 10 20 30
Number of cores

Matrix Multiplication

—— Ours
—=MBWS
—— ABP

30 -

20

10 |-

.
0 10 20 30 40
Number of cores

Figure 3.3: CPU utilization comparisons between ours, MBWS,
on micro-benchmarks.

26

and ABP

Runtime (s)

Runtime (s)

Figure 3.4: Runtime comparisons between different task granularities

0.5M iterations per task

—— Ours
-~ MBWS
8t —— ABP -
G |- 4
4 |-
|

10 20
Number of cores

1.5M iterations per task

S

—— Ours
-~ MBWS |
—— ABP

\
10 20 30
Number of cores

(number of iterations).

CPU utilization

CPU utilization

0.5M iterations per task

—e— Ours P~
15 H-s- MBWS / 1
—— ABP / \‘
101 1
5 |- -
0 10 20 30 40
Number of cores
1.5M iterations per task
—— Ours —
15 [|-== MBWS \/ 1
—— ABP
10 1
5]
= ‘ A

10 20 30 40

Number of cores

Runtime (s)

Runtime (s)

CPU utilization

CPU utilization

1M iterations per task

—e— Ours
12 —s-MBWS |4
—— ABP
10 - B
8 |- 4
6 |- 4
4 |- 4
0 10 20 30 40
Number of cores
2M iterations per task
20 —— Ours |
—=s-MBWS
—— ABP
151 B
10F 1
5 |- 4

20
Number of cores

1M iterations per task

ot

| |-e— Ours

—=-MBWS
—— ABP

o

I I
10 20 30 40

Number of cores

2M iterations per task

T
| |-e— Ours
-~ MBWS
|—— ABP Y i

10 20 30 40

Number of cores

0

Figure 3.5: CPU utilization comparisons between different task
granularities (number of iterations).

27

Runtime (s)

Runtime (s)

Figure 3.6: Runtime comparisons between different task granularities

4 rows per task

—e— Ours
40 —= MBWS |

—— ABP
30 B
20 - A
10 - B
0 C L L L L L]

0 10 20 30 40
Number of cores
16 rows per task

—e— Ours
40 -~ MBWS |[]

—— ABP
30 B
20 B
10+ B
(Us \ \ L]

I
10

20

30

40

Number of cores

(number of rows per task).

CPU utilization

CPU utilization

w
S

20

10

30

20

10

4 rows per task

| |-=MBWS

T T T
—— Ours

—— ABP

.
10 20 30 40
Number of cores

16 rows per task

T T T T
—e— Ours

=~ MBWS
—— ABP

20 30 40

10
Number of cores

0

Runtime (s)

Runtime (s)

CPU utilization

CPU utilization

Figure 3.7: CPU utilization comparisons
granularities (number of rows per task).

28

8 rows per task

—e— Ours
40 —=- MBWS ||

—— ABP
30 B
20 B
10 - B
0 C L L L L L]

0 10 20 30 40
Number of cores
32 rows per task

—e— Ours
40| —= MBWS ||

—— ABP
30 B
20 B
10+ B
(U . . L]

I
10

20

30

40

Number of cores

8 rows per task

T T T
| |-*— Ours

—=MBWS
—— ABP

w
S

20

10

.
10 20 30 40
Number of cores

32 rows per task

T T T
—— Ours
-~ MBWS
—— ABP

30

20

10

10 20 30
Number of cores

0

between different task

40

4 rows per task 8 rows per task

4,000 |- 0o Ours || 4,000 |- Io Ours ||
O IsMBWS =z IsMBWS
= 3,000| Io ABP 2 3000] Ii ABP
3] g
0 &b
2 2,000 |- . 2 2,000 - y
= >
&6 &6
< <
5 1,000 e 5 1,000 -

14 8 1216 20 24 28 32 36 40 14 8 1216 20 24 28 32 36 40
Number of cores Number of cores
16 rows per task 32 rows per task
2,000 | I0 Ours || 4,000 00 Ours ||

e leMBWS =z IeMBWS
= 3,000 i ABP = 3,000 i ABP
() o)
o0 op
Z 2.000| 12 2000] .
g g
& 1,000| 1 & 1000) :

14 8 1216 20 24 28 32 36 40 14 8 1216 20 24 28 32 36 40
Number of cores Number of cores

Figure 3.8: Energy usage of ours, MBWS, and ABP on matrix
multiplication with different numbers of rows per task.

This example shows that although a thief can possibly yield its core to
other workers before stealing, keeping thieves awake can still incur high CPU
utilization. For the binary tree and graph traversal, the runtimes of all
schedulers drop to a stable point after 4 cores. Adding more cores does not
improve the performance as the workload of their tasks is very small and a
worker might quickly carry out all tasks in its queue before thieves discover
them. ABP has the highest CPU utilization among all schedulers and ours
is the lowest in both cases. The CPU utilization of ABP also grows more
rapidly than others in these two cases.

For the matrix multiplication, which has better scalability than the pre-
vious three cases, the runtimes of all schedulers are very close and their
CPU utilizations exhibit similar growth trends. There are two main reasons
accounting for this: (1) In the matrix multiplication, intra-level tasks are
independent of each other and those tasks have nearly equal workload. (2)

The multiplication is compute-intensive and thus the runtime is dominated

29

16 rows per task 32 rows per task

800

lo Qurs 800 |- lo Qurs |
z IIMBWS 6} ItMBWS
5 600F It ABP || 2 00| 0o ABP ||
] o)
e @
g 400(1 Z a00f |
[} (&)
200 + A =1 = N
5 200 5 200
0
12 16 20 24 28 32 36 40 12 16 20 24 28 32 36 40
Number of cores Number of cores

Figure 3.9: Energy usage of ours, MBWS, and ABP on matrix
multiplication with 16 and 32 rows per task.

by the computation rather than the scheduling overhead.

Next, we further evaluate these schedulers by tuning the task granularity.
In this experiment we select two benchmarks: graph traversal and matrix
multiplication, The former has irregular dependency between tasks, while
in the latter tasks in the same layer are independent. For each task in the
graph traversal benchmark, we deliberately add a for-loop which iteratively
performs division, and we change the loop’s number of iterations to adjust
the tasks’” workload. The numbers of iterations tested in this experiment
are 5 x 10°, 1 x 10%, 1.5 x 10° and 2 x 10°. Figure 3.4 and 3.5 are the
runtime and CPU utilization of all schedulers under different numbers of
iterations, respectively. In general, in all scenarios adding more cores can
improve all schedulers’ performance. The CPU utilizations of all schedulers
increase along with the number of iterations. The reason for this could be
that with more iterations a worker will take longer to execute a single task,
and this will give more time for the idle workers to steal tasks. We observe
that ABP has a noticeable fluctuation in CPU utilization, while the CPU
utilizations of ours and MBWS increase steadily. Under the same number
of iterations, ABP has the highest CPU utilization; nevertheless the runtime
of ABP is higher than others. On the contrary, our scheduler can get better
performance than both ABP and MBWS with less CPU utilization.

Finally for the matrix multiplication benchmark, we delegate the compu-
tations of multiple rows in the resulting matrix to each task to vary the work-
load. Figure 3.6 and 3.7 are the runtime and CPU utilization of all schedulers

under different numbers of rows, respectively. Regarding the performance, all

30

schedulers have very similar runtime and scalability in all workloads. For the
CPU utilization, we found that ABP has higher CPU utilization when a task
is given more rows, especially when the number of available cores increases.
Because the total number of tasks is inversely proportional to the number of
rows in a task, this result shows that ABP can cause excessive CPU usage
when there is no sufficient task. Over-subscription of the CPU resource can
lead to inefficient energy use which is shown in Figure 3.8. To clearly demon-
strate the difference, we specifically single out the energy consumptions of
16 and 32 rows with using more than 8 cores in Figure 3.9, which shows that
ABP consumes more energy than the others. For instance, ABP consumes
13.2% and 13.5% more energy than MBWS and ours respectively, when there
are 40 cores and a task is assigned 32 rows.

To conclude, our scheduler can deliver comparable performance to others
under various task dependency graphs and is more efficient in CPU utiliza-
tion. The latter can contribute a lot to the energy efficiency and throughput
of co-running multithreaded applications, which will be demonstrated later

in a large-scale workload.

3.3.2 VLSI Timing Analysis

Next we evaluate the schedulers on a real-world application: VLSI timing
analyzer. Static timing analysis (STA) plays a critical role in the circuit
design flow. For a circuit to function correctly, its timing behavior must
meet all requirements under different design constraints and environment
settings. Thus, circuit designers have to apply STA to verify the circuit’s
timing behavior during different stages in the design flow. STA calculates
the timing-related information by propagating through the gates in a circuit,
and this workload can be naturally described using a task dependency graph.
In this experiment, we use these schedulers to execute the task graph built in
OpenTimer [7], an open-source VLSI timer. We randomly generate a set of
operations which incrementally modify a given circuit and then perform STA
to update the timing. We use the circuits from TAU 2015 timing contest [33]
and the statistics of the circuits are listed in Table 3.1. For each circuit we ran
OpenTimer five times and report the average runtime and CPU utilization

recorded by perf. Figure 3.10 and 3.11 show the runtime and CPU utilization

31

Table 3.1: Statistics of circuits

Circuit # of gates (K) | # of nets (K) | # of operations
c6288 1.7 1.7 80800
c7552 1.1 1.4 80800
tv80 5.3 5.3 51000
mgc_matrix 171.3 174.5 10100
b19 255.3 255.3 10100
vga_led 139.5 139.6 30300
6288 7552 mgc. matrix
10
[10ursltMBWSIIABP | [110ursl!MBWSIPABP || 1500 ¢ In Ous ||
_8f 1 6f 1 ItMBWS
© = = lo ABP
- 6l p 51,000]
= , £ ol &~ 500
0 0
14 8 1216 20 24 28 32 36 40 14 8 1216 20 24 28 32 36 40 14 8 121620 24 28 32 36 40
Number of cores Number of cores Number of cores
tv80 b19 vgaled
a0l Io Qurs || 4000 I Ours |H It Ours
. IIMBWS || BMBWS || 3000 ItMBWS |/
Z ool 0o ABP || #3000 Il ABP || & lo ABP
% %2 oo ‘%2000 b
S 400 1 =2 =
E 5 3
~ s00 | 1= 000 A1,000
0 0

14 8 1216 20 24 28 32 36 40
Number of cores

14 8 1216 20 24 28 32 36 40
Number of cores

14 8 1216 20 24 28 32 36 40
Number of cores

Figure 3.10: Runtime comparisons between ours, MBWS, and ABP on

OpenTimer.

of each circuit respectively.

We categorize the circuits into different groups based on their sizes and

discuss the results. For those small circuits ¢6288 and ¢7552, their runtimes

do not scale with the number of cores. The CPU utilizations of all schedulers

on these two circuits increase along with the number of cores, and ABP has
the highest CPU utilization followed by the MBWS and ours is the smallest.

Next for the medium size circuit tv80, the runtimes of all schedulers decrease

after adding more cores. ABP is faster than others except at single core
and the runtimes at 40 cores are 60.4 (ours), 60.8 (MBWS) and 52.5 (ABP),
respectively. We attribute this to the overhead of notifying workers. Both

32

c6288 c7552 mgc_matrix

0100 Ours | lo Ours O Ours
g ItMBWS 5 4| '"MBWS g IIMBWS
£ 30{l ABP = o ABP < 307t ABP
= =Rl R
e = e
8] S 10 |- o 100
0 0

14 8 1216 20 24 28 32 36 40 14 8 1216 20 24 28 32 36 40 14 8 1216 20 24 28 32 36 40
Number of cores Number of cores Number of cores
tv80 b19 vgaled
40 Hle Ours 1 018 Ours 40H0e Ours

ItMBWS
Hlo ABP

ItMBWS
Mo ABP

ItMBWS
lo ABP

30

20

CPU utilization

CPU utilization

CPU utilization
S5

10 -

14 8 121620 24 28 32 36 40 14 8 1216 20 24 28 32 36 40 14 8 1216 20 24 28 32 36 40
Number of cores Number of cores Number of cores

Figure 3.11: CPU utilization comparisons between ours, MBWS, and ABP
on OpenTimer.

ours and MBWS will put thieves into sleep and notify them when tasks
present, while in ABP all thieves are kept busy in waiting for tasks. In terms
of the CPU utilization, ABP is still the highest and ours and MBWS are very
close. Lastly, for those large circuits with over 100,000 gates: mgc_matrix,
b19, and vga_led, the performance scales with the number of cores in all
schedulers. When using multiple cores, ABP is slower than others even
though ABP’s CPU utilization remains the highest. Take the largest circuit
b19 with 40 cores as an example; the runtime of ours is 5% and 15% less than
MBWS and ABP, respectively, and the CPU utilizations are 22.7 (ours), 21.7
(MBWS) and 38.5 (ABP). This experiment shows that our scheduler has
competitive performance, and can utilize the CPU resource in a reasonable
way under a large-scale workload.

Next we demonstrate the energy usage and power consumption of each
scheduler with OpenTimer. Intel has provided users the Running Average
Power Limit (RAPL) [34] interface for power management on recent proces-
sors. We use perf, which can access the RAPL interface, to measure the
energy consumed by two packages (2 NUMA nodes) during the execution

(the command is perf stat -e power/energy-pkg/ -a), and we let perf

33

c6288 c7552 ~ mgc matrix

1,200 . 10

1,500 -

= Io Ours | B000 Io Ours — lo Ours
E ItMBWS Eanl ItMBWS 1z lsMBWS

lo - lo - lo
\?/1.()()[) L ABP — 800 ABP j 1 ABP
5 5 600 E
= 5 =]
5 500 £5 400 %
P — -
: :, :
& @ 200 &)

0 0
14 8 1216 20 24 28 32 36 40 14 8 1216 20 24 28 32 36 40 14 8 1216 20 24 28 32 36 40
Number of cores Number of cores Number of cores
vga_led
V80 .~ b9 Ve
— 8| Ir OQurs | - 4r I Ours - 0o Ours
£ ItMBWS £ ItMBWS EREh IosMBWS |
2 It ABP || 3 3} i ABP || 2 i ABP
5 % 5
= > >
56 &5 &5
T - -
g 2y 1 g]
= =] =]
5] £a} £a}
0
14 8 1216 20 24 28 32 36 40 14 8 1216 20 24 28 32 36 40 14 8 1216 20 24 28 32 36 40
Number of cores Number of cores Number of cores

Figure 3.12: Energy usage of ours, MBWS, and ABP on OpenTimer.

report the average value of five runs.

Figure 3.12 is the average energy usage reported by perf, and we divide the
energy usage by the runtime to derive the power consumption which is shown
in Figure 3.13. For energy usage, ABP is the highest in all cases. MBWS
is very close to ours with ours performing slightly better in most cases. For
small circuits like c6288 and c¢7552, the energy usage of ABP increases along
with the number of cores even the performance does not scale. For example,
in c6288 the energy usage of ABP is 2x of ours at 40 cores but the runtime
of ABP is only 8% less than ours. For other circuits, the energy usage of
all schedulers decreases after adding more cores as those circuits have good
scalability. However, ABP’s energy usage is still much higher than others.
For example, in the largest circuit b19 ABP’s energy usage is 1.57x of ours
and 1.48x of MBWS when using 40 cores. Next for the power consumption,
ABP’s power consumption increases along with the core numbers in all cases.
The result shows that thieves can still consume substantial power even mak-
ing them yield frequently. This is especially evident in small circuits c¢6288
and ¢7552 where ABP’s power consumption doubles when the number of
cores increases from 1 to 40. In contrast, the power consumptions of ours

and MBWS do not show substantial growth after adding more cores in these

34

c6288 c7552 mgc matrix

_ 25000 Ours 1 _ 250000 Ours 1 4 25000 Ours .
g ItMBWS g ItMBWS g IsMBWS
2 2001100 ABP = 2001100 ABP 2 20000 ABP
Z 150 Z 150 Z 150
3 5 3
<o () 5]
= 100 = 100 = 100
z

£ 50 £ 50 £ 50

0 0 0

14 8 1216 20 24 28 32 36 40 14 8 1216 20 2.4 28 32 36 40 14 8 1216 20 2-1 28 32 36 40
Number of cores Number of cores Number of cores
tv80 b19 vgaled

_ 25000 Ours 1 _ 25000t Ours 1 o 20f lo Ours .
S ItMBWS 2 ItMBWS 2 ItMBWS
2200010 ABP 2200010 ABP 2200100 ABP
g g g
Z 150 g 150 Z 150
1S 5 3
15 < (5}
= 100 =~ 100 = 100
5} o QL
z z z
£ 50 £ 50 £ 50

0 0 0

14 8 1216 20 24 28 32 36 40 14 8 1216 20 24 28 32 36 40 14 8 1216 20 24 28 32 36 40
Number of cores Number of cores Number of cores

Figure 3.13: Power consumption (energy/runtime) of ours, MBWS, and
ABP on OpenTimer.

two circuits. For larger circuits, the power consumption of all schedulers
increases along with the core numbers, and again ABP’s grows faster than
others. In the largest circuit b19 with 40 cores, the power consumptions of
ours and MBWS are 26% and 25% less than ABP, respectively.

In the last experiment, we measure the effect of co-running multiple Open-
Timers. This experiment is to simulate real working environment which is
typically shared by multiple users such as servers or cloud computing plat-
forms. In those environments users can run multithreaded applications con-
currently, and applications might request computing resources more than
their actual parallelism.

In this experiment, we run multiple OpenTimers simultaneously on the
same circuit and every timer can use all the cores (40 on our machine). The
number of OpenTimers in the co-runs ranges from 2 to 8 and we use the
time command to measure the runtime (wall clock time) of each timer. We
repeat each co-run five times and use the average as the throughput. For each
scheduler, we take the runtime of its solo-run as the baseline and compute
the throughput using the weighted-speedup method [15] [35]. The weighted-

speedup method sums the speedup of each process in the co-runs, where the

35

c6288 c7552 mgc_matrix

I1 Ours 6fle Ours ?|[I0urs !N BWSITABP |
- 61|I0MBWS N liMBWS N
= lo ABP 2 , lo ABP 2
= = =
0 4 20 =
= = =
= 2 2
B of [=
0 0
2 3 4 5 6 T 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8
Number of co-run timers Number of co-run timers Number of co-run timers
tv80 b19 vgaled
3 25
loOursltMBWSItABP ‘ loOursltMBWSItABP ‘ 4 HIeOursitMBWSIt ABP ‘

Throughput
Throughput
Throughput

3 4 5 6 7 8

2 2 3 4 5 6 7 8 2
Number of co-run timers Number of co-run timers Number of co-run timers

3 4 5 6 7 8

Figure 3.14: Throughput comparisons of co-running multiple OpenTimers.

speedup is defined as Thasetine/ L per_proc- Figure 3.14 shows the throughputs of
all schedulers on different circuits. ABP has the lowest throughput in all co-
runs regardless the circuit size. For example, when co-running 8 OpenTimers,
the throughputs of ABP are 1.49 and 2.74 on b19 and ¢7552, respectively,
while ours is 1.89 and 5.9 and MBWS is 1.95 and 4.2. MBWS and ours have
similar throughput except at c6288 and ¢7552 where ours is much higher.

3.4 Conclusion

In this chapter, we have introduced a work-stealing scheduler for executing
task dependency graph. We have designed an efficient worker management
method that adaptively adjusts the number of thieves by tracking the number
of workers that are executing tasks. This method not only effectively prevents
resource from being underutilized but also mitigates resource waste. We have
evaluated the scheduler on a set of micro-benchmarks and a VLSI timing
analyzer. The results show our scheduler achieved comparable performance
to existing approaches, with effective resource utilization and good energy

efficiency.

36

CHAPTER 4

TASK GRAPH COMPOSITION AND
CONDITIONALS

4.1 Introduction

The key to make developers productive in writing software is composability.
We use libraries written by other developers to compose a large program,
or we decompose a job into smaller pieces to tame the complexity in soft-
ware development. Composability is especially important in developing fast
market-expanding applications such as high-performance machine learning,
data analytics, and parallel simulation engines [36]. These applications ex-
hibit both regular and irregular compute patterns, and are often combined
with other functions to compose large software that will be deployed on a
multicore machine or a distributed cloud [37, 38]. However, composable paral-
lel processing is rarely addressed as the first-class concept by existing parallel
programming libraries [39]. Many libraries were designed to solve a single
hard problem as fast as possible, leaving users to decide composition with
their own practice. This can create a lot of pain and data engineering tasks
for developers of different teams to collaborate on a large parallel application.
Some common problems include confusing API mix-uses, unwanted coupling
layers, error-prone dependency wrappers, inconsistent threading models, and
suboptimal scheduling results.

The traditional interface for program decomposition is function call. De-
velopers break down a large sequential program into a specific set of tasks
each wrapped in a function call with clear definition of data exchange. These
function calls are often modular and reusable to make the codebase main-
tainable and readable. However, composable parallel programming is much
more challenging. Modern parallel workloads typically combine a broad mix
of algorithms, functions, and libraries. Each library manages its own threads

and task execution, making it difficult to perform optimization across dif-

37

ferent libraries. When coupling these software pieces together, we need to
tackle the dependencies both inside and outside the libraries. Some libraries
are already parallel and they are being used by other parallel programs and
so forth. There are many practical issues to consider such as thread man-
agement, resource over-subscription, and concurrency controls. As a result,
the lack of a clear and unified interface has a serious impact on performance,

even when individual libraries are heavily optimized.

Taskflow_A ——P Dependency

O+ EIIED O Reouar task

' 0D D] T otk
Taskflow_B

ModuleA3 (Taskflow_A) D

@T| ModuleA1 (Taskflow_A) B—ﬂ ModuleA2 (Taskflow_A)

Figure 4.1: Using our composable task dependency graph to describe a
parallel neural network training workload. Taskflow object A represents one
training iteration and is used to compose taskflow object B for the entire
training procedure.

In this chapter, we largely enhanced Cpp-Taskflow’s capability with three
key design changes: (1) separating the task dependency graph and execution
kernel, (2) making the task dependency graph reusable and composable and
(3) enabling execution flow control via conditional tasking. In our model,
a taskflow object consists of a composable task dependency graph and user-
friendly APIs to facilitate the creation of modular and reusable parallel com-
pute patterns and libraries. These libraries can recursively compose large
and complex parallel computations on a single machine, taking advantage of
multicore processing while sharing thread resources to minimize overhead.
Figure 4.1 gives an example of using taskflow objects to describe a parallel
training algorithm of a deep neural network (DNN). Taskflow object A rep-
resents a training pipeline. Taskflow object B is composed of multiple As
and other tasks to complete the training procedure. Also, users can easily
couple B with other parallel computations. There is no redundancy from
the programmability standpoint. And last but not least, we design a new

tasking: conditional tasking to allow users to control a task graph’s execution

38

flow at runtime. We summarize our contributions as follows:

e A new composable parallel programming model. We developed a
composable task interface to enable efficient composition of parallel work-
loads. The composable programming model lets users quickly describe a
large parallel program through composition of modular and reusable task
graphs that embed both regular and irregular compute patterns. The pro-
gram runs on a multicore machine with automatic scheduling optimization

across different layers of composed tasks.

e A unified task composition interface. We developed a unified task
graph construction interface that can capture a diverse set of tasks from
single sequential functions to large parallel dependent tasks or even out-
of-context executions such as third-party calls and process forks. The
unified interface empowers developers with both explicit and implicit task
graph composition to explore cross-layer optimizations of their parallel

workloads.

e A simple and efficient composition API. We developed a user-friendly
API to describe task dependency graph composition using modern C++17
syntax. Users can fully take advantage of the rich features of our engine to-
gether with robust standard C++ libraries to productively compose many
parallel applications. Our library effectively separates users from low-level
difficult concurrency details and offers transparent scaling to many cores

and future hardware generation.

e A new tasking for flexible execution scheme. We develop conditional
tasking to let users control the execution flow at runtime. Different from
other taskings that every task must be executed once, conditional tasking
enables users to selectively execute part of a task graph, and users can
iterate tasks multiple times by embedding cycles in the task graph. This
means the task graph does not need to be acyclic anymore, and therefore

the task dependency graph can formulate generic control flow.

39

4.2 New Task Dependency Graph

We introduce a new composable task interface, the tf :: Taskflow class, which
is the main gateway to create a composable task dependency graph. The
tf::Taskflow class inherits all the task construction methods from original
Cpp-Taskflow. Listing 4.1 demonstrates how to create a task dependency
graph with two tasks A and B where B runs after A and B spawns a new
task B1 during runtime. We enhance Cpp-Taskflow’s usability by separating
the task dependency graph from executor. Users now have full control over

their task dependency graphs but are also responsible for their lifetime.

tf:: Taskflow taskflow;

// Add a static task
auto taskA = taskflow.emplace ([](){
std :: cout << "Task A\n”;

1)

// Dynamic tasking
auto taskB = taskflow.emplace ([](auto &subflow){

std ::cout << "Task B\n";

subflow.emplace ([](){ std::cout << "Task Bl\n"; });
1

taskA . precede (taskB);

Listing 4.1: Create a task dependency graph of two dependent static tasks

and one dynamic task.

A significant change we made is the decoupling of executor and task graph.
We define tf::Executor class that has a rich set of methods to run a task
dependency graph. A task dependency graph can be run by an executor
multiple times in arbitrary order. Users can also give a predicate to specify
the stopping criteria. Listing 4.2 demonstrates a set of common methods
to run a task dependency graph. Line 1:3 creates a taskflow object and
adds some tasks. Line 6 creates an executor. An executor is nothing but
a pluggable scheduler to dispatch tasks to threads in a shared pool. The

simplest way is to execute a task dependency graph only once via the run

40

method (line 9). Alternatively, users can call run_n to run a task dependency
graph multiple times (line 13). The bottommost call is run_until (line 19),
which keeps running until the predicate becomes true. All methods accept
a callable object as a callback after the task execution completes. To enable
more asynchronous control, each of these methods returns a std: : future for
users to inspect the execution status or incorporate non-blocking program
flow. It should be noticed that running a task dependency graph multiple
times exhibits the most basic composability, by which the same graph is

encapsulated in a linear chain of tasks.

tf:: Taskflow taskflow;
// Add some tasks

// Create an executor with 4 threads

tf:: Executor executor {4};

// Run the taskflow object once
auto fut = executor.run(taskflow);
fut.get();

// Run the taskflow object 4 times with a callback
taskflow.run_n(taskflow, 4, [](){
std :: cout << 7" Finish!\n”;

) get ();

// Run the taskflow object with a predicate
int counter {4};
executor . run_until (taskflow ,

[&](){ return —count = 0; }

) - get () ;

Listing 4.2: Different ways to execute a task dependency graph.

41

1

4.3 Composable Tasking

Task dependency graph composition is one of the most important features we
add to Cpp-Taskflow. It allows users to create heavily optimized task depen-
dency graphs and reuse them to compose larger graphs and so on so forth.
The tf::Taskflow class defines a method composed_of to enable composi-
tion. Specifically, the caller taskflow object adds a module task of the callee
taskflow object. Listing 4.3 shows an example of taskflow object composi-
tion. Line 1:10 creates a taskflow object with three dependent tasks A1, A2,
and A3. Line 12:19 creates another taskflow object with three tasks B1, B2,
and B3. Line 22 adds a module task from the first taskflow object and line
25:27 specifies the dependency between tasks. Unlike the emplace method
that creates a reqular task, the composed_of method creates a module task
in the graph. A module task is a special task that is aware of which taskflow
object to probe during its execution context. We would like to highlight
three points of our composition interface. First, there is no copy during the
composition, leading to efficient graph sharing and resource utilization. We
have strived to resolve many scheduling conflicts due to shared tasks, while
providing a high-level execution API to completely separate this low-level
controls from users. Second, recursive and nested composition are feasible.
A taskflow object can be used to compose multiple taskflow objects and the
resulting taskflow object can compose another taskflow object with no re-
striction. During the composition, the user can add free-standing tasks to
the graph to perform computation across different task layers. Adding depen-
dency is extremely easy and flexible through the precede method. Finally,
the module task works seamlessly with both static and dynamic tasking.
This gives users a powerful and unified tasking interface to accomplish large

and complex parallel workloads.

tf:: Taskflow fA;

// Add three tasks

auto [Al, A2, A3] = fA.emplace(
[1(){ std::cout << "Task Al\n"; },
[](){ std::cout << "Task A2\n"; },

[1(){ std::cout << "Task A3\n”"; }
)

42

9

o A3.gather (Al, A2);

11

12

tf:: Taskflow fB;

// Add three tasks

auto [Bl, B2, B3] = fB.emplace(
[](){ std::cout << "Task Bl\n"; },
[](){ std::cout << "Task B2\n"; },
[1(){ std::cout << "Task B3\n"; }

)

// Compose taskflow object
auto moduleA = fB.composed_of (fA);

Bl.precede (moduleA) ;
B2. precede (moduleA) ;
moduleA . precede (B3)

// Build dependency between module and regular tasks

Y

Listing 4.3: Cpp-Taskflow taskflow object composition code (19 LOC and
167 tokens).

At this point, we are interested in the difference between our composition
code and existing libraries. Listing 4.4 is the implementations of Listing 4.3
using TBB flow graph [9]. As shown in the two listings, Cpp-Taskflow has
the fewest lines of code and is more readable than the TBB code. To our
best knowledge, TBB has no API to directly compose task graphs, so we
have to capture the task graph into another task and execute the task graph.
This results in longer lines of code and tends to produce bugs if one forgets
to execute the task graph. This example clearly shows the conciseness and

ease-of-use of the task composition interface in Cpp-Taskflow.

using namespace tbhb;

using namespace tbb::flow;

graph fA;

43

continue_node<continue_msg> Al(fA,
(const continue_msg&) {
std :: cout << "Task Al\n";
}
) ;
continue_node<continue_msg> A2(fA,
(const continue_msg&) {
std :: cout << "Task A2\n”;

}
) ;
continue_node<continue_msg> A3(fA,
(const continue_msg&) {
std :: cout << "Task A3\n";
}
) ;

make_edge (A1, A3);
make_edge (A2, A3);

graph fB;

continue_node<continue_msg> B1({B,
(const continue_msg&) {
std :: cout << "Task Bl\n";
}
) ;
continue_node<continue_msg> B2(fB,
(const continue_msg&) {
std :: cout << "Task B2\n";

}
)
continue_node<continue_msg> B3({B,
(const continue_msg&) {
std :: cout << "Task B3\n";

44

[]

[]

[]

[]

[]

[]

continue_node<continue_msg> moduleA (B, [&]
(const continue_msg&) {
Al.try_put (continue_msg());
A2.try_put (continue_msg());
fA. wait_for_all();

}
) ;

make_edge (B1, moduleA) ;
make_edge (B2, moduleA) ;
make_edge (moduleA , B3);

Listing 4.4: TBB hard-coded composition code (48 LOC and 256 tokens).

In addition to the composability, another useful feature is the modularity.
Through inheritance from tf::Taskflow class, users can define their own
task dependency graph class as a single module. The task dependency graph
composition and execution APIs can be directly applied to the customized
class as well, obviating the need of an additional wrapper.

With the composability and modularity, a complex design can be decom-
posed into small components with different parallel patterns. Users can im-
plement and test those patterns individually and combine them in various
ways such as nested or concatenated to deliver complex functionality. This
can substantially increase programmers’ productivity as it enables a struc-

tured and efficient way of software engineering.

4.3.1 Unified Task Execution

We modify the execution kernel to enable seamless integration of the reusable
and composable task dependency graph with existing task types. To make a
task dependency graph reusable, it is necessary to ensure the graph remains
unchanged after each execution. During runtime, a task might expand the
graph by spawning new nodes to precede the parent node such as dynamic
tasking. As a result, in Cpp-Taskflow a task that spawns new tasks will
restore its own precedence before scheduling its successor tasks. Letting

each task perform the restoration on itself also minimizes the overhead.

45

Apart from the regular tasks, a task dependency graph can have module
tasks through composing other graphs. The execution flow of module task
is similar to dynamic tasking except that a module task directly dispatches
the composed graph rather than a subflow. A module task will be executed

twice:
e First time:

— The executor first collects the source and sink tasks in the composed

graph and lets the sink tasks precede the module task.

— The executor dispatches the source tasks to execution.
e Second time:

— The executor removes the successor of sink tasks in composed graph.

— The executor dispatches the module task’s successors to execution.

Figure 4.2 is an example that illustrates scheduling a module task.

Taskflow_A Taskflow_B

| ModuleA1l (Taskflow_A)

Let sinks e 5

precede the CAD CAD sof;::(s)v:f
module task CA2D 5 D sinks
Dispatch

sources

| ModuleA1l (Taskflow_A)

Second time

Figure 4.2: An example to illustrate the execution of module task.

4.3.2 Visualize a Task Dependency Graph with Both Regular
and Module Tasks

We provide the same API to support visualization of composable task de-
pendency graph to facilitate debugging. A taskflow object can be assigned
a name by the name method and it has a dump method to export its task
dependency graph in DOT language [40]. A module task is represented by a
cuboid to differentiate from the regular tasks. Figure 4.3 shows an example

of visualizing composed task dependency graphs.

Taskflow_ A Taskflow B

| ModuleA (Taskflow_A) |5
=
—

Taskflow C Taskflow_D
@ @ ModuleB (Taskflow_B)
@_> ModuleC (Taskflow_C)
Figure 4.3: Visualization of the task dependency graph D with its regular

and module tasks. Note that the arrows between taskflow objects are added
deliberately here for clarity.

4.4 Conditional Tasking

In original Cpp-Taskflow, the task graph needs to be acyclic and all tasks
will be executed exactly once in each run. This somehow restricts the
expressiveness of Cpp-Taskflow, since a typical program control will have
branches like if-else or switch-case statements, and loop constructs such as
for-loop, while-loop and so on. Some of these control flows can be realized
via dynamic tasking. For example, one can use dynamic tasking to spawn
different task graphs at the runtime to mimic the conditional control flow.
Repeatedly creating task graph at runtime might incur notable overhead due
to the memory allocation. To make the graph model more generic and conve-

nient, we introduce conditional tasking which allows users to build directed

47

cyclic task graphs and create branches in the execution flow.

Listing 4.5 demonstrates how to use conditional tasking in Cpp-Taskflow,
and Figure 4.4 is the resulting task graph. In this example, we create a graph
with five static tasks, A, B, C, D and E, and two condition tasks, cond1 and
cond2. This graph contains a loop formed by tasks B and cond1 and a branch
consisting of tasks cond2, D and E. A condition task is different from other
tasks in that it has to return an index of successor task, and the corresponding
successor task will be directly scheduled to execution. For instance, if task
condl returns 0, then task B will be put into execution. In Figure 4.4, the
numbers on the dotted edges of condition tasks are the successor indices.
With conditional tasking, users can create task graphs with complex control
flows such as iterating subgraph multiple times, switching execution paths at
runtime, or combining both, which makes Cpp-Taskflow more powerful and

expressive.

tf:: Taskflow flow;

auto A = flow.emplace ([](){ std::cout << "TaskA\n";
1)
auto B = flow.emplace ([](){ std::cout << "TaskB\n";

})s

auto C = flow.emplace ([](){ std::cout << "TaskC\n";

P

auto D = flow.emplace ([](){ std::cout << "TaskC\n";

1)

auto E = flow.emplace ([](){ std::cout << "TaskE\n";

})s

srand (1) ;
auto condl = flow.emplace ([](){ return rand()%2; });

// Create a loop
A.precede (B);
B.precede (condl);
condl . precede (B, C);

48

auto cond2 = flow.emplace ([](){ return rand()%2; });
// Create a branch

C.precede (cond2) ;

cond2 . precede (D, E);

Listing 4.5: An example to demonstrate conditional tasking

Taskflow: Conditional tasking example

CO—(Dt T (D<@ ()

Figure 4.4: The task dependency graph of Listing 4.5.

However, integrating conditional tasking with other taskings in Cpp-Taskflow

is a challenging task. There are three problems needed to be solved:

Problem 1: How to define a task’s dependency?
Problem 2: How to determine if a task graph has finished execution?

Problem 3: How to efficiently implement conditional tasking?

For the first problem, the original task scheduling rule states that a task
is ready for execution when its dependencies are fulfilled. However, a task
might be preceded by its successor task in conditional tasking, and the rule
will fail to work in this case. For example, in Figure 4.4, task B is preceded
by task condl, and task B will never be ready according to the rule. To
solve the first problem, we categorize the dependency into two classes: we
define the dependency between a condition task and its successors as weak
dependency, and others are strong dependency. Then we introduce new task

scheduling rules with strong and weak dependency as follows:

Rule 1: We define the tasks without both weak and strong dependency in a
task graph as source tasks. The source tasks are the starting point

of a task graph execution.

49

Rule 2: At runtime, for those tasks other than condition tasks, their suc-

cessors are scheduled to execution when their strong dependency is
fulfilled.

Rule 3: For condition tasks, the specified successor task will be directly put

into execution regardless of the strong dependency.

Task graphs with or without condition tasks can be correctly scheduled
under these three rules.

For the second problem, in original Cpp-Taskflow, since all tasks will be
executed exactly once, a task graph is deemed completed when all sink tasks
(tasks without successors) have finished, and we can easily implement this
by using a counter to track the number of finished sink tasks during runtime.
At runtime, whenever a sink task finishes execution, the counter will be
decremented by one and the graph is deemed finished when the counter
becomes zero. However, this no longer holds after integrating conditional
tasking. With the conditional tasking, a task might not be executed or be
executed multiple times, which makes the above sink task counting method
invalid.

To solve the second problem, we observe two critical properties about the

task graph execution.

Property 1: The tasks of different task graphs will not exist in a worker’s

private queue at the same time.

Property 2: At least one task of the graph is kept by the executor anytime

during the task graph execution.

With these two properties, we can determine that a task graph is completed
if it has no task kept in any queue and worker. Based on this observation,
we associate each topology with a counter to track the number of tasks held

by the executor. The counter is updated in following two cases:

1. Whenever a task is ready for execution and added into a queue, the counter

is incremented by one.

2. Whenever a worker finishes a task derived from a queue, the worker decre-

ments the counter by one.

50

When the counter becomes zero, the graph has no outstanding tasks and
is deemed finished. The last worker that updates the counter shall set up
the future object to mark the graph status as completion. This counting
method works well when task graph is not modified during execution. But
one problem of this new method is to handle dynamic tasking under joined
mode and composed tasks where both will spawn a task graph during run-
time. Originally, Cpp-Taskflow handles the spawned graph by having its sink
tasks precede the parent task to ensure the spawned graph will finish before
scheduling the parent task’s successor tasks. Figure 4.5 shows an example
of joined dynamic tasking. In Figure 4.5, task B spawns a new task graph
consisting of task B1, B2 and B3. Both task B2 and B3 will be set to pre-
cede task B (parent task) so that task D will guarantee to be executed after
the spawned graph finishes. The red edges are added by the executor to
ensure correct execution order between the spawned task graph and the par-

ent task’s successors. However, when the spawned graph contains condition

Taskflow: Dynamic tasking example

Subflow: B

TGO
CF XD

Figure 4.5: An example to show dynamic tasking with joined mode. The
red edges are deliberately added by the executor at runtime to ensure task
D can only start after the spawned graph finishes.

tasks, adding dependency edges between the sink tasks in spawned graph and
the parent task is no longer guaranteed to respect the execution order. Take
Figure 4.6 as an example: it not feasible to add a dependency edge between
the tasks in subflow and task B to ensure correct execution order between

the new spawned graph and task B’s successor. To resolve this issue, we

o1

need to know when the spawned task graph finishes execution and be able to
reach the parent task after the spawned task graph finishes. We first solve
the latter via adding a pointer in each task. The pointer either stores the
address of the parent task or is nullptr if the task is not in a spawned task
graph. The former is indeed equivalent to determining when a task graph
with condition tasks will finish. As the aforementioned solution we can use a
counter to keep track of the number of tasks in the spawned graph that are
kept in the executor. However, since not every task will spawn task graphs,
adding an additional counter to each node specifically for the spawned graph
is considered overkill. Alternatively, we can reuse the parent task’s depen-
dency counter for this purpose. Since each node maintains a parent pointer
and we will only revisit the parent task after its spawned task graph finishes,

reusing the dependency counter is safe and can reduce memory consumption.

Taskflow: Dynamic tasking with condition task

Subflow: B

Figure 4.6: An example of dynamic tasking with condition task.

For the last problem, the primary change brought by conditional tasking
is determining when the task graph finishes, and as previously mentioned we
solve this problem by having a counter to keep track of the tasks kept in
the executor. Unlike the original task graph where we only need to update
the counter after executing sink tasks, we need to update the counter when-
ever a task is added into queue or after a task is executed by a worker. To
integrate the counter update, there are two functions that need to be mod-
ified: (1) invoke_task and (2) exploit_task. Because a counter could be
concurrently modified by multiple workers, the update operation has to be

atomic, which can be slower than a non-atomic operation. Therefore, reduc-

52

ing the number of accesses to the counter is critical to the performance, and
we propose two optimizations to lower the number of accesses to the counter.

We explain these optimizations with the pseudo code of the two modified
functions below. Algorithm 7 is the pseudocode of invoke_task. To clearly
explain our optimization, Algorithm 7 only shows the modified part due to
the counter update. The worker first invokes task according to the type of
tasking, and then decrements the dependency of successor tasks and incre-
ments the graph’s counter (line 9-28). When a successor task is ready, the
task will be put into cache if the cache is empty (line 12-14), otherwise we
move the cached task to queue and cache the new ready task (line 14-26).
Theoretically, whenever a task is added into queue, the worker has to incre-
ment the counter. We can prevent this by adding the number of successors
to the counter when inserting the first successor task to the queue. (line 15-
22). The rationale is that the worker can only dispatch all successor tasks to
execution at most, and therefore we can overestimate the number of inserted
tasks for the first time to prevent future increments (line 17-21). Then, we
calculate the difference between num_spawns (real number of inserted tasks)
and num_successors, and add it to the worker’s local variable num_executed
(line 31). The num_executed records the number of tasks executed by the
worker and will be subtracted from the counter later on.

The second optimization is in Algorithm 8 which is the pseudocode of task
exploitation. As explained in the previous chapter, in the exploit_task the
worker will repeatedly pop and execute tasks from local storage (cache and
local queue) until exhausted (line 8-47). Theoretically, whenever a task is
removed from the queue and executed (line 13), the worker has to decrement
the counter. We can reduce the number of decrements by accumulating the
number of executed tasks in a local counter (num_executed) (line 17), and
then decrementing the counter at the end. A worker needs to perform the
decrement (1) when successive ready tasks have different parent tasks (line
18-29), which happens due to joined dynamic tasking or composed tasks, and

(2) when tasks in local storage are exhausted (line 30-45).

53

Algorithm 7: The new invoke_task function

Input: w: the worker’s associated data
Input: ¢: a task holder

// First invoke the task based on its tasking type,
// refer to Chapter 2: Algorithm 1 line 1-17

num_spawns <— 0;
w.cache < NIL;
num_successors <— t.num_successors();
// Update successors’ dependency and the graph’s counter
for s € t’s successors do
AtomDec(s.dependencies);
if s.dependencies == 0 then
if w.cache == NIL then
‘ w.cache < s;
else
if num_spawn == 0 then
/* increment the counter for the first time
if t.parent == NIL then
| AtomInc(t.topology().counter, num_successors);
else
| AtomInc(t.parent().counter, num_successors);
end

end

num_spawn <— num_spawn + 1;
schedule(w.cache);

w.cache < s;

end

end

end

if num_spawns > 0 then
/* record the difference for counter adjustment
w.num_executed <— num_successor - NUIM_Spawns;

end

*/

*/

o4

Algorithm 8: The new exploit_task function.

Input: w: the worker’s associated data
Input: ¢: a task holder

1 if t 2 NIL then
2 if AtomInc(num_actives) == 1 and num_thieves == 0 then
3 | notifier.notify_one();
4 end
5 tpg <« t.topology();
6 par + t.parent();
7 w.num_executed < 1;
8 do
9 execute(t);
10 if w.cache # NIL then
11 | t + w.cache;
12 else
13 t < pop(w.queue);
14 if t 2 NIL then
15 /* compare parents of tasks
16 if t.parent() == par then
17 | w.num_executed < w.num_executed + 1;
18 else
19 if par == NIL then
20 | AtomDec(tpg.counter, w.num_executed);
21 else
22 AtomDec(par.dependencies, w.num_executed);
23 if par.counter == 0 then
24 | schedule(par);
25 end
26 end
27 par < t.parent();
28 w.num_executed < 1;
29 end
30 else
31 /* tasks are exhausted
32 if par == NIL then
33 AtomDec(tpg.counter, w.num_executed);
34 if tpg.counter == 0 then
35 | mark_finished(tpg);
36 end
37 else
38 AtomDec(par.dependencies, w.num_executed);
39 if par.counter == 0 then
40 t < par;
a1 par < t.parent() ;
42 w.num_executed < 1;
43 end
44 end
45 end
46 end
a7 while t £ NIL;
48 AtomDec(num_actives);
49 end

*/

*/

95

In both cases, if the parent pointer is not a nullptr, we decrement the
dependency of its parent task via the pointer. If the dependency of the
parent task becomes zero, this means the spawned task graph finishes and we
schedule the parent task to execution (line 23-25 and line 39-43). Similarly,
if the parent pointer is nullptr and the counter becomes zero, we mark the
graph as finished (line 34-36).

4.5 Conclusion

In this chapter, we have shown the improvements we made to Cpp-Taskflow
on both the programming model and interface. First, we separate the task
graph and executor, allowing multiple task graphs to coexist and run in any
order. Second, we add a composable task interface to support task graph
composition. Composability enables developers to build large and complex
applications by assembling small and simple task graphs, instead of coding
a complex task graph from scratch. Lastly, we introduce a powerful feature:
conditional tasking. With conditional tasking, task graphs can contain cycles
and flexibly change the execution flow during runtime, which are very hard

to do and even infeasible in Cpp-Taskflow before.

56

CHAPTER 5

ANALYTICAL PLACEMENT WITH GPU

5.1 Introduction

VLSI global placement is a pivotal stage in physical design flow. Substan-
tial research effort has been devoted to global placement [41, 42, 43, 44, 45,
46, 47, 48, 49, 50]. Among existing placement methods, the analytical ap-
proaches, especially the nonlinear placement, have obtained the best quality
up to the present. However, compared with other approaches such as simu-
lated annealing or partitioning, the nonlinear methods suffer from a slower
performance. The reason is that nonlinear methods apply mathematical pro-
gramming to derive the solution, which involves huge numbers of arithmetic
operations and becomes the bottleneck of performance. Therefore, the idea is
to exploit the parallelism of GPU to speed up the computations in nonlinear
placement.

GPU is well-known for its capability to conduct massive computations
concurrently. There are several research works on applying GPU to EDA
applications [51] [52] [53] [54] [55], and some focus on using GPU on EDA
placement. The authors of [51] propose a fast sparse matrix-vector multipli-
cation method based on GPU and utilize the method to expedite a quadratic
placer. Another paper [52] demonstrates the feasibility of accelerating simu-
lated annealing placement with GPU. The placement models in both papers
are different from state-of-the-art nonlinear placement and it is not clear
how the methods can be extended to benefit nonlinear placement. The pa-
per [53] applies GPU to optimize the performance of an analytical placer.
The authors adopt a straightforward parallelization method such as delegat-
ing the outer loop of a nested loop to GPU threads which does not require
modifying the original computing scheme. However, adherence to the CPU

computing scheme restricts the method from fully exploiting potential paral-

o7

lelism brought by GPU, and some critical issues such as imbalance workload
cannot be effectively resolved due to the framework’s inherent limitation.
Furthermore, due to the limited GPU compute capability, their method has
to compromise with reduced numerical accuracy which degrades the solution
quality:.

In this chapter, we consider the cost model that is broadly used by existing
nonlinear placement approaches. The cost model of nonlinear placement

approaches can be generally formulated as

minimize Wirelength

subject to Dbin < Dthreshold

The wirelength is a differentiable function, e.g. log-sum-exp [56] or weighted
average [57], that approximates the half-perimeter wirelength (HPWL) and
the Dy, is the bin density on the layout. Mathematical optimization such as
the iterative gradient descent method is commonly applied to minimize the
cost. As a result, fast computation of the wirelength gradient and the bin
density is important to the performance of the placer, and we develop two
GPU approaches to accelerate the computing of the wirelength gradient and

the density, respectively. We summarize our contributions as follows:

e Our method is faster than the CPU methods and can obtain further
speedup over a straightforward GPU parallelization. The efficiency of
our methods has been evaluated through experimenting on a set of

contest benchmarks.

e Our method does not design for a specific placer; instead, placers that
adopt the same cost model can apply the proposed method to achieve

performance improvement.

e Reproducibility is guaranteed in the proposed methods. A stable and

reproducible output is particularly useful in software debugging.

5.2 Wirelength Computation

Wirelength is one of the most important cost functions in VLSI placement.

A commonly used wirelength model is the half perimeter wirelength (HPWL)

58

which sums the width and height of the bounding box formed by the pins.
However, HPWL is a non-differentiable function and thus cannot be directly
used in the analytical placement method. Several approximation models
are proposed and one popular approach is the Logarithm-Sum-Exponential
(LSE) model [56]. The LSE of a given net n with m pins on it can be

calculated as follows:

m m

LSE(H) _ ’Y{IH(Z egci/“/) + IH(Z e—xi/“/)}_|_
i=0 =0 (5.1)

m m

’Y{ID(Z el/i/’Y) + 1n(z e_yi/'Y)}

=0 i=0

In equation (5.1), each (x;,y;) is the z and y coordinate of a pin on n
and 7 is a predefined constant. Since the gradient calculation is identical
in both z and y directions, we only discuss the computation on = below.
For a pin connected with k£ nets, its wirelength gradient can be derived by
differentiating the LSE equations of the k nets and sum them up. Below
is the equation to calculate the wirelength gradient of a given pin p in the
x direction (the gradient in the y direction can be derived using the same

formula by replacing the z coordinate with the y coordinate).

xp/’Y xp/’Y
Grad,(Z{ D e”z/’Y} Z Z e_vz/ﬁ/ (5.2)

veEN; vEN,;

The implementation to calculate equation (5.2) on CPU can be divided
into two steps. In the first step, for each net, we compute the summation
of the exponential term for each pin on the net. In the second step, we
use the summations from the first step following equation (5.2) to derive
the gradients of each pin in both z and y directions. Algorithm 9 shows
the pseudo code to compute the wirelength gradient of each pin on the z
coordinate, where the first step is from line 3 to line 12 and line 13 to 21 is

the second step.

59

Algorithm 9: Wirelength gradient on x using CPU

© 0w N o oA W N o=

I S S O T < - T e = T)
S © W N O oA W N KO
¢}

N
-

Input: P: Pins

Input: N: nets

Output: Grad: gradients of each pin
ExpSum « {} ;

NegExpSum < {} ;

for each n in N do

nd

end

sum < 0 ;
neg_sum < 0 ;
for each p of n do

sum < sum + e*r/7
neg_sum < neg_sum —+ e~*»/7 ;

end
ExpSum <« ExpSum U {sum} ;
NegExpSum < NegExpSum U {neg_sum} ;

for each p in P do
leftterm < 0 ;
right_term < 0 ;
for each n of p do

left_term < left_term + 1/ExpSum(n] ;
right_term < right_term + 1/NegExpSum|n] ;

end
Grad[p] « e™/7 x left_term — e~/ x right term ;

5.2.1 Wirelength Gradient on GPU

GPU is suitable for the gradient computation due to its ability to do massive
computations concurrently. To utilize GPU for wirelength gradient com-
puting, an intuitive way is to launch two kernels sequentially with the first
kernel executing the first step and another the second step. To be more
specific, in the first kernel (Algorithm 10), we assign a thread to a net to
compute the exponential sum of its pin coordinates, and in the second kernel

(Algorithm 11), a thread is delegated to compute the gradients for a pin.

algorithm. However, there are two deficiencies in this method:

e As the number of pins on nets are disparate and pins have different
numbers of connected nets, the memory access can be very inefficient

and threads can suffer from imbalance workload; for example, a pin

This method is simple and does not require any modification to the CPU

60

Algorithm 10: GPU Kernel 1 on exponential sum

Input: P: Pins
Input: N: nets
Output: ExpSum, NegExpSum
id < blockSize x blockld + threadld ;
sum < 0 ;
neg_sum < 0 ;
for each p of N[id] do

sum < sum + e*/7 ;

neg_sum <— neg_sum —+ e~*»/7 ;
end
ExpSumlid] < {sum} ;
NegExpSumlid] < {neg_sum} ;

© 00 N O oA W N o=

Algorithm 11: GPU Kernel 2 on wirelength gradient

Input: P: Pins

Input: N: nets

Input: ExpSum, NegExpSum

Output: Grad: gradients of each pin

id < blockSize * blockId + threadld ;

left_term < 0 ;

right_term < 0 ;

for each n of P[id] do
left_term < left_term + 1/ExpSum|n] ;
right_term < right_term + 1/NegExpSum|n] ;

end

Grad[id] < /7 x left term — e™/7 x right_term ;

0 N & otk W N =

coordinate can be read multiple times in different threads and some

threads can perform more computations than others.

e Same values can be computed several times in different threads, leading

to the inefficient use of computing resources. For example, a pin p; can

be connected to nets n; and no and thus the exponential value of the

p1 coordinate will be computed twice in different threads of the first

kernel.

61

5.2.2 Our GPU Implementation

To overcome these deficiencies, we propose a new GPU implementation flow
containing five steps. To prevent computing the same value repetitively
among threads, we first launch a kernel to calculate the exponential val-
ues of each pin’s coordinates and store the result in a vector for later use
(Algorithm 12). Based on the fact that a circuit can be represented as a
sparse graph, we construct a sparse (0, 1)-matrix where the rows correspond
to nets, columns correspond to pins, and the value of an entry (i,7) is 1 if
pin j is in net . With the sparse matrix and the vector of the exponential
values, the exponential sum of each net can be derived through multiplying
the sparse matrix with the vector (Algorithm 13). The next step is to launch
a kernel to compute the reciprocal of the exponential sum for each net (Al-
gorithm 14). To calculate the summation of reciprocals for each pin, a kernel
is used to sum the reciprocals of all connected nets and a key observation
here is that the summation can also be obtained by multiplying a sparse
matrix with the reciprocals (Algorithm 15), where the sparse matrix is the
transpose of the sparse matrix in the second step. The last step is to derive

the gradient by adding the sum of reciprocals for each pin.

Algorithm 12: GPU Step 1 on exponential values

Input: P: Pins
Output: FxpVal,NegExpVal
1 id < blockSize x blockld + threadld ;
2 p« Plid] ;
3 ExpVallid] < /7 ;
4 NegExpVallid) + —e™%/7 ;

Algorithm 13: GPU Step 2 on exponential sum
Input: P: Pins
Input: N: Nets
Input: FxpVal, NegExpV al
Output: ExpSum,NegExpSum
1 ExpSum <+ SparseMatriz(P, N) x ExpVal ;
2 NegExpSum < SparseMatriz(P, N) x NegExpVal ;

A major concern of using GPU is the overhead incurred from data trans-
fer between CPU and GPU. The proposed GPU method requires two data

62

Algorithm 14: GPU Step 3 on reciprocal exponential values
Input: FxpSum,NegExpSum
Output: RecExpVal, RecNegExpV al

1 id < blockSize x blockId + threadld ;

2 RecExpVallid] < 1/ExpSumlid] ;

3 RecNegExpVallid) < 1/NegExpSumlid] ;

Algorithm 15: GPU Step 4 on summation of reciprocals
Input: P: Pins
Input: N: Nets
Input: RecExpSum,RecNegExpSum
Output: RecSum, RecNegSum
1 RecSum < SparseMatrix(P, N)T * RecExpSum ;
2 RecNegSum < SparseMatriz(P, N)T * RecNegExpSum ;

Algorithm 16: GPU Step 5 on gradient of each pin
Input: P: Pins
Input: N: Nets
Input: RecSum, RecNegSum, ExpVal, NegExpV al
Output: Grad

1 id < blockSize x blockld + threadld ;

2 Gradid] < RecSumlid] x ExpV al[id]+

3 RecNegSumlid] * NegExpV al[id] ;

transfers: one is to transfer the pin coordinates from CPU to GPU memory
in the beginning and another is to copy the gradients back to CPU mem-
ory. Although the data transfer overhead is inevitable, we can further reduce
the overhead by using streams. A stream is similar to a job queue which
holds GPU operations to be executed sequentially, whereas operations in
separate streams can run concurrently if available resource exists. Hence,
we can create several streams to overlap data transfers with computations
through dispatching GPU operations on subsets of data to different streams.
Considering overlapping the step 1 kernel (Algorithm 12) by copying pin co-
ordinates to GPU, we first divide pins into disjoint subsets and map each
subset to a stream, then a copy operation and a kernel for computing expo-
nential value are enqueued into each stream to operate on the corresponding
data. By having multiple streams process different subsets, we can keep the

copy device and execution device occupied [58] as shown in Figure 5.1.

63

\/

Timeline - Timeline

Data transfer Copy pin Idle Data transfer C;i;;y el il il I
Computation Idle Exp kernel Computation ET INSS IR Il Il
(a) Without overlap (b) With overlap

Figure 5.1: Comparison of data transfer with and without overlapped with
computations.

Our proposed flow has two benefits over the straightforward GPU imple-

mentation:

e We transform the two nested loops, the most time-consuming parts, to
two sparse matrix multiplications. A sparse matrix can be stored in
various formats such as a compressed sparse row (csr) or a coordinate
list (coo) and those data structures unleash more opportunities to op-
timize the memory access and reorder the computations for balancing
the workload.

e Data movement between processing units is a common bottleneck in
heterogeneous computing and our approach reduces the overhead by

overlapping computatio