276 research outputs found

    Comparing Refinements for Failure and Bisimulation Semantics

    Get PDF
    Refinement in bisimulation semantics is defined differently from refinement in failure semantics: in bisimulation semantics refinement is based on simulations between labelled transition systems, whereas in failure semantics refinement is based on inclusions between decorated traces systems. There exist however pairs of refinements, for bisimulation and failure semantics respectively, that have almost the same properties. Furthermore, each refinement in bisimulation semantics implies its counterpart in failure semantics, and conversely each refinement in failure semantics implies its counterpart in bisimulation semantics defined on the canonical form of the compared processes

    Metric Semantics and Full Abstractness for Action Refinement and Probabilistic Choice

    Get PDF
    This paper provides a case-study in the field of metric semantics for probabilistic programming. Both an operational and a denotational semantics are presented for an abstract process language L_pr, which features action refinement and probabilistic choice. The two models are constructed in the setting of complete ultrametric spaces, here based on probability measures of compact support over sequences of actions. It is shown that the standard toolkit for metric semantics works well in the probabilistic context of L_pr, e.g. in establishing the correctness of the denotational semantics with respect to the operational one. In addition, it is shown how the method of proving full abstraction --as proposed recently by the authors for a nondeterministic language with action refinement-- can be adapted to deal with the probabilistic language L_pr as well

    Preserving Liveness Guarantees from Synchronous Communication to Asynchronous Unstructured Low-Level Languages

    Get PDF
    In the implementation of abstract synchronous communication in asynchronous unstructured low-level languages, e.g. using shared variables, the preservation of safety and especially liveness properties is a hitherto open problem due to inherently different abstraction levels. Our approach to overcome this problem is threefold: First, we present our notion of handshake refinement with which we formally prove the correctness of the implementation relation of a handshake protocol. Second, we verify the soundness of our handshake refinement, i.e., all safety and liveness properties are preserved to the lower level. Third, we apply our handshake refinement to show the correctness of all implementations that realize the abstract synchronous communication with the handshake protocol. To this end, we employ an exemplary language with asynchronous shared variable communication. Our approach is scalable and closes the verification gap between different abstraction levels of communication

    Partial bisimulation

    Get PDF

    A Linear-Time Branching-Time Spectrum for Behavioral Specification Theories

    Full text link
    We propose behavioral specification theories for most equivalences in the linear-time--branching-time spectrum. Almost all previous work on specification theories focuses on bisimilarity, but there is a clear interest in specification theories for other preorders and equivalences. We show that specification theories for preorders cannot exist and develop a general scheme which allows us to define behavioral specification theories, based on disjunctive modal transition systems, for most equivalences in the linear-time--branching-time spectrum
    • 

    corecore