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RÉSUMÉ

L’évolution spectaculaire des technologies dans le domaine du matériel et du logiciel a per-
mis l’émergence des nouvelles plateformes parallèles très performantes. Ces plateformes ont
marqué le début d’une nouvelle ère de la computation et il est préconisé qu’elles vont rester
dans le domaine pour une bonne période de temps. Elles sont présentes déjà dans le domaine
du calcul de haute performance (en anglais HPC, High Performance Computer) ainsi que
dans le domaine des systèmes embarqués. Récemment, dans ces domaines le concept de cal-
cul hétérogène a été adopté pour atteindre des performances élevées. Ainsi, plusieurs types
de processeurs sont utilisés, dont les plus populaires sont les unités centrales de traitement
ou CPU (de l’anglais Central Processing Unit) et les processeurs graphiques ou GPU (de
l’anglais Graphics Processing Units).
La programmation efficace pour ces nouvelles plateformes parallèles amène actuellement non
seulement des opportunités mais aussi des défis importants pour les concepteurs. Par consé-
quent, l’industrie a besoin de l’appui de la communauté de recherche pour assurer le succès
de ce nouveau changement de paradigme vers le calcul parallèle. Trois défis principaux pré-
sents pour les processeurs GPU massivement parallèles (ou “many-cores”) ainsi que pour les
processeurs CPU multi-coeurs sont : (1) la sélection de la meilleure plateforme parallèle pour
une application donnée, (2) la sélection de la meilleure stratégie de parallèlisation et (3) le
réglage minutieux des performances (ou en anglais performance tuning) pour mieux exploiter
les plateformes existantes.
Dans ce contexte, l’objectif global de notre projet de recherche est de définir de nouvelles so-
lutions pour aider à la programmation efficace des applications complexes sur les plateformes
parallèles modernes.
Les principales contributions à la recherche sont :

1. L’évaluation de l’efficacité d’accélération pour plusieurs plateformes parallèles, dans le
cas des applications de calcul intensif.

2. Une analyse quantitative des stratégies de parallélisation et implantation sur les plate-
formes à base de processeurs CPU multi-coeur ainsi que pour les plateformes à base de
processeurs GPU massivement parallèles.

3. La définition et la mise en place d’une approche de réglage de performances (en Anglais
performance tuning) pour les plateformes parallèles.

Les contributions proposées ont été validées en utilisant des applications réelles illustratives
et un ensemble varié de plateformes parallèles modernes.
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ABSTRACT

With the technology improvement for both hardware and software, parallel platforms started
a new computing era and they are here to stay. Parallel platforms may be found in High
Performance Computers (HPC) or embedded computers. Recently, both HPC and embed-
ded computers are moving toward heterogeneous computing platforms. They are employing
both Central Processing Units (CPUs) and Graphics Processing Units (GPUs) to achieve the
highest performance. Programming efficiently for parallel platforms brings new opportunities
but also several challenges. Therefore, industry needs help from the research community to
succeed in its recent dramatic shift to parallel computing.

Parallel programing presents several major challenges. These challenges are equally present
whether one programs on a many-core GPU or on a multi-core CPU. Three of the main
challenges are: (1) Finding the best platform providing the required acceleration (2) Select
the best parallelization strategy (3) Performance tuning to efficiently leverage the parallel
platforms.

In this context, the overall objective of our research is to propose a new solution helping
designers to efficiently program complex applications on modern parallel architectures. The
contributions of this thesis are:

1. The evaluation of the efficiency of several target parallel platforms to speedup compute
intensive applications.

2. The quantitative analysis for parallelization and implementation strategies on multi-
core CPUs and many-core GPUs.

3. The definition and implementation of a new performance tuning framework for hetero-
geneous parallel platforms.

The contributions were validated using real computation intensive applications and modern
parallel platform based on multi-core CPU and many-core GPU.
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CHAPTER 1 INTRODUCTION

1.1 Context : Programming Parallel Platforms

Modern applications, such as image processing and computer vision, are becoming more and
more complex (Djabelkhir and Seznec, 2003). This complexity implies a large amount of pro-
cessed data and high computation loads, under very tight constraints : more constraints are
added to enforce high quality and accuracy such as real-time execution and power consump-
tion awareness. Therefore, optimization techniques and high performance hardware platforms
are required. Considering the domains of image processing and computer vision, it is safe to
say that they present many opportunities for parallelism, that can be exploited in parallel
platforms.

With the technology improvement for both hardware and software, parallel platforms started
a new computing era and they are here to stay (Jerraya and Wolf, 2004). Parallel platforms
may be found in High Performance Computers (HPC) or embedded computers. Recently,
both HPC and embedded computers are moving toward heterogeneous computing. They are
employing both Central Processing Units (CPUs) and Graphics Processing Units (GPUs) to
achieve the highest performance. For instance, the supercomputer code-named Titan uses al-
most 300,000 CPU cores and up to 18,000 GPU cards (Cook, 2012). Programming efficiently
for parallel platforms bring new opportunities but also several challenges (Williams et al.,
2009). Therefore, industry needs help from the research community to succeed in its recent
dramatic shift to parallel computing.

Currently, two main approaches are used for parallel programming : (1) writing new parallel
code from scratch, which is an effective way to accelerate applications but time consuming or
(2) mapping existing sequential algorithms to parallel architectures to gain speedup. Since,
usually, existing algorithms are initially described as high-level sequential code (such as MAT-
LAB and C/C++ code), currently the approach (2) presents a substantially less expensive
alternative, and does not require to retrain algorithm developers. This requires the paralle-
lization of sequential code, and the exploitation of set of parallel programming models. This
approach is not trivial, as many different hardware target architectures are available : the
target platform can be heterogeneous and involve diverse computational architectures and
different memory hierarchies. Moreover, for new parallel implementations, the programmer
starts by extracting the parallelization opportunities of the application and then expresses
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these opportunities by employing a number of parallelization strategies. These parallelization
strategies should be suitable for both application programming features and the architecture
specificity.

1.2 Parallel Programming - Challenges

Parallel programing presents several major challenges. These challenges are equally present
whether one programs on a many-core GPU or on a multicore CPU. Unfortunately, there is
little compiler technology that can help programmers to meet these challenges today. Three
of the main challenges are :

- Finding the best platform providing the required acceleration – although performance
studies of individual platforms exists, they have been so far limited in scope and desi-
gners still face daunting challenges in selecting a new appropriate parallel platform in
order to accelerate their application (Calandra et al., 2013).

- Selecting the best parallelization strategy – using a proper parallelization strategy is
crucial in order to achieve the optimal performance, such that the calculation takes
the shortest possible time. It is very difficult to give a universal method for finding the
optimal strategy, since it depends not only on the platform, but also on the application
itself (Kegel et al., 2011a). Designers need today some guidelines in their search for the
parallelization strategy.

- Performance tuning – performance is the primary goal behind most parallel program-
ming efforts. In order to achieve high performance, designers need to tune several pa-
rameters (data and task decomposition granularity and threads and data mapping on
the target hardware resources) and explore a huge space of solutions. Currently, the
performance tuning can take significant time and effort (Kamil, 2013).

1.3 Objectives and Contributions

To alleviate the challenges described in the previous section, the global objective of this thesis
is to propose a new solution helping designers to efficiently program complex applications on
modern parallel architectures. The specific objectives are :

- Integrating, in the programming stage, some key aspects such as the parallelization
strategies : parallelism models, parallelization granularity and programming models.

- Accelerating the programming stage and improving the exploration of the solutions
space.
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The main contributions of this project are :

1. The evaluation of the efficiency of several target parallel platforms to speedup compute
intensive applications

2. Performance Evaluation of parallelization and implementation strategies on multicore
CPUs and manycore GPUs.

3. The definition and implementation of a new performance tuning framework for hetero-
geneous parallel platforms.

These contributions are briefly described in the next three sections.

1.3.1 Evaluation of the Efficiency of Several Target Parallel Platforms to Spee-
dup Compute Intensive Applications

The performance evaluation is performed through three fundamental algorithms used in
image processing and computer vision : (1) Canny Edge Detection (CED), (2) Shape Refining
and (3) Distance Transform (DT). These algorithms are compute intensive and highly data
parallel. We developed for each algorithm a number of parallel implementations targeting a
wide range of architectures covering both HPC and embedded parallel platforms. A number
of optimizations is investigated depending on the applications and the target architecture.
We show the impact of such optimizations on performance via a large number of experiments.

1.3.2 Performance Evaluation of Parallelization and Implementation Strategies
on Multicore CPUs and Manycore GPUs

Since applications are increasing in complexity and present a wide variety of parallel features,
it becomes difficult to decide which parallelization strategy is suitable for a given platform
to reach peak performance. We propose a comprehensive performance evaluation of a large
variety of parallelization and implementation strategies for different parallel structures on
two most common parallel platforms : a multicore CPU (Dual AMD Opteron 8-core CPU)
and a manycore GPU (NVIDIA GTX 480 GPU). Moreover, we consider a wide spectrum of
parallel programming models : OpenMP and TBB targeting multicore CPU, and CUDA and
OpenCL targeting manycore GPUs. We also aim at determining guidelines for the efficient
parallelization strategies of common application classes.
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1.3.3 A New Performance Tuning Framework for Heterogeneous Parallel Plat-
forms

In order to implement efficiently compute intensive applications on heterogeneous parallel
platforms, a number of parameters have to be considered : data and task decomposition
granularity and threads and data mapping on the target hardware resources.
The knowledge acquired during the two first contributions help us to efficiently delimit the
exploration space and to define precisely the influential parameters on performance such as
the data and task granularity level and the data access pattern.
As contribution, we propose a performance tuning framework for stencil computation tar-
geting heterogeneous parallel platforms. The emphasis is put on platforms that follow the
host-device architectural model where the host corresponds to a multicore CPU and the de-
vice corresponds to a manycore GPU. This framework guides the developer to select (i) the
best task and data granularity also known as, respectively, fusion and tiling, and (ii) the best
thread block configuration to fit the problem size.

1.3.4 Document Plan

This thesis is structured in five chapters. In Chapter 1, we presented the context and chal-
lenges of our research work and we introduced the objectives and contributions of this thesis.
Chapter 2 presents the basic concepts concerning the parallel programming of complex ap-
plications on modern parallel platforms. Chapter 3 introduces the evaluation of the parallel
platforms for accelerating compute intensive applications. Chapter 4 describes our perfor-
mance evaluation of the parallel programming and implementation strategies. In Chapter 5,
we present a new framework enabling the performance tuning for complex applications run-
ning on heterogeneous parallel platforms. Finally, in Chapter 6, we present the conclusions
and the perspectives of our research work.
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CHAPTER 2 BACKGROUND AND BASIC CONCEPTS

The main goal of this chapter is to introduce the parallel programming world to the reader. In
more details, Section 2.1 presents the context of the use of parallel programming to accelerate
current applications and in particular image processing and computer vision. Section 2.2
describes basic parallel programming concepts, which are necessary to understand an efficient
parallel implementation. Section 2.3 lists the main basic multiprocessor architectures used as
target platforms for current parallel applications. Some examples of these platforms are given
in Section 2.4. Section 2.5 classifies parallelization strategies according to the parallelization
granularity and the types of parallelism. Finally, Section 2.6 gives an overview of existing
parallel programming models followed by Section 2.7 which lists some examples of parallel
programming models used for both Multicore CPUs and Manycore GPUs.

2.1 Context

Modern applications are becoming more and more complex (Djabelkhir and Seznec, 2003)
due to the increasing need of both high quality and accurate computation results. As a
consequence, this complexity is translated into a large amount of processed data and high
computation loads which require optimized algorithms and high performance hardware plat-
forms to run these algorithms within a reasonable amount of time. More constraints could
be added to high quality and accuracy such as real-time execution and power consumption
awareness. Image processing and computer vision the are typical domains which follow this
trend. The main particularity of these two domains is the presence of high amounts of pa-
rallelism which makes the parallel platforms an appropriate hardware platform to satisfy the
above mentioned constraints.

Parallel platforms are showing an extraordinary expansion, especially with the technology
improvement for both hardware and software, making them a new trend for the computer
science domain. parallel platforms may be found in High Performance Computers (HPC)
or embedded computers. Recently, both HPC and embedded computers are moving toward
heterogeneous computing. They are employing both Central Processing Units (CPUs) and
Graphics Processing Units (GPUs) to achieve the highest performance. As an example, the
supercomputer code-named Titan uses almost 300,000 CPU cores and up to 18,000 GPU
cards (Cook, 2012).
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In order to program parallel platforms, there are two approaches for parallel programming :
(1) writing a new parallel code from scratch, which is an effective way to accelerate ap-
plications but time consuming, or (2) mapping existing sequential algorithms to parallel
architectures to gain speedup. As existing algorithms are initially described as high-level se-
quential code (such as MATLAB and C/C++ code), currently the approach (2) presents a
substantially less expensive alternative, and does not require to retrain algorithm developers.
This requires the parallelization of sequential code, and requires involving a convenient set
of parallel programming models. This step is not trivial, as many different hardware target
architectures are available : the target platform can be heterogeneous and involve diverse
computational architectures and different memory hierarchies.

In parallel programming, the programmer’s role is to extract the parallelization opportunities
of the application and express such opportunities by employing a number of parallelization
strategies. These parallelization strategies should be suitable for both application program-
ming features and the architecture particularity.

2.2 Basic Concepts of Parallel Programming

In this section, we present some of the basic concepts of parallel programming that are un-
derlined in parallel programming.

Concurrency is the decomposition of a program into parallel running sections. The main
idea is to look at the task and data dependencies and divide the sections of the program into
independent sets.

Locality is to maintain processed data close to the processing units. We can distinguish two
kinds of locality : (1) temporal locality - data previously accessed will likely be accessed again
and (2) spatial locality - data that is close to the lately accessed data will likely be accessed
in the future. Data locality is managed by the cache hierarchy present in multicore CPUs
and even in GPUs.

Parallel Patterns are abstracted models that describe the implementation of parallel pro-
grams according to some parallelization features. Some of the common parallel patterns are
listed below :

- Loop-based Pattern is the implementation of a parallel program at the loop-level
where each iteration or a group of iterations could be executed independently. The
loop-based pattern may be embraced to implement a large number of applications, in
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particular in image processing applications.

- Fork/join Pattern describes the implementation of programs that are composed of a
sequence of sequential and parallel sections. At the beginning, only one master thread
is running and, when a parallel section is encountered, it creates a group of threads.
This action is known as Fork. Once the parallel section is finished, groups of threads
are joined at a synchronization point. This action is known as Join. One of the common
programming models suitable for this pattern is OpenMP.

- Tiling or Domain Decomposition Pattern consists in splitting the data space into
smaller data parts named tiles. Each tile is processed by one or a group of threads. At
the end, the resultant tiles build the final result.

- Divide and Conquer Pattern consists in dividing a large problem into small sub-
problems where each could be solved separately. The final result is the sum of the partial
sub-problem results. This pattern is often used to implement recursive programs.

2.3 Hardware Parallel Architectures

We can classify parallel architectures according to two aspects : (1) their computation models
or (2) their memory organizations.

we distinguish mainly two classes of parallel systems according to their computation model :

- SIMD Systems : SIMD stands for Single Instruction Multiple Data. The SIMD ar-
chitecture is arithmetic units-centric with the cost of a simple control unit (see Figure
2.1(a)). This makes SIMD more suitable for data-oriented applications. By removing
control logic complexity and adding more ALUs, SIMD is able to run at high clock rate
with low power consumption. GPUs adopts more a relaxed computation model than
SIMD. It implements the Single Instruction Multiple Threads (SIMT) model, which is
a thread-centric model that gives more flexibility to implement complex data-parallel
applications.

- MIMD Systems : MIMD stands for Multiple Instruction Multiple Data. MIMD sys-
tems integrate a complex control unit for each physical core (see Figure 2.1(b)). This
offers the ability to fetch and decode different instructions on each core at the same
time. MIMD systems offer more flexibility than SIMD systems to parallelize a wide
range of applications. However, they usually suffer from low degree of concurrency
compared to SIMD systems. As example of MIMD systems, we name the mainstream
multicore CPUs and STHORM, the ST embedded platform.



8

(a) SIMD : GPU Architecture (b) MIMD : CPU Architecture

Figure 2.1 SIMD : GPU Architecture vs. MIMD : CPU Architecture (Cheng et al., 2014)

We can distinguish essentially three main system architectures according the memory orga-
nization : (1) shared memory systems, (2) distributed memory systems, and (3) distributed
shared memory systems (Protic et al., 1998).

- Shared Memory Systems : In shared memory systems, one single memory space is
shared between processors. The main advantages of this architecture are : (1) commu-
nications are implicit and efficient, (2) easy to convert sequential program to parallel
version, (3) existence of parallel programming models and tools suitable for this archi-
tecture. However, the limitations of this architecture are : (1) Not scalable for massive
parallel platforms limited by memory contention (Gordon et al., 2006) and (2) need of
data coherency and race condition avoidance mechanisms. This form of architecture is
adopted in the existing multicore architectures.

- Distributed Memory Systems : In distributed memory systems, each processor has
its own memory. The advantages of this architecture are : (1) scalability for massive
multiprocessor systems and (2) exclusion of data race conditions. However, the limita-
tions of this architecture are : (1) the communications overhead, and (2) the difficulty
to balance the work load on Processing Elements (PEs) (Kumar et al., 1994).

- Distributed Shared Memory Systems : Distributed shared memory systems are
also known as a Globally Distributed Locally Shared (GDLS) systems. GLDS System
is composed of clusters where each cluster has its own memory space and each cluster
is composed of cores that share a local memory space. The Advantages of this archi-
tecture are : (1) the flexibility to organize the shared memory, (2) The scalability to a
large number of cores, since the memory contention is avoided by the multilevel me-
mory hierarchy, and (3) transparent programming (shared). We can find this kind of
architectures in multi-sockets or multi-nodes multicore CPUs systems to build a NUMA
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architecture. More often, we find GDLS systems in existing manycore systems and in
particular in current GPUs.

2.4 Examples of Parallel Platforms

We may find basically two main parallel platforms as most used target platforms for parallel
applications : (1) Multicore CPU-based Platform and (2) Manycore GPU-based Platform.

2.4.1 Multicore CPU-based Platforms

Multicore CPUs refer to general purpose processors integrating multiple cores in the same
die. In general, these cores are identical and they are based on x86 architecture with complex
control units which allow large coverage of types of parallelism. Typically CPU cores may
handle a maximum of two concurrent threads due to the limited size of the register file.
Each context switch between threads introduces additional overhead unlike GPUs which
offers a nearly zero overhead through a large register file size. Multicore CPUs are cache-
based architectures since they integrate a multi-level cache hierarchy (see Figure 3.8). The
memory model multicore architectures follow is the Shared memory model where all cores
are connected to the same memory and share the same address space (Ourselin et al., 2002).
This particular feature offers more data locality but may yield memory contention due to
the simultaneous access to the same address space. This fact limits the number of cores per
node. One solution to expand the number of cores is to group a small number of cores into
nodes to form a Non Uniform Memory Access (NUMA) system. Cores from the same node
share the same address space with low latency access and access to remote node memory with
high latency. The programming challenge of such platforms is to ensure : both thread affinity
(to keep thread assigned to the same core to avoid thread migration and data migration
overhead) and data affinity (to keep data close to the processing thread). Still, multicore
CPUs are limited to the order of tens of cores which limits the degree of concurrency.

2.4.2 Manycore GPU-based Platforms

The application of GPUs is no longer restricted to graphics applications. The GPU Plat-
form found its way to a large variety of general purpose computing tasks. In the last years,
many algorithms were implemented on graphics hardware (Navarro et al., 2014). In many
domains, GPU based hardware architectures are considered among the cost-effective parallel
architectures to implement data-oriented applications. Image processing and computer vi-
sion applications are taking advantage of performance features offered by GPUs such as high
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Figure 2.2 Typical Multicore CPU Architecture (Cook, 2012)

degree of data-parallelism, floating point units reaching 3 TFLOPS (compared to only 200
GFLOP for CPUs) and a high memory bandwidth of around 320 GB/s (versus 20 GB/s for
CPU, see Figure 2.3).

The evolution of these architectures took a relatively, long time to be considered as a ge-
neral purpose architecture. This is due to the absence of effective and simple programming
languages and tools. Mainly, GPUs were used in specific applications such as games and
image rendering. The existing programming languages at that time were essentially shader
programming languages such as Cg (Mark et al., 2003), High Level Shader Language (HLSL)
(Peeper and Mitchell, 2003)and OpenGL (Rost et al., 2009). All of these programming lan-
guages are based on the image rendering process. So, they are compiled into vertex shader
and fragment shader to produce the image described by the program. Although, these high
level programming languages abstract the capabilities of the target GPU and allow the pro-
grammer to write GPU programs in a more familiar C-like programming language, they do
not stay far enough from their origins as languages designed to shade polygons.

With the venue of general purpose GPU (GPGPU) ecosystems (architecture, language, run-
time, libraries and tools), programs may conceptually have nothing to do with drawing geo-
metric primitives and fetching textures, unlike with the shading languages. Rather, GPGPU
programs are often best described as memory and math operations, concepts which are more
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familiar to CPU programmers. To make this possible, some work was done such as the Brook
programming language which extends ANSI C with concepts from data stream programming
(Buck et al., 2004), Scout programming language designed for scientific visualization (Mc-
Cormick et al., 2004) and Glift template library which provides a generic template library
for a wide range of GPU data structures (Lefohn et al., 2006). In 2007, NVIDIA brought
GPUs to the GPGPU programming domain by developing a developer friendly program-
ming model called Compute Unified Device Architecture (CUDA) (Nvidia, 2007) considered
as a most efficient parallel programming model for NVIDIA GPUs. Similarly AMD designed
GPGPU architectures and contributed to the development of the Open Computing Language
(OpenCL) (Stone et al., 2010) to program their GPUs. Since then, other parallel program-
ming models are developed for GPUs such as DirectCompute (Ni, 2009), and OpenACC
(Group et al., 2011).

Both NVIDIA and AMD GPUs are composed of a number of multiprocessors (MP) named
respectively by NVIDIA as Streaming Multiprocessors (SM) and by AMD as Compute Units
(CU) (see Figure 2.4). Each MP integrates a large number of streaming processors (SPs)
where in NVIDIA GPUs, each SM is a basic core integrating an integer arithmetic and
logical unit (ALU), and a floating point unit (FPU). On the other side, AMD GPUs follow
the SIMD fashion where cores integrate ALUs and are grouped into SIMD engines. Each MP
is equipped with a number for schedulers and dispatch units responsible of scheduling threads
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on the available cores and allocating the appropriate hardware resources. Besides processing
units, each MP integrates a relatively small fast local memory that is accessed only by the
SPs of the same MP via a network on-chip (NOC). In NVIDIA GPUs, this memory may be
configured in part as an L1 cache and the rest as explicitly managed memory (scratchpad
memory). In AMD GPUs, the L1 cache and the scratchpad memory are integrated as separate
memories. In addition to memories, a huge number of registers is integrated in each MP to
allow the support of a large number of threads working together with negligible switch context
overhead. MPs from both GPU vendors share an L2 cache and a large high latency memory
known as global or device memory.
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Figure 2.4 Example of GPU Architecture

2.5 Parallelization Strategies

Parallelization Strategies define how to implement parallelization opportunities extracted
from an application. In the following, we classify parallelization strategies according the
parallelization granularity and types of parallelism.
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2.5.1 Parallelization Granularities

Parallelization granularity refers to the size of parallel entities at which we can divide an
application. Parallel entity may be tasks or processed data. We can distinguish two levels of
parallelization : (1)task-level parallelization and (2) data-level parallelization. For both levels
we may define mainly two granularities : (1) fine-grain and (2) coarse-grain.

Task-level Granularity

Task-level granularity is directly related to the program decomposition into independent
tasks.

- Fine-grain tasking consists in dividing the program in elementary separate tasks and
each single task is parallelized apart. This process is called fission. The benefit of the
fine-grain parallelization strategy is the high reusability since each task may be found
in more than one algorithm which is the case of most image processing algorithms. This
means that a parallel version of this operation can be reused more than once in dif-
ferent applications without any modification to ensure high portability among different
applications. However, this strategy may suffer from (1) the overhead introduced by
successive threads launches and (2) from poor temporal data locality.

- Coarse-grain tasking consists in packing a sequence of tasks into a macro task.
This process is called fusion. Each macro task is assigned to a single thread which
processes a part of data array. The implementation of this parallelization strategy
needs additional programming effort to manage dependencies between neighbors data
in order to minimize the synchronization barriers and data communication. When the
implementation of the coarse-grain strategy is optimized, runtime performances may
be improved by increasing temporal data locality and by avoiding overhead caused by
threads launches and data transfers.

Data-level Granularity

Data-level granularity defines the degree of decomposition of initial data into data subsets.

- Fine-grain Tiling consists in decomposing the data into small subsets (small tiles in
the case of image processing). These small tiles are assigned to small groups of threads.
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This strategy exposes a high degree of concurrency and takes advantage of architec-
tures supporting a huge number of threads. In addition, this strategy is usually not
constrained by the hardware resources limitations. However, it suffers from a signifi-
cant overhead in processing replicated data at borders to handle boundary dependen-
cies. The data replication overhead is proportional to the number decomposed data.
This strategy also suffers from poor space locality.

- Coarse-grain Tiling consists in decomposing data into large data subsets and in-
volving large groups of threads. This strategy reduces the data replication at borders
and offers high space data locality. However large tiles may not fit well with available
resources, cache or local memory size, which may degrade performance.

2.5.2 Types of Parallelism

Types of parallelism or, also known as parallelism models, define the way to organize inde-
pendent workflows. We can distinguish three main types of parallelism : (1) data parallelism,
(2) task parallelism and (3) pipeline parallelism.

Data Parallelism

Data parallelism refers to work units executing the same operations on a set of data. The
data is typically organized into a common structure such as arrays or vectors. Each work
unit performs the same operations as other work units but on different elements of the data
structure. The first concern of this parallelism type is how to distribute data on work units
while keeping them independent. Data parallelism is generally easier to exploit due to the
simpler computational model involved (Orlando et al., 2000). However, data parallelism is
limited to some application aspects and it cannot exist alone with the increasing complexity
of modern applications (Gordon et al., 2006).

Task Parallelism

Task parallelism is known also as functional parallelism or control parallelism. This type of
parallelism considers the case when work units are executing on different control flow paths.
Work units may execute different operations on either the same data or different data. In
task parallelism, work units can be known at the beginning of execution or can be generated
at runtime.
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Task parallelism could be expressed in the GPU context in two ways. In a multi-GPU en-
vironment, each task could be processed by a separate GPU. In a single GPU environment,
the task parallelism is expressed as independent kernel queues called respectively streams
and command queues in CUDA and OpenCL. kernel queues are executed concurrently where
each kernel queue performs its workload in a data-parallel fashion.

Pipeline Parallelism

Pipeline parallelism is also known as temporal parallelism. This type of parallelism is applied
to chains of producers and consumers that are directly connected. Each task is divided in
a number of successive phases. Each worker processes a phase of a given task. The result
of each work unit is delivered to the next for processing. At the same time, the producer
work unit starts to process a given phase of a new task. Compared to data parallelism, this
approach offers reduced latency, reduced buffering, and good locality. However, this form of
pipelining introduces extra synchronization, as producers and consumers must stay tightly
coupled in their execution (Gordon et al., 2006).

One form of pipelining parallelism that is often used in parallel programming is overlapping
data transfer and processing. This form of pipelining is performed via the Direct Memory
Access (DMA) mechanism. In GPU architectures, DMA is used to transfer data between host
memory and GPU global memory via PCI.

2.6 Parallel Programming Models

The programming models expose the parallelism capabilities to the programmer while they
abstract the underlying architecture away. The programming models have to show certain
architecture features such as the parallelism level, the type of parallelism, and the abstrac-
tion degree of the components’ functions. Parallel programming models are implemented as
a set of languages, extensions of existing languages, libraries and tools to map applications
on parallel architectures.

Inspired by the classification of the parallel programming models proposed by P. Paulin et al.
in (Paulin et al., 2006), we can group the parallel programming models in three main classes :
(1) Shared memory programming models, (2) distributed memory programming models and
(3) Data streaming parallel programming models.
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2.6.1 Shared Memory Programming Model

It is known as the simplest way for parallel programming. It refers to shared memory sys-
tems in which the application is organized as a set of processes sharing the same memory. By
programming with this model, some form of load balancing is satisfied (Nicolescu and Mos-
terman, 2009). However, it is necessary to ensure the data coherency which is the greatest
challenge of this parallel programming model. The main limitation of the shared-memory
programming model is that it does not support heterogeneous systems (Nicolescu and Mos-
terman, 2009).

2.6.2 Distributed Memory Programming Model

Inspired from the client-server model, the distributed memory parallel programming model is
still appropriate for heterogeneous systems and control-oriented applications. The distributed
memory parallel programming is scalable with the increasing number of processing elements.
Moreover, it is well suited to express the coarse-grained parallelism by offering generalized
communication mechanisms. However, these mechanisms demand more effort to fit them to
the infrastructure which implies performance overhead.

Message Passing Interface (MPI) (Pacheco, 1997) is considered the de-facto standard for
deploying applications on distributed memory systems. We can find several implementations
of MPI such as OpenMPI (Graham et al., 2006), MVAPICH Team (2001).

2.6.3 Data Streaming Programming Model

Data streaming parallel programming models are motivated by the architecture evolution
which is shown in the graphical processing architectures offered by NVIDIA and AMD. In
addition, the emerging need to map aerospace applications, network applications and mul-
timedia applications on such architectures make this parallel programming model more re-
quired. Based on its nature suitable for data-oriented parallelism, this programming model
helps programmers to reach high performance by reducing the communication overhead. This
programming model is implemented by languages such as StreamIt (Thies et al., 2002) and
Brook or language extensions such as CUDA or OpenCl.

Data streaming parallel programming is based on two basic concepts :

Streams : contain a set of elements of the same type. Streams can have different
lengths and the elements can be simple as float or complex as structure of floats, as
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defined in the Brook language. One should not confuse this with stream in the CUDA
terminology which defines an execution queue of operations.

Kernels : consist of a loop that processes each element from the input stream. The body
of the loop first pops an element from its input stream, performs some computation on
that element, and then pushes the results into the output stream.

In the data streaming parallel programming model, a program is represented as a set of au-
tonomous kernels that are fired repeatedly by stream elements in a periodic schedule. The
central idea behind stream processing is to organize an application into streams and kernels
to expose the inherent locality and concurrency in media-processing applications. The main
limitation of this parallel programming model is its poor support for control-oriented com-
putations.

2.7 Examples of Parallel Programming Models for Multicore CPUs and Many-
core GPUs

In this section we give an overview of most used parallel programming models for Multicore
CPUs and Manycore GPUs.

2.7.1 Examples of Parallel Programming Models for CPUs

We focus in this thesis on two most used high-level parallel programming models in program-
ming multicore CPUs mainly OpenMP and Intel TBB.

OpenMP

OpenMP is a standard shared-memory programming model (Dagum and Menon, 1998). It is
designed as an API used to explicitly command multi-threaded shared memory parallelism.
OpenMP consists of a set of compiler directives, runtime library routines and environment
variables. It targets two languages C/C++ and Fortran. OpenMP was a thread-centric pro-
gramming model in previous versions but, since OpenMP 3.0, it is also a task-centric pro-
gramming model to parallelism at the task-level.

The OpenMP model follows a Fork-Join Model (Lee et al., 2009) where all OpenMP pro-
grams begin as a single process : the master thread. The master thread executes sequentially
until the first parallel region construct - a directive which indicates that the region of the
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program following this directive will be processed in parallel by the available threads. Here
is an example of a directive used in OpenMP-C : #pragma omp parallel.

The main feature of OpenMP is the ease of use by providing the capability to incrementally
parallelize a sequential program. Moreover, it is capable of implementing both coarse-grain
and fine-grain parallelism. However, since it is a compiler-based programming model, the
performance of applications implemented in OpenMP may change, depending on the compiler
used.

TBB

Intel Threading Building Blocks (TBB) (Pheatt, 2008) is a library-based programming model
for multi-core CPUs. It provides a higher level of abstraction to express parallelism : the work
units in TBB are specified as tasks, and not threads. TBB targets C++ as the programming
language and provides some templates to express a number of defined parallel algorithms.
TBB has an asset compared to OpenMP by providing thread-safe concurrent containers.

2.7.2 Examples of Parallel Programming Models for GPUs

In order to program GPU-based platforms, specific APIs known as parallel programming
models are developed. In this thesis, we focus on the most used programming models for
GPU-based platforms : namely CUDA and OpenCL. Both CUDA and OpenCL are exten-
sions of the C language and implement a particular runtime to manage the computation on a
GPU. The two programming models present lots of similarities but differ in portability and
performance, depending on the target architecture. While CUDA is running only on NVIDIA
GPUs, OpenCL is ported to several heterogeneous platforms including NVIDIA and AMD
GPU-based platforms. The program in both programming models is written as a host-side
(CPU) program and a device-side (GPU) program. The host-side program is responsible to
initialize the device, allocate data in both host and device, exchange data between host and
device and launch work on the device. In both programming models, a device-side program
is expressed as a compute kernel, which is the elementary execution unit. A compute kernel
is basically a C function that expresses the processing assigned to a single thread. In order
to accomplish a parallel execution of the same kernel on a collection of data, the kernel is
instantiated on a number of threads by means of the programming model-specific syntax.

CUDA and OpenCL adopt the same philosophy for their runtime models. Threads in CUDA
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terminology, or work items in OpenCL terminology, are organized in blocks called respec-
tively thread blocks in CUDA and work groups in OpenCL. Threads inside one block are
organized in a 1D, 2D or 3D grid (see Figure 2.5). Threads belonging to the same block
are assigned to the same MP and share the same portion of the local memory and the syn-
chronization between them is allowed via barriers (see Figure 2.6). Simultaneous accesses of
Threads to the local memory have to be memory conflict-free to take advantage of the full
local memory bandwidth. The total number of threads is scheduled as execution units called
warp in CUDA and wavefront in OpenCL. Threads belonging to the same execution unit
have to follow the same execution path to avoid any execution serialization. Both CUDA and
OpenCL runtimes provide a mechanism to support the parallelism between different compute
kernels or between compute kernels and data-transfer, which is called stream in CUDA and
command queue in OpenCL. This mechanism gives an additional flexibility in expressing
computations and improving performance by tailoring the appropriate number of threads to
the computation, and hiding the access overhead to the data resident in device memory by
overlapping computation and memory transfer.
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Figure 2.5 Thread Arrangement in GPU Programming Models - Example : CUDA

Recently a new programming model has emerged : OpenACC is considered as an alternative
to low-level parallel programming models as CUDA and OpenCL. OpenACC is a directive-
based programming model like OpenMP but it targets GPUs with the ability to map data on
specific type of memory via simple program annotation. It is a good solution for programmers
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looking for functional programs on GPUs with less effort and time. However, this comes with
the cost of lower performance compared to low-level parallel programming models.
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2.8 Conclusion

In this chapter, we presented some basic concepts that are necessary to address parallel
programming. Also, an overview of the main existing parallel hardware platforms is presen-
ted, their programming models and the parallelization strategies that may be employed to
parallelize an application. In the next chapter, we go into details for some of the above men-
tioned concepts through a practical application. To do so, a number of image processing and
computer vision applications are implemented on a variety of parallel platforms.
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CHAPTER 3 ACCELERATION OF IMAGE PROCESSING AND
COMPUTER VISION APPLICATIONS ON PARALLEL PLATFORMS

3.1 Introduction

In this chapter, we evaluate the efficiency of several target parallel platforms to speedup
image processing and computer vision applications. The performance evaluation is perfor-
med through three fundamental applications used in image processing and computer vision :
(1) Canny Edge Detection (CED), (3) Shape Refining : thinning as example and (3) Dis-
tance Transform (DT). These applications are compute intensive and highly data parallel.
We developed for each application a number of parallel implementations targeting a wide
range of architectures including : (1) high performance computers and (2) embedded parallel
platforms. A number of parallelization strategies and optimizations techniques are investiga-
ted depending on the applications and the target architecture. We show the impact of such
optimizations on performance via a large set of experiments.

The chapter is organized as follows. Section 3.2 provides a state-of-art on the paralleliza-
tion of image processing applications on different hardware platforms. Section 3.3 presents
an overview of the used approach to evaluate different parallelization strategies on parallel
platforms. Section 3.4 presents the applications context and describes their functionalities.
Section 3.5 provides a detailed description for the architecture specifications of the target
parallel platforms. Section 3.6 describes in details our approach to parallelize the selected
applications on the target platform. Section 3.7 presents the experimental results of different
implementations of the studied applications on the target platforms. Finally, Section 3.8
concludes this chapter with a summary of the obtained results.

3.2 Related Work

We provide in this section an overview of a number of work accelerating image processing
and computer vision applications on parallel target platforms.
Several acceleration efforts of medical imaging processing on GPU are surveyed in (Eklund
et al., 2013). The review covers GPU acceleration of commonly used image processing ope-
rations in medical imaging (image registration, image segmentation and image denoising).
Those operations are filtering, histogram estimation and distance transform.
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In Chen et al. (2007a), an improved parallel implementation of the CED application as part
of an articulated body tracking application is proposed. The proposed implementation out-
performs a non optimized original implementation with respect of speedup (19.91x vs. only
4.16x on 32 threads). These results are obtained on a simulated future multi-core architecture
running 32 threads. However, there is no comparison between these two implementations on
a real multi-core architecture, while only the original implementation is tested on a real 8
Intel Xeon processors and which reaches only 2.4x as speedup with 8 threads. In Swargha
and Rodrigues (2012), three image processing applications (Laplace, Sobel and CED) are
implemented using OpenCL on the AMD Radeon HD 6450 GPU which integrates 160 multi-
threaded streaming processors (SPs). The parallel implementation of CED on GPU reaches
a speedup of 50x compared to a serial implementation on Intel Core i3 CPU running at
2.1 GHz. However, the proposed implementation provides poor detection due to assumptions
made toward a reliable implementation on GPU. In Ogawa et al. (2010) and Niu et al. (2011)
more accurate parallel CED implementation are proposed using CUDA on NVIDIA GPUs.
The former reaches 50x speedup on Tesla C1060 GPU which integrates 240 SPs running at
1.3 GHz. The speedup is achieved compared to Intel Xeon E5540 processor running at 2
GHz. The latter proposes an improved CED on GPU which reaches a speedup between 22x
and 55x compared to Intel core 2 Q8400 running at 2.66 GHz. Nevertheless, the proposed
CED implementation remains more accurate and most suitable for medical applications.

Other works are presented targeting embedded multiprocessor platforms. In Ensor and Hall
(2011), a performance evaluation of a number of heterogeneous multiprocessor architectures
involving multi-core CPUs and GPUs for mobile devices is provided. In this context, a GPU
shader-based implementation of CED application on OpenGL ES Munshi et al. (2008) is
evaluated on several mobile devices : Google Nexus One, iPhone4, Samsung Galaxy S, Nokia
N8, HTC Desire HD and Nexus S. The results show that for some devices, the offloading of
the edge detection from CPU to the GPU may offer a 50% performance benefit, but for other
cases it may be insignificant due to the inter CPU-GPU data transfer overhead. In Patil (2009)
and Brethorst et al. (2011), two specific purpose multiprocessor architectures are targeted.
The former deals with video games through Cell Be PlayStation 3 architecture which is
composed of a host CPU and eight synergetic processing elements. The latter deals with
spatial mission through a Tilera Tile 64 processor which is a 64-tiled multi-core architecture.
The CED implemented on Cell Be reaches a speedup of 7x compared to Intel Core 2 Duo
processor running at 2 GHz and an execution time around 28 ms for 1024x1024 images.
The results of the implementation of the CED on Tilera are shown for only 8 cores while it
integrates 64 cores. The speedup reached on 8 cores remains poor around 5x and an execution
time around seconds.
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In Figure 3.1, we provide a quality comparison of detected edges of our implementation ver-
sus some of the previously mentioned CED implementations. While OpenCV on CPU and
the two GPU reference implementations are fast enough to reach real time execution, they
remain inaccurate with non continuous edge lines or noisy extra lines. On the other hand, our
implementation, running on low-power SoC at frame rate of 10 frames/s provides accurate
smooth line edges.

The most interesting work is reported in (Pallipuram et al., 2012) which provides a rich
comparative study of different implementations of Neural Network on two different GPU
vendors Nvidia and AMD. Despite the several work on accelerating image processing appli-
cations, only few work are performing a deep comparison of the parallelization efficiency of
the existing hardware parallel platforms.

(a) Input Image (b) OpenCV Implementation
(Bradski, 2000)

(c) MATLAB Implementation
(MATLAB, 2010)

(d) GPU Implementation (Luo
and Duraiswami, 2008)

(e) GPU Implementation
(Ogawa et al., 2010)

(f) Our Implementation

Figure 3.1 Smoothing Edges Comparison : Output Images of Different CED Implementations

3.3 Evaluation Approach Overview

In this section, we present an overview of our approach to evaluate the efficiency of a large
set of parallel platforms to run parallel applications (see Figure 3.2). This approach takes the
studied applications as input and preforms the following three steps :

1. Analyze each application complexity and available parallelization opportunities,
2. Select appropriate parallelization strategies depending on the target platform charac-

teristics,
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3. Implement the parallel versions using each parallelization strategy on target platforms
and evaluate the parallelization efficiency.
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Figure 3.2 Performance Evaluation Approach

3.4 Case Study Applications

As a case study, we target the augmented reality system for Minimally Invasive Surgery (MIS)
used for spinal surgery. MIS imposes high difficulty to the surgeon since he has to handle
surgical instruments relying on a narrow field of view captured from an endoscope (monocu-
lar camera introduced in the patient body via a small hole). An augmented reality system
based on two processing stages is the solution to get over the loss of depth perception and the
narrow field of view. The first stage consists of a real-time detection of surgical instruments
and their positions in the captured video. The second stage consists of mapping the captured
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positions on the preoperative 3D spinal model to build an augmented reality scene (see Fi-
gure. 3.3). In this thesis, we focus on the processing involved in the first stage (see Figure. 3.4).

As a starting point, we use the application developed by (Windisch et al., 2005). The ap-
plication is developed in MATLAB (MATLAB, 2010) where all the functional aspects are
met. The main issue of the developed application is the long execution time which makes
it not suitable for practical clinical use. The challenge is how to speedup such application
and maintain high accurate instrument detection. First, we identified the main applications
involved in first stage which are : (1) Canny Edge Detection (CED), (3) Shape Refining :
thinning as an example and (3) Euclidean Distance Transform (EDT). We used these appli-
cations as a case study to evaluate the parallel computation capability of several hardware
parallel platforms. In the following, we detail the parallelized applications.

Figure 3.3 Augmented Reality System for spinal MIS (Windisch et al., 2005)
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Figure 3.4 Instrument Detection Stages

3.4.1 Canny Edge Detection CED)

The CED (Canny, 1986) is used as a fundamental preprocessing step in several computer vi-
sion applications. CED is a multi-stage application (see Figure. 3.5) composed of the following
stages :

1. Gaussian Blur : it is an example of noise suppression filter based on linear algebra
operations. The main operation consists of calculating an output image pixel as the
result of a convolution of an input image pixel and its neighborhood with a 2D filter
also called convolution mask (Sonka et al., 2014). The Gaussian Blur is known to
be a computationally costly filter and this cost is proportional to the image and the
filter size. However, this cost is considerably reduced since the Gaussian filter has
the characteristics of separability. By separating the 2D filter convolution into two
successive 1D convolutions, the number of operations is reduced from MxNxHxH to
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2xMxNxH where M,N and H are respectively the height, the width of the image and
the width of the filter.

2. Gradient Calculation : it consists of calculating the derivatives of the image ac-
cording to the 2D space. This is reduced to calculate the pixels’ intensity variation
according the horizontal (X) and the vertical (Y) directions by convolving the input
image in each direction with a 2D gradient filter. Same as Gaussian Blur convolu-
tion, each directional gradient is separated into two successive 1D convolution with 1D
gradient filters.

3. Magnitude Calculation : it collects the two directional gradients and calculates the
magnitude of the gradients for each pixel.

4. Non Maximum Suppression : based on the gradient values of each pixel and the
directional gradient, this stage groups the pixels into two groups : (1) weak edge pixels
(those pixels with gradient values exceeding a low threshold) and (2) strong edge pixels
(those pixel with gradient values exceeding a high threshold). A weak edge pixel is not
considered as a final edge pixel if it is not connected to a strong edge pixel. The role of
the next stage is to keep only real edge pixels.

5. Edge pixels Connection : it links together the pixels belonging to the same edge. It
pulls one pixel at a time from the strong edge pixels group and searches if any of the
neighboring pixels that belong to the weak edge pixels could be connected to it.

GaussianBlur

Gradient at X 

Direction

Gradient at Y 

Direction

Magnitude 

Calculation

Non Maximum 

Suppression at Direction 

1

Non Maximum 

Suppression at Direction 

2

Non Maximum 

Suppression at Direction 

3

Non Maximum 

Suppression at Direction 

4

Edge Points 

Connection

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 3.5 Canny Edge Detection Stages
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3.4.2 Shape Refining : Thinning

Since the studied application targets medical imaging that requires high accurate detection,
another stage to CED that is responsible of refining the edges’ shapes is required. This stage
involves a well known image processing operation, the thinning morphological operation. The
thinning stage consists of performing a number of successive morphological operations until
there is no more possible thinning to be done for the output image. At the end of this stage,
we obtain the final set of thin edges. This processing is an iterative processing where the
number of iterations is unpredictable at compile time and it is image content dependent. By
adding this stage to the CED application, we provide high accurate edges but with a price
of more complex operations and heavier computations. So to accelerate this application,
additional effort in the parallelization task is needed.

Thinning

Input Image Output Image

Figure 3.6 Thinning Application

3.4.3 2D Euclidean Distance Transform

The Distance Transform (DT) is a fundamental application used in many computer vision
applications. DT is applied in shape analysis, pattern recognition, and computational geo-
metry (Fabbri et al., 2008). The DT maps each image pixel into its smallest distance to
regions of interest (Rosenfeld and Pfaltz, 1966). DT is applied to a binary image where a
white pixel represents the background and the black pixel represent the object also called
the foreground. The image resulting of DT is called also distance map and it is represented
by pixels where their intensity is proportional to the computed distance (see Figure. 3.7).
Many forms of distance calculation could be used in DT namely city block, chessboard and
Euclidean distances (EDT). The latter is known to be the most accurate one but the most
computationally expensive. Several applications of DT are listed in (Fabbri et al., 2008) such
as :



29

- Separation of overlapping objects,

- Computation of geometrical representations : skeletonization,

- Robot navigation : obstacles avoidance,

- Shape matching.

A basic example of EDT implementation is the Brute-Force EDT. This application provides
the minimum distance between a white and a black pixel.

In this work, we implemented a modified version of Brute-Force EDT. The proposed version
is adapted to a specific problem which consists of determining the distance of neighboring
pixels to a detected edge. We restrict our EDT computation to only neighbour pixels that
belong to a limited region. This limit is set depending on the application. In our case, we
consider only pixels that belong to a disk of a preset radius. This application serves as
a case study that shows a particular programming feature where memory intensive access
conditional processing and work load unbalancing are involved. Consequently, the efficiency
of parallel implementation of this application on multicore CPUs and on local store-based
manycore platform may be affected. The main stage of the implemented algorithm are :

1. Initialize the distance of every white pixel to the maximum distance value,

2. For each pixel belonging to the edge, map the precalculated distance grid on the neigh-
bor region centered to that pixel,

3. For each neighbor, calculate the distance to the edge pixel. If the new distance is smaller
than the current distance, update the neighbor’s current distance with the new one.

Distance 

Transform

Input Image Output Image

Figure 3.7 Distance Transform Application
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3.5 Target Parallel Hardware Platforms

In this section, we give a detailed architectural overview of the parallel hardware platforms
used to implement the above described applications. The target platforms cover both HPC
and embedded computers.

3.5.1 HPC CPU-Based Platform

As a multicore CPU platform, we use a two AMD Opteron 6128 processors (see Figure. 3.8).
Each AMD Opteron processor is composed of 8 cores working at 2 GHz. For each processor,
the cache memory is distributed as follows : 8 x 64 KB Data L1, 8 x 64 KB Instruction L1,
8 x 512 KB L2, and 10 MB shared L3. The main memory is distributed as 6 GB DDR3
memory 1333 MHz for each processor. As parallel programming model, we use OpenMP to
implement the parallelized studied applications.
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3.5.2 HPC GPU-Based Platforms

We study different families of Nvidia GPUs. These GPUs integrate a complex memory hie-
rarchy and a huge number of processing elements that deliver enormous computing power.
To program these GPU, we use CUDA as parallel programming model. This section presents
the relevant architecture aspects for each platform exploited in our project.

NVIDIA Fermi GPU

The NVIDIA Fermi GPU codenamed GF100 (NVIDIA, 2009) is the first NVIDIA GPU which
integrates an L1 cache memory alongside with the shared memory. For our experiments, we
use the GTX 590 GPU integrating two GPUs in the same card where each GPU integrates 16
SMs. Each SM (see Figure. 3.9) is composed of 32 cores, four Special Function Units (SFUs),
16 Double Precision (DP) Units, 16 LD/ST Units, four texture units, two warp schedulers
and two dispatch units. Texture units are dedicated hardware units which improve the data
access that present 1D, 2D or 3D spatial locality. The warp schedulers and dispatch units are
responsible to schedule the threads execution on cores, where each 32 threads are grouped
into a warp. Fermi GPU may issues two warps to execute concurrently per clock cycle.
Moreover, one SM includes 32 KB of registers, a 64 KB of configurable shared memory/L1
cache and a uniform cache. The configurable shared memory/L1 cache can be configured as
48 KB/16 KB or 16 KB/48 KB. This feature gives more flexibility to the developer toward
more data control via shared memory or less control with less programming effort via L1
cache. Each GTX 590 GPU includes also 768 KB of L2 cache and 1.5 GB of global memory.
Fermi GPUs integrates also Direct Memory Access (DMA) engines. The DMA engines may
be considered as other sources of parallelism since they allow to overlapping computation
and asynchronous memory transfers. In mid-range Fermi GPU such as GTX family, only one
DMA is present while in high-end Fermi GPU such as Tesla family, we find two DMA engines.
Besides its power to execute massive data-parallel applications, Fermi GPU supports also
task-parallel applications by means of concurrent streams – command queues that enqueue
kernel execution commands and memory transfers commands. Fermi GPU may support up to
16 concurrent streams but they are multiplexed into a single hardware queue which introduces
false dependencies between streams execution.

With regard to the runtime, Fermi GPU supports at most 8 active thread blocks for a total
of 1536 threads per MP. This runtime constraint has to be considered by the programmer
when creating thread blocks and assigning workload to threads.
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Figure 3.9 Fermi SM Architecture

NVIDIA Kepler GPU

The NVIDIA Kepler GPU codenamed GK110 (NVIDIA, 2012) implements additional hard-
ware resources and provides more parallelization abilities compared to Fermi GPU. The
Kepler GPU is composed of a number of MPs with a different structure named SMX. For
our experiments, we use the GTX 780 GPU with 12 SMXs. Each SMX (see in Figure. 3.10)
is composed of 192 cores (6x more cores than Fermi), 16 SFUs (4x more than Fermi), 64
DP Units (4x more than Fermi), 32 LD/ST Units (2x more than Fermi), 16 texture units
(4x more than Fermi), four warp schedulers and eight dispatch units. According to the num-
ber of warp schedulers, Fermi GPU may issues four warps to execute concurrently per clock
cycle. Moreover, one SMX includes 64 KB of registers (2x more than Fermi), a 64 KB of
configurable shared memory/L1 cache and a 48 KB constant cache. The configurable shared
memory/L1 cache can be configured as 48 KB/16 KB, or 32 KB/32 Kb or 16 KB /48 KB. The
GTX 780 GPU includes also 1536 KB of L2 (2x more than Fermi) cache and 3 GB of global
memory. Like Fermi GPUs, Kepler GPUs integrate also one or two DMA depending on the
GPU range. Like Fermi, Kepler GPU supports also task-parallel applications by allowing 32
concurrent streams which are managed by means of HyperQ – a technology that implements
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32 different hardware queues between host CPU and GPU. This technology enables multiple
CPU cores to launch simultaneously kernels on a GPU. This yields to a real full concurrency
unlike Fermi GPU. Moreover, Kepler GPU introduces the dynamic parallelism for the first
time in GPU where one kernel may launch new kernels on the fly from the GPU without the
need of the host CPU.

With regard to the runtime, Kepler GPU supports more active threads than Fermi as 16
active thread blocks of a total of 2048 threads per SMX. This runtime constraint gives more
flexibility and better load balancing compared to Fermi architecture.
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Figure 3.10 Kepler SMX Architecture

NVIDIA Maxwell GPU

The NVIDIA Maxwell GPU codenamed GM107 (NVIDIA, 2014) is the latest architecture
released by NVIDIA. For our experiments, we use the GTX 750 GPU which is intended to be
used in power-limited devices such as notebooks. The main benefit of Maxwell architecture
is its ability to guaranty a high performance rate per watt. Maxwell is able to deliver 2 times
the performance per watt compared to Kepler (NVIDIA, 2014). In Maxwell, the MP is named
SMM and integrates 128 cores divided into four separate processing blocks of 32 cores each
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(see Figure. 3.11). Each processing block integrates its own instruction buffer, warp scheduler
and two dispatch units. Each two processing blocks share four texture units and a texture
cache combined with an L1 cache. Unlike Fermi and Kepler, Maxwell integrates a separate
unit for the shared memory of a larger size of 64 KB. Moreover, Maxwell integrates a larger
L2 cache of size of 2048 KB. Maxwell architecture has the same compute capability as Kepler
by supporting the dynamic parallelism and integrating a HyperQ.

With regard to the runtime, Maxwell GPU supports the same number of active threads per
SMM as Kepler but 32 of active thread blocks. This runtime constraint gives more flexibility
and better load balancing compared to Fermi architecture.

Figure 3.11 Maxwell SMM Architecture

Table 3.1 GPU Architectures Specifications

GPU Architecture Fermi Kepler Maxwell
(GTX 590) (GTX 780) (GTX 750)

CUDA Compute Capability 2.0 3.5 5.0
# of MPs 2x 16 12 4
# of Cores 2x 512 2304 512

GPU Clock Rate (MHz) 1225 900 1320
Global Mem. (MB) 2x 1536 3072 2048
L2 Cache (KB) 768 1536 2048

Max Shared Mem. (KB) 48 48 64
L1 Cache (KB) 48 48 24

Texture/R.O Cache (KB) 48 48 24
Register File (KB) 32 64 64
# of DMA Engines 1 1 1
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Table 3.2 GPU Runtime Constraints
GPU Architecture Fermi Kepler Maxwell

(GTX 590) (GTX 780) (GTX 750)
CUDA Version 6.5 6.5 6.5

Max. # of Thread BLocks 8 16 32
Max. # of Threads 1536 2048 2048

Max. # of Threads/Block 1024 1024 1024

3.5.3 Embedded Parallel Platforms

In this section, we give the architecture details of two manycore embedded platforms that we
use to implement the studied applications. These platforms are namely STHOTM platform,
a CPU core-based platform designed by STMicroelectronics and Tegra K1, a GPU core-based
platform designed by NVIDIA.

STHORM Platform

The STHORM platform is a low power many-core CPU platform. The different modules
of this platform are represented in Figure. 3.12. The STHORM architecture (Melpignano
et al., 2012) features an ARM host CPU running at 667 MHz, a global memory and a
four cluster fabric subsystem. Each cluster features one cluster controller and 16 processing
elements (PEs) sharing a 256 KB local scratchpad memory. The cluster controller consists of
a controller processor (CP) and two Direct Memory Access (DMA) modules responsible of
asynchronous data transfers between the global and the local memory. All processors involved
in the fabric subsystem are STxP70 32-bit RISC processors running at 450 MHz.

The STHORM platform shares some features with the GPU architecture as the processors
organization and the scratchpad memory. However, it presents different features as the PEs
are mono-thread versus multithreaded PEs in GPU. Moreover, STHORM follows the MIMD
execution model versus a SIMD execution model followed by GPU. This last feature makes
STHORM more suitable for data-oriented applications with complex control flow than GPU.

As programming model, customized OpenCL APIs are provided to program parallel appli-
cations on STHORM platform.
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Figure 3.12 STHORM Architecture

Tegra K1 Platform

It is a low power manycore GPU embedded platform designed for mobile applications. Tegra
K1 is based on the Kepler architecture and is the first embedded platform supporting CUDA
(NVIDIA, 2013). It features one SMX with 192 CUDA cores and a quad core ARM Cortex
A15 CPU (see Figure 3.13). Tegra K1 has the same compute capbility as Kepler GPU but
working at low power. All the architecture specifications are summarized in Table 3.3.



37

Global 

Memory

Host

CPU #0 CPU #1

CPU #2 CPU #3

Figure 3.13 Tegra K1 Architecture

Table 3.3 Tegra K1 Architecture Specifications

# of CPUs 4
CPU Clock Rate 2.3 GHz
Memory Size 1700 MB
CUDA Version 6.0

Compute Capability 3.2
Global Mem. 1746 MB
# of SMs 1

# of CUDA Cores 192
GPU Clock Rate 852 MHz
L2 Cache Size 128 KB

Shared Mem. Size 48 KB
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3.6 Parallelization Approach

In this section, we describe our approach to parallelize an application for a target parallel
platform. This approach may be divided into two steps :

1. We analyze the application regarding the computation complexity, the involved data
structures and dependencies. At the end of this step, we extract all possible paralleli-
zation opportunities,

2. We employ appropriate parallelization strategies to map the parallelization opportu-
nities to the target platform. The choice of the convenient parallelization strategies
depends on the parallelism models found in the application and the target hardware
features : number of cores, memory hierarchy and the computational model.

3.6.1 Algorithm Analysis

First, we study the types of operations and data structures involved in each application.
Figure 3.14, Figure 3.15 and Figure 3.16 represent both operations and data structures of
respectively CED, Thinning and EDT operations. In these figures, a 2D grid represents an
image, a dark blue square represents the current processed pixel, a light blue square repre-
sents the additional pixel needed for computation and an arrow represents the execution flow.

CED Algorithm Analysis

We can distinguish in CED four main operations : (1) convolution,(2) magnitude calcula-
tion, (3) non maximum suppression and (4) edge pixel connection. In Gaussian Blur and
Gradient Calculation stage, two successive 1D convolutions are processed, one on the rows
and one on the columns. Each 1D convolution may be executed separately on each pixel but
the convolution on columns must be executed after the convolution on rows because of the
inter-operation dependencies.
Magnitude Calculation may be processed separately for each pixel and needs only the two-
directional gradient values at the current pixel index. The Non Maximum Suppression stage
needs the current pixel value from both GradientY and GradientX image and the magnitude
of the gradient at the current pixel index and of the eight neighbor pixels.
Edge pixels connection goes through each dark blue pixel and checks if one of its neighbors
may be connected to it. The traversal of the image follows an unpredictable path since it
depends on the pixel values. Therefore, this operation is maintained sequential.
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The other operations may be fully parallelized as well. Still, the main challenge of an efficient
parallelization of CED is how to maintain a good data locality and hide any data transfer
overhead. As a solution, we implement two optimization techniques that are adapted for each
family of target architectures. These techniques are mainly : (1) operations fusion and (2)
data transfer and computation overlap.

Thinning Algorithm Analysis

The thinning stage performs an iterative processing via an unbounded loop where the number
of iterations depends on the processed data. Nevertheless, Thinning application processing
may be performed in each pixel separately which makes the application to run in parallel.
Similar to CED, thinning also accesses to a large data structures and this access has to
be efficient by increasing data locality. To overcome this challenge, we implement a tiling
technique which divides image into slices that are processed in parallel with a high spatial
data locality.

EDT Algorithm Analysis

In this application, each edge is processed separately. For each edge, a distance envelope
is computed based on a precalculated distance table. The mapping of this table and the
distance update of each neighboring pixel may be further processed in parallel. The main
issue of the parallelization of such application is the work load unbalancing since the edge
sizes are variable. To solve this issue, we use mainly two optimization techniques : data
arrangement and efficient scheduling.
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Summary of Computational Features of Studied Algorithms

The studied applications present a number of different computational features summarized
in Table 3.4.

- CED combines both data-parallel processing (filtering operations and non maximum
suppression) and sequential processing (connecting edge pixels). The processing is
mostly regular with the presence of some conditional processing in non maximum
suppression stage. The data accesses take the major part of CED execution time so
the classification of CED as memory bound application like several image processing
applications.

- Shape refining applies iteratively a number of morphological operations. The number of
iterations depends on the processed data. This type of processing is known as unboun-
ded loop processing. Like CED, shape refining is also a memory bound application.

- EDT follows a regular processing but suffers from poor load balancing processing due
to the difference in size of computed distance region. EDT is based on three main
operations : (i) distance computation, (ii) distance comparison which is translated to
more control and (iii) distance update which leads to extra data access.

Table 3.4 Computation Features of the Studied Algorithms

Canny Edge detection Shape Refining Euclidean Distance Transform
Filtering Operations Morphological Operations Distance Calculation
Regular processing Iterative with unbounded loop Regular processing
+ some control + some control + Control

Data-parallel + sequential Data-parallel Data-parallel + Unbalanced work load
Memory bound Memory bound Highly memory bound

3.6.2 Parallelization Strategies

The studied target platforms may be grouped into two main categories : (1) simple-level paral-
lel platforms and (2) two-level parallel platforms. The multicore CPU platform is considered
as a simple level parallel platform since all launched threads are exposed at the same level.
GPU-based platform and manycore cluster-based platform such as STHORM are considered
as two-level parallel platforms. The launched threads are organized in a two-level hierar-
chy. At the first level, the computation is distributed among a number of thread blocks at
coarse-grain. Each block has its own workspace defined usually by the shared memory space
allocated to it. All threads belonging to this thread block compose the second level of the
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hierarchy. Once the computation is divided among thread blocks, a further finer-grain distri-
bution of the computation is performed among threads.

Both CED, thinning and EDT applications are implemented in multicore CPU as simple-level
parallelism. For CED and thinning, the input image is divided into large slices where each slice
is processed in parallel by one particular thread. For EDT, each group of edges is processed
by a particular thread. Each thread passes through all pixels of the edge sequentially and
compute the distance of the neighbor pixels.

In a two-level parallel platform, processed images in CED and thinning are divided into slices
among thread blocks. First, each slice is loaded to the shared memory space allocated by the
tread block. Second, threads belonging to the same thread block work in parallel to process
the loaded slice. We apply the same principle to EDT where each group of edges is distributed
among thread blocks. Each thread block works on one edge at a time and threads belonging
to the same thread block work together to map distances in parallel for one edge pixel at a
time and repeat the same processing to all edge pixels.

Besides the parallelization strategies, a number of parallelization optimization techniques
are mandatory for an efficient parallelization. In the following, we list the used optimization
techniques :

- Opt1 : We use an appropriate scheduler to ensure better load balancing among PEs.
This optimization is applied for the parallelization of EDT on multicore CPU. As
OpenMP is used to implement parallel program on multicore CPU, we add the dy-
namic schedule directive to the parallel loop pragma. Unlike static scheduling where
loop iterations are distributed on the PEs based on their iteration number, dynamic
scheduling assigns loops iterations on the fly to idle cores.

- Opt2 : We add a preprocessing phase for EDT to arrange the data for better work
load distribution on the MPs of manycore platforms.

- Opt3 : We apply the fusion technique for the parallel implementation of CED on
multicore CPU. This technique ensures improved temporal locality.

- Opt4 : We apply the tiling technique in the parallel implementation of thinning appli-
cation on multicore CPU. This technique ensures improved spatial data locality.

- Opt5 : We overlap data transfer and computation on manycore platforms by using
the DMA mechanism. For NVIDIA GPU-based platforms implementation, the call of
DMA is ensured via the use of concurrent streams and asynchronous data copy APIs.
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This optimization decreases the data transfer overhead from host to device memory.

- Opt6 : We take advantage of the 48 KB and the 24 KB of read only cache (RO Cache)
implemented respectively on Kepler and Maxwell GPUs to improve data read from
global memory. The use of the RO Cache is simplified in GPU of compute capability
3.5 and higher via a dedicated API. All the implementations preformed on Kepler and
Maxwell are using RO Cache.

3.7 Experimental Results

This section presents the results for several implementations of the studied algorithms on the
presented parallel platforms, using the parallelization strategies presented in the previous
section.

3.7.1 Parallelization Performance of CED

In this section, we provide the experimental results of several parallel implementations of
CED on the studied target platforms.

CED on Multicore CPU Platforms

We target multicore CPUs for both HPC and embedded platforms : (1) AMD Opteron 6128
CPU as a HPC platform and (2) the Tegra K1 CPU and the ARM Cortex A15 as embedded
platforms.
We implement two parallel versions : (i) a basic implementation where each CED operation is
parallelized separately and (ii) an optimized implementation by applying Opt3 which consists
in fusing all the operations into one big operation. This optimization improves the temporal
data locality. The execution time and speedup of CED running on AMD Opteron 6128 are
illustrated in Table 3.5 and Figure 3.17(a). We show that by applying Opt3 to the parallelized
CED on 16-core AMD Opteron, we increase the speedup from 4.2x in basic implementation
to 11.5x in optimized implementation.

Table 3.5 Execution Time in (ms) of CED on HPC Multicore CPU (Image Size = 1024x1024)

# of Cores 1 2 4 8 16
Separate 448 313 178 121 105
Fused 324 172 82 47 28
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Table 3.6 Execution Time in (ms) of CED on Tegra K1 CPU (Image Size = 1024x1024)

# of Cores 1 2 4
Separate 429 292 231
Fused 207 105 56
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Figure 3.17 Speedup of CED on Multicore CPU Platforms

CED on Manycore Platforms

We implement a parallel version of CED on manycore GPU. The main performance limitation
of a parallel implementation of CED on GPU is the runtime overhead introduced by data
transfer between host and the GPU. Both computation and data transfer runtime distribution
of CED running on GTX 780 are illustrated in Figure 3.21(a). Host2Device and Device2Host
denote respectively for data transfer from host to GPU and data transfer from GPU to Host.
The data transfer takes around 50% of the total CED runtime and this percentage increases
as the image size increases. Since CED reads one input image and generates two images
(one represents the candidate pixels to be part of the edge set as white pixels, and the other
represents only strong edge pixels as white pixels), the runtime of Device2Host is almost 2x
the Host2Device. In order to reduce this overhead, we apply Opt5 to overlap computation
and data transfer by launching concurrent streams. Figure 3.18, Figure 3.19 and Figure 3.20
represent the timeline of respectively basic implementation without overlap, optimized im-
plementation with computation and data read overlap, and optimized implementation with
computation and data write overlap where each line represents a separate stream and the x
axis represents the time. We cannot overlap computation, data read and data write in the
studied GPU platforms since they implement only one DMA. However, this is applied in
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the implementation of CED on STHORM which integrates two bidirectional DMA engines.
Table 3.7 and Figure 3.21(b) represent respectively the Execution time and the speedup of
CED on GTX 780 for both the overlapped read and the overlapped write according to the
number of concurrent streams. By overlapping the data write and the computation, we reach
a peak speedup of 1.3x with 16 concurrent streams compared to a non overlapped version.

Figure 3.26(a) represents the execution time of the parallel implementation of CED on dif-
ferent GPUs for different image sizes. The experiments are applied to an overlapped com-
putation and data write version with 16 concurrent streams. Table 3.8 summarizes both the
execution time and the speedup of CED on both HPC multicore CPU and GPU platforms
for an image with size of 1024x1024. A peak speedup of 136x versus a sequential version
running on one core CPU is reached with GTX 780. This performance shows that GPU is
the most efficient platform to accelerate CED.
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Figure 3.18 CED Without Compute and Data Transfer Overlap
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Figure 3.19 CED With Compute and Data Read Overlap

Table 3.7 Execution Time in (ms) of CED on GTX 780 (Image Size = 8192x8192)

# of Streams 1 2 4 8 16
Overlapped Read 126 117 111 108 106
Overlapped Write 126 116 113 110 98
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Figure 3.21 Data Transfer Analysis and Transfer Improvements on GTX 780

Table 3.8 Parallelization Performance of CED on HPC Platforms (Image Size = 1024x1024)

Platform Opteron 6128 Opteron 6128 GTX 590 GTX 780 GTX 750
1 core 16 cores

Execution Time 324 28 4.35 3.93 4.43
(ms)

Speedup (x) 1 11.57 106 136 101
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3.7.2 Parallelization Performance of Thinning

In this section, we provide the experimental results of the parallel implementations of Thin-
ning application on the studied target platforms.

We implement two parallel versions of Thinning application on multicore CPU (basic imple-
mentation without tiling and an optimized implementation with tiling (Opt4 ). The execution
time of the two implementations are provided in Table 3.9 and Table 3.10 for respectively
AMD Opteron 6128 and Tegra ARM Cortex A15. The speedup reached in the two multicore
CPU platforms is given in Figure 3.22(a) and Figure 3.22(b). Both implementations are well
suited to be parallelized on multicore CPU with a good scalability with respect to the num-
ber of cores. The implementation with tiling outperforms the basic implementation when
the number of cores exceeds 8 cores (the number of cores per single processor). Since the
tiled implementation improves the spatial data locality, the remote data access overhead to a
different processor memory is reduced significantly. Hence, tiling optimization is considered
as a suitable candidate to accelerate such application on a NUMA multicore CPU.

Table 3.9 Execution Time in (ms) of Thinning on HPC Multicore CPU (Image Size =
1024x1024)

# of Cores 1 2 4 8 16
No Tiling 557 274 157 75 46
With Tiling 355 178 107 46 23

Table 3.10 Execution Time in (ms) of Thinning on Tegra K1 CPU (Image Size = 1024x1024)

# of Cores 1 2 4
No Tiling 346 194 103
With Tiling 258 131 68
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Figure 3.22 Speedup of Thinning on Multicore CPU Platforms

3.7.3 Parallelization Performance of EDT

In this section, we provide the experimental results of the parallel implementations of EDT
on the target platforms.

EDT on Multicore CPU Platforms

We implement two parallel versions of EDT on multicore CPU. We compare the paralleliza-
tion efficiency of a basic implementation and an optimized one applying Opt1. The execution
time of EDT processing 177 edge is given for each implementation in Table 3.11 and Table
3.12 respectively for AMD CPU and Tegra K1 CPU. The different speedups are illustrated
respectively in Figure 3.23(a) and Figure 3.23(b). We show that by applying Opt1 to EDT
parallelized on 16-core AMD Opteron, we double the speedup from 7x with static schedule
to 14x with dynamic schedule.

Table 3.11 Execution Time in (ms) of EDT on HPC Multicore CPU (# of Edges = 177)

# of Cores 1 2 4 8 16
Static Schedule 157 98 61 32 22

Dynamic Schedule 157 79 40 22 11
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Table 3.12 Execution Time in (ms) of EDT on Tegra K1 CPU (# of Edges = 177)

# of Cores 1 2 4
Static Schedule 227 121 76

Dynamic Schedule 227 115 58
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Figure 3.23 Speedup of EDT on Multicore CPU Platforms

EDT on Manycore Platforms

We target manycore GPUs to implement the basic EDT and optimized EDT applying Opt2.
Figure 3.24 and Figure 3.25 show the work load distribution on GTX 750 SMs for respectively
without Opt2 and with Opt2. The performance comparison of the two implementations on
different GPUs with different number of SMs is represented in Figure 3.26(b). The significance
of the performance gap between the two implementations is proportional to the number of
SMs. An inappropriate work load distribution may harm significantly the performance when
SMs are not fully utilized. Hence, we conclude that the work load mapping is a relevant
factor to improve perfromances on GPU. However, this performance is still poor compared
to the computation capability of the GPU. The maximum speedup shown in Table 3.13 for a
parallel version on GTX 780 is about 20x compared to 14x of 16-core multicore CPU speedup.
This relative poor performance on GPU is explained by the excessive data exchange between
the local shared memory and the global memory to update calculated distances. For such
applications which present a high rate of memory access compared to computation intensity,
the multicore CPU is more appropriate as acceleration platform.
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Figure 3.24 EDT Load Balancing Without Data Arrangement on GTX 750

Figure 3.25 EDT Load Balancing With Data Arrangement on GTX 750
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Table 3.13 Parallelization Performance of EDT on HPC Platforms (# of Edges = 177)

Platform Opteron 6128 Opteron 6128 GTX 590 GTX 780 GTX 750
1 core 16 cores

Execution Time 157 11 9.31 7.95 13.68
(ms)

Speedup (x) 1 14.27 16.86 19.74 11.47
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3.7.4 Performance Comparison Between STHORM and Tegra K1

In this section, we provide a performance comparison of two embedded manycore platforms.
STHORM as a manycore CPU core-based platform and Tegra K1 as a manycore GPU-
based platform. The parallel implementation of two best versions of both CED with thinning
application and EDT are evaluated on the two platforms. The execution time and speedup
are reported in Table 3.14. The CED experiments are performed in an image size of 512x512.
The EDT experiments are performed on 177 detected edges.

Table 3.14 Parallelization Performance of CED+Thinning and EDT on Manycore Embedded
Platforms)

Platform Tegra STHORM Tegra Tegra STHORM
1 core Sequential 4 cores GPU Manycore

Execution Time of 235.6 2989 62 42 141
CED+Thinning (ms)

Speedup (x) 1 1 3.81 5.6 21.2
Execution Time of 227 443 58 167 81.83

EDT (ms)
Speedup (x) 1 1 3.91 1.35 5.41
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3.8 Conclusion

In this chapter, we studied the suitability of several parallel platforms to accelerate three
fundamental applications used in image processing and computer vision. The studied appli-
cations are Canny edge detection, thinning and Euclidean distance transform. Those appli-
cations are components of an augmented reality system application used in medical imaging.
In order to meet the target application requirements mainly accuracy and speedup, we imple-
mented several parallel versions of the studied applications on various platforms. A number
of optimization techniques are applied toward improved performances. These optimizations
depends on the application characteristics such as data access pattern and computations,
and the compute capability of the target platform such as computation model and memory
organization. The experimental results on a wide range of target platforms are provided and
can be considered as guidelines to select the appropriate parallel platform to speedup a given
computation feature.

The main conclusions that we can extract from this deep study are :

- Overlapping data transfer and computation in GPU represents another source of pa-
rallelism which allows to hide extra overhead introduce by data transfer between host
and device.

- Inappropriate work load distribution on GPU may harm significantly the performance
when MPs are not fully utilized.

- For applications which present a high rate of memory access compared to computation
intensity, the multicore CPU is more appropriate as acceleration platform compared to
GPU platforms.
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CHAPTER 4 PERFORMANCE EVALUATION OF PARALLELIZATION
STRATEGIES - CASE STUDY : extCED

4.1 Introduction

Since applications are increasing in complexity and present a wide variety of parallel features,
it becomes difficult to decide which parallelization strategy is suitable for a given platform
to reach peak performance. The major contribution presented in this chapter is a compre-
hensive quantitative analysis of a large variety of parallelization strategies and implementing
different parallel structures on two most common parallel platforms : a multicore CPU and a
manycore GPU using wide spectrum of parallel programming models. We also aim at deter-
mining guidelines for the efficient parallelization strategies (parallelization granularity and
parallelism model) of a class of image processing applications.

In this context, we developed a substantial number of parallel extended Canny Edge Detec-
tion (extCED) implementations on a multicore CPU and on a manycore GPU. Hence, we
provide one of largest variety of parallel versions of CED that can exist. Furthermore, we
provide a high accurate and fast CED implementation suitable for laproscopic images.

The rest of the the chapter is organized as follows : Section 4.2 presents a detailed state
of the art of several performance evaluations and comparisons of parallelization strategies.
Section 4.3 presents the case study and the possible parallelization opportunities states pre-
vious implementations of CED and describes the CED algorithm ; Section 4.4 exposes the
studied parallelization strategies ; Section 4.5 presents the target parallel platforms and the
their respective programming models. Section 4.6 presents the design challenges and describes
our approach to address the parallelization of as sequential program. Section 4.7 shows the
performance evaluation of the studied parallelization strategies. Finally, Section 4.8 draws a
number of concluding remarks.

4.2 Related Work

There have been large body of work that compares different parallelization strategies. We
can classify them according to three categories (1) parallelization granularity, (2) parallelism
model and (3) programming model.
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4.2.1 Related Work on Comparing Parallelization Granularities

Several researchers focused on the parallelization granularity, in particular fine-grain through
inner loop-level parallelism and coarse-grain through domain decomposition or tiling. The
work in (Pratas et al., 2009) compares the efficiency of multicore CPUs vs. Cell/BE vs.
GPUs to exploit fine-grain parallelism in a Bioinformatics application. On the other hand,
domain decomposition is essentially used for scientific and engineering computations (Guo
et al., 2008) and for computer vision applications (Chen et al., 2007b). In particular, image
processing algorithms often uses Iterative Stencil Loops (ISL) 1 (Meng and Skadron, 2011)
which encourages the use of tiling technique. Experiments provided in (Li and Song, 2004)
show that the tiling technique offers a speedup of 1.58 and a maximum speedup of 5.06 over
original implementations of sixteen test programs. Several work employ halo 2 for tiling ISLs
in order to localize the computations specially for manycore GPUs (Che et al., 2008; Meng
and Skadron, 2011).

4.2.2 Related Work on Comparing Parallelism Models

In this subsection, we present some related work dealing with performance evaluation of a
number of parallelization strategies covering parallelism models mainly data-parallelism and
nested task- and data-parallelism.

Mixing different levels of parallelism is limited in a number of parallel programming model
standards. The work presented in (Rodríguez-Rosa et al., 2003) investigates and measures
the advantages of mixing task and data parallelism. The experiments are performed with
two programming models OpenMP 2.0 and llc as an extension of OpenMP to support both
multi-level parallelism and distributed memory architectures. The results demonstrate that
llc provides good performance by mixing different levels of parallelism, while OpenMP 2.0
does not benefit from that mixing due to the lack of suited compilers. A more recent work
presented in (Dimakopoulos et al., 2008) assesses in details the overhead incurred by nested
parallelism implemented with OpenMP 2.5. Several OpenMP compilers and runtime systems
were inspected to study how efficiently OpenMP implementations support nested parallelism.
The experiments show that most implementations suffer from scalability problems in the
case where nested parallelism is enabled and the number of threads exceeds the available
processors. In (Tian et al., 2005), design and implementation of a new framework for OpenMP

1. Iterative Stencil Loop (ISL) : loops that iteratively modify the same array elements as a function of
neighbouring elements during consecutive processing steps

2. Halo : a region that surrounds each tile which contains a copy of elements of the neighbor tiles needed
for computation
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2.5 which exploits nested task- and data- parallelism was proposed. The main idea of this
existing work is to convert the parallel sections construct, used to express task-parallelism, to
parallel for construct with the capacity to specify the scheduling algorithm in order to achieve
a better load balancing. The proposed framework delivers a performance gain of about 40%
by exploiting nested parallelism compared with a single level of parallelization. All of the
above mentioned work were built around OpenMP and multicore CPUs, while in our case we
examine how efficient different parallel programming models and different parallel platforms
exploit both data-parallelism and nested task- and data-parallelism.

4.2.3 Related Work on Comparing Programming Models

A comparison between OpenMP 3.0, Cilk (Frigo et al., 1998), Cilk++ (Leiserson, 2009) and
Intel Thread Building Blocks (TBB) with respect to scalability regarding task parallelism
and in presence of load balancing constraints is reported in (Olivier and Prins, 2010). The
Unbalanced Tree Search (UTS) (Olivier et al., 2007) is used as benchmark. The experiments
results provided by the paper show that Cilk++ offers the best scalability followed by Cilk
then TBB and as last OpenMP 3.0.

In (Kegel et al., 2011b), a comprehensive comparison of Pthreads (Butenhof, 1997), OpenMP,
and TBB is made according to : runtime performance, level of abstraction, programming style
and programming effort. Different parallelization strategies of a medical imaging algorithm,
Positron Emission Tomography (PET), are evaluated for each parallel programming model.
The parallelization strategies studied include : loop parallelization, synchronization, and hi-
gher level parallelization based on reduction pattern. The comparison results show that the
three programming models provide almost similar speedup for the different parallelization
strategies except for parallel reduction algorithm where TBB is outperformed by Pthreads
and OpenMP on eight cores. Regarding the abstraction level, both OpenMP and TBB des-
cribe the parallelism at a higher level compared to Pthreads. While TBB is shown to be
more tailored for object-oriented programming style, however, the authors show the need of
an additional programming effort compared to OpenMP, but it remains much lower then
Pthreads.

Parallelization overhead associated with thread creation, synchronization, threading granula-
rity and scheduling are evaluated for both OpenMP 2.0 and TBB 2.0 in (Marowka, 2010). The
experiments are performed with two benchmarks suites OpenMP EPCC micro benchmarks
(Bull and O’Neill, 2001) and TBBBench (Marowka, 2010). Moreover, the influence of compi-
lers on measured results is evaluated. The studied compilers are Intel C++ compiler 11.0 and
Microsoft Visual Studio C++ 2008. The main conclusions of this work are : (1) OpenMP ove-
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rhead is strongly dependent on the compiler, while TBB performances remains independent
form compilers, and (2) TBB implements a scheduler that manages task-parallelism model
in more efficient way than OpenMP.

While the above mentioned work provides a preliminary evaluation of a number of paralle-
lization strategies and their implementation by different programming models, they are still
limited to multicore CPUs. In contrast, our proposed work comes to compare a wide range
of parallelization strategies on both multicore CPUs and manycore GPUs. Our main goal is
to allow the developer to implement the most effective parallelization strategies on current
heterogeneous parallel platforms integrating multicore CPUs and manycore GPUs.

In that direction, an in-depth performance comparison between CUDA and OpenCL on
NVIDIA GPU is provided in (Karimi et al., 2010). The measured performances involve data
transfer times to and from the GPU, kernel execution times, and the whole application execu-
tion times. As benchmark, Adiabatic QUantum Algorithm (AQUA) is used. The experiments
report that CUDA outperforms OpenCL in both data transfer and kernel execution.
In addition, a number of publications are comparing performances between multicore CPUs
and manycore GPUs. In (Che et al., 2008), a CUDA-based implementation on manycore GPU
is compared to OpenMP-based implementation on multicore CPU for a variety of general-
purpose applications. In this work, the authors examines the programmability and runtime
performance of CUDA compared to OpenMP for different data structures and memory access
patterns. In (Che et al., 2009), Rodinia, a new benchmark suite for heterogenous computing,
is introduced. The suite consists of four applications and five kernels. Two implementations
of Rodinia are available : (1) OpenMP-based implementation targeting multicore CPUs and
(2) CUDA-based implementation targeting manycore GPUs. The benchmark suite offers a
wide range of workloads covering various types of parallelism, data access patterns, and
data-sharing characteristics. The goal of this work is to facilitate performance evaluation of
different parallel communication patterns, synchronization techniques and power consump-
tion for both multicore CPUs and manycore GPUs.

Despite the interesting comparison of a number of parallelization strategies between multi-
core CPUs and manycore GPUs, these works are limited only to two parallel programming
models OpenMP and CUDA while our work targets OpenMP and TBB for mutli-core CPUs
and, CUDA and OpenCL for manycore GPUs.

Through this extensive summary of the related work, we can build some preliminary conclu-
sions around the efficiency of a number of parallelization strategies in a given context (parallel
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structure and parallel architecture). However, we have not a comprehensive overview of the
common parallelization strategies running under different contexts. Hence, the focus of the
proposed work is to fulfill this need.

4.3 Motivation and Example : Extended Canny Edge Detection (extCED)

As the promise of parallelism is attracting researchers and developers for the last decades,
the programming of current applications exploits further the parallelism that may be present
in those applications. The parallelism opportunities may vary depending on the application
and the application field while several parallelism opportunities may be shared by different
applications belonging to distinct application fields. One of the biggest limitation to reach
high performance execution in parallel computing that it is currently unclear how to express
the parallelism opportunities best. To overcome this limitation and based on the fact that
applications may share similar parallelism opportunities, we decided in this work to see if
there are lessons we can learn for the future of parallel computing.

Our goal is to draw general conclusions about the efficiency of existing parallelization stra-
tegies. To do so, we study a particular application, the Extended Canny Edge Detection
(extCED), which exposes various parallelism opportunities that are representative of a wide
range of parallel features which may be present in a large set of applications. Then, we de-
velop a large variety of parallelization strategies that may express the different parallelism
opportunities and we compare their performances according to runtime and scalability in
different contexts of execution (multicore CPU and manycore GPU).

4.3.1 Case Study : Extended Canny Edge Detection (extCED)

CED is used as a preprocessing phase in several computer vision applications. As mentioned
in the previous chapter, CED has been used as a first step in the process of identifying and
tracking instruments during laparoscopic surgery. Since our work targets medical imaging,
which requires a high accurate detection, we add another stage responsible of refining the
edges’ shapes. This stage involves a thinning morphological operation.

We can distinguish mainly three main parts in the extCED algorithm, depending on the way
in which parallelism can be exploited (see Figure 4.1). Part 1 is purely parallel, and can be
equally distributed over different threads. Part 2 is strictly sequential, and Part 3 consists
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of a sequential loop including pure data-parallel sub-parts (see Listing 4.1 3). Part 1 can be
further divided into two main sub-parts : pure data-parallel sub-parts and nested task- and
data-parallel sub-parts. Based on this classification, we experiment several parallelization
strategies.
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3. For convenience, we use OpenMP constructs in the listings to describe the parallel structures of the
different program parts.
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Listing 4.1 Nested Sequential and data-parallelism
while ( cond i t i on ){

// F i s t sub−i t e r a t i o n
#pragma omp p a r a l l e l for
for ( row=0; row<imHeight ; row++){

for ( c o l =0; co l<imWidth ; c o l++){
out1 ( row , c o l ) = function_1 ( in1 ) ;

}
}

//Second sub−i t e r a t i o n
#pragma omp p a r a l l e l for
for ( row=0; row<imHeight ; row++){

for ( c o l =0; co l<imWidth ; c o l++){
out2 ( row , c o l ) = function_2 ( out1 ) ;

}
}

cond i t i on = function_3 ( in1 , out2 ) ;
}

4.4 Parallelization Strategies For extCED

We can classify the studied parallelization strategies according to the parallelization granu-
larity, parallelism models.

4.4.1 Parallelization Granularities

The studied parallelization granularities are : (1) fine-grain and (2) coarse-grain.

- Fine-grain parallelization : it consists of parallelizing separately each loop with no
dependencies across iterations (see Figure 4.2(a)). The particular feature of fine-grain
parallelization strategy is the high reusability since each loop may be a stand alone
image processing operation that can be present in more than one image processing
algorithm. So parallel version of this operation can be reused more than once in dif-
ferent applications without any modification. However, this strategy may suffer from
the overhead due to the thread’s fork-join operations, and from poor data locality.

- Coarse-grain parallelization : the program is parallelized at outermost level : the



62

input image is equally divided in sub-images or tiles then the whole program processes
separately each of them (see Figure 4.2(b)). The input image of the CED is split into
sub images of equal sizes, and a number of image processing operations are packed into
one big operation which processes each sub image independently and in parallel. The
implementation of the data decomposition strategy needs additional coding effort to
split and merge the sub-images. It is also necessary to assess the presence of dependen-
cies between neighbouring sub-images : in this case, the partitioning strategy has to be
tuned to minimize the impact of dependencies on performance. However, domain de-
composition offers a good runtime performance by avoiding additional overhead caused
by fork-join operations and by increasing the data locality.
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4.4.2 Parallelism Models

The studied parallelism models are : (1) pure data-parallelism, and (2) nested task- and
data-parallelism.

- Pure data-parallelism : refers to work units executing the same operations on a set
of data. The data are typically organized into a common structure as arrays or vectors.
(Part1, Figure 4.1) Each work unit 4 performs the same operations as other work units
on different elements of the data structure. The first concern of this type of parallelism
is how to distribute data on work units while keeping them independent. The relevant
advantage of data parallelism is that it exploits a large number of processing elements
of the target hardware platform to offer a maximum parallelism.

- Nested task- and data-parallelism : in most of applications, only one parallelism
model is not enough to achieve high degree of parallelization. A combination of different
parallelism models will be needed under a nested task- and data parallelism model. In
particular, CED algorithm shows that nested task- and data-parallelism in part 1 :
Gradient Calculation can be processed as two parallel tasks, where each task processes
a Gradient Calculation (Part1, Figure 4.1) at one direction (see Listing 4.3). Each task
in its turn encapsulates loops that can be parallelized as the data parallelism trend (see
Listing 4.2). On the other hand, Non Maxim Suppression (Part1, Figure 4.1) integrates
the nested task and data parallelism but with four tasks that can be processed in
parallel (see Listing 4.4).

Listing 4.2 Data-parallelism
void Gradient_X ( vars , numThreads ){

#pragma omp p a r a l l e l for
for ( row=0; row<imHeight ; row++){

for ( c o l =0; co l<imWidth ; c o l++){
. . .

}
}

}

4. Work unit : the unit of processing, it may be a task or a thread performing in parallel manner.
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Listing 4.3 Nested task- and data-parallelism with two tasks
#pragma omp p a r a l l e l s e c t i o n s num_threads (2 )
{

#pragma omp s e c t i o n {
Gradient_X ( vars , numThreads /2 ) ;

}
#pragma omp s e c t i o n {

Gradient_Y ( vars , numThreads /2 ) ;
}

}

Listing 4.4 Nested task- and data-parallelism with four tasks
#pragma omp p a r a l l e l s e c t i o n s num_threads (4 )
{

#pragma omp s e c t i o n {
NonMaximaSuppression_1 ( vars , numThreads /4 ) ;

}
#pragma omp s e c t i o n {

NonMaximaSuppression_2 ( vars , numThreads /4 ) ;
}
#pragma omp s e c t i o n {

NonMaximaSuppression_3 ( vars , numThreads /4 ) ;
}
#pragma omp s e c t i o n {

NonMaximaSuppression_4 ( vars , numThreads /4 ) ;
}

}

4.5 Parallel Platforms and Programming models

In this work, we target two different mainstream parallel platforms mainly multicore CPU and
manycore GPU. Each architecture presents some advantages and limitations. While multicore
CPU has the ability to execute efficiently both control- and data-oriented parallel applications
but with a limited number of parallel work units, manycore GPU is more suitable for data-
oriented parallel applications with large number of work units but presents poor performances
for control-oriented applications.
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4.5.1 Multicore CPU and Programming Models

Multicore CPU refers to general purpose processor integrating multiple cores in the same die.
In general, these cores are identical and they are based on x86 architecture. The multicore
CPU is a cache-based architecture which is classified as shared memory system. Since multi-
core CPU integrates an independent control unit for each core, it is able to handle both task
parallelism and data parallelism efficiently. However, the number of cores is limited to order
of ten cores which limits the number of parallel work unit.

To program the multicore CPU, we study two programming models namely OpenMP and
TBB. Both are high-level programming models but follow different strategies. While OpenMP
is a directive based programming model, TBB is a template library-based programming
model. As consequence, the performance of OpenMP program depends on the used compiler
unlike TBB program where the performance stays unchanged with different compilers.

4.5.2 Manycore GPU and Programming Models

Manycore GPU is a scratchpad memory-based architecture which integrates a hierarchical
memory system. Manycore GPU consists of a set of streaming multiprocessors (SM), each
composed of a number of streaming processors (SP) or cores. SPs from the same SM share
a fast on-chip memory (scratchpad shared memory). All SPs can access the global memory
which is much larger than the shared memory with order of hundreds of MB. However, the
global memory is an off-chip memory with higher latency. The GPU architecture is essentially
composed of hundreds of functional units and only few control units that it makes it more
suitable for fine-grain data parallel processing.

To program manycore GPU, we study two programming models namely CUDA and OpenCL.
Both are considered as relatively low-level programming models. CUDA can be used in two
different ways (1) via the runtime API, which provides a C-like set of routines and extensions,
and (2) via the driver API, which provides lower level control over the hardware, but requires
more code and programming effort. OpenCL API has a lot of similarities with CUDA driver
API which leads to additional effort to write a parallel program on GPU.

4.6 Design Challenges and Approach

The selection of parallelization strategies represents currently a key issue for the achievement
of required performances for image processing applications. Most of these applications expose
various parallelism opportunities and hence a mixture of parallelization strategies can be
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exploited. The developer may face several choices to parallelize this kind of applications. He
has to decide which parallelization strategy will be the best suitable. Mostly, this decision is
not trivial in particular with the large number of possible strategy combinations and different
target hardware platforms. In order to ease the parallel programming task and guide this
decision, we adopt a particular approach (see Figure 4.3).

This approach deals with the main parallelization strategies that need to be explored for an
efficient parallel implementation of image processing applications. The approach is built in
four stages :

- Stage 1 : it consists in analyzing the application according to dependencies either at
the execution flow or at data decomposition levels. The analysis at the execution flow
level finds the data dependencies that occur during the application execution while the
analysis at data-decomposition level defines how the data may be divided for further
parallelism.

- Stage 2 : it consists in selecting the parallelization granularity depending on the level
of the dependency. In fine-grain the parallelization is performed separately for each
individual task. In coarse-grain the parallelization is performed by splitting the input
data structures into sub-data structures and grouping a set of tasks into one big task
to be applied on each sub-data structures.

- Stage 3 : Once the granularity at which the program will run is decided, this stage
consist in choosing the appropriate parallelism model. In parallel computing, there are
mainly four parallelism models : (1) data-parallelism, (2) task-parallelism, (3) nested
task- and data-parallelism, and (4) pipeline-parallelism. This choice depends on the
parallelism opportunities available in the application.

- Stage 4 : it consists in choosing the programming model to map the parallelization
strategy depending on the target parallel architecture.

This exploration process is very complex and requires a lot of time and effort for designers.
In order to facilitate this design task, we presents the experience and the resulted guidelines
for the solutions space of the parallel implementation of a representative applications : The
extCED.

4.7 Experiments and Results

In this section, we evaluate the performance in term of execution time of the studied paralle-
lization strategies applied to extCED for multicore CPU and manycore GPU. Based on the
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experimental results, a number of conclusions are extracted that can be used as guidelines
to parallelize applications presenting similar features in the future.

4.7.1 Implementation Details and Experimental Setup

Our experiments are based on an extended CED that we developed in C. We propose different
parallelization strategies for the extCED. We use OpenMP 3.0 and Intel TBB as programming
models for multicore CPU, and CUDA and OpenCL as programming models for manycore
NVIDIA GPU. The multicore CPU target platform is a dual AMD Opteron 6128 runing at
2 GHz. The manycore GPU target platform is a NVIDIA GeForce GPU specifically a Fermi-
series graphics processor GTX 480 which integrates 480 SPs distributed on 15 Streaming
Multiprocessors (SMs) as 32 Streaming Processors (SPs) per SM. The running frequency of
the GPU is 1.4 GHz and the assigned global memory is 1.5 GB. We use CUDA 4.8 and
OpenCL 1.1 to program the GPU.

In this work, we experiment the mentioned parallelization strategies : (1) parallelization
granularity which is discussed in section 4.4.1 and (2) parallelism model which is discussed
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in section 4.4.2. Each parallelization strategy is implemented on two parallel platforms using
two programming models for each platform : (1) multicore CPU using OpenMP and TBB and
(2) manycore GPU using CUDA and OpenCL. We develop new parallel version of extCED
for each experiment as it will be shown later in this section. Figure 4.4 shows these parallel
versions, where each version represented as a path linking the different points from the
sequential program to the target architecture. Each crossed frame in this figure represents a
parallelization strategy category, and each point represents one of the studied parallelization
strategy. For all experiments we capture the execution times of four programming models
as two programming models for each target architecture. For multicore CPU, we use AMD
Code Analyst profiling tool to collect statistics like the number of clock cycles per each as
the main metric to check load balancing and execution performance, L3 cache misses and
programming model runtime overhead as influential factors on performances. For manycore
GPU, we use Nsight the profiling tool provided by NVIDIA to collect the execution time and
the statistics about accesses to the different levels of hierarchy. In order to facilitate a clear
display of the results, the execution times are normalized around a maximum value which
corresponds to 100% on the y axis. The shown execution times are the average values of 50
executions. In order to study the impact of the size of processed data on the performances,
we perform experiments on three image sizes : (1) 512x512, (2) 1024x1024 and (3) 2048x2048.

4.7.2 Fine-grain vs. Coarse-grain Parallelism

In this section, we capture the execution time of two different parallelization granularities :
(fine-grain and coarse-grain). The experiments focus on Part 1 and Part 3 of extCED program
(see Figure 4.1). Part 1 includes a number of successive image processing operations and Part
3 include dynamic behaviour given by the variable bound condition of a while loop which
encloses 3 image processing operations. Part 2 is not considered in the experiments since it
does not show any kind of parallelism.

Fine-grain vs. Coarse-grain on Multicore CPU

The results using OpenMP and TBB for Part 1 and Part 3 are shown in Figure 4.5 and
Figure 4.6, respectively. The difference in performance is more significant for larger images.
Moreover, the difference in execution time is more visible in Part 1 than in Part 3. Mo-
reover, the experiments show that coarse-grain parallelism gives lower execution time than
fine-grain parallelism for all image sizes and parallel structures for both OpenMP and TBB.
These results are essentially due to the data cache locality factor. In fine-grain parallelism,
each operation is parallelized separately and applied to the whole image. In this case, the
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Figure 4.4 Exploration Space

data do not remain in cache to be reused for the next operation which lead to additional clock
latency to load data from main memory. However in coarse-grain parallelism, all operations
are applied for each image slice. In this case, the data remain in cache for the next operation.
As the intermediate data are larger, the data cache locality factor has more significant im-
pact on execution time. This explains why Part 3 takes advantage of coarse-grain parallelism
better than Part 1 since it employs a large number of 2D arrays to store intermediate results
between successive operations.
As conclusion, we can claim that it is worth using coarse-grain parallelism when it is possible
and especially in the case of large data toward faster execution. However, the good perfor-
mance that can be reached with coarse-grain parallelism is at the price of less flexibility to
exploit other forms of parallelism inside the coarsened program and the difficulty to reuse
this coarsened parallel program in more complex applications. Moreover, since both OpenMP
and TBB give us almost the same speedup for respectively fine-grain and coarse-grain pa-
rallelism, the developer can choose the programming model that is more familiar for him
without loosing performance.
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Figure 4.5 Execution Time of Section 1 on Multi-core CPU
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Figure 4.6 Execution Time of Section 3 on Multi-core CPU

Fine-grain vs. Coarse-grain on Manycore GPU

The results of the experiments regarding the parallelization strategies related to the granula-
rity are shown in Figure 4.7. The execution time is represented as a percentage of a maximum
execution time for each image size where each maximum is mentioned in the graphics in
milliseconds. The experiments show that for small images (512x512), fine-grain parallelism
performs better than coarse-grain parallelism (see Figure 4.7). This is explained by the fact
that in the case of small images corse-grain parallelism created a significant smaller number
of parallel threads which leads to low occupancy on the GPU and poor degree of parallelism
compared to fine-grain parallelism. However, as we enlarge the image size, the performance of
coarse-grain improves and outperforms the fine-grain parallelism for 2048x2048 image, since
it benefits from a relatively large number of created threads and efficient use of data locality.
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In term of programming models, both CUDA and OpenCL have the same behavior regarding
the two granularities. While CUDA and OpenCL give almost the same execution time for
processing Part 3 of extCED (see Figure 4.7(b), CUDA offers lower execution time than
OpenCL for processing Part 1 of extCED (see Figure 4.7(a)). This is explained by the low
performance APIs implemented in OpenCL that manage data copies between the host and
the device memory. This effect is particularly visible in presence of large amount data handled
by Part 1, as opposed to Part 3.
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Figure 4.7 Fine-grain vs. Coarse-grain on Many-core GPU

4.7.3 Nested Task- and Data-parallelism vs. Data-parallelism

As mentioned in section 4.4.2, Gradient Calculation can be processed as two parallel tasks,
where each task processes a Gradient Calculation at one direction (see Figure 4.1). Each task
encapsulates loops that can be parallelized using the data parallelism trend (see Listing 4.2).
Moreover, Non Maxim Suppression (see Figure 4.1) integrates the nested task and data
parallelism, but with four tasks that can be processed in parallel (see Listing 4.4). Based
on these parallel structures found in extCED, we perform the experiments by capturing the
execution times of two different parallelism models (data-prallelism and nested task- and
data-parallelism) for (1) Gradient processing and (2) Non Maxima Suppression.
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Nested Task- and Data-parallelism vs. Data-parallelism on Multi-core CPU

Figure 4.8 and Figure 4.9 show the execution time of the different parallel versions of the
Gradient processing and Non Maxima Suppression, respectively, for different image sizes.
Based on the experimental results, we can distinguish two cases :
– Case 1 (# of cores = # of parallel tasks) : in this case the nested task- and data
parallelism is rather a pure task-parallelism since each task is assigned to a separate core
and no more cores are available to manage the data-parallelism present within each task.
We see this case in Figure 4.8 when the number of cores is equal to two and in Figure 4.9
when the number of cores is equal to four. As first conclusion, we can claim that pure
task-parallelism offers the best performances for all image sizes except for the case of Fi-
gure 4.8(c). This can be explained by the low runtime overhead introduced by the studied
programming models that is required to manage pure task parallelism compared to the
overhead that is required to manage a pure data-parallelism.

– Case 2 (# of cores ># of parallel tasks) : Nested task- and data- parallelism with
TBB offers better performances than OpenMP across the different images sizes. This is
due to the nested parallelism implementation in OpenMP, which suffers from a significant
runtime overhead. However OpenMP seems to be more efficient for pure data-parallelism
than TBB. This is due to the data parallelism management in TBB. Moreover, we can
observe significant impact of unbalanced load for the TBB implementation. This is due to
the concentration of the load in one thread playing the role of a master thread, as opposed
to OpenMP where the load is equally shared between processing cores.

In conclusion, we can claim that OpenMP offers better performances with data-parallelism
than nested task- and data-parallelism. This is due to the additional overhead to manage
nested parallelism compared to pure parallelism. However, TBB offers better performances
with nested task- and data-parallelism than pure data-parallelism.

Nested Task- and Data-parallelism vs. Data-parallelism on Many-core GPU

The nested task- and data-parallelism on GPU gives almost the same performances as pure
data-parallelism. This can be explained by the fact that Fermi architecture GPUs imple-
ment only one hardware queue to execute kernels. Therefore parallel kernels cannot fully
take advantage of parallel execution. Rather, their execution is serialized and may overlap,
but only for a short time depending on available resources (registers, memory and idle cores).
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Figure 4.8 Gradient Processing Execution Time on Multi-core CPU
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Figure 4.9 Non Maxima Suppression Processing Execution Time on Multi-core CPU

4.8 Conclusion

In this chapter, we have investigated several parallelization strategies used in image processing
applications. The motivations behind this work are first the difficulty to reach an efficient
parallelization of a sequential program in presence of large number of parallelization solutions
and second the missing work comparing fairly this wide range of parallelization strategies
under comparable constraints. In order to evaluate the performances of these parallelization
strategies, we played the role of the developer trying to parallelize an input sequential program
and we explored the different parallelization strategies. At the end of this chapter, we can
draw these conclusions :

- For small computations, fine-grain performs better than coarse-grain parallelism on
manycore GPU. This is due to the small number of threads generated by coarse-grain
parallelization which yields to a low GPU occupancy and by consequence a large ove-
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rhead on waiting requested data from memory.

- For large computations, coarse-grain parallelization outperforms significantly fine-grain
parallelization on both multicore CPU and manycore GPU. This is explained by the
high rate of data locality that offers coarse-grain parallelization compared to fine-grain
parallelization.

- OpenMP offers better performances with data-parallelism than nested task- and data-
parallelism. This is due to the additional overhead to manage nested parallelism com-
pared to pure parallelism. However, TBB offers better performances with nested task-
and data-parallelism than pure data-parallelism.
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CHAPTER 5 TUNING FRAMEWORK FOR STENCIL COMPUTATION

5.1 Introduction

In order to implement computer vision and image processing applications on heterogeneous
parallel platforms (HPPs), a number of parameters have to be considered. A class of image
processing and computer vision applications are based on Stencil computation. This type of
computation is known as memory-bound computation, so that reducing high latency memory
access becomes the biggest challenge to reach high performance.
To overcome this issue, it is needed to ensure better data locality through the efficient use of
low latency scratchpad shared memory (Grosser et al., 2013). However, this is not obvious
for the developer, especially due to the existence of :

1. a complex application data access pattern, and ;

2. resource constraints such as the available low latency memory space and the maximum
number of executed threads.

Therefore a tuning framework is mandatory to guide the developer to reach high performance.
We build our tuning framework based on the guidelines acquired from the performance eva-
luation of the optimization techniques on modern parallel platforms provided previously in
Chapter 3, and the deep exploration of the parallelization strategies provided previously in
Chapter 4.

In this chapter, we present a performance tuning framework for stencil computation targeting
HPPs. The emphasis is put on HPP platforms that follow host-device architectural model
where the host corresponds to a multicore CPU and the device corresponds to a manycore
GPU.

5.1.1 GPU-based Heterogenous Parallel Platforms

Heterogeneous parallel platforms (HPPs) are used as an appropriate choice to accelerate
compute intensive applications since they offer a good balance between high computation
capabilities and flexibility to handle large spectrum of applications features (Pienaar et al.,
2011). Most of these platforms adopt host-device model and usually the host is a cache-based
heavy multi-core CPU and the device is essentially a scratchpad memory-based light many-
core CPU or GPU. HPPs may be exploited in :
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- High performance computing (HPC) systems : desktops and workstations that integrate
multi-core general purpose CPU (Intel or AMD) as host and a discrete many-core GPU
(NVIDIA and AMD) as device,

- Portable Systems : laptops and netbooks that integrate a multicore CPU (Intel or
AMD) as host and GPU cores (Intel or AMD) as device.

- Low power embedded systems : smartphones and tablets that integrate in one die a
multicore CPU (ARM) as host and GPU cores (NVIDIA) as device.

5.1.2 Stencil Computation

Finite difference method used to solve partial derivative equations (PDEs) is at the core
of both scientific applications such as heat diffusion, climate science, electromagnetic and
fluid dynamics, and image processing applications such as image filtering and edge detec-
tion. The computational pattern which expresses the finite difference method is called stencil
computation (Datta et al., 2008). In stencil computation, each point of the computed space
is updated depending on the points at its neighborhood which is called stencil (see Figure 5.1).

x

y

z

Updated 

Element

Neighbour 

Element

Figure 5.1 Stencil

The stencil itself may be defined by three properties :

1. stencil operations, that is, the type of operations performed on neighbor points to
update the central point ;



77

2. stencil shape, that is, the topology of the neighbor points that are unchanged during
the computation. Figure 5.2 depicts three possible situations regarding horizontal and
vertical 1D, and 2D computations (namely a, b and c in the figure), and ;

3. stencil space, that is, the space of points that need to be updated. In general, this space
is a regular structured multi-dimensional grid.
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b) Verticall 

1D Stencil
c) 2D Stencil
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Figure 5.2 Stencil Shapes

The stencil computation may take several forms such as :

- single stencil computation, where a single stencil is applied only once on the stencil
space. For example, we have image convolution on rows ;

- multiple stencils computation, where a sequence of different stencils is applied on
the stencil space. The Canny Edge Detection is an example of this form, and ;

- iterative stencils computation, where one or several stencils are applied on the
stencil space repeatedly and the number of iterations may be known at compile time.
In this case, we have simulations with fixed number of time steps, or unknown at
compile time that depend on a certain condition. As example we have image shape
refining.

It is important to highlight that, in this work, we focus on the multiple stencils compu-
tation. However, our approach may be also be applied for iterative stencils computations.
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5.1.3 Parallelization Strategies for Stencil Computation

When implementing stencil computations on GPU-based HPP platforms, many considera-
tions have to be taken into account. They vary according to the complexity of the target plat-
form and the particular properties of stencil computations. These computations are known
as memory bound showing a low compute intensity (the ratio of computing operations by
the memory accesses). Thus, the main emphasis is put on improving data access time by im-
proving the data locality. This is guaranteed by the use of low latency memory sucha as the
scratchpad shared memory, as much as possible. Two techniques are proposed in literature
to improve the data locality : spatial tiling and temporal tiling (Datta et al., 2008).
Stencil computations are applied on a large amount of data that usually surpasses the number
of cores, and even the number of threads available on the target hardware platforms. As a
consequence, to achieve an improved implementation with optimal locality, the spatial tiling
technique is commonly used.

The tiling technique consists in splitting the data or the stencil space into tiles. Each tile is
then processed by one or a group of threads. In GPU-based platform, each tile is loaded once
in the shared memory. Then, it is processed iteratively by a group of threads sharing this
tile. This makes the data access to each element of the tile very fast.
However, by dividing the data into tiles, the border dependency problem arises. The elements
at the borders of each tile need their neighbors to be updated. Since these neighbors are
belonging to a different tile, the access to this data will imply a considerable overhead due
to extra communications and synchronizations.
To overcome this overhead, an approach named overlapped tiling (Krishnamoorthy et al.,
2007) is adopted. This approach consists in augmenting each tile with extra elements called
halos, which are loaded and re-computed twice in two neighbor tiles according to one dimen-
sion. Nevertheless, this implies re-loading and re-computation overhead that is proportional
to the number of halos and the halo size.
In this case, the biggest challenge is to reduce the number of halos by choosing the appro-
priate tile layout. An example illustrated in Figure 5.3 shows that depending on the tiling,
both the number and the size of needed halos will change. The tiling of the stencil space
shown in (Figure 5.3-a) may follow two different options : the tiling 1, depicted in (Figure
5.3–b) or the tiling 2, shown in (Figure 5.3–c), where the halos are in gray color. It is possible
to observe that Tiling 1 involves a larger number than tiling 2. In tiling 1 we have overlapped
tiling (represented with dashed lines in the figure), since the dependencies are involved at
both left and right side of the tile.
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Figure 5.3 Tiling Variants

Apart from spatial tiling, the temporal tiling technique is used for the iterative and multiple
stencil computations. Since they involve many intermediate data, we need to increase the
data reuse. In a naive implementation, each time we update an intermediate data, we would
access the high latency memory (device memory). In an optimized implementation, we will
keep the intermediate data in the low latency memory for as long as they are needed by the
computation.
In a GPU implementation, each single stencil computation is usually implemented as a se-
parate kernel. Since the shared memory does not preserve the data between two kernels
launches, multiple stencils have to be fused in one stencil to be launched only once in the
case of temporal tiling.
However, by fusing multiple stencils, we have to deal with dependency at borders. To do that,
we need to load the appropriate halos and find the number of allocated data and their size.
Nevertheless, this definition depends on their lifetimes during the fused stencil computation.
A non-optimized fusion may affect significantly the performance when the shared memory
is inefficiently used. Also, performance is affected if both loading and re-computation ove-
rheads become more significant when compared to the efficient computation. Moreover, by
allocating a large-sized data in the shared memory, the occupancy rate 1 will be reduced and
so the concurrency degree.

1. Occupancy rate is defined as the ratio of the number of allocated threads by the limit allowed by each
streaming multiprocessor (SM)
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5.1.4 Contribution

In order to optimize the implementation of the existing techniques on GPU-based platforms,
the developer is facing three problems :

1. What are the stencils that may be fused to reduce access to high latency memory by
keeping the effective data the low latency memory as long as possible ?

2. How to find the appropriate tile size and tile shape that may fit with the low latency
memory and which provides optimal performances ?

3. What is the best mapping of the computation load onto the threads hierarchy (grids
and blocks of threads) ?

To guide the developer to answer to these questions, we define and implement a performance
tuning framework based on a step-wise methodology which is detailed in the remaining
section.

The rest of the chapter is organized as follows. Section 5.2 surveys the state-of-the-art on
improving the implementation of stencil computation on parallel platforms. Section 5.3 des-
cribes in details our proposed performance tuning framework for stencil computation running
on GPU-based HPP platform. Section 5.4 provides the experimental results applied on two
image processing applications and provides comparison between a basic implementation and
an improved one using the proposed framework. Section 5.5 concludes this chapter by a
summary of the achieved work.

5.2 Related Work

Stencil computation is a well-known class of computations that is used in various domains
ranging from physics simulations to image processing. A lot of effort has been spent to
improve both productivity and performance of stencil computations for a wide range of
target hardware platforms and in particular GPU-based platforms. This effort takes various
forms such as :

1. improving stencil computation runtime, by elaborating algorithmic and coding
optimizations that may be implemented in specific compilers or as templates in specia-
lized libraries,

2. performance tuning tools, by developing tuning tools, and/or ;
3. evaluation of stencil computation implementations, by elaborating specialized

high-level frameworks based on the definition of new Domain Specific Languages (DSL)
for stencil computations.
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Following, a discussion of related work classified according to these mentioned forms classified
according to the above mentioned forms.

5.2.1 Related Work on Improving Stencil Computation Runtime

Several work improve the stencil computation runtime by proposing algorithmic and optimi-
zations such as cache-oblivious algorithms, space and temporal blocking via tiling, overlapped
tiling and register blocking. The work presented in (Tang et al., 2011) proposes a set of code
optimizations implemented in a domain specific compiler called Pochoir. Many approaches
have focused on different levels of blocking to improve cache locality on both multicore CPU
and GPU architectures. K. Datta et al. studied and evaluated several optimization such as
array padding. multi-level blocking, loop unrolling and reordering for stencil computation on
a wide variety of hardware architectures (Datta et al., 2008).

5.2.2 Related Work on Performance Tuning Tools

There are studies that focus in developing tuning tools that target the optimization of one
or both of these metrics : the tiling size, the halo size, the compute intensity and the threads
blocks size for GPU. J. Meng et al. developed an analytical performance model to automa-
tically select the halo size that gives the best speedup on GPU (Meng and Skadron, 2009).
However, this model is limited to iterative stencil loops where only one stencil is involved in
the whole program and, thus, not applicable to more complex code involving multiple sten-
cils. This makes their model very simple and not applicable to more complex code involving
multiple stencils. In addition, they suppose that the threads blocks are isotropic which nar-
rows considerably the search space. On the other hand, (Wu et al., 2012) and (Tabik et al.,
2014) deal with complex iterative multiple stencils where they study the impact of several
combinations of kernels fusion/fission on compute intensity for GPU via an exhaustive search.
However, they do not provide an analytical model to guide the search process.

5.2.3 Evaluation of Stencil Computation Implementations

Some other contributions are focused on evaluating the suitability of target platforms while
running stencil computations. Specific compute capabilities of each platform were investigated
and some effective implementation strategies were developed to deliver the best possible
performances. In (Eberhart et al., 2014), the authors optimize the implementation of stencil
computations on Accelerated Processing Units (APU) by proposing a hybrid approach. The
main idea is to assign different parts of the stencil computation to different APU processors.



82

Since, border treatments as source of high cost of computation and memory divergence, they
are assigned to CPU whereas the regular computation is assigned to the GPU part. The
authors in (Calandra et al., 2013) compare the computation performance of two successive
families of both discrete GPUs and integrated GPUs while running stencil code. In their
paper, they evaluate the impact of Peripheral Component Interconnect (PCI) express on
performances. In the same direction, the authors in (Lutz et al., 2013) evaluate the impact
of PCI express on performances in the case of multi-GPU platform.

5.2.4 Positioning Our Approach

In summary, several approaches have been previously proposed for improving stencil compu-
tation performance and productivity. Complier-based approaches propose conservative tuning
performance. On the other hand, implementations evaluations propose some explorations but
they are not based on well defined tuning frameworks. Finally few approaches propose tuning
frameworks but are limited to iterative stencil computation. Comparing with these contribu-
tions, the main strengths of the proposed approach are :

1. as opposed to conservative approaches, our framework is based on an analytical model
taking into account the characteristics of the application as well as the characteristics
of the targeted architecture, and ;

2. by considering multiple stencils computation, more complex applications may be
optimized using our framework.

5.3 The Proposed Framework

In this section, we describe our proposed performance tuning framework for stencil compu-
tation running on GPU-based HPP platform. The proposed framework covers a large set of
applications following stencil computation pattern, that is, not only image processing appli-
cations. Our methodology to build the proposed framework follows four basic steps, depicted
in Figure 5.4).
The methodology steps’ are :

- Step 1 : formulation for stencil computation running on HPP. This formulation
allows abstracting implementation details while keeping the relevant aspects having
an impact on performance. The high level representation can then be projected on a
performance model to predict the performance. Thus, the developer does not have to
implement a full functional code in CUDA or OpenCL for every parallel version to check
its performance. Details about the formulation and illustrative examples of high-level
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representations are provided in Section 5.3.1.

- Step 2 : generates all possible parameters configurations depending on the
target platform. For each configuration, the resource usage (shared memory usage,
thread occupancy and the number of resident blocks) and the number of iterations
needed to compute the full stencil space. The outputs of this step are injected as inputs
of step 4 in order to select the set of optimal configurations with best performances.
Details about this step are provided in Section 5.3.2

- Step 3 : determines the influential parameters on performance metrics and
identify those that can be controlled by the developer to tune performances.
For this purpose, we profile three data access patterns used in three stencil shapes which
are the basic stencils used in a majority of image processing applications. Details about
this step are provided in Section 5.3.4

- Step 4 : we provide at this step a performance model for stencil computation.
This model takes as input the resource usage and the computation load provided by
step 2, and the impact of a set of controlled parameters on performance metrics that are
provided by step 3. This performance model allows to assign to each implementation
configuration a computational cost that is used to determine the highest performance
configurations. Details about this step are provided in Section 5.3.5

These steps will be detailed during the next sections.

5.3.1 Formulation of Stencil Computation Running on HPP (Step 1)

In this section, we define the first step of our methodology. We provide a formulation for
a stencil-based program that runs on a HPP based on host-device schema. We analyze the
particular case of a CPU-GPU platform, as depicted in Figure 5.5.
to achieve our goal, we first define a formulation for a general program running on HPP.
Second, we define a particular formulation for stencil computation.

Assumptions and Simplifications

We consider in this work 2D grids since we are essentially targeting image processing and
computer vision applications. However, the proposed framework is still applicable for 3D
grids. In our formulation, we consider only data transfer between host and device. We omit the
representation of host program since we focus essentially on processing on GPU. A particular
emphasis is put on multiple stencil computations running on such platforms. As assumption,
we suppose that the studied stencils are symmetric and grids are regular Cartesian grids. The
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formulation is a single stencil based formulation. A single stencil is a stencil that performs a
single processing and produces only one output grid but may consume more than one input
grid. The stencils involving more than one processing and more than one output grid have
to be decomposed into separate single stencils so they can be supported by the proposed
formulation.

Formulation of Program Running on HPP

The main formulation terms and their corresponding descriptions are summarized in Table
5.1.

At platform-level, we consider two main types of memory MemType : (i) high latency global
memory denoted by GlobalMem and (ii) low latency scratchpad shared memory denoted by
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Table 5.1 Summary of Main Formulation Terms and Notations

Symbol Description
→ Sequence of actions
: Type
= Definition

Term Description
DTransfer Data transfer between host memory and global memory
DAccess Data access from/to global memory or shared memory

Proc Processing which includes computation and data access
Comp Computation without data access consideration
Sync Synchronization mechanism

ShMem. Memory type MemType is defined by :

MemType : GlobalMem | ShMem (5.1)

In our formulation, a program running on HPP is represented as a skeleton expressed as a
sequence of processing denoted by Proc, data transfer denoted by DTransfer and synchroni-
zation denoted by Sync :

Program→ Proc DTransfer Sync (5.2)

A Processing is further expressed as a sequence of data access denoted by DAccess, operation
denoted by Op and synchronization denoted by Sync :

Proc→ DAccess Op Sync (5.3)

Proc may have different processing types. We focus in particular on stencil processing, de-
tailed in Section 5.3.1 :

ProcType : StencilProc | Other (5.4)

As for synchronization mechanisms Sync, there are two types :

1. barrier-based synchronization - BarrierSync, that denotes the synchronization bet-
ween threads belonging to the same thread block, and ;

2. event-based synchronization - EventSync, that denotes the synchronization between
different streams.
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Thus, the definition of the type of synchronization mechanism is as follows :

SyncType : BarrierSync | EventSync (5.5)

Still, DTransfer can be classified in the following types :
1. HostToDevice which denotes data transfer from host memory to device memory ;
2. DeviceToHost which denotes data transfer from device memory to host memory, and ;
3. Device which denotes within device memory.

Thus, the definition for DTransferType is as follows :

DTransferType : HostToDevice | DeviceToHost | DeviceToDevice (5.6)

Dtransfer is also defined by the transfer type, denoted by DtransferType and the parame-



87

ters :
1. #ELem to denote the number of transfered elements, and ;
2. ElemSize to denote the size in Bytes of one depending on its type : (char, integer,
float, etc,...).

Thus, the definitions of the transfer type are as follows :

DTransferDef = DTransferType(#Elem,ElemSize) (5.7)

A data access type DAccessType could be a load or store operation from/to GlobalMem or
ShMem. Hence, the types of data access : DAccessType is defined by :

DAccessType : Load | Store (5.8)

A data access definition DAccessDef is expressed by DAccessType and two parameters :
(i) the number of accessed elements #Elem and (ii) the element size ElemSize :

DAccessDef = DAccessType(MemType,#Elem,ElemSize) (5.9)

We consider three types of operations : (i) integer : I (ii) single precision : SP and (iii) double
precision : DP . Operation type : OpType is expressed by :

OpType : I | SP | DP (5.10)

Op is defined by the type of operation OpType and the number of operations : #Op :

OpDef = OpType(#Op) (5.11)

Example of Program Running on HPP

This section illustrates the presented formulation using as example a simple image blending
application (see Figure 5.6). An image is represented as a 2D grid of pixels of size IM =
IMy × IMx where IMy and IMx are respectively the height and the width of the image.
Each pixel is located in the grid by its coordinates y and x. The blending superposes two
input images : inImg1 and inImg2 assigned with different weights by varying a factor α.
The operation of blending is given by this equation :

outImg(y, x) = (1− α)× inImg1(y, x) + α× inImg2(y, x) (5.12)
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Figure 5.6 Image Blending

Following, Listing 5.1 shows the code skeleton of two gray scale images blending running on
HPP expressed using the proposed formulation terms. The input images of size IMy × IMx

are transferred from HostMem to GlobalMem. The images stored in GlobalMem are divided
into tiles of size (TL = TLy × TLx) over the parallel thread blocks. Each thread block Blk
iterates over its assigned number of tiles denoted by #TL. At the last stage, the resultant
tile is stored to GlobalMem.

Listing 5.1 Code Skeleton of Blending Program
DTransfer :HostToDevice(IM , 4 ) ;
DTransfer :HostToDevice(IM , 4 ) ;
For i = 1 To #BlkSM

{
DAccess :Load(GlobalMem , TL , 4 ) ;
DAccess :Load(GlobalMem , TL , 4 ) ;
Op:SP(TL ) ;
DAccess : Store (GlobalMem , TL , 4 ) ;

}
DTransfer :DeviceToHost(IM , 4 ) ;

Formulation of Stencil-based Processing

After defining a program running on HPP, we define, in this section, a particular type of
processing StencilProc which is the stencil-based processing. StencilProc is defined by the
following sequence :

StencilProc→ DAccess(Stencil) Op(Stencil) Sync(Stencil) (5.13)
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In our framework, we define a simple stencil by a stencil that consumes one or multiple grids
and produces only one grid. In typical stencil processing, each input grid is divided into
tiles of size TL over a number of thread blocks #Blk. In order to accelerate processing via
accessing low latency memory ShMem, each tile is loaded to ShMem to be processed by a
given thread block.
Since each thread block has a view of only a part of the data restricted to that loaded on
the local address space allocated for it, the problem of dependency at borders will arise.
To handle efficiently the dependencies at the borders of tiles, a well-known technique called
overlapped tiling (Krishnamoorthy et al., 2007) is employed.
This techniques consists in augmenting each tile with a extra halo elements H as shown in
Figure 5.7.
In this case, we define each tile size (TL = TLy × TLx) and each halo size (H = Hy ×Hx),
so the augmented tile of size TL′ loaded into the shared memory is defined by :

TL′ = (TLy + 2×Hy)× (TLx + 2×Hx) (5.14)

A stencil is defined in our formulation by its identifier StencilID and the parameters :

1. a set of pairs of input grid inGridi and its corresponding halo Hi ;

2. an output grid outGrid, and ;

3. a transition function TransFunc shown in Expression 5.15.

In stencil computation, each element of the output grid is calculated depending on the ele-
ments’ values at its current position and its neighborhood of an input grid by applying a
transition function TransFunc. For each dimension dim, the size of the stencil is calculated
as (2 × Hdim + 1) where H is the halo added to the input grid to compute the elements of
the output grid.

StencilDef = StencilID(
#inGrid⋃

i

{(inGridi, Hi)} , outGrid, TransFunc) (5.15)

Grid defines an N-dimensional Cartesian grid when has its identifier GridID, its number
of dimensions #Dim, its size Size = ∏#Dim

dim Sizedim and the size of each element in bytes
ElemSize :

GridDef = GridID(#Dim, Size, ElemSize) (5.16)

TransFunc defines the stencil operations Op on one grid element and is expressed by :

TransFuncDef = OpType(#Op) (5.17)
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The number of operations, denoted by #Op is given by the following expression :

#Op =
#inGrids∑

i

#Dim∏
dim

((2×Hi,dim + 1)
 (5.18)

Example of Stencil-based Processing

As example of stencil-based processing, we consider a simple image convolution on rows. The
input Image is of size IM = IMy × IMx where IMy and IMx are respectively the height
and the width of the image. The operation of convolution is performed on each pixel of the
image by applying an 1D filter of aperture size of (2×radius+1) centered on that pixel. The
result of convolution is stored at the centered pixel in the output image as shown previously
in Figure 5.7). The convolution operation is given by :

outImg(y, x) =
radius∑
−radius

inImg(y, x+ k)× filter(k + radius) (5.19)

radius SubIMx

SubIMy

Filter:

Figure 5.7 Convolution on Rows

The convolution processing expressed in the defined formulation for stencil computation is
given in Expression 5.20. Conv is the transition function performing the convolution operation
which is defined by Expression 5.21.

Stencil(Convolution) = StencilConv((inImg, radius), outImg,Conv) (5.20)
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Conv = SP (#Op(Conv)) (5.21)

#Op(Conv) = 2× radius+ 1 (5.22)

In the following, we present the code skeletons of two versions :

1. the first version without shared memory usage (see Listing 5.2),

2. the second version using the shared memory (see Listing 5.3).

For both versions, the input image of size IM is transferred from HostMem to GlobalMem.
The image stored in GlobalMem is divided into tiles of size (TL = TLy × TLx) over the pa-
rallel thread blocks. Each thread block Blk iterates over its assigned number of tiles denoted
by #TLBlk. For convolution with use of shared memory, each tile is augmented with an extra
halo : (2× radius) and stored in ShMem. The size of the augmented tile is denoted by TL′

is given by :
TL′ = TLy × (TLx + 2× radius) (5.23)

Also, in both versions, the convolution is applied on each tile element by performing (2 ×
radius + 1) loads and single precision operations. The output tile is stored to GlobalMem

and all the output tiles forming the output image outImg are transferred back to the host
memory.

Listing 5.2 Code Skeleton of Convolution without Shared Memory
W = 2∗ rad iu s +1;
DTransfer :HostToDevice(IM , 4 ) ;
For i = 1 To #BlkSM

{
DAccess :Load(GlobalMem , W × TL , 4 ) ;
Op:SP(W × TL ) ;
DAccess : Store (GlobalMem , TL , 4 ) ;

}
DTransfer :DeviceToHost(IM , 4 ) ;
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Listing 5.3 Code Skeleton of Convolution with Shared Memory
W = 2∗ rad iu s +1;
DTransfer :HostToDevice(IM , 4 ) ;
For i = 1 To #BlkSM

{
DAccess :Load(GlobalMem , TL′ , 4 ) ;
DAccess : Store (ShMem, TL′ , 4 ) ;
Sync :BarrierSync
DAccess :Load(ShMem, W × TL , 4 ) ;
Op:SP(W × TL ) ;
DAccess : Store (GlobalMem , TL , 4 ) ;

}
DTransfer :DeviceToHost(IM , 4 ) ;

5.3.2 Fusion and Thread Configuration (Step 2)

In this section, we define the second step of our methodology. The program characteristics,
such as the data grid size, its dimensions, and the halo size are the main input. This step is
divided in two sub-steps :

1. sub-step 1 : for each tile placed in the shared memory the total halo size needed to be
added to avoid any extra data exchange with global memory. This step is performed for
each fusion combination defined by the developer and depends on the halo size defined
for each stencil during the stencil formulation at step 1. At the end of this sub-step the
total halo size for each tile is extracted and injected to the second sub-step, and ;

2. sub-step 2 : it takes as input both the number of tiles placed in shared memory and
the halo size computed previously. It generates a number of possible configurations
under the architecture constraints. For each generated configuration, a set of resource
usage is also provided.

Stencil Fusion Problem

In iterative stencil computation, stencil fusion (also called time tiling is an optimization tech-
nique, which consists in grouping a number of stencils together. This technique allows better
data locality, especially in the case of GPU. Since the data access to global memory has an
expensive computational cost, the idea is to fuse several stencils and let the intermediate
data resident in the shared memory for as long as possible. However, the fusion has some
side effects, such as extra data load and re-computation overheads, which are necessary to
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avoid data updates via the access to global memory.

The implementation of fusion on GPU is not an easy task and in particular with multiple
stencil shapes and data grids. The developer has the challenge of determining the size and
the shape of halos that will be added to each involved grid in the computation of the fused
stencils. Also, another challenge is to figure out which stencils should be fused. An example
of different stencil combinations is shown in Figure 5.8.

In order to help developer to implement the best stencil fusion combination, we provide a tool
to compute the appropriate halo size and shape to be added to each involved data grid for a
selected fused stencils. The algorithm implemented at this stage can be seen in Algorithm 1
and is described below. The output of this tool serves as input for a second tool (see Section
5.3.2) which provides all possible thread mapping configurations and their corresponding
GPU resource usage for the selected fused stencils. The second tool is described in Section
5.3.2. At the final stage, an analytical performance model which is described in Section 5.3.5
is used to generate the possible configurations according to their computational costs.

Figure 5.8 Fusion Combinations

A stencil based application shown as input application in Figure 5.9 could be represented
as a weighted direct acyclic graph (DAG) where vertices represent the data grids Gi and
edges represent the stencils and their weights represent the halo size H to be added for the
stencil computation. Each halo is denoted by H(inGrid, outGrid) which defines the halo to
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be added to inGrid to compute outGrid. When we apply fusion to a group of stencils, all
grids, except output grids, which are represented as black vertices, are loaded in the shared
memory. All grids loaded in the shared memory denoted by shGrids are represented as white
vertices.
The total halo size to be added to grids loaded in shared memory to update the output grids
needs to be determined in order to solve the dependency problem and to avoid any extra
data exchange with the global memory. For this purpose, the initial graph is treated as two
separate graphs, one graph for each output grid.
Then, for each graph we determine the halo size to be added to each shGrid in order to com-
pute the output grid for that graph. A halo with size H ′(i, j) is added to shGridi in order
to compute outGridj. To find this size, the problem is reduced to a longest path problem. In
this case, H ′(i, j) is the longest path length separating the vertices shGridi and outGridj.
At the final stage, the total halo size to be added to each shGridi in order to compute all
the output grids denoted by H ′i is the maximum size among all the halo sizes to be added to
compute each output grid as shown in Equation 5.24.

H ′i = max
j

(H ′(i, j)),∀i ∈ shGrids, ∀j ∈ outGrids (5.24)

Algorithm 1: Halo Size Computation Algorithm
Input : Weighted DAG of Fused Stencils
Output: H ′i : Total Halo Size for each shGridi

foreach shGridi do
Intialize H ′i = 0

end
foreach outGridj do

foreach shGridi do
Compute H ′(i, j) = LongestPath(shGridi, outGridj)
Update H ′i = max(H ′i, H ′(i, j))

end
end

Example of Stencil Fusion

To illustrate our approach, we apply fusion on an image processing application : the Gaussian
Blur filter operation which consists of two successive separate 1D convolution operations
applied on rows and on columns. Gaussian Blur could be represented as two successive
stencils (see Figure 5.10). The first stencil is a 1D horizontal convolution involving a halo
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Figure 5.9 Representation of Fused Stencils

of size r and the second stencil is a 1D Vertical convolution involving a halo of size r. The
representation of the two stencils using our formulation are shown in Table 5.2. The code
skeleton of the fused Gaussian Blur is illustrated in Listing 5.4 where the halos to be added
to each grid in shared memory G1 and G2 are given by :

H
′
2 = H(2, 3) = r × 1

H ′1 = H(1, 2) +H(2, 3) = r × r
(5.25)
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Listing 5.4 Code Skeleton of Fused Gaussian Blur
H ′1 = (r, r) ;
H ′2 = (r, 0) ;
TL′1 = (TLy + H ′1,y)× (TLx + H ′1,x) ;
TL′2 = (TLy + H ′2,y)× (TLx + H ′2,x) ;
DTransfer :HostToDevice(IM , 4 ) ;
For i = 1 To #BlkSM

{
\\ load Input T i l e in ShMem

DAccess :Load(GlobalMem , TL′1 , 4 ) ;
DAccess : Store (ShMem, TL′1 , 4 ) ;
Sync :BarrierSync
\\S1
DAccess :Load(ShMem, (2×H1 + 1)× TL′2 , 4 ) ;
Op:SP((2×H1 + 1)× TL′2 ) ;
DAccess : Store (ShMem, TL′2 , 4 ) ;
Sync :BarrierSync
\\S2
DAccess :Load(ShMem, (2×H2 + 1)× TL , 4 ) ;
Op:SP((2×H1 + 1)× TL ) ;
DAccess : Store (GlobalMem , TL , 4 ) ;

}
DTransfer :DeviceToHost(IM , 4 ) ;

Tile Size and Thread Block Configuration Problem

Tile size and thread mapping problem is depicted in Figure 5.11 and can be reduced to theses
questions :

- How to divide the data grid into tiles ?

- How to assign thread blocks to tiles ?

- How thread blocks may be distributed across streaming multiprocessors SMs ?

It is important to do a good choice of the thread block configuration and the tile size pro-
cessed by each block. |hlTo highlight that, we show an example of performance differences
of different configurations of the convolution program on three GPU architectures : (i) GTX
590 (Fermi), (ii) GTX 780 (Kepler) and (iii) GTX 750 (Maxwell).
Each configuration is a tuple of parameters (Ty, Tx, Ny, Nx) where the first two parameters
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Figure 5.10 Gaussian Blur Fusion

Table 5.2 Gaussian Blur Stencils

Operation Stencil
⋃#inGrid

i {inGridi : (Hi,y, Hi,x)} , outGrid

Convolution on Row S1 G1 : (0, r), G2
Convolution on Col. S2 G2 : (r, 0), G3

define the thread block size, and the two last parameters define the number of elements pro-
cessed by each thread. The tile size processed by each thread block is given by Equation 5.26.
Figure 5.12 shows the execution time of several configurations. We observe that performance
vary significantly from a range of configurations to another. Also, we observe that the best
configurations set varies from one architecture to another.

TL = (Ty ×Ny)× (Tx ×Nx) (5.26)

To deal with the large space of possible configurations and to guide the choice of the best set
of configuration, we developed a tool which takes as input :

1. the halo size involved for each stencil loaded in the shared memory. These halo sizes
are computed with the first stage of the tool described in Section 5.3.2, and ;

2. the GPU architecture specification as well as the resource constraints which are
summarized in Table 5.3.
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Figure 5.11 Tiling and Thread Block Configuration

This tool offers a coverage of pertinent configurations that may be implemented for a given
application on a given GPU architecture. The algorithm responsible to compute the resource
usage for each possible configuration is described in Algorithm 2.

For each configuration, the initial tile size is set by Equation 5.26 where, we denote by Ny

and Nx respectively, the number of elements processed by each thread at dimension y and
x. A thread block is defined by Ty and Tx to denote the #Threads at each dimension. To
augment the initial tile by halo, we use the padding technique which consists on adding
extra elements to the halo in order to align the augmented tile size to the thread block
size. This technique helps to avoid divergent computation paths and allows better alignment
with memory access. Therefore, both Ty and Tx must be greater than the maximum halo
size on respectively y and x dimension. Equation 5.27 defines the size of the augmented tile
with the needed halo for the stencil computation. The halo added to the initial tile is given
by H ′y and H ′x for respectively, y and x dimension. The used shared memory per block is
defined in Equation 5.28 where SmemBlk is the total size of the augmented tiles for each
input grid. The #ResBlkSM expressed in Equation 5.29 is determined with respect of the
platform constraints and SmemBlk.
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TL′i = (Ny + d
H ′i,y
Ty

e)× (Nx + d
H ′i,x
Tx

e)× (Ty × Tx)\∀inGridi (5.27)

SmemBlk =
#inGrids∑

i

(TL′i × ElemSize(inGridi)) (5.28)

#ResBlkSM = min
(
bSmem

max
SM

SmemBlk

c, bT
max
SM

TBlk

c,#Blkmax
SM

)
(5.29)

Table 5.3 Platform Specification

Parameter Description GTX 590 GTX 780 GTX 750
(2.0) (3.5) (5.0)

T Max
Blk,dim Maximum # of threads per block 1024 1024 1024

at the dimension dim

T Max
Blk Maximum # of threads per block 1024 1024 1024

T Max
SM Maximum # of threads per SM 1536 2048 2048

BlkMax
SM Maximum # of blocks per SM 8 16 32

SmemMax
Blk Maximum ShMem per block 48 KB 48 KB 48 KB

SmemMax
SM Maximum ShMem per SM 48 KB 48 KB 64 KB

#SM Number of SMs 16 12 4
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Algorithm 2: Resource Usage Computation Algorithm
Input : Gi : (Hi,y, Hi,x) : Halo size needed for the number of tiles in ShMems
Input : (IMy, IMx) : Data grid size
Input : #SM,SmemMax

Blk , Smem
Max
SM , BlkMax

SM , TMax
Blk , TMax

SM : Architecture specification
foreach configuration (Ty, Tx, Ny, Nx) do

if Ty ≥ 2×Hy and Tx ≥ 2×Hx and Ty × Tx ≤ TBlk then
Compute SmemBlk = ∑

i TL
′
i × ElemSize(inGridi);

Compute #ResBlk = Min(bSmemSM

SmemBlk
c,#BlkMax

SM );
Compute Occupancy = #ResBlk×Ty×Tx

T Max
SM

;

Compute #iterSM = b IM
#SM×#ResBlkSM×T L

c;
Compute #RemBlkSM = d IM−#iter×#ResBlkSM×#SM×T L

TBlk
e;

end
end

5.3.3 Influential Factors on Performance

This section defines the third of our methodology, where we provide a list of main influential
factors on GPU performance. These factors are used to setup the performance model. This
step is performed only if there is a new used architecture where the impact of the influential
parameters on performance vary. In the following the list of the main influential factors on
performance :

- halo size. each data grid is divided into tiles where each tile is augmented with extra
neighbor elements (halo) to respect dependencies at borders. The size of halo depends
on the way the grid is split and the properties of computations as depicted previously
in Figure 5.3. If we divide the grid according to the orthogonal direction to where the
larger number of neighbors is involved, the size of halo increases and yields additional
data load and re-computation overheads ;

- thread occupancy. Thread occupancy is the rate of actual resident threads by the
maximum allowed resident threads per SM (see Equation 5.30). Low thread occupancy
prevents both memory latency and arithmetic latency hiding ;

- branch divergence. When threads from the same warp follow different paths due to
conditional statements, their execution is serialized ;

Occupancy = #ResBlocks
BlkMax

SM

(5.30)
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- memory access coalescing and alignment. Aligned memory accesses occur when
the first address of a device memory is an even multiple of the cache granularity used
to service the transaction (either 32 bytes for L2 cache or 128 bytes for L1 cache).
Coalesced memory accesses occur when all 32 threads in a warp access a contiguous
chunk of memory.
When threads access non coalesced memory locations we see the performance dropping
significantly, and ;

- Shared Memory Bank Access. if different parallel threads from the same warp
access the same memory bank, the memory access to shared memory is serialized.

5.3.4 Controlled Parameters (Step3)

In this section, we provide the parameters elated to influential factors on performance and
that can be controlled by the developer at the programming level. These parameters are :

1. Data grid decomposition and fusion. In order to minimize the halo size and increase
the effective computation rate, the developer has to manage the data grid decomposition
according to the tile size and shape. Another parameter that has an immediate impact
on halo size and thread occupancy is the total size of fused grids stored into shared
memory. The developer has to select the number and which stencils to fuse in oder to
reach high performance computation.

2. Thread Block Configuration. HPP runtime for both CUDA and OpenCL organize
threads into grids of thread blocks and these blocks may have 1D, 2D or 3D layout.
The developer can choose the thread block size and its shape. However this choice
depends on several constraints imposed by both hardware architecture and the runtime
constraints as mentioned in Section 5.3.2.
– Thread block size - it affects the occupancy rate and by consequence : (i) the
degree of concurrency and (ii) both arithmetic operations and memory latency hiding.
Thread block size has also an impact on the amount of the remaining work load.
By selecting small block size, many blocks could be mapped into one SM. This allows
better fit with shared memory size when the problem size is not regular and does
not match exactly the resource limits. Moreover and since the number of blocks
is not distributed equally to the available SMs, small block size gives better load
balancing. However, small block size introduces more overhead due to the number of
halos which have to be loaded as the number of halos is proportional to the number
of block sizes. On the other side, by selecting a large block size, fewer blocks could
be mapped into the SM in order to respect the maximum number of threads allowed
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per SM. In many cases, this will introduce a bad fit with the resource constraints and
by consequence an inefficient use of available computation capability of the hardware
platform. However, since the number of loaded halos is proportional to the number of
thread blocks, the overhead due to the halo loading and re-computation is minimized.

– Thread block layout - it affects the memory access efficiency. The number of
threads Tx has an immediate impact on the memory alignment and banked shared
memory access efficiency. Examples of memory efficiency impact of Tx for 1D hori-
zontal stencil, 1D vertical stencil and 2D stencil are shown respectively in, Table 5.4
Table 5.5 and Table 5.6. The number of transactions per memory request to both
shared memory and global memory is immediately related to Tx. We observe that
the number of transaction per request to shared memory doubles when Tx is not
multiple of a memory banks number size in 1D horizontal stencil computation. The
number of transactions per request to global memory doubles when Tx is not multiple
of a half warp and this number increases as Tx decreases. The thread block layout
has also an impact on the halo loading and re-computation overhead. Depending on
the halo layout imposed by the application, the user has to choose the better block
layout that minimizes this overhead and utilizes better the hardware computation
capability.

Table 5.4 # Transactions per Request (1D Horizontal Stencil)

Tx Shared Load Shared Store Global Load Global Store
8 2 2 5.72 8
16 2 2 4.83 4
32 1 1 4.35 4.42
64 1 1 4 4
128 1 1 4.29 4

Table 5.5 # Transactions per Request (1D Vertical Stencil)

Tx Shared Load Shared Store Global Load Global Store
4 1 1 7.7 8
8 1 1 4 8
16 1 1 4 4
32 1 1 4 4
64 1 1 4 4
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Table 5.6 # Transactions per Request (2D Stencil)

Tx Shared Load Shared Store Global Load Global Store
8 1 1 4.79 8
16 1 1 4.34 4
32 1 1 4.16 4
64 1 1 4.51 4

5.3.5 Performance Model for Stencil Computation (Step 4)

This section defines the fourth step of our methodology (step 4). At this level, we present our
performance model used to compute the time cost of stencil based processing on NVIDIA
GPUs. This performance model takes two inputs :

1. the program characteristics defined at step 1, the resource usage and the computation
amount.

2. the influential parameters on performance defined at step 3 used to set up our perfor-
mance model

We provide a general performance model that considers primarily the computation, the syn-
chronization and memory operations as basic processing operations like mentioned in our
formulation.

The proposed performance model focuses on device processing times.
The processing time (Tproc) is defined as a sum of : (i) data access time (TDAccess), (ii)
synchronization time (TSync) and operation time (TOp) (see Equation 5.31). The operation
time is expressed in Equation 5.32 as a function of operation latency denoted by LatOp,
number of performed operations denoted by #Op and the operation throughput denoted
by OpTh. Table 5.8 gives the throughputs in number of operations per clock cycle of main
operations for different NVIDIA GPU architectures. LatOp is equal by default to 22 cycles
and 11 cycles for respectively, for GPUs of compute capability 2.0 like Fermi and for GPUs
of compute capability higher than 3.x like Kepler and Maxwell.
The operation latency could be expressed as a function of the number of resident warps
#ResWarp per SM (see Equation 5.34). LatOp is equal to zero if #ResWarp is greater than
a minimum number of resident warps denoted by #ResWarpmin. Based on the NVIDIA
programming guide, ResWarp has to be at least 24 warps for Fermi and 44 warps for Kepler
to hide latency operations. Data access time denoted by TDAccess is expressed in Equation 5.33
as a sum of latency time denoted by LatDaccessT ype and the time needed to access #Elem×
ElemSize Bytes.

TP roc = TDAccess + TSync + TOp (5.31)
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TOp = LatOp + #Op
OpTh(OpType) (5.32)

TMemT ype
DAccessT ype = LatMemT ype

DAccessT ype +
#TransMemT ype

DAccessT ype ×#Elem× ElemSize
BWMemT ype ×Warp

(5.33)


LatOp = f(#ResWarp)

LatDAccessT ype = f(#ResWarp)

#TransDAccessT ype = f(Tx)

(5.34)

The total processing time on device is given by the processing time of the most loaded SM.
First, we express the maximum work load that could be assigned to one SM by using the
model given below. The number of thread block assigned to an SM is denoted by #BlkSM

and is expressed in Equation 5.35 as a number of compute iterations denoted by #iterSM

multiplied by the number of resident blocks per SM denoted by (#ResBlkSM) and the
number of remaining blocks denoted by #RemBlkSM . The #iterSM is expressed in Equation
5.36 as the number of iterations needed per SM to compute its portion of the total data
grid of size IM at the rate of #ResBlkSM per computation step where each resident thread
block computes one tile of size TL.

#BlkSM = #iterSM ×#ResBlkSM + #RemBlkSM (5.35)

#iterSM = b IM

#SM ×#ResBlkSM × TL
c (5.36)

#RemBlkSM = dIM −#iter ×#ResBlkSM ×#SM × TL
TBlk

e (5.37)

Table 5.7 Throughput of Main Operations per Clock Cycle (Nvidia, 2012)

Compute Capability 2.0 3.5 5.0
32-bit floating-point add, multiply, multiply-add 32 192 128
64-bit floating-point add, multiply, multiply-add 16 64 1

32-bit square root, special functions 4 32 32
32-bit integer add, subtract 32 160 128

32-bit integer multiply, multiply-add 16 32 32
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Table 5.8 Average Memory Latency in Clock Cycles (Nvidia, 2012)

Compute Capability 2.0 3.5 5.0
Global Memory Latency (Clock Cycle) 600 300 -
Shared Memory Latency (Clock Cycle) 16 64 1
Global Memory Clock Rate (MHz) 4008 6008 5000
Global Memory Bus Width (bit) 384 384 128

Theoretical Global Mem. Bandwidth (GB/s) 164 288 80
Shared Mem. Bandwidth (Bytes/clock cycle) 4 16 16

5.4 Experimental Results

In order to validate our framework, we implement two real image processing applications
on three NVIDIA GPU architectures using the developed tuning tool. First, we provide the
experimental results of a relatively simple application composed of two separable convolution
stencils and as example Gaussian Blur application and we compare the results with a an SDK
separable convolution implementation. Second, we provide the experimental results of a more
complex application involving multiple stencils : Canny Edge Detection.

5.4.1 Experimental Environment

In this section, we present the hardware and the programming models that are used to run
our experiments. We use two main hardware platforms as host :

1. 2x AMD Opteron 6128 CPU with total of 16 cores running at 2 GHz, and ;

2. AMD 5800K integrating 4 cores running at 4.3 GHz.

In the first platform, our experiments are performed on Maxwell NVIDIA GTX 750 GPU. In
the second platform, our experiments are performed on two NVIDIA architectures : Fermi
with NVIDIA GTX 590 and Kepler with NVIDIA GTX 780. As programming model, we use
CUDA to program the NVIDIA GPUs.

5.4.2 Case Study : Gaussian Blur

Gaussian Blur is represented as two successive stencils. All the details about the implemen-
ted stencils are given in Table 5.9. First, we compare the performance of the configuration
obtained by the tuning tool with an SDK implementation and this for two different NVIDIA
GPU architectures. The tuned configuration is denoted as Tuned S1 and Tuned S2 for, res-
pectively the stencils S1 and S2. SDK S1 and SDK S2 denotes the stencils implemented in
the CUDA SDK with a default thread block configuration. The experiments are performed
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on two image sizes : (1) 4096x4096 and (2) 8192x8192. The target GPUs are GTX 590, GTX
780 and GTX 750.
We show that the tuned configuration outperforms the default SDK implementation in all
cases. The gain of the tuned implementation over the default SDK implementation varies
depending on the architecture and the image size. The gain is more relevant in the case of
large images and in particular for GTX 780 compared to little gain for GTX 750. All the
experimental results are shown in Figure 5.13.
Next, Figure 5.14 depicts the experimental results of an implementation of both non fu-
sed Gaussian and fused Gaussian Blur on three NVIDIA GPU architectures. We observe
that the tuned configuration outperforms a basic implementation having the configuration
(Ty, Tx, Ny, Nx) = (16, 16, 1, 1) for both non fused and fused versions.
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Figure 5.13 Performance Comparison of Different Separate Gaussian Blur Stencils Implemen-
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Table 5.9 Gaussian Blur Stencils

Operation Stencil
⋃#inGrid

i {inGridi : (Hi,y, Hi,x)} , outGrid

Convolution on Row S1 G1 : (1, 7), G2
Convolution on Col. S2 G2 : (7, 1), G3

Fused Gauss (S1,S2) G1 : (1, 7), G2 : (7, 1), G3

GT
X 590

(409
6x4

096
)

GT
X 590

(819
2x8

192
)

GT
X 780

(409
6x4

096
)

GT
X 780

(819
2x8

192
)

GT
X 750

(409
6x4

096
)

GT
X 750

(819
2x8

192
)

0

5

10

15

20

GPU Platform (Image Size)

Ex
ec
ut
io
n
T
im

e
(m

s)

Basic Non Fused Tuned Non Fused Basic Fused Tuned Fused

Figure 5.14 Performance Comparison of Different Implementations of Non Fused and Fused
Gaussian Blur

5.4.3 Case Study : Canny Edge Detection Application

To evaluate our tuning tool, we study the Canny edge detection (CED) algorithm which
can be expressed as a sequence of several stencil operations. Each operation of the CED is
expressed as a stencil. A representation of CED under the form of a sequence of stencils is
illustrated in Figure 5.15.
The stencil S1 is a convolution on the horizontal direction and the stencil S2 is the convo-
lution in the vertical direction. The sequence of these two stencils form the Gaussian blur
stage. The sequence consisting in S3 and S4 and the sequence consisting in S5 and S6 form
respectively the gradient at X direction stage and the gradient at Y direction stage. Both
S3 and S5 are convolution in the horizontal direction and S4 and S6 are convolution in the
vertical direction. The Stencil S7 represents the magnitude calculation stage and the stencil
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S8 represents the non maximum suppression. All the stencils parameters are summarized in
Table 5.10.
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Figure 5.15 Canny Edge Detection Stencils

We evaluate the tuning performance over four fusion combinations of CED with two image
sizes (2048x2048) and (4096x4096). The different fusion combinations are summarized in
Table 5.11 where stencils between () are the fused stencils and stencils separated by the
symbol | are the non fused stencils. we list also the number of grids allocated in the shared
memory denoted by #shGrids. For each fusion combination, we compare the performance of
a basic implementation and a tuned configuration for three NVIDIA GPU architectures. The
results of the performance comparison on GTX 590, GTX 780 and GTX 750 are represented
respectively in Figure 5.16-(a), Figure 5.16-(b) and Figure 5.16-(c). As first observation, we
show that tuned configuration outperforms the basic implementation in the case of several
fusion combinations. We can conclude also that the stencil fusion F2 is the best fusion which
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Table 5.10 CED Stencils

Operation Stencil
⋃#inGrid

i {(inGridi, Hi)} , outGrid

Gaussian Blur Row S1 {(G1, 0× 3)} , G2
Gaussian Blur Col. S2 {(G2, 3× 0)} , G3
Gradient X Row S3 {(G3, 0× 3)} , G4
Gradient X Col. S4 {(G4, 3× 0)} , G5
Gradient Y Row S5 {(G3, 0× 3)} , G6
Gradient Y Col. S6 {(G6, 3× 0)} , G7

Magnitude S7 {(G5, 0× 0), (G7, 0× 0)} , G8
Non Maximum Suppression S8 {(G5, 0× 0), (G7, 0× 0), (G8, 1× 1)} , G9

provides the highest performance for the three GPUs. This is explained by the fact that F2
fuses the largest number of stencils while it allocates the lowest number of grids in the shared
memory. The large number of fused stencils improves data locality and avoids the global
memory exchanges. Moreover, when the number of allocated grids in the shared memory is
small, we can load larger tiles in the shared memory and by consequence reducing the number
of computation iterations. This latter is an influent factor on performance.

Based on these observations and the tuning performance results, the developer has the ability
to investigate efficiently the performance of several fusion combinations.

Table 5.11 CED Fused Stencils
Fused Version Fused Stencils #shGrids

F1 (S1,S2)|(S3,S4)|(S5,S6)|S7|S8 2|2|2|0|0
F2 (S1,S2,S3,S4,S5,S6)|S7|S8 2|0|0
F3 (S1,S2,S3,S4,S5,S6)|(S7,S8) 2|3
F4 (S1,S2,S3,S4,S5,S6,S7,S8) 4
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Figure 5.16 Performance Comparison of Basic and Tuned Implementation For Different Fu-
sions on NVIDIA GPUs

5.5 Conclusion

In this chapter, we present our methodology on top of which we build a performance tuning
framework for stencil computation. The proposed methodology is based on four major steps :

1. Program formulation,

2. Fusion and tiling configuration,

3. Performance model setup,

4. Projection of program characteristics and configurations on performance model

To automate the process following this methodology, we show a tool that generates all possible
implementation configurations and projects each configuration on a given GPU specification
to provide the resource usage on that architecture. We believe that this feature is very useful
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for the developer to have an early overview of a given program configuration without the need
to implement it on the real hardware. The proposed tool supports also the fusion problem
where the developer can test the performance of several fusion combinations and the suitable
configurations for each without the need to make extra efforts to write a complete code for
each combination. In order to find a set of optimal configurations, the tool covers the design
space exploration and projects relevant configurations on the proposed performance model.
The framework is validated through two concrete image processing applications : (i) the
Gaussian Blur filter operation and (ii) the Canny edge detection implemented by performing
different fusion combinations and targeting three different NVIDIA GPU architectures.
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CHAPTER 6 CONCLUSION AND PERSPECTIVES

This research is motivated by the current context in programming computing intensive ap-
plications on modern parallel platforms. Parallel platforms are becoming available to the
computational science community with an increasing diversity of architectural models. These
platforms increasingly rely on software-controlled parallelism to manage the performance re-
quirements. This results in a daunting problem for performance-oriented programmers. In
this last part of this document, we present the summary of the thesis and directions for
future research.

6.1 Conclusion

This thesis has addressed three of the main challenges faced currently by the computing
intensive application programmers : (1) the evaluation of the different parallel platforms
efficiency for a given application (2) the evaluation of the parallel programming strategies
and (3) the performance tuning for efficient programming on GPU-based architectures. We
focused mainly on computer vision and image processing applications designed on multi-core
CPU-based and many-core GPUs-based architectures.

In Chapter 3, we introduced an approach for evaluation of parallel platforms for accelrating
computer vision and image processing applications. The evaluation is made for both CPU-
based and GPU-based architectures and through three illustrative applications : the Canny
Edge Detection, the Shape Refining and Distance Transform. A wide set of platforms was
used during the evaluation : a HPC platform based on multicore CPU (Dual Socket), an em-
bedded platform based on multi-core CPU (NVIDIA Tegra K1), three HPC platforms based
on manycore GPU (NVIDIA GPU Fermi, NVIDIA GPU Kepler, NVIDIA GPU Maxwell)
and two embedded platforms based on manycore (NVIDIA Tegra K1 et STHORM provided
by STMicroelectronics).

In Chapter 4, we presented a quantitative analysis of a large variety of parallelization strate-
gies used in programming for parallel platforms. We considered the parallelism granularity,
the parallelization models as well as the main programming models for the studied platforms.
This analysis is realized on two of the most common parallel platforms : multicore CPU plat-
forms and manycore GPU based platforms, using the Canny Edge Detection application. The



113

multicore CPU target platform is a dual AMD Opteron 6128 running at 2 GHz. The ma-
nycore GPU target platform is a NVIDIA GeForce GPU specifically a Fermi-series graphics
processor GTX 480 which integrates 480 SPs distributed on 15 Streaming Multiprocessors
(SMs) as 32 Streaming Processors (SPs) per SM. In this chapter, we also outlined a set of
guidelines for the efficient parallelization of common applications.

In Chapter 5, we proposed a performance tuning framework enabling programmers to effi-
ciently design applications while leveraging the GPU architectures. This framework is based
on a rigorous formulation and a set of algorithms designed to optimize the kernel fusion pro-
cess. The emphasis was put on HPP platforms that follow host-device architectural model
where the host corresponds to a multicore CPU and the device corresponds to a manycore
GPU.

6.2 Perspectives

The results presented in this dissertation point out to several interesting directions for future
work :

1. The presented research work studied a wide set of platforms. However, we did not
explore the AMD GPU-based platform and the Hybrid parallel platforms integrating
CPU and GPU in the same die like AMD APU. An interesting research direction is to
investigate their efficiency and if there are some programming strategies more suitable
for such platforms than discrete GPU platforms.

2. Several research lines are open by the performance tuning framework proposed in Chap-
ter 5 :
- While we claim that the framework can be applied on 3D grids and complex appli-
cations, more experiments are needed to solidify our hypotheses.

- The analysis of the accuracy for the proposed performance model needs to be ad-
dressed.

- The automation of the fusion process using heuristics would be a further improvement
of our framework.

3. Finally, it is our intention to parallelize a full complex application integrating the
algorithms analyzed in this work. The target application is the augmented reality system
for minimally invasive surgery.
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