
c© 2020 Chun-Xun Lin

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/334979786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ADVANCES IN PARALLEL PROGRAMMING FOR ELECTRONIC DESIGN
AUTOMATION

BY

CHUN-XUN LIN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Professor Martin D. F. Wong, Chair
Professor Wen-Mei Hwu
Professor Deming Chen
Dr. Jinjun Xiong, IBM T. J. Watson Research Center

ABSTRACT

The continued miniaturization of the technology node increases not only the

chip capacity but also the circuit design complexity. How does one efficiently

design a chip with millions or billions transistors? This has become a chal-

lenging problem in the integrated circuit (IC) design industry, especially for

the developers of electronic design automation (EDA) tools. To boost the

performance of EDA tools, one promising direction is via parallel computing.

In this dissertation, we explore different parallel computing approaches, from

CPU to GPU to distributed computing, for EDA applications.

Nowadays multi-core processors are prevalent from mobile devices to lap-

tops to desktop, and it is natural for software developers to utilize the avail-

able cores to maximize the performance of their applications. Therefore, in

this dissertation we first focus on multi-threaded programming. We begin by

reviewing a C++ parallel programming library called Cpp-Taskflow. Cpp-

Taskflow is designed to facilitate programming parallel applications, and has

been successfully applied to an EDA timing analysis tool. We will demon-

strate Cpp-Taskflow’s programming model and interface, software architec-

ture and execution flow. Then, we improve Cpp-Taskflow in several aspects.

First, we enhance Cpp-Taskflow’s usability through restructuring the soft-

ware architecture. Second, we introduce task graph composition to support

composability and modularity, which makes it easier for users to construct

large and complex parallel patterns. Third, we add a new task type in Cpp-

Taskflow to let users control the graph execution flow. This feature empow-

ers the graph model with the ability to describe complex control flow. Aside

from the above enhancements, we have designed a new scheduler to adap-

tively manage the threads based on available parallelism. The new scheduler

uses a simple and effective strategy which can not only prevent resource from

being underutilized, but also mitigate resource over-subscription. We have

evaluated the new scheduler on both micro-benchmarks and a very-large-scale

ii

integration (VLSI) application, and the results show that the new scheduler

can achieve good performance and is very energy-efficient.

Next we study the applicability of heterogeneous computing, specifically

the graphics processing unit (GPU), to EDA. We demonstrate how to use

GPU to accelerate VLSI placement, and we show that GPU can bring sub-

stantial performance gain to VLSI placement. Finally, as the design size

keeps increasing, a more scalable solution will be distributed computing.

We introduce a distributed power grid analysis framework built on top of

DtCraft. This framework allows users to flexibly partition the design and

automatically deploy the computations across several machines. In addition,

we propose a job scheduler that can efficiently utilize cluster resource to

improve the framework’s performance.

iii

To my parents, for their love and support.

iv

ACKNOWLEDGMENTS

First I would like to express sincere gratitude to my advisor, Prof. Martin D.

F. Wong, who has patiently guided me through my doctoral study. I want to

thank him for giving invaluable advice on research direction and helping me

develop research skills. Specifically, I am grateful to him for all our meetings

where I can always gain new insights from the discussion. I am also grateful

to my doctoral committee, Prof. Wen-Mei Hwu, Prof. Deming Chen and

Dr. Jinjun Xiong. I want to thank them for listening to my presentation,

and providing many useful comments and suggestions to this dissertation.

I want to thank Dr. Chih-Hung Liu for encouraging me to study abroad

and helping me greatly with my PhD application. Many thanks to Dr.

Tsung-Wei Huang for teaching me many research techniques and much pro-

gramming knowledge, and I am fortunate to participate in those interest-

ing projects with him. I want to thank my lab-mates Zigang Xiao, Leslie

Hwang, Daifeng Guo, Haitong Tian, Tin-Yin Lai, Guannan Guo and Chih-

Shin Wang for their assistance in my research, and for helping me clarify

my thoughts via numerous stimulating discussions. I am also grateful to my

friends Jhih-Chian Wu, Iou-Jen Liu, Hsiao-Lun Wang, Hsi-Ping Chu, Pao-

Yi Tang, Chen-Hsuan Lin and Sitao Huang for sharing their life stories and

work experience with me and bringing so much joy and fun to my life. I

want to thank two visiting scholars: Prof. Fan Zhang for showing me around

the office when I joined the lab, and Prof. Hung-Ming Chen from NCTU for

sharing his study and career experience with me.

Last but not least, I want to express my deepest gratitude to my parents,

sister and brother. With their endless love and support, I am able to get

over all the difficulties and pursue my goal wholeheartedly.

v

TABLE OF CONTENTS

CHAPTER 1 DISSERTATION OVERVIEW 1

CHAPTER 2 CPP-TASKFLOW PROGRAMMING SYSTEM 4
2.1 Task Dependency Graph . 4
2.2 Software Architecture and Execution Flow 6

CHAPTER 3 ADAPTIVE WORK-STEALING SCHEDULER 11
3.1 Introduction . 11
3.2 Adaptive Work-Stealing Scheduler 13
3.3 Evaluation . 23
3.4 Conclusion . 36

CHAPTER 4 TASK GRAPHCOMPOSITION AND CONDITION-
ALS . 37
4.1 Introduction . 37
4.2 New Task Dependency Graph 40
4.3 Composable Tasking . 42
4.4 Conditional Tasking . 47
4.5 Conclusion . 56

CHAPTER 5 ANALYTICAL PLACEMENT WITH GPU 57
5.1 Introduction . 57
5.2 Wirelength Computation . 58
5.3 Density Computation . 64
5.4 Experimental Results . 69
5.5 Conclusion . 70

CHAPTER 6 A DISTRIBUTED POWERGRID ANALYSIS FRAME-
WORK . 73
6.1 Introduction . 73
6.2 Distributed Power Grid Analysis 75
6.3 Distributed Power Grid Analysis based on Stream Graph . . . 78
6.4 Application-specific Resource Control Plug-in 83
6.5 Experimental Results . 85
6.6 Conclusion . 90

vi

REFERENCES . 91

vii

CHAPTER 1

DISSERTATION OVERVIEW

The dissertation can be divided into three parts: Chapters 2, 3 and 4 are

dedicated to multi-threaded programming, and especially we will focus on a

parallel programming library called Cpp-Taskflow. In Chapter 5 we demon-

strate how the performance of VLSI placement can benefit from GPU. Chap-

ter 6 presents a distributed computing framework for power grid analysis. We

give a brief overview of subsequent chapters below.

Chapter 2 reviews Cpp-Taskflow which is a C++ parallel programming

library developed by our group [1]. Cpp-Taskflow arises from the need of an

efficient approach to parallelize an EDA application with complex parallel

patterns. The goal of Cpp-Taskflow is to enable programmers to quickly

parallelize their applications with task-based programming model. For this

purpose, Cpp-Taskflow adopts task dependency graph as the programming

model, and provides intuitive tasking interface for ease of programming. Cpp-

Taskflow is open-source [2] and has been used in several applications. In

this chapter we will go over Cpp-Taskflow’s programming interface, software

architecture and internal execution flow, then we introduce the new elements

that we add to Cpp-Taskflow in Chapters 3 and 4, respectively.

In Chapter 3, we present an efficient work-stealing scheduler to execute the

task dependency graph of Cpp-Taskflow. Maintaining a scheduler to man-

age a pool of threads is a frequently used method in parallel programming

libraries, as this method can prevent the overhead of repeatedly spawning

threads. The scheduler has a great impact on the overall library’s perfor-

mance as it controls the thread activities and coordinates task execution.

It employs a simple and efficient strategy to adapt the number of active

threads to available parallelism. This strategy not only can prevent resource

underutilization but can also minimize resource waste to achieve substantial

energy saving. In addition, the scheduler can maintain decent throughput

in a shared environment where multiple parallel processes are running con-

1

currently. We provide an analysis on the scheduler’s thread management to

prove the effectiveness of our scheduler. The experimental results show that

our scheduler can deliver good performance, energy efficiency and throughput

on a VLSI timing analysis tool.

In Chapter 41, we propose several enhancements to Cpp-Taskflow’s pro-

gramming model. The first and foremost enhancement is to separate the

task graph and executor. This allows users to create multiple task graphs

and graphs can be executed multiple times and in arbitrary order. The sec-

ond enhancement is the graph composition which allows users to compose

small and simple graphs into a large and complex graph. Last but not least,

we add a new tasking type: conditional tasking to enable users to control

the graph execution flow at runtime. The conditional tasking is a revolu-

tionary breakthrough as it removes the restrictions that a task graph must

be acyclic, and each task must be executed exactly once. Users can use con-

ditional tasking to iterate parts of a graph multiple times, or conditionally

bypass the execution of some tasks. These new capabilities make it very easy

to build task graphs for applications with complex control flow.

In Chapter 52, we develop GPU techniques to accelerate VLSI placement.

VLSI placement decides the positions of cells on the chip, and the place-

ment result will have a significant impact on subsequent steps in the physical

design flow. To derive a good placement, state-of-the-art VLSI placement

methods adopt an analytic approach which typically involves a huge amount

of computation and is therefore very time-consuming. In this chapter, we

propose to use GPU to accelerate the wirelength and density computations

in VLSI placement. We utilize the sparse graph property to speed up the

wirelength computation via sparse matrix multiplication, For density com-

putation, we come up with a computation flattening technique to mitigate

the load balancing issue, and we take advantage of the CUDA stream to

overlap the data transfer with computation to further reduce the overhead.

The experiment results show GPU can bring considerable performance gain

to VLSI placement.

1Part of the content in this chapter was published in IEEE High Performance Extreme
Computing Conference, 2019 [3], and is used here with permission.

2The content of this chapter was previously published in Design, Automation and Test
in Europe Conference, 2018 [4], and is used here with permission.

2

Finally, in Chapter 63, we demonstrate a distributed power grid analy-

sis framework using DtCraft [6]. DtCraft is a distributed execution engine

that takes a stream graph and automatically deploys the computations on

the machines in a cluster. In the stream graph model, users encapsulate

the computations in nodes which will be invoked when data arrive, and the

directed edges specify the data flow between nodes. With the stream graph

abstraction, the proposed framework can perform flexible domain decom-

position regardless the available hardware resources. We have conducted

experiments to show the framework’s flexibility. In addition, we also propose

a new scheduler that can better utilize the cluster resource to improve the

performance.

3The content of this chapter was previously published in Great Lakes Symposium on
VLSI, 2018 [5], and is used here with permission.

3

CHAPTER 2

CPP-TASKFLOW PROGRAMMING
SYSTEM

In this chapter, we review a C++ parallel programming library: Cpp-Taskflow

proposed by Huang et al. [1]. Cpp-Taskflow is motivated by an EDA applica-

tion: OpenTimer [7], which is a circuit timing analysis tool. Timing analysis

is a crucial part of the physical design flow and is very time-consuming.

To speed up OpenTimer, the authors need an efficient way to program the

parallel patterns which are highly irregular. As a result, they develop Cpp-

Taskflow to serve for this purpose. Compared to existing parallel program-

ming libraries such as OpenMP [8] and Intel Threading Building Blocks

(TBB) [9], writing parallel code with Cpp-Taskflow is relatively easy, es-

pecially for complex parallel patterns. The evaluation of OpenTimer has

shown that Cpp-Taskflow can achieve comparable performance to OpenMP

with taking much less coding effort [1]. We will go over Cpp-Taskflow’s pro-

gramming model, user interface, software architecture and execution flow in

the following sections.

2.1 Task Dependency Graph

The programming model of Cpp-Taskflow is task dependency graph which is

a directed acyclic graph. In task dependency graph, a node is a task which

encapsulates a computation to be executed on a thread, and the directed

edges describe the dependency between nodes. To use Cpp-Taskflow, users

have to first decompose the application into dependent tasks, and then specify

the task dependency by adding directed edges between tasks. Listing 2.1 is

an example of using Cpp-Taskflow to construct a task dependency graph. In

this example, we first create an object of type tf::Taskflow, and then use

the emplace method to add four lambda objects to create four tasks. The

emplace method returns a tf::Task object, and we can use the precede

4

method to specify the dependency between those task objects. The lambda

objects will be stored in the tasks and invoked during runtime. For the tasks

which do not take any input argument, we call them static tasking. Static

tasking means those tasks will not make any change to the task dependency

graph at runtime.

In contrast to static tasking, dynamic tasking allows a task to spawn

new task dependency graph during graph execution. Both static and dy-

namic taskings are constructed by the emplace method, and the major dif-

ference is that dynamic tasking has to take an input argument of type

tf::SubflowBuilder. Listing 2.2 shows an example of dynamic tasking. The

subflow object can be used to create a task dependency graph via the afore-

mentioned graph construction methods. The task graph in the subflow ob-

ject will be scheduled to execution after the parent task ends. There are

two modes that users can select to schedule the subflow graph: joined and

detached modes. The joined mode guarantees the subflow graph will fin-

ish before scheduling the successor tasks of its parent task, while in detached

mode there is no restriction on the execution order between the subflow graph

and the parent graph. Dynamic tasking allows users to flexibly create task

dependency graphs during runtime to generate more parallelism. Another

benefit of dynamic tasking is to enable users to implement common comput-

ing patterns such as recursion, where the number of tasks in those patterns

cannot be known before execution

When the task dependency graph is constructed, the graph can be dis-

patched to execution via either the taskflow object’s wait for all, dispatch

or silent dispatch method. The wait for all method will block the caller

until the task graph finishes execution. In contrast, the dispatch method

returns a std::shared future object to let the caller query the execution

status asynchronously, while the silent dispatch method does not return

anything. Once a task dependency graph is dispatched to execution, the task

graph will be destroyed at the end of execution.

1 t f : : Taskflow f low ;

2

3 i n t a , b , c , d ;

4

5 // Create ta sks

5

6 auto A = f low . emplace ([&] () { a = 1 ; }) ;

7 auto B = f low . emplace ([&] () { b = a + 1 ; }) ;

8 auto C = f low . emplace ([&] () { c = a + 1 ; }) ;

9 auto D = f low . emplace ([&] () { d = b + c ; }) ;

10

11 // Spec i f y dependency

12 A. precede (B, C) ;

13 B. precede (D) ;

14 C. precede (D) ;

Listing 2.1: Create a task dependency graph using Cpp-Taskflow.

1 t f : : Taskflow f low ;

2

3 // Dynamic ta sk ing

4 auto S = f low . emplace ([] (auto &subf low) {

5 // Use subf low to cons t ruc t a task dependency graph

6 auto S1 = subf low . emplace ([] () { p r i n t f (”S1\n”) ; }) ;

7 auto S2 = subf low . emplace ([] () { p r i n t f (”S2\n”) ; }) ;

8 auto S3 = subf low . emplace ([] () { p r i n t f (”S3\n”) ; }) ;

9 auto S4 = subf low . emplace ([] () { p r i n t f (”S4\n”) ; }) ;

10

11 S1 . precede (S2 , S3 , S4) ;

12 }) ;

Listing 2.2: Dynamic tasking in Cpp-Taskflow.

2.2 Software Architecture and Execution Flow

In this section, we will go over Cpp-Taskflow’s main data structures and

describe the task graph execution flow. A taskflow object internally stores a

task graph (tf::Graph) and an executor(tf::Executor). A task graph is a

list of nodes (tf::Node) where each node stores a callable object [10], and

other graph related data such as pointers to successors and a dependency

counter (number of predecessors). Whenever the emplace method is called,

the taskflow object creates a node and forwards the given task to the node’s

6

callable object. The callable object will invoke the task and schedule its

successor tasks at runtime. Algorithm 1 is the content of the callable object.

In the invoke task function, the captured task is invoked first based on its

tasking type (line 1-17). For static tasking, we simply invoke the task without

giving any input argument (line 1-4). If the task is dynamic tasking, we

invoke the task with a subflow object (line 6-9). Next, if the dynamic tasking

is in joined mode, we let the sink tasks of the subflow object precede parent

task (line 10-12) and schedule the source tasks (line 13), and then terminate

the invoke task function (line 15). The direct termination is to ensure

correct execution order in joined mode, where the new spawned task graph

needs to finish before scheduling the parent task’s successors. Otherwise, if

the mode is detached we directly schedule the source tasks in the subflow

object (line 13) and proceed to schedule the successor tasks. After the task

has been invoked, we decrement the dependency of its successor tasks (line

19-27). The successor tasks whose dependency is met will be immediately

dispatched to execution (line 21-25).

An executor is a thread pool that maintains a set of threads to carry

out dispatched tasks, and Cpp-Taskflow adopts a work-stealing method to

balance the workload between threads [11]. The executor spawns a set of

threads (denoted as workers) on initialization. Each worker has a local queue

and a cache to store the tasks ready for execution. The local queue is a

double-ended queue which allows the owner to add and pop tasks from the

bottom, while others can only steal tasks from the top [12]. The cache is

a task holder that enables a worker to reserve a ready task for continuous

execution. In addition to the local queues, the executor maintains a master

queue for non-worker threads to add tasks. A worker will first carry out all

tasks in local queue and cache. Then, the worker tries to randomly steal

tasks from other workers and the master queue. Once the steal succeeds, the

worker will execute the task and repeat the whole procedure. If the worker

fails to obtain any task after a fixed number of steals, the executor suspends

the worker by adding the worker into a idler list. To improve both load

balancing and performance, a worker will attempt to wake up a suspended

worker based on a probability.

Here we use Figure 2.1 as an example to illustrate task dependency graph

execution with two workers: W1 and W2. For simplicity, we assume workers

will not be suspended before the graph finishes execution, and workers can

7

Algorithm 1: The invoke task function.

Input: node
Input: task: the given task stored in node
Input: executor
Input: w: the worker

1 if t == static tasking then

2 /* Static tasking */

3 invoke(t);

4 else

5 /* Dynamic tasking */

6 subflow ← node.subgraph();
7 if t has never been invoked then

8 invoke(t, subflow);
9 end

10 if subflow.joined() then

11 subflow.sink tasks().precede(node);
12 end

13 schedule(subflow.sources());
14 if subflow.joined() then

15 return ;
16 end

17 end

18 /* Update the dependency of successor tasks */

19 for s ∈ node.successors() do
20 if AtomDec(s.dependencies) == 0 then

21 /* If the dependency is met, dispatch the successor

task to execution */

22 if w.cache 6= NIL then

23 executor.schedule(w.cache);
24 end

25 w.cache ← s;

26 end

27 end

immediately steal the task if there exists one. Figure 2.1 is a task dependency

graph with eight tasks (not including the graph spawn by dynamic tasking).

Whenever a graph is dispatched to execution, Cpp-Taskflow first creates an

object of type tf::Topology to record the runtime data of the graph. The

topology object collects the tasks without predecessors (denoted as source

tasks, e.g. task A and B) in the task graph, and lets the tasks without

successors (denoted as sink tasks, e.g. task G and H) precede a node which

8

Figure 2.1: An example to illustrate executing a task dependency graph.
The numbers in red are the required execution time of tasks. The red edge
is added deliberately by executor to respect the execution order.

will set up the future object at the end of execution. After the topology

object has built up, the source tasks are added into the executor’s master

queue to initiate the execution. In this example we assume W1 gets task A

and W2 gets task B in the beginning. Next we illustrate the task execution

along the timeline below:

1. T=1, task B finishes and W2 decrements the dependency of task C. Since

W2 has no remaining tasks, W2 will start stealing tasks randomly.

2. T=2, task A finishes and W1 decrements the dependency of task C. Since

task C’s dependency is met, W1 will continue executing task C.

3. T=5, task C finishes and a new task graph is spawned. W1 lets task C3

precede its parent task C. Then, W1 will cache task C1 and add C2 to

W1’s local queue. W2 subsequently steals task C2 from W1.

4. T=6, task C2 finishes and W2 decrements the dependency of C3.

5. T=7, task C1 finishes and W1 continues execution on task C3.

6. T=9, task C3 finishes. W1 will revisit task C and decrement the depen-

dency of task D, E and F. Task D will be cached by W1 and tasks E and

F will be added to W1’s local queue. Then, W2 steals task E from W1’s

queue.

7. T=10, task E finishes and W2 decrements the dependency of task G and

H. W2 steals task F from W1’s queue.

9

8. T=11, task F finishes and W2 decrements the dependency of task H. W2

continues executing task H.

9. T=12, task H finishes. W2 has no tasks in local queue and thus starts

random stealing.

10. T=13, task D finishes and W1 decrements the dependency of task G. W1

continues executing task G.

11. T=15, task G finishes. Now all sink nodes are executed and W1 will set

up the future object and mark the task graph as finished.

10

CHAPTER 3

ADAPTIVE WORK-STEALING
SCHEDULER

3.1 Introduction

Work stealing has been proved to be an efficient approach for parallel task

scheduling on multi-core systems and has received wide research interest over

the past two decades [11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. Several

task-based parallel programming libraries and language have adopted work-

stealing scheduler as the runtime for thread management and task dispatch

such as Intel Threading Building Blocks (TBB) [9, 24], Cilk [13, 25], X10 [19,

26], Nabbit [27], Microsoft Task Parallel Library (TPL) [28], and Golang [29].

The efficiency of the work-stealing scheduler can be attributed to the way

it manages the threads: The scheduler spawns multiple threads (denoted as

workers) on initialization. Each worker has a double-ended queue storing

the tasks ready for execution, and a worker can only add newly spawned

tasks into its queue. A worker first carries out all tasks in its queue, and

then becomes a thief to randomly steal tasks from others. When a thief

has successfully stolen a task, it restores to a normal worker and commences

executing the task. The key is to have thieves actively steal tasks. By

doing this the scheduler is able to balance the workload and maximize the

performance.

However, implementing an efficient work-stealing scheduler is not an easy

job, especially when dealing with a task dependency graph where the par-

allelism could be very irregular and unstructured. Due to the decentralized

architecture, developers have to sort out many implementation details to ef-

ficiently manage workers such as deciding the number of steals attempted

by a thief and how to mitigate the resource contention between workers.

The problem is even more challenging when considering throughput and en-

ergy efficiency, which have emerged as critical issues in modern scheduler

11

designs [15] [30]. The worker management can have a huge impact on these

issues if it is not designed properly. For example, a straightforward method

is to keep workers busy in waiting for tasks. Apparently, this method con-

sumes too much resource and can result in a number of problems, such as

decreasing the throughput of co-running multithreaded applications and low

energy efficiency [15] [30]. Several methods have been proposed to remedy

this deficiency, e.g., making thieves relinquish their cores before stealing [16]

or backing off a certain time [17] [24], or modifying OS kernel to directly

control CPU cores [15]. Nevertheless, these approaches still have drawbacks,

especially from the standpoints of solution generality and performance scal-

ability.

In this chapter, we propose a work-stealing scheduler with provably good

worker management for executing task dependency graphs. Our scheduler

employs a simple yet effective strategy that adaptively adjusts the number

of thieves by tracking the number of workers that are executing tasks. This

strategy has three advantages: First, it ensures one thief will keep looking for

tasks when any worker is executing tasks, which can prevent resource from

being underutilized. Second, our strategy only uses a reasonable number of

workers to meet the parallelism at any time, which can minimize the resource

waste without compromising performance. Lastly, this strategy has very little

overhead. Workers can quickly carry out their tasks without being slowed

down by the extra management work. With this strategy, our scheduler can

make efficient use of workers to achieve good performance under different

parallelism. Meanwhile, this strategy effectively mitigates the resource waste

by reducing unnecessary steals, and therefore our scheduler is energy-efficient

and can maintain good throughput when co-running multithreaded processes.

We summarize the contributions of our scheduler below:

• An adaptive scheduling strategy: We develop an adaptive scheduling

strategy for executing task dependency graph. The strategy is simple; no

sophisticated data structures or complex algorithms are required and thus

the overhead is small. The experimental results show our scheduler can

efficiently utilize CPU resource to achieve good performance.

• Provably good worker management: We proved our scheduler can

prevent the under-subscription problem and effectively mitigate the over-

subscription problem. Our scheduling algorithm is efficient in balancing

12

working threads on top of available task parallelism.

• Energy efficiency: Our scheduler is very energy-efficient in that it re-

serves thieves to steal only when there exists a worker executing tasks.

We also show that our scheduler will put most thieves put into sleep when

tasks are scarce, which effectively reduces resource waste and saves energy.

We evaluated the proposed scheduler on two benchmark sets: a set of micro-

benchmarks and a very-large-scale integration (VLSI) timing analyzer. We

use the Linux utility perf to measure the CPU utilization, runtime and

energy usage of ours and the scheduling approach proposed by Aurora et

al. [16] (denoted as ABP) and a modified approach from Ding et al. [15]. The

micro-benchmarks show our scheduler can utilize the computing resources ef-

fectively to accommodate different degrees of parallelism. Specifically, in an

extreme case with linear task graph, the CPU utilization of our scheduler

is 1.2 while ABP is 31.9, which highlights the effectiveness of our sched-

uler’s worker management. The second experiment is a real workload: VLSI

static timing analysis. This experiment demonstrates that the scheduler

not only achieves scalable performance but is also energy-efficient. On the

largest circuit, our scheduler achieves 15% less runtime and 36% less energy

consumption than ABP. Finally, we show the scheduler can maintain good

throughput when co-running multithreaded applications.

3.2 Adaptive Work-Stealing Scheduler

In this section we present the details of the proposed work-stealing scheduler.

We first outline our scheduler’s architecture and associated data structures.

Next we describe the proposed worker management approach and its imple-

mentation with pseudo code. Lastly, we provide an analysis on our worker

management to show its efficiency.

3.2.1 Scheduler Overview

Figure 3.1 shows a task dependency graph (left) and the architecture of the

proposed scheduler (right). Our scheduler consists of a set of workers, a

master queue, a lock and a notifier. On initialization our scheduler spawns

13

A

C

D

B

E

FG

Dependency Task

Master

queue

Worker Cache

Queue

Notifier

SchedulerTask dependency graph

Lock

Figure 3.1: A task dependency graph and the architecture of our scheduler.

workers waiting for tasks. Each worker is equipped with a queue and a

cache to store tasks ready for execution. After users create a task graph,

they add the source nodes to the master queue and notify workers via the

notifier to start execution. Algorithm 2 is the pseudo code of task insertion

from users. In Algorithm 2, users first acquire the lock (Algorithm 2 line

1) which prevents concurrent insertion to the master queue. Then users add

tasks into the master queue (Algorithm 2 line 2:4) and notify waiting workers

(Algorithm 2 line 6). A worker will continue pulling tasks from its queue or

others (including the master queue) for execution. When a worker finishes

a task, it automatically adds successive tasks ready for execution to its own

queue or cache. A worker’s queue allows only the owner to add tasks, while

only non-worker threads (such as the main thread controlled by users) can

add tasks into the master queue. A cache is simply a task holder and only

the owner can access its cache. The cache enables the worker to prefetch a

task when the worker adds tasks. For example, in Figure 3.1 a worker can

add the task B into its cache and C to its queue after it finishes the task A.

With the cache, we can facilitate task retrieval by reducing the queue access.

14

Algorithm 2: Task insertion from users

Input: tasks: a set of ready tasks
1 lock();
2 for t in tasks do

3 master queue.push(t);
4 end

5 unlock();
6 notifier.notify one();

3.2.2 Data Structures

The queue and the notifier are two important data structures in our scheduler.

We implement the queues (both the worker’s queue and master queue) based

on the Chase-Lev algorithm [12] [31]. Access to the queue is non-blocking

and the queue capacity can grow if more space is needed. The queue provides

three operations:

1. Push: Add a task into the bottom of the queue. Only the queue’s owner

can use this operation.

2. Pop: Retrieve a task from the bottom of the queue. Only the queue’s

owner can use this operation.

3. Steal: Retrieve a task from the top of the queue. Any worker can use this

operation.

The notifier is a synchronization component that is capable of (1) putting

workers that are waiting for tasks into sleep and (2) notifying one or all wait-

ing workers when new tasks are present or the scheduler terminates. In our

scheduler, we use the EventCount struct from the Eigen library [32] as the

notifier. The usage of EventCount is similar to a condition variable. The

notifying thread sets a condition to true and then signals waiting workers

via EventCount. On the other side, a worker first checks the condition and

returns to work if the condition is true. Otherwise, the worker updates the

EventCount to indicate it is waiting and checks the condition again. If the

condition is still false, the worker is put into sleep via the EventCount.

15

3.2.3 Worker Management

Recall that our scheduler spawns workers on initialization and Algorithm 3

contains the pseudo code for spawning workers and a worker’s control flow.

In the spawn function, the scheduler spawns N workers where N is specified

by users. The scheduler makes workers execute the worker loop function

after they are spawned. The worker loop function consists of two steps. In

the first step exploit task, a worker executes a ready task and the tasks in

its queue (Algorithm 3: line 10) until its queue becomes empty. Next, the

worker leaves the exploit task and calls the wait for task (Algorithm 3:

line 11) to start stealing tasks. If the worker successfully steals a task, it

returns from the wait for task and repeats the first step. Otherwise, the

worker is put into sleep via the notifier to wait for task notification. When

the scheduler terminates, the wait for task returns false and the worker

exits the while-loop.

Algorithm 3: spawn

Input: N : number of workers
1 Function spawn(N):

2 for i← 0 to N do

3 workers.emplace back(worker loop(i));
4 end

5 ;
6 Function worker loop(id):
7 w ← workers[id];
8 t ← NIL;
9 while true do

10 exploit task(t, w);
11 if wait for task(t, w) == false then

12 break;
13 end

14 end

15 return

One major contribution of this work is the adaptive scheduling algorithm,

which is implemented in the exploit task and wait for task functions.

The main idea of this algorithm is to maintain at least one thief (except

when all workers are executing tasks) when a worker is executing tasks. This

is different from prior research where they unconditionally keep one or more

thieves busy in waiting tasks [15][16], whereas we keep thieves only when

16

there exists potential parallelism. We achieve this by using two counters:

num actives and num thieves to adaptively adjust the number of thieves.

Algorithm 4 is the pseudo code of exploit task function. In this function,

the worker first increments the num actives (Algorithm 4: line 2) and checks

the num thieves (Algorithm 4: line 2). If num thieves is zero and this

is the first increment on num actives, then the worker notifies a waiting

worker (Algorithm 4: line 3) and proceeds to execute the task. The worker

continues fetching and executing tasks from its cache (Algorithm 4: line 8)

and queue (Algorithm 4: line 10) until both become empty. Then the worker

decrements the num actives (Algorithm 4: line 13) and returns. Obviously,

the num actives records the number of workers that are executing tasks,

and a non-zero num actives implies there could be tasks in a queue.

After a worker returns from exploit task, the worker starts stealing tasks

by invoking the wait for task function. Algorithm 5 is the pseudo code of

the wait for task function. In the wait for task, the thief first increments

the num thieves (Algorithm 5: line 2) and conducts random stealing by

invoking the explore task function (Algorithm 5: line 4). Algorithm 6 is

the pseudo code of the explore task function. In the explore task, the

thief first randomly selects a victim (Algorithm 6: line 4) which could be

other workers or the master queue. Then it tries to steal a task from the

victim (Algorithm 6: line 5:9). If the steal fails, the thief will attempt to steal

for a certain number of times. When the number of failed steals is greater

than a pre-defined threshold, steal bound (Algorithm 6: line 14), the thief

invokes a yield system call every time after each failed steal. A thief stops

stealing if it still cannot obtain any task after yielding yield bound times

(Algorithm 6: line 17). The thief returns from explore task in either one

of the three conditions:

• The thief successfully steals a task (Algorithm 6: line 11).

• The scheduler terminates (Algorithm 6: line 3),

• The thief fails to obtain any task after a fixed number of attempts (Algo-

rithm 6: line 18).

In the first case, the thief decrements num thieves (Algorithm 5: line 5)

and notifies a waiting worker if it is the last thief (Algorithm 5: line 6). For

the other two cases, the thief first updates the notifier (Algorithm 5: line

17

10) to indicate it is waiting. Next the thief checks the master queue and

tries to steal a task if the queue is non-empty (Algorithm 5: line 11:22).

The thief returns (Algorithm 5: line 18) if it successfully steals a task from

the master queue or goes back to steal tasks if it failed (Algorithm 5: line

20). Otherwise, the thief proceeds to check the scheduler’s status. If the

scheduler shuts downs (Algorithm 5: line 23), the thief notifies all waiting

workers (Algorithm 5: line 25) and then decrements the num thieves and

returns. If all preceding conditions do not hold, the thief decrements the

num thieves and then either continues to steal if num actives is non-zero

(Algorithm 5: line 31) and it is the last thief, or goes into sleep (Algorithm 5:

line 33).

Algorithm 4: exploit task

Input: t: a task holder, w: the worker’s data structure
1 if t 6= NIL then

2 if AtomInc(num actives) == 1 and num thieves == 0 then

3 notifier.notify one();
4 end

5 do

6 execute(t);
7 if w.cache 6= NIL then

8 t ← w.cache;
9 else

10 t ← pop(w.queue);
11 end

12 while t 6= NIL;
13 AtomDec(num actives);

14 end

3.2.4 Analysis

We show the scheduler’s worker management is very efficient in two fronts:

(1) At least one thief exists when there is a worker executing tasks. (2) It

mitigates the thieves over-subscription problem by putting most thieves into

sleep after they failed to steal. We first define the states of a worker:

Definition A worker is active if it is exploiting tasks (Algorithm 4: line

2:13), otherwise, the worker is inactive.

18

Algorithm 5: wait for task

Input: t: a task, w: the worker’s data structure
Output: A Boolean value to indicate continuation of worker-loop

1 wait for task:
2 AtomInc(num thieves);
3 explore task:
4 if explore task(t, w) and t 6= NIL then

5 if AtomDec(num thieves) == 0 then

6 notifier.notify one();
7 end

8 return true;

9 end

10 notifier.prepare wait(w);
11 if master queue is not empty then

12 notifier.cancel wait(w);
13 t ← steal(master queue);
14 if t 6= NIL then

15 if AtomDec(num thieves) == 0 then

16 notifier.notify one();
17 end

18 return true;

19 else

20 go to explore task;
21 end

22 end

23 if scheduler stops then

24 notifier.cancel wait(w);
25 notifier.notify all();
26 AtomDec(num thieves);
27 return false;

28 end

29 if AtomDec(num thieves) == 0 and num actives > 0 then

30 notifier.cancel wait(w);
31 go to wait for task;

32 end

33 notifier.commit wait(w);
34 return true;

Definition An inactive worker is sleeping if it has been suspended by the

notifier (Algorithm 5: line 33).

Definition An inactive worker is a thief if it is not exploiting tasks (Algo-

19

Algorithm 6: explore task

Input: t: a task holder, w: the worker’s data structure
Output: t

1 num failed steals ← 0;
2 num yields ← 0;
3 while scheduler not stops do

4 victim ← random();
5 if victim == w then

6 t ← steal(master queue);
7 else

8 t ← steal task from(victim);
9 end

10 if t 6= NIL then

11 break;
12 else

13 num failed steals← num failed steals+ 1;
14 if num failed steals ≥ steal bound then

15 yield();
16 num yields ← num yields + 1;
17 if num yields == yield bound then

18 break;
19 end

20 end

21 end

22 end

rithm 4: line 2:13) nor sleeping.

Lemma 1. When a worker is active and at least one worker is inactive, one

thief always exists.

Proof. Assume there exists one active worker and one inactive worker. The

inactive worker is either awake (Algorithm 5: line 1:28) or sleeping (Algo-

rithm 5: line 33). If the inactive worker is awake, then it is a thief and

the lemma holds. Otherwise the inactive worker is sleeping and it must

have decremented the num thieves without seeing any active worker (Algo-

rithm 5: line 29). This happens only when the active worker just enters the

exploit task function and is about to increment num actives (Algorithm 4:

line 2). Subsequently the active worker shall wake up a thief (Algorithm 4:

line 3) and the lemma holds.

20

Lemma 1 is important to our scheduler as it prevents the under-subscription

problem.

Definition An under-subscription problem means:

T = 0 and 0 < Q < W

where

Q : number of non-empty queues

(excluding the master queue)

T : number of thieves

W : number of total workers

In the following discussion we exclude two special conditions where all

workers are active and all workers are inactive. An under-subscription prob-

lem occurs when all thieves go into sleep (i.e. T = 0) while at least one

queue is non-empty. The under-subscription problem degrades the sched-

uler’s performance since the scheduler does not fully exploit the available

parallelism. With Lemma 1, we show that our scheduler does not have the

under-subscription problem:

Lemma 2. Our work-stealing scheduler always has

0 < T if 0 < Q < W

Proof. In our scheduler a worker is active if its queue is non-empty (Algo-

rithm 4):

Q ≤ A

where A is the number of active workers, and by Lemma 1:

T ≥ 1 if 0 < A < W

Combining these two inequalities, we have:

0 < T if 0 < Q ≤ A < W

21

Lemma 2 guarantees at least one thief exists when there is a non-empty

queue, which prevents the under-subscription problem. Lemma 2 also enables

us to offload the task notification from active workers to thieves. In our

scheduler workers do not need to notify waiting workers when spawning new

tasks. Instead, a thief will notify a waiting worker when the steal succeeds

and it is the last thief that decrements the num thieves (Algorithm 5: line

5:6). This allows active workers to quickly add new tasks without being

stalled by the notification.

Our scheduling method not only prevents the under-subscription problem

but can also mitigate the over-subscription problem. The over-subscription

problem means the number of thieves is greater than the number of available

tasks. Mitigating the over-subscription problem is very important for two

reasons: First, excessive thieves will cause substantial resource wasted on

failed steals if they persist for a long time. Second, excessive thieves and

active workers might contend for resource, which can result in inefficient

resource utilization. We now show the scheduler will put most thieves into

sleep within a time bound if they fail to steal any task.

Definition Assume there exists more than one thief. We call these thieves

a group and a thief leaves the group if it goes into sleep (Algorithm 5: line

33) or successfully steals a task (Algorithm 6: line 10).

Given a group, we prove that only one thief exists in the group after a

certain time. This implies most thieves will go into sleep when there are

no sufficient tasks. In the following proof, we assume the master queue is

empty since thieves will check the master queue before going to sleep. For

better description, we denote the constants steal bound and yield bound

in Algorithm 6 as α and β, respectively.

Lemma 3. Given a group of thieves, only one thief in the group exists after

O((α+ β) ∗ S + C) time, where S is the time to perform a steal and C is a

constant.

Proof. Given a group of thieves, we call the thief that lastly decrements

the num thieves (Algorithm 5: line 5 and 29) in this group as the last thief.

Thieves in a group except the last thief must either (1) become active workers

if they successfully steal tasks (Algorithm 5: line 4) or (2) go into sleep

(Algorithm 5: line 33) after they decrement the num thieves. Therefore,

22

eventually only one thief stays in the group when the last thief performs the

decrement. Next we analyze the runtime taken by the last thief to do the

decrement. There are two cases: the last thief either successfully steals a

task (Algorithm 5: line 4) or fails to steal any task (Algorithm 5: line 29).

For the first case, the runtime is bounded by O((α + β) ∗ S) where S is the

time of conducting one steal and (α + β) is the maximum number of steals

that can be attempted. For the second case, the last thief will go through

following steps:

1. Perform (α+ β) steals (Algorithm 5: line 4).

2. Prepare for sleep (Algorithm 5: line 10).

3. Check the master queue (Algorithm 5: line 11) and the scheduler status

(Algorithm 5: line 23).

Because steps 2 and 3 are simple routines, we use a constant C to denote

the maximal total runtime took by these two steps. Then the runtime of the

second case is bounded by O((α+β)∗S+C). Therefore, the runtime for the

last thief to perform the decrement will be bounded by O((α+β)∗S+C).

To sum up, we proved our scheduler can prevent the under-subscription

problem (Lemma 2) and effectively mitigate the over-subscription problem

(Lemma 3). Our scheduling algorithm is simple and efficient in balancing

working threads on top of available task parallelism. We will demonstrate

the practical performance in the experiment results.

3.3 Evaluation

We evaluated our scheduler using a set of micro-benchmarks and a timing

analyzer for VLSI systems. We compare our scheduler with two approaches:

the ABP method [16], and the MBWS which is modified from the BWS of

Ding et al. [15]. For fair comparison, we implement all scheduling methods

in Cpp-Taskflow. We briefly summarize our implementation of ABP and

MBWS: ABP lets thieves repeatedly steal until they succeed, and thieves

will invoke yield system call every time before attempting a steal. BWS [15]

introduces two methods to enhance ABP’s resource utilization: (1) BWS

modifies the OS kernel so that workers can query the running status of others

23

and yield their cores directly to others. (2) BWS uses two counters, a wake-

up and a steal counter, to make thieves wake up two sleeping workers for

busy workers and limit the number of steals a thief can attempt. We modify

BWS as follows: First, we do not modify the OS kernel as we aim for a

portable solution that does not introduce system-specific hard code. To

compensate for this, we associate each worker with a status flag which is

set by the owner to inform its current status, and thieves do not yield their

cores. Second, we implement the modified counter-based approach in the

explore task function. As multiple thieves can concurrently modify the

wake-up counter, we use atomic compare-and-swap operation to decrement

the wake-up counter. A deficiency of BWS is that all thieves could be sleeping

while the parallelism changes. To resolve this problem, BWS has to keep one

watchdog worker which never goes into sleep to prevent missing parallelism.

We also implemented this mechanism in MBWS by having a thief continue

to steal if it is the last one that decrements the num thieves. Notice that

the modified BWS may not be reflective of the true implementation but it

provides a good reference to implement the wake-up-two heuristic.

We conducted all experiments on a machine with two Intel Xeon Gold

6138 processors (2 NUMA nodes) and 256 GB memory. Each processor has

20 cores with 2 threads per core. The OS is Ubuntu 19.04 and the compiler

is GCC 8.3.0. We compile all source code with the optimization flag O2

and C++ 17 standard flag (-std=c++17). To reduce the impact of thread

migration, we use the system command taskset to bond the threads to a

set of cores, and we split the threads evenly on the two processors. The

steal bound is set to 2 ∗ (number of workers + 1) and the yield bound is

100. For MBWS we adopt 64 as the SleepThreshold, which is the same

as the experiment setting in [15]. We report the results measured by Linux

profiling utility perf.

3.3.1 Micro-benchmarks

We select four micro-benchmarks with different kinds of parallelism. This

experiment is to provide insight into the schedulers’ CPU utilization under

various task dependency graphs.

• Linear chain: The task graph is a singly connected list, i.e. each task has

24

one successor and one predecessor except the first and last tasks. Each

task increments a counter by 1. The size of the graph is 8388608.

• Binary tree: The task graph is a binary tree, i.e. each task has one prede-

cessor and two successors except the root and leaf tasks. The task has no

computation. The size of the graph is 8388607.

• Graph traversal: We generate a task graph where the dependency is ran-

domly determined, and the number of successors of a node is bounded by

a given value. Each task sets a Boolean variable to true to indicate the

associated node is visited. The size of the graph is 4000000.

• Matrix multiplication: Given three matrices (2-D array with size 2048x2048),

we create a task graph to perform the matrix multiplication. The task

graph has two levels: (1) In the first level each task initializes the elements

in a row of a matrix. (2) In the second level each task computes a row in

the resulting matrix. Tasks in the same level are independent of each other

and we create an empty task to synchronize the first level before starting

the second level.

In this experiment, we vary the number of cores among 1, 4, 8, 12, 16,

20, 24, 28, 32, 36 and 40. We first compare the schedulers’ performance

and CPU utilization in all four cases. Then we vary the task granularity

of two benchmarks with irregular and regular dependency to observe their

performance, CPU utilization and energy consumptions. For each scheduler

we report the average value of ten runs on each benchmark (the command is

perf stat -r).

Figures 3.2 and 3.3 show the runtime and CPU utilization of each bench-

mark, respectively. For the linear chain, the runtime does not decrease when

adding more cores. This is expected as the linear chain has no parallelism

at all and one core should suffice for the execution. The CPU utilization of

ABP increases along with the number of cores while both MBWS and ours

remain nearly uninfluenced. In fact, the CPU utilizations of MBWS and ours

stay around 2.0 and 1.2 from 4 to 40 cores respectively.

25

0 10 20 30 40

3

4

5

6

7

8

Number of cores

R
u
n
ti
m
e
(s
)

Linear Chain

Ours
MBWS
ABP

0 10 20 30 40
3

4

5

6

Number of cores

R
u
n
ti
m
e
(s
)

Binary Tree

Ours
MBWS
ABP

0 10 20 30 40

3

3.5

4

4.5

5

5.5

Number of cores

R
u
n
ti
m
e
(s
)

Graph Traversal

Ours
MBWS
ABP

0 10 20 30 40

0

10

20

30

40

Number of cores

R
u
n
ti
m
e
(s
)

Matrix Multiplication

Ours
MBWS
ABP

Figure 3.2: Runtime comparisons between ours, MBWS, and ABP on
micro-benchmarks.

0 10 20 30 40

0

10

20

30

Number of cores

C
P
U

u
ti
li
za
ti
on

Linear Chain

Ours
MBWS
ABP

0 10 20 30 40

0

10

20

30

Number of cores

C
P
U

u
ti
li
za
ti
on

Binary Tree

Ours
MBWS
ABP

0 10 20 30 40
0

5

10

15

Number of cores

C
P
U

u
ti
li
za
ti
on

Graph Traversal

Ours
MBWS
ABP

0 10 20 30 40

0

10

20

30

Number of cores

C
P
U

u
ti
li
za
ti
on

Matrix Multiplication

Ours
MBWS
ABP

Figure 3.3: CPU utilization comparisons between ours, MBWS, and ABP
on micro-benchmarks.

26

0 10 20 30 40

4

6

8

Number of cores

R
u
n
ti
m
e
(s
)

0.5M iterations per task

Ours
MBWS
ABP

0 10 20 30 40

4

6

8

10

12

Number of cores

R
u
n
ti
m
e
(s
)

1M iterations per task

Ours
MBWS
ABP

0 10 20 30 40

5

10

15

Number of cores

R
u
n
ti
m
e
(s
)

1.5M iterations per task

Ours
MBWS
ABP

0 10 20 30 40

5

10

15

20

Number of cores

R
u
n
ti
m
e
(s
)

2M iterations per task

Ours
MBWS
ABP

Figure 3.4: Runtime comparisons between different task granularities
(number of iterations).

0 10 20 30 40
0

5

10

15

Number of cores

C
P
U

u
ti
li
za
ti
on

0.5M iterations per task

Ours
MBWS
ABP

0 10 20 30 40
0

5

10

15

20

Number of cores

C
P
U

u
ti
li
za
ti
on

1M iterations per task

Ours
MBWS
ABP

0 10 20 30 40
0

5

10

15

Number of cores

C
P
U

u
ti
li
za
ti
on

1.5M iterations per task

Ours
MBWS
ABP

0 10 20 30 40
0

5

10

15

20

Number of cores

C
P
U

u
ti
li
za
ti
on

2M iterations per task

Ours
MBWS
ABP

Figure 3.5: CPU utilization comparisons between different task
granularities (number of iterations).

27

0 10 20 30 40

0

10

20

30

40

Number of cores

R
u
n
ti
m
e
(s
)

4 rows per task

Ours
MBWS
ABP

0 10 20 30 40

0

10

20

30

40

Number of cores

R
u
n
ti
m
e
(s
)

8 rows per task

Ours
MBWS
ABP

0 10 20 30 40
0

10

20

30

40

Number of cores

R
u
n
ti
m
e
(s
)

16 rows per task

Ours
MBWS
ABP

0 10 20 30 40
0

10

20

30

40

Number of cores

R
u
n
ti
m
e
(s
)

32 rows per task

Ours
MBWS
ABP

Figure 3.6: Runtime comparisons between different task granularities
(number of rows per task).

0 10 20 30 40

0

10

20

30

Number of cores

C
P
U

u
ti
li
za
ti
on

4 rows per task

Ours
MBWS
ABP

0 10 20 30 40

0

10

20

30

Number of cores

C
P
U

u
ti
li
za
ti
on

8 rows per task

Ours
MBWS
ABP

0 10 20 30 40

0

10

20

30

Number of cores

C
P
U

u
ti
li
za
ti
on

16 rows per task

Ours
MBWS
ABP

0 10 20 30 40

0

10

20

30

Number of cores

C
P
U

u
ti
li
za
ti
on

32 rows per task

Ours
MBWS
ABP

Figure 3.7: CPU utilization comparisons between different task
granularities (number of rows per task).

28

1 4 8 12 16 20 24 28 32 36 40
0

1,000

2,000

3,000

4,000

Number of cores

E
n
er
gy

u
sa
ge

(J
ou

le
)

4 rows per task

Ours
MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

1,000

2,000

3,000

4,000

Number of cores

E
n
er
gy

u
sa
ge

(J
ou

le
)

8 rows per task

Ours
MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

1,000

2,000

3,000

4,000

Number of cores

E
n
er
gy

u
sa
ge

(J
ou

le
)

16 rows per task

Ours
MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

1,000

2,000

3,000

4,000

Number of cores

E
n
er
gy

u
sa
ge

(J
ou

le
)

32 rows per task

Ours
MBWS
ABP

Figure 3.8: Energy usage of ours, MBWS, and ABP on matrix
multiplication with different numbers of rows per task.

This example shows that although a thief can possibly yield its core to

other workers before stealing, keeping thieves awake can still incur high CPU

utilization. For the binary tree and graph traversal, the runtimes of all

schedulers drop to a stable point after 4 cores. Adding more cores does not

improve the performance as the workload of their tasks is very small and a

worker might quickly carry out all tasks in its queue before thieves discover

them. ABP has the highest CPU utilization among all schedulers and ours

is the lowest in both cases. The CPU utilization of ABP also grows more

rapidly than others in these two cases.

For the matrix multiplication, which has better scalability than the pre-

vious three cases, the runtimes of all schedulers are very close and their

CPU utilizations exhibit similar growth trends. There are two main reasons

accounting for this: (1) In the matrix multiplication, intra-level tasks are

independent of each other and those tasks have nearly equal workload. (2)

The multiplication is compute-intensive and thus the runtime is dominated

29

12 16 20 24 28 32 36 40
0

200

400

600

800

Number of cores

E
n
er
gy

u
sa
ge

(J
ou

le
)

16 rows per task

Ours
MBWS
ABP

12 16 20 24 28 32 36 40
0

200

400

600

800

Number of cores

E
n
er
gy

u
sa
ge

(J
ou

le
)

32 rows per task

Ours
MBWS
ABP

Figure 3.9: Energy usage of ours, MBWS, and ABP on matrix
multiplication with 16 and 32 rows per task.

by the computation rather than the scheduling overhead.

Next, we further evaluate these schedulers by tuning the task granularity.

In this experiment we select two benchmarks: graph traversal and matrix

multiplication, The former has irregular dependency between tasks, while

in the latter tasks in the same layer are independent. For each task in the

graph traversal benchmark, we deliberately add a for-loop which iteratively

performs division, and we change the loop’s number of iterations to adjust

the tasks’ workload. The numbers of iterations tested in this experiment

are 5 × 105, 1 × 106, 1.5 × 106 and 2 × 106. Figure 3.4 and 3.5 are the

runtime and CPU utilization of all schedulers under different numbers of

iterations, respectively. In general, in all scenarios adding more cores can

improve all schedulers’ performance. The CPU utilizations of all schedulers

increase along with the number of iterations. The reason for this could be

that with more iterations a worker will take longer to execute a single task,

and this will give more time for the idle workers to steal tasks. We observe

that ABP has a noticeable fluctuation in CPU utilization, while the CPU

utilizations of ours and MBWS increase steadily. Under the same number

of iterations, ABP has the highest CPU utilization; nevertheless the runtime

of ABP is higher than others. On the contrary, our scheduler can get better

performance than both ABP and MBWS with less CPU utilization.

Finally for the matrix multiplication benchmark, we delegate the compu-

tations of multiple rows in the resulting matrix to each task to vary the work-

load. Figure 3.6 and 3.7 are the runtime and CPU utilization of all schedulers

under different numbers of rows, respectively. Regarding the performance, all

30

schedulers have very similar runtime and scalability in all workloads. For the

CPU utilization, we found that ABP has higher CPU utilization when a task

is given more rows, especially when the number of available cores increases.

Because the total number of tasks is inversely proportional to the number of

rows in a task, this result shows that ABP can cause excessive CPU usage

when there is no sufficient task. Over-subscription of the CPU resource can

lead to inefficient energy use which is shown in Figure 3.8. To clearly demon-

strate the difference, we specifically single out the energy consumptions of

16 and 32 rows with using more than 8 cores in Figure 3.9, which shows that

ABP consumes more energy than the others. For instance, ABP consumes

13.2% and 13.5% more energy than MBWS and ours respectively, when there

are 40 cores and a task is assigned 32 rows.

To conclude, our scheduler can deliver comparable performance to others

under various task dependency graphs and is more efficient in CPU utiliza-

tion. The latter can contribute a lot to the energy efficiency and throughput

of co-running multithreaded applications, which will be demonstrated later

in a large-scale workload.

3.3.2 VLSI Timing Analysis

Next we evaluate the schedulers on a real-world application: VLSI timing

analyzer. Static timing analysis (STA) plays a critical role in the circuit

design flow. For a circuit to function correctly, its timing behavior must

meet all requirements under different design constraints and environment

settings. Thus, circuit designers have to apply STA to verify the circuit’s

timing behavior during different stages in the design flow. STA calculates

the timing-related information by propagating through the gates in a circuit,

and this workload can be naturally described using a task dependency graph.

In this experiment, we use these schedulers to execute the task graph built in

OpenTimer [7], an open-source VLSI timer. We randomly generate a set of

operations which incrementally modify a given circuit and then perform STA

to update the timing. We use the circuits from TAU 2015 timing contest [33]

and the statistics of the circuits are listed in Table 3.1. For each circuit we ran

OpenTimer five times and report the average runtime and CPU utilization

recorded by perf. Figure 3.10 and 3.11 show the runtime and CPU utilization

31

Table 3.1: Statistics of circuits

Circuit # of gates (K) # of nets (K) # of operations
c6288 1.7 1.7 80800
c7552 1.1 1.4 80800
tv80 5.3 5.3 51000

mgc matrix 171.3 174.5 10100
b19 255.3 255.3 10100

vga lcd 139.5 139.6 30300

1 4 8 12 16 20 24 28 32 36 40
0

2

4

6

8

10

Number of cores

R
u
nt
im

e
(s
)

c6288
Ours MBWS ABP

1 4 8 12 16 20 24 28 32 36 40
0

2

4

6

Number of cores

R
u
nt
im

e
(s
)

c7552
Ours MBWS ABP

1 4 8 12 16 20 24 28 32 36 40

500

1,000

1,500

Number of cores

R
u
nt
im

e
(s
)

mgc matrix

Ours
MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

200

400

600

800

Number of cores

R
u
nt
im

e
(s
)

tv80
Ours

MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

1,000

2,000

3,000

4,000

Number of cores

R
u
nt
im

e
(s
)

b19
Ours

MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

1,000

2,000

3,000

Number of cores

R
u
nt
im

e
(s
)

vga lcd

Ours
MBWS
ABP

Figure 3.10: Runtime comparisons between ours, MBWS, and ABP on
OpenTimer.

of each circuit respectively.

We categorize the circuits into different groups based on their sizes and

discuss the results. For those small circuits c6288 and c7552, their runtimes

do not scale with the number of cores. The CPU utilizations of all schedulers

on these two circuits increase along with the number of cores, and ABP has

the highest CPU utilization followed by the MBWS and ours is the smallest.

Next for the medium size circuit tv80, the runtimes of all schedulers decrease

after adding more cores. ABP is faster than others except at single core

and the runtimes at 40 cores are 60.4 (ours), 60.8 (MBWS) and 52.5 (ABP),

respectively. We attribute this to the overhead of notifying workers. Both

32

1 4 8 12 16 20 24 28 32 36 40
0

10

20

30

40

Number of cores

C
P
U
u
ti
li
za
ti
on

c6288
Ours

MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

10

20

30

Number of cores

C
P
U
u
ti
li
za
ti
on

c7552
Ours

MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

10

20

30

40

Number of cores

C
P
U
u
ti
li
za
ti
on

mgc matrix

Ours
MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

10

20

30

40

Number of cores

C
P
U
u
ti
li
za
ti
on

tv80
Ours

MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

10

20

30

40

Number of cores

C
P
U
u
ti
li
za
ti
on

b19
Ours

MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

10

20

30

40

Number of cores

C
P
U
u
ti
li
za
ti
on

vga lcd

Ours
MBWS
ABP

Figure 3.11: CPU utilization comparisons between ours, MBWS, and ABP
on OpenTimer.

ours and MBWS will put thieves into sleep and notify them when tasks

present, while in ABP all thieves are kept busy in waiting for tasks. In terms

of the CPU utilization, ABP is still the highest and ours and MBWS are very

close. Lastly, for those large circuits with over 100,000 gates: mgc matrix,

b19, and vga lcd, the performance scales with the number of cores in all

schedulers. When using multiple cores, ABP is slower than others even

though ABP’s CPU utilization remains the highest. Take the largest circuit

b19 with 40 cores as an example; the runtime of ours is 5% and 15% less than

MBWS and ABP, respectively, and the CPU utilizations are 22.7 (ours), 21.7

(MBWS) and 38.5 (ABP). This experiment shows that our scheduler has

competitive performance, and can utilize the CPU resource in a reasonable

way under a large-scale workload.

Next we demonstrate the energy usage and power consumption of each

scheduler with OpenTimer. Intel has provided users the Running Average

Power Limit (RAPL) [34] interface for power management on recent proces-

sors. We use perf, which can access the RAPL interface, to measure the

energy consumed by two packages (2 NUMA nodes) during the execution

(the command is perf stat -e power/energy-pkg/ -a), and we let perf

33

1 4 8 12 16 20 24 28 32 36 40
0

500

1,000

1,500

Number of cores

E
n
er
gy

u
sa
ge

(J
ou

le
)

c6288
Ours

MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

200

400

600

800

1,000

1,200

Number of cores

E
n
er
gy

u
sa
ge

(J
ou

le
)

c7552
Ours

MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

0.5

1

1.5

·105

Number of cores

E
n
er
gy

u
sa
ge

(J
ou

le
)

mgc matrix

Ours
MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

2

4

6

8

·104

Number of cores

E
n
er
gy

u
sa
ge

(J
ou

le
)

tv80
Ours

MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

1

2

3

4

·105

Number of cores

E
n
er
gy

u
sa
ge

(J
ou

le
)

b19
Ours

MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

1

2

3

·105

Number of cores

E
n
er
gy

u
sa
ge

(J
ou

le
)

vga lcd

Ours
MBWS
ABP

Figure 3.12: Energy usage of ours, MBWS, and ABP on OpenTimer.

report the average value of five runs.

Figure 3.12 is the average energy usage reported by perf, and we divide the

energy usage by the runtime to derive the power consumption which is shown

in Figure 3.13. For energy usage, ABP is the highest in all cases. MBWS

is very close to ours with ours performing slightly better in most cases. For

small circuits like c6288 and c7552, the energy usage of ABP increases along

with the number of cores even the performance does not scale. For example,

in c6288 the energy usage of ABP is 2x of ours at 40 cores but the runtime

of ABP is only 8% less than ours. For other circuits, the energy usage of

all schedulers decreases after adding more cores as those circuits have good

scalability. However, ABP’s energy usage is still much higher than others.

For example, in the largest circuit b19 ABP’s energy usage is 1.57x of ours

and 1.48x of MBWS when using 40 cores. Next for the power consumption,

ABP’s power consumption increases along with the core numbers in all cases.

The result shows that thieves can still consume substantial power even mak-

ing them yield frequently. This is especially evident in small circuits c6288

and c7552 where ABP’s power consumption doubles when the number of

cores increases from 1 to 40. In contrast, the power consumptions of ours

and MBWS do not show substantial growth after adding more cores in these

34

1 4 8 12 16 20 24 28 32 36 40
0

50

100

150

200

250

Number of cores

P
ow

er
co
n
su
m
p
ti
on

c6288
Ours

MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

50

100

150

200

250

Number of cores

P
ow

er
co
n
su
m
p
ti
on

c7552
Ours

MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

50

100

150

200

250

Number of cores

P
ow

er
co
n
su
m
p
ti
on

mgc matrix

Ours
MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

50

100

150

200

250

Number of cores

P
ow

er
co
n
su
m
p
ti
on

tv80
Ours

MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

50

100

150

200

250

Number of cores

P
ow

er
co
n
su
m
p
ti
on

b19
Ours

MBWS
ABP

1 4 8 12 16 20 24 28 32 36 40
0

50

100

150

200

250

Number of cores

P
ow

er
co
n
su
m
p
ti
on

vga lcd

Ours
MBWS
ABP

Figure 3.13: Power consumption (energy/runtime) of ours, MBWS, and
ABP on OpenTimer.

two circuits. For larger circuits, the power consumption of all schedulers

increases along with the core numbers, and again ABP’s grows faster than

others. In the largest circuit b19 with 40 cores, the power consumptions of

ours and MBWS are 26% and 25% less than ABP, respectively.

In the last experiment, we measure the effect of co-running multiple Open-

Timers. This experiment is to simulate real working environment which is

typically shared by multiple users such as servers or cloud computing plat-

forms. In those environments users can run multithreaded applications con-

currently, and applications might request computing resources more than

their actual parallelism.

In this experiment, we run multiple OpenTimers simultaneously on the

same circuit and every timer can use all the cores (40 on our machine). The

number of OpenTimers in the co-runs ranges from 2 to 8 and we use the

time command to measure the runtime (wall clock time) of each timer. We

repeat each co-run five times and use the average as the throughput. For each

scheduler, we take the runtime of its solo-run as the baseline and compute

the throughput using the weighted-speedup method [15] [35]. The weighted-

speedup method sums the speedup of each process in the co-runs, where the

35

2 3 4 5 6 7 8
0

2

4

6

Number of co-run timers

T
h
ro
u
gh
p
u
t

c6288
Ours

MBWS
ABP

2 3 4 5 6 7 8
0

2

4

6

Number of co-run timers

T
h
ro
u
gh
p
u
t

c7552
Ours

MBWS
ABP

2 3 4 5 6 7 8
0

1

2

3

Number of co-run timers

T
h
ro
u
gh
p
u
t

mgc matrix

Ours MBWS ABP

2 3 4 5 6 7 8
0

1

2

3

Number of co-run timers

T
h
ro
u
gh
p
u
t

tv80
Ours MBWS ABP

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Number of co-run timers

T
h
ro
u
gh
p
u
t

b19
Ours MBWS ABP

2 3 4 5 6 7 8
0

1

2

3

4

Number of co-run timers

T
h
ro
u
gh
p
u
t

vga lcd

Ours MBWS ABP

Figure 3.14: Throughput comparisons of co-running multiple OpenTimers.

speedup is defined as Tbaseline/Tper proc. Figure 3.14 shows the throughputs of

all schedulers on different circuits. ABP has the lowest throughput in all co-

runs regardless the circuit size. For example, when co-running 8 OpenTimers,

the throughputs of ABP are 1.49 and 2.74 on b19 and c7552, respectively,

while ours is 1.89 and 5.9 and MBWS is 1.95 and 4.2. MBWS and ours have

similar throughput except at c6288 and c7552 where ours is much higher.

3.4 Conclusion

In this chapter, we have introduced a work-stealing scheduler for executing

task dependency graph. We have designed an efficient worker management

method that adaptively adjusts the number of thieves by tracking the number

of workers that are executing tasks. This method not only effectively prevents

resource from being underutilized but also mitigates resource waste. We have

evaluated the scheduler on a set of micro-benchmarks and a VLSI timing

analyzer. The results show our scheduler achieved comparable performance

to existing approaches, with effective resource utilization and good energy

efficiency.

36

CHAPTER 4

TASK GRAPH COMPOSITION AND
CONDITIONALS

4.1 Introduction

The key to make developers productive in writing software is composability.

We use libraries written by other developers to compose a large program,

or we decompose a job into smaller pieces to tame the complexity in soft-

ware development. Composability is especially important in developing fast

market-expanding applications such as high-performance machine learning,

data analytics, and parallel simulation engines [36]. These applications ex-

hibit both regular and irregular compute patterns, and are often combined

with other functions to compose large software that will be deployed on a

multicore machine or a distributed cloud [37, 38]. However, composable paral-

lel processing is rarely addressed as the first-class concept by existing parallel

programming libraries [39]. Many libraries were designed to solve a single

hard problem as fast as possible, leaving users to decide composition with

their own practice. This can create a lot of pain and data engineering tasks

for developers of different teams to collaborate on a large parallel application.

Some common problems include confusing API mix-uses, unwanted coupling

layers, error-prone dependency wrappers, inconsistent threading models, and

suboptimal scheduling results.

The traditional interface for program decomposition is function call. De-

velopers break down a large sequential program into a specific set of tasks

each wrapped in a function call with clear definition of data exchange. These

function calls are often modular and reusable to make the codebase main-

tainable and readable. However, composable parallel programming is much

more challenging. Modern parallel workloads typically combine a broad mix

of algorithms, functions, and libraries. Each library manages its own threads

and task execution, making it difficult to perform optimization across dif-

37

ferent libraries. When coupling these software pieces together, we need to

tackle the dependencies both inside and outside the libraries. Some libraries

are already parallel and they are being used by other parallel programs and

so forth. There are many practical issues to consider such as thread man-

agement, resource over-subscription, and concurrency controls. As a result,

the lack of a clear and unified interface has a serious impact on performance,

even when individual libraries are heavily optimized.

Figure 4.1: Using our composable task dependency graph to describe a
parallel neural network training workload. Taskflow object A represents one
training iteration and is used to compose taskflow object B for the entire
training procedure.

In this chapter, we largely enhanced Cpp-Taskflow’s capability with three

key design changes: (1) separating the task dependency graph and execution

kernel, (2) making the task dependency graph reusable and composable and

(3) enabling execution flow control via conditional tasking. In our model,

a taskflow object consists of a composable task dependency graph and user-

friendly APIs to facilitate the creation of modular and reusable parallel com-

pute patterns and libraries. These libraries can recursively compose large

and complex parallel computations on a single machine, taking advantage of

multicore processing while sharing thread resources to minimize overhead.

Figure 4.1 gives an example of using taskflow objects to describe a parallel

training algorithm of a deep neural network (DNN). Taskflow object A rep-

resents a training pipeline. Taskflow object B is composed of multiple As

and other tasks to complete the training procedure. Also, users can easily

couple B with other parallel computations. There is no redundancy from

the programmability standpoint. And last but not least, we design a new

tasking: conditional tasking to allow users to control a task graph’s execution

38

flow at runtime. We summarize our contributions as follows:

• A new composable parallel programming model. We developed a

composable task interface to enable efficient composition of parallel work-

loads. The composable programming model lets users quickly describe a

large parallel program through composition of modular and reusable task

graphs that embed both regular and irregular compute patterns. The pro-

gram runs on a multicore machine with automatic scheduling optimization

across different layers of composed tasks.

• A unified task composition interface. We developed a unified task

graph construction interface that can capture a diverse set of tasks from

single sequential functions to large parallel dependent tasks or even out-

of-context executions such as third-party calls and process forks. The

unified interface empowers developers with both explicit and implicit task

graph composition to explore cross-layer optimizations of their parallel

workloads.

• A simple and efficient composition API. We developed a user-friendly

API to describe task dependency graph composition using modern C++17

syntax. Users can fully take advantage of the rich features of our engine to-

gether with robust standard C++ libraries to productively compose many

parallel applications. Our library effectively separates users from low-level

difficult concurrency details and offers transparent scaling to many cores

and future hardware generation.

• A new tasking for flexible execution scheme. We develop conditional

tasking to let users control the execution flow at runtime. Different from

other taskings that every task must be executed once, conditional tasking

enables users to selectively execute part of a task graph, and users can

iterate tasks multiple times by embedding cycles in the task graph. This

means the task graph does not need to be acyclic anymore, and therefore

the task dependency graph can formulate generic control flow.

39

4.2 New Task Dependency Graph

We introduce a new composable task interface, the tf :: Taskflow class, which

is the main gateway to create a composable task dependency graph. The

tf::Taskflow class inherits all the task construction methods from original

Cpp-Taskflow. Listing 4.1 demonstrates how to create a task dependency

graph with two tasks A and B where B runs after A and B spawns a new

task B1 during runtime. We enhance Cpp-Taskflow’s usability by separating

the task dependency graph from executor. Users now have full control over

their task dependency graphs but are also responsible for their lifetime.

1 t f : : Taskflow ta sk f l ow ;

2

3 // Add a s t a t i c task

4 auto taskA = task f l ow . emplace ([] () {

5 std : : cout << ”Task A\n” ;

6 }) ;

7

8 // Dynamic ta sk ing

9 auto taskB = task f l ow . emplace ([] (auto &subf low) {

10 std : : cout << ”Task B\n” ;

11 subf low . emplace ([] () { std : : cout << ”Task B1\n” ; }) ;

12 }) ;

13

14 taskA . precede (taskB) ;

Listing 4.1: Create a task dependency graph of two dependent static tasks

and one dynamic task.

A significant change we made is the decoupling of executor and task graph.

We define tf::Executor class that has a rich set of methods to run a task

dependency graph. A task dependency graph can be run by an executor

multiple times in arbitrary order. Users can also give a predicate to specify

the stopping criteria. Listing 4.2 demonstrates a set of common methods

to run a task dependency graph. Line 1:3 creates a taskflow object and

adds some tasks. Line 6 creates an executor. An executor is nothing but

a pluggable scheduler to dispatch tasks to threads in a shared pool. The

simplest way is to execute a task dependency graph only once via the run

40

method (line 9). Alternatively, users can call run n to run a task dependency

graph multiple times (line 13). The bottommost call is run until (line 19),

which keeps running until the predicate becomes true. All methods accept

a callable object as a callback after the task execution completes. To enable

more asynchronous control, each of these methods returns a std::future for

users to inspect the execution status or incorporate non-blocking program

flow. It should be noticed that running a task dependency graph multiple

times exhibits the most basic composability, by which the same graph is

encapsulated in a linear chain of tasks.

1 t f : : Taskflow ta sk f l ow ;

2

3 // Add some ta sks . . .

4

5 // Create an executor with 4 threads

6 t f : : Executor executor {4} ;

7

8 // Run the ta sk f l ow ob j ec t once

9 auto fu t = executor . run (ta sk f l ow) ;

10 f u t . get () ;

11

12 // Run the ta sk f l ow ob j ec t 4 t imes with a ca l l b a ck

13 t a sk f l ow . run n (task f low , 4 , [] () {

14 std : : cout << ”Fin i sh !\n” ;

15 }) . get () ;

16

17 // Run the ta sk f l ow ob j ec t with a p r ed i c a t e

18 i n t counter {4} ;

19 executor . r un un t i l (ta sk f low ,

20 [&] () { return −−count == 0 ; }

21) . get () ;

Listing 4.2: Different ways to execute a task dependency graph.

41

4.3 Composable Tasking

Task dependency graph composition is one of the most important features we

add to Cpp-Taskflow. It allows users to create heavily optimized task depen-

dency graphs and reuse them to compose larger graphs and so on so forth.

The tf::Taskflow class defines a method composed of to enable composi-

tion. Specifically, the caller taskflow object adds a module task of the callee

taskflow object. Listing 4.3 shows an example of taskflow object composi-

tion. Line 1:10 creates a taskflow object with three dependent tasks A1, A2,

and A3. Line 12:19 creates another taskflow object with three tasks B1, B2,

and B3. Line 22 adds a module task from the first taskflow object and line

25:27 specifies the dependency between tasks. Unlike the emplace method

that creates a regular task, the composed of method creates a module task

in the graph. A module task is a special task that is aware of which taskflow

object to probe during its execution context. We would like to highlight

three points of our composition interface. First, there is no copy during the

composition, leading to efficient graph sharing and resource utilization. We

have strived to resolve many scheduling conflicts due to shared tasks, while

providing a high-level execution API to completely separate this low-level

controls from users. Second, recursive and nested composition are feasible.

A taskflow object can be used to compose multiple taskflow objects and the

resulting taskflow object can compose another taskflow object with no re-

striction. During the composition, the user can add free-standing tasks to

the graph to perform computation across different task layers. Adding depen-

dency is extremely easy and flexible through the precede method. Finally,

the module task works seamlessly with both static and dynamic tasking.

This gives users a powerful and unified tasking interface to accomplish large

and complex parallel workloads.

1 t f : : Taskflow fA ;

2

3 // Add thr ee ta sks

4 auto [A1 , A2 , A3] = fA . emplace (

5 [] () { std : : cout << ”Task A1\n” ; } ,

6 [] () { std : : cout << ”Task A2\n” ; } ,

7 [] () { std : : cout << ”Task A3\n” ; }

8) ;

42

9

10 A3 . gather (A1 , A2) ;

11

12 t f : : Taskflow fB ;

13

14 // Add thr ee ta sks

15 auto [B1 , B2 , B3] = fB . emplace (

16 [] () { std : : cout << ”Task B1\n” ; } ,

17 [] () { std : : cout << ”Task B2\n” ; } ,

18 [] () { std : : cout << ”Task B3\n” ; }

19) ;

20

21 // Compose ta sk f l ow ob j ec t

22 auto moduleA = fB . composed of (fA) ;

23

24 // Build dependency between module and r egu l a r ta sks

25 B1 . precede (moduleA) ;

26 B2 . precede (moduleA) ;

27 moduleA . precede (B3) ;

Listing 4.3: Cpp-Taskflow taskflow object composition code (19 LOC and

167 tokens).

At this point, we are interested in the difference between our composition

code and existing libraries. Listing 4.4 is the implementations of Listing 4.3

using TBB flow graph [9]. As shown in the two listings, Cpp-Taskflow has

the fewest lines of code and is more readable than the TBB code. To our

best knowledge, TBB has no API to directly compose task graphs, so we

have to capture the task graph into another task and execute the task graph.

This results in longer lines of code and tends to produce bugs if one forgets

to execute the task graph. This example clearly shows the conciseness and

ease-of-use of the task composition interface in Cpp-Taskflow.

1 us ing namespace tbb ;

2 us ing namespace tbb : : f l ow ;

3

4 graph fA ;

5

43

6 cont inue node<continue msg> A1(fA , []

7 (const continue msg&) {

8 std : : cout << ”Task A1\n” ;

9 }

10) ;

11 cont inue node<continue msg> A2(fA , []

12 (const continue msg&) {

13 std : : cout << ”Task A2\n” ;

14 }

15) ;

16 cont inue node<continue msg> A3(fA , []

17 (const continue msg&) {

18 std : : cout << ”Task A3\n” ;

19 }

20) ;

21

22 make edge (A1 , A3) ;

23 make edge (A2 , A3) ;

24

25 graph fB ;

26

27 cont inue node<continue msg> B1(fB , []

28 (const continue msg&) {

29 std : : cout << ”Task B1\n” ;

30 }

31) ;

32 cont inue node<continue msg> B2(fB , []

33 (const continue msg&) {

34 std : : cout << ”Task B2\n” ;

35 }

36) ;

37 cont inue node<continue msg> B3(fB , []

38 (const continue msg&) {

39 std : : cout << ”Task B3\n” ;

40 }

41) ;

44

42 cont inue node<continue msg> moduleA (fB , [&]

43 (const continue msg&) {

44 A1 . t ry put (continue msg ()) ;

45 A2 . t ry put (continue msg ()) ;

46 fA . w a i t f o r a l l () ;

47 }

48) ;

49

50 make edge (B1 , moduleA) ;

51 make edge (B2 , moduleA) ;

52 make edge (moduleA , B3) ;

Listing 4.4: TBB hard-coded composition code (48 LOC and 256 tokens).

In addition to the composability, another useful feature is the modularity.

Through inheritance from tf::Taskflow class, users can define their own

task dependency graph class as a single module. The task dependency graph

composition and execution APIs can be directly applied to the customized

class as well, obviating the need of an additional wrapper.

With the composability and modularity, a complex design can be decom-

posed into small components with different parallel patterns. Users can im-

plement and test those patterns individually and combine them in various

ways such as nested or concatenated to deliver complex functionality. This

can substantially increase programmers’ productivity as it enables a struc-

tured and efficient way of software engineering.

4.3.1 Unified Task Execution

We modify the execution kernel to enable seamless integration of the reusable

and composable task dependency graph with existing task types. To make a

task dependency graph reusable, it is necessary to ensure the graph remains

unchanged after each execution. During runtime, a task might expand the

graph by spawning new nodes to precede the parent node such as dynamic

tasking. As a result, in Cpp-Taskflow a task that spawns new tasks will

restore its own precedence before scheduling its successor tasks. Letting

each task perform the restoration on itself also minimizes the overhead.

45

Apart from the regular tasks, a task dependency graph can have module

tasks through composing other graphs. The execution flow of module task

is similar to dynamic tasking except that a module task directly dispatches

the composed graph rather than a subflow. A module task will be executed

twice:

• First time:

– The executor first collects the source and sink tasks in the composed

graph and lets the sink tasks precede the module task.

– The executor dispatches the source tasks to execution.

• Second time:

– The executor removes the successor of sink tasks in composed graph.

– The executor dispatches the module task’s successors to execution.

Figure 4.2 is an example that illustrates scheduling a module task.

Figure 4.2: An example to illustrate the execution of module task.

46

4.3.2 Visualize a Task Dependency Graph with Both Regular
and Module Tasks

We provide the same API to support visualization of composable task de-

pendency graph to facilitate debugging. A taskflow object can be assigned

a name by the name method and it has a dump method to export its task

dependency graph in DOT language [40]. A module task is represented by a

cuboid to differentiate from the regular tasks. Figure 4.3 shows an example

of visualizing composed task dependency graphs.

Figure 4.3: Visualization of the task dependency graph D with its regular
and module tasks. Note that the arrows between taskflow objects are added
deliberately here for clarity.

4.4 Conditional Tasking

In original Cpp-Taskflow, the task graph needs to be acyclic and all tasks

will be executed exactly once in each run. This somehow restricts the

expressiveness of Cpp-Taskflow, since a typical program control will have

branches like if-else or switch-case statements, and loop constructs such as

for-loop, while-loop and so on. Some of these control flows can be realized

via dynamic tasking. For example, one can use dynamic tasking to spawn

different task graphs at the runtime to mimic the conditional control flow.

Repeatedly creating task graph at runtime might incur notable overhead due

to the memory allocation. To make the graph model more generic and conve-

nient, we introduce conditional tasking which allows users to build directed

47

cyclic task graphs and create branches in the execution flow.

Listing 4.5 demonstrates how to use conditional tasking in Cpp-Taskflow,

and Figure 4.4 is the resulting task graph. In this example, we create a graph

with five static tasks, A, B, C, D and E, and two condition tasks, cond1 and

cond2. This graph contains a loop formed by tasks B and cond1 and a branch

consisting of tasks cond2, D and E. A condition task is different from other

tasks in that it has to return an index of successor task, and the corresponding

successor task will be directly scheduled to execution. For instance, if task

cond1 returns 0, then task B will be put into execution. In Figure 4.4, the

numbers on the dotted edges of condition tasks are the successor indices.

With conditional tasking, users can create task graphs with complex control

flows such as iterating subgraph multiple times, switching execution paths at

runtime, or combining both, which makes Cpp-Taskflow more powerful and

expressive.

1 t f : : Taskflow f low ;

2

3 auto A = f low . emplace ([] () { std : : cout << ”TaskA\n” ;

}) ;

4 auto B = f low . emplace ([] () { std : : cout << ”TaskB\n” ;

}) ;

5 auto C = f low . emplace ([] () { std : : cout << ”TaskC\n” ;

}) ;

6 auto D = f low . emplace ([] () { std : : cout << ”TaskC\n” ;

}) ;

7 auto E = f low . emplace ([] () { std : : cout << ”TaskE\n” ;

}) ;

8

9 srand (1) ;

10 auto cond1 = f low . emplace ([] () { return rand ()%2; }) ;

11

12 // Create a loop

13 A. precede (B) ;

14 B. precede (cond1) ;

15 cond1 . precede (B, C) ;

16

48

17 auto cond2 = f low . emplace ([] () { return rand ()%2; }) ;

18

19 // Create a branch

20 C. precede (cond2) ;

21 cond2 . precede (D, E) ;

Listing 4.5: An example to demonstrate conditional tasking

Taskflow: Conditional tasking example

A B cond1
0

C
1

cond2 D
0

E
1

Figure 4.4: The task dependency graph of Listing 4.5.

However, integrating conditional tasking with other taskings in Cpp-Taskflow

is a challenging task. There are three problems needed to be solved:

Problem 1: How to define a task’s dependency?

Problem 2: How to determine if a task graph has finished execution?

Problem 3: How to efficiently implement conditional tasking?

For the first problem, the original task scheduling rule states that a task

is ready for execution when its dependencies are fulfilled. However, a task

might be preceded by its successor task in conditional tasking, and the rule

will fail to work in this case. For example, in Figure 4.4, task B is preceded

by task cond1, and task B will never be ready according to the rule. To

solve the first problem, we categorize the dependency into two classes: we

define the dependency between a condition task and its successors as weak

dependency, and others are strong dependency. Then we introduce new task

scheduling rules with strong and weak dependency as follows:

Rule 1: We define the tasks without both weak and strong dependency in a

task graph as source tasks. The source tasks are the starting point

of a task graph execution.

49

Rule 2: At runtime, for those tasks other than condition tasks, their suc-

cessors are scheduled to execution when their strong dependency is

fulfilled.

Rule 3: For condition tasks, the specified successor task will be directly put

into execution regardless of the strong dependency.

Task graphs with or without condition tasks can be correctly scheduled

under these three rules.

For the second problem, in original Cpp-Taskflow, since all tasks will be

executed exactly once, a task graph is deemed completed when all sink tasks

(tasks without successors) have finished, and we can easily implement this

by using a counter to track the number of finished sink tasks during runtime.

At runtime, whenever a sink task finishes execution, the counter will be

decremented by one and the graph is deemed finished when the counter

becomes zero. However, this no longer holds after integrating conditional

tasking. With the conditional tasking, a task might not be executed or be

executed multiple times, which makes the above sink task counting method

invalid.

To solve the second problem, we observe two critical properties about the

task graph execution.

Property 1: The tasks of different task graphs will not exist in a worker’s

private queue at the same time.

Property 2: At least one task of the graph is kept by the executor anytime

during the task graph execution.

With these two properties, we can determine that a task graph is completed

if it has no task kept in any queue and worker. Based on this observation,

we associate each topology with a counter to track the number of tasks held

by the executor. The counter is updated in following two cases:

1. Whenever a task is ready for execution and added into a queue, the counter

is incremented by one.

2. Whenever a worker finishes a task derived from a queue, the worker decre-

ments the counter by one.

50

When the counter becomes zero, the graph has no outstanding tasks and

is deemed finished. The last worker that updates the counter shall set up

the future object to mark the graph status as completion. This counting

method works well when task graph is not modified during execution. But

one problem of this new method is to handle dynamic tasking under joined

mode and composed tasks where both will spawn a task graph during run-

time. Originally, Cpp-Taskflow handles the spawned graph by having its sink

tasks precede the parent task to ensure the spawned graph will finish before

scheduling the parent task’s successor tasks. Figure 4.5 shows an example

of joined dynamic tasking. In Figure 4.5, task B spawns a new task graph

consisting of task B1, B2 and B3. Both task B2 and B3 will be set to pre-

cede task B (parent task) so that task D will guarantee to be executed after

the spawned graph finishes. The red edges are added by the executor to

ensure correct execution order between the spawned task graph and the par-

ent task’s successors. However, when the spawned graph contains condition

Taskflow: Dynamic tasking example

Subflow: B

A

B

C D

B1

B2

B3

Figure 4.5: An example to show dynamic tasking with joined mode. The
red edges are deliberately added by the executor at runtime to ensure task
D can only start after the spawned graph finishes.

tasks, adding dependency edges between the sink tasks in spawned graph and

the parent task is no longer guaranteed to respect the execution order. Take

Figure 4.6 as an example: it not feasible to add a dependency edge between

the tasks in subflow and task B to ensure correct execution order between

the new spawned graph and task B’s successor. To resolve this issue, we

51

need to know when the spawned task graph finishes execution and be able to

reach the parent task after the spawned task graph finishes. We first solve

the latter via adding a pointer in each task. The pointer either stores the

address of the parent task or is nullptr if the task is not in a spawned task

graph. The former is indeed equivalent to determining when a task graph

with condition tasks will finish. As the aforementioned solution we can use a

counter to keep track of the number of tasks in the spawned graph that are

kept in the executor. However, since not every task will spawn task graphs,

adding an additional counter to each node specifically for the spawned graph

is considered overkill. Alternatively, we can reuse the parent task’s depen-

dency counter for this purpose. Since each node maintains a parent pointer

and we will only revisit the parent task after its spawned task graph finishes,

reusing the dependency counter is safe and can reduce memory consumption.

Taskflow: Dynamic tasking with condition task

Subflow: B

A

B

C D

B1 B2

cond

0

1

B3

2

B4
3

Figure 4.6: An example of dynamic tasking with condition task.

For the last problem, the primary change brought by conditional tasking

is determining when the task graph finishes, and as previously mentioned we

solve this problem by having a counter to keep track of the tasks kept in

the executor. Unlike the original task graph where we only need to update

the counter after executing sink tasks, we need to update the counter when-

ever a task is added into queue or after a task is executed by a worker. To

integrate the counter update, there are two functions that need to be mod-

ified: (1) invoke task and (2) exploit task. Because a counter could be

concurrently modified by multiple workers, the update operation has to be

atomic, which can be slower than a non-atomic operation. Therefore, reduc-

52

ing the number of accesses to the counter is critical to the performance, and

we propose two optimizations to lower the number of accesses to the counter.

We explain these optimizations with the pseudo code of the two modified

functions below. Algorithm 7 is the pseudocode of invoke task. To clearly

explain our optimization, Algorithm 7 only shows the modified part due to

the counter update. The worker first invokes task according to the type of

tasking, and then decrements the dependency of successor tasks and incre-

ments the graph’s counter (line 9-28). When a successor task is ready, the

task will be put into cache if the cache is empty (line 12-14), otherwise we

move the cached task to queue and cache the new ready task (line 14-26).

Theoretically, whenever a task is added into queue, the worker has to incre-

ment the counter. We can prevent this by adding the number of successors

to the counter when inserting the first successor task to the queue. (line 15-

22). The rationale is that the worker can only dispatch all successor tasks to

execution at most, and therefore we can overestimate the number of inserted

tasks for the first time to prevent future increments (line 17-21). Then, we

calculate the difference between num spawns (real number of inserted tasks)

and num successors, and add it to the worker’s local variable num executed

(line 31). The num executed records the number of tasks executed by the

worker and will be subtracted from the counter later on.

The second optimization is in Algorithm 8 which is the pseudocode of task

exploitation. As explained in the previous chapter, in the exploit task the

worker will repeatedly pop and execute tasks from local storage (cache and

local queue) until exhausted (line 8-47). Theoretically, whenever a task is

removed from the queue and executed (line 13), the worker has to decrement

the counter. We can reduce the number of decrements by accumulating the

number of executed tasks in a local counter (num executed) (line 17), and

then decrementing the counter at the end. A worker needs to perform the

decrement (1) when successive ready tasks have different parent tasks (line

18-29), which happens due to joined dynamic tasking or composed tasks, and

(2) when tasks in local storage are exhausted (line 30-45).

53

Algorithm 7: The new invoke task function

Input: w: the worker’s associated data
Input: t: a task holder

1

2 // First invoke the task based on its tasking type,

3 // refer to Chapter 2: Algorithm 1 line 1-17

4

5 num spawns ← 0;
6 w.cache ← NIL;
7 num successors ← t.num successors();
8 // Update successors’ dependency and the graph’s counter

9 for s ∈ t’s successors do

10 AtomDec(s.dependencies);
11 if s.dependencies == 0 then

12 if w.cache == NIL then

13 w.cache ← s;
14 else

15 if num spawn == 0 then

16 /* increment the counter for the first time */

17 if t.parent == NIL then

18 AtomInc(t.topology().counter, num successors);
19 else

20 AtomInc(t.parent().counter, num successors);
21 end

22 end

23 num spawn ← num spawn + 1;
24 schedule(w.cache);
25 w.cache ← s;

26 end

27 end

28 end

29 if num spawns > 0 then

30 /* record the difference for counter adjustment */

31 w.num executed ← num successor - num spawns;

32 end

54

Algorithm 8: The new exploit task function.

Input: w: the worker’s associated data
Input: t: a task holder

1 if t 6= NIL then

2 if AtomInc(num actives) == 1 and num thieves == 0 then

3 notifier.notify one();
4 end

5 tpg ← t.topology();
6 par ← t.parent();
7 w.num executed ← 1;
8 do

9 execute(t);
10 if w.cache 6= NIL then

11 t ← w.cache;
12 else

13 t ← pop(w.queue);
14 if t 6= NIL then

15 /* compare parents of tasks */

16 if t.parent() == par then

17 w.num executed ← w.num executed + 1;
18 else

19 if par == NIL then

20 AtomDec(tpg.counter, w.num executed);
21 else

22 AtomDec(par.dependencies, w.num executed);
23 if par.counter == 0 then

24 schedule(par);
25 end

26 end

27 par ← t.parent();
28 w.num executed ← 1;

29 end

30 else

31 /* tasks are exhausted */

32 if par == NIL then

33 AtomDec(tpg.counter, w.num executed);
34 if tpg.counter == 0 then

35 mark finished(tpg);
36 end

37 else

38 AtomDec(par.dependencies, w.num executed);
39 if par.counter == 0 then

40 t ← par;
41 par ← t.parent() ;
42 w.num executed ← 1;

43 end

44 end

45 end

46 end

47 while t 6= NIL;
48 AtomDec(num actives);

49 end

55

In both cases, if the parent pointer is not a nullptr, we decrement the

dependency of its parent task via the pointer. If the dependency of the

parent task becomes zero, this means the spawned task graph finishes and we

schedule the parent task to execution (line 23-25 and line 39-43). Similarly,

if the parent pointer is nullptr and the counter becomes zero, we mark the

graph as finished (line 34-36).

4.5 Conclusion

In this chapter, we have shown the improvements we made to Cpp-Taskflow

on both the programming model and interface. First, we separate the task

graph and executor, allowing multiple task graphs to coexist and run in any

order. Second, we add a composable task interface to support task graph

composition. Composability enables developers to build large and complex

applications by assembling small and simple task graphs, instead of coding

a complex task graph from scratch. Lastly, we introduce a powerful feature:

conditional tasking. With conditional tasking, task graphs can contain cycles

and flexibly change the execution flow during runtime, which are very hard

to do and even infeasible in Cpp-Taskflow before.

56

CHAPTER 5

ANALYTICAL PLACEMENT WITH GPU

5.1 Introduction

VLSI global placement is a pivotal stage in physical design flow. Substan-

tial research effort has been devoted to global placement [41, 42, 43, 44, 45,

46, 47, 48, 49, 50]. Among existing placement methods, the analytical ap-

proaches, especially the nonlinear placement, have obtained the best quality

up to the present. However, compared with other approaches such as simu-

lated annealing or partitioning, the nonlinear methods suffer from a slower

performance. The reason is that nonlinear methods apply mathematical pro-

gramming to derive the solution, which involves huge numbers of arithmetic

operations and becomes the bottleneck of performance. Therefore, the idea is

to exploit the parallelism of GPU to speed up the computations in nonlinear

placement.

GPU is well-known for its capability to conduct massive computations

concurrently. There are several research works on applying GPU to EDA

applications [51] [52] [53] [54] [55], and some focus on using GPU on EDA

placement. The authors of [51] propose a fast sparse matrix-vector multipli-

cation method based on GPU and utilize the method to expedite a quadratic

placer. Another paper [52] demonstrates the feasibility of accelerating simu-

lated annealing placement with GPU. The placement models in both papers

are different from state-of-the-art nonlinear placement and it is not clear

how the methods can be extended to benefit nonlinear placement. The pa-

per [53] applies GPU to optimize the performance of an analytical placer.

The authors adopt a straightforward parallelization method such as delegat-

ing the outer loop of a nested loop to GPU threads which does not require

modifying the original computing scheme. However, adherence to the CPU

computing scheme restricts the method from fully exploiting potential paral-

57

lelism brought by GPU, and some critical issues such as imbalance workload

cannot be effectively resolved due to the framework’s inherent limitation.

Furthermore, due to the limited GPU compute capability, their method has

to compromise with reduced numerical accuracy which degrades the solution

quality.

In this chapter, we consider the cost model that is broadly used by existing

nonlinear placement approaches. The cost model of nonlinear placement

approaches can be generally formulated as

minimize Wirelength

subject to Dbin ≤ Dthreshold

The wirelength is a differentiable function, e.g. log-sum-exp [56] or weighted

average [57], that approximates the half-perimeter wirelength (HPWL) and

the Dbin is the bin density on the layout. Mathematical optimization such as

the iterative gradient descent method is commonly applied to minimize the

cost. As a result, fast computation of the wirelength gradient and the bin

density is important to the performance of the placer, and we develop two

GPU approaches to accelerate the computing of the wirelength gradient and

the density, respectively. We summarize our contributions as follows:

• Our method is faster than the CPU methods and can obtain further

speedup over a straightforward GPU parallelization. The efficiency of

our methods has been evaluated through experimenting on a set of

contest benchmarks.

• Our method does not design for a specific placer; instead, placers that

adopt the same cost model can apply the proposed method to achieve

performance improvement.

• Reproducibility is guaranteed in the proposed methods. A stable and

reproducible output is particularly useful in software debugging.

5.2 Wirelength Computation

Wirelength is one of the most important cost functions in VLSI placement.

A commonly used wirelength model is the half perimeter wirelength (HPWL)

58

which sums the width and height of the bounding box formed by the pins.

However, HPWL is a non-differentiable function and thus cannot be directly

used in the analytical placement method. Several approximation models

are proposed and one popular approach is the Logarithm-Sum-Exponential

(LSE) model [56]. The LSE of a given net n with m pins on it can be

calculated as follows:

LSE(n) = γ{ln(
m∑

i=0

exi/γ) + ln(

m∑

i=0

e−xi/γ)}+

γ{ln(
m∑

i=0

eyi/γ) + ln(

m∑

i=0

e−yi/γ)}

(5.1)

In equation (5.1), each (xi, yi) is the x and y coordinate of a pin on n

and γ is a predefined constant. Since the gradient calculation is identical

in both x and y directions, we only discuss the computation on x below.

For a pin connected with k nets, its wirelength gradient can be derived by

differentiating the LSE equations of the k nets and sum them up. Below

is the equation to calculate the wirelength gradient of a given pin p in the

x direction (the gradient in the y direction can be derived using the same

formula by replacing the x coordinate with the y coordinate).

Gradx(p) =
k∑

i=0

{
exp/γ

∑
v∈ni

evx/γ
} −

k∑

i=0

{
e−xp/γ

∑
v∈ni

e−vx/γ
} (5.2)

The implementation to calculate equation (5.2) on CPU can be divided

into two steps. In the first step, for each net, we compute the summation

of the exponential term for each pin on the net. In the second step, we

use the summations from the first step following equation (5.2) to derive

the gradients of each pin in both x and y directions. Algorithm 9 shows

the pseudo code to compute the wirelength gradient of each pin on the x

coordinate, where the first step is from line 3 to line 12 and line 13 to 21 is

the second step.

59

Algorithm 9: Wirelength gradient on x using CPU

Input: P : Pins
Input: N : nets
Output: Grad: gradients of each pin

1 ExpSum← {} ;
2 NegExpSum← {} ;
3 for each n in N do

4 sum← 0 ;
5 neg sum← 0 ;
6 for each p of n do

7 sum← sum+ exp/γ ;

8 neg sum← neg sum+ e−xp/γ ;

9 end

10 ExpSum← ExpSum ∪ {sum} ;
11 NegExpSum← NegExpSum ∪ {neg sum} ;

12 end

13 for each p in P do

14 left term← 0 ;
15 right term← 0 ;
16 for each n of p do

17 left term← left term+ 1/ExpSum[n] ;
18 right term← right term+ 1/NegExpSum[n] ;

19 end

20 Grad[p]← exp/γ ∗ left term− e−xp/γ ∗ right term ;

21 end

5.2.1 Wirelength Gradient on GPU

GPU is suitable for the gradient computation due to its ability to do massive

computations concurrently. To utilize GPU for wirelength gradient com-

puting, an intuitive way is to launch two kernels sequentially with the first

kernel executing the first step and another the second step. To be more

specific, in the first kernel (Algorithm 10), we assign a thread to a net to

compute the exponential sum of its pin coordinates, and in the second kernel

(Algorithm 11), a thread is delegated to compute the gradients for a pin.

This method is simple and does not require any modification to the CPU

algorithm. However, there are two deficiencies in this method:

• As the number of pins on nets are disparate and pins have different

numbers of connected nets, the memory access can be very inefficient

and threads can suffer from imbalance workload; for example, a pin

60

Algorithm 10: GPU Kernel 1 on exponential sum

Input: P : Pins
Input: N : nets
Output: ExpSum, NegExpSum

1 id← blockSize ∗ blockId+ threadId ;
2 sum← 0 ;
3 neg sum← 0 ;
4 for each p of N [id] do
5 sum← sum+ exp/γ ;

6 neg sum← neg sum+ e−xp/γ ;

7 end

8 ExpSum[id]← {sum} ;
9 NegExpSum[id]← {neg sum} ;

Algorithm 11: GPU Kernel 2 on wirelength gradient

Input: P : Pins
Input: N : nets
Input: ExpSum, NegExpSum
Output: Grad: gradients of each pin

1 id← blockSize ∗ blockId+ threadId ;
2 left term← 0 ;
3 right term← 0 ;
4 for each n of P [id] do
5 left term← left term+ 1/ExpSum[n] ;
6 right term← right term+ 1/NegExpSum[n] ;

7 end

8 Grad[id]← exp/γ ∗ left term− e−xp/γ ∗ right term ;

coordinate can be read multiple times in different threads and some

threads can perform more computations than others.

• Same values can be computed several times in different threads, leading

to the inefficient use of computing resources. For example, a pin p1 can

be connected to nets n1 and n2 and thus the exponential value of the

p1 coordinate will be computed twice in different threads of the first

kernel.

61

5.2.2 Our GPU Implementation

To overcome these deficiencies, we propose a new GPU implementation flow

containing five steps. To prevent computing the same value repetitively

among threads, we first launch a kernel to calculate the exponential val-

ues of each pin’s coordinates and store the result in a vector for later use

(Algorithm 12). Based on the fact that a circuit can be represented as a

sparse graph, we construct a sparse (0, 1)-matrix where the rows correspond

to nets, columns correspond to pins, and the value of an entry (i, j) is 1 if

pin j is in net i. With the sparse matrix and the vector of the exponential

values, the exponential sum of each net can be derived through multiplying

the sparse matrix with the vector (Algorithm 13). The next step is to launch

a kernel to compute the reciprocal of the exponential sum for each net (Al-

gorithm 14). To calculate the summation of reciprocals for each pin, a kernel

is used to sum the reciprocals of all connected nets and a key observation

here is that the summation can also be obtained by multiplying a sparse

matrix with the reciprocals (Algorithm 15), where the sparse matrix is the

transpose of the sparse matrix in the second step. The last step is to derive

the gradient by adding the sum of reciprocals for each pin.

Algorithm 12: GPU Step 1 on exponential values

Input: P : Pins
Output: ExpV al,NegExpV al

1 id← blockSize ∗ blockId+ threadId ;
2 p← P [id] ;

3 ExpV al[id]← exp/γ ;

4 NegExpV al[id]← −e−xp/γ ;

Algorithm 13: GPU Step 2 on exponential sum

Input: P : Pins
Input: N : Nets
Input: ExpV al, NegExpV al
Output: ExpSum,NegExpSum

1 ExpSum← SparseMatrix(P,N) ∗ ExpV al ;
2 NegExpSum← SparseMatrix(P,N) ∗NegExpV al ;

A major concern of using GPU is the overhead incurred from data trans-

fer between CPU and GPU. The proposed GPU method requires two data

62

Algorithm 14: GPU Step 3 on reciprocal exponential values

Input: ExpSum,NegExpSum
Output: RecExpV al, RecNegExpV al

1 id← blockSize ∗ blockId+ threadId ;
2 RecExpV al[id]← 1/ExpSum[id] ;
3 RecNegExpV al[id]← 1/NegExpSum[id] ;

Algorithm 15: GPU Step 4 on summation of reciprocals

Input: P : Pins
Input: N : Nets
Input: RecExpSum,RecNegExpSum
Output: RecSum, RecNegSum

1 RecSum← SparseMatrix(P,N)T ∗RecExpSum ;
2 RecNegSum← SparseMatrix(P,N)T ∗RecNegExpSum ;

Algorithm 16: GPU Step 5 on gradient of each pin

Input: P : Pins
Input: N : Nets
Input: RecSum, RecNegSum, ExpV al, NegExpV al
Output: Grad

1 id← blockSize ∗ blockId+ threadId ;
2 Grad[id]← RecSum[id] ∗ ExpV al[id]+
3 RecNegSum[id] ∗NegExpV al[id] ;

transfers: one is to transfer the pin coordinates from CPU to GPU memory

in the beginning and another is to copy the gradients back to CPU mem-

ory. Although the data transfer overhead is inevitable, we can further reduce

the overhead by using streams. A stream is similar to a job queue which

holds GPU operations to be executed sequentially, whereas operations in

separate streams can run concurrently if available resource exists. Hence,

we can create several streams to overlap data transfers with computations

through dispatching GPU operations on subsets of data to different streams.

Considering overlapping the step 1 kernel (Algorithm 12) by copying pin co-

ordinates to GPU, we first divide pins into disjoint subsets and map each

subset to a stream, then a copy operation and a kernel for computing expo-

nential value are enqueued into each stream to operate on the corresponding

data. By having multiple streams process different subsets, we can keep the

copy device and execution device occupied [58] as shown in Figure 5.1.

63

�������� �	
�

�	
� ��������

��������

��	�
	������

�����	�	���

(a) Without overlap

�����
���

��������

��	�
	������

�����	�	���

�����
���

�����
���

�����
���

�	�

����

�	�

����

�	�

����

�	�

����

���

���

(b) With overlap

Figure 5.1: Comparison of data transfer with and without overlapped with
computations.

Our proposed flow has two benefits over the straightforward GPU imple-

mentation:

• We transform the two nested loops, the most time-consuming parts, to

two sparse matrix multiplications. A sparse matrix can be stored in

various formats such as a compressed sparse row (csr) or a coordinate

list (coo) and those data structures unleash more opportunities to op-

timize the memory access and reorder the computations for balancing

the workload.

• Data movement between processing units is a common bottleneck in

heterogeneous computing and our approach reduces the overhead by

overlapping computations with data transfers through utilizing streams.

5.3 Density Computation

Density computation is an essential step in analytical placement methods.

During the optimization process, the density will be evaluated in every it-

eration and the placement can stop once the cells’ overlap is lower than a

predefined threshold. In this section, we first formulate the density compu-

tation problem and present a CPU implementation, then we demonstrate a

straightforward GPU implementation and discuss its deficiencies. Lastly, we

propose a high-precision GPU implementation and introduce two techniques

to further improve the performance.

5.3.1 Density Problem Formulation

We consider a general formulation where the layout is a two-dimensional

grid and the cells to be placed are rectangular. To compute the density,

64

the first step is to accumulate the overlapped area between bins and the

cells. Then the density can be derived by dividing the accumulated area

in each bin by the unit bin area (a coarser density map can be formed by

combining multiple bins into a single bin). Parallelizing the second step is

pretty straightforward, so in this section we will focus on parallelization of

the overlapped area accumulation.

5.3.2 Area Accumulation on CPU

Algorithm 17: Area accumulation on CPU

Input: Cells, Grid
Output: OverlapArea

1 for each b ∈ Grid do

2 OverlapArea[b]← 0 ;
3 end

4 for each c ∈ C do

5 overlap bins← FindOverlapBins(Grid, c) ;
6 for each b ∈ overlap bins do

7 area← FinOverlapArea(b, c) ;
8 OverlapArea[b]← area+OverlapArea[b] ;

9 end

10 end

To compute the overlapped area between cells and bins, an intuitive way

is to loop through each cell and add the overlapped area of the cell to cor-

responding bins. Algorithm 17 is the pseudo code to accumulate overlapped

area for each bin. Reproducibility is guaranteed in this CPU implementation

as the floating point additions are executed in deterministic order.

To speed up the computation, an instinctive way is to use the multiple

cores in CPU to have several threads doing the accumulation concurrently.

Consider line 4 in Algorithm 17: cells can be partitioned into subsets with

nearly equal size and each thread is responsible for a subset of cells. A

challenge of parallel programming is to maintain the data integrity under

multi-thread execution. Notice that in line 8, the accumulated area in each

bin is shared among all threads and concurrent access to this data might

result in data race.

A simple and efficient solution is to use atomic operation. An atomic

65

operation serializes the access to the data without using locks, which protects

the data from running into the race condition and can still maintain good

performance. However, in C++ the standard library does not provide atomic

operations for the floating type. An alternative is to implement the atomic

floating operation via the atomic compare-and-exchange instruction. The

compare-and-exchange instruction atomically checks whether the destination

value is equal to a given value and replaces the destination value by a new

value if the predicate is satisfied. Therefore, a thread can first take a snapshot

of the destination bin and then use the compare-and-exchange instruction

with the snapshot value to update the bin. Algorithm 18 presents the pseudo

code of the multi-threaded area accumulation. In lines 1 and 2, we launch

multiple threads and assign a subset of cells to each thread. From lines 3 to

14, each thread adds the overlapped area of each cell to the corresponding

bins via the compare-and-exchange instruction in line 11.

Algorithm 18: Multi-threaded area accumulation on CPU

Input: Cells, Grid
Output: Bin

1 launchThreads() ;
2 myCell ← AssignCells(myThreadId, Cells) ;
3 for each c ∈ myCell do
4 overlap bins← FindOverlapBins(Grid, c) ;
5 for each b ∈ overlap bins do

6 area← FindOverlapArea(b, c) ;
7 update← false ;
8 while update 6= true do

9 snapshot← Bin[b] ;
10 new value← snapshot + area ;
11 update← CAE(&Bin[b], snapshot, new value) ;

12 end

13 end

14 end

15 synchronizeAllThreads() ;

5.3.3 Area Accumulation on GPU

The multi-threaded CPU approach of area accumulation can also be applied

to GPU. For the GPU method, we launch a kernel with assigning a thread to

66

each cell to compute the overlapped area among bins. In contrast to the CPU,

modern GPUs support atomic operation for the floating type, circumventing

the need of using compare-and-exchange instruction. However, there are two

deficiencies in this approach:

• No guarantee of reproducibility: Although the atomic operation re-

solves the data race problem, it does not admit reproducibility. The

reason is that floating point arithmetic is non-associative [59]. As

atomic operation does not enforce a deterministic order on thread ex-

ecution, given the same operands the result could be slightly different

every time.

• Imbalanced workload: As the size of the cells is not uniform, the num-

ber of bins crossed by different cells could differ greatly. Therefore,

divergence might occur in the kernel due to the inconsistent iterations

among threads (line 6 in Algorithm 17), which might hamper the per-

formance.

To solve the first problem, we adopt a high-precision method [60]. The

method represents every floating number by N 64 bit integers where each

integer carries a fraction of the floating number and N controls the repre-

sentable range of floating number. Our idea is to perform accumulation on

the integers converted from floating numbers and the resulting integers can

then be translated into floating numbers after the accumulation finishes. As

the arithmetic addition on integers is associative, given the same inputs the

outcome of accumulation will be identical. Another benefit of this method

is obviating the need to impose a predefined execution order among threads

which might be detrimental to performance.

To evenly distribute the workload among threads, we come up with a

computation flattening technique. Since the dimensions of cells and bins

are known in the beginning and remain unchanged during placement, we

can derive the maximum number of bins that intersect with each cell before

placement. With this information, we can determine the total number of

threads to be launched by summing up the number of bins intersecting with

each cell, and assign a thread to compute the overlap area between a cell and

one of its intersected bins and add the result to the corresponding bin. For

example, Figure 5.2 shows flattening computation of two cells.

67

A

B

Cell A:

Cell B:

+

||

Thread Block

Figure 5.2: An example illustrates computation flattening. Cells A and B
intersect with four and nine bins respectively and 13 threads are created to
compute the overlapped area for each portion.

Algorithm 19: High-Precision area accumulation on GPU

Input: Cells, Grid, myCellId, myBinId, numStream

Output: Bin

1 cudaMemSet(hpBinArea, 0) ;

2 cudaCreateStream(Streams, numStream) ;

3 for each s ∈ Streams do

4 s← copyP in(myCellId, Cells) ;

5 s← countOverlap(myCellId, Cells, hpBinArea) ;

6 end

7 cudaDeviceSynochronize() ;

8 for each s ∈ Streams do

9 s← convertToF loat(myBinId, hpBinArea, fBinArea) ;

10 s← copyDensity(myBinId, fBinArea, Bin) ;

11 end

This approach also requires two data transfers: one is to send the cell co-

ordinates to GPU memory and another is to fetch the accumulated area from

GPU memory. To further reduce the transfer overhead, we use streams to

overlap both data transfers with two computation kernels. For the cell coor-

dinates transfer, we map subsets of cells to streams and a kernel is enqueued

into each stream to compute the overlapped area in the high-precision format

for the cells. For the second data transfer, we associate a subset of bins to

streams and each stream enqueues a kernel to convert the integers to floating

numbers for the bins and copy the results to CPU memory. Algorithm 19 is

the pseudo code of the high-precision GPU method with streams.

68

5.4 Experimental Results

We implement all programs in C++. The GPU used in the experiment is

NVIDIA GeForce GTX 1080 and the CPU is Xeon 3.0 GHz Quad cores with

32 GB memory. We implement a gradient descent placer based on the LSE

wirelength model and conduct experiments on the benchmarks from the 2015

ISPD routing-driven placement contest [61]. The statistics of the benchmarks

are in Table 5.1. For GPU programs, we record the runtime from host (CPU)

side, including kernel launch latency, the overhead of pin coordinates (host

to GPU) and results (GPU to host) transfer.

Table 5.1: Benchmark statistic

Benchmark Cells Nets
mgc fft 1 32,281 33,307
mgc fft 2 32,281 33,307
mgc matrix mult 1 155,325 158,527
mgc matrix mult a 149,650 154,284
mgc matrix mult b 146,435 151,612
mgc pci bridge32 a 29,517 29,985
mgc pci bridge32 b 28,914 29,417
mgc des perf 1 112,644 112,878
mgc des perf a 108,288 110,281
mgc des perf b 112,644 112,878
mgc edit dist a 127,413 131,134
mgc fft a 30,625 32,088
mgc fft b 30,625 32,088
mgc superblue12 1,286,948 1,293,413
mgc superblue11 a 925,616 935,613
mgc superblue16 a 680,450 697,303

5.4.1 Wirelength

We implement the wirelength gradient computation with four methods: CPU,

CPU with four threads, straightforward GPU parallelization, and our pro-

posed GPU method. The cuSPARSE library [62] is adopted for sparse matrix

multiplication in our method. The wirelength gradient computation is not

affected by cells’ locations, and we report the results in one iteration. Ta-

ble 5.2 lists the runtime of the four methods. Among the four methods, the

69

CPU method is the slowest and the proposed GPU method is the fastest over

all test cases. Considering the average speedup, our method outperforms the

CPU, CPU with four threads and the GPU loop parallelization by 173×,

93× and 8× respectively.

5.4.2 Density

For the density experiment, we implement four methods for comparison:

CPU, CPU with four threads (with the compare-and-exchange technique

to ensure data integrity), proposed GPU method with and without using

streams. We set the N in the high-precision method to 3, i.e., each floating

number is represented by three 64-bits integers.

For each test case, the placement stops when successive cell displacement

is small and we record the average computation time. The grid size is

2048×2048 for the superblue family and 1024×1024 for the others. Table 5.3

lists the runtime for each test case. From the Table 5.3, the GPUmethod with

streams has the best performance in all test cases while the multi-threaded

CPU method only obtains minor improvement in a few benchmarks. The

compare-and-exchange operation is the primary cause for the slower perfor-

mance of the multi-threaded method. Unlike the atomic operation which

serializes the access to data, the threads that failed to update the bin using

the compare-and-exchange operation have to retrieve the new value and com-

pete for the access (lines 8-12 in Algorithm 18), resulting in high overhead

when there are many overlaps between cells.

5.5 Conclusion

In this chapter, we present GPU approaches to accelerate the wirelength gra-

dient and density computation. For the wirelength gradient, we convert the

summations into sparse matrix multiplications, which effectively mitigates

the non-uniform workload among threads and increases the performance. For

the density, we propose a computation flattening technique to resolve the im-

balance workload. The runtime can be further reduced by overlapping the

computation and data transfer using CUDA stream. Lastly, a high-precision

method is integrated into our approach to ensure reproducible results.

70

T
ab

le
5.
2:

W
ir
el
en
gt
h
gr
ad

ie
n
t
co
m
p
u
ta
ti
on

(µ
s)

B
en
ch
m
ar
k

C
P
U

(A
)

C
P
U

m
t
(B

)
G
P
U

(C
)

O
u
r
(D

)
A
/D

B
/D

C
/D

m
gc

ff
t
1

62
81
8

42
85
6

39
65

92
2

68
.1
3

46
.4
8

4.
30

m
gc

ff
t
2

63
15
5

45
40
5

39
62

87
8

71
.9
3

51
.7
1

4.
51

m
gc

m
at
ri
x
m
u
lt
1

25
03
41

14
66
79

71
45

10
74

23
3.
09

13
6.
57

6.
65

m
gc

m
at
ri
x
m
u
lt
a

24
18
60

16
06
79

68
83

10
50

23
0.
34

15
3.
03

6.
56

m
gc

m
at
ri
x
m
u
lt
b

23
54
09

15
33
53

68
24

10
28

22
9.
00

14
9.
18

6.
64

m
gc

p
ci

b
ri
d
ge
32

a
58
91
8

36
29
3

58
89

64
5

91
.3
5

56
.2
7

9.
13

m
gc

p
ci

b
ri
d
ge
32

b
57
15
5

34
29
9

58
28

60
0

95
.2
6

57
.1
7

9.
71

m
gc

d
es

p
er
f
1

17
49
71

95
82
8

16
79
8

86
5

20
2.
28

11
0.
78

19
.4
2

m
gc

d
es

p
er
f
a

16
83
82

95
71
8

15
88
7

85
2

19
7.
63

11
2.
35

18
.6
5

m
gc

d
es

p
er
f
b

17
46
74

10
58
47

17
08
7

88
4

19
7.
60

11
9.
74

19
.3
3

m
gc

ed
it
d
is
t
a

20
51
82

11
61
10

11
10
7

99
1

20
7.
05

11
7.
16

11
.2
1

m
gc

ff
t
a

61
15
6

35
51
0

37
42

87
6

69
.8
1

40
.5
4

4.
27

m
gc

ff
t
b

61
03
2

34
81
8

37
67

89
6

68
.1
2

38
.8
6

4.
20

m
gc

su
p
er
b
lu
e1
2

25
20
85
6

93
39
60

38
51
2

10
08
3

25
0.
01

92
.6
3

3.
82

m
gc

su
p
er
b
lu
e1
1
a

16
19
74
3

63
63
20

16
16
9

56
71

28
5.
62

11
2.
21

2.
85

m
gc

su
p
er
b
lu
e1
6
a

11
94
52
4

46
43
55

12
48
0

43
01

27
7.
73

10
7.
96

2.
90

A
v
g
sp
ee
d
u
p

17
3.
43

93
.9
1

8.
38

71

T
ab

le
5.
3:

A
re
a
ac
cu
m
u
la
ti
on

(µ
s)

B
en
ch
m
ar
k

C
P
U

(A
)

C
P
U

m
t
(B

)
G
P
U

w
/o

G
P
U

w
/

A
/D

B
/D

C
/D

st
re
am

(C
)

st
re
am

(D
)

m
gc

ff
t
1

11
29
0.
84

12
49
3.
41

73
21
.5
5

24
19
.2
9

4.
67

5.
16

3.
03

m
gc

ff
t
2

80
93
.7
0

88
60
.6
8

60
47
.3
3

21
89
.9
8

3.
70

4.
05

2.
76

m
gc

m
at
ri
x
m
u
lt

1
15
00
5.
26

19
60
5.
24

79
17
.7
5

30
59
.3
2

4.
90

6.
41

2.
59

m
gc

m
at
ri
x
m
u
lt

a
68
46
.5
1

87
50
.3
7

49
06
.2
4

20
83
.7
3

3.
29

4.
20

2.
35

m
gc

m
at
ri
x
m
u
lt

b
70
27
.0
2

86
71
.2
7

49
74
.1
4

21
17
.3
5

3.
32

4.
10

2.
35

m
gc

p
ci

b
ri
d
ge
32

a
60
03
.9
6

58
76
.8
6

55
07
.5
0

20
78
.2
5

2.
89

2.
83

2.
65

m
gc

p
ci

b
ri
d
ge
32

b
31
73
.0
7

29
93
.1
0

44
25
.7
0

17
94
.0
5

1.
77

1.
67

2.
47

m
gc

d
es

p
er
f
1

12
64
1.
25

18
86
4.
96

74
31
.8
4

25
56
.2
2

4.
95

7.
38

2.
91

m
gc

d
es

p
er
f
a

69
66
.6
1

87
36
.1
7

52
53
.1
7

20
84
.1
2

3.
34

4.
19

2.
52

m
gc

d
es

p
er
f
b

99
42
.7
7

13
53
3.
10

62
57
.4
4

24
08
.7
3

4.
13

5.
62

2.
60

m
gc

ed
it

d
is
t
a

95
79
.9
4

12
90
0.
03

62
92
.2
6

26
13
.1
2

3.
67

4.
94

2.
41

m
gc

ff
t
a

31
58
.5
4

33
78
.0
8

43
85
.5
6

17
90
.7
2

1.
76

1.
89

2.
45

m
gc

ff
t
b

30
11
.2
0

33
55
.4
1

43
48
.9
1

17
78
.4
5

1.
69

1.
89

2.
45

m
gc

su
p
er
b
lu
e1
2

80
57
4.
98

73
57
0.
18

26
32
6.
61

11
36
7.
5

7.
09

6.
47

2.
32

m
gc

su
p
er
b
lu
e1
1
a

49
88
3.
19

57
77
4.
44

19
04
4.
40

87
28
.1
0

5.
72

6.
62

2.
18

m
gc

su
p
er
b
lu
e1
6
a

32
06
7.
20

29
80
5.
87

16
42
6.
19

74
77
.8
7

4.
29

3.
99

2.
20

72

CHAPTER 6

A DISTRIBUTED POWER GRID
ANALYSIS FRAMEWORK

6.1 Introduction

As the technology continues to advance, analyzing a power distributed net-

work that corporates billions of transistors becomes a critical challenge. Tra-

ditionally, power analysis engineers partitioned the problem into smaller and

manageable pieces, and ran each on a single multi-threading machine. How-

ever, according to [63], analyzing a power grid with 136 million nodes on a

single multi-core machine can take hundreds of GBs of memory and several

hours to finish. Building such a high-end computer is expensive and unscal-

able to the ever-increasing design complexities. As a result, EDA vendors

are driving the need for distributed power grid analysis.

Researchers have proposed parallel computing methods for power grid

analysis [64] [65] [66] [67] [68]. Existing works are based on either multi-

threading in a shared memory storage or distributed computations across

different nodes. The work reported in [64] [65] involved developing parallel

power grid simulators by taking the advantage of multi-cores with shared

memory to speed up the computing. Although the shared memory model

is advantageous in data communication, it relies on expensive hardware re-

sources to gain more scalability. The work reported in [66] [67] involved

designing parallel computing schemes by partitioning data and distributing

the computations across multiple machines using the low-level massage pass-

ing interface (MPI) library [69]. While MPI provides a layer of abstraction

over the network communication, it suffers from many distinct notations to

express the parallelism. The bottom-up design principle of MPI is analo-

gous to assembly languages in terms of writing parallel code. For example,

users have to manually name the machines for process mapping and hard-

code message passing for serialization and deserialization. It also requires a

73

significant amount of coding effort when the software changes to the next

generation. Taken together, these issues discourage developers from being

productive and innovative. Nevertheless, building a distributed power grid

analysis beyond MPI remains an open problem.

While existing big-data tools hold much promise for distributed comput-

ing [70], EDA researchers remain skeptical about the applicability for many

reasons [71]. First, power grid analysis is compute-intensive whereas big data

computing focuses on I/O processing. Second, the MapReduce paradigm as-

sumes data can be split into independent chunks while the power grid data

are not easily separable. Third, the mainstream programming languages of

big data are JVM languages that do not appeal to the language need of the

power grid (C/C++). As a consequence, we need a specialized distributed

framework for power grid analysis.

In this chapter, we introduce a distributed power grid analysis framework

based on the stream graph model. The goal of this work is, instead of solv-

ing the power grid analysis with domain-specific techniques, to investigate

the programmability, extensibility, and scalability of distributed power grid

analysis at the framework level. We summarize our contributions as follows:

• We show that with the use of the stream graph programming paradigm,

programming distributed power grid analysis can be greatly simpli-

fied. Unlike MPI which is based on low-level message passing API, the

stream graph is a higher-level abstraction to express parallelism. We

focus on developing the framework based on the algorithmic specifica-

tion, without wrestling with system-specific implementation details.

• We show that with a customized scheduler, we are able to maximize

the resource utilization in a cluster. Our scheduler is tailored for the

compute-intensive power grid analysis. We demonstrate that our sched-

uler can effectively leverage the CPU usage for this particular workload.

• We show that our framework is a more flexible and scalable alterna-

tive to MPI-based solutions. We can flexibly partition the power grid

to different subdomains regardless of the number of cores, which is

impossible in MPI due to its architectural limitation.

We implement our framework on DtCraft1 [6], a distributed execution

1We use DtCraft version 0.0.1 for the implementation.

74

engine for high-performance applications, for our experiment. The exper-

imental results show that our distributed power grid framework achieves

comparable performance to MPI-based solutions. We also demonstrated the

effectiveness of our scheduler in an emulated production environment. Com-

pared with DtCraft’s default scheduler, our scheduler effectively reduces the

total execution time in the emulated production environment.

6.2 Distributed Power Grid Analysis

The goal of power grid analysis is to solve following system of equations

extracted from the associated circuit:

GV = I,

G : A matrix formed by the conductance of components

V : A vector consists the voltage of nodes (unknown)

I : A vector consists the independent current sources

By solving the above linear system, the voltage drop at each node can be

derived by comparing the node voltage V with the supply voltage. Directly

solving the system is not practical when there are millions of nodes in the

circuit. One feasible solution is domain decomposition [65] [72] [73] which

partitions the problem into subsets and solves them in parallel. The Additive

Schwarz Method (ASM), one type of the domain decomposition methods, is

especially suitable for large sparse system [66]. In this work, we adopt the

geometric ASM method with 2D partitioning proposed by [66] for distributed

direct current (DC) analysis, which is proved to have minimum data commu-

nication. The geometric ASM method for DC analysis can be summarized

as four steps:

S1: Partition the circuit into subdomains.

S2: Solve each subdomain independently.

S3: Synchronize and exchange the boundary values of subdomains.

S4: Go to S2 if any of the subdomains do not converge.

The geometric ASM method is suitable for distributed computing as it can

be directly parallelized by assigning the subdomains to different processors.

75

6.2.1 Existing Works and Limitations

Based on the geometric ASM method, researchers developed a number of

distributed power grid analysis systems using MPI [66] [72] [73]. The MPI

programming model is processor-centric. A MPI program consists of several

processes with each process attached to a processor, and a typical MPI pro-

gram can have a number of processes less than or equal to the number of

available processors. Even though over-subscription is possible in MPI, it

is discouraged by the official website due to performance degradation. The

processes form a communication group and each process has a unique num-

ber called rank for identification. Processes can send or receive data through

using the rank in a set of APIs. Based on the message passing model, a

distributed DC analysis program with MPI is shown in Algorithm 20.

In Algorithm 20, the power grid is partitioned into W × H subdomains

and the MPI program launches W×H processes while assigning each process

a subdomain. In particular, the 0th rank process is different from others in

that it not only solves a subdomain but also has to partition the power grid,

gather and redistribute the boundary values, and check the convergence of

all processes. Notice that in line 8, a process handles the subdomain based

on the rank automatically assigned by MPI and the rank is limited by the

number of available CPU cores.

Although users can implement a distributed computing program by di-

rectly including the MPI library and utilizing the low-level APIs, there are

several disadvantages of the MPI model:

• The number of subdomains is limited by the processors and users are

only allowed to subscribe processes up to the number of physical pro-

cessors. Also, this is a constraint to launching the program (mpirun

-n [number of cores]). This fundamentally restricts our problem-

solving logic to deliver an effective and scalable solution.

• To manage all processes running concurrently in the MPI model, an

MPI program needs to explicitly use conditional instructions or branch

predicate to separate the execution flows of different processes. This

complicates the MPI program structure and also makes the MPI pro-

gram difficult to extend to incremental analysis [74], where some pro-

cesses might change the values in subdomains during analysis.

76

Algorithm 20: MPI-based Distributed DC analysis

Input: C: circuit
Input: W : width
Input: H : height

1 MPI Init();
2 rank ← MPI Rank();
3 subdomains← ∅;
4 if rank == 0 then

5 PartitionGrid(C, W , H);
6 end

7 MPI Sync();
8 subdomains[rank]←ReadGrid(rank);
9 bd value num← CountBD(subdomains[rank]);

10 MPI Gather(0, bd nums, bd value num);
11 if rank == 0 then

12 bd array ← CreateBoundaryArray(bd nums) ;
13 end

14 converge← False;
15 solution← {0};
16 while !converge do

17 Solve(subdomains[rank], solution);
18 bd value← ExtractBoundary(solution);
19 converge← Check(solution);
20 MPI Gather(0, bd array, bd value);
21 MPI Gather(0, result, converge);
22 if rank == 0 then

23 converge← IsConverge(result);
24 Reorder(bd array);

25 end

26 MPI Scatter(0, bd array, bd value);
27 UpdateBD(bd value, solution);
28 MPI broadcast(0, converge);

29 end

These disadvantages have a negative impact on the programmability and

scalability of the MPI-based distributed power grid analysis, and it is desir-

able to have a novel distributed computing framework that does not suffer

from the same issues.

77

6.3 Distributed Power Grid Analysis based on Stream

Graph

6.3.1 Stream Graph Model

Stream graph [6] is a new programming model that aims for distributed

computing, especially for high-performance (compute-intensive) applications.

A stream graph is a high-level abstraction that describes the program as a

directed graph, where vertices and edges encapsulate the data flow and a

sequence of computations. The model is simple yet generic as several parallel

computing patterns such as the MapReduce can also be represented by the

stream graph formulation. An important feature of the stream graph model is

that the computations are asynchronous, i.e. computations are only executed

when the associated data arrive. This makes the stream graph a competitive

solution for performance-driven applications.

6.3.2 DC Analysis in Stream Graph

Based on the stream graph programming paradigm, we formulate the DC

analysis as a stream graph with two types of vertices: synchronization vertex

and worker vertex. The stream graph of DC analysis consists of one synchro-

nization vertex and N worker vertices where N is the number of subdomains,

and there are two directed edges connecting the synchronization vertex and

each worker vertex. In general, the synchronization vertex serves as a hub

that exchanges data between worker vertices and determines whether the

solution converges or not, while the worker vertex is responsible for solving

a subdomain and reporting the result to the synchronization vertex. Al-

gorithm 21 presents the stream graph for DC analysis. A synchronization

vertex is first inserted into the graph in line 2. Then we insert a worker

vertex and two directed edges to the graph (line 7 - 11) and execute the

graph in line 12. Figure 6.1 shows a stream graph of a power grid with four

subdomains.

The program initializes required data from invoking the synchronization

vertex’s callback once to prepare subdomains. Then the synchronization ver-

tex notifies the worker vertices of the corresponding subdomains by sending

78

Figure 6.1: A stream graph of a power grid with four worker vertices each
owning a subdomain and a synchronization vertex to coordinate the four
workers.

Algorithm 21: DC analysis using stream graph

Input: C: circuit
Input: W : width
Input: H : height

1 Graph G ;
2 sync← InsertV(G, sync cb(C,W ,H)) ;
3 workers← {} ;
4 to worker ← {} ;
5 to sync← {} ;
6 N ← W ∗H ;
7 for i = 1 to N do

8 workers[i]← InsertV(G, worker cb()) ;
9 to worker[i]← InsertE(G, sync, workers[i], worker edge cb()) ;

10 to sync[i]← InsertE(G, workers[i], sync, sync edge cb()) ;

11 end

12 dispatch(G) ;

a signal through edges. Algorithm 22 presents the callback of the synchro-

nization vertex. In line 1, the power grid is first partitioned into W×H

subdomains and then each subdomain index is passed to a worker vertex

along the directed edge (line 2 - 7).

For the input edge callbacks of both types of vertices, we use finite state

machines to establish a communication protocol to react to different types

of input data. In the callback of a synchronization vertex’s input edge, there

are two states iterating. The CHECK state checks the results from worker

79

vertices to decide the whole solution converges or not and the RECV state

reorders the received boundary values and distributes them to the worker

vertices to continue to next iteration if the solution is not converged. Al-

gorithm 23 shows the details in the callback of a synchronization vertex at

input side. In line 3, the CHECK state gathers the results from worker ver-

tices and informs all worker vertices of the global status once all results are

received (line 4 - 11). The callback is removed when reaching convergence

(line 10). From line 13 to 23, in the RECV state the synchronization vertex

collects and transmits the new boundary values to the worker vertices.

There are three states in the callback of worker vertex’s input edge: INIT,

COMPUTE and WAIT RESULT. The INIT state is the first state where

the worker vertex waits for the subdomain index, and the COMPUTE and

WAIT RESULT state are used to respectively handle the new boundary val-

ues and global result. Algorithm 24 presents the callback of a worker vertex

at input side. In the INIT state, each worker vertex first receives a sub-

domain index from the synchronization vertex (line 2 - 6). Then a worker

vertex solves its own subdomain and replies the result and transits to the

WAIT RESULT state (line 23 - 28). In the WAIT RESULT state, the worker

vertex waits for the global result. The callback is removed if the whole solu-

tion converges (line 9 - 12); otherwise the worker vertex sends the boundary

values to the synchronization vertex and transits to the COMPUTE state

(line 13 - 15). In the COMPUTE state (line 18 - 20), when a worker vertex

receives the updated boundary values, it proceeds to solve the subdomain

with the new values and sends the result back.

Algorithm 22: Callback of a synchronization vertex

Input: C: circuit
Input: W : width
Input: H : height
Input: E: edge ids

1 PartitionGrid(C, W , H) ;
2 for i = 1 to W do

3 for j = 1 to H do

4 id← SubdomainId(i, j) ;
5 send(edges[i][j], id) ;

6 end

7 end

80

Algorithm 23: Input edge callback of a synchronization vertex

Input: id: edge id
1 switch state do

2 case CHECK
3 recv(results[id]) ;
4 if all workers are recv then

5 done ← AllConverge(results) ? True : False ;
6 for i = 1 to N do

7 send(i, done) ;
8 end

9 state ← RECV ;
10 return done ? REMOVE THIS CB:DEFAULT ;

11 end

12 end

13 case RECV
14 recv(bd vectors[id]) ;
15 if all workers are recv then

16 Reorder(bd vectors) ;
17 for i = 1 to N do

18 send(i, bd vectors[i]) ;
19 end

20 state ← CHECK ;
21 return DEFAULT ;

22 end

23 end

24 endsw

The proposed framework has several benefits over the MPI model

• In contrast to the static (manual) mapping of processes to processors

in MPI, the stream graph programming paradigm enables task paral-

lelism, i.e. callbacks can be executed on any core in an asynchronous

manner, which allows users to create more partitions than the available

processors.

• By packaging sequential computations into callbacks and assembling

the sequential blocks into a parallel program, the stream graph formu-

lation has better code readability and makes debugging easier, whereas

the MPI program is more complex as processes with different execution

trajectories are put in the same block and parallelizations are expressed

by various low-level APIs (the functions with MPI * prefix).

81

Algorithm 24: Input edge callback of worker vertex

Input: id: edge id
1 switch state do

2 case INIT
3 recv(subdomain id) ;
4 my subdomain← ReadGrid(subdomain id) ;
5 goto 23 ;

6 end

7 case WAIT RESULT
8 recv(result) ;
9 if result then

10 Output(id, solution) ;
11 return REMOVE THIS CB ;

12 end

13 state← COMPUTE ;
14 send(id, bd value) ;
15 return DEFAULT ;

16 end

17 case COMPUTE
18 recv(bd value) ;
19 UpdateBD(bd value, solution) ;
20 goto 23 ;

21 end

22 endsw

23 Solve(my subdomain, solution) ;
24 bd value← ExtractBoundary(solution) ;
25 converge← Check(solution) ;
26 state← WAIT RESULT ;
27 send(id, converge) ;
28 return DEFAULT;

• The stream graph formulation lets users assign the resource require-

ments in a fine-grained manner. A subgraph can have an individual

demand, which allows the scheduler to make a more effective cluster

resource utilization.

Combining the above benefits, our framework has better programmability

and scalability than the MPI. We believe our framework stands out as a

unique solution for distributed power grid analysis, considering the software

design and the architectural decision we made.

82

6.4 Application-specific Resource Control Plug-in

Job scheduling is an important issue in distributed computing as the schedul-

ing has a huge impact on overall system performance. There are many types

of resources in a cluster such as CPUs and memory, and different workloads

can have diverse demands on the resources. In this section, we first outline

the default scheduler in DtCraft, then we introduce a scheduler that is tai-

lored for CPU bound applications such as the power grid analysis to enhance

the system performance.

6.4.1 Default Scheduler

The default scheduler in DtCraft adopts a best-fit method to match a job’s

tasks to machines based on their resource (CPU + memory) requirements. In

contrast to the CPUs that are shared among processes, memory claimed by a

process will not be available to others during execution. As a result, memory

is regarded as a hard constraint and any process that violates the mem-

ory constraint will trigger an out-of-memory error and be terminated. The

policy of the default scheduler is first-come-first-served and non-preemptive.

Whenever the scheduler receives a job from users, it seeks to find a feasible

scheduling for the job if there is no job waiting ahead. The scheduler first

takes a snapshot of the current status of machines, then for each task in the

job, the scheduler scans through the machines to create a list of machines

that have enough memory to accommodate the task, and among those candi-

dates the best-fit machine, the one with the least memory, is matched to the

task. A job cannot be scheduled if any one of its task fails to be matched to

a machine. The failed job will be stored into a queue for future processing.

Whenever a job finishes execution and releases the memory, the scheduler

will examine the queue to process the waiting jobs. The advantage of this

method is that it reduces memory fragmentation which could spare more

room to have more jobs scheduled.

6.4.2 Proposed Scheduler

Even though the default scheduler aims to process as many jobs as possible

at the same time, the cluster can experience performance slowdown due to

83

the imbalanced workload among machines. A significant deficiency of the

default scheduling policy is the underutilization of CPUs since the default

scheduler tends to assign jobs to the machines that are either partially or

fully loaded while there still exist idle machines. Figure 6.2 is an example of

how the default scheduler assigns a task to a partially loaded machine with

the other two machines being unused. Because processes hold CPUs in turn,

Figure 6.2: In this example, the default scheduler will assign the task T6 to
the machine M2 as M2 is the best-fit among all available machines.

excessive processes will lead to shorter time slice owned by each process and

higher overhead of frequent context switch, which can dramatically increase

the total runtime.

To have better utilization of the cluster resource as well as improve the

cluster performance, load balance must be considered in scheduling. We pro-

pose a scheduler for balancing the workload of cluster machines. Aside from

the memory usage, in order to evenly distribute the workload we integrate

the CPU usage and average CPU load in the past one minute into schedul-

ing to decide the deployment. To gauge the workload of each machine, we

record the CPU demands of tasks allocated on each machine and define the

ratio of total CPU demands to the number of CPUs on the machine as load

index. As memory is a hard constraint, during the job scheduling we first

collect the machines that satisfy the memory requirement. Then, rather than

selecting the machine with the least available memory, a task is matched to

the machine with the smallest load index and in case of a tie, the machine

with smaller average CPU load in the past one minute is preferred. The goal

of using load index to determine the task placement is to proportionally dis-

tribute the workload. Algorithm 25 presents the algorithm of the proposed

scheduler. In Line 8 - 14, the scheduler first checks the memory capacity

84

Algorithm 25: Load-aware scheduling algorithm

Input: M : machines
Input: J : a job

1 snapshot← {};
2 foreach m ∈M do

3 snapshot← snapshot
⋃

m;
4 end

5 foreach t ∈ J do

6 best← null;
7 foreach s ∈ snapshot do
8 if s.memory >= t.memory then

9 if s.load < best.load or best == null then
10 best← s;
11 else if s.load == best.load and s.loadavg < best.loadavg

then

12 best← s;
13 end

14 end

15 end

16 if best == null then
17 P ← ∅ ;
18 break ;

19 end

20 else

21 P ← P
⋃
(t, best) ; // P: mapping of tasks to machines

22 snapshot[best].memory− = t.memory ;
23 snapshot[best].load+ = t.cpu/snapshot[best].cpu ;

24 end

25 end

to satisfy the hard constraint. Then for those qualified machines, we deploy

the task on the least utilized machine by comparing their load indices and

average load over one minute for tie-breaking.

6.5 Experimental Results

We first compare two implementations of distributed DC analysis, the stream

graph and the MPI model, to demonstrate their performance on both the sin-

gle machine and the distributed environment. Next we compare the proposed

scheduler with the default scheduler in an emulated production environment.

85

6.5.1 Stream Graph versus MPI

We conduct experiments on a single machine and a cluster respectively to

evaluate both implementations, and a set of industrial power grid benchmarks

released by IBM [75] is used throughout the experiments. We use the network

file system (NFS) to allow file sharing across the machines. In the single

machine experiment, the machine is equipped with a 2.4 GHz quad-core CPU

and 35 GB memory. Due to the available number of cores, we partition the

circuit into four (2×2) subdomains to evaluate the MPI program. Since the

stream graph does not have the processor binding issue, we further test the

stream graph model with the 3×3 and 4×4 partitions to investigate possible

performance improvement.

Table 6.1 lists the results of the single machine experiment. To adequately

compare both models, in addition to the total execution time we also record

the matrix solving time, which does not include the latency of transferring

partitioned files on NFS. For the 2×2 partitions, the runtime of stream graph

is only moderately higher than the MPI’s and both exhibit a similar perfor-

mance scale. Comparing the 2×2 partition with the 3×3 and 4×4 partitions,

the performance is further improved by partitioning the circuit into smaller

subdomains to reduce the matrix solving time.

Next we evaluate their performance in a cluster consisting of 9 machines,

each with a 3.2 GHz quad-core CPU and 24 GB memory. We test four

partition sizes: 3×3, 4×4, 5×5 and 6×6. For the sake of fairness, in the

stream graph model a subdomain is assigned one CPU core so that each

machine can accommodate at most four subdomains, which has the same

effect as the CPU binding in the MPI model. We record the time of solving

the matrix and the total runtime (including the file partition) in Table 6.2.

In all types of partitions, the matrix solving time of stream graph is close

to the MPI model’s for all benchmarks, and the difference does not scale with

the circuit size, indicating the performance of stream graph is comparable to

the MPI model.

86

T
ab

le
6.
1:

R
u
n
ti
m
e
(s
ec
)
of

M
P
I
ve
rs
u
s
S
tr
ea
m

gr
ap

h
on

si
n
gl
e
m
ac
h
in
e

T
es
tc
as
e

S
iz
e

S
ol
ve

T
im

e
(2
x
2)

T
ot
al

T
im

e
(2
x
2)

S
ol
ve

ti
m
e

(s
tr
ea
m

gr
ap

h
)

T
ot
al

T
im

e
(s
tr
ea
m

gr
ap

h
)

M
P
I

S
tr
ea
m

gr
ap

h
M
P
I

S
tr
ea
m

gr
ap

h
3x

3
4x

4
3x

3
4x

4
y
20
0

10
51
34
42

1,
06
1.
45

1,
24
6.
63

1,
13
3.
46

1,
30
2.
94

54
4.
44

74
9.
20

59
2.
30

79
5.
65

y
25
0

67
27
56
2

62
8.
15

71
7.
60

67
6.
21

75
4.
30

26
2.
03

26
6.
03

29
4.
22

29
6.
09

y
30
0

46
88
89
9

25
1.
82

29
4.
99

28
4.
67

32
0.
52

15
6.
08

15
4.
70

17
8.
36

17
6.
37

y
40
0

26
27
44
2

48
.7
2

68
.3
8

66
.8
2

82
.4
9

45
.9
6

49
.6
1

58
.1
4

61
.2
5

y
50
0

16
80
60
2

25
.7
7

36
.3
1

37
.9
4

45
.4
3

25
.7
6

25
.2
9

33
.6
9

32
.9
5

y
60
0

11
71
82
2

12
.5
0

18
.4
1

20
.7
7

24
.7
4

18
.2
5

15
.5
0

23
.9
6

20
.9
9

y
80
0

65
58
96

6.
44

10
.7
1

11
.0
7

14
.5
1

7.
82

7.
49

10
.9
7

10
.6
8

y
10
00

41
95
22

2.
85

5.
27

5.
79

7.
61

4.
21

4.
17

6.
27

6.
18

87

Table 6.2: Runtime (sec) of MPI versus Stream graph (ours) on a cluster
with 9 machines

Testcase Decomposition
Solve Time Total Time
MPI Ours MPI Ours

y200 6 x 6 90.60 109.12 149.42 163.40
y250 6 x 6 34.40 45.36 70.583 82.29
y300 5 x 5 22.52 28.06 43.95 52.59
y400 5 x 5 7.52 10.04 19.35 22.75
y500 4 x 4 5.21 6.77 14.79 16.87
y600 4 x 4 3.26 5.03 9.96 12.54
y800 3 x 3 2.25 3.65 7.54 7.97
y1000 3 x 3 1.10 2.58 4.41 5.63

6.5.2 Production-Mode Evaluation

The scheduler experiments are undertaken on Amazon’s Elastic Compute

Cloud and we use 10 EC2 instances where each instance has 4 CPUs and

16 GB memory. The first experiment is to evaluate the effectiveness of our

scheduler on handling workload composed of jobs in different scales. We

select three types of circuits whose power grids have 0.95, 3.7 and 10 million

nodes respectively to represent jobs with small, medium and large scale. The

stream graph each has 4 (small), 8 (medium) and 16 (large) worker vertices

respectively. There are one hundred jobs in total and the numbers of jobs

for each type are 27, 68 and 5, which are distributed normally to simulate

the job composition in realistic situations. The jobs are randomly permuted

and we submit a job every 10 seconds.

For the sake of fairness, we run the experiment three times for both the

baseline scheduler and the proposed scheduler and record all results. Fig-

ure 6.3 (a) shows the total time from submitting the first job to the finish of

the last job. Compared with the baseline scheduler, the proposed scheduler

reduces the total time by an average of 10%, implying the runtime of each

job in our scheduler has been shortened by 10%.

To understand the impact of schedulers on the runtime of each job, Fig-

ure 6.3 (b) records the distribution of completion time on jobs with different

sizes. By using the proposed scheduler, the average completion time of the

small, medium and large-sized jobs is decreased by 24%, 22% and 14% re-

88

1st 2nd 3rd
Runs

0

5

10

15

20

25

30

35

R
u
n
ti
m
e
 (
m
in
)

23.05 22.58 22.77

25.32 26.0 25.42

Proposed scheduler Baseline scheduler

(a)

0.95 3.7 10
Circuit size (# of nodes in million)

0

100

200

300

400

500

600

T
im

e
 (
se
c)

25.9 25.0 23.1
17.8 18.1 18.5

59.8 59.1 59.0
42.9 44.0 43.1

543.6
545.0

534.3

470.0
448.7

467.5

Baseline scheduler

Proposed scheduler

(b)

Figure 6.3: (a) The total execution time (minutes) for the three runs. (b)
The runtime (seconds) distribution for the three sizes of benchmarks in all
runs. The number on the top of each box is the median value, and the top
and bottom whiskers represent the maximum and minimum values.

(a)

1st 2nd 3rd
Runs

0

10

20

30

40

50

60

70

80
R
u
n
ti
m
e
 (
s
e
c
)

48.44

42.95 42.89

62.53 63.51 62.47

Proposed scheduler Baseline scheduler

(b)

Figure 6.4: (a) The number of vertices deployed on each machine in all
runs. (b) The average runtime (seconds) of a benchmark for the three runs
in a simulated production environment.

spectively and the improvement does not change from run to run. To know

the resource usage of machines, Figure 6.4 (a) depicts the number of ver-

tices deployed on each machine (sorted in ascending order). We observe that

there exists a huge gap of the deployed vertices between machines in baseline

scheduler, whereas for our scheduler the maximum difference of deployed ver-

tices between machines is one third that of the default scheduler, implying

our scheduler can effectively balance the workload to achieve better cluster

resource utilization. As the baseline scheduler tends to allocate vertices to

the machine with least space, it is expected that the workload distribution

can be very non-uniform with some machines being overloaded while others

89

stay idle, leading to inefficient resource usage and slower system performance.

The next experiment is to evaluate the schedulers with jobs arriving in

Poisson distribution manner. A common assumption in production envi-

ronment is that the arrival time follows the Poisson distribution, where the

arrival times of jobs are independent to each other and the probability of a

job arriving over an interval is proportional to the interval length. Therefore,

in contrast to the previous experiment where jobs are uniformly distributed

along the timeline, in the Poisson distribution the job arrival rates in some

intervals are higher than in others. We set the average arrival rate to 0.1 (i.e.

the average arrival time of a job is 10 seconds) and submit 100 medium-sized

jobs. Figure 6.4 (b) shows that the proposed scheduler’s average completion

time of a job is around 20% to 30% less than the default scheduler’s. We ob-

serve that the number of vertices deployed on each machine can vary greatly

in the default scheduler, resulting in a low resource utilization and slower

performance.

6.6 Conclusion

This chapter introduces a distributed power grid analysis framework based on

the stream graph programming model. The framework enables flexible power

grid decomposition regardless of the available CPU cores and this feature

is useful for seeking potential performance improvement. Moreover, a load-

aware scheduler is proposed to balance the machine workloads and effectively

promote the overall system resource utilization. The experimental results

show that the framework has comparable performance to the MPI-based

framework and the effectiveness of the load-aware scheduler. We believe we

have opened a new direction for the distributed power grid analysis. Our idea

can inspire EDA engineers to rethink the way to parallelize EDA algorithms.

90

REFERENCES

[1] T. Huang, C. Lin, G. Guo, and M. Wong, “Cpp-Taskflow: Fast task-
based parallel programming using modern C++,” in 2019 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), May
2019, pp. 974–983.

[2] Cpp-Taskflow, “https://github.com/cpp-taskflow/cpp-taskflow.”

[3] C. Lin, T. Huang, G. Guo, and M. D. F. Wong, “An efficient and com-
posable parallel task programming library,” in 2019 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), 2019, pp. 1–7.

[4] C. Lin and M. D. F. Wong, “Accelerate analytical placement with GPU:
A generic approach,” in 2018 Design, Automation Test in Europe Con-
ference Exhibition (DATE), 2018, pp. 1345–1350.

[5] C.-X. Lin, T.-W. Huang, T. Yu, and M. D. F. Wong, “A distributed
power grid analysis framework from sequential stream graph,” in Pro-
ceedings of the 2018 on Great Lakes Symposium on VLSI, ser. GLSVLSI
18. New York, NY, USA: Association for Computing Machinery,
2018. [Online]. Available: https://doi.org/10.1145/3194554.3194560 p.
183188.

[6] T. Huang, C. Lin, and M. D. F. Wong, “DtCraft: A distributed execu-
tion engine for compute-intensive applications,” in 2017 IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD), Nov 2017,
pp. 757–765.

[7] T.-W. Huang and M. D. F. Wong, “OpenTimer: A high-performance
timing analysis tool,” in Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, ser. ICCAD 15. IEEE Press,
2015, p. 895902.

[8] OpenMP, “[online]. available:
https://www.openmp.org/.”

[9] Intel Threading Building Blocks, “[online]. available:
https://www.threadingbuildingblocks.org/intel-tbb-tutorial.”

91

[10] “C++ named requirements: Callable.” [Online]. Available:
https://en.cppreference.com/w/cpp/named req/Callable

[11] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded
computations by work stealing,” J. ACM, vol. 46, no. 5, p. 720748,
Sep. 1999. [Online]. Available: https://doi.org/10.1145/324133.324234

[12] D. Chase and Y. Lev, “Dynamic circular work-stealing deque,” in
Proceedings of the Seventeenth Annual ACM Symposium on Parallelism
in Algorithms and Architectures, ser. SPAA 05. New York, NY,
USA: Association for Computing Machinery, 2005. [Online]. Available:
https://doi.org/10.1145/1073970.1073974 pp. 21–28.

[13] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime
system,” in Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPOPP 95. New
York, NY, USA: Association for Computing Machinery, 1995. [Online].
Available: https://doi.org/10.1145/209936.209958 pp. 207–216.

[14] R. D. Blumofe and D. Papadopoulos, “The performance of work steal-
ing in multiprogrammed environments,” University of Texas at Austin,
USA, Tech. Rep., 1998.

[15] X. Ding, K. Wang, P. B. Gibbons, and X. Zhang, “BWS: Balanced work
stealing for time-sharing multicores,” in Proceedings of the 7th ACM
European Conference on Computer Systems, ser. EuroSys 12. New
York, NY, USA: Association for Computing Machinery, 2012. [Online].
Available: https://doi.org/10.1145/2168836.2168873 p. 365378.

[16] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling for
multiprogrammed multiprocessors,” in Proceedings of the Tenth Annual
ACM Symposium on Parallel Algorithms and Architectures, ser. SPAA
98. New York, NY, USA: Association for Computing Machinery, 1998.
[Online]. Available: https://doi.org/10.1145/277651.277678 p. 119129.

[17] G. Contreras and M. Martonosi, “Characterizing and improving the per-
formance of Intel Threading Building Blocks,” in 2008 IEEE Interna-
tional Symposium on Workload Characterization, Sep. 2008, pp. 57–66.

[18] K. Agrawal, Y. He, and C. E. Leiserson, “Adaptive work stealing
with parallelism feedback,” in Proceedings of the 12th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP 07. New York, NY, USA: Association for Computing Machinery,
2007. [Online]. Available: https://doi.org/10.1145/1229428.1229448 pp.
112–120.

92

[19] Yi Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-first
scheduling policies for async-finish task parallelism,” in IEEE Interna-
tional Symposium on Parallel Distributed Processing, 2009, pp. 1–12.

[20] O. Tardieu, H. Wang, and H. Lin, “A work-stealing scheduler
for X10’s task parallelism with suspension,” in Proceedings of the
17th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, ser. PPoPP 12. New York, NY, USA:
Association for Computing Machinery, 2012. [Online]. Available:
https://doi.org/10.1145/2145816.2145850 pp. 267–276.

[21] U. A. Acar, G. E. Blelloch, and R. D. Blumofe, “The data locality of
work stealing,” in Proceedings of the Twelfth Annual ACM Symposium
on Parallel Algorithms and Architectures, ser. SPAA 00. New York,
NY, USA: Association for Computing Machinery, 2000. [Online].
Available: https://doi.org/10.1145/341800.341801 pp. 1–12.

[22] K. Singer, Y. Xu, and I.-T. A. Lee, “Proactive work stealing for
futures,” in Proceedings of the 24th Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP 19. New York, NY,
USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3293883.3295735 pp. 257–271.

[23] Y. Guo, J. Zhao, V. Cave, and V. Sarkar, “SLAW: A scalable locality-
aware adaptive work-stealing scheduler,” in 2010 IEEE International
Symposium on Parallel Distributed Processing (IPDPS), 2010, pp. 1–12.

[24] A. Kukanov and M. J. Voss, “The foundations for scalable multi-core
software in Intel Threading Building Blocks,” in Intel Technology Jour-
nal, vol. 11, Nov. 2007.

[25] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implemen-
tation of the Cilk-5 multithreaded language,” in Proceedings of
the ACM SIGPLAN 1998 Conference on Programming Language
Design and Implementation, ser. PLDI 98. New York, NY, USA:
Association for Computing Machinery, 1998. [Online]. Available:
https://doi.org/10.1145/277650.277725 pp. 212–223.

[26] S. Agarwal, R. Barik, D. Bonachea, V. Sarkar, R. K. Shyamasundar,
and K. Yelick, “Deadlock-free scheduling of X10 computations with
bounded resources,” in Proceedings of the Nineteenth Annual ACM
Symposium on Parallel Algorithms and Architectures, ser. SPAA
07. New York, NY, USA: Association for Computing Machinery,
2007. [Online]. Available: https://doi.org/10.1145/1248377.1248416 pp.
229–240.

93

[27] K. Agrawal, C. E. Leiserson, and J. Sukha, “Executing task graphs using
work-stealing,” in 2010 IEEE International Symposium on Parallel &
Distributed Processing (IPDPS), 2010, pp. 1–12.

[28] D. Leijen, W. Schulte, and S. Burckhardt, “The design of a
task parallel library,” in Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages
and Applications, ser. OOPSLA 09. New York, NY, USA:
Association for Computing Machinery, 2009. [Online]. Available:
https://doi.org/10.1145/1640089.1640106 pp. 227–242.

[29] J. B. Dogan, “Go’s work-stealing scheduler,”
https://rakyll.org/scheduler/.

[30] H. Ribic and Y. D. Liu, “Energy-efficient work-stealing language run-
times,” in Proceedings of the 19th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ser.
ASPLOS 14. New York, NY, USA: Association for Computing Machin-
ery, 2014. [Online]. Available: https://doi.org/10.1145/2541940.2541971
p. 513528.

[31] N. M. Lê, A. Pop, A. Cohen, and F. Zappa Nardelli, “Correct
and efficient work-stealing for weak memory models,” in Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, ser. PPoPP 13. New York, NY, USA:
Association for Computing Machinery, 2013. [Online]. Available:
https://doi.org/10.1145/2442516.2442524 p. 6980.

[32] “Eigen EventCount.” [Online]. Available:
https://eigen.tuxfamily.org/dox/unsupported/EventCount 8h source.html

[33] J. Hu, G. Schaeffer, and V. Garg, “TAU 2015 contest on incremen-
tal timing analysis,” in 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2015, pp. 882–889.

[34] “Intel 64 and IA-32 Architectures Software Developer Manuals,”
https://software.intel.com/en-us/articles/intel-sdm.

[35] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a simultane-
ous multithreaded processor,” in ASPLOX. ACM, 2000, pp. 234–244.

[36] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden tech-
nical debt in machine learning systems,” in NIPS, 2015, pp. 2503–2511.

[37] E. Ayguadé and D. Jiménez-González, “An approach to task-based
parallel programming for undergraduate students,” J. Parallel Distrib.
Comput., vol. 118, no. P1, pp. 140–156, Aug. 2018.

94

[38] P. Thoman, K. Dichev, T. Heller, R. Iakymchuk, X. Aguilar,
K. Hasanov, P. Gschwandtner, P. Lemarinier, S. Markidis, H. Jordan,
T. Fahringer, K. Katrinis, E. Laure, and D. S. Nikolopoulos, “A
taxonomy of task-based parallel programming technologies for high-
performance computing,” J. Supercomput., vol. 74, no. 4, pp. 1422–1434,
Apr. 2018. [Online]. Available: https://doi.org/10.1007/s11227-018-
2238-4

[39] S. Palkar, J. Thomas, D. Narayanan, P. Thaker, R. Palamuttam,
P. Negi, A. Shanbhag, M. Schwarzkopf, H. Pirk, S. Amarasinghe,
S. Madden, and M. Zaharia, “Evaluating end-to-end optimization for
data analytics applications in Weld,” VLDB, vol. 11, no. 9, pp. 1002–
1015, 2018.

[40] The DOT Language, “https://www.graphviz.org/.”

[41] A. B. Kahng and Qinke Wang, “Implementation and extensibility of
an analytic placer,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 24, no. 5, pp. 734–747, May 2005.

[42] C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf placement
and routing package,” IEEE Journal of Solid-State Circuits, vol. 20,
no. 2, pp. 510–522, April 1985.

[43] M. C. Yildiz and P. H. Madden, “Improved cut sequences for partition-
ing based placement,” in Proceedings of the 38th Design Automation
Conference (IEEE Cat. No.01CH37232), June 2001, pp. 776–779.

[44] N. Viswanathan, M. Pan, and C. Chu, “FastPlace 3.0: A fast multilevel
quadratic placement algorithm with placement congestion control,” in
2007 Asia and South Pacific Design Automation Conference, Jan 2007,
pp. 135–140.

[45] T.-C. Chen, T.-C. Hsu, Z.-W. Jiang, and Y.-W. Chang, “NTUplace:
A ratio partitioning based placement algorithm for large-scale
mixed-size designs,” in Proceedings of the 2005 International
Symposium on Physical Design, ser. ISPD’05. New York, NY,
USA: Association for Computing Machinery, 2005. [Online]. Available:
https://doi.org/10.1145/1055137.1055188 pp. 236–238.

[46] T. Chan, J. Cong, and K. Sze, “Multilevel generalized force-directed
method for circuit placement,” in Proceedings of the 2005 International
Symposium on Physical Design, ser. ISPD’05. New York, NY,
USA: Association for Computing Machinery, 2005. [Online]. Available:
https://doi.org/10.1145/1055137.1055177 pp. 185–192.

95

[47] P. Spindler and F. M. Johannes, “Fast and robust quadratic placement
combined with an exact linear net model,” in 2006 IEEE/ACM Interna-
tional Conference on Computer Aided Design, Nov 2006, pp. 179–186.

[48] U. Brenner, M. Struzyna, and J. Vygen, “BonnPlace: Placement
of leading-edge chips by advanced combinatorial algorithms,” Trans.
Comp.-Aided Des. Integ. Cir. Sys., vol. 27, no. 9, pp. 1607–1620, Sep.
2008. [Online]. Available: https://doi.org/10.1109/TCAD.2008.927674

[49] M. Kim, D. Lee, and I. L. Markov, “SimPL: An effective placement
algorithm,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 31, no. 1, pp. 50–60, Jan 2012.

[50] J. Lu, P. Chen, C. Chang, L. Sha, D. J. H. Huang, C. Teng, and
C. Cheng, “ePlace: Electrostatics based placement using Nesterov’s
method,” in 2014 51st ACM/EDAC/IEEE Design Automation Confer-
ence (DAC), June 2014, pp. 1–6.

[51] Y. Deng, B. D. Wang, and S. Mu, “Taming irregular EDA applications
on GPUs,” in 2009 IEEE/ACM International Conference on Computer-
Aided Design - Digest of Technical Papers, Nov 2009, pp. 539–546.

[52] A. Al-Kawam and H. M. Harmanani, “A parallel GPU implementation
of the Timber Wolf placement algorithm,” in 2015 12th International
Conference on Information Technology - New Generations, April 2015,
pp. 792–795.

[53] J. Cong and Y. Zou, “Parallel multi-level analytical global placement
on graphics processing units,” in Proceedings of the 2009 International
Conference on Computer-Aided Design, ser. ICCAD’09. New York,
NY, USA: Association for Computing Machinery, 2009. [Online].
Available: https://doi.org/10.1145/1687399.1687525 pp. 681–688.

[54] K. Zhai, W. Yu, and H. Zhuang, “GPU-friendly floating random walk
algorithm for capacitance extraction of VLSI interconnects,” in 2013 De-
sign, Automation Test in Europe Conference Exhibition (DATE), March
2013, pp. 1661–1666.

[55] Y. Han, K. Chakraborty, and S. Roy, “A global router on GPU architec-
ture,” in 2013 IEEE 31st International Conference on Computer Design
(ICCD), Oct 2013, pp. 78–84.

[56] W. C. Naylor, R. Donelly, and L. Sha, “Non-linear optimization system
and method for wire length and delay optimization for an automatic
electric circuit placer,” Oct. 9 2001, US Patent 6,301,693.

96

[57] M.-K. Hsu, Y.-W. Chang, and V. Balabanov, “TSV-aware analytical
placement for 3D IC designs,” in Proceedings of the 48th Design
Automation Conference, ser. DAC’11. New York, NY, USA:
Association for Computing Machinery, 2011. [Online]. Available:
https://doi.org/10.1145/2024724.2024875 pp. 664–669.

[58] Mark Harris, “How to overlap data transfers in CUDA C/C++,”
https://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-
cuda-cc.

[59] D. Goldberg, “What every computer scientist should know about
floating-point arithmetic,” ACM Comput. Surv., vol. 23, no. 1, pp. 5–48,
Mar. 1991. [Online]. Available: https://doi.org/10.1145/103162.103163

[60] P. E. Small, R. K. Kalia, A. Nakano, and P. Vashishta, “Order-invariant
real number summation: Circumventing accuracy loss for multimillion
summands on multiple parallel architectures,” in 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), May
2016, pp. 152–160.

[61] I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis, “ISPD
2015 benchmarks with fence regions and routing blockages for detailed-
routing-driven placement,” in Proceedings of the 2015 Symposium on
International Symposium on Physical Design, ser. ISPD’15. New
York, NY, USA: Association for Computing Machinery, 2015. [Online].
Available: https://doi.org/10.1145/2717764.2723572 pp. 157–164.

[62] cuSPARSE library, https://developer.nvidia.com/cusparse.

[63] C. Wei, H. Chen, and S. Chen, “Design and implementation of block-
based partitioning for parallel flip-chip power-grid analysis,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 31, no. 3, pp. 370–379, March 2012.

[64] J. W. Demmel, J. R. Gilbert, and X. S. Li, “An asynchronous parallel
supernodal algorithm for sparse Gaussian elimination,” SIAM Journal
on Matrix Analysis and Applications, vol. 20, no. 4, pp. 915–952, 1999.
[Online]. Available: https://doi.org/10.1137/S0895479897317685

[65] V. Y. Voronov and N. N. Popova, “Parallel power grid simulation on
platforms with multi core processors,” in 2009 International Conference
on Computing, Engineering and Information, April 2009, pp. 144–148.

97

[66] T. Yu, Z. Xiao, and M. D. F. Wong, “Efficient parallel power
grid analysis via additive Schwarz method,” in Proceedings of the
International Conference on Computer-Aided Design, ser. ICCAD
2012. New York, NY, USA: Association for Computing Machinery,
2012. [Online]. Available: https://doi.org/10.1145/2429384.2429468 pp.
399–406.

[67] L. Grigori, J. W. Demmel, and X. S. Li, “Parallel symbolic factorization
for sparse LU with static pivoting,” SIAM Journal on Scientific
Computing, vol. 29, no. 3, pp. 1289–1314, 2007. [Online]. Available:
https://doi.org/10.1137/050638102

[68] Q. He, W. Au, A. Korobkov, and S. Venkateswaran, “Parallel power
grid analysis using distributed direct linear solver,” in 2014 IEEE In-
ternational Symposium on Electromagnetic Compatibility (EMC), Aug
2014, pp. 866–871.

[69] “MPICH.” [Online]. Available: https://www.mpich.org/

[70] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauly, M. J. Franklin, S. Shenker, and I. Stoica, “Re-
silient distributed datasets: A fault-tolerant abstraction for in-
memory cluster computing,” in Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 12). San Jose, CA: USENIX, 2012. [On-
line]. Available: https://www.usenix.org/conference/nsdi12/technical-
sessions/presentation/zaharia pp. 15–28.

[71] T. Huang, M. D. F. Wong, D. Sinha, K. Kalafala, and N. Venkateswaran,
“A distributed timing analysis framework for large designs,” in 2016
53nd ACM/EDAC/IEEE Design Automation Conference (DAC), June
2016, pp. 1–6.

[72] Kai Sun, Quming Zhou, Kartik Mohanram, and D. C. Sorensen, “Par-
allel domain decomposition for simulation of large-scale power grids,” in
2007 IEEE/ACM International Conference on Computer-Aided Design,
Nov 2007, pp. 54–59.

[73] “PETSC.” [Online]. Available: http://www.mcs.anl.gov/petsc/

[74] P. Sun, X. Li, and M. Ting, “Efficient incremental analysis of on-chip
power grid via sparse approximation,” in 2011 48th ACM/EDAC/IEEE
Design Automation Conference (DAC), June 2011, pp. 676–681.

[75] S. R. Nassif, “Power grid analysis benchmarks,” in Proceedings of the
2008 Asia and South Pacific Design Automation Conference, ser. ASP-
DAC 2008. Washington, DC, USA: IEEE Computer Society Press,
2008, pp. 376–381.

98

