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This thesis presents a top to bottom analysis on designing and implementing fast

algorithms for current and future systems. We present new analysis, algorithmic

techniques, and implementations of the Fast Multipole Method (FMM) for solving N-

body problems. We target the FMM because it is broadly applicable to a variety of

scientific particle simulations used to study electromagnetic, fluid, and gravitational

phenomena, among others. Importantly, the FMM has asymptotically optimal time

complexity with guaranteed approximation accuracy. As such, it is among the most

attractive solutions for scalable particle simulation on future extreme scale systems.

We specifically address two key challenges. The first challenge is how to engineer

fast code for today’s platforms. We present the first in-depth study of multicore op-

timizations and tuning for FMM, along with a systematic approach for transforming

a conventionally-parallelized FMM into a highly-tuned one. We introduce novel opti-

mizations that significantly improve the within-node scalability of the FMM, thereby

enabling high-performance in the face of multicore and manycore systems. The sec-

ond challenge is how to understand scalability on future systems. We present a new

algorithmic complexity analysis of the FMM that considers both intra- and inter-

node communication costs. Using these models, we present results for choosing the

optimal algorithmic tuning parameter. This analysis also yields the surprising pre-

diction that although the FMM is largely compute-bound today, and therefore highly

scalable on current systems, the trajectory of processor architecture designs, if there

are no significant changes could cause it to become communication-bound as early as

the year 2015. This prediction suggests the utility of our analysis approach, which



directly relates algorithmic and architectural characteristics, for enabling a new kind

of highlevel algorithm-architecture co-design.

To demonstrate the scientific significance of FMM, we present two applications

namely, direct simulation of blood which is a multi-scale multi-physics problem and

large-scale biomolecular electrostatics. MoBo (Moving Boundaries) is the infrastruc-

ture for the direct numerical simulation of blood. It comprises of two key algorithmic

components of which FMM is one. We were able to simulate blood flow using Stoke-

sian dynamics on 200,000 cores of Jaguar, a peta-flop system and achieve a sustained

performance of 0.7 Petaflop/s. The second application we propose as future work

in this thesis is biomolecular electrostatics where we solve for the electrical potential

using the boundary-integral formulation discretized with boundary element methods

(BEM). The computational kernel in solving the large linear system is dense matrix

vector multiply which we propose can be calculated using our scalable FMM. We

propose to begin with the two dielectric problem where the electrostatic field is cal-

culated using two continuum dielectric medium, the solvent and the molecule. This

is only a first step to solving biologically challenging problems which have more than

two dielectric medium, ion-exclusion layers, and solvent filled cavities.

Finally, given the difficulty in producing high-performance scalable code, produc-

tivity is a key concern. Recently, numerical algorithms are being redesigned to take

advantage of the architectural features of emerging multicore processors. These new

classes of algorithms express fine-grained asynchronous parallelism and hence reduce

the cost of synchronization. We performed the first extensive performance study of a

recently proposed parallel programming model, called Concurrent Collections (CnC).

In CnC, the programmer expresses her computation in terms of application-specific

operations, partially-ordered by semantic scheduling constraints. The CnC model is

well-suited to expressing asynchronous-parallel algorithms, so we evaluate CnC using

iii



two dense linear algebra algorithms in this style for execution on state-of-the-art mul-

ticore systems. Our implementations in CnC was able to match and in some cases

even exceed competing vendor-tuned and domain specific library codes. We combine

these two distinct research efforts by expressing FMM in CnC, our approach tries to

marry performance with productivity that will be critical on future systems. Looking

forward, we would like to extend this to distributed memory machines, specifically

implement FMM in the new distributed CnC, distCnC to express fine-grained paral-

lelism which would require significant effort in alternative models.

iv
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CHAPTER I

INTRODUCTION

1.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem Context and History . . . . . . . . . . . . . . . . . . . 5

1.2.1 Trends in N -body methods . . . . . . . . . . . . . . . . . 6

1.2.2 Case for analytical performance modeling via co-design . . . . . 7

1.2.3 Case for programming models inspired by asynchronous style of

execution . . . . . . . . . . . . . . . . . . . . . . . . . 8

This dissertation presents a top to bottom analysis on designing and implementing

fast algorithms for current and future systems. We present new analysis, algorithmic

techniques, and implementations of the Fast Multipole Method (FMM) for solving N-

body problems. We target the FMM because it is broadly applicable to a variety of

scientific particle simulations used to study electromagnetic, fluid, and gravitational

phenomena, among others. It is also regarded as one of the most important algorithms

in scientific and engineering computing [24,43]. The two main challenges we address

in designing and implementing fast algorithms are,

1. how to engineer fast code, and

2. understand performance and scalability on current and future systems.

We present the first extensive study of single-node performance optimization, tun-

ing, and analysis of the FMM on modern multicore systems. We consider single- and

double-precision with numerous performance enhancements, including low-level tun-

ing, numerical approximation, data structure transformations, OpenMP paralleliza-

tion, and algorithmic tuning. Section 3.3 shows that optimization and parallelization
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can improve double-precision performance by 25× on Intel’s quad-core Nehalem, 9.4×

on AMD’s quad-core Barcelona, and 37.6× on Sun’s Victoria Falls (dual-sockets on

all systems).

However, applying these optimizations by hand, also called hand-tuning is becom-

ing increasingly difficult as architectures change over time. This difficulty along with

the lack of a systematic approach for producing scalable code is the motivation for

trying to sketch out such a process. Also, hand-tuning every single code for every new

architecture requires tremendous skilled manpower. We sketch the process in such

a way that a tool or compiler could automate atleast part of the process alleviating

the burden on the programmer. We decompose this process into three stages. In the

first stage, we treat the program and hardware as a black box, limiting analysis and

tuning to simple modeling and measurement techniques (Section 4.3). In the second

stage, we assume more knowledge of the computation and machine, enabling deeper

inferences and at least a limited set of code transformation techniques (Section 4.4).

In Section 4.5, we describe the final stage where we assume deep knowledge of the

code and machine, and therefore not only arrive at the deepest insights, but also

apply the most aggressive transformations. At each stage, we show by example what

models, insights, hypotheses, and performance-enhancing optimizations—including

aggressive asynchronous scheduling and reordering optimizations for explicit locality

and bandwidth management—might be discovered and applied.

The ultimate goal is to be able to scale particle simulations on current and future

exa- and extreme-scale systems. To that end, we also develop theoretical models for

the different phases of the FMM to understand the absolute limits of performance

that can be achieved on different architectures that exist today and hypothetical ones

that might be built in the future. We present a new algorithmic complexity analysis

of the FMM that considers both computation and communication costs. Not only

does the model try to capture algorithmic parameters of the FMM such as number
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of particles, depth of the tree, accuracy, etc,. but also key architectural features such

as peak processor speed, memory bandwidth, and memory hierarchy design. Such a

performance model is powerful enough to answer critical questions such as,

1. Can the optimal value of the algorithmic tuning parameter(s) be estimated

purely analytically?

2. Assuming future systems will also be heterogeneous, what is the optimal work

partitioning and scheduling strategy? Can we statically before runtime estimate

it?

3. FMM is largely compute-bound today. Given technology trends, will it still be

compute-bound at exascale?

4. Were it possible to design an ideal system for FMM, what might it look like?

Our predictions run counter to what is expected by the community conducting re-

search in N-body methods. The analysis yields the surprising prediction that although

the FMM is largely compute-bound today, and therefore highly scalable on current

systems, the trajectory of processor architecture designs, if there are no significant

changes could cause it to become communication-bound as early as the year 2015

(Section 8.1). This prediction suggests the utility of our analysis approach, which

directly relates algorithmic and architectural characteristics, for enabling a new kind

of highlevel algorithm-architecture co-design.

The remainder of this chapter presents a summary of our contributions so far

(Section 1.1) and a more detailed context to the problem being addressed in this

thesis (Section 1.2).

1.1 Thesis Contributions

The following are the main contributions of this thesis.
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• Algorithm engineering for FMM: We present an extensive study of single-

node performance analysis, optimization, and tuning of a tree-based classi-

cal physics N-body method called the FMM on modern multicore systems.

These optimizations were then incorporated in a hybrid implementation to sup-

port parallelism at all levels, including inter-node distributed memory paral-

lelism (MPI), intra-node shared memory parallelism (OpenMP), data paral-

lelism (SIMD vectorization), and accelerated using GPUs resulting in a highly

scalable code (Chapter 3).

• Systematic approach to tuning: We describe a systematic process of trans-

forming a conventionally parallelized code to a highly tuned one. Our study lays

solid foundation for scaling FMM on future extreme-scale systems. Not only

that, our study also sheds new light on the form of a more general performance

analysis and tuning process that other multicore/manycore tuning practitioners

and automated performance analysis and tuning tools could themselves apply

(Chapter 4).

• New communication analysis: We present the first in-depth models for

compute and memory costs for FMM in Chapter 5. Our analysis refines the

estimates of the constants, normally ignored in traditional asymptotic analyses,

with calibration against our state-of-the-art implementation. The result is an

analytical performance model with three important properties. First, the model

predicts the optimal setting of one of the FMMs tuning parameters, which in

practice had previously required manual experimentation. Secondly, the model

can solve practical performance engineering problems, such as how to schedule

the computation for heterogeneous (e.g., CPU+GPU) systems. Thirdly, since

the analysis includes important high-level architectural parameters, such as last-

level cache capacity, the resulting models can be used to estimate whether the

4



FMM will scale or not on future architectural designs. Our analysis suggests

that we need to re-think the design of future architectures and focus on mini-

mizing communication costs when designing algorithms.

• Practical applications of FMM: One of the target applications is the direct

simulation of blood, which we model as a mixture of a Stokesian fluid (plasma)

and red blood cells (RBCs). We were able to simulate up to 200 million de-

formable RBCs, which improves upon prior state-of-the-art by four orders of

magnitude and the optimized scalable FMM is one of the main components of

this infrastructure (Chapter 7).

• Productivity with performance: We perform the first extensive perfor-

mance study of a novel general-purpose parallel programming model, called

Concurrent Collections (CnC) for HPC applications using two dense linear al-

gebra algorithms (an asynchronous dense Cholesky factorization and a novel

partly-asynchronous dense symmetric eigensolver) on state-of-the-art multicore

systems (Chapter 6). Given a well-tuned sequential BLAS, our implementations

match or exceed competing multithreaded vendor-tuned codes and manually

tuned libraries by up to 2.6×.

1.2 Problem Context and History

N -body methods were identified as one of the original seven dwarfs or motives [15]

and are believed to be important in the next decade. In fact, FMM, the focus of this

thesis made the list for the top 10 algorithms having the greatest influence on the

development of science and engineering in the 20th century [43]. Below, we describe

a brief history of the sequential and parallel algorithms to give the reader an overview

of the research in this area.
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1.2.1 Trends in N-body methods

Sequential algorithms The sub O(N2) algorithm that uses approximations to re-

duce the complexity was independently developed by Appel [13] in 1985 and Barnes

and Hut [18] in 1986. In 1987, Greengard and Rokhlin proposed the first linear

time algorithm that improved upon the Barnes-Hut algorithm and was based on the

theme of multipole expansions and translations [49]. A year later in 1988, the original

authors with Carrier extended the idea to adaptive particle distributions [30].

Anderson in 1992 first introduced the idea of equivalent sources, a different approx-

imation to achieve the same running time as the multipole based FMM [12]. In 2003,

Ying et al.proposed the kernel independent FMM algorithm which is based on Ander-

son’s idea of equivalent sources and replaces the analytical expansions with equivalent

density representations. We discuss this algorithm in detail in Section 2.4.4. There

are also other variations of kernel independent FMM such as the black box FMM [45]

which uses a Chebyshev interpolation scheme.

Parallel algorithms There has been a lot of effort parallelizing tree codes for

both traditional distributed memory clusters and GPU based hybrid systems. Warren

and Salmon in 1992 presented the fastest distributed memory parallel implementation

for the Barnes-Hut algorithm [95]. The key idea in this paper was the use of local

essential trees (LET), which can also be extended to FMM as was later shown by

others [65]. The same authors also introduced the idea of hashed octrees along with

using space filling curves to improve the efficiency of tree codes in 1993 [96]. One of

the highly scalable distributed memory implementations that also handles adaptive

distributions is by Lashuk et al. [65].

In the past few years, there has been several attempts on mapping FMM onto

GPUs and heterogeneous systems. One of the first attempts on the GPU was in 2008

by Gumerov et al. [50]. Several authors have since then presented results on cluster

of GPUs and considered various work partitioning schemes to divide work between
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CPUs and GPUs [53,58,64,90,101].

1.2.2 Case for analytical performance modeling via co-design

Traditional algorithm analysis based on asymptotic complexity has been a key metric

in understanding the efficiency of an algorithm. But, abstract algorithm complexity

analysis does not capture key parameters of an architecture, such as the number

of cores or cache sizes or bandwidth to memory or memory latency. Since we are

ultimately interested in running the computation on some machine, such analysis can

be misleading since it does not capture the parameters of the system.

To give a more concrete example as to why traditional asymptotic complexity

analysis is not sufficient in today’s computing world, consider sorting which is a clas-

sical fundamental problem. Two popular in-memory sorting algorithms are merge

and radix sorts. It is well known that radix sort has a computational complexity of

O(N) as opposed to comparison based sorts such as merge sort which have a lower

bound of Ω(N logN). But, it has been shown that even though radix sort is asymp-

totically more efficient than merge sort, because of its high bandwidth utilization

and inherent difficulty to vectorize due to simultaneous updates to the same memory

location, merge sort delivers higher performance in practice [85]. As a result, ignor-

ing architecture can result in incorrect choice of algorithms and we make a case for

algorithm architecture co-design, a new model for analyzing algorithms [40].

This approach is largely analytical and at a higher-level than cycle accurate perfor-

mance analysis and modeling but that gives us the freedom to tweak the parameters

in the model to make future predictions and inferences given the rapidly changing

hardware market. It is intended to be at a higher level and act as a guide for algorithm

designers and also architects rather than have the fidelity of traditional hardware/code

specific methods involving simulators, benchmarks, traces, etc..

Chapter 5 explains in detail the value we derive from applying such an analysis for
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the FMM. We have chosen time to solution as the metric for optimization through-

out this thesis. Given the growing emphasis on reduction in power and energy, we

acknowledge them as important factors but race to halt is still practically the best

technique today. We hope to factor in these metrics as part of future work.

1.2.3 Case for programming models inspired by asynchronous style of
execution

In high performance computing, focus is not just on attaining high performance but

also on productivity. It is not an easy task for domain scientists and practitioners

to produce high performing implementations across the spectrum of architectures

ranging from multicores and manycores to accelerators and heterogeneous systems.

To that end, we discuss productive performance solutions that maximize programmer

productivity given the fast changing landscape of parallel computing. Specifically,

we sketch an argument motivating the need for asynchronous-parallel programming

models.
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(b) Cilk++ (bulk synchronous)

Figure 1: Scheduling for Cholesky factorization on CnC and Cilk++ (matrix size =
1000)

Figure 1 (left) shows the scheduling timeline for Cholesky factorization of a matrix
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of size 1000 using an asynchronous programming language, CnC. We can see that the

different inner kernels are executing asynchronously and the vertical dotted line which

is the lower bound on execution time reveals that CnC is performing close to its lower

bound.

Instead, if we were to synchronize at the end of every task, we would end up

with a timeline that looks like Figure 1 (right). This is our Cilk++ based recursive

implementation which spends a lot of time idle waiting for slower threads to finish

execution compared to the asynchronous schedule of CnC and ultimately performing

much below its potential.

The above experiment makes a compelling case for asynchronous style of execution

and there has been numerous similar efforts by various groups that encourage this

style of execution demonstrated across various application domains. We give an

overview of few interesting ones here apart from CnC which is explained in detail in

Chapter 6. The underlying idea in all these models is a task-based execution model

and an intelligent runtime that tries to extract parallelism.

• StarSs: It introduces #pragma annotations and relies on a source-to-source

compiler to generate tasks [19,79]. It is the task of the programmer to identity

which tasks should be offloaded to the different computing environments.

• OmpSs: The key idea here is to extend an already existing popular program-

ming language OpenMP with new directives to support asynchronous paral-

lelism [44]. It derives from StarSs and builds on top of it. It works on different

architectures including multicores, GPUs, and hybrid environments.

• StarPU: It is based on integrating a data management library that enforces

a coherent view between heterogeneous memory (e.g.CPU main memory and

GPU memory) and a tasking API [16]. It implements a greedy list scheduling

where tasks are inserted into queues when the last dependency of the task is
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executed.

• QUeuing And Runtime for Kernels (QUARK): QUARK is a dynamic

runtime system that asynchronously schedules tasks on multicore multi-socket

shared memory systems [98]. The main idea is to decipher the data dependencies

between tasks using runtime analysis of data hazards such as Read After Write

(RAW), Write After Read (WAR), and Write After Write (WAW) based on

the data usage. Although its focus has been to support dynamic linear algebra

algorithms, it is more generally applicable to other domains.

• DAGuE: It is a directed acyclic graph (DAG) scheduling engine where the

nodes are sequential tasks and the edges denote the data dependencies [25]. It

consists of a distributed multi-level dynamic scheduler, an asynchronous com-

munication engine, and a engine for detecting data dependencies. The runtime

is responsible for automatically distributing data between various resources ef-

ficiently.

Though we try to argue that programmer productivity is an important metric, it

is hard to quantify this but we believe all the above efforts are tending in the right

direction in programming model/language and runtime designs.
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This chapter provides an overview of popular N-body methods and is intended

to serve as a survey of the key ideas behind these methods. Section 2.1 defines the

problem we are trying to solve. Section 2.2 describes the tree data structure and

Sections 2.3 and 2.4 present two popular tree-based algorithms including analysis of

their computational complexity and correctness.

2.1 Problem Overview

The N-body problem can be defined as the problem of simulating the movement of

points or particles or bodies under the influence of some type of force. Depending

on the type of force, there are numerous applications ranging from astrophysics,

molecular dynamics, fluid dynamics, to computer graphics and machine learning.

Mathematically, given a system of N source particles, with positions given by

{y1, . . . , yN}, and N targets with positions {x1, . . . , xN}, we wish to compute the N

sums,
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Figure 2: A uniform complete quadtree in 2-D with 3 levels.

f(xi) =
N∑
j=1

K(xi, yi) · s(yj), i = 1, . . . , N (1)

where f(x) is the desired potential at target point x; s(y) is the density at source

point y; and K(x, y) is an interaction kernel that specifies “the physics” of the prob-

lem. For instance, the single-layer Laplace kernel, K(x, y) = 1
4π

1
||x−y|| , might model

electrostatic or gravitational interactions.

There are a number of algorithms for computing the potential and it’s derivative

force exerted on the target particles by the source particles. They can be broadly clas-

sified into two categories namely, direct and approximation algorithms. Evaluating

these sums using a direct algorithm appears to require O(N2) operations. However,

there are computationally less expensive algorithms which reduce the complexity to

O(N logN) and even O(N). One such class of approximation algorithms are called

tree-methods, which use a tree data structure to hierarchically decompose the par-

ticles. We will focus on these tree-based algorithms and other N-body methods are

outside the scope of this thesis.

2.2 Data Structure: Quadtrees and Octress

Given the input points and a user-defined parameter q, we construct an oct-tree T

(or quad-tree in 2-D) by starting with a single box representing all the points and
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Figure 3: An adaptive quadtree in 2-D with q = 1.

recursively subdividing each box if it contains more than q points. Each box (octant

in 3-D or quadrant in 2-D) becomes a tree node whose children are its immediate

sub-boxes.

We illustrate with the example of a quadtree since it is easier to visualize in 2-

D, the octree in 3-D is analogous. Figure 2 shows two visualizations of a uniform

quadtree where each node is subdivided into four children. Each level of the tree is

denoted by a different color and the tree is fully balanced. However, in most real

applications, the particles are not uniformly distributed and constructing a balanced

tree in that case would result in storing unnecessary information. Instead, we only

subdivide the boxes that contain more than q particles. This results in a non-uniform

or adaptive quadtree as shown in Figure 3. Adaptive trees are more complex and

hence more difficult to deal with than non-adaptive trees. Therefore, for most of our

analytical discussions, we will assume a non-adaptive tree but we present results for

both types of input distributions.
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r

Figure 4: The potential due to a set of particles enclosed by a box of size d on a
single particle at a distance r can be approximated by the center of mass if the MAC
is satisfied.

2.3 Barnes-Hut Algorithm: O(N logN) method

The Barnes-Hut algorithm published by J. Barnes and P. Hut in 1986 [18] is a tree-

based approximation algorithm which reduces the computational complexity from

O(N2) to O(N logN).

Basic Idea The key idea in developing fast potential calculation is the notion of

approximating the potential due to a set of particles. We say a particle is far away

from a square region as shown in the Figure 4 if the distance r between the particle

and the center of mass of the box denoted by the red dot is larger than some constant

times the side length of the box, d. This ratio between d and r is called the Multipole

Acceptance Criterion (MAC).

θ =
d

r
(2)

In such cases, we can approximate the set of particles by a single point located at

its center of mass with a mass equal to the total mass of all particles. The center of

mass is shown as a red dot in Figure 4. The approximation is more accurate if the

point at which the potential is being evaluated is far away from the box containing

the particles. In other words, smaller θ results in better accuracy.

14



Algorithm At a high-level, we can describe the Barnes-Hut algorithm as follows.

• Step 1: Tree Construction Choose a q value and construct the tree as

described in Section 2.2.

• Step 2: Far-field Construction For all nodes in the tree, compute the center

of mass and total mass of the particles in each node. This is usually done by

traversing the tree bottom-up or post order traversal of the tree, starting with

the leaf nodes and computing the far-field representation of the non-leaf nodes

from its children in constant time.

• Step 3: Evaluation We traverse each node of the tree; if a node is far away

from a target particle then, we compute the potential due to all the particles

in the node by just using its center of mass and total mass. We compare the

computed MAC to a user-defined threshold to decide whether to approximate

or continue to traverse the children of the node if it is a non-leaf. If the node is

a leaf, the potential due to the particles in the node is computed using a direct

evaluation.

Complexity Analysis If the depth of the tree is O(logN), then Step 1 can be

done in O(N logN) time. Step 2 performs a post order traversal of the tree and has

a cost of O(N logN) since every particle contributes to the calculation of the center

of mass and total mass. In Step 3, for each particle, we traverse the tree to compute

the potential on it. The total cost of this step if O(N logN). The dominant term is

O(N logN) and is the running time of the Barnes-Hut algorithm.

2.4 FMM: O(N) method

The Fast Multipole Method was published by L. Greengard and V. Rokhlin in 1987 [49]

is another tree-based approximation algorithm which shares the tree structure with
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Barnes-Hut but FMM instead computes approximations of all of these sums in opti-

mal O(N) time with a guaranteed user-specified accuracy, where the desired accuracy

changes the complexity constant [49].

This section provides an overview of the Fast Multipole Method (FMM), sum-

marizing the key components that are relevant to this thesis. For more in-depth

algorithmic details, see Greengard, et al. [49, 100].

The FMM is based on two key ideas: (i) a tree representation for organizing the

points spatially; and (ii) fast approximate evaluation, in which we compute summaries

at each node using a constant number of tree traversals with constant work per node.

Before diving into the algorithm, we will introduce some key ideas used in FMM.

2.4.1 Key Ideas

In this subsection, we discuss three key ideas employed for reducing the complexity

to O(N). We discuss the two-dimensional case since it is simpler to understand for

the Laplace equation in R2.

Multipole Expansion The first idea is to use multipole expansions to reduce

the number of calculations. The multipole expansion allows us to approximate the

potential due to the particles in a node of a quadtree or octree if it is far away from

any other node or particle. This is similar in spirit to Barnes-Hut where we used

the center of mass and total mass to approximate the influence of the particles in a

node. We will define far away for FMM more rigorously later on but this definition

is sufficient for now to understand the basic intuition behind this method.

Theorem 2.4.1. Multipole Expansion

Suppose that m charges of strengths qi, i = 1, ...,m are located at points zi, i =

1, ...,m, with |zi| < r. Then, for any z with |z| < r, the potential φ(z) induced by the

charges is given by
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φ(z) = Q log(z) +
∞∑
k=1

ak
zk
, (3)

where

Q =
m∑
i=1

qi and ak =
m∑
i=1

−qizki
k

. (4)

Local Expansion Multipole expansion allows us to compute the potential far

away from a node, due to the particles inside the node. Local expansion on the other

hand, lets us compute the potential inside the node due to the particles far away

from it.

Translations In order to understand the algorithm, we describe three transforma-

tions used on the expansions described above which is key to explaining the method.

1. Multipole to Multipole Translation (M2M): The M2M translation trans-

forms the mutlipole expansion of a node’s children to its own multipole expan-

sion. It is mathematically defined in Theorem 2.4.2.

Theorem 2.4.2. Multipole to Multipole Translation

Suppose that

φ(z) = a0 log(z − z0) +
∞∑
k=1

ak
(z − z0)k

(5)

is a multipole exapansion of a potential due to a set of m charges of strengths

q1, q2, ..., qm, all of which are located inside the circle D of radius R with center

at z0. Then for z outside the circle D1 of radius (R + |z0|) and centered at the

origin,

φ(z) = a0 log(z) +
∞∑
l=1

bl
zl
, (6)

where
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bl = −a0z
l
0

l
+

l∑
k=1

akz
l−k
0

(
l − 1

k − 1

)
, (7)

with ( lk ) the binomial coefficients.

2. Multipole to Local Translation (M2L): The M2L translation transforms

the multipole expansion of a node into the local expansion of a node in its

interaction list.

Theorem 2.4.3. Multipole to Local Translation

Suppose that m charges of strengths q1, q2, ..., qm are located inside a circle D1

with radius R and center at z0, and that |z0| > (c + 1)R with c > 1. Then the

corresponding multipole expansion Equation (5) converges inside the circle D2

of radius R centered about the origin. Inside D2,

φ(z) =
∞∑
l=0

bl.z
l, (8)

where

b0 = a0 log(−z0) +
∞∑
k=1

ak
zk0

(−1)k, (9)

and

bl = − a0

l.zl0
+

1

zl0

∞∑
k=1

ak
zk0

(
l + k − 1

k − 1

)
(−1)k, for l ≥ 1. (10)

3. Local to Local Translation (L2L): The L2L translation transforms the local

expansion of a node’s parent to its own local expansion.

Theorem 2.4.4. Local to Local Translation
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Figure 5: U and V lists of a tree node B for a uniform quadtree in 2-D.

Translation of a local expansion centered about z0 into an expansion centered

about the origin,

n∑
k=0

ak(z − z0)k =
n∑
l=0

bl.z
l, (11)

where

bl =
n∑
k=1

ak

(
k

l

)
(−z0)k−l. (12)

2.4.2 Non-adaptive Algorithm

Algorithm We can describe the FMM algorithm for as follows.

• Step 1: Tree Construction Choose a q value and construct the tree as

described in Section 2.2. During construction, we associate with each node two

neighbor lists namely U and V . Each list has bounded constant length and
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Figure 6: M2M translation. To compute the multipole expansion of the parent,
translate the multipole expansion of the four children in 2D and accumulate them to
get the multipole expansion of the parent.

contains (logical) pointers to a subset of other tree nodes. For example, every

leaf box B ∈ leaves(T ) has a U list, U(B), which is the list of all leaves adjacent

to B. Figure 5 shows a quad-tree example, where neighborhood list nodes for

B are labeled accordingly.

Tree construction has O(N logN) complexity, and so the O(N) optimality refers

to the evaluation phase (below). However, tree construction is typically a small

fraction of the total time; moreover, many applications build the tree periodi-

cally, thereby enabling amortization of this cost over several evaluations.

• Step 2: Far-field Construction (Upward Step) For each leaf node in the

tree, construct the multipole expansion due to all the particles inside the node.

For all the non-leaf nodes at each level in the tree, construct the multipole

expansion by combining the expansions of its children as shown in Figure 6.

This is usually done by traversing the tree bottom-up or post order traversal of

the tree, starting with the leaf nodes and computing the multipole expansions

of the non-leaf nodes from its children in constant time.

• Step 3: Direct Evaluation (U list step) For each leaf B in the tree, we
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P

Figure 7: M2L translation. To compute the local expansion of the parent node P ,
we translate the multipole expansion of the nodes in the interaction list of P denoted
by orange shaded region and accumulate them to get the local expansion of P .

perform a direct evaluation between B and the leaves that are adjacent to it

which are its nearest neighbors. These are the blue nodes in Figure 5 and are

denoted by the letter U for a given leaf node B.

• Step 4: Far-field to Near-field Conversion (V list step) For each node B,

we want to compute the potential inside the node due to all the particles. Step

3 computes the potential due to all the adjacent nodes. Hence, we are left with

all the other nodes (orange and gray nodes in Figure 5). For each node B, we

begin by converting the multipole expansion of all the boxes in its interaction

list into local expansions about the center of the node B. For a given box B,

the nodes in its interaction list are denoted by orange color and the letter V in

Figure 5. This leaves the particles in the gray shaded boxes but this would fall

in the interaction list of B’s parent as shown in Figure 7.

• Step 5: Near-field Evaluation (Downward Step) This phase is analogous
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Figure 8: L2L translation. To compute the local expansion of the four children in
2D, translate the local expansion of the parent to the child nodes.

to the upward phase. We combine the partial near-field representations com-

puted in Step 4 to form the complete near-field representation and complete the

evaluation. This is done by traversing the tree top-down or pre order traversal

of the tree, where we compute parents before children as shown in Figure 8. Let

us denote the parent of a node B by the letter P . The near field representation

of P includes the contribution of all the particles in the gray shaded region.

Local to local translation converts the expansion from the parent P to the child

node B. Combining this with the local expansion computed in Step 4 gives

us the complete near-field representation. Local expansion at the finest level is

now available and can be used to generate the potential due to all the parti-

cles other than near neighbors. The local expansions at the particle positions

are evaluated and the result is added to the potential due to near neighbors

computed using direct evaluation in Step 3 for every particle.
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Figure 9: U, V, W, and X lists of a tree node B for an adaptive quadtree in 2-D.

2.4.3 Adaptive Algorithm

When the input distribution is not uniformly distributed, we switch from an uniform

tree structure to an adaptive data structure. It is possible to still construct an uniform

tree even if the input distribution is not uniform, but it will result in a number of

empty nodes resulting in additional storage which is not optimal. We will now detail

how to deal with adaptivity in FMM.

Tree Construction

Recall from the tree construction for non-adaptive distributions, that we associate

with each node one or more neighbor lists. In addition to U and V lists, in the adaptive

case, we introduce two additional lists canonically knows as W and X. Figure 9 shows

a quad-tree example, where neighborhood list nodes for B are labeled accordingly.

For example, every leaf box B ∈ leaves(T ) has a W list, W (B), which is the list

of all descendants of B’s neighbors whose parents are adjacent to B, but they are

not adjacent to B themselves. The X list, X(B) consists of all nodes A such that

B ∈ W (A).

23



Evaluation To account for adaptivity, we add two stages to the non-adaptive

algorithm to make it generic.

• Step 3a: W list step For each leaf B in the tree, we evaluate the multipole

expansion of all the boxes in W (B) at every particle position in B. The result

is added to the potential computed in Step 5 of the non-adaptive algorithm.

W (B) are the green nodes in Figure 9 and are denoted by the letter W for a

given leaf node B.

• Step 4a: X list step For each node B, construct the local expansion due to all

the particles in X(B) and add the resulting expansion to the partial near-field

representation computed in Step 5. X(B) are the red nodes in Figure 9 and are

denoted by the letter X for a given leaf node B.

2.4.4 Kernel-Independent FMM

The kernel independent variant of the FMM, or KIFMM [100] has the same structure

as the classical FMM [49]. Its main advantage is that it avoids the mathematically

challenging analytic expansion of the kernel, instead requiring only the ability to

evaluate the kernel.

The key idea is to replace analytical expansions and translations of the kernel

with equivalent density representations. Before describing the representations and

translations in the kernel independent version, we will define some notation in Table 1.

Equivalent density and check potential In KIFMM, the equivalent operation

to computing the multipole expansion is to compute the upward equivalent density

(the potential from the source densities φi is represented as the potential from the

density distribution φB,u, also called the upward equivalent density at locations yB,u,

the upward equivalent surface of a box B). In other words, it involves the solution of

an integral equation, the potential induced by the source densities and the upward
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Table 1: Notation used in KIFMM

B node in the tree
q maximum particles per source or target leaf node
N number of source or target particles
IBs set of indices of source particles in B
IBt set of indices of target particles in B
NB near range of B in Rd

FB far range of B in Rd

yB,u upward equivalent surface of B
φB,u upward equivalent density of B
xB,u upward check surface of B
qB,u upward check potential of B
yB,d downward equivalent surface of B
φB,d downward equivalent density of B
xB,d downward check surface of B
qB,d downward check potential of B

equivalent density satisfy a second-order linear elliptic PDE. The solution of an exte-

rior Dirichlet problem for this PDE is unique and the two potentials are equal in the

far range of B if they coincide at the boundary or the intermediate surface between

the far range and the upward equivalent surface. This intermediate surface is called

the upward check surface and denoted by xB,u and the potential computed at this

surface is called the upward check potential, qB,u as shown in Figure 10.

∫
yB,u

G(x, y)φB,u dy =
∑
i∈IBs

G(x, yi)φi = qB,u for any x ∈ xB,u. (13)

Likewise, we represent the potential inside B due to the sources in the far range as

the potential induced by the density distribution, φB,d, called the downward equivalent

density at locations yB,d called the downward equivalent surface in NB as shown in

Figure 10. The solution of the interior Dirichlet problem for the given PDE is also

unique and we only need to match the potentials on the downward check surface, xB,d

and the matched potential is called the downward check potential, qB,d.
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Figure 10: The cross section of the equivalent and check surfaces in 3D. Left: Com-
putation of upward equivalent density. Right: Computation of downward equivalent
density. The solid red square denotes the equivalent surface and the blue dotted
line represents the check surface. On both surfaces, discretization points are equally
spaced and marked with • and ◦ respectively. The source densities are marked with
+. The computation of the equivalent density is shown by the arrows. The gray ar-
rows denotes the evaluation of the check potential using the source particles and the
green arrows denote the inversion of the integral equation to compute the equivalent
density.

∫
yB,d

G(x, y)φB,d dy =
∑
i∈IFBs

G(x, yi)φi = qB,d. (14)

In KIFMM, we use trapezoidal rule to discretize the integral equations (trapezoidal

rule is known to have super-algebraic convergence for smooth functions) on spheres

in 2D. In 3D, we discretize on the surface of a cube and the p quadrature points

are equally spaced on the six faces. The cross section of the cube in 3D is shown in

Figure 10. The choice of the value of p determines the accuracy.

M2M translation The upward equivalent density of the non-leaf nodes are com-

puted by traversing the tree bottom-up and translating the equivalent density from

the child node A to its parent node B. We solve the following equation for φB,u and

the process is illustrated in Figure 11.

∫
yB,u

G(x, y)φB,u dy =

∫
yA,u

G(x, y)φA,u dy for all x ∈ xB,u. (15)
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Figure 11: Translations in 3D. Left: M2M translation. Middle: M2L translation.
Right: L2L translation. The solid red square denotes the equivalent surface and the
blue dotted line represents the check surface. On both surfaces, discretization points
are equally spaced and marked with • and ◦ respectively.

M2L translation M2L translates the upward equivalent density into downward

equivalent density similar to the classical algorithm. Suppose a node A is in the far

range of B, FB, we solve the following equation for φB,u.

∫
yB,d

G(x, y)φB,d dy =

∫
yA,u

G(x, y)φA,u dy for all x ∈ xB,d. (16)

L2L translation L2L translation are computed by traversing the tree top-down

and translating the downward equivalent density of a parent A to compute that of its

child B. The downward check potential of the child box B, φB,d satisfies the following

equation.

∫
yB,d

G(x, y)φB,d dy =

∫
yA,d

G(x, y)φA,d dy for all x ∈ xB,d. (17)

2.4.5 Complexity Analysis

We summarize the asymptotic complexity and main algorithmic characteristics of

each phase of KIFMM in Table 2. Even though KIFMM has the same overall linear

complexity as the classical algorithm, it does more work which is the trade-off for

using kernel evaluations as opposed to analytical expansions of the kernel. For the
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Table 2: Asymptotic complexity and characteristics of the computational phases in
KIFMM. N is the number of source particles, the number of boxes is M ∼ N/q and
p denotes the number of expansion coefficients. The user chooses p to trade-off time
and accuracy, and may tune q to minimize time. †Size is determined by the chosen
accuracy, generally smaller than q.

Phase Computational Complexity Algorithmic Characteristics

Upward O(Np + Mp2) postorder tree traversal, small† matvecs

U-list O(27Nq) direct computation as in Equation 1
(matvecs on the order of q)

V-list O(Mp3/2logp + 189Mp3/2) consists of small FFTs, pointwise vector
multiplication (convolution)

X-list
0 uniform distribution

matvecs
O(Nq) non-uniform distribution

W-list
0 uniform distribution

matvecs
O(Nq) non-uniform distribution

Downward O(Np + Mp2) preorder tree traversal, small† matvecs

rest of this thesis, we will focus on the kernel independent FMM which has the same

stages as the classical algorithm described above but at the same time, allows one to

leverage our techniques and apply them to new kernels and problems.
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This chapter presents the first extensive study of single-node performance opti-

mization, tuning, and analysis of the Fast Multipole Method (FMM) [49] on state-of-

the-art multicore processor systems. This chapter focuses on single-node performance

since it is a critical building-block in scalable multi-node distributed memory codes

and, moreover, is less well-understood.

Specifically, we consider implementations of the kernel-independent FMM (KIFMM)

algorithm [100], which simplifies the integration of FMM methods in practical appli-

cations (Chapter 2). The KIFMM itself is a complex computation, consisting of six

distinct phases, all of which we parallelize and tune for leading multicore platforms

(Section 3.3). We develop both single- and double-precision implementations, and

consider numerous performance enhancements, including: low-level instruction selec-

tion, SIMD vectorization and scheduling, numerical approximation, data structure

transformations, OpenMP-based parallelization, and tuning of algorithmic parame-

ters. Our implementations are analyzed on a diverse collection of dual-socket mul-

ticore systems, including those based on the Intel Nehalem, AMD Barcelona, Sun

Victoria Falls, and NVIDIA GPU processors. (Section 3.4).

3.1 Background and Related Work

For parallel FMM, most of the recent work of which we are aware focuses on dis-

tributed memory codes with GPU-based acceleration [7,50,65,82]. Indeed, the present

study builds on our own state-of-the-art parallel 3-D KIFMM implementation, which

uses MPI+CUDA [65]. However, these works have not yet considered conventional

multicore acceleration and tuning. In Section 3.4, we compare our multicore opti-

mizations to this prior use of GPU acceleration, with the perhaps surprising finding
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Table 3: Architectural Parameters. All power numbers, save the GPU, we obtained
using a digital power meter. ∗reciprocal square-root approximate. †shared among
cores on a socket. ‡max server power (of which the 2 active CPUs consume 160W)
plus max power for two GPUs.

Intel X5550 AMD 2356 Sun T5140 NVIDIA T10P
Architecture (Nehalem) (Barcelona) (Victoria Falls) (S1070)

Frequency (GHz) 2.66 GHz 2.30 GHz 1.166 GHz 1.44 GHz
Sockets 2 2 2 2 (+2 CPUs)

Cores/Socket 4 4 8 30 (GPU)
Threads/Core 2 1 8 8 (GPU)

SIMD (DP, SP) 2-way 4-way 2-way 4-way 1 1 1 8-way
GFlop/s (DP, SP) 85.33 170.6 73.60 146.2 18.66 18.66 N/A 2073.6
rsqrt/s∗ (DP, SP) 0.853 42.66 0.897 73.60 2.26 — N/A 172.8

L1/L2/L3 cache 32/256/8192† KB 64/512/2048† KB 8/4096† KB —
local store — — — 16 KB

DRAM Bandwidth 51.2 GB/s 21.33 GB/s 64.0 GB/s 204 GB/s

Power 375W 350W 610W 325W+400W‡

Compiler icc 10.1 icc 10.1 cc 5.9 nvcc 2.2

that a well-tuned multicore implementation can match a GPU code. Coulaud, et al.,

propose Pthreads- and multithreaded BLAS-based multicore parallelization within

node [37]. However, we use a larger set of optimizations and provide cross-platform

performance and power analysis.

There are numerous non-GPU studies of single-core distributed memory FMM

implementations [63, 76] (see also references in Ying, et al. [99]), most based on the

classical tree-based N-body framework of Warren and Salmon [96], including our own

prior KIFMM work [65,99]. Researchers have considered a variety of data structures

with attractive communication properties, again in the distributed context [54]. To

our knowledge, the present study is the first to consider extensive multicore-centric

optimizations, data structures, and cross-platform analysis.

For directO(N2) methods, tuning, and special-purpose hardware (e.g. MDGRAPE),

see the references in related papers [14,75].
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3.2 Experimental Setup

We explore FMM performance as we vary architecture, floating-point precision, and

initial particle distribution. To facilitate comparisons to prior work, we select a

commonly used kernel K (Laplace kernel in Chapter 2). The desired accuracy is

fixed to a typical minimum setting that is also sensible for single-precision (yielding

4–7 decimal digits of accuracy). Moreover, because tuning can dramatically change

the requisite number of floating-point operations, we define and defend our alternate

performance metrics. These aspects are discussed in detail below.

3.2.1 Architectures

This section summarizes the key differences, as they pertain to the FMM, among

the three dual-socket multicore SMPs used in this study: Intel’s quad-core Xeon

(Nehalem), AMD’s quad-core Opteron (Barcelona), and Sun’s chip-multithreaded,

eight-core UltraSparc T2+ (Victoria Falls). Our final analysis references our prior

GPU-only accelerated results [65]. The key parameters of these systems appear in

Table 5.

Basic microarchitectural approach:

Nehalem and Barcelona are x86, superscalar, out-of-order architectures with large

per-thread caches and hardware prefetchers. Victoria Falls, by contrast, employs fine-

grained chip multithreading (CMT) and smaller per-thread caches. Consequently,

Victoria Falls requires the programmer to express roughly an order of magnitude

more parallelism than the x86 systems in order to achieve peak performance or peak

bandwidth. Luckily, there is ample fine-grained thread-level parallelism in the FMM.

Computational peak:

The two x86-based systems have similar peak floating-point performance, but 4×

higher than Victoria Falls partly due to the SIMD units on x86. SIMD enables up

to to 4 flops (multiply and add) per cycle per core in double-precision (DP) and 8
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in single-precision (SP). Because the FMM has high computational intensity in at

least one of its major phases (U-list), we may expect superior performance on the x86

systems compared to Victoria Falls.

Unfortunately, many kernels K(x, y) also require square root and divide oper-

ations, which on all three systems are not pipelined and therefore are extremely

slow. For example, on Nehalem, double-precision divide and square root run at

0.266 GFlop/s (5% of peak multiply/add performance) and 0.177 GFlop/s (3%),

respectively. To address this deficiency, both x86 systems (but not Victoria Falls)

have a low latency and pipelined single-precision approximate reciprocal square-root

operation ( 1√
x
) that we can exploit to accelerate double-precision computations [75].

Memory systems:

Nehalem has a much larger L3 cache and much higher peak DRAM bandwidth.

This should enable better performance on kernels with large working sets. However,

Nehalem also has smaller L1 and L2 caches, yielding a per-thread cache footprint

that is 1
4

that of Barcelona, suggesting performance will be similar for computations

with small working sets and high computational intensity. The FMM phases exhibit

a mix of input-dependent behaviors, and so the ultimate effects are not entirely clear

a priori.

Comparisons to GPU:

Our prior work applied GPU acceleration to KIFMM on the NCSA Lincoln Clus-

ter [65], where each node is a dual-socket × quad-core Xeon 5410 (Harpertown) CPU

server paired with two NVIDIA T10P GPUs. We use the CPUs only for control, and

run all phases (except tree construction) on the GPUs. That is, there is one MPI pro-

cess on each socket, and each process is assigned to one GPU; processes communicate

via message passing and to their respective GPUs via PCIe. For our energy com-

parisons, we bound power using two configurations: aggregate peak GPU power plus

zero CPU power, and aggregate peak GPU power plus the peak CPU power. With
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12× the compute capacity and over 5× the bandwidth, one would näıvely expect the

GPU implementation to considerably outperform all other platforms.

3.2.2 Kernel, Precision, and Accuracy

In this section, we describe the interaction kernel, precision, and desired accuracy,

and their implications for implementation and optimization.

Kernel: Following prior work, we use the single-layer Laplacian kernel (Chapter 2)

owing to its widely-recognized importance [100].

Precision: We consider both single and double-precision in our study.

Single-precision is an interesting case for a variety of reasons. First, an application

may have sufficiently low accuracy requirements, due to uncertainty in the input

data or slow time-varying behavior. In this case, using single-precision can yield

significant storage and performance benefits. Next, on current x86 architectures,

SIMD instructions are 2-wide in double precision and 4-wide in single. However,

forthcoming x86 Advanced Vector Extensions (AVX) will double these widths. As

such, using single precision SIMD on today’s Nehalem is a proxy for double precision

performance on tomorrow’s Sandy Bridge. Finally, current architectures provide fast

reciprocal square-root methods in single-precision, but not double. By exploring the

benefits in single, we may draw conclusions as to potential benefit future architectures

may realize by implementing equivalent support in double.

Accuracy: One of the inputs to FMM is numerical accuracy desired in the final

outcome, expressed as the desired “size” of the multipole expansion. In our experi-

ments, we choose the desired accuracy to deliver the equivalent of 6 decimal digits in

double-precision and 4 digits in single. We verify the delivered accuracy of our all of

our näıve, optimized, parallel, and tuned implementations.
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Figure 12: Distribution of particles inside a unit cube. Left: uniform random distri-
bution. Right: ellipsoidal distribution with an aspect ratio of 1:1:4.

3.2.3 Particle Distributions

We examine two different particle distributions namely, a spatially uniform and a

spatially non-uniform (elliptical or ellipsoidal) distribution as shown in Figure 12.

The uniform case is analyzed extensively in prior work; the non-uniform case is where

we expect tree-based methods to deliver performance and accuracy advantages over

other numerical paradigms (e.g., particle-mesh methods). In both cases, our test

problems use 4 million source particles plus an additional 4 million target particles.

Uniform: In this case, we distribute points uniformly at random within the unit

cube. In 3D, for boxes not on the boundary, the U-list (neighbor list) contains 27

boxes and the V-list (interaction list) contains 189 boxes. The X- and W-lists are

empty since the neighbors of a box are adjacent boxes in the same level. Thus, the

time spent in the various list computations will differ from the non-uniform case and

tuning will favor a different value for q, the maximum points per box.

Elliptical: In this case, particles are angularly-uniformly (in spherical coordi-

nates) distributed on the surface of an ellipsoid with an aspect ratio 1:1:4. For an
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uniform distribution, a regular octree is constructed. However, the elliptical case re-

quires an adaptively refined octree. As such, the depth of the computation tree could

be quite large, resulting in high tree construction times as shown in Figure 16.

3.2.4 Performance Metrics

Since our optimizations and tuning of q can dramatically change the total number

of floating-point operations, we use time-to-solution (in seconds) as our primary per-

formance metric rather than GFlop/s In our final comparison, we present relative

performance (evaluations per second), where higher numbers are better.

This choice has ramifications when assessing scalability. In particular, rather

than examining GFlop/s/core or GFlop/s/thread to assess per-core (or per-thread)

performance, we report thread-seconds: that is, the product of execution time by

the number of threads. When it comes to energy efficiency, we present the ratio

relative to the optimized and parallelized Nehalem energy efficiency (evaluations per

Joule).

3.3 Optimizations

We applied numerous optimizations to the various computational phases (Section 2).

Beyond optimizations traditionally subsumed by compilers, we apply numerical ap-

proximations, data structure changes, and tuning of algorithmic parameters. Table 4

summarizes our optimizations and their applicability to the FMM phases and our

architectures. Note that not all optimizations apply to all phases.

Figure 13 presents the cumulative benefit as each optimization is successively

applied to the serial reference KIFMM implementation [100]. We will refer to this

figure repeatedly as we describe each optimization. If an optimization has associated

tuning parameters (e.g.unrolling depth), we tune it empirically.
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Figure 13: Speedup over the double-precision reference code. Left: Uniform dis-
tribution. Right: Elliptical distribution. Note, W- and X- lists are empty for the
uniform case. SIMD, Newton-Raphson, and data structure transformations were not
implemented on Victoria Falls.
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Table 4: FMM optimizations attempted in our study for Nehalem and Barcelona
(x86) or Victoria Falls (VF). ∗Structures of arrays (SOA) layout. 1double-precision
only. A “X” denotes all architectures, all precisions.

T
re

e

U
p

U
-l

is
t

V
-l

is
t

W
-l

is
t

X
-l

is
t

D
ow

n

SIMDization — x86 x86 — x86 x86 x86
Newton-Raphson N/A x861 x861 N/A x861 x861 x861

SOA∗ layout x86 x86 x86 x86 x86 x86 x86
Matrix-free N/A X X X X X X

FFTW N/A N/A N/A X N/A N/A N/A

OpenMP — X X X X X X
Tuning for best q X X X X X X X

3.3.1 SIMDization

We found it necessary to apply SIMD vectorization manually, as the compiler was

unable to do so. All Laplacian kernel evaluations and point-wise matrix multiplication

(in the V-list) are implemented using SSE intrinsics; specifically, in double-precision,

we use SSE instructions like addpd, mulpd, subpd, divpd, and sqrtpd. Note that the

Laplacian kernel performs 10 flops (counting each operation as 1 flop) per pairwise

interaction, and includes both a square-root and divide.

In single-precision on x86, there is a fast (pipelined) approximate reciprocal square-

root instruction: rsqrtps. As such, with sufficient instruction- and data-level paral-

lelism, we may replace the traditional scalar fsqrt/fdiv combination with not simply

a sqrtps/divps combination, but entirely with one rsqrtps. Doing so enables four

reciprocal square-root operations per cycle without compromising our particular ac-

curacy setting.

Figure 13 shows the speedup from SIMDization. The top three figures in Figure 13

use an uniform particle distribution and the bottom three use an elliptical distribu-

tion. SIMD nearly doubles Nehalem performance for all kernels except V-list, where

FFTW (see Section 3.3.5) is already SIMDized. The benefit on Barcelona was much
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smaller (typically less than 50%), which we will investigate in future work. As there

are no double precision SIMD instructions in SPARC/Victoria Falls, SIMD related

optimizations are not applicable.

3.3.2 Fast Reciprocal Square Root

A conventional double-precision SIMDized code would perform the reciprocal square-

root operation using the intrinsics sqrtpd and divpd as above. Unfortunately, these

instructions have long latencies (greater than 20 cycles) and cannot be pipelined,

thus limiting performance. As we have abundant instruction-level parallelism, we can

exploit x86’s fast single-precision reciprocal square-root instruction to accelerate the

double-precision computations [75]. That is, we replace the sqrtpd/divpd combina-

tion with the triplet, cvtpd2ps (convert double to single)/rsqrtps/cvtps2pd (single

to double). To attain the desired accuracy, we apply an additional Newton-Raphson

refinement iteration. This approach requires more floating-point instructions, but

they are low latency and can be pipelined.

Figure 13 shows that the Newton-Rapshon approach improves Nehalem perfor-

mance by roughly 100% over SIMD. Since there are relatively few kernel evaluations in

the V-list, we don’t see an appreciable benefit. Surprisingly, the benefit on Barcelona

is relatively modest; the cause is still under investigation.

3.3.3 Structure-of-Arrays Layout

Our reference implementation uses an array-of-structures (AOS) data structure where

all components of a point are stored contiguously in memory (e.g. x1, y1, z1, x2, y2, z2,

..., xn, yn, zn). This layout is not SIMD-friendly as it requires a reduction across every

point and unrolling the inner loop twice (or 4 times in single-precision).

Instead, we explore using the structure-of-arrays (SOA) or structure splitting lay-

out [106] in which the components are stored in separate arrays. This transformation

simplifies SIMDization since we can load two (or four) components into separate
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SIMD registers using a single instruction.

Changing the data layout further improved the overall U-list performance on Ne-

halem up to 300% speedup over the reference. The transformation does not affect

the V-list phase due to its relatively low computational intensity. Moreover, the data

layout change substantially improved Barcelona performance on most phases.

Unfortunately, the data layout change increased tree construction time due to lack

of spatial locality. This tradeoff (dramatically reduced computational phase time for

slightly increased tree construction time) is worthwhile if tree construction time is

small compared to the total evaluation execution time.

3.3.4 Matrix-free calculations

To use tuned vendor BLAS routines, our reference code explicitly constructs matrices

to perform matrix-vector multiplies (matvecs), as done by others [37]. However, we

can apply what is essentially interprocedural loop fusion to eliminate this matrix,

instead constructing its entries on-the-fly and thereby reducing the cache working set

and memory traffic.

For example, recall that the U-list performs a direct evaluation like Equation 1,

which is a matvec, between two leaf boxes. Rather than explicitly constructing the

kernel matrix K and performing the matvec, we can fuse the two steps and never

store this matrix, reducing the memory traffic from O(q2) to O(q), if the maximum

points per box is q. The idea applies to the Up(leaf), W-list, X-list, and Down(leaf)

phases as well; the matrices arise in a different way, but the principle is the same.

As seen in Figure 13, this technique improves Nehalem performance by an addi-

tional 25%, and often improved Barcelona and Victoria Falls performance by better

than 40%. Cumulatively including this optimization (aside from V-list) improved Ne-

halem performance by more than 400%, Barcelona by more than 150%, and Victoria

Falls by 40%.
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3.3.5 FFTW

In our KIFMM implementation, the V-list phase consists of (i) small forward and

inverse FFTs, once per source/target box combination; and (ii) pointwise multiplica-

tion I times for each target box, where I is the number of source boxes in said target

box’s V-list.

Local FFTs are performed using FFTW [47]. Typically, one executes an FFTW

plan for the array with which the plan was created using the function fftw execute.

As the sizes and strides of the FFTs in V-list are not only quite small but are also

identical, we may create a single plan and reuse it for multiple FFTs, using the

fftw execute dft r2c function. We ensure alignment by creating the plan with the

FFTW UNALIGNED flag coupled with an aligned malloc().

FFTW only benefits V-list computations. Nevertheless, on both x86 machines,

FFTW substantially improved V-list performance for elliptical distributions. The

benefit on uniform distributions was less dramatic since the relative time spent in the

V-list tends to be smaller. Unfortunately, Victoria Falls saw little benefit from the

plan reuse within FFTW; this will be addressed in future work.

3.3.6 Tree Construction

There are numerous studies of parallel tree construction [7, 54, 89]. In this paper,

we focus on accelerating the evaluation phases of FMM for two main reasons. First,

tree construction initially constituted a small fraction of execution time. Second,

in many real simulation contexts, particle dynamics may be sufficiently slow that

tree reconstruction can be amortized. Future work will involve parallelization of tree

construction keeping in mind both uniform and non-uniform distributions.

3.3.7 Parallelization and Tuning

After applying serial optimization, we parallelize all phases via OpenMP. There are

multiple levels of concurrency during evaluation: across phases (e.g., the upward and
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U-list phases can be executed independently), within a phase (e.g., each leaf box

can be evaluated independently during the U-list phase), and within the per-octant

computation (e.g., vectorizing each direct evaluation). For the Upward and Downward

phases, which both involve tree traversals, there is a obvious dependency between a

parent and its child boxes. However, the children themselves are independent and

can be computed concurrently with the amount of work per level increasing toward

the leaves.

We apply inter-box parallelization for all phases except Upward and Downward.

That is, we assign a chunk of leaf boxes to each thread and exploit parallelism within

each phase. For Upward and Downward which has dependencies across the levels of

the tree, we exploit the concurrency at each level. By convention, we exploit multiple

sockets, then multiple cores, and finally threads within a core.

Algorithmically, the FMM is parameterized by the maximum number of particles

per box, q. For instance, in the U list phase, we traverse all leaf nodes, where for each

leaf node B ∈ leaves(T ) we perform a direct evaluation between B and each of the

nodes B′ ∈ U(B). For each leaf B, this direct evaluation operates on O(q) points and

has a flop cost of O(q2) for each box. By contrast, the V-list operates on O(q) points

and performs O(q log q) flops for each box, and so has lower computational intensity.

Generally, we expect the cost of the U-list evaluation phase to dominate other phases

when q is sufficiently large.

As expected, when q grows, the U-list phase quickly increases in cost even as other

phases become cheaper as the tree height shrinks; this dependence is non-trivial to

predict, particularly for highly non-uniform distributions. We exhaustively tune q for

each implementation on each architecture, as discussed in Section 3.4. Auto-tuning

q will be the subject of our future work.
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3.4 Performance Analysis

The benefits of optimization, threading, and tuning are substantial. When combined,

these methods delivered speedups of 25×, 9.4×, and 37.6× for Nehalem, Barcelona,

and Victoria Falls, respectively, in double-precision for the uniform distribution; and

16×, 8×, and 24×, respectively, for the elliptical case. In this section we first tune our

parallel implementation for the FMM’s key algorithmic parameter, q, the maximum

particles per box. We then analyze the scalability for each architecture. Finally, we

compare the performance and energy efficiency among architectures.

3.4.1 Tuning particles per box

Figure 14(a) presents the FMM execution time as a function of optimization, paral-

lelization, and particles per box q on Nehalem with an elliptical particle distribution.

Although we performed this tuning for all architectures, particle distributions, and

precisions, we only present Nehalem data due to space limitations.

The optimal setting of q varies with the level of optimization, with higher levels of

optimization enabling larger values of q. Since we did not parallelize tree construction,

we consider just the evaluation time in Figure 14(b). Thus, one should only tune q

(or other parameters affected by parallelization) after all other optimizations have

been applied and tuned.

Figure 14(c) decomposes evaluation time by phase. The Upward traversal, Down-

ward traversal, and V-list execution times decrease quickly with increasing q. How-

ever, execution time for the other lists, especially U-list, grow with increasing q.

Observe a crossover point of q = 250 where time saved in Up, Down, and V-list can

no longer keep pace with the quickly increasing time spent in U-list.

3.4.2 Scalability

Exploiting multicore can be challenging as multiple threads share many resources on

a chip like caches, bandwidth, and even floating-point units. Thus, the benefit of
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Figure 14: Tuning q, the maximum number of particles per box. Only Nehalem,
elliptical distribution data is shown. There is contention between decreasing Up,
Down, and V-list time, and increasing U-list time. Note, tree construction time
scales like Up, Down, and V-list times.
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thread-level parallelism may be limited.

Figure 15 presents the performance scalability by architecture as a function of

thread-level parallelism for the double-precision, uniform distribution case (thus, has

no W or X list phases). Threads are assigned first to multiple sockets before multiple

cores, and multiple cores before simultaneous multithreading (SMT). For clarity, we

highlight the SMT region explicitly. On all machines, the 2 thread case represents

one thread per socket.

The top figures show overall times for two cases: (i) assuming tree construction

before evaluation, and (ii) the asymptotic limit in which the tree is constructed once

and can be infinitely reused. (Recall that tree construction was the only kernel

not parallelized.) Observe that Nehalem delivers very good scalability to 8 threads

at which point HyperThreading provides no further benefit. Unfortunately, the time

required for tree construction becomes a substantial fraction of the overall time. Thus,

further increases in core count will deliver sublinear scaling due to Amdahl’s Law.

In the bottom figures, we report thread-seconds to better visualize the scalability

of the code for each phase. A flat line denotes perfect scalability and a positive slope

denotes sublinear scaling. The U-list initially dominates the overall evaluation time

and delivers very good scalability to 8 cores. This observation is not surprising since

this phase has high arithmetic intensity. However, the V-list computations, which

initially constitute a small fraction of overall time, show relatively poorer scalability,

eventually becoming the bottleneck on Nehalem. The V-list has the lowest arithmetic

intensity and is likely suffering from bandwidth contention. The other two kernels

show good scalability to 4 cores, but remain a small fraction of the overall time.

Barcelona shows good scalability to four cores (2 per socket) but little thereafter.

The bottom figure shows the problem: U-list scalability varies some but is reasonably

good, while the V-list scales poorly and eventually constitutes 50% more time than

U-list. Given Barcelona’s smaller L3 cache and diminished bandwidth, the effects
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New tree constructed for every force evaluation asymptotic limit (force evaluation time only) 
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Figure 15: Double-precision, multicore scalability using OpenMP for a uniform par-
ticle distribution. Left: time as a function of thread concurrency showing relative
time between list evaluations and tree construction. Right: break down of evaluation
time by list. Note: “Thread-seconds” is essentially the inverse of GFlop/s/core, so
flat lines denote perfect scaling:
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seen on Nehalem are only magnified.

Victoria Falls, with its ample memory bandwidth and paltry floating-point ca-

pability, scales perfectly to 16 cores (lines are almost perfectly flat). Once again,

performance is dominated by the U-list. As multithreading within a core is scaled,

the time required for U-list skyrockets. Although, we manage better than a 2×

speedup using four threads per core, we see none thereafter.

Figure 16 extends these results to the non-uniform elliptical distribution, which

will now include W- and X-list phases. On x86, for the same number of particles,

the elliptical time-to-solution is less than the uniform case. This occurs because more

interactions can be pruned in the non-uniform case. However, as a consequence, tree

construction also becomes a more severe impediment to scalability.

As with the uniform distribution, evaluation time scales well on Nehalem up to

8 threads (one thread per core). Thereafter, it reaches parity with tree construction

time. Additional cores or optimization yield only an additional 2× speedup. Also

observe that the relative time of each phase changes. U-list time dominates at all

concurrencies, and V-list time scales well since the V-lists happen to have fewer boxes

for this distribution.

The behavior on Barcelona is similar except, the U-list time scales somewhat more

poorly with the elliptical distribution than in the uniform case. Interestingly, most

phases scale poorly in the multicore region on Victoria Falls, though U-list time still

dominates.

3.4.3 Architectural Comparison

Beyond the substantial differences among architectures in serial speedups, tuning, and

multicore scalability, we observe that the raw performance among processors differs

considerably as well. Moreover, performance varies dramatically with floating-point

precision.
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New tree constructed for every force evaluation asymptotic limit (force evaluation time only) 
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Figure 16: Double-precision, multicore scalability using OpenMP for an elliptical
particle distribution. Left: Time as a function of thread concurrency, comparing
evaluations and tree construction components. Right: Breakdown of evaluation time
by list. Note: “Thread-seconds” is essentially the inverse of GFlop/s/core, so flat
lines indicate perfect scaling.

48



Reference +Optimized +OpenMP +Tree Construction
   Amortized

Energy assuming CPU
consumes no power

Double Precision

111

33.2

11.4
45.9

13.6

104

0.01

0.1

1

10

100

N
eh
al
em

B
ar
ce
lo
n
a

V
F

N
eh
al
em

B
ar
ce
lo
n
a

V
F

Uniform
Distribution

Elliptical
Distribution

P
e
rf

o
rm

a
n

ce
 R

e
la

ti
v
e
 t

o
O

u
t-

o
f-

th
e
-b

o
x
 N

e
h

a
le

m

Single Precision

4
.6
3

2
.8
4

6
1
.0

4
.2
5
2
.1
4

3
.0
2

5
.6
1

6
0
.3

6
.3
4

3
.3
2

0.01

0.1

1

10

100

1000

N
eh

al
em

B
ar

ce
lo

n
a

V
F

+
1
 G

PU

+
2
 G

PU
s

N
eh

al
em

B
ar

ce
lo

n
a

V
F

+
1
 G

PU

+
2
 G

PU
s

Uniform
Distribution

Elliptical
Distribution

P
e
rf

o
rm

a
n

ce
 R

e
la

ti
v
e
 t

o
O

u
t-

o
f-

th
e
-b

o
x
 N

e
h

a
le

m

Figure 17: Performance relative to out-of-the-box Nehalem for each distribution.
Note, performance is on a log scale. Labels show the final execution time (secs) after
all optimizations.

Figure 17 compares the double-precision performance for our three machines for

both particle distributions. For each distribution, performance is normalized to the

reference Nehalem implementation. Initially, Nehalem is only about 25% faster than

Barcelona; however, after optimization, parallelization, and tuning, Nehalem is more

than 3× faster. Although the initial performance differences are expected given the

differences in frequency, the final difference is surprising as Nehalem has comparable

peak performance and only about twice the bandwidth. Moreover, and unexpectedly,

with only 4.5× the peak flops Nehalem is as much as 10× faster than Victoria Falls.

Victoria Falls’ small per-thread cache capacity may result in a large number of cache

misses. Across the board, we observe the benefit of tree construction amortization is

nearly a factor of two.

Unlike the scalar Victoria Falls, x86 processors can more efficiently execute single-

precision operations using 4-wide SIMD instructions. GPUs take this approach to

the extreme with an 8-wide SIMD-like implementation. To that end, we repeated
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all optimizations, parallelization, and tuning for all architectures and distributions in

single-precision. We then re-ran the GPU-accelerated code of prior work by Lashuk,

et al. [65].

For the GPU comparison, we consider 1 node (2 CPU sockets) with either 1 GPU

or 2 GPUs. The GPUs perform all phases except tree construction, with the CPU

used only for control and thus largely idle. This experiment allows us to compare

not only different flavors of homogenous multicore processors, but also compare them

to heterogeneous computers specialized for single-precision arithmetic. Note that the

GPU times include host-to-device data structure transfer times.

These single-precision results appear in Figure 17. Barcelona saw the most dra-

matic performance gains of up to 7.2× compared with double-precision. This gain

greatly exceeds the 2× increase in either the peak flop rate or operand bandwidth.

Nehalem’s gains, around 4×, were also surprisingly high. Victoria Falls typically saw

much less than a factor of two performance increase, perhaps due to nothing more than

the reduction in memory traffic. We attribute this difference to x86’s single-precision

SIMD advantage, as well as the ability to avoid the Newton-Raphson approximation

in favor of one rsqrtps (reciprocal square root approximation) instruction without

loss of precision.

Although Nehalem’s performance advantage over Victoria Falls increased to as

much as 21×, its advantage over Barcelona dropped to as little as 1.6× — which is

still high given the architectural similarities.

Perhaps the most surprising result is that with optimization, parallelization, and

tuning, Nehalem is up to 1.7× faster than one GPU and achieves as much as 3
4
× the

2-GPU performance. Where Nehalem’s optimal particles per box was less than 250,

GPUs typically required 1K to 4K particles per box. In order to attain a comparable

time-to-solution, the GPU implementation had to be configured to prioritize the

computations it performs exceptionally well — the computationally intense regular
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Figure 18: Energy efficiency relative to optimized, parallelized, and tuned Nehalem
for each distribution. Note, efficiency is on a log scale. (higher is better).

parallelism found in U-list.

3.4.4 Energy Comparison

We measured power usage using a digital power meter for our three multicore systems.

As it was not possible to take measurements on the remote GPU-based system, we

include two estimates: peak power (assuming full GPU and full CPU power) and

maximum GPU-only power (assuming the CPUs consume zero power). We report

the resultant power efficiency relative to parallelized and tuned Nehalem (higher is

better). Figure 18 shows this relative energy-efficiency as a function of architecture,

distribution, and precision.

Nehalem still manages a sizable energy efficiency over all other CPU architectures,

although its energy advantage over Barcelona is less than its performance advantage.

Conversely, the FBDIMM-based Victoria Falls consumes at least 66% more power

than any other CPU-based machine. As such, for FMM, Nehalem is as much as 35×

more energy-efficient than Victoria Falls.
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The GPU-based systems, by our estimates, consumes as much as 725W. Thus,

Nehalem is as much as 2.37× and 1.76× more energy-efficient than systems accel-

erated using 1 or 2 GPUs, respectively. Even under the optimistic assumption that

the largely idle CPUs consumed no power, then Nehalem’s energy-efficiency is still

between 0.97× and 1.65×.

3.5 Future Work

Looking forward, we see numerous opportunities.

3.5.1 Asynchronous Parallelism

We relied largely on bulk-synchronous parallelism in optimizing the single node per-

formance of FMM. Although this approach resulted in significant performance im-

provement and scalability, it also resulted in working sets that did not fit in cache.

Alternatively, dataflow and work-queue approaches may mitigate this issue. FMM

has abundant fine-grained asynchronous parallelism which we currently do not ex-

ploit. As the number of cores per node are only expected to increase in the future,

this alternate paradigm would also reduce the time spent in synchronization. We will

revisit this topic in detail in Chapter 6.

3.5.2 Parallelizing Tree Construction

Although the tree construction phase constituted only a small fraction of the overall

execution time for the baseline code, it becomes a bottleneck once all the phases

have been parallelized. Even though for many applications, the tree only needs to

be re-built after several iterations, it could still be a serious impediment to overall

scalability with increasing number of cores.

3.5.3 Algorithmic Tuning Knob

Optimal value of algorithmic parameters like particles per box will vary not only with

architecture, but also optimization and scale of parallelism. Hence, it has always been
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empirically tuned at runtime since offline serial tuning is insufficient. Although the

optimal particles per box is distribution dependent, often the distribution is known

apriori. With this knowledge, one could design a performance model which captures

both the algorithmic parameters such as number of particles, distribution, depth of

the tree, etc,. and architectural parameters such as cache size, cache line size, memory

bandwidth, peak floating point performance, etc,. to predict the optimal algorithmic

tuning parameter. We will attempt to design this model in Chapter 5.

3.5.4 Compiler Optimizations

Finally, our manual SIMD transformations and their interaction with data layout

was a significant performance win, and most compilers/programming models fail to

exploit SIMD, Newton-Raphson approximations, or TLP. We believe that it should

be a priority for new compiler and/or programming model efforts since it will benefit

a number of scientific applications.

3.6 Summary

Given that single-node multicore performance and power efficiency will be critical

to scalability on next-generation extreme scale systems, we believe our extensive

study of parallelization, low-level and algorithmic tuning at run-time (i.e. the input-

dependent maximum points per box, q), numerical approximation, and data structure

transformations contributes a solid foundation for the execution of FMM on such

machines.

Surprisingly, given a roughly comparable implementation effort, a careful multi-

core implementation can deliver performance and energy efficiency on par with that

of a GPU-based approach, at least for the FMM [65]. We believe this finding is a

significant data point in our collective understanding of the strengths and limits of

using heterogeneous computers.
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This study was prompted by the following question: What is the process by

which one might start with a program and then systematically analyze and tune its

single-node multisocket multicore performance? Though there are many principles,

techniques, and promising tools [8, 17, 46, 48, 52, 66, 71, 72, 78, 88, 91, 93, 97, 104, 105],

defining a general and practical process is exceedingly difficult, owing both to the

diversity of programs and to the complexity of modern multicore systems. The prac-

titioner (end-user programmer), whose job it is to identify, to understand, and to

fix within-node performance bottlenecks, often has little or no guidance on how to
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proceed.

This chapter attempts to document just such a process, within the specific context

of improving the within-node scalability of a distributed memory implementation of

the fast multiple method (FMM) [36,49,65,100]. We decompose this process into three

stages. In the first stage, we treat the program and hardware as a black box, limiting

analysis and tuning to simple modeling and measurement techniques (Section 4.3).

In the second stage, we assume more knowledge of the computation and machine, en-

abling deeper inferences and at least a limited set of code transformation techniques

(Section 4.4). In Section 4.5, we describe the final stage where we assume deep knowl-

edge of the code and machine, and therefore not only arrive at the deepest insights,

but also apply the most aggressive transformations. At each stage, we show by exam-

ple what models, insights, hypotheses, and performance-enhancing optimizations—

including aggressive asynchronous scheduling and reordering optimizations for explicit

locality and bandwidth management—might be discovered and applied.

4.1 Background and Related Work

Implications and limitations. At first glance, the main limitation of this study

may be its seemingly narrow focus on the FMM, which raises the natural question of

how well this process could generalize. We mitigate this issue in two ways. First, we

use the FMM because of its inherent implementation complexity. The FMM consists

of many phases of varying computational intensity and memory behavior, thereby

making it exhibit many of the general computational characteristics and features of

full-scale applications while remaining compact enough to study in detail. Entire

program tuning will be more complicated, but we believe algorithm or component-

level tuning in the style we describe will be a useful starting point. Secondly, we choose

to characterize the overall process by “level of practitioner,” where the analysis and

optimization techniques that require the least expertise are likely to be the simplest
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Figure 19: U list and V list parallel scaling (with OpenMP static scheduling) for
an 8 million point problem instance (uniform particle distribution in a cube). Unless
specified otherwise, this is the default problem instance used in the paper. The y-axis
shows parallel cost, p · Tp, so flat lines indicate perfect scaling.

to generalize and to apply to other programs; and, more importantly, the easiest to

automate and to incorporate into existing performance analysis tools [4, 5, 67, 72–74,

77,86,87,91].

Baseline code. This baseline has extensive single-core performance enhance-

ments already, including manual SIMD vectorization and “smarter” low-level numer-

ical tricks. It is parallelized using OpenMP, applying the basic omp parallel for with

static scheduling at the outermost loop of each of the six phases of the FMM (Sec-

tion 2). That is, imagine the FMM being written as the sequence of phases, “upward”

followed by “U list” followed by “V list,” and so on, where each phase is (roughly) a

set of (imperfectly nested) loops; then, our parallel baseline uses #pragma omp parallel

for schedule(static) at the outermost loop of each phase, respecting dependences.

This approach is the minimum level of parallelization we might reasonably expect of

any multicore parallelization. Refer to Chapter 3 for details.

A scalability bottleneck. Although this multicore implementation performs
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Table 5: Architectural details of parallel systems used in our study. †shared among
cores on a socket. ‡shared among 2 cores on a socket.

System Intel E5405 AMD Opteron 2356 Intel X5550 Intel X7560
Core Architecture Harpertown Barcelona Nehalem-EP Nehalem-EX

Sockets×cores×threads 2× 4× 1 2× 4× 1 2× 4× 2 4× 8× 2
# threads 8 8 16 64

Clock (GHz) 2.00 2.30 2.66 2.27
DP (SP) GFlop/s 64 (128) 73.6 (146.2) 85.33 (170.6) 290 (58)

L1/L2/L3 cache (KB) 32/6144‡/- 64/512/2048† 32/256/8192† 32/256/24576†

DRAM Capacity (GB) 4 16 12 64
Bandwidth (GB/s) 21.33 21.33 51.2 170.6

Compiler Intel C v11.0 GNU C v4.4.1 Intel C v11.0 Intel C v11.0

well, it also exhibits a scalability bottleneck as core count increases. We can observe

this bottleneck as follows. First, recall that the FMM consists of several phases

(Section 2). For one common input, a uniform point distribution, the dominant

phases are the U list and V list computations. Figure 19 shows, for each of these two

phases, its parallel cost, p ·Tp, where p is the number of threads and Tp is the phase’s

parallel execution time in seconds, on the Intel Harpertown system. If a phase scales

linearly, then its p · Tp is a constant. This behavior holds for the U-list (squares)

but not for the V-list (triangles), which becomes the performance bottleneck at four

or more cores. Indeed, there is actually a slowdown at eight threads compared to

four. Thus, it is in this context that, for the remainder of the chapter, we wish to

systematically investigate whether and how to improve scalability.

4.2 Architectural Summary

Table 5 provides a summary of our evaluation architectures. These systems have a

range of characteristics of particular interest to multicore performance analysis and

optimization.

First, we consider both dual-socket quad-core (8 cores total) and quad-socket

oct-core (32 cores) systems. Relative to prior FMM multicore studies, our use of a
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32-core multisocket multicore configuration is among (if not the) largest single-node

configuration tested to date in terms of core counts [36,38]. Our study sheds light on

what algorithmic or architectural features may be necessary to continue scaling the

FMM on future systems.

Secondly, the systems span a range of cache capacity and cache sharing config-

urations. The last-level cache capacities range from as little as 512 KB per core

(Barcelona) to as high as 3 MB per core (Harpertown and Nehalem-EX). Thus, we

expect to be able to explore the effect of cache capacity. Moreover, the Harpertown

system has on each socket two L2 caches, each of which is shared by a pair of cores.

We will see how this configuration permits insight into the code.

Thirdly, we consider platforms both with and without non-uniform memory archi-

tectures (NUMA). Thus, we can evaluate the effects of data placement for the FMM,

as well as strategies for diagnosing and improving NUMA-related performance issues.

Finally, we consider both simultaneous multithreading (SMT) and non-SMT pro-

cessors. Thus, we will be able to see the extent to which existing x86 SMT designs

provide the right kind of support for an FMM style computation.

4.3 Stage I: Diagnosis and Initial Tuning

The process of improving the V-list scaling problem in the baseline code (Chapter 3)

begins with an exploratory analysis. Initially, we assume

• high-level knowledge of the application and algorithm and full access to the

source code, but with perhaps limited knowledge of the code;

• a basic understanding of the architecture, such as the properties listed in Ta-

ble 5, including whether the system has a uniform or non-uniform memory

architecture;

• knowledge of several “rules-of-thumb” analytical techniques, such as Amdahl’s
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Figure 20: U list and V list performance scaling on Harpertown with compact and
scatter thread pinning schemes.

Law, Little’s Law, notions of arithmetic or computational intensity, and the

roofline model [10,97];

• full access to all of the available performance measurement, analysis, and com-

pilation tools, such as VTune, HPCToolkit, TAU, and Open|SpeedShop, among

others [4, 5, 67,86,91].

4.3.1 First Measurements and Analysis

Using standard tools, such as VTune, we profile the code to make the initial observa-

tion of poor V-list scaling, as outlined in Section 4.1 and Figure 19. Again through

performance counter measurement, we estimate the computational or arithmetic in-

tensity (ratio of flops to main memory bytes) of these two phases, finding that the

U-list is compute-bound while the V-list is memory-bound. Thus, one would expect

U-list to scale and suspect memory system contention as the culprit for poor V-list

scaling. We set out to discover the cause.
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First, we ask whether there is any load imbalance, given our initial choice of static

scheduling. Using performance tools, we check the per-thread time and determine

that each thread takes nearly exactly the same amount of time. Thus, we rule out

load imbalance as a problem.

Given that the V-list is memory bound, we then ask what part of the memory sys-

tem the V-list may be stressing as threads increase. We recognize that our platform,

a dual-socket quad-core Intel Harpertown, has pairs of cores sharing the L2 cache. To

gain some additional insight and intuition into what effect this cache architecture has,

we conduct two experiments. Importantly, these experiments are simple as neither

requires modifying the code.

In the first experiment, we use the OpenMP thread affinity option to “scatter”

consecutively numbered threads first across sockets, then across cores not sharing L2,

and then within pairs sharing L2. We observe precisely Figure 20. In particular,

the code only achieves 3× scaling on four cores, when there is no cache sharing,

suggesting that bandwidth contention is at least one specific issue. We also note that

the precipitous drop occurs at 8 threads when pairs of threads share the L2 cache.

This observation suggests a second experiment, in which we change the affinity policy

to “compact assignment,” where consecutively numbered threads are first assigned

to cores sharing L2, then within the core, then across sockets. If L2 cache sharing is

an issue, then we expect to see the scalability issue with even just 2 threads, since

they will under compact assignment be mapped to cores that share L2. Indeed, we

make exactly this observation, as shown in Figure 20. Thus, we conclude that in

addition to bandwidth contention when there is no cache sharing, that there is also

the potential for cache contention, most likely due either to capacity or conflict issues.

These observations do not yet suggest how to improve V-list scaling, but they do lead

to an interesting inference, described next.
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Figure 21: U list and V list parallel scaling on Nehalem-EP. The black error lines
indicate variation in execution time between the fastest and slowest thread with static
scheduling.

4.3.2 Tuning Exploration and Results

Since cache sharing leads to poor scalability, there may be some natural affinity of

threads to independent pieces of data. That is, if two threads operate on independent

data, we would expect no improvement from assigning them to cores that share a

cache. We then ask the following question: although Harpertown platform uses a

uniform memory architecture, what would happen if we moved to a NUMA one? Our

observations about affinity imply that we will see even more performance problems

there, since data placement will be critical on a NUMA platform. Thus, even though

we are not yet ready to fix the V-list scalability problem, we can “future-proof”

our code for a NUMA architecture using either of two potential optimizations, one

which does not require modifying the code substantially, and one which involves some

modest modifications.

Guided scheduling. We run our code on a Nehalem-EP system, which has a

NUMA architecture. Whereas we previously observed no load imbalance issues, here
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we observe one! Figure 21 shows the issue, where, for each thread configuration, we

also show both the maximum and the minimum execution time of any V-list thread.

The ratio between these two is as high as 2×. Checking the flop counts, we see they

are roughly the same across threads. As such, the imbalance must be coming from an

increase in the cost of some other operation, and for a memory-bound computation,

that culprit is most likely the memory operations themselves.

One simple way to cope with any load imbalance is to switch the work sharing

scheduling policy, here from static to guided scheduling.1 This “fix” does not address

the root cause of improper data placement but does mitigate the problem somewhat,

as seen in Figure 21.

NUMA optimizations. Though guided scheduling helped on Nehalem-EP, it

still does not address the fundamental problem of data placement. To do so requires

modifying the code. In particular, to exploit NUMA, we use the first-touch page allo-

cation policy of the operating system to also parallelize the data initialization loops,

a still relatively non-invasive change. The results are shown in Figure 22. Indeed,

performance improves by 1.4–3.2×. However, on both Harpertown and Nehalem-EP,

the fundamental V-list scalability issue remains.

4.4 Stage II: Intermediate-level Tuning

In Stage II, we assume more knowledge of the computation and machine, thereby en-

abling deeper inferences and more complex performance-enhancing transformations.

In particular, we assume in addition to Stage I,

• a more detailed understanding of the processor microarchitecture;

• a deeper understanding of the application’s data and control dependency struc-

ture;

1Although we chose guided, one can try others.
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Figure 22: The impact of NUMA-aware allocation: V list performance at full con-
currency and explicit static thread scheduling.

• consequently, a willingness to try some “riskier” optimization strategies.

Based on the Stage I analysis, we know that the U-list computation is compute-

bound and nearly perfectly scalable, whereas the V-list is memory-bound. Although

the NUMA optimizations enhanced performance significantly, there could still be

room for improvement.

4.4.1 Analysis and Implied Optimizations

The simplest way to avoid the scalability “cliff” is to use at most the number of

threads for which the computation still scales, provided the remaining threads can

scalably do other useful work. Indeed, in Stage II, being more informed about the

code, we discover that the U- and V-list computations are actually independent of one

another and may therefore run concurrently. The trade-off is that the code, which

was parallelized in the straightforward bulk-synchronous style from its sequential

counterpart (Chapter 3), will require more extensive modification than that of the

NUMA-aware optimizations.
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Figure 23: The parallel efficiency of V list computation after NUMA-aware memory
allocation on various platforms.

In the best case, we make a quick back-of-the-envelope estimate of the best possible

improvement from this technique. In the current code, let TU be the U-list time and

TV the V-list time. If we can successfully hide the entire cost of the V-list, we might

achieve a TU+TV
max{TU ,TV }

≤ 2 speedup. For the four platforms featured in this study, we

collect this data and estimate that a 1.56–1.96× speedup might be possible.

Under this assumption, we generate two ideas for exploiting this concurrency

through asynchronous-parallel execution.

Idea 1: Mixed phase execution. We consider specific schedules of the U- and

V-list components in which some threads operate on V-list work, up to the V-list’s

scalability limit as seen from Figure 23; the remaining threads work on the U-list,

which scales well on any number of cores. The degree of work partitioning can be a

runtime parameter subject to (automated) tuning.

Idea 2: Explicit SMT assignment. Since the arithmetic intensities of U- and

V-list components differ markedly, we hypothesize that we might profitably exploit the
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simultaneous multithreading (SMT) features of the Nehalem platforms. The intuition

is simply that the U-list computations will make heavy use of the computational units,

whereas the V-list is mostly idle waiting for memory. Thus, concurrently executing

U- and V-list components on the same core could in principle benefit from SMT,

assuming sufficient within-core functional units.

4.4.2 Results

We apply these ideas to the NUMA-aware code of Section 4.3. In Figure 24, we sum-

marize the improvement over the NUMA-aware code of the preceding section. Recall

that the best possible performance according to our back-of-the-envelope estimate,

shown here the highest (green) bar, and ranges from 1.56–1.96×.

For mixed phase execution (blue bar), we see significant improvements of 73% and

60% on Harpertown and Nehalem-EX, respectively. The benefit is somewhat smaller

(≈ 1.2×) though still appreciable on Barcelona and Nehalem-EP. This observation

lends support to the notion of investing in programming, compile-time, and run-time

mechanisms that can readily facilitate this style of execution.

On the two SMT-enabled Nehalem platforms, our intuition about explicit SMT

assignment does in fact lead to a pay-off that nearly matches that of mixed phase

execution, as shown by the red bars in Figure 24. Still, the achieved performance

falls short of our estimated ideal in both cases. In fact, although the V-list is mem-

ory bound, it is evidently not strictly idle and is likely still competing with the

co-scheduled U-list thread for processor-core functional units. We expect that further

investigation of the U- and V-list resource requirements could help inform the balance

of functional units in future SMT designs.

4.5 Stage III: Advanced Tuning, Algorithm Redesign

We now detail some optimizations that one cannot recommend or implement without

an in-depth analysis of the computation. We envision that practitioners at this stage
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Figure 24: The performance improvement achieved using asynchronous implementa-
tions (red indicates explicit SMT assignment and blue depicts additional improvement
with mixed phase execution). The green bar is the an indicator of the theoretical
maximum possible speedup (based on U list and V list execution times at full con-
currency).

of the performance-tuning hierarchy have a detailed understanding of the application,

and are also experts in programming multicore architectures.

In the context of our KIFMM code tuning, we attempt to model the computation,

analytically validate and reason about the VTune performance counter data (collected

in Stage I, as discussed in Section 4.3), and finally evaluate if we can achieve a

further performance by investing effort in a complete redesign or restructuring of the

algorithm.

4.5.1 Modeling U list and V list computations

In Section 4.3, we classified U list and V list as compute-intensive and memory-

intensive respectively, based on performance counter data gathered for a few problem

instances. We now describe our methodology of source code inspection and analytic

estimation to determine the floating point computation performed and the memory
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Figure 25: A plot of the sparsity pattern observed in the V list target box–source
box implicit mapping matrix (200K points, uniform random distribution).

traffic sustained, and validate performance counter data. While the analyses here may

not be as generally applicable as the ones discussed in the earlier sections, we hope

that the following outline of efforts would give the reader a sense of the complexity

involved at this stage.

U list computation. From Table 2 and from prior analysis by Ying et al. [100],

we have that U list’s complexity is O(27Nq). We provide a short explanation for this

term. Asymptotically, for a uniform random distribution in a three-dimensional space

and rectilinear discretization, we can assume that each target box has 27 neighbors in

its U list (we can easily visualize this by counting the number of unit cubes in a 3×3×3

cube). Thus, we perform a total of 27q2 pairwise kernel computations per target box.

We have roughly M = N/q such boxes, and so we get to the cost term of 27Nq. This

term ignores the fact that in our experiments, the cube is of a finite size. Accounting

for the boundary cases (boxes on the surface), we refine our counting argument to

come up with a better approximation: (3M1/3−2)3q. Next, we inspect our source code
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and generated assembly instructions to approximately count the number of floating

point operations performed, which would be a multiplicative factor to this pairwise

box computations. In our case, we count 19 instructions, which we expect to take

roughly 17 cycles after accounting for possible instruction level parallelism (ILP),

instruction latencies, and throughputs [1]. Our count agrees very closely with the

statistically-sampled VTune performance numbers for Harpertown. We could also

verify that the execution time is indeed dominated by floating point computations.

Next, the expected number of memory words transferred can be similarly determined

based on the average U list neighbor count, and it closely correlates with the observed

bus transactions (memory) value. This corresponds to a very small fraction of the

total execution time, and hence any further memory optimizations will only be of

limited benefit. Our inspection of the inner loop and manual counting of floating

point instructions gives us an estimate of any further performance improvements

that could be realized for U list computation, either with improved pseudo-code or

better architectural support for the higher latency instructions.

V list computation. Based on scalability analysis in prior sections, we suspect

that V list performance is likely hindered by cache capacity misses and saturation

of available memory bandwidth. Another indicator of this problem is the relative

increase in performance counter values as we increase thread-level concurrency, due

primarily to bus transactions (memory) and last-level cache misses. Thus, we now

attempt to estimate the bus transaction counts and cache working set requirement

per thread in terms of FMM problem parameters. Recall that V list’s asymptotic

computational complexity is given by O(Mp3/2 log p + 189Mp3/2), where M is the

number of target boxes and p denotes the number of expansion coefficients. The first

term corresponds to computation of FFT’s to transform a convolution into multiple

element-wise vector products in Fourier space. The 189 multiplicative constant de-

notes the asymptotic average V list size for a target box, assuming a uniform random
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distribution (63−33; visualize by counting the number of unit cubes within a 6×6×6

cube, minus the V list box count). In practice, we observe that p3/2 log p is an over-

estimate for each FFT computation. We link to tuned FFTW [47] routines, and this

step only constitutes 4% of the total V list execution time.

The vector size after FFTs is determined by the number of expansion coefficients,

which is chosen to set the accuracy desired for the KIFMM summations. For four

digits of accuracy, the FFT size is 640, and for six-digit accuracy, this is typically

2016. Our code is currently configured for six digits of accuracy. The element-wise

vector products are performed between source boxes (i.e., the vectors corresponding

to source boxes after FFTs) and vectors chosen from a set of what are referred to

as translation vectors. The appropriate translation vector chosen for a particular

source-target combination depends, among other aspects, on the depth of the source

and target boxes under consideration. To summarize, given six digits of precision, for

each target box vector, we perform approximately 189 element-wise vector products

(source box – translation vector combinations, each of size 2016 elements) in the

Fourier space and update then the target box vector. This gives us a better estimate

of the computation than the p3/2 term in the asymptotic worst-case analysis. The

performance counter data accurately matches our estimate.

The count for memory references is slightly more involved. Figure 25 denotes the

sparsity pattern of the source boxes that appear in the V list of each target box, for

a small problem instance of 200K random particles in a cube. We access target boxes

in the order of their identifier (i.e., 1 to N), and the source box FFTs for each target

box are contiguously stored in memory. Thus, in the implicit matrix shown in the

figure, the memory accesses are row-wise. Each dot in the figure also corresponds

to a vector of size 2016. We observe substantial temporal reuse (note the blocked

structures along the diagonal of the matrix). Based on geometry arguments, we can

provide a weak upper bound estimate of 86% reuse between every consecutive pair of
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Figure 26: A plot indicating translation vector accesses in V list computation (200K
points, uniform random distribution).

target boxes. (The proof is based on considering unit stride translations of a 5×5×5

cube in all directions and estimating overlap.) Also, on closer inspection, we see that

this matrix pattern is reminiscent of a stencil-like traversal, with approximately 189

points per row of the matrix. We further refine our reuse estimates by manually

computing the pairwise overlap. Next, we empirically estimate the reuse distance of

every source box as a fraction of the total number of boxes. This number further

refines our visual estimate that roughly half the boxes are lumped together along

the diagonal, and other analytic arguments based on the geometric structure. We

thus conclude that the source box accesses are bandwidth-bound asymptotically, but

with a reuse pattern along the diagonal. If we are able to fit these blocked structures

(roughly half the average number of boxes per target box, per row, 2016 doubles each)

in the last-level cache, we can substantially reduce memory traffic.

The other source of memory references is accesses to the translation vectors. Note

that the translation vector count is independent of the number of particles or boxes. In
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this case, we have roughly 343 translation vectors, and for each target box, about 189

unique ones are accessed. As seen in Figure 26, this pattern is much more complicated

to analyze. However, note that the degree of reuse is considerably higher in this case,

given that we choose 189 out of 343 for every iteration. This suggests that one may

require a minimal cache size for ensuring all of the translation vectors stay close to

the processor, and to avoid fetches from memory for every target box evaluation.

For the 8 million point problem on Harpertown, we are able to match the perfor-

mance counter data for memory bus transactions by up to 99%, essentially by combin-

ing both of the preceding arguments and refining our counting estimates to consider

the boundary conditions (the average source boxes turns out to be 161 rather than

189 for the 8 million point case, and an even smaller 90 for the 200K-point instance).

Further, we can determine precisely the cause for a number of empirical observations

in prior sections. We observed an increase in execution time on the Harpertown

system when two concurrently-running threads were sharing the L2 cache, due to in-

sufficient per-thread cache size for exploiting the available blocked structure pattern

for the source vectors. The bandwidth-bound nature of streaming source boxes is

also apparent in all the performance results. For the 8 million-point problem size, we

estimate a per-thread cache working set of 5.2MB for the source boxes and transla-

tion vectors. This explains the relatively-good scaling observed on the Nehalem-EX

system.

4.5.2 Optimization and Results

Based on the preceding analysis, we now suggest algorithmic improvements. One ap-

proach to reduce capacity misses is to increase temporal locality, if any. We note that

the relatively high access rate of the translation vectors (Figure 26) is a promising av-

enue to pursue. Next, we observe that threads are executing concurrently rather than

cooperatively when streaming the source boxes, and this leads to a p-way pressure on
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cache utilization.

Based on these observations, we experiment with two ideas for further improving

performance.

Idea 1: Blocking of the translation vector. A common optimization in sparse

matrix computations is to block a matrix (i.e., stride through it in regular chunks),

such that the blocks fit in cache. We could block the translation matrix (essentially

the virtual matrix in Figure 26) since it is reused by all the threads. The blocking

size can be a runtime parameter or a parameter that can be determined based on the

last-level cache size available.

Idea 2: Hybrid scheduling. Since the current static scheduling strategy of

assigning fixed chunks of target box computation to each thread results in a loss

of temporal locality between consecutive target boxes, we devise an improvement

to exploit this locality. Instead of static scheduling throughout, we employ hybrid

scheduling. That is, we perform static scheduling across different sockets, but within

a socket, if the threads are sharing the cache, we switch to cyclic scheduling. This

way, we avoid fetching potentially entirely different source box vectors into the cache,

thus alleviating capacity misses.

We apply these techniques individually to the NUMA-aware code of Section 4.3.

Figure 28 summarizes the performance when we block the translation vectors across

all four platforms considered. We achieve significant speedups from 2.1× to 4× when

running at full concurrency. To fit all the translation vectors and all the source

boxes in one target box’s V-list in cache, we would require 5.5 MB and 2.6 MB

respectively. This amount would consume the entire L3 cache of a Nehalem-EP

socket (8 MB). Adding an additional thread doubles contention whereas blocking

significantly mitigates it.

Similarly, we can first determine whether hybrid scheduling would provide a per-

formance boost before going on to implement it. On the Nehalem-EP, when running
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Figure 27: V list efficiency plots for the optimized implementations with blocking
(left) and hybrid scheduling (right) optimizations.

at full concurrency, the working set size for the source boxes alone would be 2.6× 8

MB per socket. This again exceeds the L3 cache capacity and would result in capacity

and conflict misses. Hence we expect this scheduling scheme to help. Figure 28 sum-

marizes the benefit across all the platforms. Performance improves by 1.7× to 3.4×,

except on Barcelona. This can be explained by the significantly smaller cache size,

where even the working set of a single thread does not fit entirely in cache. Across the

board, we observe better scalability after applying the above optimizations as seen

from Figure 27 compared to Figure 23.

4.6 Future Work

Our case study for the processs is FMM and despite the fact that FMM has multiple

phases which have different compute and memory characteristics, it does not test the

generality of the approach. Repeating the process to improve the performance and

scalability of another algorithm would test its applicability beyond FMM.
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Figure 28: V list parallel performance on all platforms with blocking and hybrid
scheduling optimizations at full concurrency.

Figure 29: A summary chart depicting the impact of performance optimizations on
each architecture, with speedup given with respect to the baseline implementation
(U-list + V-list) at full concurrency. Labels show the final execution time (secs) after
all optimizations.
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4.7 Summary

Our study builds on the considerable collective wisdom on the principles, techniques,

and tools needed for enhancing multicore scalability [8, 17, 46, 52, 66, 71, 72, 78, 88,

88, 91, 93, 97]. Indeed, it is inspired by the detailed examples of memory hierar-

chy transformations for regular computations (matrix multiply) on single-core sys-

tems [48, 104, 105]. In our case, each transformation is motivated by a model, mea-

surement, and/or analysis, resulting in the overall sequence of performance improve-

ments over a state-of-the-art baseline as shown in Figure 29. In terms of within-node

FMM performance, our code now represents the new state-of-the-art.

Although our decomposition into stages may seem simplistic, we nevertheless be-

lieve that from the perspective of building tools, it might be useful to try to decompose

tuning into processes that vary by the amount of information and aggressiveness of

program transformation permitted.

Our “Stage I” and “Stage II” analyses could in principle be incorporated into

“performance wizards” and “what-if scenarios” for existing or new analysis, tuning,

and prediction tools. Except for the code-specific NUMA transformation, the Stage

I analyses required only measurement and exploration of tuning parameters that the

programming model exposed directly (e.g., choice of OpenMP schedule). As for the

NUMA transformation, even if it could not be fully automated, it may be possible

that a “smart” performance analysis tool could at least suggest it based on program

observation.

The Stage II transformations, which apply concurrent or “asynchronous-parallel”

scheduling and execution, is another example of a trend in multicore performance

exploitation [28,32,33]. As a technique for effectively managing bandwidth and local-

ity, as well as exploiting SMT, this approach will become only more important over

time, and warrant additional research and development on programming models and

systems support for this style of execution.
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Stage III constitutes the deepest and most FMM-specific analyses and optimiza-

tions. Nevertheless, it also shows the feasibility and utility of analytical modeling,

dependency analysis, and transformation for indirect and semi-irregular programs like

the FMM. Such programs remain extremely challenging cases.
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This chapter presents a new communication-centric algorithmic analysis of the

FMM. The FMM is widely believed to be among the most important algorithms for

a variety of current and future scientific simulations in electromagnetic, fluid, and

gravitational phenomena, among others [24], and is hypothesized to be of increasing

importance at exascale [102]. Our analysis helps to develop a deeper understanding

of the FMM’s performance and scaling characteristics as they relate to key features of

the underlying architecture, such as peak processor speed, memory bandwidth, and

memory hierarchy design.

Our new analysis enables precise answers to three critical questions about the

FMM as we approach exascale. (1) Assuming an exascale node will be a hybrid

system comprising CPUs and GPUs, what is the best work partitioning/scheduling

strategy? (2) Given technology trends, will the FMM—largely compute-bound on
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today’s systems—still be compute-bound at exascale? (3) Can we statically before

runtime determine the optimal value of the algorithmic tuning parameter?

Section 5.2 presents lower bounds on cache complexity for key phases of the

FMM and uses these bounds to derive analytical performance models. Our novel

performance model is the first for FMM to capture the precise relationship among

the FMM’s algorithmic tuning knobs—both of the data structure and the desired

accuracy—and key architectural parameters, making it practical and usable. Using

the performance model we developed for the two systems (CPUs and GPUs), we de-

termine the optimal work partitioning scheme on heterogeneous systems (Section 5.3).

Section 5.4 uses the performance model to derive the optimal value of the algorithmic

tuning parameter. Lastly in Section 8.1, we use these performance models to make

predictions about FMM’s scalability on possible exascale system configurations, based

on current technology trends.

5.1 Background and Related Work

There is extensive literature on the FMM and its parallelization, from fast shared

memory implementations to highly scalable distributed memory codes, to GPU-based

accelerated implementations [7,39,45,50,53,54,58,63,65,76,82,96,99]. Within-node,

the current state-of-the-art FMM implementation is our own prior multicore code [35,

36, 65, 83]. Therefore, we take this implementation as the baseline CPU code for our

study.

For hybrid-FMM on CPU-GPU systems, Hu et al. [58] discuss a work partitioning

scheme where all computation on the leaf nodes is done on the GPU and everything

else is handled by the CPU. Moreover, this partitioning scheme is fixed for all input

sizes and desired accuracy. To our knowledge, our work is the first to discuss a

systematic model-based work division, which results in optimal scheduling decisions

that run counter to the Hu et al. scheme.
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5.2 Analytical Performance Model for FMM

In this section, we present lower bounds for the two key phases of FMM. We assume

a uniform random distribution of source and target points for the rest of the analysis.

We assume a simple two-level memory hierarchy, consisting of an infinite memory

and a cache of size Z. Data is transferred between the memory and cache in cache

lines of size L.

5.2.1 Upward step

Algorithm 1 Upward computation.

Input: Source leaf boxes L; Source non-leaf boxes N ; Source density vectors sα of
size q, α ∈ L ∪N ;

Output: Upward densities uα of size p, α ∈ L ∪N .
1: Pre-compute source to upward translation matrix Sα
2: for all α ∈ L do
3: Evaluate kernel matrix K(γ, α)
4: fα ← K(γ, α)sα
5: Solve for uα; Sαuα ← fα

6: Pre-compute upward to upward translation matrix Uα
7: for all α ∈ N do
8: fα ← fα + UαuC(α)

9: Solve for uα; Sαuα ← fα

The Upward step of KIFMM consists of two phases:

1. Source to Multipole (S2M): compute multipole expansions (ME) of the source

boxes at the leaf level. The ME captures the effect of the particles within a box

B at a distant point.

2. Multipole to Multipole (M2M): perform a postorder traversal of the tree, com-

bining child ME’s to compute the ME for the parent.

Algorithm 1 outlines the upward computation. Given b leaf boxes, p coefficients,

and q points per leaf box, the asymptotic complexity of S2M is O(np+bp2) and M2M
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stage is O(bp2). The time to compute is the total number of floating point operations

divided by the peak computation throughput C0, in flops per unit time.

The total compute time spent in S2M is given by,

Tcomp s2m =
C1
up .b.p.q + C2

up .b.p
2

C0

(18)

The total compute time spent in M2M is given by,

Tcomp m2m =
C3
up .(2

d + 1) .b.p2

C0

(19)

C1
up, C

2
up, and C3

up are kernel-dependent constant.

To account for the memory hierarchy communication, we describe a communication-

optimal algorithm as illustrated in Figure 30. The algorithm can be viewed as a

two-step process. In the first step, Z
4q

source leaf boxes are loaded into cache and we

compute its S2M (For each point, the position (x, y, and z coordinates) and density

are maintained, resulting in a cumulative size of 4q machine words per source leaf

box). Once the S2M of the Z
4q

leafs have been computed, we can compute the M2M

of it’s ancestors in a level-by-level manner. When we have processed all the nodes in

the sub-tree, we load the next Z
4q

sources and repeat the above process until all the

leaf nodes have been computed on. After the first step, the following iterative process

is applied, as shown in Figure 30. The M2M of the non-leaf boxes Z
Kp

at a level i

are loaded into the cache and the M2M of its ancestors computed until we reach the

root node, where K is the number of children.

5.2.2 Near field Interactions (U list step)

For each target leaf box, this phase of the FMM algorithm performs a direct summa-

tion of potentials due the source boxes in its immediate neighborhood. The neigh-

borhood of a box B is defined to be the set of all the source leaf boxes adjacent to

B, and contains B as well. This list of boxes LBU is called the U list, and we refer to
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Figure 30: Illustration of upward computation algorithm.

Algorithm 2 Near field interactions (U list).

Input: Target leaf boxes L, source boxes S; U list LβU of every target leaf box β ∈ L;
Source density vectors sα of size q, α ∈ S;

Output: Target leaf box potentials fβ of size q, β ∈ L.
1: for all β ∈ L do
2: fβ ← φ

3: for all α ∈ LβU do
4: Evaluate kernel matrix K(α, β)
5: fβ ← fβ +K(α, β)sα

this near field interactions evaluation phase as the U list step. In 2D, the U list of

a non-boundary leaf box would be of size 9. Similarly, in 3D, the U list would be of

size 27.

Algorithm 2 outlines the U list step. For each target-source pair, a dense matrix of

kernel evaluations is created, and the target potential vector is updated with a dense

matrix and vector multiplication. Given b leaf boxes and assuming q points per leaf

box, the computational complexity of the near field interaction phase is O(bq2). In

3D, the operation count is more precisely 27bq2. This estimate can be further refined

to account for boundary boxes, and we have (3b
1
3 − 2)3q2.

The time spent performing floating-point operations in the U list step is the total
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Figure 31: U list: A plot of the sparsity pattern observed in the target box–source
box implicit mapping matrix (uniform random distribution of points, octree depth
lmax = 4).

number of floating point operations, divided by the peak computation throughput

(C0) in floating-point operations per unit time.

Tcomp,u =
C1
u . (3b

1/3 − 2)3 . q2

C0

(20)

C1
u is a kernel- and implementation-dependent constant.

To account for memory costs in accessing the source and target box data struc-

tures, we observe that the outer loops of the computation (lines 1 and 3 of Algo-

rithm 2) can be modeled as a sparse matrix vector multiply (SpMV). Figure 31 is a

visualization of the source boxes in the U list of every target leaf box for an octree of

depth 4. Each source box contains q points on an average. For each point, the posi-

tion (x, y, and z coordinates) and density are maintained, resulting in a cumulative

size of 4q machine words per source or target box.

Blelloch et al. [20,21] present a cache-oblivious algorithm for SpMV that is based

on a separator-based reordering of the matrix. They show that if the support graph

of a matrix satisfies the nε edge-separator theorem [68], then such a matrix, when laid
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out in row-major format after reordering, would incur at most O
(
m
L

+ n
Z1−ε

)
(where

m is the number of non-zeros in the matrix) cache misses for SpMV. Figure 31 shows

that the U list implicit dependency matrix is indeed structured, and this is a result

of the spatial sorting of the boxes during tree construction. The source boxes are also

stored contiguously in row-major format, and so we can adapt the SpMV bounds for

near interaction computation.

The memory access costs for this step are comprised of read accesses to the source

boxes, the U lists for each target box, and updates to the target leaf box potentials.

The rows of the kernel matrix K are constructed on-the-fly for each source-target

pair prior to matrix vector multiplication, and so we do not consider accesses to this

matrix. The U list upper bounds for the number of cache lines fetched are as follows:

Qu = Qu src +Qu trg +Qu lists

Qu src = O
(
ku ·

N

q
· 4q

L

)
= O

(
4kuN

L

)
Qu trg = O

(
N

q
· 4q

L

)
= O

(
4N

L

)
Qu lists = O

(
ku

N
q

L

)

Here, ku is the average number of source boxes in the U list of a target leaf box.

The above bound for Qu src assumes that there is no reuse of source boxes. The cache

complexity for U list is thus dominated by the time to read source boxes.

Utilizing the SpMV bounds from [20] and assuming ε = 2/3 for 3D, we get a

tighter bound on Qu src, which is the dominant term in the overall cache complexity

bound. Since each non-zero in the matrix corresponds to a source box of size 4q, we

scale the fast memory capacity Z by a factor of 4q.

Qu = O

4N

L
+
ku

N
q

L
+

4N

L
+

N
q(
Z
4q

) 1
3

 (21)
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The dominant memory access time in this step is modeled as the total data fetched

into fast memory, divided by the peak rate at which data is fetched into memory (i.e.,

memory bandwidth βmem).

Tmem,u =
C2
uN

βmem
+

C3
uNL

βmem(Z
1
3 q

2
3 )

(22)

C2
u and C3

u are implementation- and machine-dependent constants that we deter-

mine empirically by fitting the execution times to the model.

5.2.3 Far field Interactions (V list step)

Algorithm 3 Far field interactions (V list).

Input: Target boxes T , source boxes S; V list LβV of every target box β ∈ T ; Source
upward densities uα of size p, α ∈ S;

Output: Target downward potentials gβ of size p, β ∈ T .
1: Pre-compute up to down translation matrix E(α, β)
2: for all α ∈ S do
3: Compute FFT of upward densities; uα ← FFT (uα)

4: for all β ∈ T do
5: for all α ∈ LβV do
6: gβ ← gβ + E(α, β)uα

7: Compute Inverse FFT of downward potentials; gβ ← IFFT (gβ)

For each target box in the tree, this phase accumulates the multipole expansions

of the source boxes in its V list into a local expansion. This step is also called

multipole to local (M2L) translation. The V list of a box B is defined to be the

set of all source boxes that are children of the neighbors of box B’s parent, but not

adjacent to B itself. The computation performed in the V list is 3D convolution. We

implement this in 3 steps, namely, (a) 3D FFT, (b) complex pointwise multiplication

in the frequency domain, and (c) 3D inverse FFT. Assuming bs source boxes, the

computational complexity of the FFT phase is O(bs . p
3
2 log p) where p is a constant

determined by the desired accuracy (p = O(γ2), γ is the number of digits of precision).

The inverse FFT’s are done once for each target box, resulting in a complexity of
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Figure 32: V list: A plot of the sparsity pattern observed in the target box–source
box-translation implicit mapping matrix (uniform random distribution of points, oc-
tree depth lmax = 4).

O(bt . p
3
2 log p), assuming bt target boxes. Each target box performs kv pointwise

multiplications (kv = 189 for an interior box for an uniform distribution), and has an

asymptotic complexity of O(bt . kv . p
3
2 ).

Refining these estimates, the computational time for V list if given by

Tcomp,v =
C1
v (bs + bt + 343) p

3
2 log p

C0

+
C2
v bt kv p

3
2

C0

(23)

C1
v and C2

v are implementation-dependent constants.

Figure 32 shows the implicit dependency between target boxes, source boxes, and

translation operators. For each point in the matrix, we perform a pointwise multiply

between a source box of size p
3
2 with a translation operator. Since the number of

translation operators (343) is fixed, we assume they fit in the shared cache Z. Hence,

the effective cache size becomes Z
′
= Z − 343p

3
2 .

Similar to U list, re-applying the SpMV bounds from [21], we get an upper bound

on the cache complexity for this phase:
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Qv = O

(bt + bs) p
3
2

L
+
kv bt
L

+
bt(
Z′

p
3
2

) 1
3

 (24)

Considering the higher order terms, the memory access time of V list can be

approximated by,

Tmem,v =
C3
vNp

3
2

qβmem
+

C4
vNp

1
2L

(Z ′
1
3 q)βmem

(25)

5.2.4 Downward step

Algorithm 4 Downward computation.

Input: Target leaf boxes L; Target non-leaf boxes N ; Target downward potential gβ
of size p, β ∈ L ∪N ;

Output: Target potential fβ of size q, β ∈ L.
1: Pre-compute down to down translation matrix Dβ

2: Pre-compute down to target translation matrix Tβ
3: for all β ∈ L ∪N do
4: gβ ← gβ +DβdP (β)

5: Solve for dβ; Tβdβ ← gβ

6: for all β ∈ L do
7: Evaluate kernel matrix K(γ, β)
8: fβ ← K(γ, β)dβ

Downward step consists of two stages namely, (a) Local to Local (L2L): trans-

late the local expansion (LE) from parent to child, and (b) Local to Target (L2T):

Translate LE from box to individual targets.

The LE’s are computed by traversing the tree top-down and translating the LE’s

of the parent to compute the LE of its children. LE’s represent the effect of all distant

particles on the points within B. Algorithm 4 outlines the downward computation.

Tcomp l2l =
C1
d 2d.p2 + C2

d b.p
2

C0

(26)

The asymptotic complexity of this step is O(bp2).

If L is the leaf level, there there are b leaf nodes, where b = 2Ld or b = n
q
. We

perform L2T once for each target leaf node. This step essentially translates the
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contribution due to all the sources apart from the near neighbors to individual target

points.

The main computational step is a dense matrix-vector multiply, where the matrix

is of size p× q and its entries are computed on the fly.

Tcomp l2t =
C3
d b.p.q

C0

(27)

The asymptotic complexity of this step is O(np).

Table 6: Description of the main computational steps in KIFMM.

KIFMM step Description Computational Cache
Complexity Complexity

Upward Algorithm 1 O(np + bp2)

Near field Algorithm 2 O(nq) O

4N
L +

ku
N
q

L + 4N
L +

N
q(
Z
4q

) 1
3


Far field Algorithm 3 O(bkvp

3
2 + bp

3
2 log p) O

 (bt+bs) p
3
2

L + kv bt
L + bt(

Z
′

p
3
2

) 1
3


Downward Algorithm 4 O(np + bp2)

5.2.5 V list memory access complexity assuming cache blocking

We can alternatively use geometrical arguments to model the V list memory access

complexity of our implementation more accurately. Due to spatial reordering, there

is substantial locality in V list box identifiers. There is maximum reuse amongst

‘siblings’. For a given cache size Z, we can maximize reuse by blocking sibling boxes

and all their V list neighbors, along with all the translation vectors. Consider, for

example, the sibling boxes in 3D. At the level of leaf nodes, the union of all V list

neighbors for eight siblings is a solid cube encompassing the eight sibling sources

(2 × 2 × 2), and all the boxes that are +2 units away in each direction, for all

dimensions. If we go up the tree and view the leaf siblings as a single sibling, and

consider eight of these leaf siblings sets, we again need to block a solid cube of
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boxes consisting of (2 × 2 × 2) × (2 × 2 × 2) boxes and boxes that are +2 away in

each dimension, for a total of 512 boxes, along with the appropriate targets and the

translation vectors. This can be viewed as progressively gathering larger-sized siblings

and their neighbors until we can no longer fit them in the given cache. This idea is

summarized by Equation 28 for a tree of depth l and dimension d. The p
3
2 term

indicates the number of words per vector, determined by the precision p. k refers to

the number of levels in the tree away from l. This determines the amount of data

we are trying to block in the cache. The three main terms in the equation refer to

the number of targets, sources, and the translations. The min term for the sources is

needed to take care of boundary conditions where the full set of V list neighbors are

not available.

Z = (2kd + min((2k + 4)d, 2ld) + (7d − 3d))p
3
2 (28)

Given cache size Z, we can solve for k to determine an optimal blocking size. By

iterating over the entire tree using this blocking scheme, we can determine the total

memory traffic cost and estimate Tmem,v.

5.3 Optimal Scheduling

In this section, we first analyze the performance of the different phases of FMM based

on the analytical model discussed in Section 5.2 to predict the optimal scheduling

strategy on a hybrid CPU-GPU system. We then compare the performance of KI-

FMM on three architectures, namely dual socket sixcore Intel Xeon X5650 (CPU-

only), NVDIA Tesla M2090 “Fermi” GPU (GPU-only), and on a hybrid CPU-GPU

system with the above two processors (hybrid).

We consider two different particle distributions, namely a uniform random dis-

tribution and an elliptical (non-uniform) distribution. In the uniform distribution,

particles are uniformly distributed within a unit cube as seen in Figure 12. In the
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Figure 33: Directed Acyclic Graph for FMM.

elliptical distribution, particles are distributed on the surface on an ellipsoid with

an aspect ratio of 1:1:4. We use the analytical performance model to estimate the

optimal scheduling of the different phases of FMM for the uniform case.

Strategy

The dependencies between the various phases of FMM can be represented as a

directed acyclic graph (DAG) as shown in Figure 33. The DAG for the uniform

distribution is identical, bearing no contribution from X and W lists. The figure also

shows the distribution of work between CPU and GPU for various hybrid scheduling

strategies, for both uniform and non-uniform distributions.

For uniform distribution of points we have two scheduling strategies, hybrid1 and

hybrid2. The DAG for uniform distribution has two independent paths – the U list

calculation path and the up-V list-down path – with no communication between the

two paths until the very end. In hybrid1, we have the compute-intensive U list step

running on the GPU and the other data-intensive path executing on the CPU. This is

reversed for hybrid2. There is also an extra cost at the end when the result from the
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Figure 34: Breakdown of running time for a Laplace kernel potential calculation and
uniform and elliptical particle distributions (N = 4M , γ = 6, double precision).

GPU is sent back to the host over PCI-e, which we include in our overall execution

time. Although these are not the only possible schedules for the given DAG, they are

the most intuitive, as U list and V list account for approximately 90% of the overall

execution time. Using the models in Section 5.2, we can analytically predict which of

the two schedules will yield the best performance.

Results

Figure 34 compares the double-precision performance of FMM on CPU and GPU

systems for both uniform and elliptical distributions. The computation is broken

down into different phases for N = 4M particles with γ set to 6 digits of accuracy.

For the uniform case, we observe that majority of the time is spent in the U- and V-list

steps (which compute the near- and far-field evaluations). The time distribution is

more spread out for the elliptical distribution. But, in both cases, the GPU achieves

an overall performance improvement of 1.7× over the CPU.

To understand the impact of hybrid scheduling, we vary γ and Figure 35 shows

the performance of the three variants. Hybrid scheduling performs the best and the
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Figure 35: Comparison of run time on different system configurations for N = 4M
for uniform and elliptical distributions for varying γ.

improvement over GPU increases as we move to larger accuracy requirements.

5.4 Algorithmic Tuning Parameter

Based on the analytical execution time estimates, the total time T is, in the uniform

case, given by

T = Tu + Tv.

This expression in turn gives us the optimal value of q, our main algorithmic perfor-

mance tuning parameter:

q =
γ3/2

C1

√
C2 + C3

C0

βmem
. (29)

The constants C1, C2, and C3 can be estimated given a kernel and an implemen-

tation. The fraction C0

βmem
is the processor’s balance, in units of flops per word. For

our current state-of-the-art multicore implementation, C2

C3
≈ 50 and on a single socket

Intel Westmere node C0

βmem
= 2.6, which results in the optimal q ≈ 250. This value

matches our experimental results.
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If we further assume that q = O(γ
3
2 ), then T can be simplified as the expression

below.

T =
Nγ3/2

C0

(
C ′ + C

′′ C0

βmem

)
, (30)

where C ′ and C ′′ are constants defined appropriately in terms of the previous con-

stants. Equation (30) has a striking feature: if a processor becomes increasingly im-

balanced, meaning the ratio C0/βmem increases, we can compensate by decreasing our

accuracy requirement, which has a superlinear impact (γ3/2). Thus, understanding an

application’s minimum accuracy requirement becomes a profound scaling technique.

5.5 Summary

Our analysis refines the estimates of the constants, normally ignored in traditional

asymptotic analyses of the FMM, with calibration against our state-of-the-art imple-

mentation [35, 36]. Our detailed memory hierarchy communication analysis for the

kernel-independent FMM has a number of significant practical implications. One is

the first a priori estimate of the maximum points per leaf, q, which had previously

been regarded as a purely empirical tuning parameter. Another is the precise an-

alytical characterization of how reducing the desired accuracy, γ, can superlinearly

compensate for processor imbalance, a seemingly inevitable technology trend. In fact,

our model suggests a new kind of high-level analytical co-design of the algorithm and

architecture. For instance, classical analyses of balance [22, 29, 56, 57, 62, 73] relate

algorithmic properties, such as intensity (intrinsic ratio of useful operations to bytes

transferred), to a processor’s balance (its peak ops/sec divided by peak bandwidth).

Thirdly, we can accurately prediction the optimal static computation schedules for

heterogeneous systems, yielding a nearly 2× speedup from a previously unexpected

scheduling scheme.
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We study the use of a novel general-purpose parallel programming model, called
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Concurrent Collections (CnC) [27,60,61]. In CnC, the programmer expresses her com-

putation in terms of high-level application-specific components, partially-ordered only

by minimal semantic scheduling (data- and control-flow) constraints (Section 6.2).

This model encourages the programmer to focus on expressing the computation at a

high-level without unnecessary serialization and gives the run-time system flexibility

in scheduling operations.

Our central contribution is the first extensive study of the performance potential

for HPC applications using the CnC model, based on Intel’s v0.3 Linux CnC imple-

mentation for shared memory multicore systems [2]. We discuss which aspects of the

CnC language and run-time could be improved. Our study is essential to establishing

what the potential is for achieving high performance using CnC.

We express and analyze a prior asynchronous-parallel variant of dense Cholesky

factorization when written using CnC. When coupled with a well-tuned BLAS, CnC

can closely match or exceed the performance and scalability of the vendor-tuned

Intel Math Kernel Library (MKL). Our CnC-based code also compares favorably to

PLASMA 2.0, a state-of-the-art domain-specific library-based approach (Section 6.3).

Both MKL and PLASMA use an asynchronous-parallel approach, and so constitute

the current state-of-the-art.

For additional comparison, we provide results in alternative programming models,

including the “off-the-shelf” solution of ScaLAPACK with a shared memory imple-

mentation of MPI (MPICH2+nemesis); OpenMP; and Cilk++. The principal dif-

ference between CnC and these models is CnC’s natural support for asynchronous

execution.1 Our findings quantify the gap between asynchronous-parallel and bulk-

synchronous execution (Section 6.4).

1We do not use the most advanced features of OpenMP 3.0 and Cilk++, nor do we compare
directly to the FLAME/SuperMatrix and library-based SMPSs approaches [32, 80]. Nevertheless,
for Cholesky, we would expect at best comparable performance to PLASMA.
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Finally, we develop a complete CnC implementation of a novel and partly asynchronous-

parallel generalized eigensolver for dense symmetric matrices, of which Cholesky is a

small component (Section 6.3). This non-trivial computation is, as far as we know,

the first of its kind. As such, we show that it is feasible to express a complex al-

gorithm within CnC. Our implementation outperforms the Intel MKL equivalent by

1.1–2.6× (Section 6.4).

6.1 Background and Related Work

Although there are several papers about various aspects of the CnC model, to date

there have been no performance demonstrations or evaluations to assess its viabil-

ity, particularly for high-performance computing (HPC) applications. This chapter

presents the first such performance study. In particular, we ask whether CnC delivers

competitive performance on computations with well-defined performance targets and

challenging algorithmic characteristics. For our evaluation, we select dense linear al-

gebra computations written for multicore systems in an asynchronous-parallel style,

by which we mean bulk-synchronous parallel behavior is replaced by more fine-grained

task-level parallelism and localized synchronization [28, 32, 80]. This approach (a) is

naturally suited to cores with relatively smaller cache or local-store memories, and

(b) reduces the degree of synchronization, whose cost may reasonably be expected to

increase with increasing core counts. There are numerous successful demonstrations

of this approach for dense linear algebra on current multicore systems [28, 32, 69],

meaning there are clear and rigorous performance targets.

Scope.

Importantly, this study is about the performance potential of CnC. Such studies

are essential for any new parallel programming model to show value for HPC. Our

positive findings show there is potential in CnC as far as performance is concerned.

As an evaluation of CnC for HPC, our use of dense linear algebra limits the
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findings’ generalizability to one class of computations. Still, this class has challenging

properties (e.g., our eigensolver), and so we believe that the basic CnC approach could

still be an appropriate starting point for similarly asynchronous-parallel algorithms

in other areas.

Equally important to questions of performance are those of productivity. We argue,

qualitatively, that CnC is suitable for these computations. However, we stress that

a true assessment is a human-factors question, requiring a separate and carefully

controlled experiment, and as such is beyond the scope of the present study.

Related Work. Existing work on asynchronous-parallel algorithms for dense

linear algebra covers Cholesky, LU, and QR factorization, as well as so-called “two-

sided” transformations, Hessenberg, tridiagonal and bidiagonal reduction [28,32,69].

The implementations are based on some combination of schedulers and APIs based

on domain-specific abstraction (e.g., SuperMatrix [32]), or hand-coded or pragma-

directed schemes (e.g., SMPSs [69, 80]). The present study contributes experience

working in a novel model and a novel asynchronous-parallel implementation of a

different algorithm (the eigensolver).

The CnC programming model itself has rich influences from the long history of

concurrent programming models, including tuple-spaces, streaming languages, and

dataflow languages [31,42,92]. CnC’s key distinction is its treatment of both control

and dataflow, thereby making CnC more general than pure streaming or classical

data flow approaches. Also, item collections in CnC allows for more general indexing

than dataflow arrays. While both CnC and tuple space languages like Linda specify

computation using tags, they differ in a number of aspects. In CnC there is a clear

separation between tags and values, while there is no distinction between the two

in Linda. Moreover items are accessed by value and not by location, and adhere to

dynamic single assignment form, as noted by Budimlic, et al. [27].
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6.2 Overview of CnC

!  Semantic correctness

!  Application constraints

! Architecture

! Parallelism 

! Locality

! Overhead 

! Load balancing

! Distribution among processors

! Scheduling within a processor

Application

Concurrent Collections

Domain Expert: (person)
Only domain knowledge

No tuning knowledge

Tuning Expert: (person, 

runtime, static analysis)
No domain knowledge

Only tuning knowledge

Mapping to target platform

Figure 36: Outline of CnC’s model of computation.

This section provides a cursory overview of the basic CnC concepts relevant to our

implementation and experimental results. Portions of this material are taken from

existing detailed summaries [2, 27,60].

The CnC model as illustrated in Figure 36 separates the specification of the com-

putation from the expression of its parallelism. This design can simplify the tasks of

a domain expert, who is responsible for expressing the computation, from the tasks

of a parallelization and tuning expert (possibly the same person, a different per-

son, or some software/compiler), who identifies the parallelism and performs schedul-

ing/distribution and manages communication/synchronization. CnC combines ideas

from earlier language work on tuple-spaces, streaming, and data flow models [31,42,92]

(see Section 6.1).

6.2.1 Computation Specification

We summarize the basic CnC model by an example. Consider the dense outer product

computation, Z ← x · yT , where x and y are two column vectors and Z is a matrix
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Figure 37: CnC graphical representation of the outer product operation, Z ← x · yT .

of appropriate dimension. Algorithmically, we compute Zi,j ← xi · yj for all pairs,

(xi, yj).

The domain expert specifies the computation in a form that can be represented

by a graph, as shown in Figure 37 for the outer product. This graph has 3 kinds

of nodes: computational steps, data items, and control tags. Directed edges show

producer-consumer relationships among these nodes.

A step is the basic unit of execution, which for the outer product is pairwise ele-

ment multiplication.2 The blue oval in Figure 37 is a step collection, which statically

represents the set of dynamic instances of these multiplications.

Data is represented using item collections. Here, x, y, and Z are the three item

collections, shown by boxes in Figure 37. Each item collection comprises item in-

stances, which in this case are the elements of the x, y, and Z objects. These items

serve as the basic unit of storage, communication, and synchronization.

Steps may consume items (item → step) or produce them (step → item), shown

by directed edges in Figure 37.

Each instance of a step or item has a unique application-specific identifier, or tag,

2We consider this very fine granularity for example only, as in practice one might wish to choose
a larger grain, such as a block.
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which is a tuple of tag components. For the outer product, it is natural to use element

indices as tags. In Figure 37, we denote the tag for x by < i >, y by < j >, and Z

by < i, j >.

Tag collections (also called tag spaces) specify exactly which instances of a step will

execute. A step collection is associated with exactly one tag collection/space; a step

instance executes only if a matching tag instance exists. For the outer product, we

show the tag space by a triangle and denote it by < i, j >. For instance, only if the tag

collection has < 3, 10 > does the corresponding pairwise multiply for Z3,10 ← x3 · y10

execute. We say that a tag collection prescribes a step collection, and show that

visually with a dashed undirected edge connecting the tag collection to the step

collection. Multiple step collections may be prescribed by the same tag collection.

Importantly, tags indicate whether a step will execute, but nothing about when it

executes. This distinction shows in part how CnC separates scheduling decisions

from the computation’s specification.

Though not shown here, a step may produce tags. In this way, a step may control

what other steps execute. This facility is part of what makes CnC a more flexible

and general model than, say, a pure streaming language.

Lastly, Figure 37 contains “squiggly” lines that are missing either a source or a

sink. These lines mean that the item or tag comes from or goes to the environment,

which is the external code that invokes this computation. For the outer product,

the environment provides the data items and control tags. (There are other designs;

for instance, we could have added an additional step that consumes data containing,

say, the dimensions of the x and y vectors, and then produces the control tags that

prescribe the pairwise multiply step.)
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6.2.2 Textual Notation

There is a formal textual representation of this graph. We illustrate this representa-

tion in Section 6.3, when we describe the CnC implementations of our target dense

linear algebra computations. In the current implementation, a translator converts

this specification into C++ code, generating subroutine stubs corresponding to the

steps. The programmer must implement these stubs (presumably as purely sequential

code).

When the run-time calls the sequential step code, it provides the tag and data

item instances. The step code calls an API to get the input tags and, if it produces

tags, put them back “into” the graph. We refer the interested reader to the CnC

documentation [2].

6.2.3 Semantics and Execution

If a step executes and produces an item or a tag, that item or tag becomes available.

If a tag collection prescribes a step collection and a particular tag becomes available,

then the step is prescribed. If all items for a particular step are available, the step

becomes inputs-available. If a step is both inputs-available and prescribed, then it is

enabled and may execute. The program terminates when no step is executing and

no unexecuted step is enabled. This termination is valid if all prescribed steps have

been executed.

The CnC model permits many run-time system designs, including those for dis-

tributed memory systems using MPI as well as shared memory versions [27]. We use

Intel CnC 0.3, which is based on the Intel Thread Building Blocks (TBB) [2]. The

TBB run-time system is based on a Cilk-style work stealing scheduler, with work

queues implemented to use last-in first-out (LIFO) order.

In the Intel CnC, there are four types of events : start, complete, idle, and requeue.

Start signals the beginning of execution of a step, while complete signals its successful
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completion. An idle event is the time spent between the end of one step and start of

the next, when the thread is waiting to be scheduled or waiting for data to become

available.

The requeue event is specific to the Intel CnC. The run-time may start executing

a step as soon as the prescribing tag is available. Thus, if some of the step’s inputs

are not yet available, the step may be requeued and tried again later. We revisit

requeuing in Section 6.4.

6.3 Dense Linear Algebra in CnC
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(a) Initial factorization
of the (1, 1) tile.
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(b) Triangular solve us-
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Figure 38: An illustration of asynchronous Cholesky factorization.

Algorithm 5 Tiled Cholesky factorization algorithm of Buttari, et al. [28].

Input: Input matrix: B, Matrix size: nxn where n = p ∗ b for some b which denotes
the tile size

Output: Lower triangular matrix: L
1: for k = 1→ p do
2: Conventional Cholesky (Bkk, Lkk);
3: for j = k + 1→ p do
4: Triangular Solve (Lkk, Bjk, Ljk);
5: for i = k + 1→ j do
6: Symmetric Rank-k Update (Ljk, Lik, Bij);

In this section, we discuss the CnC implementations of the asynchronous-parallel

variant of dense Cholesky factorization and a novel asynchronous-parallel dense gen-

eralized eigensolver.
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6.3.1 Asynchronous-Parallel Cholesky

A Cholesky factorization of a symmetric positive definite matrix B is the product

L · LT , where L is a (lower) triangular matrix. We specifically consider Algorithm 5,

which is the tiled Cholesky algorithm of Buttari, et al. [28]. This algorithm is based

on decomposing B into blocks (or tiles), and computes L in an asynchronous parallel

manner suitable for multicore hierarchical memory platforms.

Figure 38 illustrates how asynchronous-parallelism arises in Algorithm 5. We first

factor B11 = L11 ·LT11 (line 2 of Algorithm 5 for k = 1), using a conventional sequential

Cholesky algorithm. Then, lines 3–4, which operate on blocks B21, B31, and B41 can

execute in parallel. Moreover, lines 5–6 suggest that once we complete operating on

the B21 block, we can do a symmetric rank-k update of block B22 in one thread while

another thread is still, say, performing the triangular solve on block B31. Hence, there

is a lot of task- and data-level parallelism in Cholesky.

6.3.2 Cholesky in CnC

This asynchronous-parallel behavior maps naturally to the CnC constructs seen

in Section 6.2. Lines 2, 4, and 6 in Algorithm 5 map to steps in CnC. The index

iteration variables of Algorithm 5 constitute a natural choice for tags which helps

distinguish between different data items (tiles in this case).

Figure 39 shows the graphical computation specification of tiled Cholesky in CnC.

For simplicity, we omit the data items from this graph. Below the graph, we show the

textual representation of the graph that the programmer might write. CnC translates

the textual representation into C++ code containing stubs for the programmer to fill

in code, as illustrated in Figure 40. That is, at this point, all the programmer does

is input the appropriate tags and data items along with the serial logic of the step.

For the serial step implementation, we call tuned sequential vendor BLAS routines.

This allows us to couple CnC with an optimized serial library to obtain an efficient
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Cholesky 

<k> <k,j> <k,j,i> 

ConvChol Trisolve Update 

// Item: Matrix L, tagged by <k, j, i>
// Suppose ’BlockedMatrix<T>’ is a C++ class
// that encapsulates the matrix data,
// dimension ’n’ and block size ’b’.
[BlockedMatrix<double>* L: int, int, int];

// Tag declarations
<C_tag : int>; // <k>
<TS_tag: int, int>; // <k, j>
<U_tag : int, int, int>; // <k, j, i>

// Step Prescriptions
<C_tag> :: (ConvChol);
<TS_tag> :: (Trisolve);
<U_tag> :: (Update);

// Input from the environment
env -> [L], <C_tag>;

// Step executions
[L] -> (ConvChol);
(ConvChol) -> [L], <TS_tag>;

[L] -> (Trisolve);
(Trisolve) -> [L], <U_tag>;

[L] -> (Update);
(Update) -> [L];

// Output to environment
[L] -> env;

Figure 39: Top: CnC graphical notation of Cholesky factorization. The red oval is
the conventional Cholesky step; the green oval is the triangular solve step; and the
grey oval is the symmetric rank-k update. Bottom: Textual notation of Cholesky
factorization. Includes one statement for each relation in the graph.
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parallel implementation with minimal coding effort. Figure 40 shows the actual step

code with the call to dtrsm which performs triangular solve. The API calls (Get/Put)

before and after the BLAS function call reads in the input tile(s) identified by the tag,

performs the computation and outputs tile(s) with the corresponding tag identifier.

The input/output and computation performed might vary across different steps, but

the basic principle is the same.

Note that the choice of tags is important, as it determines the amount of par-

allelism exposed. Tag choice is largely natural for dense linear algebra but a poor

choice of tags could impede performance.

Once, the data is available and the step inputting the data is prescribed by a

valid tag identifer, the CnC run-time schedules that particular step instance for exe-

cution. Given the freedom to schedule steps, CnC schedules them in a way to expose

asynchronous-parallel execution.

As with related approaches, this CnC-based implementation contains a tuning

parameter, the block size, which we have assumed the domain expert introduces and

selects. This parameter is critical to performance in that it implicitly controls the

degree of available asynchronous-parallelism.

6.3.3 Generalized Symmetric Eigensolver

Though illustrative, the Cholesky example is fairly compact. To better understand

and assess CnC, we also developed a tiled and partly asynchronous-parallel symmetric

generalized eigensolver, which is considerably larger than Cholesky. This is one of

the first efforts on designing and implementing an asynchronous eigensolver and most

importantly a model like CnC allows us to express the asynchronous-parallel behavior

naturally with relatively modest effort.

Algorithm.

To compute the eigenvalues, λ we solve the linear algebra equation Az = λBz.
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StepReturnValue_t Trisolve(cholesky_graph_t& graph, const Tag_t& TS_Tag)
{

char uplo = ’l’, side = ’r’;
char transa = ’t’, diag = ’n’;
double alpha = 1;

const int k = (TS_Tag[0]);
const int j = (TS_Tag[1]);

// For each input item in this step
// retrieve the item using the proper tag

// User code to create item tag here
BlockedMatrix<double>* A_block = graph.L.Get(Tag_t(j, k, k));
BlockedMatrix<double>* Li_block = graph.L.Get(Tag_t(k, k, k+1));

// Get block size
int b = A_block->getBlockSize ();

// Step implementation logic goes here
dtrsm(&side, &uplo, &transa, &diag, &b, &b, &alpha, Li_block, &b,
A_block, &b);

// For each output item for this step
// put the new item using the proper tag

// User code to create item tag here
graph.L.Put(Tag_t(j, k, k+1), A_block);

return CNC_Success;
}

Figure 40: CnC code for the triangular solve step of the Cholesky algorithm. The
black and gray text in this code snippet denote the stubs that are generated automat-
ically using the inputs and outputs defined in the graph. The code fragments filled
in by the user are indicated in bold (blue color text). Note: We call tuned BLAS for
the sequential step implementation (dtrsm in this example).
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Here, A is symmetric and B is symmetric positive definite matrix. Although this

implementation is based on the LAPACK routine dsygvx, we note that unlike the

original algorithm our implementation in CnC is in fact asynchronous-parallel.

The basic algorithm implemented by dsygvx has four components. First, we com-

pute the Cholesky factorization B → LLT . Next, we reduce the real symmetric-

definite generalized eigenproblem to so-called standard form, (L−1 ∗A ∗ L−T )z = λz.

Methods exist for computing the eigenvalues directly from the generalized form. The

third component is reduction of the symmetric matrix to symmetric tridiagonal form,

using an orthogonal similarity transformation, T = Q′ ∗ A ∗Q. This step can be de-

composed into a number of kernels, including matrix-vector multiplication, symmetric

matrix vector multipliction, and dot product, among others. Finally, we extract the

eigenvalues from the tridiagonal matrix using a modified QR algorithm. This step is

not compute intensive and may be computed by a single thread.

Asynchronous-parallelism.

Figure 41 is a directed acyclic graph (DAG) of the first two steps of the eigensolver

for a matrix partitioned into a 3×3 grid of blocks. Nodes represent computation and

edges represent dependencies among them. Each block is labeled by the appropriate

submatrix block coordinates. Note that all nodes at any level of the DAG (highlighted

by a grey oval) have no dependencies among themselves. Although initially the com-

putation is sequential until root node finishes execution, there is abundant parallelism

thereafter. As is evident from the figure, different tasks, denoted by different colors,

can execute concurrently.

In the eigensolver, we not only execute steps in Cholesky asynchronously, but also

interleave them with steps of the reduction to standard form (e.g., right triangular

solve, symmetric matrix multiplication). The CnC code easily expresses this concur-

rency, and the run-time exploits that concurrency naturally through its scheduling as

discussed in Section 6.4.
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Symmetric matrix multiplication 1 

Symmetric rank-2k update 

Symmetric matrix multiplication 2 

Figure 41: DAG representation of the eigensolver.

Although it is possible to extract parallelism using CnC from the third component

of the eigensolver (reduction to tridiagonal form), the inherent dependencies inhibit

asynchronous-parallel execution. We would need a different algorithmic approach

altogether.

Parallelization.

Once the dependencies between the steps are laid out, it is possible to extract

parallelism more efficiently. To that end, we parallelize all sub-kernels within the

first three phases. Unfortunately, one of the most compute-intensive kernel is the

symmetric matrix-vector multiply (dsymv), which was not efficiently implemented in

the BLAS. Hence, for this kernel alone, we manually parallelize the computation in

CnC. This trade-off is worth while as we observe a dramatic increase in performance

for a slight increase in programmer effort.
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Table 7: Description of the main computational steps in KIFMM.

Vendor AMD Intel Intel
Proc. Model Opteron 8350 Xeon E5405 Xeon X5560
Proc. Name Barcelona Harpertown Nehalem

Clock(GHz) 2 2 2.8
# Sockets 4 2 2
Cores(Threads)/Socket 4(4) 4(4) 4(8)
L1 Data Cache 64 KB/core 32 KB/core 32 KB/core
L2 Data Cache 512 KB/core 6 MB/2cores 256 KB/core
Shared L3 Cache 2 MB/socket – 8 MB/socket
DRAM Capacity 32 GB 4 GB 12 GB
DRAM Bandwidth (GB/s) 21.3 21.3 51.2
DP Peak Performance (GFlop/s) 128 64 89.6

6.4 Results and Discussion

In this section, we first evaluate our CnC-based Cholesky and symmetric generalized

eigensolver implementations on the three state-of-the-art multicore platforms shown

in Table 7. We then compare their performance to six other implementations (double-

precision) and execution-time bounds based on critical path length. For the non-

CnC implementations, we make a “best effort” to do some tuning, and always use

sequential MKL when possible. Finally, we examine CnC’s scheduling compared to

bulk-synchronous strategies.

We compare the following implementations.

Baseline – Sequential MKL: The Intel Math Kernel Library (MKL) imple-

mentation of Cholesky factorization, dpotrf, run in sequential mode with the input

matrix in column-major storage. This baseline is highly tuned by Intel. We also

measure multithreaded MKL (see below). [In the plots, we use sequential MKL im-

plementation as the baseline and show this by hollow circles.]

Blocked iterative OpenMP + sequential MKL: We implemented the tiled

Cholesky Algorithm 5, where we (1) distribute the loop in line 3 to get two ‘j’ loop

nests, i.e., one for triangular solve and one for symmetric rank-k update; and then
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(2) use OpenMP to parallelize the ‘j’ loops. We then use the highly-tuned sequential

MKL for each block operation. We tune the block size by exhaustive search for each

input size, and report the best performance. [plus signs ]

Cilk++ 1.0.3 block recursive + sequential MKL: We implemented a blocked

recursive Cilk++ implementation. In particular, the entire algorithm including the

triangular solve and rank-k update steps are performed recursively [11], so as to be

able to easily use the Cilk++ thread spawn keyword. The recursive form of each step

partitions the matrix into roughly half in each dimension. We stop recursion at a

tunable block size, determined by exhaustive search for each input matrix dimension.

We report the best performance. We use sequential MKL for the leaf kernels. [crosses ]

Multithreaded MKL: We use the multithreaded MKL implementation of Cholesky

factorization, dpotrf. We report performance on the the number of cores that delivers

the highest performance, up to the maximum available cores. The input matrix is in

column-major storage. [hollow diamonds ]

ScaLAPACK + shared memory MPI: We use ScaLAPACK 1.8.0 with an

MPI “tuned” for shared memory. In particular, we use MPICH2 1.0.8 compiled

with the Nemesis device. We tune the processor grid, trying all valid configurations

for a given number of MPI tasks, trying all numbers of tasks, and report the best

performance. [up-pointing triangles ]

PLASMA + sequential MKL: We use the Cholesky implementation that is

part of freely available PLASMA 2.0.0 package. There is a block size parameter, which

we tune for each problem size. Since PLASMA currently does not solve eigenvalue

problems, we compare only against our Cholesky. [downward pointing triangles ]

CnC + sequential MKL: The CnC implementation of Cholesky using sequen-

tial MKL for the steps. The data is stored in blocked data layout [11, 28, 32, 51].

The block size used in the layout is determined by an exhaustive search over all pos-

sible values for a given input matrix size. The block size that achieves the highest

109



performance is chosen. [filled squares ]

DGEMM Peak: The peak performance (GFlop/s) of double-precision dense

matrix multiplication measured using all the cores on the system. Rather than bench-

marking all sizes, we show a representative GFlop/s number for n = 10, 000, which

gave the best DGEMM performance on all three platforms among all values of n that

we considered for Cholesky and the eigensolver. [dashed lines ]

Theoretical Peak: The theoretical machine-specific upper-bound on double-

precision GFlop/s achievable. [solid lines ]

Compilers : For our CnC Cholesky factorization, eigensolver, OpenMP and ScaLA-

PACK implementations, we use the Intel v11.0 and v10.1 compilers on the Intel and

AMD platforms respectively. We use MKL v10.0.3.020 on Barcelona, v10.2 on Ne-

halem, and v10.1.0.019 on Harpertown. For our Cilk++ implementation, we use the

gcc 4.2 compiler that ships with it.

6.4.1 Cholesky factorization

Figure 42 presents the performance scalability by architecture as a function of matrix

size for double precision Cholesky factorization. The baseline performance results

correspond to sequential MKL values. On all machines, we use the number of cores

that delivers highest performance for each matrix. We use the theoretical flop count

of n3/3 when reporting performance.

On Nehalem, our asynchronous-parallel CnC Cholesky compares favorably to

PLASMA and MKL. The sequential MKL baseline runs at over 10 GFlop/s. By

contrast, OpenMP with sequential MKL is 2.8× faster than the baseline; and re-

cursive Cilk++ with sequential MKL and ScaLAPACK using shared memory MPI

provides only an additional 10% over that. We observe that our fully asynchronous-

parallel CnC implementation using sequential MKL delivers very good scalability

(speedup of nearly 7.3× in comparison to the baseline), upto 8 threads. Beyond this,
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Figure 42: Performance summary of double precision Cholesky factorization: Per-
formance in GFlop/s (left y-axis) and percentage of theoretical peak (right y-axis) as
a function of matrix size, comparing seven implementations discussed.
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Figure 43: Performance summary of double precision Eigensolver: Performance
(GFlop/s) for the three implementations discussed. The flop count used is measured
using PAPI performance counters.
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HyperThreading yields no added benefit on all three competiting implementations

(MKL, PLASMA and CnC). Nevertheless, CnC Cholesky on Nehalem achieves more

than 85% of the theoretical peak performance for the largest matrix size (n = 10, 000)

where DGEMM is at 92%.

We make similar observations on Harpertown whose Core architecture is simi-

lar to Nehalam. Unlike Nehalem, there is no simultanous multithreading (SMT) on

Harpertown. Once again, our CnC implementation achieves near perfect scaling, a

speedup of 7.5× on 8 cores, competing well with MKL and PLASMA implementa-

tions. Moreover, we achieve more than 80% of the theoretical peak performance.

The data on Barcelona also follow similar trends except, interestingly, Cholesky

factorization achieves only half the theoretical peak performance. Nevetheless, our

CnC implementation delivers performance on par with the state-of-the-art PLASMA

and exceeds multithreaded MKL for large problem sizes. Barcelona performance also

shows good scalability, nearly 11× on 16 cores. (Note: We did check AMD’s BLAS,

which was slower than MKL.)

In summary, these results show the potential of CnC to exploit the available

parallelism, achieving competitive performance with reasonable programming effort.3

6.4.2 Eigensolver performance

Figure 43 compares the double precision eigensolver performance on our three ma-

chines. For all platforms, we compare: (i) the baseline sequential MKL implementa-

tion; (ii) the multithreaded MKL implementation; and (iii) our CnC code. Though

all three codes can compute both eigenvalues and eigenvectors, we compute just the

eigenvalues since it is generally recognized that dgsyvx is best suited to that case.

We observe that CnC delivers significantly higher performance than multithreaded

3Although we do not use the most recent version of MKL on Barcelona and Harpertown, we
believe the comparisons made are fair in that we use the same MKL for all implementations on a
given platform.
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MKL on all three systems, with speedups of 1.9×, 2.6×, and 1.5× in the best case

for Nehalem, Barcelona, and Harpertown, respectively.

Three factors contribute to this improvement. First, the critical path of the asyn-

chronous-parallel CnC implementation is smaller than multithreaded MKL due to a

reduced number of synchronizations. Secondly, the symmetric matrix-vector multiply

kernel is not parallelized in MKL, as we confirmed by testing. Finally, on Barcelona

and Nehalem, NUMA effects likely play an additional role as well, causing the MKL

eigensolver implementation to not scale beyond 1 socket. Hence we compare against

the 4-thread and 8-thread runs only on Barcelona and Nehalem respectively, which

was the best result we could obtain when searching over all numbers of threads up to

16 (to match the 16 cores on Barcelona and 8 cores hyperthreaded on Nehalem).

Unlike MKL, in our CnC implementation we manually parallelized the symmetric

matrix-vector multiply routine, thereby enabling the computation to scale up to the

maximum number of cores/threads.

Interestingly, we do not see scalability issues on Harpertown. The MKL eigensolver

scales up to 8 threads even though the symmetric matrix-vector multiply is sequential.

Our partly asynchronous-parallel CnC implementation is up to 1.5× faster than mul-

tithreaded MKL. Even though the eigensolver implementation is non-trivial and much

more complex than Cholesky factorization, our CnC implementation achieved a high

level of performance, showing that at least the basic model and run-time system have

good potential. We refer interested readers to [34] which contains additional details

on comparison of CnC against other asynchronous approaches, detailed scalability

results, which we omit in this paper due to space constraints.

6.4.3 Scheduling

The current run-time system is characterized by a static grain size, dynamic schedule,

and dynamic distribution. It is built on top of the TBB [3]. TBB controls the

114



scheduling and execution of steps in a CnC program. TBB implements a Cilk-like

work-stealing scheduler that supports fine-grained task parallelism [23].

Tag generation.

In CnC, we have the option either to pre-generate tags or generate them on-the-fly.

Figure 44 depicts an execution timeline for the Cholesky factorization of a matrix of

size 1000, for two approaches to tag generation. Figure 44(a) shows the approach in

which we pre-generate all tags. Owing to the run-time’s LIFO queuing (Section 6.2.3),

the last tag generated will be scheduled first. That is, for Cholesky, first-in-first-out

(FIFO) is preferable. We typically want the first tag value in tag space < k > to be

scheduled first since all other steps are stalled until this step finishes execution. One

solution is to generate tags with data on-the fly shown in Figure 44(b).

We layout the execution profile of each thread along the y-axis (one “row” per

thread); and on the x-axis show execution time, normalized in both charts to the

time taken by longest executing thread. The different color-coded regions represent

the different step instances.

We make a number of observations. First, the dynamic tag approach takes only

75% of the time taken by the pre-generated tags approach. When pre-generating

tags, 30.6% of the overall execution time is spent on requeue events for the matrix

size 1000 (sum of green regions). The computation is also not load balanced, with

thread 8 completing much earlier than the other threads. When we explicitly generate

tags only when data becomes available, we observe a marked decrease in the number

of requeue events, thereby yielding the 25% improvement in time. Moreover, the

computation is better load balanced.

By reducing requeue events, we increase the number of Get and Put operations,

but the overhead due to these operations is much less than the requeue delays, as

shown by the decrease in the overall running time.

However, we also observed for larger n, requeue delays were actually not that
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Figure 44: Scheduling for Cholesky factorization (matrix size = 1000)
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Figure 45: Scheduling timeline for Cholesky factorization using Cilk.

significant. In particular, recall from Figure 44 that the time spent on the factorization

of the first block B11 is about 20% of the entire execution time. Hence, all other

threads waiting for the input from the first step are requeued. When n = 6000,

less than 1% of the time was spent on factoring the first block, and so the time

spent on requeue events was only 0.56% of the overall execution time. Thus, the on-

the-fly approach does not pay-off in all instances and, in fact, becomes a “tunable”

parameter.

Comparison to bulk-synchronous approaches.

It is well-established that asynchronous scheduling can eliminate the idle times

present in bulk-synchronous approaches. For example, Figure 45 shows the scheduling

of Cholesky factorization in our Cilk++-based recursive implementation. There is a

synchronization stage at the end of every task. Thus, the idle time increases because

fast threads are waiting for the slower ones to complete execution. This behavior is a
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consequence of our choice of a recursive implementation, which is encouraged by the

Cilk++ model, as well as the model’s nested DAG parallelism.

In the CnC implementation, there is no synchronization of tasks and the execution

driven by tags imposes only one condition on preserving the data dependency between

the steps. This eliminates idle time, as is evident when comparing Figures 6.4.3

and 45. Also, these figures show a vertical dotted line which is the estimated lower-

bound on execution time. Given a weighted DAG (node weights measured as the time

spent in the corresponding step, and the edge weights to be 0), the lower bound is

computed by finding the longest path from the start to end (sequential steps along the

critical path). We observe that CnC performs extremely well, within 10% of its lower

bound; by contrast, the bulk-synchronous code performs well-below its potential.

Figure 46 shows scheduling of the eigensolver on Harpertown. The scheduling

figure only shows the asynchronous-parallel portion of the eigensolver, which has

the Cholesky and reduction to standard form components. Figure 46(a) shows how

the scheduling unfolds when all the tags have been generated before the start of

computation. In this part of the computation, more than 80% of the execution time

is spent on requeue events. This behavior is due to the LIFO scheduling, where tags

are scheduled last-in-first-out. Since the number of tag spaces and tags in each tag

space are much larger compared to Cholesky factorization, the amount of requeue is

significantly higher at start. However, the number of requeue events for the entire

computation is only 33.3% of the execution time. Figure 6.4.3 shows an 85% reduction

in overall execution time of the zoomed portion by generating tags only when input

becomes available.

In short, we can achieve high performance in CnC, but there is still scope for

additional improvements and tuning in the run-time system with respect to scheduling

of steps, locality, and data movement.
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Figure 46: Scheduling for Eigensolver (matrix size = 1000)
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6.5 FMM in CnC

In Chapter 3, we discussed a bulk-synchronous parallelization strategy for FMM.

Using a model like CnC, we could exploit the fine grained asynchronous-parallelism in

FMM effectively. Figure 33 shows the dependencies between the different phases of the

FMM. A model like CnC will not only be able to schedule the different independent

phases at the same time but at a much finer granularity than we have done before.

For example, Figure 33 shows that there is a dependency between Up (leaf) and Up

(non-leaf). But, the DAG fails to show that a non-leaf box depends only on a subset

of the leaf boxes. Once these leaf boxes have been processed, the non-leaf box can be

evaluated without waiting for the entire Up (leaf) phase to finish execution. CnC can

under the hood handle the scheduling of these independent tasks which otherwise the

programmer has to handle in our previously adopted OpenMP programming model.

This is the first attempt at mapping an irregular prototype of a real scientific

application in CnC. Our goal in this study is to see if a general purpose programming

model such as CnC can achieve performance on par with hand-tuned and hand-

parallelized code with relatively low programmer effort. This raises a number of

challenges compared to our previous work on mapping dense linear algebra in CnC

mainly due to the data access pattern and complexity inherent in the FMM algorithm.

We will discuss this in detail in the following section.

6.5.1 Mapping FMM in CnC

In the traditional OpenMP approach to parallelizing FMM, we adopt a bulk-synchronous

strategy. We simply parallelize each stage of the FMM algorithm by adding a parallel

for construct which loops over all the boxes or nodes in the tree. This approach is

easy to implement but the biggest drawback is that it requires synchronization at

the end of each stage along with redundant loads and stores of intermediate data.

This is unscalable especially moving to future many-core platforms where the cost of
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synchronization is expected to grow and cost of moving data more expensive.

CnC overcomes both of these drawbacks by scheduling tasks as soon as their

dependencies are satisfied, thereby resulting in asynchronous execution with no ex-

plicit synchronization and also alleviating the need for storing intermediate values. A

straightforward approach to converting a traditionally parallelized or sequential code

to CnC is to assign a tag for each node in the tree. This approach exposes abundant

parallelism and we discuss below how this works for each phase of the algorithm.

Up: The leaves of the Up phase are independent and can be scheduled as soon

as the CnC graph is initialized. The parent nodes are dependent on the respective

children and can be scheduled as soon as the 8 children in 3D (or 4 children in 2D)

finish execution.

U-list: As the DAG in Figure 33 illustrates, the U-list phase is independent of

all phases and is also ready to execute as soon as the CnC graph is initialized.

V-list: Each target box in this phase depends on 189 source boxes in its far-

field which are produced by the Up phase and therefore, there is a data dependency

between V-list and Up phases. Since we have parallelized at the granularity of boxes,

each task cannot execute until all of its 189 dependencies are satisfied.

Down: This phase depends on the result from V-list and children at each level

depend on the parent. Once the parent finishes execution, all of its children can be

scheduled simultaneously.

Figure 47 shows the scheduling timeline generated using Intel’s Trace Analyzer and

Collector (ITAC) tool on a dual-socket quad-core Intel Sandybridge. The scheduling

figure shows the different phases running asynchronously and in parallel on all the

8 cores. We don’t observe any idle time. It also shows that the V-list phase of the

computation gets requeued multiple times before finishing execution as seen by the

number of calls to this step. This behavior is due to the current implementation of

the CnC runtime where steps are scheduled as soon as the tags are available. Hence,
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Figure 47: Scheduling timeline using ITAC for FMM (Naive) for an uniform distri-
bution of 1 million points and q = 100.

if the data dependencies are not satisfied, the step gets requeued and this leads to

significant performance degradation. We got around this bottleneck in dense linear

algebra by generating tags only when the data became available. But, this becomes a

challenge in the V-list phase of FMM because we are dependent on 189 distinct data

items which are produced by 189 distinct instances of the Up step. Moreover, due

to the CnC’s execution model of decoupling when a step actually executes from its

semantics, the application programmer has no knowledge of when all the dependencies

are satisfied during the dynamic execution of the program.

6.5.2 Task-parallel V-list

As a result of these issues in the runtime system, the naive CnC implementation for

the problem setup in Figure 47 was 4× slower than the corresponding hand-tuned

OpenMP implementation for an identical configuration. To improve the performance

of V-list in CnC, we enumerate a number of optimizations in this section that can be

implemented at the application level.
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1-D Blocking: One of the issues that causes performance degradation due to

requeues is the number of dependencies that need to satisfied for the step to finish

successful execution. The first optimization attempts to alleviate this problem by

reducing the number of dependencies by blocking. The idea is to block along one

dimension of the dependency tensor. This reduces the number of dependencies from

189 in the naive case to a chosen block size.

Figure 48 shows the scheduling timeline of the 1-D blocked implementation. Even

though the total number of requeues remain relatively the same as in the naive case,

we observe a speedup of 1.4× over the previous implementation. This is because we

only need to satisfy a smaller number of dependencies compared to the previous case at

any given time to complete the step, for instance, block size number of dependencies.

Figure 48: Scheduling timeline using ITAC for FMM with 1-D blocking for an uni-
form distribution of 1 million points and q = 100.

Geometrical blocking: The previous method reduces the time spent in checking

if the dependencies are satisfied since we check a smaller number than the naive case.

But, it doesn’t reduce the total number of dependencies. One way to reduce the total
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number of dependencies is to increase the task granularity.

In order to reduce the number of dependencies, we perform V-list at the grain of

clusters instead of boxes. A cluster is defined as a group of 8 boxes in 3-D (or 4 boxes

in 2-D) which have the same parent. The 8 or 4 boxes are siblings of one another.

So, instead of computing 1-1 interaction between a target and source box, we now

perform 8x8, a total of 64 interactions.
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Figure 6. Example of three pairs of target and source clusters. The source-cluster indices are 23, 26, and
14 for the cases left, center, and right, respectively.

Table 2. To illustrate Table 3, we depict the interaction-kinds in two dimensions. (Left) List of 9 2D
interaction-kinds in pairs of target clusters (consisting of T0 to T3) and source clusters (consisting of S0 to
S3). (Right) List of unallowable interaction-kinds. (Lower Left) The sibling index and source cluster index of
each box and cluster. (Lower Right) Examples of the unallowable interaction-kinds when the source cluster
index is 5 and 2. When the source cluster index is 5, interaction-kinds 1:1-2, 3:3-0, and 6:1-0,3-2 are not

allowed. When the source cluster index is 2, only the interaction-kind 1:1-2 is not allowed.

Interaction- Interactions
kind (A pair ’i-j’ denotes

the interaction
between Ti and Sj)

0 0-3
1 1-2
2 2-1
3 3-0

4 0-1, 2-3
5 0-2, 1-3
6 1-0, 3-2
7 2-0, 3-1

8 0-0, 1-1, 2-2, 3-3

Source-cluster Unallowable
index interaction-kinds

0 0
1 0, 1, 5
2 1
3 0, 2, 4
4 0 – 8 (all)
5 1, 3, 6
6 2
7 2, 3, 7
8 3

T0 T1

T2 T3

S0 S1

S2 S3

S0 S1

S2 S3

S0 S1

S2 S3

S0 S1

S2 S3

S0 S1
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Figure 49: Geometrical Blocking: Diagram of three target-source clusters, namely
cluster indexes 23, 26, and 14 along with their orientation in 3-D.

Figure 49 shows three example cluster orientations between pairs of source-target

clusters. In 3-D there are 27 possible interactions between any two clusters as enu-

merated in Table 50. These include both near- and far-field interactions but the

V-list only includes far-field interactions. So, specific to each source-target cluster,

certain interactions listed in the table are not allowed and shouldn’t be factored in

the computation of V-list. Also, note that all the interactions in any row of the table

have the same translation operator. This allows us to reuse translation operators and

this blocking scheme exploits the geometrical properties of the algorithm, thereby

increasing locality.

Ultimately, this reduces our total number of dependencies and the number of
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Table 3. (Left) List of 27 3D interaction-kinds in a pair of target cluster (consisting of T0 to T7) and source
cluster (consisting of S0 to S7). (Right) List of unallowable interaction-kinds. Note that any source clusters

with index 13 are ignored because they coincide with their field clusters.

Interaction- Interactions
kind (A pair ’i-j’ denotes

the interaction
between Ti and Sj)

0 0-7
1 1-6
2 2-5
3 3-4
4 4-3
5 5-2
6 6-1
7 7-0

8 0-6, 1-7
9 0-5, 2-7
10 0-3, 4-7
11 1-4, 3-6
12 1-2, 5-6
13 2-4, 3-5
14 2-1, 6-5
15 3-0, 7-4
16 4-2, 5-3
17 4-1, 6-3
18 5-0, 7-2
19 6-0, 7-1

20 0-4, 1-5, 2-6, 3-7
21 0-2, 1-3, 4-6, 5-7
22 0-1, 2-3, 4-5, 6-7
23 1-0, 3-2, 5-4, 7-6
24 2-0, 3-1, 6-4, 7-5
25 4-0, 5-1, 6-2, 7-3

26 0-0, 1-1, 2-2, 3-3,
4-4, 5-5, 6-6, 7-7

Source-cluster Unallowable
index interaction-kinds

0 0
1 0, 1, 8
2 1
3 0, 2, 9
4 0, 1, 2, 3, 8, 9, 11, 13, 20
5 1, 3, 11
6 2
7 2, 3, 13
8 3
9 0, 4, 10
10 0, 1, 4, 5, 8, 10, 12, 16, 21
11 1, 5, 12
12 0, 2, 4, 6, 9, 10, 14, 17, 22
13 0 – 26 (all)
14 1, 3, 5, 7, 11, 12, 15, 18, 23
15 2, 6, 14
16 2, 3, 6, 7, 13, 14, 15, 19, 24
17 3, 7, 15
18 4
19 4, 5, 16
20 5
21 4, 6, 17
22 4, 5, 6, 7, 16, 17, 18, 19, 25
23 5, 7, 18
24 6
25 6, 7, 19
26 7

Note that each target cluster has 26 dependencies.

4.3.3. Hierarchical Dependency to Reduce Task Re-
queuing. General dependency psuedocode for clus-
tered FMM:

...

5. Results and Discussion

Currently
only
one
CnC
and
OpenMP
imple-
men-
tation
exisits.
Need
to
imple-
ment 2
more
CnC
vari-
ants,
OpenMP
with
task-
ing,
StarPU,
and
OmpSs

Run on Jinx, Mirarol, AMD machine (?) and
maybe BG/Q [4 platforms]

Compare CnC performance for two distributions
(uniform and elliptical) against (a) OpenMP (cur-
rent implementation), (b) OpenMP with tasking, (c)
StarPU, and (d) OmpSs (have to implement the last
3)

Scheduling timeline of CnC vs other implemen-
tations using ITAC(?)

Comparison of scheduling between the 3 CnC
variants and performance and productivity tradeoff
discussion

Figure 50: Table of all possible interactions between any two target-source cluster in
3-D. The target and source clusters are indexed from T0−T7 and S0−S7 respectively.

125



dependencies for each step to 27, since each target cluster has 27 neighboring clusters.

Figure 51 shows the scheduling timeline and we achieve a further speedup of 1.3× over

the 1-D blocking. Unfortunately, we still have not completely eliminated requeues and

hence slower than the equivalent OpenMP implementation by 2×.

Figure 51: Scheduling timeline using ITAC for FMM with geometrical blocking for
an uniform distribution of 1 million points and q = 100.

There is also a trade-off in this approach since coarsening the task restricts the

amount of parallelism. There is still abundant parallelism in FMM on today’s plat-

forms and this optimizations is favorable. Ideally, we would like to expose all the par-

allelism and one could imagine a sophisticated version of the runtime system which

dynamically varies grain size.

Fuse steps: The above optimization increases grain size, thereby reducing the

number of steps in CnC. It also increases locality and reduces requeues. It is hard to

quantify the performance improvement from each of these and to further understand

the impact of runtime overhead, we fuse steps to reduce the total number of steps to

be scheduled. If there is overhead in the runtime system due to scheduling steps, we
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should see a performance benefit from fusing steps. Figure 52 shows the scheduling

timeline with fewer steps and we infact see a speedup of 35% from fusing steps which

indicates that there might be runtime overhead in scheduling and managing tasks.

Figure 52: Scheduling timeline using ITAC for FMM after fusing steps for an uniform
distribution of 1 million points and q = 100.

Input counter: To completely eliminate requeues, we implement input counts

on the application side of CnC. The idea is similar to get counts in CnC where we

maintain a global counter of the number of data dependencies for each step of V-list.

Whenever a step produces data, it decrements the counter atomically. When the last

data item is produced and the counter value becomes zero, a tag is created for the

new dependent step to execute. As a result, a tag is produced only when all the data

it is dependent on already exists, completely eliminating requeues.

We currently implement input counts using atomics, specifically using the function

sync fetch and sub (value, 1). It atomically fetches the value and decrements it

by 1. Since there is proof that get counts can be efficiently implemented in the CnC

runtime system, we could potentially also implement this in the runtime. Figure 53
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shows the scheduling timeline with input counts implemented and we can see each

step being executed only once. We also see a further speedup of 6% over the previ-

ous optimization. At this point, we are only a factor of less than 50% slower than

OpenMP as opposed to the “naive” mapping which was 4× slower. Although, we

have implemented all these optimizations in the user space, there is no fundamental

reason why it cannot be translated into the runtime system making it transparent to

the application programmer.

Figure 53: Scheduling timeline using ITAC for FMM with input counter implemented
for an uniform distribution of 1 million points and q = 100.

Given that a future version of a CnC runtime system includes a tuning expert

which incorporates all these tuning ideas and optimizations, we have demonstrated

that it is possible to achieve performance close to hand-tuned code using a general

purpose high-level programming model. The performance we observe is still slower

than OpenMP, although intuitively we would expect an ideal asynchronous imple-

mentation to be faster than its equivalent bulk-synchronous variant. With respect

to FMM, this could be due to the fact that our asynchronous implementation is not
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ideal. NUMA is critical to FMM as observed in Chapter 4 and currently CnC has

no notion of locality. There are current efforts on incorporating NUMA and above

described optimizations in the CnC runtime and we hope to revisit this again in

future.

6.6 Future Work

6.6.1 Extending CnC

Our experience reveals ways in which to improve CnC further. First, additional work

queue scheduling policies (besides LIFO) are needed. Secondly, we can avoid run-time

inefficiencies by exploiting additional dependence information available in the speci-

fication itself (textual notation). In our case, when the same tag collection prescribes

multiple dependent step collections, we can reduce requeuing by not scheduling those

collections. Thirdly, there are a number of ways in which tag management could be

tuned, perhaps automatically. Finally, there are ways to enhance the textual notation

and API; we are currently looking at adding new abstractions as well as new syntax

for easily composing CnC components.

6.6.2 FMM in distCnC

Distributed CnC (DistCnC) is an extension of Intel’s shared memory CnC to target

distributed memory systems which is now part of the Intel’s v0.7 CnC implementa-

tion [6]. It supports multiple communication backends including MPI. The parallel

execution model is heterogeneous where each address space has a full shared-memory

runtime to take advantage of multicore. DistCnC also supports a tuner that provides

the programmer with a way to control the execution and communication of a pro-

gram. For example, the programmer can specify where (on which core/processor) a

step should execute and when a step should execute. A step can be delayed execution

until all the programmer specified data items are available. We propose to imple-

ment FMM in distCnC since it seems promising as a productive high performance
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alternative to current programming paradigms.

6.7 Summary

This study constitutes the first performance evaluation of the CnC model, with com-

pelling results on a challenging pair of computations from parallel dense linear algebra.

CnC complements existing approaches for expressing and scheduling asynchronous-

parallel computations, by providing novel abstractions that enable a variety of control

flow and dataflow constructs to be expressed in a way that enables effective paral-

lelization. For our target computations, we can both (a) match or exceed a highly-

tuned vendor library for Cholesky and (b) extend these results to significant speedups

(1.1–2.6×) on a complicated eigensolver. Indeed, the CnC model enabled our novel

asynchronous-parallel eigensolver implementation.
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7.1 Direct Numerical Simulation of Blood

One of the target applications is the direct simulation of blood, which is a challenging

multi-scale, multi-physics problem which we model as a mixture of a Stokesian fluid

(plasma) and red blood cells (RBCs). We have designed an infrastructure called

MoBo, Moving Boundaries, which was the first at this scale to capture the physics

of cell deformation. Deformation is what enables cells to actually flow in very small

capillaries, for instance; ignoring deformation leads to unrealistic simulations. We

were able to simulate up to 200 million deformable RBCs, which improves upon prior

state-of-the-art by four orders of magnitude and the optimized scalable FMM is one

of the main components of this infrastructure [83].

7.1.1 Algorithm and Problem Formulation

Before diving into the algorithm and description of the role of FMM in MoBo, we will

briefly describe the problem setup. The fluid flow model is a Stokes (creeping) flow,

slow-moving and viscous fluid, in our case also assumed to be Newtonian. Differential

equation is solved for resolving the forces on the membrane of an RBC and all RBCs
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are assumed to be filled with the same Stokesian fluid as the surrounding plasma

(requires evaluation of a single-layer potential; use double-layer potential for more

general case).

The numerical method is based on a boundary integral formulation, in which the

fluid is represented implicitly and we only need to discretize the cell boundary.1

vbackground

dx

dt
= vbackground(x) + vinteraction(x)

x

Figure 54: Vesicle flow: Model a red blood cell (RBCs) as fluid-filled deformable and
inextensible sac in viscous solution.

There are two main challenges in implementing boundary integral methods. Firstly,

stiffness, due to high-order derivatives required to accurately capture RBC deforma-

tions. We represent RBC’s n a spherical harmonics basis, which permits accurate

1In contrast to Lattice Boltzman or finite-element methods, in which we discretize the entire
domain.
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high-order derivative computations. Second challenge is resolving and efficient evalu-

ation of long-range interactions. We address this by evaluating long range interactions

using our scalable FMM.

Mathematical formulation: Mathematical formulation for dynamics of the

membrane is based on the Stokes equations, which model very low Reynolds number

flows and incompressible linearly elastic solids. The equation for the evolution of the

interface is given by

dx

dt
= v(x), forx ∈ γk, and all k, (31)

where x is the position vector of the points on γk, which denotes the interface

between the kth RBC and the surrounding fluid as shown in Figure 54.

vinteraction(x) = vlocal(x) + vglobal(x)

x

vglobalvlocal

Figure 55: Local and global particle interactions between two RBCs.

The velocity v at a point x can be decomposed as follows.
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v(x) = vbackground(x) + vinteraction(x) (32)

The first term vbackground is the velocity of the imposed background flow and the

second term vinteraction can be further decomposed into two terms as shown in Fig-

ure 55.

vinteraction(x) = vlocal(x) + vglobal(x) (33)

The local velocity, vlocal at a point x depends on the shape of the individual RBC.

The global velocity is derived from the evaluation of the Stokes kernel.

Basic Algorithm: Given a set of n RBCs, where the kth RBC is represented by

the set γk of its surface points, the steps of the algorithm can be described as follows.

1. Compute the local velocity, vlocal(x) for all x ∈ γk and all k.

2. Compute the global velocity, vglobal(x) using FMM.

3. Compute the background velocity, vbackground(x) using a user-supplied method

analytically.

4. Update the position to the new position xnew = x + ∆t(vlocal(x) + vglobal(x) +

vbackground(x)).

5. Periodically load re-balance or repartition.

We use an explicit Euler time-marching scheme and ∆t is the time-step. The near

field interaction or inter-cell computation given by the first step is pleasingly parallel

over RBCs and the computation itself consists of several kernels described in detail in

[83]. The time is primarily dominated by many small matrix multiplies. The global

interaction or the second step of the algorithm involves an N -body calculation with

the Stokes kernel. Using the KIFMM algorithm, we only need to evaluate the kernel

at the given points.
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7.2 Future Direction: Biomolecular Electrostatics

One interesting application for future work is biomolecular electrostatics. Electrostat-

ics play a crucial role in biomolecular interactions. The challenge in understanding

these interactions is the molecules are always in a solution (water molecules and

dissolved ions). Molecular dynamics (MD) methods are the classical approach to

studying these systems and are implemented in libraries such as CHARMM [26] and

NAMD [81], but one could model the system using continuum electrostatics. The

electric potential can be described by a Poission-Boltzmann equation which can be

solved directly using a boundary-integral formulation discretized with boundary ele-

ment method (BEM) [9,59,70].

The challenge in BEM is the computational cost of solving a large linear system.

Krylov subspace iterative methods such as conjugate gradient (CG) [55], generalized

minimum residual method (GMRES) [84], etc,. are efficient ways of solving the

linear system. The computational kernel in these methods is a dense matrix vector

multiply which can be calculated using the fast multipole method (FMM) in O(N)

time enabling calculations with millions and billions of unknowns. We have already

implemented FMM for the Laplace kernel, 1
|r| (Chapter 3) and extending it to include

the Yukawa kernel, exp(−κ|r|)
|r| required for solving the linear system described below is

straightforward since we use the kernel independent FMM.

7.2.1 Electrostatics in the Continuum Model

The continuum electrostatics based on the Debye-Huckel theory presented in 1923

describes the behavior of electric field in an ionic solution. The continuum electro-

static model we use in this thesis assumes a mixed dielectric medium – the molecule’s

interior denoted as region I in Figure 56 is modeled as a low dielectric with permit-

tivity ε1 (typical values between 2 and 10) and the solvent surrounding the molecule

denoted as region II has permittivity ε2. The solvent usually has a high dielectric
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Figure 56: Sketch of a solvent molecule system with two continuum dielectric medi-
ums. The interior of the molecule is a dielectric with permittivity ε1 and the outside
solvent region has permittivity ε2.

constant (≈ 80), such as water. If there are no ions in the solution, the electrostatic

potential satisfies a Poisson equation.

O2φ2 = − 1

ε2
4πρ (34)

If there are ions dissolved in the solvent medium, they will rearrange themselves

according to the applied electric field. This causes the ions to be distributed accord-

ing to the Boltzmann distribution and since the applied field that causes the ionic

movement is electrostatic, we can model this as a Poisson-Boltzmann equation.

O2φ2(r) = −4π

ε2

∑
i

ciziq exp

(
−ziqφ(r)

kbT

)
(35)

Here, ci is the concentration of the ion i, zi is the charge of the ion, q is the charge

of the proton, kb is the Boltzmann constant, and T is the temperature.

The Poisson-Boltzmann equation is usually used in the linearized form called the

Linearized Poisson Boltzmann Equation (LPBE),

O2φ2 = κ2φ2 (36)

where 1
κ

is known as the Debye length and is given by,
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κ2 = 4π

∑
i ciz

2
i q

2

εkbT
(37)

The molecular charge distribution in the interior is modeled as nc discrete point

charges at the atom centers. Each of the ith charges have value qi at position ri. The

electrostatic potential in this region satisfies a Poisson equation.

O2φ1(r) = −
nc∑
i=1

qi
ε1
δ(r − ri) (38)

At the dielectric boundary, Ω, the potentials and electric displacements are con-

tinuous and result in the following boundary conditions.

φ1(rΩ) = φ2(rΩ)

ε1
∂φ1

∂n
(rΩ) = ε2

∂φ2

∂n
(rΩ) (39)

Here, n is the outward pointing unit normal, pointing into region II from region

I. Mathematically, we have represented this as a system of 4 equations; Poisson

equation in region I (38), LPBE on the solvent side in region II (36), and boundary

conditions on potential and electric displacement given by Equation (39).

7.2.2 Boundary Integral Formulation

A numerical approach commonly used is based on the integral formulation of the cou-

pled system in the previous section [103]. The integral formulation of Equation (38)

is given by the following equation.

−φ1(r)

2
+

∮
Ω

∂φ1(r
′
)

∂n(r′)
G1(r, r

′
)dΩ

′−
∮

Ω

∂G1(r, r
′
)

∂n(r′)
φ1(r

′
)dΩ

′
= − 1

ε1

∑
i

qiG1(r, r
′
) (40)

A very similar expression is obtained for Equation (36) which differs in the Green’s

function and the signs since the normals are pointing from region I into region II as

shown in Figure 56.
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−φ1(r)

2
−
∮

Ω

∂φ2(r
′
)

∂n(r′)
G2(r, r

′
)dΩ

′
+

∮
Ω

∂G2(r, r
′
)

∂n(r′)
φ2(r

′
)dΩ

′
= 0 (41)

Applying the boundary conditions in Equation (39) to the above equation, we get

the formulation below which is valid for the potential, φ1 inside the molecule.

2πφ1(r)−
∮

Ω

∂φ1

∂n
(r
′
)

1

|r − r′|
dΩ
′
+

∮
Ω

∂

∂n

[
1

|r − r′ |

]
φ1(r

′
)dΩ

′
=

nc∑
i=1

qi
ε1

1

|r − ri|

2πφ1(r) +
ε2
ε1

∮
Ω

∂φ1

∂n
(r
′
)
e−κ|r−r

′ |

|r − r′ |
dΩ
′
+

∮
Ω

∂

∂n

[
e−κ|r−r

′ |

|r − r′|

]
φ1(r

′
)dΩ

′
= 0 (42)

If we assume that there are no dissolved ions in the solvent, we can get a simpler

formulation to get a better intuition into the physics of the process. The presence

of a solvent with high dielectric constant (≈ 80), such as water, causes the external

electric field to influence the orientation of the solvent molecules as a result of the

reaction field. The solvent polarization appears as a layer of induced charge σ(r) at

the dielectric boundary.

(
1− ε1

ε2

)(
∂

∂n

∮
Ω

σ(r
′
)

|r − r′ |
dΩ
′
+

∂

∂n

nc∑
i=1

qi
|r − r′|

)
= σ(r) (43)

The surface charge induces a potential in the molecule called the reaction potential,

φreac.

φreac(r) =

∮
Ω

σ(r
′
)

|r − r′ |
dΩ (44)

If the molecule is in a vacuum, the electric potential would be just due to the

bare Coulomb potential induced by the point charges. But, in the presence of a

solvent, the solute charges polarize the solvent, creating a reaction potential in the

solute. Hence the total potential, φ1 is the sum of the reaction potential, φreac and the

Coulomb potential. The electrostatic energy associated with the reaction potential
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is equivalent to the work required to bring the molecule from vacuum into a solvent.

This energy is called the solute’s electrostatic solvation energy, ∆Gsolv.

∆Gsolv =
1

2

nc∑
i=1

qiφreac(ri) (45)

Some of the applications of the solvation energy are to estimate quantities such as

electrostatic contributions to protein stability, calculating the binding affinity between

two molecules, etc,.

7.2.3 Boundary Element Method

The first step in using BEM to solve Equation (42) is to the discretize the boundary Ω

into np discrete non-overlapping panels or boundary elements. The integral equation

in Equation (42) is solved for every panel Ωi and is approximated as a sum of integrals

over planar triangles, a common practice used in representing complicated geometries.

We get a 2np × 2np linear system of equation as shown below and we solve for φ1.

2πI + A −B

2πI − C ε1
ε2
D


 φ1

∂φ1
∂n

 =

 Q

0

 (46)

The np × np matrices A, B, C, and D and np vector Q are defined as follows:

Aij =

∫
Ωj

∂

∂n

(
1

|rij|

)
dΩ

Bij =

∫
Ωj

1

|rij|
dΩ

Cij =

∫
Ωj

∂

∂n

(
exp(−κ|rij|)
|rij|

)
dΩ

Dij =

∫
Ωj

exp(−κ|rij|)
|rij|

dΩ

Qi =
nc∑
k=0

qk
ε1

1

|rik|
(47)
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We consider a Galerkin approach and the integrals in Equation (47) are calcu-

lated using a simple Gauss quadrature rule, a single point located at the center of

the panel. Since the BEM integral equation has a double layer potential which can-

not guarantee a symmetric matrix, we currently use GMRES for solving the linear

system. The matrix vector multiplication of GMRES which is the integral over each

panel multiplied by the weights, can be written as a summation of the Laplace and

LPBE Green’s functions. In this formulation, we can use FMM to accelerate the

matrix vector product resulting in linear runtime. Since we use the kernel indepen-

dent FMM, implementing the Yukawa kernel, exp(−κ|r|)
|r| required for solving the linear

system just requires evaluating the kernel. Moreover, one might potentially reuse all

the optimizations used for Laplace kernel described in Chapter 3 .

A simple approach would be to begin with the two dielectric problem described in

this chapter where the electrostatic field is calculated using two continuum dielectric

medium, the solvent and the molecule. This is only a first step to solving biologi-

cally challenging problems which have more than two dielectric medium, ion-exclusion

layers, and solvent filled cavities. Using FMM, one could potentially enable calcula-

tions with millions and billions of unknowns and present another practical scientific

application of FMM.
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This dissertation presents a top to bottom process for designing and implementing

algorithms on current and future architectures, taking the Fast Multipole Method as

a case study.

8.1 Summary

The main contributions and results of this thesis can be summarized as follows.

• Practice: Algorithm engineering for FMM: As discussed in Chapter 3, we

presented the first extensive single-node performance study for FMM. This in-

cludes cross-platform evaluations of performance and scalability incorporating

various compute- and memory-centric optimizations carefully tailored for the

various phases of FMM. The benefits of optimizations, parallelization, and tun-

ing are substantial and when combined, they delivered speedups of 25×, 9.4×,

and 37.6× for Nehalem, Barcelona, and Victoria Falls respectively, in double

precision for the uniform distribution. For a non-uniform, elliptical distribution,

we observed speedups of 16×, 8×, and 24× respectively. This single-node study

lays a solid foundation and is a building block for ultra-scalable FMM implemen-

tations on current and future systems. We describe the process of transforming
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a conventionally parallelized code to a highly tuned one in Chapter 4.

• Theory: Modeling and communication analysis: The goal of performance

modeling and analysis are two-fold – (a) to derive a more realistic performance

model which includes both high-level architectural parameters, such as last-level

cache capacity, bandwidth, peak floating point performance and also algorithmic

parameters, such as number of particles, depth of the tree, to accurately evaluate

the performance of the code, and (b) to gain insights into choosing the right

parameters, schedule, and distribution on different architectures.

To that end, we present the first in-depth models for compute and memory costs

for FMM in Chapter 5. Our model predicts the optimal setting of one of the

FMMs tuning parameters, which in practice had previously required manual

experimentation. The model also provides solutions for practical performance

engineering problems, such as how to schedule the computation for heteroge-

neous (e.g., CPU+GPU) systems.

Using both the above theory for the analytic expression for execution time and

practice for a highly optimized scalable code, we predict the execution time for large-

scale problem instances on possible future CPU-based exascale systems. The machine

characteristics of the exascale system are based on extrapolating historical technology

trends [94]. Figure 57 shows the execution time split into computational and memory

access time for three different systems namely, (a) CPU-based system, (b) GPU-

based system, and (c) a hybrid CPU-GPU system. We observe that the crossover

point when the memory access time Tmem matches the compute time Tcomp occurs at

different time frames for each of these system configurations. This implies that the

more imbalanced the system, the sooner we will observe the crossover.

The hybrid computation with direct evaluation on the GPU (compute-bound) and

far-field evaluation on the CPU (memory-bound) is highly imbalanced, and could
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Figure 57: A depiction of the KIFMM computational and memory costs for parallel
execution on extrapolated systems. The problem size N starts at 4 million points in
2010, and is scaled at the same rate as the cache size Z.

143



become memory bound as early as year 2015, barring radical shifts in node balance.

For problems that must be distributed across many processors, node balance is likely

to play a significant role [41]; we will be analyzing and addressing the distributed case

as part of our future work. In particular, this observation raises the question of what

the architecture of an ideal multinode FMM processing system might look like.

If this prediction is true and the FMM will become memory bound, then it sug-

gests that our memory-centric optimizations will only become more important in

the future, while others may become less important. Specifically, optimizations such

as re-organizing the data layout, inter-procedural loop fusion to compute matrices

on-the-fly, NUMA-aware data allocation, cache and register blocking described in

Section 3.3, Section 4.3, Section 4.5, and Section 6.5 become increasingly more criti-

cal compared to optimizing for floating point operations. This suggests that we need

to re-think the design of future architectures and focus on minimizing communication

costs when designing algorithms.

8.2 Future Work

Our model helps us answer some interesting questions that arise as we move towards

exascale but it is only the tip of the ice-berg. There are other interesting questions

that remain to be answered and we discuss them in this section.

8.2.1 Non-uniform Distributions

We limited our analysis to the uniform distribution which is a reasonable starting

point. But for many practical applications, the distribution of points infact results in

an adaptive tree. Modeling non-uniform distributions in general is a hard problem.

Instead of a purely analytical model, a combination of offline micro-benchmarks to

extract features of the distribution and a modification of our current model could

result in a semi-analytical model for other unknown distributions.
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For a non-uniform distribution, there are also a larger number of possible schedul-

ing paths to choose from as shown in Figure 33. First, there are more ways to schedule

the DAG itself, which makes the search space for the best schedule larger. Secondly,

we can tune the number of points per box, q, which allows us to vary the execution

time for the different phases of FMM to achieve maximum overlap. This lets us better

utilize resources, but at the same time, we can no longer solely tune for U list and

V list phases, since they may no longer be the dominant part of the computation.

We present one chosen scheduling strategy which works relatively well in practice for

the given architecture and implementation. There is definitely a strong need for a

model-driven hybrid scheduling framework for non-uniform distributions.

8.2.2 Better Bounds

We currently make the assumption of an unified cache of size Z whereas, the GPU

has private caches and our model does not capture this difference. In future work, we

hope to extend our analysis to include different system configurations, for example,

shared versus private caches, etc,.

8.2.3 Mixed precision

A popular optimization technique well known in literature is mixed precision arith-

metic. We have not explored mixed precision in this thesis and as part of future

work, we would like to profile the error of different phases of the FMM to understand

how they contribute to the overall accuracy. Based on this analysis, we could exper-

iment running the phases that have a lower contribution to overall accuracy in lower

precision.

Our projections also indicate that we will become memory bound in the future

because memory bandwidth is not expected to scale at the same rate as all the other

system parameters. The traditional mixed precision technique changes the precision

of the computation without modifying the precision of the data. This will become
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insufficient in the future and we could further improve performance by storing data in

lower precision too, thereby saving bandwidth consumption. This raises the question

of how this affects the overall accuracy and if we could compensate by doing the

computation in higher precision. We hope to explore these questions as part of future

work.
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